
1 Random permutations

What are the properties of randomly generated permutations of N objects?
Such permutations are a special case of random graphs, which have applications in many

fields including coding theory and puzzles like this one:

Example 1. A team of N = 100 contestants must choose a strategy for the following
game.

The members of the team are numbered from 1 to N .

When the game begins, no further communications between team members are per-
mitted. The game host creates a board with N little doors, numbered, on their
fronts, from 1 to N . Behind the doors, he also writes the numbers from 1 to N , in a
random permutation. (So behind door number 1, we might find the hidden number
is 42; all permutations are equally probable.) Each hidden number is written either
in red ink or in blue ink, chosen independently and randomly.

Each contestant is allowed to open up to N/2 doors, looking at the number hidden
behind each. (He may choose his sequence of doors in any manner, for example, in
a way that depends on what he sees behind the doors he has opened, or on his own
supply of random numbers.) Then all the contestants must guess the colour of their

hidden number. For example, contestant number 42 must guess the colour of the
hidden number 42, wherever it is located.

The team wins a big prize if all the contestants guess their hidden numbers’ colours
correctly.

Find a strategy that gives the team a substantial probability of winning.

The permutation defines a graph of N vertices and N directed edges. Every vertex has one
directed edge leaving it, and one directed edge arriving at it. This graph is called a cycle graph,
because it consists of one or more directed cycles.

1.1 One-cycles and N-cycles

Call the permutation π. If the permutation maps a particular vertex v1 to itself, i.e., π(v1) = v1,
then we’ll describe that little part of the graph as a one-cycle.
Ex.1 Show that the probability that a particular vertex n is in a one-cycle is

1

N
.

If the graph contains only one long cycle, linking all N nodes, we’ll say that the graph is an
N -cycle.
Ex.2 Show that the probability that the graph contains one big N -cycle is

P (number of cycles=1) =
1

N
.

Solution: Start from a vertex v1, and follow the permutation. The probability that there is
one long N -cycle is the probability that: v2 ≡ π(v1) is not v1; and v3 ≡ π(v2) is not v1; and
v4 ≡ π(v3) is not v1; and v5 ≡ π(v4) is not v1; · · · and vN−1 ≡ π(vN−2) is not v1. This probability
is
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1.2 M-cycles

We’ve found that the probability that a given vertex is in a 1-cycle is 1/N , and the probability
that it is in an N -cycle is 1/N . What about other lengths of cycles?
Ex.3 What is the probability that a given vertex v1 is in an M -cycle?

Solution: We require that: v2 ≡ π(v1) is not v1; and v3 ≡ π(v2) is not v1; . . . and vM−1 ≡
π(vM−2) is not v1; and vM ≡ π(vM−1) is v1. So

P (v1 is in an M -cycle) =
N − 1

N

N − 2

N − 1

N − 3

N − 2
· · ·

N − M

N − M + 1

1

N − M
=

1

N
.

That’s a nice simple result: the probability that v1 is in an M -cycle is 1/N , independent of M .
Ex.4 What is the expected length of the cycle in which vertex v1 finds itself?

Solution: The vertex is in a cycle of length drawn from {1, 2, 3, . . .N} with equal probability;
the average of these numbers is (N + 1)/2. There is a probability of 1/2 that v1’s cycle has
length between 1 and N/2.

1.3 Probability of a large cycle

For this section, let M be a cycle length greater than N/2. We’ll call such a cycle a large cycle.
We know that the probability that there is a cycle of the maximum length M = N is 1/N ;

and that the probability that a particular vertex v1 is in an M -cycle is 1/N . What is the
probability that there exists an M -cycle? (Remember that the M -cycle doesn’t necessarily
contain vertex v1, if M is smaller than N .)

Call the set of vertices in the M -cycle S. For any given permutation, there can be at most
one such set, since we decided a moment ago that M was constrained to be bigger than N/2.
Now, by the sum rule, the probability that there exists one M -cycle can be decomposed by
summing over all possible subsets S of size M :

P (an M -cycle exists) =
∑
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The number of terms in the sum, the number of subsets, is
(
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. So
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Ex.5 What is the probability that there is a cycle with length larger than N/2?
Solution:

P (large cycle) =
N

∑

M=N/2+1

1

M
'

∫ N

N/2

1

x
dx = ln 2 ' 0.69. (4)

So the probability that the graph contains no large cycles (where ‘large’ means ‘having length
bigger than N/2’ is 0.31.

