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Introduction

Two technologies are needed to make the HMM
framework practical

Decoder technology to find the
argmax
Words

P(Observation|Words) · P(Words)

Determining the stochastic parameters of the HMM
state automaton, ie, training

Many pictures (and their copyrights) are from [Jurafsky and Martin(2000)]
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Dynamic programming

function MIN-EDIT-DISTANCE(target, source) returns min-distance

n � LENGTH(target)
m � LENGTH(source)
Create a distance matrix distance[n+1,m+1]
distance[0,0] � 0
for each column i from 0 to n do

for each row j from 0 to m do
distance[i, j] � MIN( distance[i � 1, j] + ins-cost(targeti),

distance[i � 1, j � 1] + subst-cost(source j, targeti),
distance[i, j � 1] + del-cost(source j))

Fill a matrix with cumulative edit distances,
distance[i , j ] = min of

distance[i − 1, j ] + insert-cost(targeti )

distance[i − 1, j − 1] + substitution-cost(sourcej , targeti )

distance[i , j − 1] + deletion-cost(sourcej)
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Dynamic programming

n 9 10 11 10 11 12 11 10 9 8
o 8 9 10 9 10 11 10 9 8 9
i 7 8 9 8 9 10 9 8 9 10
t 6 7 8 7 8 9 8 9 10 11
n 5 6 7 6 7 8 9 10 11 12
e 4 5 6 5 6 7 8 9 10 11
t 3 4 5 6 7 8 9 10 11 12
n 2 3 4 5 6 7 8 8 10 11
i 1 2 3 4 5 6 7 8 9 10
# 0 1 2 3 4 5 6 7 8 9

# e x e c u t i o n

Trace back the choices of the minimal distance (bold
numbers)

This finds the globally minimal cost path

Full search unwieldy for large and complex matrices

In general, searches are pruned to exclude paths that
deviate far from the diagonal: Beam search
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Viterbi algorithm
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Simplified pronunciation networks [Jurafsky and Martin(2000)]

Each word is modeled as a Finite State Machine

Individual phoneme HMMs are trained from a corpus
that does not contain all the words

A pronunciation dictionary contains all word models

Transition probabilities are ”trained” from a transcribed
speech corpus
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Viterbi algorithm result “for
I need a” [Jurafsky and Martin(2000)]

Whole sequence on X
axis

All word models on
the other axis

Switch to (any) new
word after reaching
the end of the current
word

Word switching cost
based on the language
model
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Viterbi algorithm

I need 0.0016 need need 0.000047 # Need 0.000018
I the 0.00018 need the 0.012 # The 0.016
I on 0.000047 need on 0.000047 # On 0.00077
I I 0.039 need I 0.000016 # I 0.079
the need 0.00051 on need 0.000055
the the 0.0099 on the 0.094
the on 0.00022 on on 0.0031
the I 0.00051 on I 0.00085

Bigram probabilities [Jurafsky and Martin(2000)]

Word switching in Viterbi searches uses probabilities

Switch to a new word with bigram probability cost

Does not work with trigram probabilities
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.0016
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.000018

.0005 .0005

.09*.92

.09*.08

.012*.92

.012*.08

Single pronunciation automaton for I, need, on, and the
[Jurafsky and Martin(2000)]

Bigram probabilities connect the word models

Merge start and end states of connected words

Need for pruning is apparent
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Viterbi algorithm

function VITERBI(observations of len T,state-graph) returns best-path

num-states �
NUM-OF-STATES(state-graph)

Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[0,0] � 1.0
for each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s

�
from s specified by state-graph

new-score � viterbi[s, t] * a[s,s
�
] * bs � (ot)

if ((viterbi[s
�
,t+1] = 0)

���
(new-score � viterbi[s

�
, t+1]))

then
viterbi[s

�
, t+1] � new-score

back-pointer[s
�
, t+1] � s

Backtrace from highest probability state in the final column of viterbi[] and
return path

Extended version of the edit distance [Jurafsky and Martin(2000)]

a[s, s ′] = P(s → s ′)

bs′(ot) = P(ot |s ′)
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I
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n
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n

n dh ax# aa
start 1.0

1.0*.00077
= .00077

iy

.20 *.079
= .0016

1.0 *.00077
= .00077

.0016 *.00018*.08
= .000000023

.0016 *.0016
= .0000026

1.0 *.0000026
= .0000026

.000000023 * .12
 = .0000000028

.0000026 * .012 * .92
= .0000000291 

.000000031 * .77
= .000000022 

Individual state columns in Viterbi algorithm
[Jurafsky and Martin(2000)]

The actual entries for the Automaton

Note the problems for a 20,000 word dictionary
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Viterbi algorithm: Subphones revisited
[Jurafsky and Martin(2000)]

b(ax,aw)b(ax,aw) b(ax,aw)
left middle right

Use structured, context sensitive phone units

Single phone units perform bad due to coarticulation

Begin differs from End (eg, /d/)

60 context dependent triphones ⇒ 603 = 216000
models

Cluster contexts,eg, on manner and place of articulation
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Other approaches to decoding: Introduction

The standard HMM model has limitations

Viterbi decoder penalizes multiple pronunciations

Viterbi decoder does not work for anything more
complex than bigram

It is not possible to include other linguistic knowledge

Phoneme duration (HMM have a Poison distribution)
Intonation
Semantics
Speaker identification
Expressive speech tags
Task related knowledge
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If music be the 
    food of love...

