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Abstract

The extraction of Chunk candidates from real corpora is one of the fundamental tasks of building example-based
machine translation model. This paper presents a statistical approach to extract Chinese chunk candidates from
large monolingual corpora. The first step is to extract large N-grams (up to 20-gram) from raw corpus. Then two
newly proposed Fast Statistical Substring Reduction (FSSR) algorithms can be applied to the initial N-gram set to
remove some unnecessary N-grams using their frequency information. The two algorithms are efficient (both have a
time complexity of O(n)) and can effectively reduce the size of N-gram set up to 50%. Finally, mutual information
is used to obtain chunk candidates from reduced N-gram set.

Perhaps the biggest contribution of this paper is that it is the first time to apply Fast Statistical Substring
Reduction algorithm to large corpora and demonstrate the effectiveness and efficiency of this algorithm which, in
our hope, will shed new light on large scale corpus oriented research. Experiments on three corpora with different
sizes show that this method can extract chunk candidates from corpora of giga bytes efficiently under current
computational power. We get an extraction accuracy of 86.3% from People Daily 2000 news corpus.
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1 Introduction

With the rapid development of computational power and the availability of large online corpora (BNC (Clear, 1993),
People Daily (YÜ et al, 2002)), there has been a dramatic shift in computational linguistics from manually construction
knowledge bases to partially or totally automatic knowledge acquisition by applying statistical learning methods to
large corpora (see SU, 1996, for an overview). The concept of chunk was first raised by (Abney, 1991) in the early
nineties to make the task of language parsing easier. He suggested to develop a parser based on chunk that decomposes
sentences into chunks with each chunk being a syntactic unit for easier parsing. Chunks, especially bilingual chunk
pairs, can be a useful ingredient in example based machine translation (EBMT) system to help obtain better translation
result (YAO et al, 2000). Other NLP tasks such as information retrieval, knowledge discovery and the construction
of semantic dictionary can also benefit from such kind of resources. Most Text Chunking methods applied to English
require either a parsing stage to parse raw corpus into parsed trees or a corpus which already has syntactical information
(such as Treebank) (Erik and Sabine, 2000). Unfortunately, neither kind of resources is largely available for Chinese.
Some language specific properties of Chinese further impose challenges on Chinese chunking. Unlike western languages
that have explicit word boundary, Chinese has no word separation in sentence and a sentence must be segmented into
words before further processing. Segmentation is a field that has been researched for decades with more than two
dozen methods tried in literature (Ponte and Croft, 1996; Palmer, 1997; Teahan, 2000). Even today no segmentation
method totally satisfies native speakers. In addition, Chinese language enjoys more freedom in sentence structure than
English, making even shallow parsing a formidable task.

To address these problems, this paper presents a novel approach to extract Chinese chunk candidates from large
unsegmented raw corpora. The originality of our approach resides in the statistical substring reduction, a procedure
aims at efficiently removing unpoetical N-grams from extracted N-gram set. The first step is to acquire large N-gram
(up to 20-gram) statistics from raw corpus. This initial N-gram set contains a vast amount of “garbage strings”
which do not have any meaning at all. The work of (Fung, 1994) showed: without the help of a machine-readable
dictionary, the extracted trigrams and 4-grams from Chinese raw corpus contain only 31.3% and 36.75% valid phrases
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respectively. In other words, meaningful chunk candidates only bear a small portion. In order to rule out the majority
“garbage strings” from the initial N-gram set, a statistical substring reduction algorithm need to be employed to
reduce some “garbage substrings” to their super strings using frequency information. For instance, if both “ÆÔ²
\�� (Asia-Pacific Economic Cooperation)” and “ÆÔ²\� (Asia-Pacific Economic)” occur 10 times in corpus,
the latter should be removed from the N-gram set, since it is the substring of the former with the same frequency.
This procedure is called Statistical Substring Reduction. When the initial N-gram set contains n N-grams, traditional
substring reduction algorithm has a time complexity of O(n2) (Han et al, 2001), making it infeasible to handle large
amount of real world corpora. To solve this computational bottleneck, we propose two Fast Statistical Substring
Reduction (FSSR) algorithms, both having an O(n) time complexity under ideal condition. Experiment shows it only
take minutes to do substring reduction even on N-gram set of gigabytes corpus. Finally, mutual information criterion
is used to filter chunk candidates from reduced N-gram set. Figure 1 gives an overview of the whole process.