How does this relate to the puzzle? Hopefully you can complete that step now.
In case you don’t want to the solution to the puzzle yet, let’s discuss random permutations

a little more.



2 Number of cycles, and their expected lengths

We’ve found the expected length of the cycle containing one particular vertex, and the proba-
bility that there are no large cycles. What do we expect the number of M -cycles to be? And
what do we expect the total number of cycles to be? What’s the probability distribution of that
total number?

We already know the probability that the number of cycles is 1.

2.1 Probability that the number of cycles is 1

It’s 1/N .

2.2 Probability that the number of cycles is N

Ex.6 Show that the probability that all N vertices are in one-cycles is

P (number of cycles=N) =
1

N !
.

[Hint: it’s the probability that the permutation is the identity mapping.]

2.3 Probability that the number of cycles is C

We know the answers for C = 1 and C = N .
Ex.7 What happens in between?

I can’t see an easy way to answer this question.
However, we can establish what the mean number of cycles is.

2.4 Number of M-cycles

Ex.8 What is the expected number of M -cycles?
Solution: The probability that v1 is on an M -cycle is 1/N . If we ask all N vertices to say

‘eek’ if they are on an M -cycle, then the expected number of ‘eeks’ we will hear is N ×1/N = 1.
The eeks will come along in clumps of size M , each clump corresponding to a single M -cycle.
So the expected number of M -cycles is

E(M) = 1/M.

(We saw this expression before, when we asked for the probability that there is an M -cycle, for
M greater than N/2.)

2.5 Number of cycles

Ex.9 What is the expected number of cycles?
Solution: The expected number is exactly

N
∑

M=1

E(M) =
N

∑

M=1

1/M ' ln N.

2.6 Average cycle length

We already computed the average length of the cycle containing a given vertex, and found it
was (N + 1)/2. But we can define another average. (See the busstop paradox and the rolling
sixes examples in my textbook for further examples of these two sorts of average.)
Ex.10 What is the average length of a cycle, selecting uniformly randomly from all cycles?

Solution: The total length of N edges is shared between C cycles. So, averaging uniformly
over all cycles in the ensemble, the average length is

N/〈C〉 =
N

ln N
.



3 Solution to puzzle

Here are some strategies the team might adopt.
Strategy 1 Everyone opens 50 random doors. If you don’t find your own hidden number, you
guess its colour at random.

The probability that a given person finds their number is 1/2; the probability that they say
the right colour is thus 3/4. The doors opened are independent, so the probability of team
success is

(3/4)100 ' 3 × 10−13.

Strategy 2 Everyone opens doors 1–50. If you don’t find your own hidden number, you
guess its colour at random. The probability that a given person finds their number is 1/2; the
probability that they say the right colour is 3/4. However, is it at all likely that the team will
all guess correctly? Exactly half of them are guaranteed to learn their own number’s colour –
the 50 of them whose numbers lie behind doors 1–50. The other 50 will certainly guess. The
probability of team success is

(1/2)50 ' 9 × 10−16.

That’s worse than the random strategy, strategy 1! It would be nice if there were a chance that
all the people would learn their own number’s colour.
Strategy 3 The nth person opens doors (n + 1)–(n + 50), modulo N . If you don’t find your
own hidden number, you guess its colour at random. What’s the probability of team success? I
haven’t worked it out. I expect it’s similar to strategy 1.
Strategy 4 How about using the permutation to determine which doors are opened? The
nth person opens door n, revealing v2 = π(n); he then opens the door number v2, revealing
v3 = π(v3); and so on. Now, if vertex n is on a ‘short’ cycle (of length M equal to N/2 or less)
then he will, at the Mth step, open a door that reveals his number n. Recall from section 1.2
that there is a chance of 1/2 that he is on a cycle of length between 1 and N/2. So there is a 1/2
chance that he will find his own number. If his vertex is on a ‘long’ cycle, then he will, sadly,
never reach his own number; and neither will any of the other people on the same long cycle.

This is the secret of success of strategy 4: the shared source of randomness, π, causes failures
of the participants to be positively correlated. And if they are more likely to simultaneously
fail; they must also be more likely to simultaneously succeed!

The team succeeds if the permutation contains no ‘long’ cycle. This occurs with probability
0.31.

This is an addition to Information Theory, Inference, and Learning Algorithms (Cambridge
Univ. Press, 2003), which is available online from

http://www.aims.ac.za/∼mackay/


