
A
C

M
 T

ra
ns

ac
tio

ns
 o

n
A

si
an

 L
an

gu
ag

e
In

fo
rm

at
io

n
Pr

oc
es

si
ng

, V
ol

. 3
, N

o.
 4

, D
ec

em
be

r 2
00

4,
 P

ag
es

 2
43

-2
69

.

An Evaluation of Statistical Spam Filtering Techniques

Le Zhang, Jingbo Zhu, Tianshun Yao

Natural Language Processing Laboratory

Institute of Computer Software & Theory

Northeastern University, China

ejoy@xinhuanet.com, {zhujingbo, tsyao}@mail.neu.edu.cn
http://www.nlplab.cn/

Abstract

This paper evaluates five supervised learning methods in the context of statistical spam filtering. We study the
impact of different feature pruning methods and feature set sizes on each learner’s performance using cost-sensitive
measures. It is observed that the significance of feature selection varies greatly from classifier to classifier. In
particular, we found Support Vector Machine, AdaBoost and Maximum Entropy Model are top performers in this
evaluation, sharing similar characteristics: not sensitive to feature selection strategy, easily scalable to very high
feature dimension and good performances across different datasets. In contrast, Naive Bayes, a commonly used
classifier in spam filtering, is found to be sensitive to feature selection methods on small feature set, and fail to
function well in scenarios where false positives are penalized heavily. The experiments also suggest that aggressive
feature pruning should be avoided when building filters to be used in applications where legitimate mails are
assigned a cost much higher than spams (such as λ = 999), so as to maintain a better-than-baseline performance.
An interesting finding is the effect of mail headers on spam filtering, which is often ignored in previous studies.
Experiments show that classifiers using features from message header alone can achieve comparable or better
performance than filters utilizing body features only. This suggests that message headers can be reliable and
powerfully discriminative feature sources for spam filtering.

1 Background

The task of spam filtering is to rule out unsolicited e-mails automatically from a user’s mail stream. Spam mail, also
called unsolicited bulk e-mail or junk mail, is internet mail that is sent to a group of recipients who have not requested
it. These unsolicited mails have already caused many problems such as filling mailboxes, engulfing important personal
mail, wasting network bandwidth, consuming users’ time and energy to sort through it, not to mention all the other
problems associated with spam (crashed mail-servers, pornography adverts sent to children, and so on). According to
a series of surveys conducted by CAUBE.AU 1, the number of total spams received by 41 email addresses has increased
by a factor of 6 in two years (from 1753 spams in 2000 to 10,847 spams in 2001). Therefore it is challenging to develop
spam filters that can effectively eliminate the increasing volumes of unwanted mails automatically before they enter a
user’s mailbox.

In its simple form, spam filtering can be recast as Text Categorization task where the classes to be predicted
are spam and legitimate. A variety of supervised machine-learning algorithms have been successfully applied to mail
filtering task. A non-exhaustive list includes: Naive Bayes classifier [Sahami et al., 1998, Androutsopoulos et al.,
2000a, Schneider, 2003], RIPPER rule induction algorithm [Cohen, 1996], Support Vector Machines [Drucker et al.,
1999, Kolcz and Alspector, 2001], Memory Based Learning [Androutsopoulos et al., 2000b], AdaBoost [Carreras and
Márquez, 2001] and Maximum Entropy Model [Zhang and Yao, 2003]. While all these approaches seem appealing,
it is difficult to make a fair comparison of their performances based on published results. For one thing, the results
reported in previous works were often based on different corpora, making cross-classifier evaluation difficult. For
another, previous literature usually reported results obtained with optimal parameters tuned on a single corpus. It
is not known whether the same setting could yield comparable results under different configurations. For example,
[Androutsopoulos et al., 2000a] reported that Naive Bayes exhibits good performance on small feature set (< 300
features), but it is unclear whether Naive Bayes classifier still function well in the presence of tens of thousands of
features. Several attempts have been made to evaluate the performance of machine-learning methods on general text
categorization task where there are ten or more categories [Yang and Pedersen, 1997, Yang and Liu, 1999]. However,

1More information can be found at: http://www.caube.org.au/spamstats.html.

1

whether the same conclusion still holds on two-class spam filtering task remains to be an open question, especially
when user defined cost-sensitive measures are used.

This paper will attempt to bridge this gap, by giving experimental comparisons of common supervised learning
algorithms through a series of spam filtering experiments. More specifically, in this paper we seek answers to the
following questions:

• How factors such as feature-pruning methods and feature space sizes affect the filtering accuracy of each learner
with cost-sensitive measures in mind.

The unpruned feature space consists of tens of thousands of features, and not all classifiers can operate well in
the presence of many noisy features. Feature pruning is frequently employed to reduce the size of feature space,
making the computation of certain learners tractable. How these factors affect the classifiers’ performance under
cost-sensitive measures will be an important issue to be considered when delivering statistical spam filtering
techniques to real-world applications.

• Whether the same filtering techniques successfully applied to English can still yield comparable results in other
language settings or not.

The “bag of features” filtering model is known to work well on filtering English spams. To verify the language
independence of this model, we conducted several experiments on a newly compiled Chinese spam corpus.

• To what extent the information in different parts of a mail can improve filtering accuracy.

While most researches on anti-spam filtering focus on building “pure” content based filter that uses features from
message body only, relatively few attempts have been made to investigate the discriminative power of message
headers. As will be shown in this paper, message headers can be reliable sources of discriminative features for
spam filtering.

The rest of this paper is structured as follows, Section 2 provides a high-level overview of the general machine-
learning framework for spam filtering. Section 3 outlines the major characteristics of each learning method investigated
in this evaluation. Detail information on four benchmarking corpora is presented in Section 4, including a newly
compiled Chinese corpus. This is followed in Section 5 with the description of the experimental setup, how the dataset
was chosen, what feature selection strategies were used, and the analysis of experimental results. We review related
researches in Section 6 and formulate our conclusion in Section 7.

2 Spam Filtering as Text Categorization

Spam filtering is a real-world application of Automated Text Categorization (ATC) task [Sebastiani, 2002], a field that
has undergone intensive research in recent years. The early approaches to TC were to manually construct document
classifiers with rules compiled by domain experts, which is appropriate when few machine-readable texts were available
and the computational power was expensive. Recent trends in the TC community have shifted to building classifiers
automatically by applying some machine-learning algorithms to a set of pre-classified documents (training data). This
is also called the statistical approach, in the sense that differences among documents are usually expressed statistically
as the likelihood of certain events, rather than some heuristic rules written by human. This trend is reflected in the
goal of statistical spam filtering, which aims at building effective spam filters automatically from email corpus. We
begin with a formal definition of automated spam filtering task, followed by a discussion on feature pruning methods
and performance measures used in this work.

