Speech recognition and synthesis

@ More about ASR
@ Introduction
@ Dynamic programming
@ Viterbi algorithm
@ Other approaches to decoding
@ Training acoustic models
@ FLOSS resources
@ Assignment
@ Bibliography

Copyright (©2007-2008 R.J.J.H. van Son, GNU General Public License [FSF(1991)]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis

Fall 2008

EEL]
L6

E

More about ASR [[IFZeT[ITalelsE

Introduction

Two technologies are needed to make the HMM framework practical

@ Decoder technology to find the
argmax P(Observation|Words) - P(Words)

Words
@ Determining the stochastic parameters of the HMM state automaton,
i.e. training

Many pictures (and their copyrights) are from [Jurafsky and Martin(2000)]

&
]

L
=N
smm

=]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 5/4

DyiEriilte PGl
Dynamic programming

intention
Trace //// || 1|
execution

. inten tion
Alignment €

g execution

delete i intention
elete i
Operation substitute n by e _, ntention
List substitute t by x etentdion
insert u exention
-
substitute n by ¢ —» exenution
execution

Look for best alignment: Minimum edit distance
@ Delete
@ Insert
@ Substitute

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008

6/4

DyiEriilte PGl
Dynamic programming

function MIN-EDIT-DISTANCE(farget, source) returns min-distance

n <+ LENGTH(target)

m <+ LENGTH(source)

Create a distance matrix distance[n+1,m+1]

distance[0,0] <0

for each column i from 0 to n do

for each row j from O to m do
distanceli, j] < MIN(distanceli—1,j] + ins-cost(target;),

distanceli—1,j—1] + subst-cost(source j, target;),
distanceli, j—1] + del-cost(source))

Fill a matrix with cumulative edit distances, distance[i, j] = min of
e distance[i — 1, /] + insert-cost(target;)
e distance[i — 1, j — 1] + substitution-cost(source;, target;)

e distance[i, j — 1] + deletion-cost(source;)

st

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 7/4

DyiEriilte PGl
Dynamic programming

n |9 10 11 10 11 12 11 10 9 8
o || 8 9 10 9 10 11 10 9 8 9
i |7 8 9 8 9 10 9 8 9 10
t |6 7 8 7 8 9 8 9 10 11
n 5 6 7 6 7 8 9| 10 11 12
e || 4 5 6 5 6 7 8 9 10 11
t |3 4 5 6 7 8 9| 10 11 12
n |2 3 4 5 6 7 8 8 10 11
i 1 2 3 4 5 6 7 8 9 10
#(0 1 2 3 4 5 6 7 8 9

e X e c u t i o n

Trace back the choices of the minimal distance (bold numbers)
@ This finds the globally minimal cost path
@ Full search unwieldy for large and complex matrices

@ In general, searches are pruned to exclude paths that deviate far from
the diagonal: Beam search

v

=
van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 8/4

(\VITEIET AT T8 Viterbi algorithm

Viterbi algorithm

Word model for "on"

Word model for "the"

1 2 @
O-oaFoE g

Word model for "need" Word model for "I"

Simplified pronunciation Nnetworks [iurafsky and Martin(2000)]
@ Each word is modeled as a Finite State Machine

@ Individual phoneme HMMs are trained from a corpus that does not

contain all the words
@ A pronunciation dictionary contains all word models

@ Transition probabilities are "trained” from a transcribed speech corpus

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008

9/4

Viterbi algorithm
Viterbi algorithm

d
need il); 777777 Z 7777777777777 @ Whole sequence on X axis
ax] o All word models on the
the ll); N other axis
dh B e @ Switch to (any) new word
on ™ after reaching the end of the
aa current word
I gg ,,,,,,,,,,,,,,, e Word switching cost based

- on the language model
aa n i dh ax .. guag

1.8

ESE)

Viterbi algorithm result “for | need
a” [Jurafsky and Martin(2000)]

EEL]

i

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 10 / 4

(\VITEIET AT T8 Viterbi algorithm

Viterbi algorithm

I need 0.0016 need need 0.000047| #Need 0.000018
I the 0.00018 need the 0.012 #The 0.016
ITon 0.000047 | need on 0.000047| #On 0.00077
IT 0.039 need [0.000016| #I 0.079
the need 0.00051 on need 0.000055
the the 0.0099 on the 0.094
the on 0.00022 on on 0.0031
the I 0.00051 onl 0.00085
Bigram probab”ities [Jurafsky and Martin(2000)]

