
Towards Conversational Human-Computer Interaction

James F. Allen, Donna K. Byron, Myroslava Dzikovska,

George Ferguson, Lucian Galescu, Amanda Stent

Dept. of Computer Science
University of Rochester
Rochester, NY 14627

Abstract
The belief that humans will be able to interact with comput-
ers in conversational speech has long been a favorite subject
in science fiction. This reflects the persistent belief that spo-
ken dialogue would be the most natural and powerful user
interface to computers. With recent improvements in com-
puter technology and in speech and language processing,
such systems are starting to appear feasible. There are sig-
nificant technical problems that still need to be solved be-
fore speech-driven interfaces become truly conversational.
This paper describes the results of a ten-year effort building
robust spoken dialogue systems at the University of Roches-
ter.

What is a Dialogue System?

The term “dialogue” is used in different communities in
different ways. Many researchers in the speech recognition
community view “dialogue methods” as a way of control-
ling and restricting the interaction. For instance, consider
building a telephony system that answers queries about
your mortgage. The ideal system would allow you to ask
for what you need in any way you chose. The variety of
possible expressions you might use makes this a challenge
for current speech recognition technology. One approach to
this problem is to have the system engage you in a dia-
logue by having you answer questions such as “What is
your account number?” “Do you want your balance infor-
mation?” and so on. On the positive side, by controlling the
interaction, your speech is much more predictable, leading
to better recognition and language processing. On the
negative side the systems has limited your interaction. You
may need to provide all sorts of information that isn’t rele-
vant to your current situation, making the interaction less
efficient.

Another view of dialogue involves basing human-
computer interaction on human conversation. In this view,
dialogue enhances the richness of the interaction and al-
lows more complex information to be conveyed than is
possible in a single utterance. In this view, language under-
standing in dialogue becomes more complex. It is this sec-
ond view of dialogue to which we subscribe. Our goal is to
design and build systems that approach human perform-

ance in conversational interaction. We believe that such an
approach is feasible and will lead to much more effective
user interfaces to complex systems.

Some people argue that spoken language interfaces will
never be as effective as graphical user interfaces (GUI)
except in limited special-case situations (e.g., Schneider-
man, 2000). This view underestimates the potential power
of dialogue-based interfaces. First, there will continue to be
more and more applications for which a GUI is not feasible
because of the size of the device one is interacting with, or
because the task one is doing requires using one’s eyes
and/or hands. In these cases, speech provides a worthwhile
and natural additional modality (Cohen and Oviatt, 1995).

Even when a GUI is available, spoken dialogue can be a
valuable additional modality as it adds considerable flexi-
bility and reduces the amount of training required. For in-
stance, GUI designers are always faced with a di-
lemma—either they provide a relatively basic set of opera-
tions, forcing the user to perform complex tasks using long
sequences of commands, or they add higher-level com-
mands which do the task the user desires. One problem
with providing higher-level commands is that in many
situations there is a wide range of possible tasks, so the
interface becomes cluttered with options, and the user re-
quires significant training to learn how to use the system.

It is important to realize that a speech interface by itself
does not solve this problem. If it simply replaces the op-
erations of menu selection with speaking a predetermined
phrase that performs the equivalent operation, it may ag-
gravate the problem, because the user would need to re-
member a potentially long list of arbitrary commands.
Conversational interfaces, on the other hand, would pro-
vide the opportunity for the user to state what they want to
do in their own terms, just as they would do to another per-
son, and the system takes care of the complexity.

Dialogue-based interfaces allow the possibility of ex-
tended mixed-initiative interaction (Chu-Carroll and
Brown, 1997; Allen, 1999). This approach models the hu-
man-machine interaction after human collaborative prob-
lem solving. Rather than viewing the interaction as a series
of commands, the interaction involves defining and dis-
cussing tasks, exploring ways to perform the task, and col-
laborating to get it done. Most importantly, all interactions
are contextually interpreted with respect to the interactions
performed so far, allowing the system to anticipate the1 This work was supported in part by DARPA grant F30602-98-

2-0133, ONR grant N00014-95-1-1088 and NSF grant IRI-
9711009.

To appear, AI Magazine, 2001

2

user’s needs and provide responses that best further the
user’s goals. Such systems will create a new paradigm for
human-computer interaction.

Dialogue Task Complexity

There is a tremendous range of complexity of tasks suitable
for dialogue-based interfaces, and we attempt a broad clas-
sification of them in Figure 1. At the simplest end are the
fintie-state systems that follow a script of prompts for the
user. Such systems are in use today for simple applications
such as long-distance dialing by voice, and have already
proved quite successful. This technique works only for the
simplest of tasks.

