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Automatic Speech Recognition Introduction

Introduction

Speech recognition in Human Machine interaction

A full interaction requires human input

Input with speech is often faster and easier than with text or pointers

Over the phone
With large or unlimited choice, eg, person and place names
Free text, eg, dictation messages
With hands occupied, eg, while driving

Sometimes speech input is ineffective

In a noisy surrounding, eg, a train station
With small menu based selections
Large variation in speakers, eg, second language speakers
Tasks that are difficult to describe verbally, eg, routing on a map

Many pictures (and their copyrights) are from [Jurafsky and Martin(2000)]
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Automatic Speech Recognition Automatic Speech Recognition

Automatic Speech Recognition

NOISY CHANNEL

noisy
sentence

guess at
original
sentence

If music be the 
    food of love... If music be the 

    food of love...

DECODER

?Every happy family...

...

source
sentence

?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

ASR is a database retrieval problem

A speech recognizer is a clever example database

The problem is: How to retrieve the most likely words from the
acoustic signal

Break down into two problems: Get the most likely

word candidates given the sound
word sequence given the available word candidates

Currently both problems are solved stochastically
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Automatic Speech Recognition Speech Input

Speech Input: How to partition the ASR problem

What is the most likely word sequence given the observed sound:

argmax
Words

P (Words|Observation) =

argmax
Words

P (Observation|Words) · P (Words)

P (Observation)

Split this into two separate tasks

P (Observation) is a normalization constant, independent of word
recognition (ignore it)

P (Observation|Words) is the acoustic likelihood of the words

P (Words) is the prior of the word sequence (i.e. the language model)
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Automatic Speech Recognition Speech Input

Speech Input: An overview of ASR

Feature Extraction
  (Signal Processing)

Speech
Waveform

Spectral
Feature
Vectors

Phone Likelihood
Estimation (Gaussians 
or Neural Networks)
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0.50
0.20
0.12
0.11
...

n
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...

Decoding (Viterbi
or Stack Decoder)

i need a ...

the
a

dog cat
0.20.1

0.3 0.1

N−gram Grammar

. .
. .

. .
Neural Net

HMM Lexicon

c a t

o gd Words

Phone
Likelihoods
P(o|q)

Sound waveform to word sequence

Encode the waveform into Spectral Features

Determine word likelyhoods P (Sound |Words) for each word

Determine word sequence probability P (Words) for each sequence
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Automatic Speech Recognition Language Prior

Language Prior: P (Words)

Farewell Finite State example
every arrow has a probability

The probability of observing an utterance

Example from http://www.geocities.com/SoHo/Square/3472/nounphrase.html
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Automatic Speech Recognition Language Prior

Language Prior: Word sequences

Estimate P (Words) =

P (w1, . . . ,wn) =
n∏

i=1

P (wi |w1 . . .wi−1)

Approximate P (Words) by modelling P (wi |w1 . . . wi−1) ≈
P (wi |Stateα): Finite State Grammar

P (wi |wi−n+1 . . .wi−1): N-gram∑
α P (wi |Treeα (w1 . . .wi−1)) · P (Treeα (w1 . . .wi−1)): Context Free

Grammar with (lexicalized) tree structures build from (w1 . . .wi−1)
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Automatic Speech Recognition Language Prior

Language Prior: N-grams

Collect word, word-pair and word-triplet frequencies [Goodman(2001)]

Impossible to get frequencies of all possible bi/trigrams

Construct smoothed probability distributions

Special ”states” for sentence start and ”end”

P (Words) ≈ P (wi |wi−2,wi−1)

Use interpolation or backoff, eg, P (wi |wi−2,wi−1) ≈ α · P (wi |wi−1)
if the tri-gram (wi−2,wi−1,wi ) was not observed
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Automatic Speech Recognition Language Prior

Language Prior: Data Oriented Parsing (CFG Example) [?]

Subtree have occurrence and insertion probabilities

Requires a treebank with frequencies

Correct normalization of probabilities

Computationally expensive, like all probabilistic CF parsers
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Automatic Speech Recognition Language Prior

Language Prior: Grammar Perplexity

Perplexity (G) = 2H(G)

where

H (G) =
∑
wi

−P (wi |w1 . . .wi−1) · log2 P (wi |w1 . . .wi−1)

For a tri-gram grammar this corresponds to:

P (wi |wi−2,wi−1) =
P (wi−2,wi−1,wi )

P (wi−2,wi−1)

Perplexity corresponds to the difficulty of predicting the next word

A lower perplexity is better for ASR
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Automatic Speech Recognition Spectral analysis

Spectral analysis: FFT, LPC, PLP, MFCC, filter-banks

Time (s)
0 0.153211
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8.157

64.52

Mels

FFT + LPC smoothed spectrum (linear)

Mel filter + Cepstral smoothed spectrum

/e/ from “kasteel”

Need a spectral
representation

FFT: too noisy

LPC: wrong sensitivity

Resolution of the ear (Mel
Freq, PLP, Filter banks)

Sound level in dB (PLP,
Filter banks)

Spectral shape (MFCC)
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Automatic Speech Recognition Hidden Markov Models

Hidden Markov Models: Markov chains

10 2 3 4

a12 a23

o1 o2 o3

a01
start endn iy d

n iy d ......