@ Word switching in Viterbi searches uses probabilities

@ Switch to a new word with bigram probability cost

@ Does not work with trigram probabilities

Fall 2008 11/ 4

Viterbi algorithm
Viterbi algorithm

012%.92

Single pronunciation automaton for /, need, on, and the
[Jurafsky and Martin(2000)]

@ Bigram probabilities connect the word models
@ Merge start and end states of connected words

@ Need for pruning is apparent

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 12 /4

Viterbi algorithm
Viterbi algorithm

function VITERBI(observations of len T ,state-graph) returns best-path

num-states <— NUM-OF-STATES(state-graph)
Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[0,0]+ 1.0
for each time step ¢ from O to 7' do
for each state s from O to num-states do
for each transition s’ from s specified by state-graph
new-score < viterbils, t] * a[s,s'] * by(o;)
if ((viterbils',t+1] = 0) || (new-score > viterbils', t+11]))
then
viterbils', t+1] < new-score
back-pointer[s’, t+1] s
Backtrace from highest probability state in the final column of viterbi[| and
return path

Extended version of the edit distance [urafsky and Martin(2000)]
@ a[s,s'| = P(s — ')
® by (or) = P(ot|s’)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis

Fall 2008

13/4

Viterbi algorithm
Viterbi algorithm

T.0 0000026

need iy

n 0016 *0016
1= -0000026

= i
J

G0G000023 + 12

00000031 * 77
000000022

the

n 1076 00018708 ¥
= 000000023

T

0000026 * 012§ 92
a] R

T0°.00077
= 00077

on

ay
aa

3

o,

start

Individual state columns in Viterbi algorithm {urafsky and Martin(2000)]
@ The actual entries for the Automaton

@ Note the problems for a 20,000 word dictionary

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008

14 / 4

(\VITEIET AT T8 Viterbi algorithm

Vlterbl algorithm: Subphones revisited [Jurafsky and Martin(2000)]

Use structured, context sensitive phone units

Single phone units perform bad due to coarticulation

@ Begin differs from End (eg, /d/)

@ 60 context dependent triphones = 603 = 216000 models
°

Cluster contexts,eg, on manner and place of articulation

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 15/ 4

Otherfapproachesitoldecoding
Other approaches to decoding: Introduction

The standard HMM model has limitations
o Viterbi decoder penalizes multiple pronunciations

o Viterbi decoder does not work for anything more complex than bigram
@ It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)

Intonation

Semantics

Speaker identification

Expressive speech tags

Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 16 / 4

Qifier apprasaics i lazsiling
Other approaches to decoding

Simple Smarter
Knowledge Knowledge
Source Source

N-Best List

“?Alice was beginning to get.
fﬁsﬁih- N-Best | 7o revoy amin

2In a hole in the ground...
If music be

Decoder | ?1fmusic be the food of love...
food of love...

7If music be the foot of dove.

1-Best Utterance

If music be the
food of love.

Rescoring

Two stage N-best decoding purafsky and Martin(2000)]
@ Keep N-best utterance list or word lattice
@ Rescore the probabilities with the extra knowledge
A trigram or higher grammar
Phoneme duration probability
Parallel Intonation and Accent detector (HMM)

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

@ Look up best path through rescored word lattice

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008

17 / 4

Otherfapproachesitoldecoding
Other approaches to decoding: A*

Stack, or A*, decoding purafsky and Martin(2000)]
@ Viterbi uses best path upto position t to get to t + 1
@ A* uses complete forward algorithm (exact likelihoods)

@ A* searches potential utterances best-first

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis

Fall 2008

et
B

18/ 4

Otherfapproachesitoldecoding
Other approaches to decoding: A*

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.

Pop the best (highest score) sentence s off the queue.

If (s is marked end-of-sentence (EOS)) output s and terminate.

Get list of candidate next words by doing fast matches.