The frame-based approach includes most of the spoken
dialogue systems constructed to date. In this approach, the
system interprets the speech to acquire enough information
in order to perform a specific action, be it answering a
question about train arrivals, or routing your call to the
appropriate person at a bank. The context is fixed in these
systems for they do only one thing. Specialized processing
techniques are used that take advantage of the specific do-
main. One can view the context as being represented as a
set of parameters that need to be before the system action
can be taken instantiated (e.g., Seneff and Polifroni, 2000).
For example, to provide information about train arrivals
and departures, the system needs to know parameters like
the train id number, the event involved (e.g., arriving or
departing), the day of travel, and so on (see Figure 2). The
action is performed as soon as enough information has
been identified. This approach has been used for systems
providing information about current movies (e.g., Chu-
Carroll, 1999), information about train schedules (e.g.,
Sturm et al, 1999), and for describing routes to restaurants
(e.g., Zue et al., 2000).

Because of the simplicity of these domains, it is possible
to build very robust language processing systems. One
does not need to obtain full linguistic analyses of the sen-
tences, and in fact most information can be extracted by

simple patterns designed for the specific domain. For ex-
ample, given the utterance “When does the Niagara Bullet
leave Rochester?” pattern-matching techniques could iden-
tify values for the following parameters: the train? (An-
swer: The Niagara Bullet); the event? (Answer: leaving);
the location? (Answer: Rochester). Even if speech recogni-
tion was poor and the recognized utterance was “Went up
the Niagara Bullet to leave in Chester”, patterns could still
extract the train (i.e., the Niagara Bullet) and event (i.e.,
leaving) and continue the dialogue.

The next level up in complexity involves representing
the task by a series of contexts, each represented using the
frame-based approach. For instance, for a simple travel
booking agent, the system may need to book a series of
travel segments, and each one would be represented by a
context containing the information about one travel leg. It
might also be able to book hotels and rental cars. With
multiple contexts, such systems must be able to identify
when the user switches contexts. It can be quite challeng-
ing to recognize cases where a user goes back and wants to
modify a previously discussed context, say to change some
detail about the first leg of a trip after discussing the sec-
ond leg. Examples of such work can be found within the
DARPA Communicator project (e.g., Xu and Rudnicky,
2000).

At Rochester, we are primarily interested in the design
of systems for the next two levels of complexity shown in
Figure 1. In these, the tasks are too complicated to repre-
sent as a series of parameterized contexts. In fact, these
tasks require the system to maintain an explicit model of

Parameter Possible Values
The train ID? BN101, ...
The event? Departure, arrival

The location? Avon, Bath, Corning, ...

The date/time range? Monday, Aug 3, afternoon, ...

Figure 2: Context for a Train Information Task

Technique Used Example Task Task Complexity Dialogue Phenomena
handled

Finite-state Script Long-distance dialing least complex User answers questions

Frame-based Getting train arrival and
departure information

User asks questions, simple
clarifications by system

Sets of Contexts Travel booking agent Shifts between predetermined
topics

Plan-based Models Kitchen design consultant Dynamically generated topic
structures, collaborative ne-

gotiation subdialogues

Agent-based Models Disaster relief manage-
ment

most complex Different modalities (e.g.,
planned world and actual

world)

Figure 1: Dialogue and Task Complexity

3

the tasks and/or world and reason about these models. The
language and the dialogues become significantly more
complicated, and one also needs to start explicitly model-
ing the collaborative problem solving process that the sys-
tem and user engage in. In the plan-based approach, the
dialogue involves interactively constructing a plan with the
user (e.g., a design for a kitchen, a plan to evacuate per-
sonnel off an island). The last level of complexity involves
agent-based models. These dialogues may still involve
planning, but also may involve executing and monitor op-
erations in a dynamically changing world (e.g., emergency
rescue coordination).

Practical Dialogue

Note that while this classification probably covers most of
the potential applications for human-computer interaction,
it by no means captures the extent of full human conversa-
tion. In all these settings, the dialogue is focussed on ac-
complishing a concrete task. We call such dialogues prac-
tical dialogues. The dialogue literature identifies many
specific subclasses of practical dialogue such as task-
oriented dialogues, information-seeking dialogues, advice
and tutoring dialogues, and command and control dia-
logues.

It is important to remember this distinction because it
does seem clear that full natural-language understanding by
machine will not occur in the foreseeable future. Our be-
lief, however, is that sufficient understanding of practical
dialogues is feasible. This is captured in a hypothesis:

 The Practical Dialogue Hypothesis : The conversational
competence required for practical dialogues, while still
complex, is significantly simpler to achieve than general
human conversational competence.