If music be the 
    food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple 
Knowledge
Source

speech
input Rescoring

Two stage N-best decoding [Jurafsky and Martin(2000)]

Keep N-best utterance list or word lattice

Rescore the probabilities with the extra knowledge

A trigram or higher grammar
Phoneme duration probability Chapt 7 [Wang(1997)]

Parallel Intonation and Accent detector (HMM) example
without N-best [Taylor et al.(1998)Taylor, King, Isard, and Wright]

Include semantic or task related knowledge
Multiple speakers and expressive speech tags

Look up best path through rescored word lattice
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Other approaches to decoding: A∗
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Stack, or A∗, decoding [Jurafsky and Martin(2000)]

Viterbi uses best path upto position t to get to t + 1

A∗ uses complete forward algorithm (exact likelihoods)

A∗ searches potential utterances best-first
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Other approaches to decoding: A∗

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentence s off the queue.
If (s is marked end-of-sentence (EOS) ) output s and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word w:

Create a new candidate sentence s � w.
Use forward algorithm to compute acoustic likelihood L of s � w
Compute language model probability P of extended sentence s � w
Compute “score” for s � w (a function of L, P, and ???)
if (end-of-sentence) set EOS flag for s � w.
Insert s � w into the queue together with its score and EOS flag

Stack decoding [Jurafsky and Martin(2000)]

At each point, the A∗ looks for the most likely next word

Acoustic likelihood is part the criterium

Use the forward probability of preceding words
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If music be the food of love [Jurafsky and Martin(2000)]

“Start Alice” has highest score: 40

“Start if” has highest score: 30

“Start if music” has highest score: 32
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Other approaches to decoding: A∗

Remarks

Use fast match heuristics for selecting next words

Longer utterances have lower probabilities, score should
correct for this

A∗ evaluation function: f ∗(p) = g(p) + h∗(p)

g(partial path) = P(O|Words) · P(Words), ie, the
likelihood until now

h∗(p) something that correlates with number of words
in the rest of the utterance

Defining a good h∗(p) is an interesting (unsolved)
problem
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Other approaches to decoding: A∗ fast match

AX(#,B)

B(#,EY)

B(AX,AW)

B(AX,AH)

EY(B,K)

EY(B,KD)

AW(B,N)

AW(B,TD)

AH(B,V)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,IX)

N(AW,DD)

TD(AW,X)

V(AH,X)

BAKE

TD(KD,#)

IX(K,NG)

AXR(K,#)

AXR(K,IY)

DD(N,#)

NG(IX,#)

IY(AXR,#)

ABOVE

ABOUT

ABOUND

BAKED

BAKER

BAKERY

BAKING

A tree structured lexicon from SPHINX
[Gouvêa()][Jurafsky and Martin(2000)]

Need to get forward probabilities of potential
continuations fast

Tree lexicon shares forward probabilities between words

Allows early pruning of search trees
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TD(AW,X)

V(AH,X)

BAKE

TD(KD,#)

IX(K,NG)

AXR(K,#)

AXR(K,IY)

DD(N,#)

NG(IX,#)

IY(AXR,#)

ABOVE

ABOUT

ABOUND

BAKED

BAKER

BAKERY

BAKING

A tree structured lexicon from SPHINX
[Gouvêa()][Jurafsky and Martin(2000)]

Need to get forward probabilities of potential
continuations fast

Tree lexicon shares forward probabilities between words

Allows early pruning of search trees
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Training acoustic models: Introduction

Determine P(Observation|Words), ie, the transition
probability between phone states aij and the acoustic
likelihood of the speech vectors bj(ok)

Large, “transcribed” speech corpus (on text level)

Coverage of speakers and language types

Recorded under the same conditions as intended use,
eg, over the phone or in a driving car

Use the same microphone etc.

Using a simulated task (Wizard of Oz or Green curtain)
to elicit the same kind of speech
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Training acoustic models

start endiy d

......

