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Chapter 5: Spoken OutputTechnologies

5.10verview

YoshinoriSagisaka
ATR Interpreting Telecommunications Research Laboratories, Tokyo, Japan

5.1.1A Global View of SynthesisResearch

Speectsynthesigesearch predates other forms of speech technology by many years. In the early days of
synthesis, research efforts were devoted mainly to simulating human speech production mechanisms,
using basic articulatomnodelsbased on electro-acoustiweories Though this modeling is still one of the
ultimate goals of synthesis research, advances in computer science have widened the research field to
include Text-to-Speech (TtS) processing in which not only human speech generation but also text
processing is modeldAHK87]. As this modeling is generally done by a set of rules derived, e.g., from
phonetic theories and acoustic analyses, the technology is typically referred to as speech syntitesis by

Figurefs.1 shows the configuration of a standard TtS system. In such systems, as represented by MITalk
IAHK87], rule-basedynthesishas attained highly intelligible speech quality and can already serve in

many practical uses. Ceaseless efforts have improved the quality of rule-based synthetic speech, step by
step, by alternating speech characterisiiwalysiswith the development of contrailes However, most

of this progress has been system dependent, and remains deeply embedded within system architectures in
impenetrable meshes of detailed rules and finely tuned control parameters. As a consequence, the expert
knowledge that has been incorporated is not available to be shared commonly and can be very hard to
replicate in equivalent systems by other researchers.
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Figure 5.1: The configuration of a standard Taé$stem.

In contrast to this traditional rule-basgpproacha corpus-basespproacthas also been pursued. In the
corpus-based work, well-defined speech data sets have been annotated at various levels with information,
such as acoustic-phonetabelsand syntactibracketing to serve as the foundation for statistical

modeling Spectral and prosodic feature parameters of the speech data are analyzed in relation to the
labeled information, and their control characteristics are quantitatively described. Based on the results of
these analyses, a computational model is created and trained using the corpus. By subsequently applying
the resulting model to unseen test data, its validity and any defects can be quantitatively shown. By
feeding back results from such tests into the original model with extended training, further improvements
can be attained in a cyclical process.

As can be easily seen, these formalised procedures characteristic of the corpap{rasaiprovide for

a clear empirical formulation of the controls underlying speech, and with their specific training procedures
and their objective evaluation results, can be easily replicated by other researchers with other databases of
equivalently annotated speech. In the last decade, the corpus-based approach has been applied to both
spectral and prosodic control for spesghthesisin the following paragraphs, these speech synthesis
research activities will be reviewed, with particular emphasis on the types of synthesis unit, on prosody
controland on speakeaharateristicsOther important topics, such as text processing for synthesis, and
spectral parameters and synthesizers, will be detailed in later sections. Through this introduction to the
research activities, it will become clear that the corpus-based approach is the key to understanding current
research directions in speech synthesis and to predicting the future outcome of synthesis technology.

5.1.2Synthesis Segmerivnits

In TtS systems, speech units that are typically smaller than words are used to synthesize speech from
arbitrary input text. Since there are over 10,000 different possible syllables in English, much smaller units
such aphonemesnddyads(phonemepairg have typically been modelled. A speech segment’s spectral
characteristicyary with its phoneticontext as defined by neighboring phonenssessand positional
differencesand recent studies have shown that speech quality can be greatly affected by these contextual



differenceg(see for examplgf0GC93). However, in traditional rule-basegnthesisthough these units

have been carefully designed to take into account phoratations no systematic studies have been

carried out to determine how and where to best extract the acoustic parameters of units, or of what kind of
speech corpus can be considered optimal.

To bring objective techniques into the generation of appropriate speech units, unit-selattiesishas

been proposefNHSGTASOASKIMOZ]. These speech units can be automatically determined through the
analysis of a speech corpus using a measure of entropy on substrings of phol{SHalkEg]. In

unit-selection synthesis, speech units are algorithmically extracted from a phonetically transcribed speech
data set using objective measures based on acoustic and phonetic criteria. These measures indicate the
contextualdequateness units and themoothnessf the spectral transitions within and between units.
Unlike traditional rule-based concatenat&ymthesisspeech segments are not limited to one token per

type, and various types and sizes of units with different contextual variations are used. The phonetic
environments of these units and their precise locations are automatically determined through the selection
process. Optimal units to match an input phonetic string are then selected from the speech database to
generate the target speech output.

The unit selection process involves a combinatggakchover the entire speech corpus, and

consequently, fast search algorithms have been developed for this purpose as an integral part of current
synthesis. This approach is in contrast to traditional rule-based synthesis where the design of the
deterministic units required insights from the researcher’s own knowledge and expertise. The
incorporation of sophisticated but usually undescritesviedge was the real bottleneck that prevented

the automatic construction of synthesis systems.

Corpus-basethethodsprovide for a specification of the speech segments required for concatenative
synthesidn three factors:

1. the procedures of the unit selectalgorithm
2. the objective measures used in the selearierig and
3. the design of the speecbrpusfrom which the units arextracted.

This modularization of system building is useful not only in reducing construction effort, but also in
allowing precise mathematical specification of the problems and in defining ways to cope with them
systematically, by improving the selection algorithms, criteria and data.

5.1.3ProsodyControl

For synthesis of natural-sounding speech, it is essential to cprisaldy to ensure appropriatbythm,

tempq accentintonationandstress Segmental duratiocontrolis needed to model temporal
characteristicust as fundamental frequency control is needed for tdraahcteristicsin contrast to the

relative sparsity of work on speech unit generation, many quantitative analyses have been carried out for
prosodycontrol Specifically, quantitative analyses and modeling of segmental duration control have been
carried out for many languages using massive annotated speech {G@BABSSIKIa8Ume7].

Segmentatiurationis controlled by many language specific and universal factors. In early models,
because these control factors were computed independently, through the quantification of control rules,
unexpected and serious errors were sometimes seen. These errors were often caused simply by the



application of independently derived rules at the same time. To prevent this type of error and to assign
more accurate durations, statistical optimizateohniqueghat model the often complex interactions
between all the contributing factors have more recently been used.