For each candidate next word w:
Create a new candidate sentence s + w.
Use forward algorithm to compute acoustic likelihood L of s +w
Compute language model probability P of extended sentence s+ w
Compute “score” for s+ w (a function of L, P, and ???)
if (end-of-sentence) set EOS flag for s+ w.
Insert s + w into the queue together with its score and EOS flag

StaCk deCOding [Jurafsky and Martin(2000)]
@ At each point, the A* looks for the most likely next word
@ Acoustic likelihood is part of the criterium

@ Use the forward probability of preceding words

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008

19/4

Otherfapproachesitoldecoding
Other approaches to decoding: A*

P(acoustic | music) =
P(acoustic | "if") = forward probability
forward probability

P(music | if

Pacoustics! "if") =
forward probability Placoustic | whether)

P("if" | START) forward probability,

If music be the food of love [urafsky and Martin(2000)]
@ “Start Alice” has highest score: 40
@ “Start if” has highest score: 30

@ “Start if music” has highest score: 32

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 20 / 4

Qifier apprasaics i lazsiling
Other approaches to decoding: A*

Remarks

@ Use fast match heuristics for selecting next words

@ Longer utterances have lower probabilities, score should correct for
this

@ A* evaluation function: *(p) = g(p) + h*(p)

o g(partial path) = P(O|Words) - P(Words), i.e. the likelihood until
now

e h*(p) something that correlates with number of words in the rest of
the utterance

@ Defining a good h*(p) is an interesting (unsolved) problem

=58

EER]

o

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 21/ 4

Otherfapproachesitoldecoding
Other approaches to decoding: A* fast match

AW(B.N) HN(AW,DD) H DD(N.#)] ABOUND

B(AXAAH)H AH(B.V) H V(AH.X)] ABOVE

A tree structured lexicon from SPHINX (couwea()urafsky and Martin(2000)]
@ Need to get forward probabilities of potential continuations fast
@ Tree lexicon shares forward probabilities between words

@ Allows early pruning of search trees

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008

22 /4

TG EERUSIE mackls
Training acoustic models: Introduction

Determine P(Observation|Words), i.e. the transition probability
between phone states a;; and the acoustic likelihood of the speech
vectors b;(ox)

o Large, “transcribed” speech corpus (on text level)

o Coverage of speakers and language types

@ Recorded under the same conditions as intended use, eg, over the
phone or in a driving car

Use the same microphone etc.

Using a simulated task (Wizard of Oz or Green curtain) to elicit the
same kind of speech

A\

=5h

EER]

o

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 23 /4

Training acoustic models
Training acoustic models

Word Model
/4N

Observation i

Sequence

(spectral feature

vectors)

If all states were known purafsky and Martin(2000)]

#Sj o
° a3 = 5., (count transitions and states)
_ #(0k&Si)

#Si

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 24 / 4

e bi(Ok) (for discrete O)

Training acoustic models
Training acoustic models

If observations are continuous vectors [spH(j
) b,'(Ot) = N{/l\,', ZA,}
" 1 71
® [j= T > otlq Ot

~ 1 : R R
0= T ZtT;l[(Ot — i)/ (G — 33

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 25/ 4

Training acoustic models
Training acoustic models

. 3y *b;(0,)
M |
* \
\
o, \ B (t+1)

States have to be estimated. Use an iterative procedure apo
[Jurafsky and Martin(2000)]

@ Run the recognizer on the corpus with the known words
A, _ expected #S;i—S;
o Calculate 3;; = expecied #5 =5,
expected #S; observing v
expected #S;

o Update all values and start again

o Calculate b;(vy) =

v

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 26 / 4

(\ITERELIMNAL 38l FLOSS resources

FLOSS resources

Free and Open Source ASR systems
o SPHINX (CMU) [Gouvéa()] [Singh(2005)]

CMU Statistical Language Modeling Toolkit [rosenfeid()]

°
@ CMU Pronouncing Dictionary [Lenzo()
°

Internet-Accessible Speech Recognition Technology project (ISIP,

Mississippi State University) psip(2004))

@ Open Mind Speech vaiin()
y
BEHE
BEE
van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 27 / 4

Assignment: Week 8 Statistical Language Models

Construct your own language model

@ Download texts from the internet, eg, [Project Gutenberg(2005)]
Use a single author or a single genre

Use —-help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.p/
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filenamel> <filename2> ... > unigramtable.txt
perl Ngramcount.pl 2 <filenamel> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl —count 5 —verbose bigramtable.txt " <sentence>"

Enter some sentences and inspect the resulting probabilities

@ Experiment with the --count option. Try ——count -1 on a sentence that contains
unknown word combinations

/‘: |

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 28 / 4

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

Further Reading |

P. Boersma.

Praat, a system for doing phonetics by computer.
Glot International, 5:341-345, 2001.
URL http://www.Praat.org/.