But even if this hypothesis is true, it might still be too time-
consuming to construct understanding systems for different
domains. Even if we could build a demonstration system in
one domain, it might still be infeasible to apply this tech-
nique to other domains. This leads us to our second hy-
pothesis, which essentially says that while practical dia-
logues in different domains may appear quite different at
first glance, they all share essentially the same underlying
structures:

The Domain-Independence Hypothesis: Within the genre
of practical dialogue, the bulk of the complexity in the
language interpretation and dialogue management is in-
dependent of the task being performed.

If this hypothesis is true, it is worthwhile to spend a con-
siderable effort building a generic dialogue system that can
then be adapted to each new task relatively easily. Our ex-
periences, detailed later in this article, have thus far lent
support to the truth of these hypotheses. The practical dia-
logue hypothesis is explored in more detail in (Allen et al,
2000).

 Example: A Fragment of a Practical Dialogue

The following fragment of a dialogue illustrates some of
the power of dialogue-based interaction. Dialogues of this
complexity can be handled by our system (to be described
later). The entire dialogue fragment is shown as Figure 3.
The task is an emergency rescue scenario. Specifically, the
user must collaborate with the system to manage responses
to 911 calls in a simulation of Monroe County, New York.
In this situation, Penfield, Pittsford and Webster are towns,
Strong is the name of a hospital, and the dialogue starts
after a report of an injured woman has been received. The
first utterance serves to establish a joint objective to get the
woman to Strong Memorial Hospital. In utterance (2) the
system confirms the introduction of the new objective. This
context is crucial for interpreting the subsequent interac-
tion. The system must identify the question in (3) as initi-
ating a problem-solving act of identifying resources to use
to solve the problem. This has significant impact on how
the question is interpreted: First, while the user asked about
vehicles, the system needs to realize that it should only
consider ambulances, because they are the only vehicles
that can perform this part of the task. Second, the term
“available” means different things in different contexts. In
this context it means the vehicles are not currently assigned
to another task, and that a crew is ready. Finally, while
there may be many available ambulances, the system
chooses in its response in (4) to list the ones that are closest
to Penfield.

Note that in a frame-based system, such contextual in-
terpretation can be built-in to the specialized language
processing. In our system, however, the context is dynami-
cally changing. If we next talk about repairing a power
line, for instance, the “vehicles” will now need to be inter-
preted as electric utility trucks.

Utterance (5) is interpreted as an attempt to specify a
solution to the objective by sending one of the ambulances
from Pittsford. Specifically, the user has asked to use an
ambulance in Pittsford to take the woman to the hospital.
In this case, the system does not simply agree to the request
because it has identified a problem with the most direct
route. Thus it responds by giving the user this information
in the form of a clarification question in (6). At this stage,

(1) USR: We need to get the woman in Penfield to Strong.
(2) SYS: OK
(3) USR: What vehicles are available?
(4) SYS: There are ambulances in Pittsford and Webster.
(5) USR: OK. Use one from Pittsford.
(6) SYS: Do you know that Route 96 is blocked due to
construction?
(7) USR: Oh
(8) USR: Let’s use the interstate instead.
(9) SYS: OK. I’ll dispatch the crew.

Figure 3: A Short Example Dialogue

4

the solution has not been agreed to and is still the active
focus of the discussion.

In (7) the user indicates that the problem was not
known (with the “Oh”). Even with a longer pause here the
system should wait for some continuation, as the user has
not stopped their response. Utterance (8) provides further
specification of the solution, and is interpreted as confirm-
ing the solution of using an ambulance from Pittsford.
(Note that “Let’s use one from Webster instead” would
have been a rejection of this solution and the introduction
of a new one.). Again, it is reasoning about the plan and the
situation that leads the system to the correct interpretation.

In utterance (9), the system confirms the solution and
takes initiative to notify the ambulance crew (thus starting
the execution of the plan).

While this is a short example, it does show many of the
key issues that need to be dealt with in a planning-based
practical dialogue. Note especially that the interaction is
collaborative, with neither the system nor the user being in
control of the whole interaction. Rather, each contributes
when they can best further the goals of the interaction.

Four Challenges for Dialogue Systems

Before giving a brief overview of our system, we discuss
four major problems in building dialogue systems to handle
tasks in complex domains and how we approached them.
The first is handling the level of complexity of the lan-
guage associated with the task. The second is integrating a
dialogue system with a complex “back-end” reasoning
system (e.g., a factory scheduler, a map server, an expert
system for kitchen design). The third is the need for inten-
tion recognition as a key part of the understanding process.
The fourth is enabling mixed-initiative interaction, in
which either the system or the user may control the dia-
logue at different times in order to make the interaction
most effective. We will consider each of these problems in
turn.