Traditional statistical techniques such as linear regreasialysisand tree regressi@nalysishave been

used forJapanesfKTS924 and AmericarEnglish[[RiI92] respectively. To predict the interactions

between syllable and segment level durations for Brifiisfjlisha feed-forward neuraletworkhas been
employed[Cam9}. In this modeling, instead of attempting to predict the absolute duration of segments
directly, their deviation from the avaraderationis employed to quantify the lengthening and shortening
characteristics statistically. Moreover, hierarchical control has been included by splitting the calculation
into the current syllable level and its constituent component levels.

While hierarchicatontrolis desired to simulate human temporal organization mechanisms, it can be

difficult to optimize such structural controls globally. Multiple split regression (MSR) uses error

minimization at arbitrary hierarchical levels by defining a hierarchical &rmmtion[[S93. MSR

incorporates both linear and tree regressions as special cases and interpolates between them by controlling
the tiedness of the control parameters. Additive-multiplicatieeleling too, is also an extension of

traditional linear analysis techniques, using biliregressiongand statistical correlaticemalyses

[VS93. These statistical models can optimize duration control without losing freedom of conditioned
exceptioncontrol

To generate an appropriate fundamental frequéFny) contour when given only text as input, an

intermediate prosodistructureneeds to be specified. Text processing, as described in s_Ltien
needed to produce this intermediate prosodic struc Fﬂ'eharacteristics have been analyzed in relation to

prosodic structure by many researchpfae7§HS8APie8ILP84[Fuj93. As with duration control, in
early modeIan control rules were made only by assembling independently ananzeUaracteristics.

More recently however, statistical models have been employed to aan:iaMerns with input

linguistic information directly, without requiring estimates of the intermediate prosodic structure
[Mra92SKIMO2[YTAH 93. In these models, the same mathematical frameworks as used in duration
control i.e., feed-foward neuraletworks linear and tree regression models have been used.

These computational models can be evaluated by comparing duraan/ahJes derived from the

predictions of the models with actual values measured in the speech corpus for the same test input
sentences. Perceptisiidieshave also been carried out to measure the effect of these acoustical
differenceson subjective evaluatioscoresby systematically manipulating the duratikdS92H. It is
hoped that a systematic series of perceptual studies will reveal more about human sensitivities to the
naturalness and intelligibility of synthesized speech scientifically and that time consuming subjective
evaluation will no longer be needed.

5.1.4Speaker CharacteristicsControl

Speech waveforms contain not only linguistic information but also speakerchairacteristicsas
manifested in the glottataveformof voice excitation and in the global spectral features representing
vocal tract characteristics. The glottal waveform has been manipulated using a glottairsmleice



[FLL85] and femalevoices(more difficult to model) have been successufuly synthesized. However, it is
very difficult to fully automate such parameter extraction procedures and the establishment of an
automaticanalysis-synthesischeme is longed for.

As for vocal tractharacteristigsspectral conversiomethodshave been proposed that employ the speaker
adaptatiortechnologystudied in speeatecognition[ANSKOGMMI94]MS95. This technology is also a
good example of the corpus-basgaproachBy deciding on a spectral mappialgorithm a measure for
spectraldistanceand a speech corpora for training of the mapping, non-parametricoavicersions

defined. The mappingccuracycan be measured using the spectral distortieasuresommonly used in
speecttodingand recognition.

5.1.5Future Directions

As indicated in the above paragraphs, speech synthesis will be studied continuously, aiming all the while
at more natural and intelligible speech. It is quite certain that TtS technology will create new speech
output applications associated with the improvement of speech quality. To accelerate this improvement, it
is necessary to pursue research on spgguhesisn such a way that each step forward can be evaluated
objectively and can be shared among researchers. To this end, a large amount of commonly available data
is indispensable, and objective evaluatiegthodsshould be pursued in relation to percepsiatiies An
important issue of concern to speech synthesisnologyis the variability of outpuspeechAs illustrated

by recent advances in speaker characteristingrol the adaptation of vocaharacteristicgs one

dimension of such variability. We also have to consider variabilities resulting from human factors, such as
speakingourpose utterancesituationand the speaker’s mentthtes These paralinguisti@ctorscause

changes in speaking styles reflected in a change of both quédiey andprosody The investigation of

these variations will contribute to elaborate synthetic spgeatlity and widen its application fields.

Such progress is not only restricted to TtS technology; future technologies related to the furtherance of
human capabilities are also being developed. Human capabilities such as the acquisition of spoken
languagebear strong relations to the knowleag®uisitionused in developing speech synthesis systems.
Useful language training tools and educational devices can therefore be expected to come out of the
pursuit and modeling of such knowledge acquisition processes. The corpusymasedths well suited

to this purpose, and inductilearningfrom speech corpora will give us hints on the directions this

research must take. To pursue these new possiblities, it is essential for speech synthesis researchers to
collaborate with researchers in other fields related to spoken language, and to freshly introduce the
methodologies and knowledge acquired in those encounters.
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5.2 Synthetic SpeeclGeneration

Christophe d’Alessandro & Jean-Sylvaignard
LIMSI-CNRS, Orsay, France

Speeclgenerations the process which allows the transformation of a string of phonetic and prosodic
symbols into a synthetic speesignal The quality of the result is a function of the quality of the string, as
well as of the quality of the generation process itself. For a review of speech generation in English the
reader is referred fiFR73 and[Kla87). Recent developments can be founfBB9J, and in

[VSSOH93.

Let us examine first what is requested today from a text-to-speech (TtS) system. Usually two quality
criteria are proposed. The first onéritelligibility , which can be measured by taking into account several
kinds of units(phonemessyllables words phrases The second one, more difficult to define, is often
labeled agleasantness or naturalness. Actually the concept of naturalness may be related to the concept
of realismin the field of imagesynthesisthe goal is not to restitute the reality but to suggest it. Thus,
listening to a synthetic voice must allow the listener to attribute this voice topsentus-speaker and to
perceive some kind of expressivity as well as some indices characterizing the speaking style and the
particular situation of elocution. For this purpose the corresponding extra-linguistic information must be

supplied to the systeflGN9J.

