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Abstract
The acoustics of isolated vowels, e.g. of /a/, have in many stud-
ies been linked to pathological voice types, such as tracheoe-
sophageal (TE) voice. To study the possibilities of objective
and automatic classification of pathological TE voice types, the
acoustic features of /a/ were quantified and subsequently classi-
fied using a suit of machine learning technologies. Best classi-
fication was achieved by using a voiced-voiceless measurement
and the harmonics-to-noise ratio. Other common acoustic fea-
tures were correlated to pathological type as well, but were less
distinctive in classification. We conclude that for objective and
automatic classification of TE voice pathology, voicing distinc-
tion and harmonics-to-noise ratio are most relevant.

Index Terms: Tracheoesophageal speech, pathological speech,
machine learning

1. Introduction
Cancer of the larynx as well as most treatment modalities have
a negative impact on a person’s voice and speech quality. In
the case of advanced laryngeal cancer, a total laryngectomy is
often unavoidable. Although many patients develop functional
alaryngeal speech by means of a prosthetic device to direct air
towards the neo-glottis, voice quality is variable [1–3].

Presently, the prospects for the development of an adequate
substitute voice due to the use of prosthetic devices are good
[1, 3, 4]. Subsequent speech therapy will then aim at further
improving voice quality and speech intelligibility. Studies have
shown that improvements of speech quality and intelligibility
can indeed improve the quality-of-life (QoL) of patients [3]. To
support and evaluate voice quality after total laryngectomy and
subsequent speech therapy, efforts have recently been made to
introduce objective methods and automatic evaluations of the
intelligibility and quality of alaryngeal speech [2, 5].

A three-type classification of voice quality on sustained
vowels by Titze [6,7] was adapted by Van As-Brooks [1,8] to a
four-type classification for tracheoesophageal speech (TES) on
sustained /a/, i.e., acoustic signal typing (AST). Both classifi-
cations were based on spectrographic information of a sustained
vowel. Both classification systems have consistent links to per-
ceptual evaluation of voice quality of these speakers by speech
and language therapists (SLTs).

The link between an objective classification system of voice
pathology and the auditory perception of voice quality offers an
opportunity to link objective and automatic acoustic measure-
ments to the perception of pathology. Many studies have in-
vestigated the correlation between individual acoustic measures
and TES voice pathology, see Table 1 for a short list.

It is clear that many acoustic variables are related to the

severity of TES voice pathology. However, it is not clear how
these should be weighted and combined to get a better under-
standing of TES voicing pathology. Ideally, one would like to
be able to “predict” the AST class from acoustic parameter mea-
surements alone. Such automatic classifications are the subject
of machine learning [14–16].

The current study is part of an ongoing effort to understand
the evaluation of TE speech and the development of diagnostic
aids. The question we want to answer here is: To what extent
can acoustic features of sustained /a/ contribute to predicting
and understanding the severity of voice pathology in TES?

2. Materials and Methods
2.1. Speech recordings

We used a corpus containing sustained vowel /a/ of 87 TE
speakers. Recordings were made between 1995 and 2009 as
part of several unrelated studies. At the time of the recordings

Table 1: Overview of acoustic parameters in studies investi-
gating TES voice quality - limited to analysis of vowels. AST:
Acoustic Signal Typing [1, 8], Perc.: Perceptual evaluation. ns:
Not significant, +: Significant (versus normal), �: Not included
in this study. See section 2.3

Acoustics Reference Type Sign.

% Voiced
Kazi et al. (2009) [9] Perc. +
Moerman et al. (2004) [10] Perc. ns

max. voice dur. Moerman et al. (2004) [10] Perc. ns

F0

van As-Brooks et al. (2006) [8] AST ns
van Gogh et al. (2005) [11] AST ns
Kazi et al. (2009) [9] Perc. ns

F0 variability
van As-Brooks et al. (2006) [8] AST +
van Gogh et al. (2005) [11] AST +
Kazi et al. (2009) [9] Perc. +

Shimmer Kazi et al. (2009) [9] Perc. +

Jitter van As-Brooks et al. (2006) [8] AST ns

HNR
Maryn et al. (2009) [12] Perc. ns
Moerman et al. (2004) [10] Perc. ns
van As-Brooks et al. (2006) [8] AST +

