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More about ASR Introduction

Introduction

Two technologies are needed to make the HMM framework practical

Decoder technology to find the
argmax
Words

P(Observation|Words) · P(Words)

Determining the stochastic parameters of the HMM state automaton,
i.e. training

Many pictures (and their copyrights) are from [Jurafsky and Martin(2000)]
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More about ASR Dynamic programming

Dynamic programming
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More about ASR Dynamic programming

Dynamic programming

function MIN-EDIT-DISTANCE(target, source) returns min-distance

n � LENGTH(target)
m � LENGTH(source)
Create a distance matrix distance[n+1,m+1]
distance[0,0] � 0
for each column i from 0 to n do

for each row j from 0 to m do
distance[i, j] � MIN( distance[i � 1, j] + ins-cost(targeti),

distance[i � 1, j � 1] + subst-cost(source j, targeti),
distance[i, j � 1] + del-cost(source j))

Fill a matrix with cumulative edit distances, distance[i , j ] = min of

distance[i − 1, j ] + insert-cost(targeti )

distance[i − 1, j − 1] + substitution-cost(sourcej , targeti )

distance[i , j − 1] + deletion-cost(sourcej)
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More about ASR Dynamic programming

Dynamic programming

n 9 10 11 10 11 12 11 10 9 8
o 8 9 10 9 10 11 10 9 8 9
i 7 8 9 8 9 10 9 8 9 10
t 6 7 8 7 8 9 8 9 10 11
n 5 6 7 6 7 8 9 10 11 12
e 4 5 6 5 6 7 8 9 10 11
t 3 4 5 6 7 8 9 10 11 12
n 2 3 4 5 6 7 8 8 10 11
i 1 2 3 4 5 6 7 8 9 10
# 0 1 2 3 4 5 6 7 8 9

# e x e c u t i o n

Trace back the choices of the minimal distance (bold numbers)

This finds the globally minimal cost path

Full search unwieldy for large and complex matrices

In general, searches are pruned to exclude paths that deviate far from
the diagonal: Beam search
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More about ASR Viterbi algorithm

Viterbi algorithm

start end

dh ax

iy.08
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Word model for "the"

start endn iy d
.88

.12

Word model for "need"

start

aa

ay

Word model for "I"

end

start endaa n

Word model for "on"

.80

.20

Simplified pronunciation networks [Jurafsky and Martin(2000)]

Each word is modeled as a Finite State Machine

Individual phoneme HMMs are trained from a corpus that does not
contain all the words

A pronunciation dictionary contains all word models

Transition probabilities are ”trained” from a transcribed speech corpus
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More about ASR Viterbi algorithm

Viterbi algorithm

aa
ay

n
iy
d

I

need

the

ax
iy
n

dh

n i dh ax

...

...

on aa
n

aa

Viterbi algorithm result “for I need
a” [Jurafsky and Martin(2000)]

Whole sequence on X axis

All word models on the
other axis

Switch to (any) new word
after reaching the end of the
current word

Word switching cost based
on the language model

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 10 / 4



More about ASR Viterbi algorithm

Viterbi algorithm

I need 0.0016 need need 0.000047 # Need 0.000018
I the 0.00018 need the 0.012 # The 0.016
I on 0.000047 need on 0.000047 # On 0.00077
I I 0.039 need I 0.000016 # I 0.079
the need 0.00051 on need 0.000055
the the 0.0099 on the 0.094
the on 0.00022 on on 0.0031
the I 0.00051 on I 0.00085

Bigram probabilities [Jurafsky and Martin(2000)]

Word switching in Viterbi searches uses probabilities

Switch to a new word with bigram probability cost

Does not work with trigram probabilities
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More about ASR Viterbi algorithm

Viterbi algorithm

start

aa

ay
dh ax

iy
.88

.23

.77

.12
n

n iy d
.88

aa n

.00077

 