2.1 Definition

Follow the description used in [Sebastiani, 2002], we now give a definition of Automated Spam Filtering.
Given message set D = {d1, d2, . . . , dj , . . . , d|D|} and category set C={c1 = spam, c2 = legitimate}, where dj

is the j th mail in D and C is the possible label set. The task of Automated Spam Filtering is to build a boolean
categorization function Φ(dj , ci) : D × C → {True, False}. When Φ(dj , ci) is True, it indicates message dj belongs to
category ci; when Φ(dj , ci) is False, it means dj does not belong to ci.

In the setting of spam filtering there exist only two category labels: spam and legitimate. Each message dj ∈ D
can only be assigned to one of them, but not both. Therefore we can use a simplified categorization function Φspam(dj) :
D → {True, False} instead. A message is classified as spam when Φspam(dj) is True, and legitimate otherwise.

Using the above notation, applying supervised machine-learning algorithms to spam filtering consists of two stages:
the training stage and the classification stage:

2

Table 1: Summary of different term selection methods
Function Denoted by Mathematical form

Document Frequency DF (tk) | { ~dj | ~dj ∈ D and tk occurs in ~dj} |

Information Gain IG(tk, ci) IG(tk) =
∑

c∈{ci,c̄i}

∑

t∈{tk,t̄k}
Pr(t, c) · log Pr(t,c)

Pr(t)·Pr(c)

Chi-square χ2(tk, ci)
|D|·[Pr(tk,ci)·Pr(t̄k,c̄i)−Pr(tk,c̄i)·Pr(t̄k,ci)]

2

Pr(tk)·Pr(t̄k)·Pr(ci)·Pr(c̄i)

• During Training
A set of labeled messages must be provided as training data, which are first transformed into a representation
that can be understood by the learning algorithms. The most commonly used representation for Spam Filtering
is Vector Space Model (VSM), in which each document dj ∈ D is transformed into a real vector ~dj ∈ R

|V|, where

V is the vocabulary (feature set), and the coordinates of ~dj represent the weight of each feature in V . Then we

can run a learning algorithm over the training data to create a classifier Φspam(~dj) → {True, False}.

• During Classification
The classifier Φspam(~dj) is applied to the vector representation of a new document d to produce a prediction
whether d is spam or not.

2.2 Feature Dimension Reduction

The original feature space transformed with the Vector Space Model may contain tens of thousands of different
features, and not all classifiers can handle such a high dimension gracefully. Dimension reduction (also called feature
pruning or feature selection) is usually employed to reduce the size of the feature space to an acceptable level, typically
several orders of magnitude smaller than the original one. The benefit of dimension reduction also includes a small
improvement in prediction accuracy in some cases [Yang and Pedersen, 1997].

[Yang and Pedersen, 1997] compared the effectiveness of several feature pruning methods in the context of general
Text Categorization task. Their experiment showed that Document Frequency (DF), Information Gain (IG) and χ2

statistics (CHI) have a clear advantage over two other commonly used feature selection methods: Mutual Information
(MI) and Term Strength (TS) in TC task. We therefore decide to restrict our attention to DF, IG, and CHI in this
work.

Let t denote the feature (term) of interest, and c is the category label (either spam or legitimate). Then
Pr(t), P r(c), and Pr(t ∧ c) are the probabilities of t, c, and both t and c occur in training set D. The mathematical
forms of the three feature selection methods are summarized in Table 1.

It is worth mentioning that Information Gain is just the weighted average of the Mutual Information between
(t, c) and (t̄, c), and is also called the average mutual information [Fano, 1961]. IG has been used in several anti-spam
experiments under the name of “Mutual Information” [Sahami et al., 1998, Androutsopoulos et al., 2000c, Schneider,
2003]. We shall use the name IG in the rest of this paper to avoid possible confliction with Mutual Information, which
is defined to be:

MI(t, c) = log
Pr(t ∧ c)

Pr(t) · Pr(c)
(1)

2.3 Performance Measures

We now introduce the performance measures used in this paper. Let S and L stand for spam and legitimate message
respectively. nL→L, nS→S denote the numbers of legitimate and spam messages correctly classified by the system.
nL→S represents the number of legitimate messages misclassified as spam (false positive), and nS→L is the number of
spam messages wrongly treated as legitimate (false negative). Then spam precision(p), spam recall(r) and F1-measure
are defined as follows:

Precision(p) =
nS→S

nS→S + nL→S

(2)

Recall(r) =
nS→S

nS→S + nS→L

(3)

F1(p, r) =
2pr

p + r
(4)

When filtering spam, it is worth noting that misclassifying a legitimate mail as spam is much more severe than
letting a spam message pass the filter. Letting a spam go through the filter generally does no harm while misblocking

3

an important personal mail as spam can be a real disaster. The usual precision/recall/F1 measures tell little about a
filter’s performance when false positive and false negative are weighted differently. To introduce some cost-sensitive
evaluation measures that assign false positive a higher cost than false negative, a Weighted Accuracy (WAcc) measure
specially tailored for this scenario can be used. WAcc was introduced by [Androutsopoulos et al., 2000b] and has
been used in several spam filtering benchmarks [Androutsopoulos et al., 2000b, Carreras and Márquez, 2001]. WAcc
is defined as:

WAccλ =
λ · nL→L + nS→S

λ · NL + NS

(5)

where NL is the total number of legitimate messages and NS denotes the total number of spams. WAcc treats each
legitimate message as if it were λ messages: when false positive occurs, it is counted as λ errors; and when it is
classified correctly, this counts as λ successes. The higher λ is, the more cost is penalized on false positives.

[Androutsopoulos et al., 2000b] also introduced three different values of λ: λ = 1, 9, and 999. When λ is set to 1,
spam and legitimate mails are weighted equally; when λ is set to 9, a false positive is penalized nine times more than
a false negative; for the setting of λ = 999, more penalties are put on false positive: misblocking a legitimate mail is
as bad as letting 999 spam messages pass the filter. Such a high value of λ is suitable for scenarios where messages
marked as spam are deleted directly.

In practice, when λ is assigned a high value (such as λ = 999), WAcc can be so high that it tend to be easily
misinterpreted. To avoid this problem, it is better to compare the weighted accuracy and error rate to a simplistic
baseline. As suggested in [Androutsopoulos et al., 2000c], we use the case where no filter is present as baseline:
legitimate messages are never blocked and spams can always pass the filter. Then the baseline versions of weighted
accuracy and weighted error rate are:

WAccb =
λ · NL

λ · NL + NS

, WErrb =
NS

λ · NL + NS

(6)

To allow easy comparison with the baseline, [Androutsopoulos et al., 2000c] introduces the Total Cost Ratio (TCR)
as a single measurement of the spam filtering effects:

TCR =
WErrb

WErr
=

NS

λ · nL→S + nS→L

(7)

Here greater TCR values indicate better performance. If TCR is less than 1.0, then the baseline (not using the filter)
is better. An effective spam filter should be able to achieve a TCR value higher than 1.0 in order to be useful in real
world applications.