HNR<700 Hz van Gogh et al. (2005) [11] AST +

HNR≥700 Hz van Gogh et al. (2005) [11] AST ns

High freq noise van Gogh et al. (2005) [11] AST ns

GNE van As-Brooks et al. (2006) [8] AST ns

Rahmonic
Intensity

Maryn et al. (2009) [12] Perc. ns
van Gogh et al. (2005) [11] AST ns

BED van As-Brooks et al. (2006) [8] AST +

D�
2, SampEn�

Yan et al. (2013) [13] Perc. +
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all speakers provided informed consent allowing the recordings
to be used for research purposes within the institute. In total
there were 74 male and 13 female speakers. Age at treatment
was 38-85 (median age 57). All speakers produced sustained /a/
vowels as part of a larger assessment battery. As some speakers
had provided multiple recordings for various research projects
over the 14 years, we selected the /a/ recording with the earli-
est recording date. At the time of recording, 83 speakers had a
Provox1 or Provox2 prosthesis and the remaining four speakers
had a Provox Vega prosthesis (three speakers a 22.5 Fr and one
speaker a 17 Fr) [17–19].

Due to the fact that recordings were made over more than
a decade as part of unrelated studies, a range of equipment and
media were used for recording and storage, but this is not ex-
pected to alter acoustic measures below 5 kHz [20]. For this
study, all recordings were first digitized and converted to 44.1
kHz sampling rate and 16-bit Signed Integer PCM encoding.
No audio compression had been used on the recordings.

2.2. TEVA and Acoustic Signal Typing

The NKI developed a computer program (Tracheoesophageal
Voice Analysis tool, TEVA [21]) to assist researchers and SLPs
to identify acoustic signal types. TEVA runs as a Praat exten-
sion [22, 23] and both programs are available under an Open
Source License (GPL). Acoustic signal type classification for
TE speakers requires an observer to classify a segment of a
spectrogram into one of four signal types: stable and harmonic
(1), stable with at least one harmonic (2), unstable or partly har-
monic (3) and barely harmonic (4) which corresponds roughly
to a severity scale from good to bad [8]. As observers may differ
in how they arrive at a classification, a consensus procedure was
used for segment selection and classification into signal type.

Using the TEVA program, two experienced SLPs (authors
Clapham and Van As-Brooks), classified all 87 recordings into
signal type based on visual inspection of the spectrogram. They
were blind to speaker characteristics (e.g. prosthesis type or
gender) and were unable to listen to the recordings.

The spectrograms were classified according to AST over
two steps. During step one, each rater independently classified
the segment of the spectrogram that she considered most stable
(1.75 seconds) and in step two, a consensus model was used
whereby the raters first agreed on the segment of the spectro-
gram that was the most stable and then agreed on the AST of this
stable segment. This interval of 1.75 seconds is shorter than the
2 seconds advised in [1,8] because several of the recordings had
been segmented (i.e., the original unedited recordings were no
longer available) meaning that the margins of the spectrogram
would be invisible for stimuli with a length of 2 seconds. Inter-
rater agreement was 58% before consensus with a correlation
coefficient of R=0.75 between the AST values (p<0.001). See
Table 3 for the distribution of the speakers over AST classes.

2.3. Acoustic measurements

The consensus intervals were used to measure the acoustic fea-
tures. Table 2 lists the acoustic features which were selected for
this study, based on the studies presented in Table 1. These fea-
tures were automatically measured with Praat with a pitch floor
of 40 Hz and a window size to 25 ms (see AcousticMeasure-
Scripts.praat [24]). Where possible, we used published settings
for measurements [1, 11]. MVD was determined on the whole
/a/ realization. For practical reasons, the HNRlow, HNRhigh,
and cepstral rahmonic intensity as used by Van Gogh et al. [11]
were substituted with the HNR of low-passed and band-passed

Table 2: Overview of acoustic parameters used. With the excep-
tion of BED and QF1-QF3, all measures depend on the detec-
tion of voicing and pitch.

