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Abstract 
This paper provides an introductory tutorial for the 
Interspeech07 special session on “Structure-Based and 
Template-Based Automatic Speech Recognition”. The 
purpose of the special session is to bring together researchers 
who have special interest in novel techniques that are aimed 
at overcoming weaknesses of HMMs for acoustic modeling in 
speech recognition. Numerous such approaches have been 
taken over the past dozen years, which can be broadly 
classified into structured-based (parametric) and template-
based (non-parametric) ones. In this paper, we will provide an 
overview of both approaches, focusing on the incorporation 
of long-range temporal dependencies of the speech features 
and phonetic detail in speech recognition algorithms. We will 
provide a high-level survey on major existing work and 
systems using these two types of “beyond-HMM” 
frameworks. The contributed papers in this special session 
will elaborate further on the related topics. 
Index Terms: structure-based, template-based, automatic 
speech recognition 
 

1. Introduction 

While hidden Markov modeling (HMM) has been the 
dominant technology for acoustic modeling in automatic 
speech recognition for a few decades, many of its weaknesses 
have also been well known and they have become the focus of 
much intensive research [e.g., 1, 2, 3, 5, 10, 11, 8, 23, 32, 37, 
38, 41, 42]. One prominent weakness in current HMMs is the 
handicap in representing long-span temporal dependency in 
the acoustic feature sequence of speech, which, nevertheless, 
is an essential property of speech dynamics [e.g., 3, 7, 32]. 
The main cause of this handicap is the conditional IID 
(Independent and Identical Distribution) assumption inherit in 
the HMM formalism. In hidden Markov modeling it is also 
assumed that speech can be described as a sequence of 
discrete units, usually phonemes. In this symbolic, invariant 
approach the focus is on the verbal information, and the 
incoming speech signal is normalized during pre-processing 
in order to strip off most of the non-verbal (indexical) 
information. However, experiments have shown that this non-
verbal information plays an important role in human speech 
recognition. Another weakness of (standard) HMMs is that it 
is difficult to include this indexical information [e.g., speaker-
specific properties, fine phonetic detail) [37, 38]. Some of 
these difficulties have been addressed in a bottom-up, 
detection-based framework [23]. 

The purpose of this special session is to bring together 
researchers who have special interest in novel techniques that 
are aimed at overcoming weaknesses of HMMs for acoustic 

modeling in speech recognition. In particular, we plan to 
address issues related to the representation and exploitation of 
long-range temporal dependency in speech feature sequences, 
the incorporation of speaker variations and fine phonetic 
detail in speech recognition algorithms and systems, 
comparisons of pros and cons between the parametric and 
non-parametric approaches, and the computation resource 
requirements for the two approaches.  

This paper is aimed to provide an overview of both 
structured-based (parametric) and template-based (non-
parametric) approaches that have been developed in the past 
for overcoming the main weaknesses of HMMs. In Sections 2 
and 3, we will introduce the structure-based and the template-
based approaches, respectively. We will finish, in section 4, 
with discussion and conclusions. 

 

2. Structure-based approach 

The structure-based approach establishes mathematical 
models for stochastic trajectories or segments of speech 
utterances using various forms of parametric characterization. 
These parametric trajectory models include the use of 
piecewise polynomials [e.g., 5, 16, 32], linear dynamic 
systems [8, 12, 32], and nonlinear dynamic systems 
embedding hidden structure of speech dynamics [e.g., 6]. All 
these piecewise trajectory/dynamic models can be considered 
as generalizations of the HMM in relaxing the IID or 
piecewise constant assumptions.  

Although HMM-based recognition systems perform well 
in many relatively simple speech recognition tasks, they do 
not model some important dynamic aspects of speech directly 
(and are known to perform poorly for difficult tasks such as 
conversational speech). As a result, they are not able to 
accommodate dynamic articulation differences between the 
speech signals used for training and the speech signal being 
decoded. For example, in casual speaking settings, speakers 
tend to hypo-articulate their speech. This means that the 
trajectory of the user's speech articulation may not reach its 
intended target before it is redirected to a next target. Because 
the training signals are typically formed using a “reading” 
style of speech in which the speaker provides more fully 
articulated speech material than in hypo-articulated speech, 
the hypo-articulated speech does not match the trained HMM 
states. As a result, the recognizer provides less than ideal 
recognition results for casual speech. 

