
More about ASR

Speech recognition and synthesis

1 More about ASR
Introduction
Dynamic programming
Viterbi algorithm
Other approaches to decoding
Training acoustic models
FLOSS resources
Assignment
Bibliography

Copyright c©2007 R.J.J.H. van Son, GNU General Public License [FSF(1991)]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 182 / 316

More about ASR Introduction

Introduction

Two technologies are needed to make the HMM framework practical

Decoder technology to find the
argmax
Words

P(Observation|Words) · P(Words)

Determining the stochastic parameters of the HMM state automaton,
i.e. training

Many pictures (and their copyrights) are from [Jurafsky and Martin(2000)]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 183 / 316

More about ASR Introduction

Introduction

Two technologies are needed to make the HMM framework practical

Decoder technology to find the
argmax
Words

P(Observation|Words) · P(Words)

Determining the stochastic parameters of the HMM state automaton,
i.e. training

Many pictures (and their copyrights) are from [Jurafsky and Martin(2000)]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 183 / 316

More about ASR Dynamic programming

Dynamic programming

 e x e c u t i o n

Trace

Alignment

i n t e n t i o n

e x e c u t i o n

i n t e n t i o n

e x e c u t i o n

n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

i n t e n t i o n

Operation
delete i

substitute n by e

substitute t by x

insert u

substitute n by c

List

ε
ε

Look for best alignment: Minimum edit distance

Delete

Insert

Substitute

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 184 / 316

More about ASR Dynamic programming

Dynamic programming

 e x e c u t i o n

Trace

Alignment

i n t e n t i o n

e x e c u t i o n

i n t e n t i o n

e x e c u t i o n

n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

i n t e n t i o n

Operation
delete i

substitute n by e

substitute t by x

insert u

substitute n by c

List

ε
ε

Look for best alignment: Minimum edit distance

Delete

Insert

Substitute

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 184 / 316

More about ASR Dynamic programming

Dynamic programming

 e x e c u t i o n

Trace

Alignment

i n t e n t i o n

e x e c u t i o n

i n t e n t i o n

e x e c u t i o n

n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

i n t e n t i o n

Operation
delete i

substitute n by e

substitute t by x

insert u

substitute n by c

List

ε
ε

Look for best alignment: Minimum edit distance

Delete

Insert

Substitute

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 184 / 316

More about ASR Dynamic programming

Dynamic programming

function MIN-EDIT-DISTANCE(target, source) returns min-distance

n � LENGTH(target)
m � LENGTH(source)
Create a distance matrix distance[n+1,m+1]
distance[0,0] � 0
for each column i from 0 to n do

for each row j from 0 to m do
distance[i, j] � MIN(distance[i � 1, j] + ins-cost(targeti),

distance[i � 1, j � 1] + subst-cost(source j, targeti),
distance[i, j � 1] + del-cost(source j))

Fill a matrix with cumulative edit distances, distance[i , j] = min of

distance[i − 1, j] + insert-cost(targeti)

distance[i − 1, j − 1] + substitution-cost(sourcej , targeti)

distance[i , j − 1] + deletion-cost(sourcej)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 185 / 316

More about ASR Dynamic programming

Dynamic programming

function MIN-EDIT-DISTANCE(target, source) returns min-distance

n � LENGTH(target)
m � LENGTH(source)
Create a distance matrix distance[n+1,m+1]
distance[0,0] � 0
for each column i from 0 to n do

for each row j from 0 to m do
distance[i, j] � MIN(distance[i � 1, j] + ins-cost(targeti),

distance[i � 1, j � 1] + subst-cost(source j, targeti),
distance[i, j � 1] + del-cost(source j))

Fill a matrix with cumulative edit distances, distance[i , j] = min of

distance[i − 1, j] + insert-cost(targeti)

distance[i − 1, j − 1] + substitution-cost(sourcej , targeti)

distance[i , j − 1] + deletion-cost(sourcej)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 185 / 316

More about ASR Dynamic programming

Dynamic programming

function MIN-EDIT-DISTANCE(target, source) returns min-distance

n � LENGTH(target)
m � LENGTH(source)
Create a distance matrix distance[n+1,m+1]
distance[0,0] � 0
for each column i from 0 to n do

for each row j from 0 to m do
distance[i, j] � MIN(distance[i � 1, j] + ins-cost(targeti),

distance[i � 1, j � 1] + subst-cost(source j, targeti),
distance[i, j � 1] + del-cost(source j))

Fill a matrix with cumulative edit distances, distance[i , j] = min of

distance[i − 1, j] + insert-cost(targeti)

distance[i − 1, j − 1] + substitution-cost(sourcej , targeti)

distance[i , j − 1] + deletion-cost(sourcej)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 185 / 316

More about ASR Dynamic programming

Dynamic programming

n 9 10 11 10 11 12 11 10 9 8
o 8 9 10 9 10 11 10 9 8 9
i 7 8 9 8 9 10 9 8 9 10
t 6 7 8 7 8 9 8 9 10 11
n 5 6 7 6 7 8 9 10 11 12
e 4 5 6 5 6 7 8 9 10 11
t 3 4 5 6 7 8 9 10 11 12
n 2 3 4 5 6 7 8 8 10 11
i 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9

e x e c u t i o n

Trace back the choices of the minimal distance (bold numbers)

This finds the globally minimal cost path

Full search unwieldy for large and complex matrices

In general, searches are pruned to exclude paths that deviate far from
the diagonal: Beam search