Word Model

a24  = .11

a34= .89

Observation 
Sequence
(phone symbols)

Word models: simple phone state model for need

Each transition has a probability

start and end are special states

Each state or each transition has associated sound observations with
a distinct probability density function (PDF)
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Automatic Speech Recognition Hidden Markov Models

Hidden Markov Models: Observation probabilities

start endiy d

......

Word Model n10 2 3 4

a11 a22 a33

a12

a24

aa23 34

Observation 
Sequence
(spectral feature
 vectors)

o1 o2 o3 o4 o5 o6

1b (o1) b (o )3 6

a01

1b (o )2
b (o )2 3 b (o )2 5

Observed are sound ”spectra” for time ”frames”

Observation sequences have a probability

Calculate this probability for each possible word

Probabilities of Oi calculated from all possible underlying states

Chose word sequence with the highest overall probability
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Automatic Speech Recognition Hidden Markov Models

Hidden Markov Models: Pronunciation networks

start end

dh ax

iy.08

.92

.88

.23

.77

.12
n

Word model for "the"

start endn iy d
.88

.12

Word model for "need"

start

aa

ay

Word model for "I"

end

start endaa n

Word model for "on"

.80

.20

Construct phone state models for each word in the dictionary

The possible pronunciations for each word have to be encoded in the
dictionary

The transition probabilities are ”trained” from the frequency of
occurrence of the pronunciation in the speech corpus
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Automatic Speech Recognition Hidden Markov Models

Hidden Markov Models: Phone networks

Phone models are concatenated into utterance networks

Each word model is itself a Markov finite state network of phone
models

Phones and word are connected through the start and end states (not
shown)
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Automatic Speech Recognition Hidden Markov Models

Hidden Markov Models: Context Sensitive Phone latices

Phone models are constructed of subphone states in context

Each phone model is itself a Markov finite state network

For each phoneme context separate phone models are constructed

Each sub-phone context sensitive state can have it’s own observation
PDF

For the sake of reducing training, the observation PDF’s of different
states are tied (i.e. made identical)
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Automatic Speech Recognition Hidden Markov Models

Hidden Markov Models: Context Sensitive Phone latices
[CSLU()]
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Automatic Speech Recognition Evaluation

Evaluation: NIST, DARPA, hubs and spokes

The National Institute of Standards (NIST) and the DARPA program
organize evaluation ”contests” for ASR systems

Tests contain mandatory core components hubs

Tests contain optional specialized components spokes

Tests evolve to include not only Speech-to-Text but also who spoke
when, speaker localization etc.

Includes varying speech material and conditions

Contestants get training materials from the organization

After time for training, contestants receive test speech and have to
return the results
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Automatic Speech Recognition Evaluation

Evaluation: NIST results [Pallett(2003)]

WER (vertical) go down over time

More complex tasks introduced over time
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Automatic Speech Recognition Assignment

Assignment: Week 7 Tone recognition

Recognize level and rising tones
New → Create PitchTier... level 0 0.6

Modify → Add point... 0.05 200 & Add point... 0.55 200

New → Create PitchTier... rising 0 0.6

Modify → Add point... 0.05 100 & Add point... 0.55 200

Add silences to both PitchTiers: Add point... 0.049 0 & Add point... 0.551 0

Select PitchTier <level|rising> → To Pitch... 0.02 60 40

Select Pitch <either one> Play → Hum

Record your voice imitating the pitch → Periodicity → To Pitch... <default settings>

Select Pitch <either one> AND Pitch <your voice>
→ To DTW... 24 10 yes yes no restriction

Select DTW dtw level rising → Query - → Get distance (weighted)

Compare distances. How do you think you could improver recognition?

See Blackboard for complete description.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 23 / 4



Automatic Speech Recognition Bibliography

Further Reading I

See chapter 7.1, 7.2, 7.5 [Jurafsky and Martin(2000)]

P. Boersma.

Praat, a system for doing phonetics by computer.
Glot International, 5:341–345, 2001.
URL http://www.Praat.org/.

P. Boersma and D. Weenink.

Praat 4.2: doing phonetics by computer.
Computer program: http://www.Praat.org/, 2004.
URL http://www.Praat.org/.

CSLU.

CSLU Toolkit.
Web.
URL http://cslu.cse.ogi.edu/toolkit/index.html.

FSF.

GNU General Public License.
Web, June 1991.
URL http://www.gnu.org/licenses/gpl.html.

Joshua T. Goodman.

A bit of progress in language modeling.
Computer Speech and Language, 15:403–434, 2001.
URL http://arxiv.org/abs/cs.CL/0108005.
URL is extended preprint.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 24 / 4

http://www.Praat.org/
http://www.Praat.org/
http://cslu.cse.ogi.edu/toolkit/index.html
http://www.gnu.org/licenses/gpl.html
http://arxiv.org/abs/cs.CL/0108005


Automatic Speech Recognition Bibliography

Further Reading II

E. Gouvêa.
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Copyright License

Copyright c©2007-2008 R.J.J.H. van Son, GNU General Public License
[FSF(1991)]

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA.

van Son & Weenink (IFA, ACLC) Speech recognition and synthesis Fall 2008 2 / 4


	Automatic Speech Recognition
	Introduction
	Automatic Speech Recognition
	Speech Input
	Language Prior
	Spectral analysis
	Hidden Markov Models
	Evaluation
	Assignment
	Bibliography