.079 * .20

.0016

.0016

.000018

.0005 .0005

.09*.92

.09*.08

.012*.92

.012*.08

Single pronunciation automaton for I, need, on, and the
[Jurafsky and Martin(2000)]

Bigram probabilities connect the word models

Merge start and end states of connected words

Need for pruning is apparent
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More about ASR Viterbi algorithm

Viterbi algorithm

function VITERBI(observations of len T,state-graph) returns best-path

num-states �
NUM-OF-STATES(state-graph)

Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[0,0] � 1.0
for each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s

�
from s specified by state-graph

new-score � viterbi[s, t] * a[s,s
�
] * bs � (ot)

if ((viterbi[s
�
,t+1] = 0)

���
(new-score � viterbi[s

�
, t+1]))

then
viterbi[s

�
, t+1] � new-score

back-pointer[s
�
, t+1] � s

Backtrace from highest probability state in the final column of viterbi[] and
return path

Extended version of the edit distance [Jurafsky and Martin(2000)]

a[s, s ′] = P(s → s ′)

bs′(ot) = P(ot |s ′)
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More about ASR Viterbi algorithm

Viterbi algorithm

aa

ay

n

iy

d

I

need

the

ax

iy

n

dh

...

on
aa

n

n dh ax# aa
start 1.0

1.0*.00077
= .00077

iy

.20 *.079
= .0016

1.0 *.00077
= .00077

.0016 *.00018*.08
= .000000023

.0016 *.0016
= .0000026

1.0 *.0000026
= .0000026

.000000023 * .12
 = .0000000028

.0000026 * .012 * .92
= .0000000291 

.000000031 * .77
= .000000022 

Individual state columns in Viterbi algorithm [Jurafsky and Martin(2000)]

The actual entries for the Automaton

Note the problems for a 20,000 word dictionary
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More about ASR Viterbi algorithm

Viterbi algorithm: Subphones revisited [Jurafsky and Martin(2000)]

b(ax,aw)b(ax,aw) b(ax,aw)
left middle right

Use structured, context sensitive phone units

Single phone units perform bad due to coarticulation

Begin differs from End (eg, /d/)

60 context dependent triphones ⇒ 603 = 216000 models

Cluster contexts,eg, on manner and place of articulation
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More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge
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More about ASR Other approaches to decoding

Other approaches to decoding

If music be the 
    food of love...

If music be the 
    food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple 
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability
Parallel Intonation and Accent detector (HMM)
Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice
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More about ASR Other approaches to decoding

Other approaches to decoding: A∗

the

is

of

are

dogs

do

want

can’t

underwriter

typically

I

START

bequeath

intention

mice

exceptional

my

to

not

believe

lives

Stack, or A∗, decoding [Jurafsky and Martin(2000)]

Viterbi uses best path upto position t to get to t + 1

A∗ uses complete forward algorithm (exact likelihoods)

A∗ searches potential utterances best-first
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More about ASR Other approaches to decoding

Other approaches to decoding: A∗

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentence s off the queue.
If (s is marked end-of-sentence (EOS) ) output s and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word w:

Create a new candidate sentence s � w.
Use forward algorithm to compute acoustic likelihood L of s � w
Compute language model probability P of extended sentence s � w
Compute “score” for s � w (a function of L, P, and ???)
if (end-of-sentence) set EOS flag for s � w.
Insert s � w into the queue together with its score and EOS flag

Stack decoding [Jurafsky and Martin(2000)]

At each point, the A∗ looks for the most likely next word

Acoustic likelihood is part of the criterium

Use the forward probability of preceding words
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More about ASR Other approaches to decoding

Other approaches to decoding: A∗

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P( "if" | START )

P(acoustic | "if" ) =
   forward probability

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if" ) =
   forward probability

P( "if" |START)

if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
   forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
   forward probability

muscle

messy

If music be the food of love [Jurafsky and Martin(2000)]