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 186 / 316

More about ASR Dynamic programming

Dynamic programming

n 9 10 11 10 11 12 11 10 9 8
o 8 9 10 9 10 11 10 9 8 9
i 7 8 9 8 9 10 9 8 9 10
t 6 7 8 7 8 9 8 9 10 11
n 5 6 7 6 7 8 9 10 11 12
e 4 5 6 5 6 7 8 9 10 11
t 3 4 5 6 7 8 9 10 11 12
n 2 3 4 5 6 7 8 8 10 11
i 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9

e x e c u t i o n

Trace back the choices of the minimal distance (bold numbers)

This finds the globally minimal cost path

Full search unwieldy for large and complex matrices

In general, searches are pruned to exclude paths that deviate far from
the diagonal: Beam search

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 186 / 316

More about ASR Dynamic programming

Dynamic programming

n 9 10 11 10 11 12 11 10 9 8
o 8 9 10 9 10 11 10 9 8 9
i 7 8 9 8 9 10 9 8 9 10
t 6 7 8 7 8 9 8 9 10 11
n 5 6 7 6 7 8 9 10 11 12
e 4 5 6 5 6 7 8 9 10 11
t 3 4 5 6 7 8 9 10 11 12
n 2 3 4 5 6 7 8 8 10 11
i 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9

e x e c u t i o n

Trace back the choices of the minimal distance (bold numbers)

This finds the globally minimal cost path

Full search unwieldy for large and complex matrices

In general, searches are pruned to exclude paths that deviate far from
the diagonal: Beam search

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 186 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

start end

dh ax

iy.08

.92

.88

.23

.77

.12
n

Word model for "the"

start endn iy d
.88

.12

Word model for "need"

start

aa

ay

Word model for "I"

end

start endaa n

Word model for "on"

.80

.20

Simplified pronunciation networks [Jurafsky and Martin(2000)]

Each word is modeled as a Finite State Machine

Individual phoneme HMMs are trained from a corpus that does not
contain all the words

A pronunciation dictionary contains all word models

Transition probabilities are ”trained” from a transcribed speech corpus

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 187 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

start end

dh ax

iy.08

.92

.88

.23

.77

.12
n

Word model for "the"

start endn iy d
.88

.12

Word model for "need"

start

aa

ay

Word model for "I"

end

start endaa n

Word model for "on"

.80

.20

Simplified pronunciation networks [Jurafsky and Martin(2000)]

Each word is modeled as a Finite State Machine

Individual phoneme HMMs are trained from a corpus that does not
contain all the words

A pronunciation dictionary contains all word models

Transition probabilities are ”trained” from a transcribed speech corpus

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 187 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

start end

dh ax

iy.08

.92

.88

.23

.77

.12
n

Word model for "the"

start endn iy d
.88

.12

Word model for "need"

start

aa

ay

Word model for "I"

end

start endaa n

Word model for "on"

.80

.20

Simplified pronunciation networks [Jurafsky and Martin(2000)]

Each word is modeled as a Finite State Machine

Individual phoneme HMMs are trained from a corpus that does not
contain all the words

A pronunciation dictionary contains all word models

Transition probabilities are ”trained” from a transcribed speech corpus

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 187 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

start end

dh ax

iy.08

.92

.88

.23

.77

.12
n

Word model for "the"

start endn iy d
.88

.12

Word model for "need"

start

aa

ay

Word model for "I"

end

start endaa n

Word model for "on"

.80

.20

Simplified pronunciation networks [Jurafsky and Martin(2000)]

Each word is modeled as a Finite State Machine

Individual phoneme HMMs are trained from a corpus that does not
contain all the words

A pronunciation dictionary contains all word models

Transition probabilities are ”trained” from a transcribed speech corpus

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 187 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

aa
ay

n
iy
d

I

need

the

ax
iy
n

dh

n i dh ax

...

...

on aa
n

aa

Viterbi algorithm result “for I need
a” [Jurafsky and Martin(2000)]

Whole sequence on X axis

All word models on the
other axis

Switch to (any) new word
after reaching the end of the
current word

Word switching cost based
on the language model

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 188 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

aa
ay

n
iy
d

I

need

the

ax
iy
n

dh

n i dh ax

...

...

on aa
n

aa

Viterbi algorithm result “for I need
a” [Jurafsky and Martin(2000)]

Whole sequence on X axis

All word models on the
other axis

Switch to (any) new word
after reaching the end of the
current word

Word switching cost based
on the language model

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 188 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

aa
ay

n
iy
d

I

need

the

ax
iy
n

dh

n i dh ax

...

...

on aa
n

aa

Viterbi algorithm result “for I need
a” [Jurafsky and Martin(2000)]

Whole sequence on X axis

All word models on the
other axis

Switch to (any) new word
after reaching the end of the
current word

Word switching cost based
on the language model

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 188 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

aa
ay

n
iy
d

I

need

the

ax
iy
n

dh

n i dh ax

...

...

on aa
n

aa

Viterbi algorithm result “for I need
a” [Jurafsky and Martin(2000)]

Whole sequence on X axis

All word models on the
other axis

Switch to (any) new word
after reaching the end of the
current word

Word switching cost based
on the language model

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 188 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

I need 0.0016 need need 0.000047 # Need 0.000018
I the 0.00018 need the 0.012 # The 0.016
I on 0.000047 need on 0.000047 # On 0.00077
I I 0.039 need I 0.000016 # I 0.079
the need 0.00051 on need 0.000055
the the 0.0099 on the 0.094
the on 0.00022 on on 0.0031
the I 0.00051 on I 0.00085

Bigram probabilities [Jurafsky and Martin(2000)]

Word switching in Viterbi searches uses probabilities

Switch to a new word with bigram probability cost

Does not work with trigram probabilities

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 189 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

I need 0.0016 need need 0.000047 # Need 0.000018
I the 0.00018 need the 0.012 # The 0.016
I on 0.000047 need on 0.000047 # On 0.00077
I I 0.039 need I 0.000016 # I 0.079
the need 0.00051 on need 0.000055
the the 0.0099 on the 0.094
the on 0.00022 on on 0.0031
the I 0.00051 on I 0.00085