Most of the present TtS systems produce an acceptable level of intelligibility, but the naturalness
dimension, the ability to control expressivity, speech style and pseudo-speaker identity still are poorly
mastered. Let us mention however that users demands vary to a large extent according to the field of
application: general public applications such as telephonic informatidevalneed maximatealismand
naturalnesswhereas some applications involving professionals (process or vehicle control) or highly
motivated persons (visually impaired, applications in hostile environments) demand intelligibility with the
highest priority.

5.2.1Input to the Speech GeneratiorComponent

The input string to the speech generation component is basically a phonemic string resulting from the
grapheme to phonenwenverter It is usually enriched with a series of prosadarksdenoting the
accentsaandpausesWith few exceptions the phoneme set of a given language is well defined; thus the
symbols are not ambiguous. However the transcript may represent either a sequence of abstract linguistic
units (phonemeksor a sequence of acoustic-phoneinits (phonesor transitionabegments In the former

case (phonological or normatitr@nscrip} it may be necessary to apply some transformations to obtain

the acousticairanscript In order to make this distinction clearer let us take a simple example in French.
The word “médecin” (medical doctor) may appear in a pronunciation dictionary as “mé--defroer-d



o2 --sZ /, which is perfectly correct. But when embedded in a sentence it is usually pronounced in a
different way “met--cin” /mé t--s£ /. The tense vowel “é” /e/ is realized as its lax counterpart /£:7,

the “e” /g2 / disappears, the three syllables are replaced by only two, and the voicing of the plosive /d/ is
neutralized by the presence of the unvoiced /s/ which follows. Without such rules the output of the
synthesizer may be intelligible, but it may be altered from the point of vieatofalnessSuch
transformations are not simple; they imply not only a set of phonological rules, but also some
considerations on the speech style, as well as on the supposed socio-geographical origin of the
pseudo-speaker, and on the speech rate.

Analogously, the prosodigymbolsmust be processed differently according to their abstraction level. But

the problem is more difficult, because there is no general agreement in the phonetic community on a set of
prosodic marks that would have a universal value, even within the framework of a given language. A
noticeable exception is the ToBI system, for transcription of EnffiBi94. Each synthesis system

defines its own repertory of prosodic entities and symbols, that can be classified into three categories:
phonemiadurations accentsandpauses

5.2.2ProsodyGeneration

Usually only theaccentsandpausesdeduced from the text, are transcribed in the most abstract form of
the prosodic string. But this abstract form has to be transformed into a flow of parameters in order to
control the synthesizer. The parameters to be computed include the fundamental fréFDenayld the

durationof each speech segment as well amiensityandtimber. A melodic (or intonational) model and
a duratiormodelare needed to implement the prosadiccturecomputed by the text processing
component of the speech synthesizer.

Iy evolution, often considered the main suppoftrolody depends as do the phonemizationson

phonetic, lexical, syntactic and pragmatic factors. Depending on the language under study, the melodic
modelis built on different levels, generally the word level (waoten} and the sentence or phrase level
(phraseacceny. The aim of the melodic model is to compFﬂe curves. Three major types of melodic

models are currently in use fFﬂ generation. The first type of melodic model is production-oriented. It
aims at representing the commands govean@eneration. This type of model associates melodic

commands with word and phrase accents. The melodic command is either an impulse or a step signal. The
[, contour is obtained as the response of a smoothing filter to these word and phrase ciRitgghds

The second type of melodic model is rooted in perception res@#@®9(. Synthetian contours are
derived from stylized natur: Fﬂ contours. At the synthesis stage, Fﬂecurves are obtained by
concatenation of melodic movemean rises,Fﬂ falls, and flat movements. Automatic procedures for
pitch contour stylization have been develoff@d95). In the last type of melodic mod«Fﬂ curves are
implemented as a set of target values, linked by interpolation funfBae&d.



The phonemidurationsresult from multifold considerations. They are in part determined from the
mechanical functioning of the synthesizer when the latter is of articulatory nature, or from the duration of
the prerecorded segments in the case of concatessgtitleesisAnother part is related to the accent.
Another one, reflecting the linguistic function of the word in the sentence, is usually related to the
syntactic structure. Finally, the last part is related to the situation and pseudo-speaker’s characteristics
(speectrate dialect stressetc.).

Two or three levels of rules are generally present in duratinodéls The first level represents

co-intrinsic duration variations (i.e., the modification of segment durations that are due to their neighbors).
The second level is the phrase level: modification of durations that are due to ppbsadiog Some

systems also take into account a third level, the syllabic [Evel].

The other prosodic parameters (intensity, timber) are usually implicitly fixed from the start. However,
some research is devoted to voice quality characterization or differences between male and female voices

[KK90].

One of the most difficult problems in speech to date is prosodic modeling. A large body of problems come
from text analysis (see sectih). But there is also room for improvement in both melodic and durational
models. In natural speech the prosodic parameters interact in a way that is still unknown, in order to
supply the listener with prosodic information while keeping the feeling of fluentness. Understanding the
interplay of these parameters is today one of the hottest topics for research on speech synthesis. For
prosodic generation, a move from rule-based modeling to statistical modeling is noticeable, as in many
areas of speech and language technov®24.

5.2.3Speech Signaeneration

The last step for speech output is synthesis of the waveform, according to the segmental and prosodic
parameters defined at earlier stages of processing.

Speech signal generators (dyathesizers) can be classified into three categories: (1) articulatory
synthesizers, (2) formant synthesizers, and (3) concatenative synthesizers. Articulatory synthesizers are
physical models based on the detailed description of the physiology of speech production and on the
physics of sound generation in the vocal appaff@G93. Typical parameters are the position and

kinematics of articulators. Then the sound radiated at the mouth is computed according to equations of
physics. This type of synthesizer is rather far from applications and marketing because of its cost in terms
of computation and the underlying theoretical and practical problems still unsolved.