3 Methods Evaluated

In this section, we will give a brief description to each of the five supervised learning methods investigated in this
work. We begin with two probabilistic classifiers: Naive Bayes and Maximum Entropy Model. They are probabilistic
in the sense that they are able to estimate the probability of each category being predicted. Then we proceed with a
memory-based approach that labels a new message according to its similarity between stored instance base. After that,
we introduce Support Vector Machine, a learning paradigm that is based on Structured Risk Minimization principle
[Vapnik, 1995, Cortes and Vapnik, 1995]. Finally, we discuss AdaBoost [Freund and Schapire, 1996], a relatively new
framework for boosting a weak learner into a strong one. These particular techniques are chosen because of their
excellent performance reported in previous studies.

3.1 Naive Bayes

Naive Bayes (NB) is a widely used classifier in Text Categorization task [Lewis, 1998, McCallum and Nigam, 1998]. It
also enjoys a blaze of popularity in anti-spam researches [Sahami et al., 1998, Pantel and Lin, 1998, Androutsopoulos
et al., 2000a, Schneider, 2003], and often serves as baseline method for comparison with other approaches.

Given a feature vector ~dj = {wj1, wj2, . . . , w
j|~dj |

} of a message, where wji is the weight of feature i, and let c

denote the category to be predicted (c ∈ {spam, legitimate}), by Bayes law the probability that ~dj belongs to c is:

P (c | ~dj) =
P (c) · P (~dj | c)

P (~dj)
(8)

4

where P (~dj) is the probability that a randomly picked document has vector ~dj as its representation, P (c) is the prior

probability of a randomly picked document with label c and P (~dj | c) denotes the probability of a random picked

document with label c has ~dj as its representation.

The denominator P (~dj) is the same for all categories under consideration and can be dropped safely. The parameter
P (c) can be estimated from training data through relative frequency. However, it is usually infeasible to compute

the term P (~dj | c) directly. Since the number of possible vectors ~dj is too high. In order to alleviate this problem
it is common to make the assumption that any two coordinates of the document vector are, when viewed as random
variables, statistically independent of each other. So P (~dj | c) can be decomposed to:

P (~dj | c) =

|V|
∏

i=1

P (wji | c) (9)

This is where the name “Naive” comes from. Despite the fact that this kind of assumption is often violated in real
world data, Naive Bayes classifier performs fairly well on spam filtering task [Sahami et al., 1998, Androutsopoulos
et al., 2000a]. In our implementation of Naive Bayes we also use the Laplacean prior to smooth the estimate of
P (wji | c), as suggested in [McCallum and Nigam, 1998].

Once the classifier is built, we can classify a message ~dj to be spam if P (spam | ~dj) exceeds a predefined threshold
t. In our experiment where mis-classifying a legitimate message is λ times more costly than wrongly labeling a spam
as legitimate, Naive Bayes classifier is expected to achieve an optimal result by setting t = λ/(1 + λ), as long as the
probability estimates are accurate [Lewis, 1995].

3.2 Maximum Entropy Model

Maximum Entropy (ME or MaxEnt) Model [Berger et al., 1996] is a general-purpose machine-learning framework
that has been successfully applied to a wide range of text processing tasks such as Statistical Language Modeling
[Rosenfeld, 1996], Language Ambiguity Resolution [Ratnaparkhi, 1998] and Text Categorization [Nigam et al., 1999].

Given a set of training samples T = {(x1, y1), (x2, y2), . . . , (xN , yN)} where xi is a real value feature vector and
yi is the target class, the maximum entropy principle [Jaynes, 1983] states that we should summarize data T with a
model that is maximally noncommittal with respect to missing information. Among distributions consistent with the
constraints imposed by T , there exists a unique model with highest entropy in the class of exponential models of the
form:

PΛ(y | x) =
1

ZΛ(x)
exp

[

n
∑

i=1

λifi(x, y)

]

(10)

where Λ = {λ1, λ2, . . . , λn} are parameters of the model, fi(x, y)’s are arbitrary feature functions the modeler chooses
to model, and ZΛ(x) =

∑

y exp [
∑n

i=1 λifi(x, y)] is the normalization factor to ensure PΛ(y | x) is a probability
distribution. Moreover, it has been shown that the Maximum Entropy model is also the Maximum Likelihood solution
on the training data that minimizes the Kullback-Leibler divergence between PΛ and the uniform model [Della Pietra
et al., 1997].

Since the log-likelihood of PΛ(y | x) on training data is convex in the model’s parameter space Λ, a unique Maximum
Entropy solution is guaranteed and can be found by maximizing the log-likelihood function:

LΛ =
∑

x,y

p̃(x, y) log pΛ(y | x) (11)

where p̃(x, y) are empirical probability distribution. In practice, the parameter Λ can be computed through numerical
optimization method. In our experiment, we use the Limited-Memory Variable Metric method [Liu and Nocedal,
1989], a Limited-memory version of quasi-newton method (also called L-BFGS) to find Λ. Applying L-BFGS requires
evaluating the gradient of object function LΛ in each iteration, which can be computed as:

∂L

∂λi

= Ep̃fi − Epfi (12)

here Ep̃fi
and Epfi

denote the expectation of fi with respect to the empirical distribution p̃, and model p, respectively.
The advantage of ME model is the ability to freely incorporate features from diverse sources into a single, well-

grounded statistical model. [Zhang and Yao, 2003] applied Maximum Entropy Model to a junk filtering task and
reported ME model outperforms a baseline Naive Bayes classifier. In this evaluation, a publicly available ME toolkit
from the first author was used.2

2Availability at: http://www.nlplab.cn/zhangle/maxent toolkit.html.

5

3.3 Memory Based Learning

Memory-based Learning (also called instance based learning) is a non-parametric inductive learning paradigm that
stores training instances in a memory structure on which predictions of new instances are based. The approach is
based on the assumption that reasoning is based on direct reuse of stored experiences rather than on the application
of knowledge (such as rules or decision trees) abstracted from experience. The similarity between the new instance X
and example Y in memory is computed using a distance metric δ(X, Y). In our experiment, we used IB1-IG, a k-NN
classifier that uses an Information Gain (IG) weighted overlap metric, which is defined as:

4(X, Y) =

n
∑

i=1

wiδ(xi, yi) (13)

where wi is the Information Gain of feature i, and δ(xi, yi) is defined to be:

δ(xi, yi) =

{

0 if xi = yi

1 if xi 6= yi
(14)

Memory-based Learning has been applied to spam filtering task with comparable results to a Naive Bayes classifier
[Androutsopoulos et al., 2000b]. The memory-based learner used in our work is TiMBL [Daelemans et al., 1999], a
software package developed by the ILK Research Group, Tilburg University. TiMBL is a collection of memory-based
learners that sit on top of the classic k-NN classification kernel with added metrics, algorithms, and extra functions.

3.4 Support Vector Machine

Support Vector Machine (SVM) is a powerful supervised learning paradigm based on the Structured Risk Minimization
principle from computational learning theory [Vapnik, 1995, Cortes and Vapnik, 1995].