A similar problem occurs with hyper-articulated speech. 
In hyper-articulated speech, which often occurs in noisy 
environments, the speaker exerts extra effort to make the 
different sounds of their speech distinguishable. This extra 
effort can include changing the sounds of certain phonetic 
units so that they are more distinguishable from similar 



sounding phonetic units, holding the sounds of certain 
phonetic units longer, or transitioning between sounds more 
abruptly so that each sound is perceived as being distinct from 
its neighbors. Each of these mechanisms makes it more 
difficult to recognize the speech using an HMM system 
because each technique results in a set of feature vectors for 
the speech signal that does not match well to the feature 
vectors present in the training data. HMM systems also have 
trouble dealing with changes in the rate at which people 
speak. Thus, if someone speaks slower or faster than in the 
training data, the HMM system will tend to make more errors 
decoding the speech signal. 

Careful modeling of speech dynamics, especially when 
the dynamics are represented in a hidden or unobserved 
“articulatory” domain instead of in the observed acoustic 
domain, is capable of overcoming all of the above problems 
in the HMM. The essence of such a hidden-dynamic approach 
is that it exploits knowledge and mechanisms of human 
speech production so as to provide the structure of the multi-
tiered stochastic process models. Most “hidden dynamic” 
models of speech use parametric forms to represent both the 
hidden dynamic vectors and the observed acoustic feature 
vectors (see a comprehensive survey of these models in [7]). 
These models are based on the underlying mechanisms of 
speech coarticulation and reduction, and on the relationship 
between speaking rate variations and the corresponding 
changes in the acoustic features. A specific layer in this type 
of models represents long-range temporal dependency of the 
hidden trajectory vectors in the form of (non-recursive) FIR 
filter, which is parameterized by exponentially decaying FIR 
filter coefficients in both forward (for anticipatory 
coarticulation) and backward (for carrying-over 
coarticulation) directions. Recent research using this type of 
hidden trajectory model in combination with HMMs has 
shown substantially lower phonetic recognition error rates 
compared with the state-of-the-art HMM system alone [e.g. 6, 
42]. 

Another major type of hidden dynamic model uses 
recursive forms to parametrically represent the hidden speech 
dynamic vectors, and then uses a similar kind of nonlinear 
mapping to link the hidden vectors to the observed acoustic 
features. These models belong to a very wide class of 
switching nonlinear dynamic models, and have been 
developed by various groups of researchers [e.g., 9, 40] and 
surveyed in [7]. 

We would like to point out that although the main 
motivations of the structure-based parametric dynamic speech 
models are to parsimoniously embed the main-stream 
phonetic properties of speech such as coarticulation and 
phonetic reduction into the ASR algorithms, more detailed 
phonetic information such as systematic speaker variation can 
also be satisfactorily handled. The recent work by Yu et al. 
[42] developed a novel speaker-adaptive learning algorithm 
for the hidden trajectory model of [6]. The vocal tract 
resonance targets are key parameters of the model that control 
the hidden dynamic behavior and the subsequent acoustic 
properties. A speaker-adaptive training technique is reported 
that takes into account the variability in the target values 
among individual speakers. The adaptive learning is applied 
also to adjust each unknown test speaker’s target values 
towards their true values.  

As the parametric, structure-based speech dynamic 
models are further developed in the future, we expect that 
more fine phonetic detail will be incorporated within 
consistent statistical frameworks in a similar manner to the 
way speaker variation is handled as in [42]. 

3. Template-based approach 

Differing from the structure-based approach which is 
developed using parametric models for data variation, the 
template-based approach relies directly on the observed 
training sequences based on non-parametric representations.  
We first provide motivations of the template-based approach 
for ASR from the perspectives of psycholinguistics and 
human speech recognition. 

In almost all current HMM-based ASR systems, a rather 
similar paradigm is used in which utterances are represented 
as a sequence of words (language model), words as a 
sequence of phonemes (lexicon), and phonemes as a sequence 
of states (acoustic models) [4, 36, 37]. In this invariant, 
symbolic approach the focus is on recognizing words, the 
verbal information. This approach is challenged by recent 
psycholinguistic findings on the special roles of non-verbal 
information, fine phonetic detail, and phonetic variation. 
These findings are summarized here. 

Speech contains two types of information: (1) verbal 
information and (2) non-verbal (indexical) information. 
Verbal information is mainly related to the content of the 
message, while indexical information is more related to the 
form, such as properties of the speaker (e.g. F0 and speech 
rate). With respect to indexical information, some interesting 
findings have been reported in the literature recently. Both 
indexical and non-indexical properties of speech appear to be 
stored by humans [15, 33]. Familiarity with a person’s voice 
facilitates recognition of that person’s speech [14, 15, 33], 
and facilitation also occurs for speakers whose speech is 
similar [14, 15]. Also for visual perception it has been found 
that familiar patterns are perceived better than unfamiliar ones 
[19, 20]. Besides these findings on indexical information, 
experimental results also show that fine phonetic detail can 
influence lexical access [17, 18, 28, 29, 35], such as, e.g., 
sub-phonemic differences between realizations of the 
monosyllabic word “ham” and the first syllable of “hamster” 
[35]. 