Parsing Language in Practical Dialogues
The pattern-matching techniques used to great effect in
frame-based and sequential-context systems simply do not
work for more complex domains. They do not capture
enough of the subtlety and distinctions that people depend
on in using language. We need to produce a detailed se-
mantic (i.e., “deep”) representation of what was
said–something that captures what the user meant by the
utterance. Currently, the only way to get such a system is
to build it by hand. While there are techniques for auto-
matically learning grammars from corpora (e.g., Charniak,
2000), such systems produce a “shallow” representation of
the structure of written sentences, not representations of
meaning.

There have been many efforts over the years to develop
broad coverage grammars of natural languages such as
English. These grammars have proven to be of little use in
practice because of the vast ambiguity inherent in natural
languages. It would not be uncommon for a twelve-word

sentence to have hundreds of different parses based on
syntax alone. One of the mainstay techniques for dealing
with this problem has been to use semantic restrictions in
the grammar to enforce semantic as well as syntactic con-
straints. For example, we might encode a restriction that
the verb “eat” applies to objects that are edible, for in-
stance, to disambiguate the word “chips” in “He ate the
chips” to be the ones made out of corn rather than silicon.
The problem with semantic restrictions, however, is that it
is hard to find them if we want to allow all possible sen-
tences in conversational English. This is one place where
the practical dialogue hypotheses come in to play. While
semantic restrictions are hard to find in general, there do
appear to be reasonable restrictions that apply to practical
dialogues in general. Furthermore, we can further refine the
general grammar by specifying domain-specific restrictions
for the current task. This can significantly reduce the pos-
sible interpretations allowed by the grammar.

In TRIPS, we use a feature-based augmented context-
free grammar with semantic restrictions as described in
(Allen 1995). We have found little need to change this
grammar when moving to new applications, except to ex-
tend the grammar to cover new general forms that hadn’t
happened to occur yet in previous domains. We do, of
course, have to define any new words that are specific to
the new application, but this is done relatively easily.

Another significant aspect of parsing spoken language is
that it is not sentence-based. Rather, a single utterance may
realize a sequence of communicative acts called speech
acts. For instance, the utterance “OK let’s do that then
Send a truck to Avon” is not a grammatical sentence in the
traditional sense. It needs to be parsed as a sequence of
three speech acts: an acknowledgement (“OK”), an accep-
tance (“let’s do that”) and a request (“send a truck to
Avon”). Our grammar produces act descriptions rather than
sentence structures. To process an utterance, it looks for all
possible speech acts anywhere in the utterance and then
searches for the shortest sequence of acts that covers the
input (or as much of the input as can be covered).

Integrating Dialogue and Task Performance
The second problem is how to build a dialogue system that
can be adapted easily to most any practical task. Given the
range of applications that might be used, from information
retrieval, to design, to emergency relief management, to
tutoring, we cannot place very strong constraints on what
the application program looks like. As a result, we chose to
work within a agent-based framework, where the back-end
is viewed as a set of agents providing services, and we de-
fine a broker that serves as the link between the dialogue
system and the back-end, as shown in Figure 4.

Of course, the dialogue system has to know much about
the task being implemented by the back-end. To accom-
plish this, the generic system (applicable across a practical
domain) is specialized to the particular domain by inte-
grating domain-specific information. The challenges here
lie in designing a generic system for practical dialogue to-
gether with a framework in which new tasks can be defined

5

Figure 4: The Agent-based Architecture

 Dialogue
System

Service
Broker

 Service
 Providers

relatively easily. Key to this enterprise is the development
of an abstract problem-solving model that serves as the
underlying structure of the interaction. This model includes
key concepts such as:

• Objectives: The way you want the world to be (e.g.,
goals and subgoals, constraints on solutions);

• Solutions: Courses of action intended to move
closer to achieving the objectives;

• Resources: Objects and abstractions (e.g., time) that
are available for use in solutions; and

• Situations: The way the world currently is (or might
be).

Utterances in a practical dialogue are interpreted as ma-
nipulations of these different aspects, e.g., creating, modi-
fying, deleting, evaluating and describing objectives, solu-
tions, resources and situations. A domain-specific task
model provides mappings from the abstract problem-
solving model to the operations in a particular domain by
specifying what things count as objectives, solutions, re-
sources, and situations in this domain and how they can be
manipulated. In this way, the general-purpose processing
of practical dialogue is separated from the specifics of, e.g.,
looking up information in database, verifying design con-
straints, or planning rescue missions.

