

Vowel Space as a Tool to Evaluate Articulation Problems

Kris Demuynck ³

Rob J.J.H. van Son 1,2 Catherine Middag 3,4

¹Netherlands Cancer Institute, Amsterdam

²ACLC, University of Amsterdam, The Netherlands

³IDLab, Ghent University, Belgium

⁴Erasmus University College Brussels, Belgium

Abstract

- Oral cancers are treated with surgery and chemo-radiotherapy
- Treatment often leads to articulation problems
- Vowel Space useful for informing patient and SLP†
- Vowel Space Dimensions relevant for articulation

Background and Aim

- Patients Receive Speech & Language Therapy
- Understand and communicate cause and effect
- ⇒ Visualize vowel space for patient and SLP†

Test relevance of vowel space for disordered articulation

Example: Patient with an oral tumor

Plotting and Measuring Vowel Space

Vowel Space Area

/u/ hoot

- Map points on axis Centroid--Corner

A fully automated *Praat* script

- Scan recording for syllables
- Find vowel F₁/F₂ tracks*
- Normalize M/F (vocal tract length)
- Plot points closest to /i/, /u/, /a/ cornérs

Results: 1. Normal Speakers

Materials&Methods: IFA corpus

- Normal speech, 10 speakers (F/M: 5/5)
- 6 speaking styles:
- Informal, Retold, Text, Sentences, Words, Syllables
- 1161 fragments, Chunks
- Average chunk duration 30 sec; ∼10 hours total
- Free corpus: http://www.fon.hum.uva.nl/
- ightarrow IFA-SpokenLanguageCorpora/

Vowel Space Area (VSA) in IFA corpus

Average VSA by speaker

Differences between speaking styles after normalization for speaker differences

Average normalized VSA by style

Systematic Effects

- Between individual speakers
- Between speaking styles: Vowel reduction

2. Speakers with Oral Tumors

Materials&Methods

- Recordings from 30 patients (F/M: 14/16)
- Treated with surgery and/or (chemo-)radiotherapy
- Recorded before treatment (T0) and after 6&12 months (T1 & T2)
- 86 recorded sessions, 4 missing at T1
- Text reading: neutral story, ~150 words/65 sec
- Articulation rate: fast repeat of /pataka/
- Deviant articulation rated by 4 experts (VAS)

Vowel Triangles of Patients

Changes after treatment (6mnd, 12mnd)

Correlation Deviant Art. and Vowel Space

Correlation with vowel space

Systematic Effects

- Average Articulation Rate reduces after treatment
- Shift from $/u/\rightarrow/a/$ -corner ($\frac{/a/}{/u/}$ increases)
- Deviant articulation correlates with VSA, /u/, /i/

Conclusions

Vowel space parameters contain relevant information about articulation

- In normal speakers and speakers with oral tumors
- Patient group too diverse for detailed analysis

From proceedings paper:

- Deformed plots are easy to spot and rate
- Longer speech recordings are better

Future:

- Better vowel detection
- Vocal Tract Length normalization
- Link with tongue mobility

Vowel Triangle Tool

- Aimed at researchers and speech therapists (8 languages, in β -release)
- Praat script
- Must still be validated

Test it yourself (GPL licensed)

(requires Praat v6.0.37)

https://github.com/robvanson/VowelTriangle

https://praat.org Media in Proceedings

Contact

Rob van Son: r.v.son@nki.nl

User Interface

[†]SLP: Speech-Language Pathologist

*Praat Robust formant analysis is used in this presentation