Bigram probabilities [Jurafsky and Martin(2000)]

Word switching in Viterbi searches uses probabilities

Switch to a new word with bigram probability cost

Does not work with trigram probabilities

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 189 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

I need 0.0016 need need 0.000047 # Need 0.000018
I the 0.00018 need the 0.012 # The 0.016
I on 0.000047 need on 0.000047 # On 0.00077
I I 0.039 need I 0.000016 # I 0.079
the need 0.00051 on need 0.000055
the the 0.0099 on the 0.094
the on 0.00022 on on 0.0031
the I 0.00051 on I 0.00085

Bigram probabilities [Jurafsky and Martin(2000)]

Word switching in Viterbi searches uses probabilities

Switch to a new word with bigram probability cost

Does not work with trigram probabilities

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 189 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

start

aa

ay
dh ax

iy
.88

.23

.77

.12
n

n iy d
.88

aa n

.00077

.079 * .20

.0016

.0016

.000018

.0005 .0005

.09*.92

.09*.08

.012*.92

.012*.08

Single pronunciation automaton for I, need, on, and the
[Jurafsky and Martin(2000)]

Bigram probabilities connect the word models

Merge start and end states of connected words

Need for pruning is apparent

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 190 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

start

aa

ay
dh ax

iy
.88

.23

.77

.12
n

n iy d
.88

aa n

.00077

.079 * .20

.0016

.0016

.000018

.0005 .0005

.09*.92

.09*.08

.012*.92

.012*.08

Single pronunciation automaton for I, need, on, and the
[Jurafsky and Martin(2000)]

Bigram probabilities connect the word models

Merge start and end states of connected words

Need for pruning is apparent

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 190 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

start

aa

ay
dh ax

iy
.88

.23

.77

.12
n

n iy d
.88

aa n

.00077

.079 * .20

.0016

.0016

.000018

.0005 .0005

.09*.92

.09*.08

.012*.92

.012*.08

Single pronunciation automaton for I, need, on, and the
[Jurafsky and Martin(2000)]

Bigram probabilities connect the word models

Merge start and end states of connected words

Need for pruning is apparent

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 190 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

function VITERBI(observations of len T,state-graph) returns best-path

num-states �
NUM-OF-STATES(state-graph)

Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[0,0] � 1.0
for each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s

�
from s specified by state-graph

new-score � viterbi[s, t] * a[s,s
�
] * bs � (ot)

if ((viterbi[s
�
,t+1] = 0)

���
(new-score � viterbi[s

�
, t+1]))

then
viterbi[s

�
, t+1] � new-score

back-pointer[s
�
, t+1] � s

Backtrace from highest probability state in the final column of viterbi[] and
return path

Extended version of the edit distance [Jurafsky and Martin(2000)]

a[s, s ′] = P(s → s ′)

bs′(ot) = P(ot |s ′)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 191 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

function VITERBI(observations of len T,state-graph) returns best-path

num-states �
NUM-OF-STATES(state-graph)

Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[0,0] � 1.0
for each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s

�
from s specified by state-graph

new-score � viterbi[s, t] * a[s,s
�
] * bs � (ot)

if ((viterbi[s
�
,t+1] = 0)

���
(new-score � viterbi[s

�
, t+1]))

then
viterbi[s

�
, t+1] � new-score

back-pointer[s
�
, t+1] � s

Backtrace from highest probability state in the final column of viterbi[] and
return path

Extended version of the edit distance [Jurafsky and Martin(2000)]

a[s, s ′] = P(s → s ′)

bs′(ot) = P(ot |s ′)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 191 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

aa

ay

n

iy

d

I

need

the

ax

iy

n

dh

...

on
aa

n

n dh ax# aa
start 1.0

1.0*.00077
= .00077

iy

.20 *.079
= .0016

1.0 *.00077
= .00077

.0016 *.00018*.08
= .000000023

.0016 *.0016
= .0000026

1.0 *.0000026
= .0000026

.000000023 * .12
 = .0000000028

.0000026 * .012 * .92
= .0000000291

.000000031 * .77
= .000000022

Individual state columns in Viterbi algorithm [Jurafsky and Martin(2000)]

The actual entries for the Automaton

Note the problems for a 20,000 word dictionary

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 192 / 316

More about ASR Viterbi algorithm

Viterbi algorithm

aa

ay

n

iy

d

I

need

the

ax

iy

n

dh

...

on
aa

n

n dh ax# aa
start 1.0

1.0*.00077
= .00077

iy

.20 *.079
= .0016

1.0 *.00077
= .00077

.0016 *.00018*.08
= .000000023

.0016 *.0016
= .0000026

1.0 *.0000026
= .0000026

.000000023 * .12
 = .0000000028

.0000026 * .012 * .92
= .0000000291

.000000031 * .77
= .000000022

Individual state columns in Viterbi algorithm [Jurafsky and Martin(2000)]

The actual entries for the Automaton

Note the problems for a 20,000 word dictionary

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 192 / 316

More about ASR Viterbi algorithm

Viterbi algorithm: Subphones revisited [Jurafsky and Martin(2000)]

b(ax,aw)b(ax,aw) b(ax,aw)
left middle right

Use structured, context sensitive phone units

Single phone units perform bad due to coarticulation

Begin differs from End (eg, /d/)

60 context dependent triphones ⇒ 603 = 216000 models

Cluster contexts,eg, on manner and place of articulation

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 193 / 316

More about ASR Viterbi algorithm

Viterbi algorithm: Subphones revisited [Jurafsky and Martin(2000)]

b(ax,aw)b(ax,aw) b(ax,aw)
left middle right

Use structured, context sensitive phone units

Single phone units perform bad due to coarticulation

Begin differs from End (eg, /d/)