Given a set of training data T = {(x1, y1), (x2, y2), . . . , (xN , yN)} , where xi ∈ R
n and y ∈ {+1,−1} (here +1

denotes spam and −1 stands for legitimate mail). Training a support vector machine equals to finding the solution of
the following optimization problem:

min
w,b,ξ

1

2
W T · W + C

N
∑

i=1

ξi (15)

subjected to yi(W
T φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0 (16)

here training vectors xi’s are mapped into a higher (maybe infinite) dimensional space by the function φ. W is a
weight vector that should be minimized in finding an optimal linear separating hyperplane in this higher dimensional
space. ξi’s are slack variables and are used together with constant C ≥ 0 to find solution of (15) in non-separable
cases.

SVM has been reported remarkable performance on Text Categorization task with many relevant features [Joachims,
1998b]. It has also been applied to spam filtering task with excellent filtering accuracy [Kolcz and Alspector, 2001,
Drucker et al., 1999]. In our evaluation, we used an off-the-shelf SVM implementation: SV M light [Joachims, 1998a]
to build SVM models. The output of SVM is the signed distance between the instance to be classified and the clas-
sification hyperplane. It is possible to normalize the real-value output from SVM into values in [0, 1] via sigmoid
transformation [Platt, 1999], so that the result can be evaluated in terms of cost-sensitive measures. We tried the
sigmoid transformation but found the normalized output fail to work well when setting threshold with t = λ/(1 + λ).
Therefore, in our experiment we took the approach of adjusting spam threshold θ directly on the output of SVM
through cross-validation. When an instance has a distance greater than θ it is labeled as a spam, otherwise it is
treated as a legitimate mail. Two different thresholds θ9 and θ999 are used for λ = 9 and 999, respectively.

3.5 Boosting

AdaBoost [Freund and Schapire, 1996] is a relatively new learning framework for constructing a highly accurate clas-
sification rule by combining many weak hypotheses, each of which may be only moderate accurate. The AdaBoost
algorithm can be described as follows:

Given: training examples {(x1, y1), . . . , (xm, ym)}, where xi is a real value vector, yi ∈ {+1,−1} (+1 denotes spam
and −1 denotes legitimate); the number of training rounds T .

6

Initialize: D1(i) = 1/m.
For t = 1, . . . , T :

• Train weak learner using distribution Dt.

• Get weak hypothesis ht : X → [−1, +1] and its error εt.

• Set αt = 1
2 ln

(

1−εt

εt

)

.

• Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

(17)

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution) that should be mini-
mized in each round of training.

Output the final hypothesis:

H(x) = sign(f(x)) = sign

[

T
∑

t=1

αtht(x)

]

. (18)

here Dt is the distribution at round t, ht(x) : X → R is the weak rule acquired according to Dt.
The AdaBoost algorithm boosts the accuracy of a weak learner by efficiently simulating the weak learner on multiple

distributions over the instance space and taking the majority vote of the resulting output hypotheses. The algorithm
maintains a set of weights over the training samples and updates these weights in each round of training. Here the
weight-updating rule is chosen so that the weight of samples that are misclassified are increased, and the weights of
correctly classified samples are decreased. This effectively makes the base learner concentrate on the “harder” samples
as training goes on. [Carreras and Márquez, 2001] used AdaBoost algorithm to induce classifiers from decision trees
and reported good result on PU1 corpus (described in next section).

There are four different versions of AdaBoost algorithms introduced in [Schapire and Singer, 2000], among which
the real AdaBoost.MH algorithm proved to be the most effective one on Text Categorization task. In our experiment,
we implement a version of real AdaBoost.MH learner that boosts a weak learner of decision stump. A decision stump
is a one level decision tree of the form:

h(x) =

{

c0 if p holds in x
c1 otherwise

(19)

where c0 and c1 are real numbers, p is the predicate of the tree’s root node. In each round of training, a stump
(p, c0, c1) is built so that Zt =

∑m
i=1 Dt(i) exp [−αtyiht(xi)] is minimized. The reader is referred to [Schapire and

Singer, 2000] for details on AdaBoost.MH algorithm. Like SVM, the final decision is made by evaluating the real
output of AdaBoost.MH against a threshold θ chosen empirically through cross-validation. Two thresholds θ9 and
θ999 are used for different λs.

4 Testing Corpora

Unlike general Text Categorization task where many standard benchmark collections exist, relatively few spam corpora
are available, and the sizes are often small. This is probably because while it is easy to collect spam messages (from
internet resources like http://spamarchieve.org), it is much harder to collect legitimate mails for the reason of protecting
personal privacy. A common approach to compile spam corpus is to mix legitimate mails from one source with spam
messages collected from another place. This may lead to a bias when training the classifier: the corpus compiled
may not reflect the true distribution of spam mails and tend to be easily separable. A better way may be collecting
both legitimate and spam messages from the same source (for instance, a publicly available mailing list that is heavily
spammed). To make a thorough evaluation, four publicly available spam corpora are used in this work. Table 2
summarizes the basic properties of each corpus.3

3When counting vocabulary size, we treat the same word occurs in mail subject and body part as two distinct words.

7

Table 2: Summary of four spam corpora used in this evaluation
Corpus No. of spam No. of legitimate Spam Rate Vocabulary Size

PU1 481 618 43.77% 24748
Ling 481 2412 16.63% 65723
SA 1897 4150 31.37% 134850
ZH1 1205 428 73.79% 43134

• PU1 Corpus

The PU1 4 corpus consists of 1099 messages, 481 of which are marked as spam and 618 are labeled as legitimate,
with a spam rate of 43.77%. The messages in PU1 corpus have header fields and html tags removed, leaving only
subject line and mail body text. To address privacy, each token was mapped to a unique integer. The corpus
comes in four versions: with or without stemming and with or without stop word removal.

• Ling-spam Corpus

The Ling-spam corpus was collected by the same author of PU1 corpus, which includes: 2412 legitimate messages
from a linguistic mailing list and 481 spam messages collected by the author with a 16.63% spam rate. Like PU1
corpus, four versions are available with header fields, html tags, and attachments removed.

Since the Ling-spam corpus was compiled from different sources: the legitimate messages came from a spam-free,
topic-specific mailing list, and the spam mails were collected from a personal mailbox, the mail distribution is
less like that of the normal user’s mail stream, which may make messages in Ling-spam corpus easily separable.

• SpamAssassin Corpus

The SpamAssassin (SA) corpus is a larger collection made available by spamassassin.org. 5 SA corpus includes
1897 spam messages and 4150 legitimate messages with a spam rate of 31.37%. All messages come in raw email
format. This makes it possible to evaluate the contribution of header fields in classifying spams.

• ZH1 Chinese Spam Corpus

While good spam filtering results have been reported on several English corpora, it is still unclear whether the
same technique is effective in other language settings. To explore this point, we compiled a publicly available
Chinese spam corpus named ZH1 6. The ZH1 corpus is made up of 1205 spam messages and 428 legitimate
messages collected by the first author, with a spam rate of 73.79%. The messages in ZH1 corpus are all simplified
Chinese text with GB2312/GBK encoding.