Formant synthesis is a descriptive acoustic-phonetic approach to sy[ii€&7]. Speech generation is
not performed by solving equations of physics in the vapphratusbut by modeling the main acoustic
features of the speech sigif§la80[SB9]. The basic acoustic model is the source/filter model. The filter,
described by a small set fwfmants, representarticulation in speech. It models speech spectra that are
representative of the position and movements of articulators. The source repleg@ation. It models

the glottalflow or noise excitatiosignals Both source and filter are controlled by a set of phonelés
(typically several hundred). High-quality rule-based fornggmthesizersincluding multilingualsystems
have been marketed for many years.



Concatenativeynthesids based on speech signal processing of natural speech databases. The segmental
database is built to reflect the major phonological features of a language. For instance, its set of phonemes
is described in terms of diphonaits representing the phoneme-to-phongumetures Non-uniform

units are also usddiphonessyllables words etc.). The synthesizer concatenates (coded) speech

segments, and performs some signal processing to smooth unit transitions and to match predefined
prosodic schemes. Direct pitch-syncronous waveform processing is one of the most simple and popular
concatenation synthesis algorithfMC90H. Other systems are based on multipulse linear prediction

[[AR83, or harmonic plus noise moddlsSM93DL93[Rd94.

Several high-quality concatenative synthesizers, including multilirayséémsare marketed today.

Trends in SpeechGeneration

Perceptive assessment lies among the most important aspects of speech synthesis research
[VBPOQVS93KP9g. When one works on phonetic rule definition or segment concatenation, a robust and
quick assessment methodology is absolutely necessary to improve the system. Besides, it is also hecessary
in order to compare the systems to each other. As far as spgechinesss concerned the problem is

still almost untouched. Nobody knows what speech naturalness is or more generally what is expected from
a synthesis system onceiitgelligibility is rated sufficiently highly. In order to explore this domain it will

be mandatory to cooperate wighychologistand human factorspecialists

Although the recent developments of speech synthesis demonstrated the power of the concatenative
approach, it seems that there is much room for improvement:

1. Choice of Non-uniforms and Multi-scaleUnits (see sectiop.1.2): What are the best synthesis
units? this question is rootedpsycholinguisticsand is a challenging problem to phonology.

2. Speech SignaModification: Signal representation for speech is still an open problem, particularly
for manipulation of the excitation.

3. Voice Conversion: What are the parameters, phonetic description, methods for characterization of a
particular speaker, and conversion of the voice of a speaker into the voice of another speaker

[VMT92]?

Accurate physical modeling of speech production is still not mature for technological applications.
Nevertheless, as both basic knowledge on speech production and the power of computers increase,
articulatory synthesis will help in improving formant-baseethodstake advantage of computational
physics(fluid dynamicsequationdor the vocal apparatus), and better mimic the physiology of human
speech production.

Synthesis of human voice is not limited to speech synthesis. Since the beginning of speech synthesis
research, many workers also paid some attention to the musical aspects of voicgrayidgfSun8].

Like TtS, synthesis of singing finds its motivations both in science and technology: on the one hand
singing analysis and synthesis is a challenging field for scientific research, and on the other hand, it can
serve for music production (contemporary music, film and disk industries, electronic music industry). Like
in speech synthesis, two major types of techniques are used for signal generation: descriptive-acoustic
methodqrule-based formargynthesi¥ and signal processingethodgmodification/concatenation of
pre-recorded singingoices.



Future Directions

Prosodicmodelingis probably the domain from which most of the improvements will come. In the long
run it may be argued that the main problems to be solved deal mainly with mastering the linguistic and
extra-linguistic phenomena relatedpiamsody which reflect problems of another kind, related to oral
person-to-person and person-to-machine interactions.

Concerning the phonetic-acoustic generation process it may be foreseen that in the short run concatenative
and articulatory syntheses will be boosted by the development of the microcomputer industry. By using
off-the-shelf components it is already possible to implement a system using a large number of speech
segments, with several variants that take into account contextual and prosodic effects, even for several
speakers. This tendency can only be reinforced by the apparently unlimited evolution of computer speed
and memory capacity, as well as by the fact that the computer industry not only provides the tools but also
the market: speedynthesimowadays must be considered to be as one of the most attractive aspects of
virtual reality; it will benefit from the development of afultimediaand informatiorhighways
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5.3 Text Interpretation for TtS Synthesis

RichardSproat

Bell Labs, Murray Hill, New Jersey, USFhe problem of converting text into speech for some language

can naturally be broken down into two subproblems. One subproblem involves the conversion of linguistic
parametespecificationge.g., phonemsequencesaccentuaparametersinto parameters (e.g., formant
parametersconcatenative unibdices pitch time/valugairg that can drive the actual synthesis of speech.
The other subproblem involves the computation of these linguistic parameter specifications from input
text, which for the present discussion we will assume to be written in the standard orthographic
representation for the language in question, and electronically coded in a standard scheme such as ASCII,
ISO, JIS, BIG5, GB, and the like, depending upon the language. It is this second problem that is the topic
of this section.

In any languagegrthographyis an imperfect representation of the underlying linguistic form. To illustrate
this point, and to introduce some of the issues that we will discuss in this section, consider an English
sentence such &ive me a ticket to Dallas or give me back my money: see Figure .

Titmiatineal Phrashog

Fircarionnl Prrnse Toeooari conl Prenmse
Acrent t ] : £ t t
Phas e gy e o3 kMt dwelan o gy ot haek™ min Tram

COrthography  Ghe me & tlichet s allaa of gl me hach  my mosney
Figure: Some linguistic structures associated with the analysis of the sentence, “Give me a ticket to
Dallas or give me back nmyoney.”