60 context dependent triphones ⇒ 603 = 216000 models

Cluster contexts,eg, on manner and place of articulation

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 193 / 316

More about ASR Viterbi algorithm

Viterbi algorithm: Subphones revisited [Jurafsky and Martin(2000)]

b(ax,aw)b(ax,aw) b(ax,aw)
left middle right

Use structured, context sensitive phone units

Single phone units perform bad due to coarticulation

Begin differs from End (eg, /d/)

60 context dependent triphones ⇒ 603 = 216000 models

Cluster contexts,eg, on manner and place of articulation

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 193 / 316

More about ASR Viterbi algorithm

Viterbi algorithm: Subphones revisited [Jurafsky and Martin(2000)]

b(ax,aw)b(ax,aw) b(ax,aw)
left middle right

Use structured, context sensitive phone units

Single phone units perform bad due to coarticulation

Begin differs from End (eg, /d/)

60 context dependent triphones ⇒ 603 = 216000 models

Cluster contexts,eg, on manner and place of articulation

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 193 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 194 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 194 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 194 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 194 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 194 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 194 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 194 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 194 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 194 / 316

More about ASR Other approaches to decoding

Other approaches to decoding

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability Chapt 7 [Wang(1997)]

Parallel Intonation and Accent detector (HMM) example without N-best
[Taylor et al.(1998)Taylor, King, Isard, and Wright]

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 195 / 316

More about ASR Other approaches to decoding

Other approaches to decoding

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability Chapt 7 [Wang(1997)]

Parallel Intonation and Accent detector (HMM) example without N-best
[Taylor et al.(1998)Taylor, King, Isard, and Wright]

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 195 / 316

More about ASR Other approaches to decoding

Other approaches to decoding

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability Chapt 7 [Wang(1997)]

Parallel Intonation and Accent detector (HMM) example without N-best
[Taylor et al.(1998)Taylor, King, Isard, and Wright]

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 195 / 316

More about ASR Other approaches to decoding

Other approaches to decoding

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability Chapt 7 [Wang(1997)]

Parallel Intonation and Accent detector (HMM) example without N-best
[Taylor et al.(1998)Taylor, King, Isard, and Wright]

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 195 / 316

More about ASR Other approaches to decoding

Other approaches to decoding

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability Chapt 7 [Wang(1997)]

Parallel Intonation and Accent detector (HMM) example without N-best
[Taylor et al.(1998)Taylor, King, Isard, and Wright]

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 195 / 316

More about ASR Other approaches to decoding

Other approaches to decoding

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability Chapt 7 [Wang(1997)]

Parallel Intonation and Accent detector (HMM) example without N-best
[Taylor et al.(1998)Taylor, King, Isard, and Wright]

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 195 / 316

More about ASR Other approaches to decoding

Other approaches to decoding

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability Chapt 7 [Wang(1997)]

Parallel Intonation and Accent detector (HMM) example without N-best
[Taylor et al.(1998)Taylor, King, Isard, and Wright]

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 195 / 316

More about ASR Other approaches to decoding

Other approaches to decoding

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability Chapt 7 [Wang(1997)]

Parallel Intonation and Accent detector (HMM) example without N-best
[Taylor et al.(1998)Taylor, King, Isard, and Wright]

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 195 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

the

is

of

are

dogs

do

want

can’t

underwriter

typically

I

START

bequeath

intention

mice

exceptional

my

to

not

believe

lives

Stack, or A∗, decoding [Jurafsky and Martin(2000)]

Viterbi uses best path upto position t to get to t + 1

A∗ uses complete forward algorithm (exact likelihoods)

A∗ searches potential utterances best-first

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 196 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

the

is

of

are

dogs

do

want

can’t

underwriter

typically

I

START

bequeath

intention

mice

exceptional

my

to

not

believe

lives

Stack, or A∗, decoding [Jurafsky and Martin(2000)]

Viterbi uses best path upto position t to get to t + 1

A∗ uses complete forward algorithm (exact likelihoods)

A∗ searches potential utterances best-first

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 196 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

the

is

of

are

dogs

do

want

can’t

underwriter

typically

I

START

bequeath

intention

mice

exceptional

my

to

not

believe

lives

Stack, or A∗, decoding [Jurafsky and Martin(2000)]

Viterbi uses best path upto position t to get to t + 1

A∗ uses complete forward algorithm (exact likelihoods)

A∗ searches potential utterances best-first

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 196 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentence s off the queue.
If (s is marked end-of-sentence (EOS)) output s and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word w:

Create a new candidate sentence s � w.
Use forward algorithm to compute acoustic likelihood L of s � w
Compute language model probability P of extended sentence s � w
Compute “score” for s � w (a function of L, P, and ???)
if (end-of-sentence) set EOS flag for s � w.
Insert s � w into the queue together with its score and EOS flag

Stack decoding [Jurafsky and Martin(2000)]

At each point, the A∗ looks for the most likely next word

Acoustic likelihood is part of the criterium

Use the forward probability of preceding words

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 197 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentence s off the queue.
If (s is marked end-of-sentence (EOS)) output s and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word w:

Create a new candidate sentence s � w.
Use forward algorithm to compute acoustic likelihood L of s � w
Compute language model probability P of extended sentence s � w
Compute “score” for s � w (a function of L, P, and ???)
if (end-of-sentence) set EOS flag for s � w.
Insert s � w into the queue together with its score and EOS flag

Stack decoding [Jurafsky and Martin(2000)]

At each point, the A∗ looks for the most likely next word

Acoustic likelihood is part of the criterium

Use the forward probability of preceding words

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 197 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentence s off the queue.
If (s is marked end-of-sentence (EOS)) output s and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word w:

Create a new candidate sentence s � w.
Use forward algorithm to compute acoustic likelihood L of s � w
Compute language model probability P of extended sentence s � w
Compute “score” for s � w (a function of L, P, and ???)
if (end-of-sentence) set EOS flag for s � w.
Insert s � w into the queue together with its score and EOS flag

Stack decoding [Jurafsky and Martin(2000)]

At each point, the A∗ looks for the most likely next word

Acoustic likelihood is part of the criterium

Use the forward probability of preceding words

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 197 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P("if" | START)

P(acoustic | "if") =
 forward probability

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if") =
 forward probability

P("if" |START)

if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
 forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
 forward probability

muscle

messy

If music be the food of love [Jurafsky and Martin(2000)]

“Start Alice” has highest score: 40

“Start if” has highest score: 30

“Start if music” has highest score: 32

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 198 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P("if" | START)

P(acoustic | "if") =
 forward probability

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if") =
 forward probability

P("if" |START)

if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
 forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
 forward probability

muscle

messy

If music be the food of love [Jurafsky and Martin(2000)]

“Start Alice” has highest score: 40

“Start if” has highest score: 30

“Start if music” has highest score: 32

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 198 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P("if" | START)

P(acoustic | "if") =
 forward probability

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if") =
 forward probability

P("if" |START)

if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
 forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
 forward probability

muscle

messy

If music be the food of love [Jurafsky and Martin(2000)]

“Start Alice” has highest score: 40

“Start if” has highest score: 30

“Start if music” has highest score: 32

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 198 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

Remarks

Use fast match heuristics for selecting next words

Longer utterances have lower probabilities, score should correct for
this

A∗ evaluation function: f ∗(p) = g(p) + h∗(p)

g(partial path) = P(O|Words) · P(Words), i.e. the likelihood until
now

h∗(p) something that correlates with number of words in the rest of
the utterance

Defining a good h∗(p) is an interesting (unsolved) problem

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 199 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

Remarks

Use fast match heuristics for selecting next words

Longer utterances have lower probabilities, score should correct for
this

A∗ evaluation function: f ∗(p) = g(p) + h∗(p)

g(partial path) = P(O|Words) · P(Words), i.e. the likelihood until
now

h∗(p) something that correlates with number of words in the rest of
the utterance

Defining a good h∗(p) is an interesting (unsolved) problem

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 199 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

Remarks

Use fast match heuristics for selecting next words

Longer utterances have lower probabilities, score should correct for
this

A∗ evaluation function: f ∗(p) = g(p) + h∗(p)

g(partial path) = P(O|Words) · P(Words), i.e. the likelihood until
now

h∗(p) something that correlates with number of words in the rest of
the utterance

Defining a good h∗(p) is an interesting (unsolved) problem

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 199 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

Remarks

Use fast match heuristics for selecting next words

Longer utterances have lower probabilities, score should correct for
this

A∗ evaluation function: f ∗(p) = g(p) + h∗(p)

g(partial path) = P(O|Words) · P(Words), i.e. the likelihood until
now

h∗(p) something that correlates with number of words in the rest of
the utterance

Defining a good h∗(p) is an interesting (unsolved) problem

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 199 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

Remarks

Use fast match heuristics for selecting next words

Longer utterances have lower probabilities, score should correct for
this

A∗ evaluation function: f ∗(p) = g(p) + h∗(p)

g(partial path) = P(O|Words) · P(Words), i.e. the likelihood until
now

h∗(p) something that correlates with number of words in the rest of
the utterance

Defining a good h∗(p) is an interesting (unsolved) problem

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 199 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗

Remarks

Use fast match heuristics for selecting next words

Longer utterances have lower probabilities, score should correct for
this

A∗ evaluation function: f ∗(p) = g(p) + h∗(p)

g(partial path) = P(O|Words) · P(Words), i.e. the likelihood until
now

h∗(p) something that correlates with number of words in the rest of
the utterance

Defining a good h∗(p) is an interesting (unsolved) problem

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 199 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗ fast match

AX(#,B)

B(#,EY)

B(AX,AW)

B(AX,AH)

EY(B,K)

EY(B,KD)

AW(B,N)

AW(B,TD)

AH(B,V)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,IX)

N(AW,DD)

TD(AW,X)

V(AH,X)

BAKE

TD(KD,#)

IX(K,NG)

AXR(K,#)

AXR(K,IY)

DD(N,#)

NG(IX,#)

IY(AXR,#)

ABOVE

ABOUT

ABOUND

BAKED

BAKER

BAKERY

BAKING

A tree structured lexicon from SPHINX [Gouvêa()][Jurafsky and Martin(2000)]

Need to get forward probabilities of potential continuations fast

Tree lexicon shares forward probabilities between words

Allows early pruning of search trees

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 200 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗ fast match

AX(#,B)

B(#,EY)

B(AX,AW)

B(AX,AH)

EY(B,K)

EY(B,KD)

AW(B,N)

AW(B,TD)

AH(B,V)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,IX)

N(AW,DD)

TD(AW,X)

V(AH,X)

BAKE

TD(KD,#)

IX(K,NG)

AXR(K,#)

AXR(K,IY)

DD(N,#)

NG(IX,#)

IY(AXR,#)

ABOVE

ABOUT

ABOUND

BAKED

BAKER

BAKERY

BAKING

A tree structured lexicon from SPHINX [Gouvêa()][Jurafsky and Martin(2000)]

Need to get forward probabilities of potential continuations fast

Tree lexicon shares forward probabilities between words

Allows early pruning of search trees

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 200 / 316

More about ASR Other approaches to decoding

Other approaches to decoding: A∗ fast match

AX(#,B)