Unlike English where there are explicit boundaries between words, Chinese text is written continuously without
word delimitation. To apply the word based spam filtering techniques to Chinese, we segmented the Chinese text
into words with a Chinese word segmenter developed by the Natural Language Processing Lab, Northeastern
University 7. All Chinese texts in header fields, message body, sender, and recipient’s names are tokenized into
words before further processing.

4.1 Corpus Preprocessing

The purpose of corpus preprocessing is to transform messages in mail corpus into a uniform format that can be
understood by the learning algorithms. In our experiment we transformed features found in mails into a Vector Space
in which we define each dimension of the space as corresponding to a given feature in the entire corpus of messages
seen. Each individual message can be represented as a binary vector denoting which features were present or absent
in the message. This is frequently referred to as the “bag of words” approach.

Messages in PU1 and Ling-spam corpora have already been parsed and tokenized into individual words with
binary attachments and HTML tags removed. The other two corpora SA and ZH1 contain raw messages in a well-
formed format: each message has several header fields recording information like the mail server used, the sender and
receiver’s addresses, the mail agents used and so on, followed by a body part (with several attachments in some cases).
In tokenizing the raw messages, we chose to use an attribute-value representation to map tokens into features: each
token consists of an attribute field indicating the token’s position in the message paired with the token’s value. The

4The PU1 Corpus and the Ling-spam Corpus are freely available from: http://www.aueb.gr/users/ion/publications.html.
5Availability: http://spamassassin.org/publiccorpus. Several versions of the corpus exist on that site. We use the version labeled as

20030228 in this experiment.
6ZH1 Corpus is freely available from: http://www.nlplab.cn/zhangle/spam/zh1.tar.bz2.
7see http://www.nlplab.cn.

8

attribute set includes common parts found in mail: subject, body, return-path, received server, from, to, and so on.
Under this representation, the word “Free” occurs in message subject line and body text are treated as two distinct
tokens: (subject:Free) and (body:Free). Html tags and attachments were removed.

Word stemming and stop-word removal are two other issues need to be considered in tokenizing emails. Word
stemming refers to converting words to their morphological base forms, for example, both “clicking” and “clicked”
are reduced to root word “click”. Stop-word removal is a procedure to remove words that are found in a list of
frequently used words like “and, for, a”. The main advantages of applying word stemming and stop-word removal are
the reduction of feature space dimension and possible improvement on classifiers’ prediction accuracy by alleviating the
data sparseness problem. [Androutsopoulos et al., 2000c] have investigated the use of word stemming and stop-word list
on the performance of a Naive Bayes classifier using PU1 corpus. Their result shows that most of time stemming and
stop-word removal do not have a statistically significant improvement over the non-stemming, no-stop-word removal
filter. Furthermore, word stemming only applies to certain Latin-like languages, and is nonsensical to Asian languages
like Chinese or Japanese. For this reason we only use the non-stemming, no-stop-word removal versions of PU1 and
Ling-Spam corpus and do no special treatment on words in SA and ZH1 corpus.

5 Cost-Sensitive Evaluation

5.1 Experiment I: The Impact of Feature Selection Method

The first experiment was designed to reveal the impact of different feature pruning strategies and feature space sizes
on the performance of each classifier. Our primary interest is to find whether the three feature selection methods:
document frequency (DF), information gain (IG) and χ2-test (CHI), which were found to be especially effective on
general multi-class Text Categorization tasks [Yang and Chute, 1994], perform similarly on two-class spam filtering
task with cost-sensitive measures in mind. Beside this goal, we also want to identify the scalability of each learner
empirically by varying the feature set sizes.

To this end, we gradually increased the feature set size of each corpus by selecting top N features ranked with
DF, IG, and CHI respectively. We then trained and tested each classifier on the same training/testing split using
ten-fold cross validation. When it comes to evaluation criteria, we chose to focus on Total Cost Ratio (TCR) with
λ set to 9 and 999. Since the main difference between spam filtering and general Text Categorization task is that
in classifying spams, the two types of error (mis-classify spam as legitimate and wrongly mark legitimate as spam)
should be weighted differently. In general, people are more interested in scenarios where wrongly labeling a legitimate
mail (false positive) is penalized much more than letting a spam pass the filter (false negative). The commonly used
precision, recall and F1 measures fail to incorporate cost-sensitive penalties in evaluation, thus do not fill the bill here.
TCR addresses this issue by providing a single cost-sensitive measure that allows the classifiers’ performances to be
compared with a baseline easily.

To make a fair comparison, we tried different parameter settings of each learner several times and reported the
results under optimal settings. The similarity metric used in TiMBL was IB1-IG, with k nearest neighbor set to 1.
For SV M light package, we found default setting (linear kernel) worked well. Switching to other kernels and parameter
settings usually did not gain any improvement. The Maximum Entropy Model was trained up to 100 L-BFGS iterations
with a global gaussian prior set to 1.0. Each Boost Stumps was built from 100 rounds of boosting. More rounds in
training did not lead to a statistically manifest improvement in accuracy but required substantially longer training
time.

To save space, we only plot the five classifiers’ TCR9 and TCR999 values obtained on SA corpus (Figure 1 to 5).
The X-Axis indicates different feature set sizes 8; the Y-axis is the TCR measure 9. All the p-values reported in the
rest of this paper were obtained with paired single-tailed t test [Dietterich, 1998].

We can make several useful observations when putting the results together (Figures 1 to 5). The first thing we
notice on the figures is that the performance of most classifiers (except Timbl) increased as more features were used
(similar observations were made on other corpora though not plotted here). This corresponds to the intuition that
the more relevant features selected, the more prediction power a classifier can produce. Yet as we will see later, the
gain from increasing feature set size varies greatly from classifier to classifier.

From the TCR9 measure of Naive Bayes (Figure 1-a) we find IG performed slightly better than CHI, and CHI
worked much better than DF. CHI outperformed DF on 22 attribute set sizes, confirmed with p < 0.05. The difference

8The feature set sizes were gradually increased from 50 to 500 with a step of 50, then 600 to 1000 with a step of 100, and finally 2000
to 10000 with a step of 1000. Total 24 different sizes.

9When computing the TCR value, it’s important not to average the TCRs from results of 10-CV experiment. Since some TCR values
obtained can be undefined (WErr is zero), and the small value of TCR can introduce bias. We choose to calculate the final TCR as
averaged WErrb divided by averaged WErr, as was done in [Androutsopoulos et al., 2000c].

9

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 1-a: TCR9 measure of Naive Bayes on SA corpus

df
chi
ig

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 1-b: TCR999 measure of Naive Bayes on SA corpus

df
chi
ig

Figure 1: TCR performance curves of Naive Bayes on SA corpus. The threshold t is 0.9 for TCR9 measure (left) and
0.999 for TCR999 measure (right).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 2-a: TCR9 measure of Maximum Entropy Model on SA corpus

df
chi
ig

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 2-b: TCR999 measure of Maximum Entropy Model on SA corpus

df
chi
ig

Figure 2: TCR performance curves of Maximum Entropy Model on SA corpus. The threshold t is 0.9 for TCR9
measure (left) and 0.999 for TCR999 measure (right).