Intention Recognition
Many areas of natural language processing have seen great
progress in recent years with the introduction of statistical
techniques trained on large corpora, and some people be-
lieve that dialogue systems will eventually be built in the
same way. We do not think that this is the case, and one of
the main reasons is the need to do intention recognition,
i.e., determining what the user is trying to do by saying the
utterance. Let us illustrate this point with one particular
example from an application in which the person and the
system must collaborate to construct, monitor and modify
plans to evacuate all the people off an island in the face of
an oncoming hurricane. Figure 5 shows a snapshot of an
actual session in progress with an implemented version of
the system. On the map you can see the routes developed
so far, and the plan itself is displayed in a window showing
the actions of each vehicle over time.

For the following example, the context developed by the
interaction so far is as follows:

Objectives: The overall objective is to evacuate the is-
land. So far, one subgoal has been developed: evacuating
the people in the city of Abyss to Delta.
Solutions: A plan has been developed to move the peo-
ple from Abyss to Delta using truck one.

Within this setting consider the interpretations of the fol-
lowing utterances:
• Can we use a helicopter to get the people from Abyss?

In this setting, this utterance is most naturally talking
about using a helicopter rather than the truck to evacu-
ate the people at Abyss. It is ambiguous as to whether
the user wants to make this change to the plan (i.e., a
request to modify the plan), or is asking a question
about feasibility. With the first interpretation, an ap-
propriate system response might be “Sure” and modi-
fying the plan. With the second, it might be “Yes we
could, and that would save us 10 hours”.

Figure 5: TRIPS-Pacifica screenshotFigure 5: Interacting with TRIPS

6

• Can we use a helicopter to get the people at Barnacle?
The only change is the city mentioned, but now the
most natural interpretation is that the user wants to in-
troduce a new subgoal (evacuating Barnacle) and is
suggesting a solution (fly them out by helicopter). As
before, this is ambiguous between request and ques-
tion interpretations. A good response to the request
might be “OK” (and adding the goal and solution to
the plan), while a good response to the question would
be “Yes”.

• Can we use a helicopter to get the people from Delta?
Changing the city to Delta changes the most likely in-
terpretation yet again. In this case, the most natural
interpretation is that once the people from Abyss ar-
rive in Delta, we should pick them up by helicopter. In
this case, the user is talking about extending a solution
that was previously discussed. And, as in the other two
cases, it could be a request or a question.

These examples show that there are at least six distinct and
plausible interpretations of an utterance of this form
(changing only the city name). Distinguishing between
these requires reasoning about the task to identify what
interpretation makes sense rationally given the current
situation. There is no way to avoid this reasoning if we are
to respond appropriately to the user. The techniques in sta-
tistical NLP, while useful for certain subproblems such as
parsing, do not suggest any approach to deal with problems
that require reasoning in context.

Note also that even if the system only had to answer
questions, it would be necessary to perform intention rec-
ognition in order to know what question is truly being
asked. This reveals the complexity, and the power, of natu-
ral language. Approaches that are based purely on the form
of language rather than its content and context will always
remain extremely limited.

There are some good theoretical models of intention rec-
ognition (e.g., Kautz and Allen 1986), but these have
proven to be too computationally expensive for real-time
systems. In TRIPS, we use a two-stage process suggested
in Hinkelman & Allen (1989). The first stage uses a set of
rules that match against the form of the incoming speech
acts and generate possible underlying intentions. These
candidate intentions are then evaluated with respect to the
current problem solving state. Specifically, we eliminate
interpretations that would not make sense for a rational
agent to do in the current situation. For example, it is un-
likely that one would try to introduce a goal that is already
accomplished.

Mixed-Initiative Dialogue
Human practical dialogue involves mixed-initiative inter-
action, i.e., it involves the dynamic exchange of control of
dialogue flow, increasing dialogue effectiveness and effi-
ciency and enabling both participant’s needs to be met. In
contrast, in fixed initiative dialogue one participant con-
trols the interaction throughout.

Finite-state systems are typically fixed system-initiative.
At each point in the dialogue, the user must answer the
specific question the system asks. This can work well for
very simple tasks like long-distance dialing, and typically
works well for tasks such as finding out information about
your bank accounts (although it often takes many interac-
tions to get the one required piece of information). It does
not work well when you need to do something a little out
of the normal path—in which case you often may need to
go through many irrelevant interactions before getting the
information you want, if ever. As the task becomes more
complex, these strategies become less and less useful.

On the other extreme, a frame-based system can be fixed
user–initiative. The system would do nothing but interpret
user input until sufficient information was obtained to per-
form the task. This has the problem that the user may not
know what information he or she still needs to supply.