B(#,EY)

B(AX,AW)

B(AX,AH)

EY(B,K)

EY(B,KD)

AW(B,N)

AW(B,TD)

AH(B,V)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,IX)

N(AW,DD)

TD(AW,X)

V(AH,X)

BAKE

TD(KD,#)

IX(K,NG)

AXR(K,#)

AXR(K,IY)

DD(N,#)

NG(IX,#)

IY(AXR,#)

ABOVE

ABOUT

ABOUND

BAKED

BAKER

BAKERY

BAKING

A tree structured lexicon from SPHINX [Gouvêa()][Jurafsky and Martin(2000)]

Need to get forward probabilities of potential continuations fast

Tree lexicon shares forward probabilities between words

Allows early pruning of search trees

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 200 / 316

More about ASR Training acoustic models

Training acoustic models: Introduction

Determine P(Observation|Words), i.e. the transition probability
between phone states aij and the acoustic likelihood of the speech
vectors bj(ok)

Large, “transcribed” speech corpus (on text level)

Coverage of speakers and language types

Recorded under the same conditions as intended use, eg, over the
phone or in a driving car

Use the same microphone etc.

Using a simulated task (Wizard of Oz or Green curtain) to elicit the
same kind of speech

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 201 / 316

More about ASR Training acoustic models

Training acoustic models: Introduction

Determine P(Observation|Words), i.e. the transition probability
between phone states aij and the acoustic likelihood of the speech
vectors bj(ok)

Large, “transcribed” speech corpus (on text level)

Coverage of speakers and language types

Recorded under the same conditions as intended use, eg, over the
phone or in a driving car

Use the same microphone etc.

Using a simulated task (Wizard of Oz or Green curtain) to elicit the
same kind of speech

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 201 / 316

More about ASR Training acoustic models

Training acoustic models: Introduction

Determine P(Observation|Words), i.e. the transition probability
between phone states aij and the acoustic likelihood of the speech
vectors bj(ok)

Large, “transcribed” speech corpus (on text level)

Coverage of speakers and language types

Recorded under the same conditions as intended use, eg, over the
phone or in a driving car

Use the same microphone etc.

Using a simulated task (Wizard of Oz or Green curtain) to elicit the
same kind of speech

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 201 / 316

More about ASR Training acoustic models

Training acoustic models: Introduction

Determine P(Observation|Words), i.e. the transition probability
between phone states aij and the acoustic likelihood of the speech
vectors bj(ok)

Large, “transcribed” speech corpus (on text level)

Coverage of speakers and language types

Recorded under the same conditions as intended use, eg, over the
phone or in a driving car

Use the same microphone etc.

Using a simulated task (Wizard of Oz or Green curtain) to elicit the
same kind of speech

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 201 / 316

More about ASR Training acoustic models

Training acoustic models: Introduction

Determine P(Observation|Words), i.e. the transition probability
between phone states aij and the acoustic likelihood of the speech
vectors bj(ok)

Large, “transcribed” speech corpus (on text level)

Coverage of speakers and language types

Recorded under the same conditions as intended use, eg, over the
phone or in a driving car

Use the same microphone etc.

Using a simulated task (Wizard of Oz or Green curtain) to elicit the
same kind of speech

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 201 / 316

More about ASR Training acoustic models

Training acoustic models

start endiy d

......

Word Model n10 2 3 4

a11 a22 a33

a12

a24

aa23 34

Observation
Sequence
(spectral feature
 vectors)

o1 o2 o3 o4 o5 o6

1b (o1) b (o)3 6

a01

1b (o)2
b (o)2 3 b (o)2 5

If all states were known [Jurafsky and Martin(2000)]

aij =
#Sij

#Si∗
(count transitions and states)

bi (Ok) =
#(Ok&Si)

#Si
(for discrete Ok)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 202 / 316

More about ASR Training acoustic models

Training acoustic models

start endiy d

......

Word Model n10 2 3 4

a11 a22 a33

a12

a24

aa23 34

Observation
Sequence
(spectral feature
 vectors)

o1 o2 o3 o4 o5 o6

1b (o1) b (o)3 6

a01

1b (o)2
b (o)2 3 b (o)2 5

If all states were known [Jurafsky and Martin(2000)]

aij =
#Sij

#Si∗
(count transitions and states)

bi (Ok) =
#(Ok&Si)

#Si
(for discrete Ok)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 202 / 316

More about ASR Training acoustic models

Training acoustic models

If observations are continuous vectors [SPH()]

bi (Ot) ⇒ N{µ̂i , Σ̂i}

µ̂i =
1

Ti

∑Ti
t=1 Ot

Σ̂i =
1

Ti

∑Ti
t=1[(Ot − µ̂i)

′(Ot − µ̂i)]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 203 / 316

More about ASR Training acoustic models

Training acoustic models

If observations are continuous vectors [SPH()]

bi (Ot) ⇒ N{µ̂i , Σ̂i}

µ̂i =
1

Ti

∑Ti
t=1 Ot

Σ̂i =
1

Ti

∑Ti
t=1[(Ot − µ̂i)

′(Ot − µ̂i)]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 203 / 316

More about ASR Training acoustic models

Training acoustic models

If observations are continuous vectors [SPH()]

bi (Ot) ⇒ N{µ̂i , Σ̂i}

µ̂i =
1

Ti

∑Ti
t=1 Ot

Σ̂i =
1

Ti

∑Ti
t=1[(Ot − µ̂i)

′(Ot − µ̂i)]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 203 / 316

More about ASR Training acoustic models

Training acoustic models

α (t)i

o
j (t+1)β

ot−1 o t o t+1 t+2

s i sj

(o)jb t+1ija *

States have to be estimated. Use an iterative procedure App D
[Jurafsky and Martin(2000)]

