
1 The Swendsen–Wang method and its generaliza-

tions

Several enhancements of Monte Carlo methods are based on a remarkable trick: take
a big and difficult problem, and replace it by an even bigger problem that contains the
first problem; then solve the bigger problem with methods that were not applicable
to the first.

The Swendsen–Wang method takes a spin system such as

P (x) =
1

Z
exp





∑

n,n′

Jnn′xnxn′



 , (1)

and replaces it by a bigger system that contains both the N original spin variables
and M additional ‘bond’ variables, where M is the number of non-zero couplings Jnn′

in the original spin system.

The extended Ising model

Let’s represent the original Ising model by the product of factors

P (x) =
1

Z

M
∏

m=1

fm(xm), (2)

where each factor fm(xm) depends on just two of the spins, say xn and xn′ :

fm(xm) = f(xn, xn′) = exp(Jnn′xnxn′). (3)

In a standard Ising model, all the couplings between neighbouring spins Jnn′ are equal
to a single positive number, J . Later, we will generalize our description to arbitrary
spin systems.

We extend this model by introducing M additional ‘bond’ variables, d.

xnxn
′

fm

spins

→
xnxn

′

dm

gm

spins and bonds
We define a joint distribution that couples the spins to the bonds,

P (x,d) =
1

Z ′

M
∏

m=1

gm(xm, dm), (4)

in such a way that

(a) The marginal distribution of x,
∑

d P (x,d), is equal to the Ising distribution
(2);

(b) the conditional distributions P (x|d) and P (d|x) are both simple to sample
from.

Each bond variable has two possible states: 1 (also known as ‘open’ or ‘connected’)
and 0 (‘closed’ or ‘disconnected’). The factor gm(xm, dm) is defined by the following



eight values:

gm(xm, dm) =































dm =0 dm =1
xn′ =0 xn′ =1 xn′ =0 xn′ =1

xn =0 e−J e−J eJ − e−J 0

xn =1 e−J e−J 0 eJ − e−J ,

(5)

The distribution of x and d is unchanged if we rescale any factor by any constant; it
will be convenient to introduce an alternative notation for the factor gm, rescaling it
by eJ , and defining

p ≡ 1 − e−2J . (6)

The rescaled factor is:

g̃m(xm, dm) =































dm =0 dm =1
xn′ =0 xn′ =1 xn′ =0 xn′ =1

xn =0 1 − p 1 − p p 0

xn =1 1 − p 1 − p 0 p,

(7)

The extended model can thus be written as

P (x,d) =
1

Z

∏

m

gm(xm, dm) =
1

Z̃

∏

m

g̃m(xm, dm). (8)

The first partition function Z is identical to the partition function of the original Ising
model. The second is

Z̃ = ZeMJ (9)

(Check sign.)
In the case where the original spins are connected in a rectangular grid, the factor

graph for the extended model looks like this:
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1.1 Sampling from the extended model by Gibbs sampling

The conditional distributions P (x|d) and P (d|x) are as follows:
P (x|d) – the bonds connect the spins into a number of clusters (connected com-

ponents); all spins in a cluster must adopt the same state as each other; the states
±1 are selected with equal probability.

P (d|x) – conditional on the spins, the bonds are independent. If the two spins
surrounding a bond are equal (xn = xn′), set the bond dm to 1 with probability p (see
equation (6)); otherwise set it to zero.



In the case of a rectangular grid, this Gibbs sampling algorithm mixes very rapidly.
The following figures illustrate Gibbs sampling. Spin states up and down are

shown by filled and empty circles. Bond states 1 and 0 are shown by thick lines and
thin dotted lines. We start from a state with five connected components. (Remember
that isolated spins count as connected components, albeit of size 1.)

First, let’s update the bonds The forbidden bonds are highlighted
Bonds are forbidden from forming wherever the two adjacent spins are in opposite

states. The bonds that are not forbidden are set to the 1 state with probability p.

After updating the bonds Now we update spins Update bonds again

1.2 Other properties of the extended model

We already mentioned that the partition function Z is the same as that of the Ising
model.

The marginal P (x) is correct, because when we sum the factor gm over dm, we get
fm. Summing over dm is easy because it appears in only one factor.

OK, we’ve summed out d and obtained the Ising model. What if we sum out x?
The marginal P (d) is called the random cluster model. Summing over x for given

d, all factors are constants. The number of states is 2number of clusters. Thus

P (d) =
1

Z̃

∏

m

(

pdm(1 − p)1−dm

)

2c(d) (10)

where c(d) is the number of connected components in the state d. Isolated spins
whose neighbouring bonds are all zero count as single connected components.

The random cluster model can be generalized by replacing the number 2 by a
parameter q:

P (q)(d) =
∏

m

(

pdm(1 − p)1−dm

)

qc(d) (11)

The random cluster model can be simulated directly, just as the Ising model can
be simulated directly; but the S–W method, augmenting the bonds with spins, is
probably the most efficient way to simulate the model. For integer values of q, the
appropriate spin system is the ‘Potts model’, the generalization of the Ising model
from 2 spin states to q.

2 S–W for General spin system

We now include a bias hn at each spin. And we allow the couplings J to be positive
or negative.



Assuming that the original coupling associated with bond m, Jnn′, is positive, the
factor gm(xm, dm) is defined by the following eight values:

gm(xm, dm) =
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xn′ =0 xn′ =1 xn′ =0 xn′ =1

xn =0 e−J
nn

′ e−J
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′ eJ
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(12)

As before we can introduce a parameter pm ≡ 1− e−2J
nn

′ and write a rescaled factor:

g̃m(xm, dm) =































dm =0 dm =1
xn′ =0 xn′ =1 xn′ =0 xn′ =1

xn =0 1 − p 1 − p p 0

xn =1 1 − p 1 − p 0 p,

(13)

If Jnn′ is negative, we define the factor gm thus:

gm(xm, dm) =































dm =0 dm =1
xn′ =0 xn′ =1 xn′ =0 xn′ =1

xn =0 eJ
nn

′ eJ
nn

′ 0 e−J
nn

′ − eJ
nn

′

xn =1 eJ
nn

′ eJ
nn

′ e−J
nn

′ − eJ
nn

′ 0,

(14)

Two spins surrounding such a bond must be in opposite states if the bond is connected
(dm = 1).