Because of these problems, many current spoken dia-
logue systems offer limited mixed-initiative interaction. On
one hand, the system may allow the user to give informa-
tion that is in addition to what the system asked for. And
on the other, the system may ask for clarification, or may
prompt for information it needs to complete the task. These
are the simplest forms of initiative that can occur. In more
complex domains, initiative may occur at different levels
(e.g., Chu-Carroll and Brown, 1997) and dramatically
change the system behavior over extend periods of the
dialogue.

There are cases where conflicts can arise between the
needs of the system and the requirements of the dialogue.
For example, consider the 911 domain discussed earlier. A
situation can arise in which the user has asked a question
(and thus is controlling the dialogue), but the system learns
of a new emergency, and thus wants notify the user of the
new problem. In such cases, the system must balance the
cost of respecting the user’s initiative by answering the
question, against the cost of ignoring the question and tak-
ing the initiative so as to more quickly deal with the new
emergency. For example, we might see an interaction like:

USER: What is the status of clearing the interstate from
the accident?

SYSTEM: Hold on a minute. There’s a new report that a
tree just fell on someone in Pittsford.

While this seems incoherent at the discourse level, it may
very well be the preferred interaction when viewed from
the perspective of optimizing the task performance.

Current spoken dialogue systems have only supported
limited discourse-level mixed initiative. As we will see
below, in TRIPS we have developed an architecture in
which much more complex interactions can occur. The
system’s behavior is determined by a component called the
Behavioral Agent that, in responding to an utterance, con-
siders its own private goals in addition to the obligations it
has because of the current state of the dialogue.

7

The TRIPS System: A Prototype Practical Dialogue

System

TRIPS, The Rochester Interactive Planning System, is the
latest in a series of prototype practical dialogue systems
that have been developed at the University of Rochester
(Allen et al., 1995; Ferguson, Allen, and Miller, 1998). We
started by collecting and studying human-human dialogues
where people collaborate to solve sample problems (Hee-
man and Allen, 1995; Stent, 2000). We then used this data
to specify performance goals for our systems. Our ongoing
research plan is to incrementally increase the complexity of
the domain while at the same time increasing the profi-
ciency of the system. In this section, we provide a brief
overview of the latest TRIPS system, concentrating on the
responsibilities of the core components and the information
flow between them.

As mentioned previously, TRIPS users an agent-based
component architecture. The inter-agent communication
language is a variant of the Knowledge Query and Ma-
nipulation Language (Labrou and Finin, 1997). This archi-
tecture has proven to be very useful for supporting the de-
velopment and maintenance of the system, and facilitates
experimentation with different algorithms and techniques.
More details on the system architecture can be found in
(Allen et al., 2001).

The components of the system can be divided into three
areas of functionality: interpretation, generation and be-
havior. Each area consists of a general control/management
module that coordinates the behavior of the other modules

in the cluster and shares information and messages with the
other managers, as shown in Figure 6. As we discuss the
components, we will consider the processing of an utter-
ance from our 911 domain.

The speech recognizer in TRIPS uses the Sphinx-II sys-
tem (Huang 1993) which outputs a set of word hypotheses
to the parser. A keyboard manager allows the user to type
input as well and passes this to the parser. The parser is a
best-first bottom-up chart parser along the lines described
in (Allen 1995) and, as discussed earlier, uses a grammar
that combines structural (i.e., syntactic) and semantic in-
formation. TRIPS uses a generic grammar for practical
dialogue. A general semantic model and a generic set of
predicates represent the meanings of the common core of
conversational English. This grammar is then specialized to
an application domain by defining domain-specific lexical
items, domain-specific semantic categories, and mappings
from the generic predicates to the domain-specific predi-
cates, using a set of declarative “scenario” files defined for
the application.

The output of the parser is a sequence of speech acts,
with the content of each specified using the generic predi-
cates as well as the predicates defined in the scenario files.
Consider the utterance “We need to get the woman in Pen-
field to Strong”, where Penfield is a town and Strong is the
name of a hospital. A simplified version of the output of
the parser would be the speech act
(ASSERT
 :ID SA11
 :SPEAKER USR
 :HEARER SYS
 :CONTENT
(NEED

Task
Manager

Interpretation
Manager

Generation
Manager

Behavioral
Agent

Discourse
Context

Speech Recognition
Parsing

GUI Events

Sentence Generation
Display Planning

“Back-End” Applications
External Agents

Events and Information
from External Sources

Figure 6: The TRIPS System Architecture

Reference
Manager

8

 :AGENT (PRO “we”)
 :THEME

 (TRANSPORT
 :OBJECT
 (THE ?w (AND
 (TYPE ?w WOMAN)

 (AT-LOC ?w
 (NAME ?n “Penfield”))))

 :TO-LOC (NAME ?s “Strong”))))

The output of the parser is passed to the Interpretation
Manager, which is responsible for interpreting such speech
acts in context and identifying the discourse obligations
that the utterance produces as well as the problem solving
acts that the user is attempted to accomplish. It invokes the
Reference Manager to attempt to identify likely referents
for referring expressions. The Reference Manager uses the
accumulated discourse context from previous utterances
plus knowledge of the particular situation in order to iden-
tify likely candidates. The analysis of references in the cur-
rent sentence is shown in Figure 7.