Figure 1: The procedure of Chinese chunk candidates extraction

N-gram Extraction Statistical Substring Reduction Mutual Information Filtering Chunk Candidates Set

In what follows, Section 2 briefly reviews the large N-gram extraction algorithm. Section 3 describes the two Fast
Statistical Substring Reduction algorithms in detail. Mutual information filtering strategy is discussed in Section 4.
And Section 5 presents the experimental results on three corpora. Finally, we draw in Section 6 a conclusion and some
perspectives.

2 Large N-gram Extraction

Traditional N-gram acquisition methods (hash table, sparse matrix) can not handle even a modest size of n (say n = 5)
because of the huge amount of memory space and time required. In the case of calculating Chinese trigram statistics,
assuming there are 50000 Chinese words with an average length of 2 (4 bytes1), and we use a 16 bit integer to store
frequency (2 bytes), we need (5 × 104)3 × (4 + 2) = 7.5 × 1014 bytes ≈ 700000 Gb memory to store all the trigram
statistics. Even in real corpus the sparse data phenomenon requires less storage, the time and space burden is quite
severe to current hardware. (Nagao, 1994) proposed a new method to extract N-gram statistics with arbitrary size of
n. The basic idea of this method is to transform the N-gram acquisition problem into extracting adjacent substrings
with same prefix in a sorted prefix table. By treating the whole corpus as a huge character string S, we can build a
pointer table with each entry keeping a pointer to a substring of S. Then a sorting operation is carried out on the
pointer table based on the comparison of the substrings it points to, resulting a sorted prefix pointer table.

Once the prefix table is ready, extracting N-gram with arbitrary n is straightforward: First let us read out the
first n characters of the first substring in the pointer table and see if the next substring has at least the same n prefix
characters with the first one. If so, let us continue to check the next substring until we find a string which does not have
the same n prefix characters. The number of words checked up so far is just the frequency of the n prefix characters
(N-gram) of the first string. To extract all the N-gram statistics in corpus, we only need to repeatedly perform this
operation until the last entry of prefix table. The reader is referred to (Nagao, 1994) for a detail description of this
method.

This method is also space efficient: for a corpus containing n Chinese characters, an entry in prefix pointer table
needs at least p bits (2p ≥ n) which means: for a 32 bit pointer entry (4 bytes), it can process at most 232 ≈ 4GB
characters corpus. Considering the memory needed to store corpus (a long text string), the N-gram extraction operation
needs a storage of 2n+4n = 6n bytes for a corpus with n characters. For the PeopleDaily 2000 corpus which contains
roughly 25 million characters, the procedure needs 6 × 25 × 106 ≈ 150MB memory, which can be easily fitted into
today’s desktop computer.

3 Fast Statistical Substring Reduction Algorithm

After getting the initial N-gram set, a statistical substring reduction procedure is required to rule out some unpoetical
substrings. The substring reduction problem can be described as follows: given a super string S1 = x1x2 . . . xn and
one of its substring S2 = xi . . . xj (i ≥ 1, j ≤ n, S2 6= S1), we remove S2 from N-gram set if S2 has a frequency near

1Each Chinese character needs 2 bytes to store.
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to S1 in corpus. More precisely, if the two strings have the same frequency in corpus, we call it substring reduction
with equal frequency ; if the two frequencies f1 and f2 are not equal but the condition |f1 − f2| < k holds, we call it
substring reduction with k-nearest frequency.

For the rest of the paper, we shall use the following notational conventions and definitions:

Definition 1 Let Ω = {X1, X2, . . . , Xi, . . . , Xn} be the N-gram set to be reduced, where Xi denotes the ith N-gram.
Each Xi is defined as: Xi = xi1xi2 . . . xij . . . xim, where xij is a character. Let Len(X) denote the length of string X,
then we have Len(X) = m.

Definition 2 Let f(X) denote the frequency of X occurs in corpus. If X never occurs in corpus, f(X) = 0.

Definition 3 Let Y be a N-gram such that Y ∈ Ω and Y = y1y2 . . . yn (n ≥ 2). Then string X that consists of
p (p < n) continual characters of Y that is called the substring of Y , denoted by X ∝ Y . The left most p continual
characters of Y make up of string XL which is called left substring of Y , denoted by XL ∝L Y . Similarly, the
right most p continual characters of Y constitute string XR, which is called the right substring of Y , is denoted by
XR ∝R Y .