Feature Description

VF Fraction of frames that are voiced
MVD Maximum voicing duration
F0 Standard deviation of F0

Shimmer
Jitter
HNR Harmonics-to-noise ratio (dB)
HNRlow HNR low pass filtered speech (<700Hz)
HNRhigh HNR band pass (700Hz - 2300Hz)
GNE Glottal noise energy
CPP Cepstral peak prominence
BED Band energy difference
QF1-QF3 F1-F3 quality factor (Fi/Bi)

speech, and the cepstral peak prominence (CPP), respectively.
Formant quality factors (QF1-QF3) were added as non-voice
measures. D2 and Sample Entropy as proposed in [13] could
not yet be implemented in Praat.

2.4. Acoustic features and machine learning

Automatically evaluating AST based on acoustic information
has aspects of both classification (identity) and regression
(size): each signal type is distinct and derived from features in
the spectrogram (classification), yet the signal types are also or-
dinal whereby prediction between classes can be seen as an in-
termediate value (regression). Model performance can be eval-
uated based on classification error when using a classification
algorithm, on the root mean square (RMSE) when using a re-
gression algorithm, or on the explained variance (e.g., correla-
tion coefficient) between observed and predicted signal types.

Although it is not possible to find the best classification
function in an efficient way, it is still possible to find an ef-
ficient classification function from examples. Using a variety
of machine learning techniques and feature selection, it is also
possible to estimate the robustness of the solution under dif-
ferent sets of examples [14–16]. These technologies can also
be used to determine the importance or redundancy of indi-
vidual and combinations of acoustic features for classification.
Acoustic features were selected and ordered on explanatory im-
portance using machine learning (ML) techniques as described
in [15, 16]. All ML experiments were done using implementa-
tions in R [25] (see model AST.R [24]). Seven ML algorithms
were tested: Linear model (LM), Linear and Quadratic discrim-
inant analysis (LDA, QDA), Support Vector Machines (SVM),
Random Forest (RF), CaRT (RPart), and Neural nets (NNet).

Methods were used with their default settings in R [25].
The number of possible settings is too large to allow meaningful
optimization for our data set. The results presented here should
be interpreted as lower bounds on performance. All ML meth-
ods were tested in classification and regression mode. Where
necessary, regression results were converted to classification,
class 1-4, by rounding (LM, NNet). Classification probabilities
were converted to regression values by calculating the expected
value (LDA, QDA).

A wrapper methodology with forward selection and back-
ward elimination was used for feature selection [15, 16]. This
means that each ML method was used as a black box that out-
puts a figure of merit given a training and feature set. Strat-
ified bootstrap sampling validation, with 40-fold resampling,
was used to check robustness of feature selection. Leave-one-
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Table 3: Effect of signal type (AST) on each acoustic variable (Kruskal-Wallis test), explained variance (R2) using a linear model,
median variable value, and post-hoc comparisons (Mann-Whitney tests, if Effect significant). P-values �: p<.0083, shaded: p<.0035
(correction for multiple comparisons). Exclamation mark highlights comparisons where exact significance cannot be computed due to
ties within a category. AST class frequencies (c:N) - 1:14, 2:43, 3:13, 4:17. See Table 2 for abbreviations.

Effect R2 Median AST comparisons (p values Mann-Whitney test)
p< (LM) 1 2 3 4 1-2 1-3 1-4 2-3 2-4 3-4

VF .000 0.595 1.00 0.95 0.34 0.06 .000 ! .000 ! .000 ! .001 ! .000 ! .002 !
MVD .000 0.457 5.06 3.57 1.36 0.36 .007� .000 .000 ! .000 .000 ! .000 !
F0 .623 0.010 4.44 9.41 6.59 4.29
Shimmer .002 0.105 0.11 0.21 0.21 0.21 .001 ! .002 .003 ! .835 ! .269 ! .381 !
Jitter .018 0.018 0.01 0.02 0.01 0.01 .008�! .033 .359 ! .721 ! .048 ! .134 !
HNR .000 0.355 10.42 3.74 2.18 1.38 .000 .000 .000 .107 .000 .118
HNRlow .000 0.282 28.11 17.43 13.78 10.68 .001 .003 .000 .136 .000 .316
HNRhigh .000 0.042 15.63 7.46 8.09 9.25 .000 .012 .001 .732 .501 .892
GNE .003 0.017 0.923 0.850 0.890 0.879 .013 ! .152 ! .152 .613 ! .306 ! .963 !
CPP .007� 0.084 21.40 17.90 17.41 16.26 .002 .054 .002 .853 .204 .294
BED .091 0.097 26.94 23.88 17.61 17.73
QF1 .027 0.190 5.91 3.54 5.23 5.02 .039 ! .560 ! .450 ! .040 ! .027 ! .630 !
QF2 .798 0.010 6.90 6.20 6.70 6.5
QF3 .307 0.015 5.85 10.00 9.70 7.00