Run the recognizer on the corpus with the known words

Calculate âij =
expected #Si→Sj

expected #Si→S∗

Calculate b̂j(vk) =
expected #Sj observing vk

expected #Sj

Update all values and start again

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 204 / 316

More about ASR Training acoustic models

Training acoustic models

α (t)i

o
j (t+1)β

ot−1 o t o t+1 t+2

s i sj

(o)jb t+1ija *

States have to be estimated. Use an iterative procedure App D
[Jurafsky and Martin(2000)]

Run the recognizer on the corpus with the known words

Calculate âij =
expected #Si→Sj

expected #Si→S∗

Calculate b̂j(vk) =
expected #Sj observing vk

expected #Sj

Update all values and start again

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 204 / 316

More about ASR Training acoustic models

Training acoustic models

α (t)i

o
j (t+1)β

ot−1 o t o t+1 t+2

s i sj

(o)jb t+1ija *

States have to be estimated. Use an iterative procedure App D
[Jurafsky and Martin(2000)]

Run the recognizer on the corpus with the known words

Calculate âij =
expected #Si→Sj

expected #Si→S∗

Calculate b̂j(vk) =
expected #Sj observing vk

expected #Sj

Update all values and start again

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 204 / 316

More about ASR Training acoustic models

Training acoustic models

α (t)i

o
j (t+1)β

ot−1 o t o t+1 t+2

s i sj

(o)jb t+1ija *

States have to be estimated. Use an iterative procedure App D
[Jurafsky and Martin(2000)]

Run the recognizer on the corpus with the known words

Calculate âij =
expected #Si→Sj

expected #Si→S∗

Calculate b̂j(vk) =
expected #Sj observing vk

expected #Sj

Update all values and start again

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 204 / 316

More about ASR FLOSS resources

FLOSS resources

Free and Open Source ASR systems

SPHINX (CMU) [Gouvêa()] [Singh(2005)]

CMU Statistical Language Modeling Toolkit [Rosenfeld()]

CMU Pronouncing Dictionary [Lenzo()]

Internet-Accessible Speech Recognition Technology project (ISIP,
Mississippi State University) [ISIP(2004)]

Open Mind Speech [Valin()]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 205 / 316

More about ASR FLOSS resources

FLOSS resources

Free and Open Source ASR systems

SPHINX (CMU) [Gouvêa()] [Singh(2005)]

CMU Statistical Language Modeling Toolkit [Rosenfeld()]

CMU Pronouncing Dictionary [Lenzo()]

Internet-Accessible Speech Recognition Technology project (ISIP,
Mississippi State University) [ISIP(2004)]

Open Mind Speech [Valin()]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 205 / 316

More about ASR FLOSS resources

FLOSS resources

Free and Open Source ASR systems

SPHINX (CMU) [Gouvêa()] [Singh(2005)]

CMU Statistical Language Modeling Toolkit [Rosenfeld()]

CMU Pronouncing Dictionary [Lenzo()]

Internet-Accessible Speech Recognition Technology project (ISIP,
Mississippi State University) [ISIP(2004)]

Open Mind Speech [Valin()]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 205 / 316

More about ASR FLOSS resources

FLOSS resources

Free and Open Source ASR systems

SPHINX (CMU) [Gouvêa()] [Singh(2005)]

CMU Statistical Language Modeling Toolkit [Rosenfeld()]

CMU Pronouncing Dictionary [Lenzo()]

Internet-Accessible Speech Recognition Technology project (ISIP,
Mississippi State University) [ISIP(2004)]

Open Mind Speech [Valin()]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 205 / 316

More about ASR FLOSS resources

FLOSS resources

Free and Open Source ASR systems

SPHINX (CMU) [Gouvêa()] [Singh(2005)]

CMU Statistical Language Modeling Toolkit [Rosenfeld()]

CMU Pronouncing Dictionary [Lenzo()]

Internet-Accessible Speech Recognition Technology project (ISIP,
Mississippi State University) [ISIP(2004)]

Open Mind Speech [Valin()]

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 205 / 316

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Assignment

Assignment: Week 8 Statistical Language Models

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt ”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence that contains
unknown word combinations

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 206 / 316

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl

More about ASR Bibliography

Further Reading I

P. Boersma.

Praat, a system for doing phonetics by computer.
Glot International, 5:341–345, 2001.
URL http://www.Praat.org/.

P. Boersma and D. Weenink.

Praat 4.2: doing phonetics by computer.
Computer program: http://www.Praat.org/, 2004.
URL http://www.Praat.org/.

CSLU.

CSLU Toolkit.
Web.
URL http://cslu.cse.ogi.edu/toolkit/index.html.

FSF.

GNU General Public License.
Web, June 1991.
URL http://www.gnu.org/licenses/gpl.html.

Joshua T. Goodman.

A bit of progress in language modeling.
Computer Speech and Language, 15:403–434, 2001.
URL http://arxiv.org/abs/cs.CL/0108005.
URL is extended preprint.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 207 / 316

http://www.Praat.org/
http://www.Praat.org/
http://cslu.cse.ogi.edu/toolkit/index.html
http://www.gnu.org/licenses/gpl.html
http://arxiv.org/abs/cs.CL/0108005

More about ASR Bibliography

Further Reading II

E. Gouvêa.

The CMU Sphinx Group Open Source Speech Recognition Engines.
Web.
URL http://cmusphinx.sourceforge.net/html/cmusphinx.php.

ISIP.

The Mississippi State ISIP public domain speech recognizer.
Web, August 2004.
URL http://www.cavs.msstate.edu/hse/ies/projects/speech/index.html.

Daniel Jurafsky and James H. Martin.