Definition 4 Let X, Y ∈ Ω, if X ∝ Y and f(X)−f(Y ) = 0 then we say Xcan be reduced by Y with equal frequency

or Y can reduce X with equal frequency; If X ∝ Y and f(X)−f(Y ) < k(k > 0) then we say X can be reduced by Y
with k-nearest frequency or Y can reduce X with k-nearest frequency. If X can be reduced by a statistical string
with equal (k-nearest) frequency we say X can be reduced with equal (k-nearest) frequency. Whenever it is clear from
context, we say X can be reduced for short.

3.1 Traditional Statistical Substring Reduction Algorithm

Let |Ω| = n, then Ω has n N-grams. The ith(1 ≤ i ≤ n) N-grams in Ω is represented as a 3-tuple < Xi, fi, Mi >,
where Xi denote the ith N-gram, fi = f(Xi) is the frequency of Xi in corpus. Mi is a merging flag such that: Mi = 0
means Xi is not reduced, while Mi = 1 indicates Xi being reduced by its super string. The initial value of Mi is set
to 0. This algorithm is given in Algorithm 1.

Algorithm 1 k-nearest Frequency Statistical Substring Reduction Algorithm (Traditional Algorithm)

1: Input: Ω, k(k > 0)
2: Output: reduced N-gram set Ω′

3: for i = 1 to n do

4: for j = 1 to n do

5: if Xi ∝ Xj and fi − fj < k then

6: Mi = 1
7: for i = 1 to n do

8: if Mi = 0 then

9: output Xi

Obviously, this algorithm has a time complexity of O(n2), making it infeasible to handle large corpora.

3.2 Two Fast Statistical Substring Reduction Algorithm

To describe algorithm 2, we need to introduce the notation of reversed string first:

Definition 5 Let X = x1x2 . . . xn be a N-gram, then XR = xnxn−1 . . . x1 is defined as the reversed string of X.
All the reversed strings in Ω comprise the reversed string set ΩR.

In this algorithm, all steps have a time complexity of O(n) except step 3 and 9, which perform sorting on n
N-grams. It is worth mention that sorting can be implemented with radix sort which is an O(n) operation, therefore
this algorithm has an ideal time complexity of O(n). When special requirement on memory usage or speed is not
very important, one can use quick sort to avoid additional space requirement imposed by radix sort. Quick sort is an
O(n log n) operation, so the overall time complexity of algorithm 2 is O(n log n).

In algorithm 2, only step 6 and 12 modify the merging flag, we call them Left Merging and Right Merging of
algorithm 2. In algorithm 1, each string must be compared with all other strings in Ω whereas in algorithm 2, each
string is only required to be compared with two strings. Therefore algorithm 2 reduces the number of comparison
tremendously compared to algorithm 1.
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Algorithm 2 Fast k-nearest Frequency Statistical Substring Reduction Algorithm

1: Input: Ω, k(k > 0)
2: Output: reduced N-gram set Ω′

3: sort all N-grams in Ω in ascending order according to Xi’s value
4: for i = 1 to n do

5: if Xi ∝L Xi+1 and fi − fi+1 < k then

6: Mi = 1
7: for i = 1 to n do

8: reverse Xi

9: sort all N-grams in Ω in ascending order according to Xi’s value
10: for i = 1 to n − 1 do

11: if Xi ∝L Xi+1 and fi − fi+1 < k then

12: Mi = 1
13: for i = 1 to n do

14: reverse Xi

15: for i = 1 to n do

16: if Mi = 0 then

17: output Xi

Algorithm 3 is another Fast Statistical Substring Reduction algorithm based on hash table. For a N-gram X ∈ Ω,
we can design a hash function hash(X) and a hash table HT with a capacity of T , which can store 2-tuple < X, f(X) >.
Let HT [i] → X and HT [i] → f denote the N-gram and its frequency stored in the ith slot of HT respectively. If
there is no N-gram stored in HT [i], we say HT [i] is empty. The operation of removing < X, f(X) > from HT [i] is
called to empty HT [i]. To make our algorithm concise, we assume there is no hash collision here. The hash based
FSSR algorithm is given in algorithm 3.