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 3-a: TCR9 measure of MBL on SA corpus

df
chi
ig

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 3-b: TCR999 measure of MBL on SA corpus

df
chi
ig

Figure 3: TCR performance curves of Memory Based Learner on SA corpus.

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 4-a: TCR9 measure of SVM on SA corpus

df
chi
ig

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 4-b: TCR999 measure of SVM on SA corpus

df
chi
ig

Figure 4: TCR performance curves of SV M light on SA corpus, with spam threshold θ9 set to 0.48 (TCR9) and θ999

set to 1.38 (TCR999).

10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 5-a: TCR9 measure of Boost Stump on SA corpus

df
chi
ig

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 5-b: TCR999 measure of Boost Stump on SA corpus

df
chi
ig

Figure 5: TCR performance curves of Boost Stumps on SA corpus, with spam threshold θ9 set to 1.95 (TCR9) and
θ999 set to 6.82 (TCR999).

between DF and IG, CHI is notably big when feature size is small. When less than 1000 features were used, CHI and
IG surpassed DF on 15 attribute set sizes at p < 0.01. As more features were used, Naive Bayes’s accuracy increased
gradually in terms of TCR9, obtaining a filtering performance better than baseline (TCR9 > 1.0).

The TCR999 result of Naive Bayes on SA corpus (Figure 1-b) is not exciting. All data points (except X-Axis =
50) fall far below 1.0, and the majority TCR999 values are below 0.02. This implies that in the scenario of λ = 999 the
baseline (no filter) is much better than a Naive Bayes filter is present. Manually checking the output of Naive Bayes
shows NB wrongly assigned a small handful of legitimate mails a spam probability very close to 1.0. This can account
for the low TCR999 value of NB when false positives are penalized heavily. It is worth noting that Naive Bayes still
performed well if we chose to use a small λ, witnessed by a TCR1 value of 10.0 on this corpus (not shown here).

For Maximum Entropy model (Figure 2), all feature selection methods work well on a wide range of feature set
sizes. And it seems ME model can benefit from using larger feature sets: the TCR9 values obtained on big feature
sets (>2000) are higher than that of smaller ones. DF performed worse than CHI and IG only when less then 300
features were used, confirmed with p < 0.01, but worked comparably with CHI and IG on larger feature set. When λ
is set to 999 (Figure 2-b), ME was able to maintain a stable TCR999 value well above 1.0 baseline, which indicates
ME could be used somewhat safely at this level of λ. The difference between the three feature selection methods is not
statistically significant except when less than 300 features were used, where DF performed much worse (p < 0.01).
We further notice that the TCR999 values of ME model are not stable and fluctuate between 0.8 and 3.0 until more
than 1000 features were used.

The TCR9 value of the memory-based learner Timbl (Figure 3-a) peaked at 600 features filtered with CHI, achieving
a maximum of 7.0. With more features added (>700), Timbl’s performance started to degrade. It is observed that
CHI is slightly better than IG, which works much better than DF. The difference is notably big when about 500
features were used.

The TCR999 curve of Timbl (Figure 3-b) is rather disappointing: all feature selection methods failed to obtain a
TCR999 greater than 0.1. This makes Timbl totally unusable when λ is set to 999. We feel the low TCR score of Timbl
can be attributed to the categorical output from the underlying K-NN classifier, which lacks an easy way to adjust
the threshold of class labels in accord with different λs 10. Thus Timbl is difficult to be optimized for cost-sensitive
evaluation, despite the fact that Timbl can achieve an F1 value of 95% on PU1 corpus and an F1 value of 97.5% on
SA corpus (not shown here).

In the case of SVM (Figure 4), good results were achieved on all three feature selection methods with the threshold
θ9 set to 0.48 and θ999 set to 1.38 empirically. DF is inferior to CHI and IG on small feature sets (<300), confirmed
with p < 0.01. However, this difference becomes insignificant as more features were added. When using more than
2000 features, there is no statistically manifest difference between the three feature pruning methods, conforming the
early observation of [Joachims, 1998b] that SVM can tolerate many noisy features. The good filtering result achieved
by the linear kernel also implies that the spam filtering tasks conducted in this work are mostly linear separable.

Similar to the TCR999 curve of Maximum Entropy Model, the TCR999 values of SVM are fluctuant at small
feature sizes, and become stable when more than 2000 features were used. On feature set larger than 700 features,
SVM’s TCR999 values are constantly above the 1.0 baseline (Figure 4-b). This suggests that it may be viable to use
SVM in this scenario safely.

10[Androutsopoulos et al., 2000c] circumvented this limitation by adding a post-processing step to Timbl’s output which multiplied the
number of legitimate neighbors by λ before deciding on the majority class in the neighborhood. Such a post-processing was not used in
our experiments with Timbl.

11

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 6-a: TCR9 measures of five classifiers on PU1 corpus

mbl
boost

nb
svmlight
maxent

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 6-b: TCR999 measures of five classifiers on PU1 corpus

mbl
boost

nb
svmlight
maxent

Figure 6: TCR measures of five classifiers on PU1 corpus with features filtered with IG. The spam thresholds are
t9 = 0.9 and t999 = 0.999 for Naive Bayes and Maximum Entropy Model; θ9 = 0.45 and θ999 = 1.33 for SV M light;
θ9 = 3.6 and θ999 = 8.1 for AdaBoost.

Looking at the result of AdaBoost (Figure 5) we notice that, despite the weak learner used is quite simple, Boost
Stump achieved excellent TCR9 value on SA corpus and good TCR999 value (>2) when more than 2000 features were
used (Figure 5-b). Still, DF is found to be inferior than IG and CHI on small feature sets (<1000 features), confirmed
with p < 0.01.

The good TCR values achieved by Boost Stumps bring up an interesting point on the underlying mechanism of
the learner. In each round of boosting, a weak learner (decision stump) is built from training samples by minimizing
the normalized factor Zt. This process can be regarded as a special kind of feature selection, which implies that when
feature set is large the Boost algorithm is able to deduce the right feature to use on its own. Figure 5-a and Figure 5-b
confirm this hypothesis where all feature selection methods performed equally well on large feature set (the differences
among different feature pruning methods are not statistically significant at p < 0.05 when more than 2000 features
were used).