Speech and Language Processing.
Prentice-Hall, 2000.
ISBN 0-13-095069-6.
URL http://www.cs.colorado.edu/∼martin/slp.html.
Updates at http://www.cs.colorado.edu/

Kevin Lenzo.

The CMU Pronouncing Dictionary.
Web.
URL http://www.speech.cs.cmu.edu/SLM info.html.

Project Gutenberg.

Project gutenberg free ebook library.
Web, 2005.
URL http://www.gutenberg.org/.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 208 / 316

http://cmusphinx.sourceforge.net/html/cmusphinx.php
http://www.cavs.msstate.edu/hse/ies/projects/speech/index.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.speech.cs.cmu.edu/SLM_info.html
http://www.gutenberg.org/

More about ASR Bibliography

Further Reading III

Roni Rosenfeld.

The CMU Statistical Language Modeling (SLM) Toolkit.
Web.
URL http://www.speech.cs.cmu.edu/SLM info.html.

Rita Singh.

Robust group’s open source tutorial learning to use the cmu sphinx automatic speech recognition system.
Web, 2005.
URL http://www.cs.cmu.edu/∼robust/Tutorial/opensource.html.

Manual for the Sphinx-III recognition system.

SPHINX-CMU.
URL http://fife.speech.cs.cmu.edu/sphinxman/.

Paul A. Taylor, S. King, S. D. Isard, and H. Wright.

Intonation and dialogue context as constraints for speech recognition.
Language and Speech, 41:493–512, 1998.
URL http://www.cstr.ed.ac.uk/downloads/publications/1998/Taylor 1998 b.pdf.

Jean-Marc Valin.

Open mind speech.
Web.
URL http://freespeech.sourceforge.net/.

Xue Wang.

incorporating knowledge on segmental duration in hmm-based continuous speech recognition.
PhD thesis, LOT Netherlands Graduate School of Linguistics, 04 1997.
URL http://www.fon.hum.uva.nl/wang/ThesisWangXue/TOCINDEX.html.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 209 / 316

http://www.speech.cs.cmu.edu/SLM_info.html
http://www.cs.cmu.edu/~robust/Tutorial/opensource.html
http://fife.speech.cs.cmu.edu/sphinxman/
http://www.cstr.ed.ac.uk/downloads/publications/1998/Taylor_1998_b.pdf
http://freespeech.sourceforge.net/
http://www.fon.hum.uva.nl/wang/ThesisWangXue/TOCINDEX.html

Appendix A

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 210 / 316

Copyright License

Copyright c©2007 R.J.J.H. van Son, GNU General Public License
[FSF(1991)]

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 211 / 316

The GNU General Public License I

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General
Public License is intended to guarantee your freedom to share and change free software—to make sure the software is free for all
its users. This General Public License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure
that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the
rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights
that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission
to copy, distribute and/or modify the software.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 212 / 316

The GNU General Public License II

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty for this
free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is
not the original, so that any problems introduced by others will not reflect on the original authors’ reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear
that any patent must be licensed for everyone’s free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and
Modification

0 This License applies to any program or other work which contains a notice placed by the copyright holder saying it may
be distributed under the terms of this General Public License. The “Program”, below, refers to any such program or
work, and a “work based on the Program” means either the Program or any derivative work under copyright law: that is
to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this License; they are outside its scope.
The act of running the Program is not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by running the Program). Whether that is
true depends on what the Program does.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 213 / 316

The GNU General Public License III

1 You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in
exchange for a fee.

2 You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all
of these conditions:

1 You must cause the modified files to carry prominent notices stating that you changed the files and the date of
any change.

2 You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the
Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this
License.

3 If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 214 / 316

The GNU General Public License IV

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate works in themselves, then this License, and its
terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the
Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3 You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you also do one of the following:

1 Accompany it with the complete corresponding machine-readable source code, which must be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

2 Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more
than your cost of physically performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

3 Accompany it with the information you received as to the offer to distribute corresponding source code. (This
alternative is allowed only for noncommercial distribution and only if you received the program in object code or
executable form with such an offer, in accord with Subsection b above.)

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 215 / 316

The GNU General Public License V

The source code for a work means the preferred form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

4 You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5 You are not required to accept this License, since you have not signed it. However, nothing else grants you permission
to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program
or works based on it.

6 Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a
license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 216 / 316

The GNU General Public License VI

7 If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to
patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution
of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8 If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9 The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time.
Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns.
Each version is given a distinguishing version number. If the Program specifies a version number of this License which
applies to it and “any later version”, you have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software Foundation.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 217 / 316

The GNU General Public License VII

10 If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write
to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

No Warranty

11 Because the program is licensed free of charge, there is no warranty for the program, to the extent
permitted by applicable law. Except when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with you. Should the
program prove defective, you assume the cost of all necessary servicing, repair or correction.

12 In no event unless required by applicable law or agreed to in writing will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or consequential damages arising out of
the use or inability to use the program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a failure of the program to
operate with any other programs), even if such holder or other party has been advised of the
possibility of such damages.

End of Terms and Conditions

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 218 / 316

The GNU General Public License VIII

Appendix: How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to
make it free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the
full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it under certain conditions; type ‘show c’ for details.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 219 / 316

The GNU General Public License IX

The hypothetical commands show w and show c should show the appropriate parts of the General Public License. Of course, the
commands you use may be called something other than show w and show c; they could even be mouse-clicks or menu
items—whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright disclaimer” for the
program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.
signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a

subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you

want to do, use the GNU Library General Public License instead of this License.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2007 220 / 316

	More about ASR
	Introduction
	Dynamic programming
	Viterbi algorithm
	Other approaches to decoding
	Training acoustic models
	FLOSS resources
	Assignment
	Bibliography

	Appendix