Algorithm 3 Fast k-nearest Frequency Statistical Substring Reduction Algorithm(2)

1: Input: Ω, k(k > 0), m1 (m1 ≥ 1) m1 denotes the minimal length of a substring.
2: Output: reduced N-gram set Ω′

3: hash all strings in Ω into HT based on hash(X)
4: for i = 1 to T do

5: if HT [i] is not empty then

6: for all substring Y of HT [i] → X such that Len(Y ) > m1 and Len(Y ) ≤ Len(X)− 1 do

7: if HT [hash(Y )] is not empty and (HT [hash(Y )] → f − HT [i] → f) < k then

8: empty HT [hash(Y )]
9: for i = 1 to T do

10: if HT [i] is not empty then

11: output HT [i] → X

In this algorithm, step 3 and 9 have a time complexity of O(T ). Let m2 denote the length of the longest N-gram
in Ω, then for any given m1, m2 (m1 < m2) the following conditions hold:

1. there are at most (m2 − m1 + 3)(m2 − m1)/2 substrings for any super string.

2. the iterations of inner loop (step 6) is less than the constant (m2 − m1 + 3)(m2 − m1)/2.

So the time complexity of step 6 is determined by outer loop, also O(T ). Consequently the overall time complexity of
algorithm 3 is O(T ).

The motivation of algorithm 1 is to find all super strings starting from a given substring, whereas algorithm 3
tries to locate all substrings of a given super string. Since it is impossible to directly locate the super strings from
its substring, while one can enumerate all substrings of a super string easily, the searching space of algorithm 3 is
much smaller than algorithm 1. This explains why algorithm 3 has a lower time complexity compared to algorithm 1.
Algorithm 2 also tries to locate substrings from super string but restricts the searching space in suffix strings, hence
has a minimal searching space with a trade off of time spent on sorting. The reader is referred to (LÜ, 2003) for a
mathematical proof on the equality of the three algorithms.
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4 Post Processing

After performing N-gram extraction and statistical substring reduction, we get chunk candidates without the help of an
online dictionary. Still, there are many nonsensical N-grams (“garbage string”) in the result set. The purpose of post
processing is to rule out these “garbage strings” from candidates set as many as possible while retaining meaningful
chunks. Currently, a mutual information criterion is employed for filtering.

4.1 Mutual Information Criterion

Mutual Information(MI) is a statistical measurement of correlation of two random variables X and Y , which is defined
as:

MI(x, y) = log
P (x, y)

P (x) × P (y)
(1)

Where the probability x and y occur in corpus are denoted by P (x) and P (y), respectively. P (x, y) denotes the
probability of x and y co-occurs. For two adjacent characters x and y in corpus, their Mutual Information can be
calculated as:

MI(x, y) = log
P (x, y)

P (x) × P (y)
≈ log

C(x,y)
N

C(x)
N

× C(y)
N

= log
C(x, y) × N

C(x) × C(y)
(2)

Where N is the total number of characters in corpus, C(x), C(y), C(x, y) denote the frequencies of x,y and (x, y)

occur in corpus. Here we estimate P (x), P (y), and P (x, y) through C(x)
N

, C(y)
N

, C(x,y)
N

respectively. Mutual information
reflects the degree of correlation of two characters:

1. Given two characters x and y, if MI(x, y) � 0, it means x and y are highly correlated.

2. if MI(x, y) ≈ 0, it means there is no manifest correlation between x and y. Their cooccurence is only by chance.

3. if MI(x, y) � 0, then there is no correlation between x and y.

4.2 Filtering N-gram with Mutual Information

We can filter N-grams according to their mutual information. In our experiment, if the mutual information exceeds
predefined thresholds (i.e. MI(x, y) > f where f is an empirical threshold), we consider (x, y) is a valid chunk
candidate. Considering some language specific properties of Chinese, different filtering strategies are used based on
the length of N-gram:

1. For bigram (a, b): remove all (a, b) whose MI(a, b) < f from result set.

2. For trigram (a, b, c): remove (a, b, c) if either MI(a, b) < f or MI(b, c) < f .

3. For 4-gram (a, b, c, d): most Chinese 4-grams are compound words made up of two bigrams in the form
((a, b), (c, d)), thus MI(a, b) and MI(c, d) tend to have a higher value. So our filtering strategy is to remove
(a, b, c, d) when either MI(a, b) < f or MI(c, d) < f .