P. Boersma and D. Weenink.

Praat 4.2: doing phonetics by computer.
Computer program: http://www.Praat.org/, 2004.
URL http://www.Praat.org/.

CSLU.

CSLU Toolkit.

Web.

URL http://cslu.cse.ogi.edu/toolkit/index.html.

FSF.

GNU General Public License.
Web, June 1991.
URL http://www.gnu.org/licenses/gpl.html.

Joshua T. Goodman.

A bit of progress in language modeling.

Computer Speech and Language, 15:403-434, 2001.
URL http://arxiv.org/abs/cs.CL/0108005.

URL is extended preprint.

van Son & Weenink (IFA, ACLC)

eech recognition and synthesis

http://www.Praat.org/
http://www.Praat.org/
http://cslu.cse.ogi.edu/toolkit/index.html
http://www.gnu.org/licenses/gpl.html
http://arxiv.org/abs/cs.CL/0108005

Further Reading Il

@ E. Gouvéa.

The CMU Sphinx Group Open Source Speech Recognition Engines.
Web.
URL http://cmusphinx.sourceforge.net/html/cmusphinx.php.

@ ISIP.

The Mississippi State ISIP public domain speech recognizer.
Web, August 2004.
URL http://www.cavs.msstate.edu/hse/ies/projects/speech/index.html.

@ Daniel Jurafsky and James H. Martin.
Speech and Language Processing.
Prentice-Hall, 2000.
ISBN 0-13-095069-6.
URL http://www.cs.colorado.edu/~martin/slp.html.
Updates at http://www.cs.colorado.edu/

@ Kevin Lenzo.

The CMU Pronouncing Dictionary.
Web.
URL http://www.speech.cs.cmu.edu/SLM_info.html.

@ Project Gutenberg.
Project gutenberg free ebook library.
Web, 2005.
URL http://www.gutenberg.org/.

van Son & Weenink (IFA, ACLC)

eech recognition and synthesis

http://cmusphinx.sourceforge.net/html/cmusphinx.php
http://www.cavs.msstate.edu/hse/ies/projects/speech/index.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.speech.cs.cmu.edu/SLM_info.html
http://www.gutenberg.org/

Further Reading Il

]

van Son & Weenink (IFA, ACLC)

Roni Rosenfeld.

The CMU Statistical Language Modeling (SLM) Toolkit.
Web.
URL http://www.speech.cs.cmu.edu/SLM.info.html.

Rita Singh.

Robust group's open source tutorial learning to use the cmu sphinx automatic speech recognition system.
Web, 2005.

URL http://www.cs.cmu.edu/~robust/Tutorial/opensource.html.

Manual for the Sphinx-11l recognition system.

SPHINX-CMU.
URL http://fife.speech.cs.cmu.edu/sphinxman/.

Paul A. Taylor, S. King, S. D. Isard, and H. Wright.

Intonation and dialogue context as constraints for speech recognition.

Language and Speech, 41:493-512, 1998.

URL http://www.cstr.ed.ac.uk/downloads/publications/1998/Taylor 1998 b.pdf.

Jean-Marc Valin.

Open mind speech.

Web.

URL http://freespeech.sourceforge.net/.

Xue Wang.

incorporating knowledge on segmental duration in hmm-based continuous speech recognition.
PhD thesis, LOT Netherlands Graduate School of Linguistics, 04 1997.

URL http://www.fon.hum.uva.nl/wang/ThesisWangXue/TOCINDEX.html.

eech recognition and synthesis

http://www.speech.cs.cmu.edu/SLM_info.html
http://www.cs.cmu.edu/~robust/Tutorial/opensource.html
http://fife.speech.cs.cmu.edu/sphinxman/
http://www.cstr.ed.ac.uk/downloads/publications/1998/Taylor_1998_b.pdf
http://freespeech.sourceforge.net/
http://www.fon.hum.uva.nl/wang/ThesisWangXue/TOCINDEX.html

NSNS
Appendix A

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis

|
Copyright License

Copyright (©2007-2008 R.J.J.H. van Son, GNU General Public License
[FSF(1991)]

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY:; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008

B

B
5

2/4

	More about ASR
	Introduction
	Dynamic programming
	Viterbi algorithm
	Other approaches to decoding
	Training acoustic models
	FLOSS resources
	Assignment
	Bibliography