In sum, we observe that the significance of feature selection varies greatly from classifier to classifier. For all the
classifiers we tried, IG and CHI perform much better than DF when feature set sizes are small, usually confirmed
with p < 0.01. This suggests DF is not a suitable choice for aggressively feature pruning on this task. Although all
classifiers are somewhat effective in terms of TCR9 on SA corpus, where λ is assigned to 9, only three classifiers:
Maximum Entropy Model, SVM and AdaBoost are found to be effective when λ is set to 999, achieving a TCR999
value greater than the 1.0 baseline on large feature sets. In contrast, Naive Bayes failed to function well when λ is set
to 999 because of errors in its probability estimates. Timbl achieved a performance approaches that of Naive Bayes
on small feature sets, but failed to scale well in the presence of many noisy features. In addition, we notice that in
order to achieve a TCR999 constantly above 1.0 at least 2000 features should be used for the three top-performance
classifiers on SA corpus. This suggests what the higher λ is, the more features should be used to allow the classifiers to
produce a reliable prediction. Similar patterns are also observed on other corpora (PU1, Ling-Spam and ZH1) though
not plotted here, where DF is still inferior to IG and CHI on small feature sets.

5.2 Experiment II: Cross Classifier Evaluation

After investigating the influence of features on classifiers’ performance, we now move to the cross classifier evaluation
where pairwise comparisons were made on four spam corpora. The training/testing split were prepared as described
in Experiment I. We chose to use IG as the single feature pruning method in this experiment, for it has been proved to
be an effective feature selection method for this task in Experiment I. Again, we use TCR9 and TCR999 as a unified
cost-sensitive measure.

To allow for a rigorous cross-classifier comparison we construct win-tie-loss count tables 11 for all pairs of learning
algorithms on the four corpora. For a particular attribute set size (X-Axis) and algorithms A and B, if A’s TCR value
is greater than B’s, and if the difference is statistically significant at the 95% confident level of a paired one-tailed t
test, we increase A’s win count and B’s loss count by one. Otherwise A and B’s tie counts will be increased by one.
Table 3 and 4 summarize the pairwise win-tie-loss results on all datasets. The TCR9 and TCR999 performance curves
are plotted in Figure 6 to Figure 9.

The TCR9 results on PU1 corpus (Figure 6-a) show that Maximum Entropy Model and SVM worked best on this

11The table is similar to the one used in [Dietterich, 2000], where pairwise comparisons were made among three methods for constructing
ensembles of decision trees.

12

Table 3: Pairwise combinations of the five classifiers using TCR9 measure on four spam corpora. Each cell contains
the number of wins, ties and losses between the algorithm in that row and the algorithm in that column.

PU1 Corpus Boost SVM TiMBL MaxEnt
NB 0-9-15 0-0-24 20-4-0 0-1-23
MaxEnt 17-7-0 0-24-0 24-0-0
TiMBL 0-0-24 0-0-24
SVM 13-11-0

Ling Corpus Boost SVM TiMBL MaxEnt
NB 0-10-14 0-6-18 11-13-0 0-7-17
MaxEnt 4-20-0 0-22-2 24-0-0
TiMBL 0-0-24 0-0-24
SVM 4-20-0

SA Corpus Boost SVM TiMBL MaxEnt
NB 0-0-24 0-0-24 0-3-21 0-0-24
MaxEnt 13-11-0 14-10-0 23-1-0
TiMBL 0-1-23 0-1-23
SVM 3-18-3

ZH1 Corpus Boost SVM TiMBL MaxEnt
NB 0-1-23 0-1-23 9-7-8 0-0-24
MaxEnt 4-19-1 8-8-8 21-3-0
TiMBL 1-3-20 2-7-15
SVM 1-14-9

Table 4: Pairwise combinations of the five classifiers using TCR999 measure on four spam corpora. Each cell contains
the number of wins, ties and losses between the algorithm in that row and the algorithm in that column.

PU1 Corpus Boost SVM TiMBL MaxEnt
NB 0-1-23 0-1-23 23-1-0 0-1-23
MaxEnt 0-8-16 8-1-15 24-0-0
TiMBL 0-0-24 0-0-24
SVM 7-7-10

Ling Corpus Boost SVM TiMBL MaxEnt
NB 0-4-20 1-4-19 3-14-7 0-3-21
MaxEnt 0-6-18 1-14-9 24-0-0
TiMBL 0-0-24 0-3-21
SVM 12-10-2

SA Corpus Boost SVM TiMBL MaxEnt
NB 0-0-24 0-0-24 0-0-24 0-0-24
MaxEnt 18-6-0 12-10-2 24-0-0
TiMBL 0-0-24 0-2-22
SVM 8-13-3

ZH1 Corpus Boost SVM TiMBL MaxEnt
NB 0-0-24 0-1-23 14-10-0 0-0-24
MaxEnt 4-20-0 3-7-14 24-0-0
TiMBL 0-0-24 0-0-24
SVM 12-9-3

13

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 7-a: TCR9 measures of five classifiers on Ling-Spam Corpus

mbl
boost

nb
svmlight
maxent

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 7-b: TCR999 measures of five classifiers on Ling-Spam Corpus

mbl
boost

nb
svmlight
maxent

Figure 7: TCR measures of five classifiers on Ling-Spam corpus with features filtered with IG. The spam thresholds
are t9 = 0.9 and t999 = 0.999 for Naive Bayes and Maximum Entropy Model; θ9 = 0.21 and θ999 = 0.41 for SV M light;
θ9 = 2.4 and θ999 = 7.9 for AdaBoost.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 8-a: TCR9 measures of five classifiers on SA corpus

mbl
boost

nb
svmlight
maxent

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 8-b: TCR999 measures of five classifiers on SA corpus

mbl
boost

nb
svmlight
maxent

Figure 8: TCR measures of five classifiers on SA corpus with features filtered with IG. The spam thresholds are
t9 = 0.9 and t999 = 0.999 for Naive Bayes and Maximum Entropy Model; θ9 = 0.48 and θ999 = 1.38 for SV M light;
θ9 = 1.95 and θ999 = 6.82 for AdaBoost.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 9-a: TCR9 measures of five classifiers on ZH1 corpus

mbl
boost

nb
svmlight
maxent

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 9-b: TCR999 measures of five classifiers on ZH1 corpus

mbl
boost

nb
svmlight
maxent

Figure 9: TCR measures of five classifiers on ZH1 corpus with features filtered with IG. The spam thresholds are
t9 = 0.9 and t999 = 0.999 for Naive Bayes and Maximum Entropy Model; θ9 = 0.36 and θ999 = 1.15 for SV M light;
θ9 = 3.0 and θ999 = 9.24 for AdaBoost.

14

dataset in terms of TCR9 measure, followed by AdaBoost and Naive Bayes, with memory-based learner near the 1.0
baseline. Similar patterns are found on the other three corpora. However, when λ is set to 999 (Figure 6-b), SVM,
Maximum Entropy Model and AdaBoost are the clear winners of this game, outperformed Naive Bayes and Timbl by
a wide margin. AdaBoost worked especially well on PU1 with λ = 999. Its TCR999 measure beats Maximum Entropy
Model on 16 points and outperforms SVM on 10 points (Table 4).

For Ling-Spam corpus, we observe that Maximum Entropy Mode performed comparably with SVM in terms of
TCR9 (Figure 7-a), but achieved a much lower TCR999 value than AdaBoost and SVM on large feature sets (Figure
7-b). SVM worked particularly well on this corpus with large feature set, considerably better than AdaBoost (12-10-2)
and Maximum Entropy (9-14-1) using TCR999 measure.