4. N-gram with n > 4: by manually inspecting the reduced N-gram set we find most extracted large N-grams
(n > 4) in Chinese are compound words, collocations or proper names which are already valid chunk candidates,
so we keep all N-grams longer than 4-gram without future filtering.

Some high frequency Chinese characters do not have strong cohesion when forming compound words. Most of them
are function words, the possessive and the copula, such as “{,�,z”, “·,�,Ç” and “Ç,�,Û,#”. Their existence
adds noisy to the result set. A stop list is built to further filter out N-grams with these heading (tailing) characters.

5 Evaluation

To measure the performance of our model under different sizes of corpora, we choose three Chinese corpora with
different sizes (Table 1). All experiments in this paper are carried out on a Dell PowerEdge 6000/700 with a PIII 700
MHz CPU and 2G RAM.
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Label Source Domain Size Characters

corpus1 People Daily of Jan, 1998 News 3.5M 1.8 million
corpus2 People Daily of 2000 News 48M 25 million
corpus3 Web pages from internet Various topics (novel, sports, politics etc.) 1GB 520 million

Table 1: Summary of the three corpora

5.1 Experiment 1: k-nearest Frequency Statistical Substring Reduction

Our goal here is to measure the effect of the fast substring reduction algorithm on corpora with different sizes. To
this end, we first extract 2-20 N-grams from raw corpora. Only N-grams with frequency larger than threshold f0 are
extracted to eliminate the influence of low frequency N-grams that are not reliable. Here we choose f0 = blog10 nc,
and n is the total number of characters in corpus. We first run k-nearest substring reduction algorithm to reduce
the size of the initial N-gram set by removing incomplete collocations (nonsensical substrings). We use k = f0 in
our experiments. Traditional substring reduction method (algorithm 1) serves as the baseline method to measure
the performances of two fast statistical substring reduction algorithms (algorithm 2 and 3). The sorting operation in
algorithm 2 is implemented as quick sort. Table 2 summarizes the results we obtained2:

�
�

�
�

�
�

�
�

�
�

�
�

��

Label
Time

(Including I/O)
Algo 1 Algo 2 Algo 3 N-grams Before N-grams After

corpus1 17 min 20 sec 3.3 sec 4.4 sec 110890 60458
corpus2 27 hours 48.8 sec 54.6 sec 1397264 672249
corpus3 N/A 8 min 23 sec 7 min 25 sec 19737657 10388240

Table 2: 2 - 20-gram k-nearest statistical substring reduction results

It can be shown from table 2 that the statistical substring reduction algorithm does reduce the N-gram result
set size significantly: the reduced N-gram set is 45% - 50% smaller than the original N-gram set. And the data in
table 2 indicates that the two newly proposed Fast Statistical Substring Reduction Algorithms are vastly superior to
baseline algorithm in terms of time consuming: even on small corpus like corpus 1, the speeds of algorithm 2 and 3
are 200-300 times faster than algorithm 1. This difference is not surprising. Since algorithm 1 has a time complexity
of O(n2), making it infeasible to handle even corpus of modest size, whereas the two fast algorithms both have an
O(n) time complexity, making even very large corpus tractable under current computational power: it takes less than
ten minutes to reduce a 2-20 N-gram set from corpus of 1 Giga bytes.

To further investigate the performances of algorithm 2 and 3 on corpora with different sizes, we draw twenty
samples from corpus 3 with sizes of: 50M,100M,. . . ,1000M, and extract 2-20 N-grams (f0 = 6) from these samples.
After that, we run algorithm 2 and 3 (k = 6) on these N-gram sets, recording the time consumed (not including I/O
operation). The result is illustrated in Figure 2:

Figure 2 shows that when algorithm 2 and 3 are applied to small corpora (<100M), there are no manifest differences
between them. As the size of corpus continues to grow, algorithm 3 becomes increasingly faster than algorithm 2.
On the 1000M sample, algorithm 3 performs 40% times faster than algorithm 2. The possible reason is, although
algorithm 3 has a time complexity of O(n), the hash finding has extra cost that hinders its speed. Moreover, on
small corpus the additional cost of loading hash table outweighs the speed gained by hashing, making algorithm 3
perform slightly worse than algorithm 2 (table 2). However, when dealing with large corpus, most computation of
algorithm 2 is spent on quick sort (O(n log n)), which costs more time than algorithm 3’s hash finding. Consequently,
algorithm 3 performs much better on large corpora. We therefore recommend that when processing corpora of median
size (<100MB), algorithm 2 is fast enough, for large corpus of Giga bytes, algorithm 3 should be chosen for best
performance.