out cross-validation (LOOCV), where each sample is predicted
using all but this sample as training set, was used to estimate the
real predictive power of the models. Three recordings had no
measurable voicing, and thus, no pitch related features. These
were assigned predicted type 4.

3. Results and Discussion
3.1. Single feature analysis

A summary of the relationship between acoustic features and
observed AST is listed in Table 3. Nine of the acoustic fea-
tures show a main effect for classification type and many of
these can differentiate between signal type pairs (see post-hoc
results in Table 3). A simple linear regression model using VF
alone can explain almost 60% of the variance in classification.
There are strong correlations between the acoustic features (not
shown), the strongest between VF and MVD (R2=0.71), HNR
and HNRlow (R2=0.58), and between VF and HNR (R2=0.64).
Purely random classification, using permutations, results in a
correct classification of 0.33 (sd=0.04) and R2=0.01 (sd=0.016).

ML methods were trained on the link between AST clas-

VF MVD HNR HNRl QF3 CRx BED Shm Ptch HNRh QF1 QF2 GNE Jttr
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Figure 1: Maximum R2 (green bars) and correct classification
(red circles) for single acoustical features over all ML methods
(ordered on decreasing R2, LOOCV, see text). Median R2 and
correct classification are indicated with cross-hatched bars and
grey circles, respectively. Added are chance level + 2·sd lines
for R2 (0.045, green) and correct classification (0.42, red).

sification and single acoustical features. The best and median
performances are presented in Figure 1. For both R2 and cor-
rect classification, VF, MVD, HNR and HNRlow outperform the
other features (in this order). Where median values are higher
than chance performance plus two standard deviations (see Fig-
ure 1), the classification is likely robust. Otherwise, the perfor-
mance is expected to be erratic. For the leftmost four features
(VF, MVD, HNR, HNRlow), the classifications seem to be ro-
bust. For neither classification nor regression do QF3, QF2 or
HNRhigh reach this level of significance.

3.2. Feature combinations

Bootstrap validation versus LOOCV and forward selection ver-
sus backward elimination all resulted in comparable feature se-
lection and performance (not shown). Classification outper-
formed regression slightly, but was otherwise comparable. Only
results for classification with LOOCV and forward selection
will be reported unless indicated otherwise.

Classification performance is plotted versus the number of
acoustic features in Figure 2 for all ML algorithms used. The
ML methods split into two groups: LDA, QDA, SVM, and RPart
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Figure 2: Correct classification as a function of the number of
acoustic features for all ML algorithms (see section 2.4). Fea-
tures were included using forward selection and leave-one-out
cross validation. Added is a chance level + 2·sd line (0.42, red).
R2 values follow comparable curves (not shown, see text).
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all reach high correct classification rates with only three acous-
tic features. The remaining methods, LM, RF, and NNet, per-
form worse. The inherently stochastic nature of RF, and NNet
might at least partly explain their erratic results on small data
sets. ”Good” runs were selected for these two methods.

Classification performance as a function of the number of
features varies widely between methods. Complex ML meth-
ods such as SVM, QDA, and RF are sensitive to the “curse of
dimensionality”: Including more features leads to marked de-
creases in performance due to overtraining [15, 16]. However,
RPart drops features that do not increase performance. This
might be an explanation for the stable performance of RPart.

The order of selection of features was investigated with
bootstrap validation (see section 2.4). All methods select either
VF or MVD as their first feature. The second feature is then one
of the HNR features (HNR, HNRhigh, or HNRlow). The third
feature selected is more varied, either another from MVD, VF,
or the HNR group, but also QF2 and BED were selected (LM,
LDA). The LOOCV results were equivalent, but varied some-
what in the third selected feature (Figure 2).