Word Model n10 2 3 4

a11 a22 a33

a12

a24

aa23 34

Observation 
Sequence
(spectral feature
 vectors)

o1 o2 o3 o4 o5 o6

1b (o1) b (o )3 6

a01

1b (o )2
b (o )2 3 b (o )2 5

If all states were known [Jurafsky and Martin(2000)]

aij =
#Sij

#Si∗
(count transitions and states)

bi (Ok) =
#(Ok&Si )

#Si
(for discrete Ok)
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Training acoustic models

If observations are continuous vectors [SPH()]

bi (Ot) ⇒ N{µ̂i , Σ̂i}

µ̂i =
1

Ti

∑Ti
t=1 Ot

Σ̂i =
1

Ti

∑Ti
t=1[(Ot − µ̂i )

′(Ot − µ̂i )]
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Training acoustic models

α (t)i

o
j (t+1)β

ot−1 o t o t+1 t+2

s i sj

(o    )jb t+1ija *

States have to be estimated. Use an iterative procedure
App D [Jurafsky and Martin(2000)]

Run the recognizer on the corpus with the known words

Calculate âij =
expected #Si→Sj

expected #Si→S∗

Calculate b̂j(vk) =
expected #Sj observing vk

expected #Sj

Update all values and start again
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FLOSS resources

Free and Open Source ASR systems

SPHINX (CMU) [Gouvêa()] [Singh(2005)]

CMU Statistical Language Modeling Toolkit [Rosenfeld()]

CMU Pronouncing Dictionary [Lenzo()]

Internet-Accessible Speech Recognition Technology
project (ISIP, Mississippi State University) [ISIP(2004)]

Open Mind Speech [Valin()]
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SPHINX (CMU) [Gouvêa()] [Singh(2005)]

CMU Statistical Language Modeling Toolkit [Rosenfeld()]

CMU Pronouncing Dictionary [Lenzo()]

Internet-Accessible Speech Recognition Technology
project (ISIP, Mississippi State University) [ISIP(2004)]

Open Mind Speech [Valin()]



Speech recognition
and synthesis

More about ASR

Introduction

Dynamic
programming

Viterbi algorithm

Other approaches to
decoding

Training acoustic
models

FLOSS resources

Assignment

Bibliography

FLOSS resources

Free and Open Source ASR systems

SPHINX (CMU) [Gouvêa()] [Singh(2005)]
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Assignment: Week 8

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/

Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/

ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt
”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence
that contains unknown word combinations

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl
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Experiment with the --count option. Try --count -1 on a sentence
that contains unknown word combinations

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl
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Assignment: Week 8

Construct your own language model
Download texts from the internet, eg, [Project Gutenberg(2005)]

Use a single author or a single genre

Use --help to see instructions of the programs

Construct unigram and bigram word tables with Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/

Ngramcount.pl

perl Ngramcount.pl 1 <filename1> <filename2> ... > unigramtable.txt

perl Ngramcount.pl 2 <filename1> <filename2> ... > bigramtable.txt

Inspect the table files. What are the most frequent words and bigrams?

Calculate the probabilities of sentences with ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/

ngramprobability.pl

perl ngramprobability.pl –count 5 –verbose bigramtable.txt
”<sentence>”

Enter some sentences and inspect the resulting probabilities

Experiment with the --count option. Try --count -1 on a sentence
that contains unknown word combinations

http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/Ngramcount.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl
http://www.fon.hum.uva.nl/rob/Courses/Taaltechnologien/ngramprobability.pl
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Copyright c©2005 R.J.J.H. van Son, GNU General Public
License [FSF(1991)]

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
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Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software—to make sure the software is free for all its users. This General Public License applies to
most of the Free Software Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.
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Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and
Modification

0 This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under copyright law: that is to say,
a work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the
Program does.
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1 You may copy and distribute verbatim copies of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2 You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

1 You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

2 You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at
no charge to all third parties under the terms of this License.

3 If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print
an announcement.)
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These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3 You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

1 Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

2 Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

3 Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)
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The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4 You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5 You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6 Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions on
the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.
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7 If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to
the author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8 If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.
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9 The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and “any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10 If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

No Warranty

11 Because the program is licensed free of charge, there is no warranty for the
program, to the extent permitted by applicable law. Except when otherwise
stated in writing the copyright holders and/or other parties provide the
program “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The entire risk as to the quality and
performance of the program is with you. Should the program prove defective,
you assume the cost of all necessary servicing, repair or correction.
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12 In no event unless required by applicable law or agreed to in writing will any
copyright holder, or any other party who may modify and/or redistribute the
program as permitted above, be liable to you for damages, including any
general, special, incidental or consequential damages arising out of the use or
inability to use the program (including but not limited to loss of data or data
being rendered inaccurate or losses sustained by you or third parties or a
failure of the program to operate with any other programs), even if such holder
or other party has been advised of the possibility of such damages.

End of Terms and Conditions
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Appendix: How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author
This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it under certain conditions;
type ‘show c’ for details.
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The hypothetical commands show w and show c should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than show w and show c;
they could even be mouse-clicks or menu items—whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.
signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If

your program is a subroutine library, you may consider it more useful to permit linking proprietary

applications with the library. If this is what you want to do, use the GNU Library General Public License

instead of this License.
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