5.2 Experiment 2: Filtering Chunk Candidates with Mutual Information

Even after the operation of substring reduction, the result set still contains many meaningless N-grams, we further
filter them with mutual information criterion in order to remove these superfluous “garbage strings”. The reduced set

2We did not run algorithm 1 on corpus 3 for it being too large to be efficiently handled by traditional statistical substring algorithm.
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Figure 2: Benchmark of Algorithm 2 and 3 under corpora with different sizes
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of corpus 2 (People Daily of year 2000) is selected to conduct this experiment. After filtering, our chunk candidates
set contains 111864 N-grams. To estimate the precision, we randomly choose 1000 N-grams out of the result set and
do a manually check. There are 863 meaningful chunk candidates found out of the 1000 samples, so the precision of
the extraction is about 86.3%. Some of the extraction results are given in table 3.

Meaningful Chunks Nonsensical Chunks

�¤ (Fu Run, company name) ÃÄ

ÊJ (the rex) "�

�� (Annie, person name) <�

ú' (be stolen) ·�

Òh�,+ (to express explicitly) ÓÄa

,=,�Ú� (the Coca-Cola company) ÿ¯I

�0Ì�s¸ (developing national education system) ÍÖE

ªe��� (to tell with great patience) Òhâ

f�ë�/ù (gas explosion accident) ÄöÌÌB

BÖ�dÙÄ (tree-planting action by volunteers) ÞÅ#�

±t�õh
 (come across many difficulties) /,êÛ�

��ê#�ê�Z�G (to improve the friendship and mutual understanding) MÄÜ�|Ê�uZÈ

Table 3: Some chunk candidates extracted from People Daily 2000 corpus

From the result set we can find that most large N-grams (n ≥ 4) are idioms, collocations or domain specific
compounds, most of which are not included in traditional Chinese dictionary. The majority errors occur in bigrams
and trigrams, possible reasons are:

1. some bigrams are wrongly identified as chunks because in Chinese these bigrams tend to occur frequently as
common parts of many longer phrases. But these bigrams themselves are nonsensical. For example, “ÃÄ” is
included in “ÃÄ7,,ÃÄ¢,ÃÄX�,ÃÄ*�. . . ”; “·�” is included in “æ·�ò,�·�Á,£·�ò. . . ”

2. Occasionally, some long chunks extracted are incomplete because of the N-gram length limitation (20 characters
in our experiment). For instance, the incomplete chunk: “÷B�öÌ?�OM��S�{c{�0~ã” has
20 characters. If we extract 21-gram we can correctly extract its super string (the complete chunk) as:“O÷
B�öÌ?�OM��S�{c{�0~ã (building a well-off society in an all-round way and speeding up
modernization to the new stage)” (21 characters).

Currently, the MI criterion we used could not effectively rectify the first kind of error. This is probably because we
only extract chunk with purely statistical measurement without even basic linguistic knowledge. Still, the result of
this method is encouraging.
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6 Conclusion

In this paper, we present a purely statistical method to extract Chinese chunk candidates from large monolingual
corpora. To address the redundant substring problem in extracted N-gram set, two Fast Statistical Substring Reduction
algorithms are proposed, both of which have a time complexity of O(n). Finally, mutual information criterion is applied
to extract useful chunk candidates. Perhaps the biggest contribution of this paper is that it is the first time to apply
Fast Statistical Substring Reduction algorithm to large corpora and demonstrate the effectiveness and efficiency of this
algorithm which, in our hope, will shed new light on large scale corpus oriented research such as new word discovery,
bilingual chunk extraction, long range collocation discovery etc. In future work, we would like to incorporate more
linguistic knowledge in our method such as:

1. Use probabilistic distribution of proper names to help detect chunks contains Chinese proper name.

2. May resort to a POS tagger or even a shallow tree parser to obtain basic linguistic information of chunk to make
the method more linguistic viable.

3. Use other criterions (such as a statistical language model) to help evaluate the result set.
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