From this we conclude that VF and MVD alone supply
enough information to get well over 60% correct classification.
Including the HNR group of features then allows performance
to rise to over 70% correct classification (see Figure 2). Mem-
bers of these groups often appear again as third selected fea-
ture, indicating they are not completely interchangeable (redun-
dant). With three features, the high-performance methods get
over 70% correct. Increasing the number of features can some-
times improve performance even to 75% correct classification
with five features, e.g., for QDA and SVM. However, differences
become rather small and unreliable for our data set. For all
ML methods it was found that an analysis which excluded VF,
where MVD would substitute for it, resulted in slightly lower
performance, still reaching ∼70% correct classification and R2

up to 0.6 (note, RPart performed better without VF).

AST classification is also an ordinal scale. Therefore, not
all classification errors should be weighted equal. An AST class
1-4 confusion is worse than a class 3-4 confusion. The squared
correlation coefficient (R2) between predicted and consensus
classification is a figure of merit that measures such discrep-
ancies. For all ML methods, except LM, the R2 peaked between
0.6 and 0.7 at best classification performance in Figure 2. That
is, the ML methods were able to explain more than 60% (close
to 70% for SVM) of the variance in the consensus classification.
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Figure 3: Best classification for individual types versus all oth-
ers (see text). Presented are best and median ML classifier per-
formance. Added is chance level for each class distinction and
2·sd error bars for random classification.

Table 3 presents several other features beside VF, MVD,
and HNR that show statistically significant differences between
AST classes, e.g., Shimmer, GNE, CPP. However, it seems the
ML algorithms applied here are unable to use this information
to improve classification. The analysis presented in Figure 2
was repeated with the exclusion of VF and MVD. With this ex-
clusion, classification was regularly over 0.6 but R2 came only
slightly over 0.4 (≤43% explained variance). The first feature
selected was always either HNR or HNRlow.

When excluding all of VF, MVD, and the HNR group of
features, correct classification peaked at 0.62 (for QDA with
BED + Shimmer), but was well below 0.6 for all other meth-
ods (not shown). This might seem high considering the chance
level was 0.33. However, R2 was rarely above 0.2, and gener-
ally lower (≤20% explained variance). This indicates that clas-
sification errors became much more random. Information in
these acoustic features might mainly identify individual classes
(c.f., Table 3). The first feature selected under these conditions
was four times CPP, and BED, Shimmer, and QF3 each once.

3.3. Individual class type identification

Best performance of AST classification might not be attained
using a single model for all types. The above analysis was re-
peated, but now as four two-type classification tasks. All ML
methods (see section 2.4) were trained and tested on a single
type with all other types merged into a single class, e.g., type 2
against types 1, 3, and 4 combined. Chance classification per-
formance was recalculated for each combination. The results
are presented in Figure 3.

As expected, the end-point types 1 and 4 were easier to
identify than the inner types 2 and 3. Behavior of the classifiers
was more erratic than with the original four type task. SVM
could not even classify type 3 versus the others. Number and
selection of features varied much more than the patterns seen
in Figure 2. This is likely caused by the unbalance between
positive and negative samples in this task.

4. Conclusions
Many acoustic measurements correlate, often strongly, with
the AST classification (see Tables 1, 3). However, our study
shows that only two groups of features can perform a clas-
sification to any reasonable extent: voice detection (VF and
MVD) and the harmonics-to-noise ratio (HNR, HNRlow, and
HNRhigh). Other factors improve classification performance
only marginally. This indicates that the presence and duration
of voicing and the harmonic-to-noise ratio are the most salient
acoustic features that can be used to classify a TE signal into
its acoustic signal type. In our study, QDA and SVM performed
best, but RPART would perform almost as good and can easily
be assessed automatically. A practical tool incorporating these
methods will be made available online at [21].

The fact that classical measures of glottal voices, like jitter
and shimmer, are less salient in TE speech can possibly be at-
tributed to the inherent instability of neo-glottis vibrations [13].
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