One of the first things that an English TtS system would need to do is tokeniaputiato words: for
English this is not generally difficult though for some other languages it is more complicated. A
pronunciatiorthen needs to be computed for each word; in English, given the irregularity of the
orthography, this process involves a fair amount of lexazsdup though other processes are involved too.
Some of the words in the sentence shoulddzentedin this particular case, a reasonable accentuation
would involve accentingontent wordslike give, ticket, Dallas, back andmoney, and leaving the other

words unaccented. Then we might consider breaking the input into prpsodsesin this case, it would

be reasonable iotonethe sentence as if there were a comma bet®edas andor. Thus, various kinds

of linguistic information need to be extracted from the text, but only in the case of word boundaries can
this linguistic information be said to be represented directly in the orthography. In this survey | will focus
on the topics of tokenization intwords thepronunciatiorof those words; the assignment of phrasal
accentuationand the assignment of prosoglirasesAn important area about which | will say little is



what is often termetkxt normalization, comprising things like end-of-sentence detection, the expansion
of abbreviations, and the treatment of acronyms and numbers.

5.3.1Tokenization

As noted above, one of the first stages of analysis of the text inputtakémézationof the input into

words. For many languages, includiBgglish this problem is fairly easy in that one can to a first
approximation assume that word boundaries coincide with whitespace or punctuation in the input text. In
contrast, in many Asialanguageshe situation is not so simple, since spaces are never used in the
orthographies of those languages to delimit word€Hmesefor example, whitespace generally only

occurs in running text at paragraph boundaries. The Chinese alphabet consists of several thousand distinct
elements, usually termetharacters. With few exceptions, characters are monosyllabic. More

controversially, one can also claim that most characters represgotiemes

Just as words in English may consist of one or more morphemes so Chinese words may also consist of one
or more morphemes. In a TtS system there are various reasons why it is important to segment Chinese text
into words (as opposed to having the system read the input character-by-character). Probably the easiest of
these to understand is that quite a few characters have more than one possilsieiationwhere the
pronunciation chosen depends in many cases upon the particular word in which the character finds itself.

A minimal requirement for word segmentation would appear to be an oditti@narythat enumerates

the word forms of the language. Indeed, virtually all Chinese segmenters reported in the literature contain

a reasonably large dictionaf§LOAWTIJLCSIISSGCO} Given a dictionary, however, one is still

faced with the problem of how to use the lexicdbrmationto segment an input sentence: it is often the

case that a sentence has more than one possible segmentation, so some method has to be employed to
decide on the best analysis. Bb#uristic(e.g., a greedglgorithmthat finds the longest word at any

point) and statisticapproachesgalgorithms that find the most probable sequence of words according to

some model) have been applied to this problem.

While adictionaryis certainly a nhecessity for doifighinesesegmentation, it is not sufficient since in
Chinese, as iknglish any given text is likely to contain some words that are not found in the dictionary.
Among these are words that are derived via morphologically prodymticessespersonahamesand
foreignnamesn transliteration For morphologically complex forms, standard techniques for
morphological analysis can be appl[kbs83TLIAKKZ92[Spro3, though some augmentation of these
techniques is necessary in the case of statistical mef8&@&COJ. Various statistical and non-statistical
methods for handling personal and foreign names have been reported; see, for example,

[CCAH 92WLCOISSGCok.

The period since the late 1980s has seen an explosion of work on the various proklbmesaivord
segmentation, due in large measure to the increasing availability of large electronic corpora of Chinese
text. Still, there is much work left to be done in this area, both in improving algorithms, and in the
development of replicable evaluation criteria, the current lack of which makes fair comparisons of
different approaches well-nigh impossible.




5.3.2Word Pronunciation

Once the input is tokenized into words, the next obvious thing that must be done is to compute a
pronunciation(or a set of possible pronunciations) for the words, given the orthographésentationf

those words. The simplest approach is to have a $ettavfto-sound rules that simply map sequences of
graphemento sequences ghonemesalong with possible diacritinformation such as stress

placementThis approach is naturally best suited to languageSiemishor Finnishwhere there is a

relatively simple relation between orthography and phonology. For languag&sdikeh however, it has
generally been recognized that a highly accurate word pronunciation module must contain a pronouncing
dictionary that at the very least records words whose pronunciation could not be predicted on the basis of
generafrules~" Of course, the same problems of coverage as were notedGhitiesesegmentation

problem also apply in the case of pronouncing dictionaries: many text words occur that are not to be found
in the dictionary, the most important of these being morpholodaalativesfrom known words, or

previously unseen persomsmes

For morphologicatlerivatives standard techniques for morphological analysis can be applied to achieve a
morphological decomposition for a word; §8&iK87]. The pronunciation of the whole can then in

general be computed from the (presumably known) pronunciation of the morphological parts, applying
appropriate phonologicalilesof the language. Morphologicahalysisis of some use in the prediction of
namepronunciationoo, since some names are derived from others via fairly productive morphological
processes (cfRobertson andRobert). However, this is not always the case, and one must also rely on
other methods. One such method involves computing the pronunciation of a new name by analogy with
the pronunciation of a similar narfl@CL90[Gol9]] (and see alsffDN9]] for a more general application

of analogicakeasoningo word pronunciation). For example, if we have the n@aldano in our

dictionary and know its pronunciation, then we can compute the pronunciation of a hypothetical name
Balifano by noting that both names share the final subséiirigno: Balifano can then be pronounced on
analogy by removing the phoneme /k/, corresponding to the &tte€alifano, and replacing it with the
phoneme /b/. Yet another approach to handling proper names involves computing the langugiye of

of a name, typically by means migrammodelsof letter sequences for the various languages; once the
origin of the hame is guessednguage-specific pronunciation rules can be invoked to pronounce the

name[[Chu85Vit91].

In many languages there are word forms that are inherently ambiguous in pronunciation, and for which a
word pronunciation module as just described can only return a set of pgssiflaciationsfrom which

the most reasonable one must then be chosen. For example, tHmsgatd/mes withass if it denotes a

type of fish, and is homophonous wiihse if it denotes a musical range. An approach to this problem is
discussed iffYar94 (and see alsffSHY97). The method starts with a training corpus containing tagged
examples in context of each pronunciation bbanographSignificant local evidence (e.gwgrams

containing the homograph in question that are strongly associated to one or another pronunciation) and
wide-contextevidence(i.e., words that occur anywhere in the same sentence that are strongly associated to
one of the pronunciations) are collected into a decision list, wherein each piece of evidence is ordered
according to its strength (Ididkelihood of each pronunciation given the evidence). A novel instance of the
homograph is then disambiguated by finding the strongest piece of evidence in the context in which the
novel instance occurs, and letting that piece of evidence decide the matter. It is clear that the
above-described method can also be applied to other formally similar problems in TtS, such as
abbreviation expansion: for examplesisto be expanded &gint or Sreet?