The Interpretation Manager then uses the Task Manager
to aid in interpreting the intended speech and problem
solving acts. In this case, it uses general lexical knowledge
that sentences asserting needs often serve to introduce new
active goals in practical dialogues (not always, e.g., they
can be used to extend solutions as well, as in “Go on to
Pittsford. We will need to get fuel there”). To explore this
hypothesis, it checks whether the action of transporting an
injured woman to a hospital is a reasonable active goal in
this domain, which it is. Thus it identifies the following as
what the user intended to accomplish by their utterance
(the intended problem solving act):

(INITIATED
:WHO USR
:WHAT
(CREATE
:ID PS22
:AGENT USR
:WHAT
(OBJECTIVE
:WHAT
(TRANSPORT
:OBJECT
(THE ?w (AND

 (TYPE ?w WOMAN)
 (AT-LOC ?w PENFIELD)

(REFERS-TO ?w WOM1)))
:TO-LOC SMH1))))

The Interpretation Manager also identifies a discourse ob-
ligation to respond to the user’s utterance:

(OBLIGATION
:WHO SYS
:WHAT
(RESPOND-TO
:WHAT SA11))

where SA11 is the ASSERT speech act shown earlier.
The Behavioral Agent must decide how to handle the

proposed act of establishing a goal. Assuming that it has no
difficulty doing this, and that it has nothing else more

pressing, it can plan a response of confirming this sug-
gested goal, thereby completing the problem solving act
initiated by the user. Thus it could send the following re-
quest to the Generation Manager to simply confirm the
user’s suggestion:
(REQUEST

:CONTENT
(CONFIRM
:WHAT SA11
:WHY
(COMPLETE
:WHO SYS
:WHAT PS22)))

The Behavioral Agent could also, if it chose to take more
task-level initiative, search for available ambulances and
suggest one to use for transporting the woman. In this ex-
ample, however, the system remains more passive. The
Generation Manager, receiving this request as well as
knowing the pending discourse obligation, can satisfy both
using a simple “OK” (and possibly updating a screen
showing active goals if there are any).

Discussion

While there are still serious technical issues remaining to
be overcome, dialogue-based user interfaces are showing
promise. Once they reach a certain level of basic compe-
tence, they will rapidly start to revolutionize the way the
people interact with computers, much like the direct-
manipulation interfaces (using menus and icons) revolu-
tionized computer use in the last decade.

We are close to attaining a level of robust performance
that supports empirical evaluation of such systems. For
instance, we performed an experiment with an earlier dia-
logue system that interacted with the user to define train
routes (Allen et al., 1996). For subjects, we used under-
graduates who had never seen the system before. They
were given a short videotape about the routing task, taught
the mechanics of using the system, and then left to solve
routing problems with no further advice or teaching, except
that they should interact with the system as though it were
another person. Over 90% of the sessions resulted in suc-
cessful completion of the task. While the task was quite
simple, and some of the dialogues fairly lengthy given the
task solved, this experiment does support the viability of

Referring
Expression

Likely Referent Source Used

“We” SS1: The set con-
sisting of USR and
SYS

The general setting of
the dialogue

“The
woman in
Penfield”

WOM1: The injured
woman in Penfield
previously discussed

Discourse history

“Strong” SMH1: Strong Me-
morial Hospital

General world
knowledge and lexi-
con

Figure 7: Reference Resolution

9

dialogue-based interfaces, and validated the claim that such
systems would be usable without any user training.

In the next year, we plan a similar evaluation of the
TRIPS 911 system, in which untrained users will be given
the task of handling emergencies in a simulated world. This
experiment will provide a much more significant assess-
ment of the approach using a task that is near to the level of
complexity found in a wide range of useful applications.

More Information
This paper has given a very high-level overview of the
TRIPS project. More information on the project, including
downloadable videos of system runs, is available at our
web site www.cs.rochester.edu/research/cisd.

References

Allen, J. F, Natural Language Understanding, Benjamin
Cummings, 1995.