Because these findings on indexical information and fine 
phonetic detail are difficult to explain in current models of 
spoken word recognition, there is a growing belief that new 
models are needed, both in the field of psycholinguistics [see, 
e.g., 24] and ASR [see, e.g., 4, 30, 31, 34, 36, 37, 38]. 
Currently, there is an increasing interest in the template-based 
approach, which is also referred to as episodic, multiple trace, 
exemplar, example-based, or instance-based approach [1, 2, 
10, 11, 13, 14, 15, 17, 21, 22, 25, 26, 27, 33, 37, 38]. 

 What are the main differences between HMM-based and 
template-based ASR systems? In the HMM-based approach 
words are stored in the lexicon in the form of sequences of 
abstract (usually phonemic) symbols. Often, for some words 
more than one entry per word are present in the lexicon in 
order to model pronunciation variation, and these 
pronunciation variants are usually stored as different 
transcriptions in terms of phonemes [36, 39]. In the template-
based approach words are not represented as sequences of 
symbols, but as sequences of (abstract) units that are 
represented in the form of many episodes (trajectories); a 
large number of episodes (traces) are stored, i.e. single 
instances of stimuli with many details, instead of the 
canonical representations stored in the invariant approach. In 
a template-based system the incoming signal is then compared 
to sequences of these stored episodes, e.g. sequences of 
feature vectors are compared. In an HMM-based system, the 
signal is compared to a sequence of states, and for each state 



the conditional probability of a frame given that state is 
calculated by means of the stored probability density 
functions (pdf’s, usually Gaussian mixtures) or the stored 
artificial neural networks. Probability density functions and 
artificial neural networks are parametric representations of all 
feature values observed in a large training corpus. 

Template-based speech recognition requires large 
amounts of memory and computing power. Therefore, until 
recently, it has been practically impossible to investigate 
template-based approaches to speech recognition. Today, 
however, the computing power and memory that are needed 
to investigate the template-based approach to speech 
recognition are rapidly becoming available. Recently some 
research has started on using template-based approaches for 
ASR, and the initial results are promising [1, 2, 10, 11, 16, 
25, 26, 27]. It has been shown that by combining HMM-
based and template-based ASR the performance can be 
improved [1, 2, 11]. An important issue in template-based 
ASR is to find a suitable distance metric [2, 10, 26]. 

 

4. Discussion & conclusions 

HMMs have been the dominant technology for a few decades 
in ASR. The performance of HMM-based ASR systems has 
gradually improved over the years. However, it is well known 
that HMMs have limitations. Two approaches to overcoming 
limitations of HMMs are described in the current paper: 
structure-based and template-based approaches. For both 
approaches, improvements in performance have been 
reported; however, these improvements were established in 
very different ways, using different techniques. Up until now, 
these two approaches have mainly developed independently 
of each other. In this special session we will try to bring them 
together. What are the advantages and disadvantages of these 
approaches? Can they be combined? In recent research, 
improvements of ASR performance have been obtained by 
combining (conventional) HMM and template-based 
techniques [1, 2, 11]. Similar combinations and performance 
improvements are also reported for the structure-based 
approaches [6, 41, 42]. Both groups of researchers have found 
that HMMs are rather robust, providing basic acoustic scores 
upon which the new approaches are acting and enhancing. A 
large part of the performance improvements is likely due to 
better modeling of long-range temporal dependencies, which 
HMM systems alone are not able to accomplish. Therefore, 
one could wonder how much additional improvement could 
be obtained by combining structure-based and template-based 
approaches, in addition to the combination with HMMs. 
Furthermore, it has been traditionally held that for more 
complex approaches and models it is more difficult to 
incorporate detailed knowledge into the algorithms. For 
example, in HMMs, speaker variation can be simply handled 
by pooling all data from many speakers in training. But for 
more complex hidden trajectory models, such pooling does 
not work since some key parameter set (i.e., resonance 
targets) in the model are speaker specific.  Special 
normalization techniques are required [42]. How can other 
types of variations in speech be handled in the complex 
structure-based and template-based approaches? Is there any 
commonality between these two approaches in handling 
various types of speech variability while representing long-
range temporal dependencies and fine phonetic detail in the 
overall speech pattern? These and related questions will be 
discussed by the authors of the invited and contributed papers 

to be presented in this special session. It is our hope that such 
focused discussions will enable us to acquire new insights in 
how to overcome the limitations of HMMs, which in the long 
run will lead to better functioning ASR systems. 
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