5.3.3Accentuation

In many languages various words in a sentence are associatedasitis, which are often manifested as

upward or downward movements of fundamental frequency. Usually, not every word in the sentence bears
an accent, however, and the decision of which words should be accented and which ones should not is one
of the problems that must be addressed by a TtS system. More precisely, we will want to distinguish three
levels ofprominence, two beingaccented andunaccented, as just described, and the third beitig cized.

Cliticized words are unaccented but additionally lack word stress, with the consequence that they tend to
be durationallyshort

A good first step in assigning accents is to make the accentual determination on the basis of broad lexical
categorier parts ospeectof words. Contentvords--nouns, verbs, adjectives and perhaps adverbs, tend

in general to be accented; functieords including auxiliaryerbsandprepositiongend to be

deaccentedshort functionwordstend to becliticized. Naturally this presumes some method for assigning
parts of speech, and in particular for disambiguating wordsdikevhich can be either content words (in

this case, a verb or a houn), or function words (in this case, an auxiliary); fortunately, somewhat robust
methods for part-of-speetaggingexist (e.g.[[Chu8§). Of course, a finer-grained part-of-speech
classification also reveals a finer-grained structure to the accenting problem. For example, the distinction
betweemrepositiongup the spout) andparticles(give up) is important inEnglishsince prepositions are
typically deaccented or cliticized while particles are typically accedfa@d).

But accenting has a wider function than merely communicating lexical category distinctions between
words. InEnglish one important set of constructions where accenting is more complicated than what
might be inferred from the above discussion are complex pbrases-basically, a noun preceded by

one or more adjectival or nominal modifiers. ldiscourse-neutral context, some constructions are

accented on the final wo(tadison Avenue), some on the penultimaté&Vall Street, kitchen towel rack),

and some on an even earlier wostimp pump factory). Accenting on nominals longer than two words, is
generally predictable given that one can compute the nominal’s structure (itself a non-trivial problem), and
given that one knows the accentuation pattern of the binary nominals embedded in the larger construction
ILP7ALS92Spro4. Most linguistic work on nominaccent(e.g.,[Fud84LS97, though sedLad84) has
concluded that the primary determinants of accentingementic but that within each semantic class

there are lexically or semantically determined exceptions. For instance, righthand accent is often found in
cases where the lefthand element denotes a location or time for the second elementi (cf paper),

but there are numerous lexiedceptiong morning sickness). Recent computational models---e.g.,
Mon9d[Spr94---have been partly successful at modeling the semantic and lexical generalizations; for
exampleSpro4 uses a combination of hand-built lexical and semantic rules, as well as a statistical model
based on a corpus of nominals hand-tagged with accenting information.

Accenting is not only sensitive to syntactic structure and semantics, but also to properties of the discourse.
One straightforward effect givenness. In a case likeny son badly wants a dog, but | am allergic to dogs

where the second occurrencedogs would often be deaccented because of the previous mentiog.of
(See[Hir93] for a discussion of how to model this and other discourse effects, as well as the syntactic and
semantic effects previously mentioned, in a working TtS module.) While humanlike accenting capabilities
are possible in many cases, there are still many unsolved problems, a point we return to in the concluding
subsection.



5.3.4ProsodicPhrasing

The final topic that we address is the problem of chunking a long sentence into ppbsadésin

reading a long sentence, speakers will normally break the sentence up into several phrases, each of which
can be said tetand alone as an intonationalnit. If punctuation is used liberally so that there are

relatively few words between the commas, semicolons or periods, then a reasonable guess at an
appropriate phrasing would be simply to break the sentence at the punctuation marks---though this is not
always appropriatf0’'S8g. The real problem comes when long stretches occur without punctuation; in

such cases, human readers would normally break the string of words into phrases, and the problem then
arises of where to place these breaks.

The simplest approach is to have a list of words, typically funetimds that are likely indicators of

good places to bredKlag87. One has to use some caution however, since while a particular function
word likeand may coincide with a plausible phrase break in some cases, in other cases it might coincide
with a particularlypoor place to break: was forced to sit through a dog and pony show that lasted most of
Wednesday after noon.

An obvious improvement would be to incorporate an accurate synpactierand then derive the
prosodicphrasingfrom the syntactigroupings prosodic phrases usually do not coincide exactly with
major syntactic phrases, but the two are typically not totally unrelated either. Prosodic phrasers that
incorporate syntactic parsers are discussg@iB894BF9(. O’Shaughnessy’s system relies on a small
lexicon of (mostly function) words that are reliable indicators of the beginnings of syntactic groups:
articles such aa or the clearly indicate the beginnings of noun groups, for example. This lexicon is
augmented by suffix-strippingilesthat allow for part-of-speedssignmento words where this
information can be predicted from therphology A bottom-up parser is then used to construct phrases
based upon the syntactic-group-indicating words. Bachenko and Fitzpatrick employ a somewhat more
sophisticated deterministic syntactic parser (FIDDITER83) to construct a syntactic analysis for a
sentence; the syntactic phrases are then transduced into ppisediesising a set of heuristics.

But syntactic parsingensu stricto may not be necessary in order to achieve reasonable predictions of
prosodic phrase boundari¢fgVH97 report on a corpus-based statistiapproactthat uses CART

to train a decisiotreeon transcribed speedata In training, the dependent variable was

the human prosodic phrase bounddegision and the independent variables were generally properties

that were computable automatically from the text including: part of speech sequence around the boundary;
the location of the edges of long noun phrases (as computable from automatic methods such as
[Chu8qSpra3); distance of the boundary from the edges of the sentence, and so forth.