Allen, J. F., L. K. Schubert, G. Ferguson, P. Heeman, C.-H.
Hwang, T. Kato, M. Light, N. G. Martin, B. W. Miller,
M. Poesio, and D. R. Traum, “The TRAINS project: A
case study in defining a conversational planning agent,”
Journal of Experimental and Theoretical AI, 7:7–48,
1995.

Allen, J.F, G. Miller, B., Ringger, E. and Sikorski, T. “A
Robust System for Natural Spoken Dialog”, Proc. of the
Association for Computational Linguistics (ACL, Santa
Cruz, CA., 1996.

Allen, J.F. “Mixed Initiative Interaction”, Proc. IEEE In-
telligent Systems, 14, 6. 1999.

Allen, J., D. Byron, M. Dzikovska, G. Ferguson, L.
Galescu, and A. Stent, “An Architecture for a Generic
Dialogue Shell,” Journal of Natural Language Engi-
neering, 6(3), 2000.

Allen, J., G. Ferguson and A. Stent, “An Architecture for
More Realistic Conversational Systems”, Proc. of Intel-
ligent User Interfaces (IUI-01), Santa Fe, NM 2001.

Charniak, E. “A Maximum-Entropy-Inspired Parser”,
Proc. Of 1st Mtg of the North American Chapter of the
American association for Computational Linguistics,
Seattle, WA, 2000.

Chu-Carroll, J., and M. K. Brown, “Tracking Initiative in
Collaborative Dialogue Interactions,” Proc. 35th Annual
Meeting of the Association for Computational (ACL-
97), Madrid, Spain, 1997.

Chu-Carroll, J. Form-based reasoning for Mixed-Initiative
Dialogue Management in Information-Query Systems,
Proc. EUROSPEECH, 1999.

Cohen, P. R., and S. L. Oviatt, “The Role of Voice Input
for Human-Machine Communication,” Proc. National
Academy of Sciences, 92(22): 9921–9927, 1995.

Ferguson, G., J. Allen, and B. Miller, “TRAINS-95: To-
wards a mixed-initiative planning assistant,” in Brian
Drabble, ed., Proc. Third Conference on Artificial Intel-
ligence Planning Systems (AIPS-96), pages 70–77, Ed-
inburgh, Scotland, 1996.

Ferguson, G., and J. F. Allen, “TRIPS: An Integrated In-
telligent Problem-Solving Assistant,” Proc. of the Na-
tional Conference on Artificial Intelligence (AAAI-98),
Madison, WI, pages 567–573, 1998.

Heeman, P. A., and J. Allen, “The TRAINS-93 Dialogues",
TN94-2, Dept. of Computer Science Dept., University of
Rochester, March 1995.

Hinkelman, E. and J.F. Allen, “Two Constraints on Speech
Act Ambiguity”, Proc. of the Association for Computa-
tional Linguistics (ACL), Vancouver, Canada, 1989.

Huang, X. D., F. Alleva, H. W. Hon, M. Y. Hwang, K. F.
Lee, and R. Rosenfeld, “The Sphinx-II Speech Recogni-
tion System: An Overview.” Computer, Speech and
Language, 1993.

Kautz, H. and J.F. Allen, “Generalized Plan Recogni-
tion“,Proc. of the National Conference on Artificial In-
telligence (AAAI-86), Philadelphia, PA. 1986.

Labrou, Y., and T. Finin, “A Proposal for a New KQML
Specification,” TR CS-97-03, Dept. of Computer Sci-
ence and Electrical Engineering, University of Maryland
Baltimore County, 1997.

Schneiderman, B. “The Limits of Speech Recognition”,
Communications of the A.C.M., 43:9, 2000.

Seneff, S. and J. Polifroni, “Dialogue Management in the
Mercury Flight Reservation System,” Proc.
ANLP/NAACL 2000 Workshop on Conversational Sys-
tems, Seattle, WA, 2000.

Stent, A.J., "The Monroe Corpus", TR728 and TN99-2,
Dept. of Computer Science, University of Rochester,
March, 2000.

Sturm, J., E. den Os and L. Boves, “Dialogue Management
in the Dutch ARISE Train Timetable Information Sys-
tem, Proc. EUROSPEECH, 1999.

Xu, W., and A. Rudnicky, “Task-based Dialogue Manage-
ment Using an Agenda,” Proc. ANLP/NAACL 2000
Workshop on Conversational Systems, Seattle, WA,
2000.

Zue, V., S. Seneff, J. Glass, J. Polifroni, C. Pao, T. Hazen
and L. Hetherington, “Jupiter: A Telephone-based Con-
versational Interface for Weather Information,” IEEE
Trans. on Speech and Audio Processing, 8(1), 2000.