“Start Alice” has highest score: 40

“Start if” has highest score: 30

“Start if music” has highest score: 32
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More about ASR Other approaches to decoding

Other approaches to decoding: A∗

Remarks

Use fast match heuristics for selecting next words

Longer utterances have lower probabilities, score should correct for
this

A∗ evaluation function: f ∗(p) = g(p) + h∗(p)

g(partial path) = P(O|Words) · P(Words), i.e. the likelihood until
now

h∗(p) something that correlates with number of words in the rest of
the utterance

Defining a good h∗(p) is an interesting (unsolved) problem
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More about ASR Other approaches to decoding

Other approaches to decoding: A∗ fast match

AX(#,B)

B(#,EY)

B(AX,AW)

B(AX,AH)

EY(B,K)

EY(B,KD)

AW(B,N)

AW(B,TD)

AH(B,V)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,IX)

N(AW,DD)

TD(AW,X)

V(AH,X)

BAKE

TD(KD,#)

IX(K,NG)

AXR(K,#)

AXR(K,IY)

DD(N,#)

NG(IX,#)

IY(AXR,#)

ABOVE

ABOUT

ABOUND

BAKED

BAKER

BAKERY

BAKING

A tree structured lexicon from SPHINX [Gouvêa()][Jurafsky and Martin(2000)]

Need to get forward probabilities of potential continuations fast

Tree lexicon shares forward probabilities between words

Allows early pruning of search trees
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More about ASR Training acoustic models

Training acoustic models: Introduction

Determine P(Observation|Words), i.e. the transition probability
between phone states aij and the acoustic likelihood of the speech
vectors bj(ok)

Large, “transcribed” speech corpus (on text level)

Coverage of speakers and language types

Recorded under the same conditions as intended use, eg, over the
phone or in a driving car

Use the same microphone etc.

Using a simulated task (Wizard of Oz or Green curtain) to elicit the
same kind of speech
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More about ASR Training acoustic models

Training acoustic models

start endiy d

......

Word Model n10 2 3 4

a11 a22 a33

a12

a24

aa23 34

Observation 
Sequence
(spectral feature
 vectors)

o1 o2 o3 o4 o5 o6

1b (o1) b (o )3 6

a01

1b (o )2
b (o )2 3 b (o )2 5

If all states were known [Jurafsky and Martin(2000)]

aij =
#Sij

#Si∗
(count transitions and states)

bi (Ok) =
#(Ok&Si )

#Si
(for discrete Ok)
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More about ASR Training acoustic models

Training acoustic models

If observations are continuous vectors [SPH()]

bi (Ot) ⇒ N{µ̂i , Σ̂i}

µ̂i =
1

Ti

∑Ti
t=1 Ot

Σ̂i =
1

Ti

∑Ti
t=1[(Ot − µ̂i )

′(Ot − µ̂i )]
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More about ASR Training acoustic models

Training acoustic models

α (t)i

o
j (t+1)β

ot−1 o t o t+1 t+2

s i sj

(o    )jb t+1ija *

States have to be estimated. Use an iterative procedure App D
[Jurafsky and Martin(2000)]

Run the recognizer on the corpus with the known words

Calculate âij =
expected #Si→Sj

expected #Si→S∗

Calculate b̂j(vk) =
expected #Sj observing vk

expected #Sj

Update all values and start again

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 26 / 4



More about ASR FLOSS resources

FLOSS resources

Free and Open Source ASR systems

SPHINX (CMU) [Gouvêa()] [Singh(2005)]

CMU Statistical Language Modeling Toolkit [Rosenfeld()]

CMU Pronouncing Dictionary [Lenzo()]

Internet-Accessible Speech Recognition Technology project (ISIP,
Mississippi State University) [ISIP(2004)]

Open Mind Speech [Valin()]
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More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations
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Copyright License

Copyright c©2007-2008 R.J.J.H. van Son, GNU General Public License
[FSF(1991)]

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA.
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