5.3.5Future Directions

This section has given an overview of a selected set of the problems that arise in the conversion of textual
input into a linguistic representation suitable for input to a speech synthesizer, and has outlined a few
solutions to these problems. As a result of these solutions, chigbrand TtS systems produce speech

output that is quite intelligible and in many cases quite natural. For exampleglishit is possible to

produce TtSoutput where the vast majority of words in a text are correctly pronounced, where words are
mostlyaccentedn a plausible fashion, and where prosodic phbasedariesare chosen at mostly

reasonable places. Nonetheless, even the best systems make mistakes on unrestricted text, and there is



much room for improvement in the approaches taken to solving the various problems, though one can of
course often improve performance marginally by tweaking existing approaches.

Perhaps the single most important unsolved issue that affects performance on many of the problems
discussed in this section is that full machimneerstanding of unrestricted text is currently not possible,

and so TtS systems can fairly be said to not know what they are talking about. This point comes up rather
clearly in the treatment @fccentingn English though the point could equally well be made in other

areas. As we noted above, previously mentioned items are often deaccented, and this would be appropriate
for the second occurrenceddg in the sentencely son badly wants a dog, but | am allergic to dogs. But

a moment’s reflection will reveal that what is crucial is not the repetition of thedegrdbut rather the
repetition of the conceplog. That what is relevant is semantic or conceptatdégoriesand not simply

words becomes clear when one considers that one also would often deaccent a word if a conceptual
supercategory of that word had been previously mentidvigdon wants a labrador, but I'mallergic to

dogs. Various solutions involving semantic networks (suckivasdNe) might be contemplated, but so far

no promising results have been reported.

Note thatmessage-to-speectsystemshave an advantage ovekt-to-speech systems precisely in that
message-to-speech systems in some degewhat they are talking about since one can code as much
semantic knowledge into the initial message as one desires. But TtS systems must compute everything
from orthographywhich, as we have seen, is not very informative about a large number of linguistic
properties of speech.
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5.4 Spoken Language&seneration
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Interactive natural languagapabilitiesare needed for a wide range of today’s intelliggstemsexpert
systemanust explain their results and reasoning, intelligessistantsnustcollaboratewith users to

perform tasks, tutoringystemanust teach domain concepts and critique students’ problem-solving
strategies, and information delivesystemanust help users find and make sense of the information they
need. These applications require that a system be capable of generating coherent multisespensals

and interpreting and responding to users’ subsequent utterances in the context of the ongoing interaction.

Spoken languaggeneratiorallows for provision of responses as part of an interactive human-machine
dialogue where speech is one medium for the response. This research topic draws from the fields of both
natural languaggeneratiorand speechynthesislt differs from synthesis in that speech is generated from

an abstract representation of concepts rather than from text. While a relatively under-emphasized research
problem, the ability to generate spoken responses is clearly crucial for interactive situations, in particular
when:

1. the user’'s hands and/or eyes are busy;

2. screen real estate is at a premium;

3. time is critical; or

4. system and user are communicating via a primarily audio channel suchelsphene.

Like written languaggenerationspoken languaggeneratiorrequires determining what concepts to
include and how to realize them in words, but critically also requires determining inton&dromal
Several problems are particularly pertinent to the spoken context:

® The need to model and use knowledge about hgasds hearebackgroungdand pastliscoursen
determining content and form of a response. While the written context can include a general audience
(e.g., for report generation), responses in an interactive dialog are intended for a particular person and
to be useful, must take that person into account.

e What kind of language should be generated given a spoken context? Given the lack ofesisos/
that a text provides, the form required for speech is likely to be quite different from that found in text.

® |In the processing of determining the content and form of the response, how can a system provide
information to controintonation which is known to provide crucial clues as to intenahegning



5.4.1State of theArt

The field of spoken languaggneratioris in its infancy, with very few researchers working on systems

that deal with all aspects of producing spoken language responses, i.e., determining what to say, how to
say it, and how to pronounce it. In fact, in spoken langeggimssuch as the ARPA Air Travel

Information Service (ATIS), the focus has been on correctly interpreting the spoken request, relying on
direct display of database search results and minimal response generation capabilities. However, much
work on written responsgeneratioras part of interactive systems is directly applicable to spoken
languageagenerationthe same problems must be addressed in an interactive spokersyggitog Within
speeclsynthesisresearch on controllingtonationto signalmeaningand discoursetructureis relevant

to the problem. This work has resulted in several concept to speech systems.

Interactive Systems

Research in natural languagederstandindgpas shown that coherettiscoursenas structure, and that
recognizing the structure is a crucial component of comprehending the digfe88§Hob93IMP97.

Thus, generation systems participating in dialog must be able to select and organize content as part of a
larger discoursstructureand convey this structure, as well as the content, to users. This has led to the
development of several plan-based modeldisfourseand to implemented systems that are capable of
participating in a written interactivéialoguewith userg[Caw93May923Moo9g.

Two aspects of discourstructureare especially important for spoken languggeerationFirst is

intentional structure, which describes the roles that discourse actions play in the speaker’'s communicative
plan to achieve desired effects on the hearer's mental [ftR83 have shown that intentionairucture

is crucial for responding effectively to questions that address a previous utterance: without a record of
what an utterance was intended to achieve, it is impossible to elaborate or clarify that utterance. In
addition, information about speakatentionshas been shown to be an important factor in selecting
appropriate lexical items, including discourse cues (eegause, when, although; [MM95dMM95H]) and

scalar terms (e.gdifficult, easy; [EIN97).

Second isattentional structure [[Car8YGro7 iGS8HGGG9YSid79, which contains information about the
objects, properties, relations, and discourse intentions that are most salient at any given point in the
discourse. In natural discourse, humtotsis or center their attention on a small set of entities and

attention shifts to new entities in predictable ways. Many generation systems track focus; of attention as
the discourse as a whole progresses as well as during the construction of its individual responses
[MC904McK85[Sib93. Focus has been used to determine when to pronimalize, to make choices in
syntactic form (e.g., active vs. passive), and to appropriately mark changes in topic, e.g., the introduction
of a new topic or return to a previous toff@aw93. Once tracked, such information would be available

for use in speech synthesis as described below.

Another important factor for response generation in interactive systems is the ability to tailor responses
based on a model of the intended hearer. Researchers have developed systems capable of tailoring their
responses to the user’s backgro(lad3H 89, level of expertisgPar8§, goals[McK8§], preferences

[[CCC94, or misconceptionfMcC84. In addition, generating responses that the user will understand
requires that the system use terminology that is familiar to théM&¥93.



Controlling Intonation to Signal Meaning in SpeeclGeneration

Many studies have shown that intonatioinérmationis crucial for conveying intended meaning in

spoken languagfBut7gHP84SiI87. For example[[PHI( identify how pitchaccentsndicate the

information status of an item (e.g., given/new) in discourse, how variations in intermediate phrasing can
convey structuralelationsamong elements of a phrase, and how variation in ptofpecan indicate topic
changesin later work [[HL93] show that pitcraccentand prosodiphrasingdistinguish between

discourse and sentential uses of pheasege.g.,now andwell), providing a model for selecting

appropriate intonationdkatureswhen generating these cplerasesn syntheticspeechThere have been

only a few interactive spoken languagystemghat exploitintonationto convey meaning. Those that do
generate speech from an abstract representation of content that allows fieakingiven/new

information topicswitches and discourseegmentatioiffor one exception, see t Telephone Enquiry
System (TESJWM77] where text was augmented by hand to include a ciodedationscheme). The
Speech Synthesis from Concept (SSC) system, develodpFBg showed how syntactistructure

could be used to aid in decisions abactentingandphrasing [DH8g developed anessage-to-speech

system that uses structural, semantic, and discourse information to control assignmentarigpitch
accentplacementphrasingandpause The result is a system that generates spoken directions with
appropriate intonationdeaturegyiven start and end coordinates on a map. The generation of contrastive
intonationis being explored in a medical informatisystem where full answers to yes-no questions are
generatedPS94Pre9}. It is only in this last system that language generation techniques (e.g., a
generatiorgrammay are fully explored. Other recent approaches to concept to speech generation can also

be foundHF94HY9().

5.4.2Future Directions

Spoken languaggeneratioris a field in which more remains to be done than has been done to date.
Although responsgeneratioris a critical component of interactive spoken langusagtemsand of any

human computenterface many current systems assume that once a spoken utterance is interpreted, the
response can be made using the underlying system application (e.g., the results of a database search) and
commercial speech synthesizers. If we are to produce effective spoken language human computer
interfacesthen a concerted effort on spoken langugeyeeratiormust be pursued. Such interfaces would

be clearly useful in applications such as task assisted instruction giving (e.g., equipment repair), telephone
information services, medical information services (e.g., updates during surgery), commentary on
animated information (e.g., animated algorithms), spoken translation, or summarization of phone
transcripts.

Interaction Between Generation and Synthesis

To date, research on the interaction between discemgesandintonationhas been carried out

primarily by speech synthegsisoups While language generati@ystemsften track the required
discoursdeaturesthere have been few attempts to integrate langueigeratiorand speechynthesis

This would require the generation system to provide synthesis with the parameters needed to control
intonation By providing more information than is available to a TtS synthesis system and by requiring
language generation to refine representations of discourse features for intonation, research in both fields
will advance.



Generating Language Appropriate to SpokenSituations

Selecting the words and syntactic structure of a generated response has been explored primarily from the
point of view of written language (see Hovy, this volume). If a response is to be spoken, however, it will
have different characteristics than does written language. For example, it is unlikely that long complex
sentences will be appropriate without the visual, written context. Research is needed that incorporates the
results of work impsycholinguisticoon constraints on spoken langudgen into generation

systems, that identifies further constraints on variability in suffaroe and that develops both grammars

and lexical choosers that produce the form of language required in a spoken context. While there has been
some work on the development of incremental, real-time processes for generation of spoken language
[DS9UMcD83, more work is needed on constraints.

Influence of DiscourseHistory

When generation takes place as part of an interactive diadygtem responses must be sensitive to what
has already been said in the current session and to the individual user. This influences the content of the
response; the system should relate new information to recently conveyed material and avoid repeating old
material that would distract the user from what is new. The dischisteey also influences the form of

the response; the system must select vocabulary that the user can understand. Furthermore, knowledge
about what information is new, or not previously mentioned, and what information is given, or available
from previous discourse, influences the use of anapbapressionas well as wordrdering There has

been some work on generating referring expressions appropriate to context, e.g., pronouns and definite
descriptiong[[McD8(], pp. 218--220[[Dal89[Gra84). In addition, there has been some work on

producing responses to follow-up questif®93, on generating alternativexplanationsvhen a first

attempt is not understodoo89, and on issues related to managingitiiéative in a dialogue

[Hal94McR9§. However, much remains to be done, particularly in dialogs involving collaborative
problemsolvingor in cases where the dialog involves mikd@tative.

Coordination with Other Media

When response generation is part of a larger interactive setting, inchpdiaghgraphics animation as

well as writtenanguagea generator must coordinate its tasks with other components. For example, which
information in the selected content should appear in language and which in graphics? If speech and
animation are used, how are they to be coordinated temporally (e.g., how much can be said during a given
scene)? What parameters used during response generation tasks should be made available to a speech
component? These are issues that have only recently surfaced in the research community.

Evaluating Spoken Languagéseneration

There has been very little work on how to measure when a generation system is successful. Possibilities
includeevaluatinghow well a user can complete a task which requires interaction with a system that
generates responses, asking users to indicate satisfaction with system responses, performing a preference
analysisbetween different types of text, degrading a response generation system and testing user
satisfactionand evaluating system generation against a target case, among others. Each one of these has
potential problems. For example, tasknpletionmeasures definitely interact with the front eniegrface

that is, how easy is it for a user to request the information needed? Thus, it would be helpful to have



interaction between computer scientists that build the systems and psychologists, who are better trained in
creating valid evaluation techniques to produce better ways for understanding how well a generation

system works.
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