For SA corpus, we find Maximum Entropy Model is the most effective classifier on this corpus. Its TCR9 measure
wins on 74 points, ties on 22 points with 0 loss! Its TCR999 measure is also better than AdaBoost (18-6-0) and SVM
(12-10-2). The memory based learner surpasses Naive Bayes on TCR9 measure (21-3-0), but is still inferior to the
other classifiers (Figure 8-a).

On the newly compiled ZH1 corpus, good TCR9 values are obtained by all classifiers (Figure 9-a). Again, Naive
Bayes and the memory-based approach fail to achieve a better-than-baseline performance when λ is set to 999 (Fig
9-b). SVM shows its advantage over AdaBoost (12-9-3) and Maximum Entropy Model (14-7-3) on this dataset judging
from TCR999. In addition, the experimental results on ZH1 corpus verify the hypothesis that “bag of features” filtering
model should also work well on Chinese language.

From the above analysis, we can conclude that Support Vector Machine, AdaBoost and Maximum Entropy Model
are effective methods for automated spam filtering task where false positives are assigned a much higher cost than
false negatives. In contrast, we find the commonly used Naive Bayes classifier and a memory based learner are not
good choices for such applications. Moreover, we notice that the performance of a classifier can vary greatly from one
dataset to another, and it seems no learning method can be superior on all datasets. For instance, using TCR999
measure we find Maximum Entropy Model comes out on top on SA corpus with a total 78 wins, 16 ties, and 2 losses,
but loses its place on the other three corpora. SVM shows a clear advantage over ME and AdaBoost on ZH1 corpus
with a total 73 wins, 17 ties, and 6 losses, but is slightly outperformed by AdaBoost on PU1 corpus (SVM’s 69-9-18
against AdaBoost’s 73-16-7 win-tie-loss counts).

Combined with the performance curves shown from Figures 6 to 9 we notice that the predicting behaviors of
SVM, AdaBoost and Maximum Entropy Model are quite similar. The three learners are not sensitive to feature-
pruning strategies and can handle very high feature dimensions gracefully with good performances across different
attribute sets. Similar observation was made by [Drucker et al., 1999], where AdaBoost and SVM were reported
comparable performances on two spam datasets. This calls for a closer comparison of the three learning methods.
The similarity between SVM and AdaBoost can be clarified by the fact that the two algorithms seek to maximize
the minimum margins of training examples that are only different in norms of instance vector and weight vector
[Freund and Schapire, 1999]. Viewed in this way, SVM and AdaBoost are very similar. The difference between large
margin classifiers (SVM, AdaBoost) and Maximum Likelihood Estimation of exponential model (Maximum Entropy
Model) seems to be obvious at first glance. However, there exists strong connection between AdaBoost and Maximum
Entropy Model. The work of [Lebanon and Lafferty, 2001] showed that AdaBoost and Maximum Likelihood of
exponential models actually minimize the same Kullback-Leibler divergence objective function subject to identical
feature constraints, and they typically yield identical results as the number of features increases to allow the models
to fit the training data. Our experiments confirmed this argument.

5.3 Experiment III: Mail Header, Body, or All Features?

The SA and ZH1 corpus both come in raw format: each mail consists of a header part followed by a body part and
several optional attachment parts. While previous researches mainly focused on building “pure” content based filtering
model that only uses features from message’s subject and body parts, some experimental results on using non-textual
features that are usually hidden in mail headers have proved to be helpful in classifying spams [Sahami et al., 1998,
Zhang and Yao, 2003]. Still, it is unclear to what extent the features in header part could improve the filtering result.

In order to measure the contributions of the different parts of message in spam filtering, we processed the SA and
ZH1 corpora into three versions: one uses only terms from message body plus subject line; one with tokens occur in
message headers only and one with both mail body and headers tokenized. The tokenization scheme was the same
as described in Section 4. Then we ran the SV M light classifier on the two corpora’s six variants using the same
experimental setting as used in Experiment II. The TCR9 and TCR999 results are plotted in Figures 10 and 11, with
θ9 and θ999 tuned for each version of the training data separately.

The first thing that catches our attention in Figures 10 and 11 is the result of header feature: SVM classifier
achieved good TCR values using information from mail headers only. The TCR9 values of the “header” curves in

15

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 10-a: TCR9 measures of SVM on SA corpus using different types of features

body
header

all
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 10-b: TCR999 measure of SVM on SA corpus using different types of features

body
header

all

Figure 10: TCR result of SVM on SA corpus. The θ9 thresholds for body, header and all (body+header) feature types
are 0.63, 0.575 and 0.48 respectively. The corresponding θ999 values are 2.31, 1.43 and 1.38.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

9

Feature Set Size

Fig 11-a: TCR9 measure of SVM on ZH1 corpus using different types of features

body
header

all
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TC
R

99
9

Feature Set Size

Fig 11-b: TCR999 measure of SVM on ZH1 corpus using different types of features

body
header

all

Figure 11: TCR result of SVM on ZH1 corpus. The θ9 thresholds for body, header and all (body+header) feature
types are 0.771, 0.687 and 0.36 respectively. The corresponding θ999 values are 1.47, 1.69 and 1.15.

Figure 10-a and Figure 11-a are all significantly better then that of “body” curves, confirmed with p < 0.05 on feature
sets larger than 200. The TCR999 result on SA and ZH1 corpus exhibits the same trend (Figure 10-b and 11-b)
(except on ZH1 where “body” features worked slightly better when more than 3000 features were used). This finding
is rather striking, since previous studies only focused on building “pure” content based model that mainly relys on
tokens from mail bodies, effectively ignoring the information hidden in mail headers. Our observation implies that
features in message headers can be more reliable in discriminating spams than terms occur in message body. Several
attempts have been made to incorporate some header specific properties into spam filters [Sahami et al., 1998, Zhang
and Yao, 2003]. However, to our knowledge this is the first time showing message headers along can be powerful
discriminating sources for spam filtering. The excellent filtering results on header features reflect the fact that spam
mail differs from normal user mail not only in the boasting words they use, but also in their abnormal behaviors in
various stages of dispatching. Some particular features in the header field of a mail can give strong evidence whether
a mail is spam or not. For instance, spam mails are seldom sent through normal email client such as Outlook Express
or Mutt. Instead, spammers prefer to use some group mail sending software specially designed for dispatching mails
to a large amount of recipients. This can be detected by looking at the X-Mailer field in the header. If a mail has an
X-Mailer field indicating some group sending software or does not have X-Mailer field at all, it is very likely to be a
spam.

As expected, optimal filtering results followed by combining features from header fields and mail body (the “all”
curves in Figures 10 and 11). On the whole, the combined feature sets yielded a consistent improvement over feature
sets that used either header or body feature alone. We therefore conclude that message headers are as important as
mail bodies in terms of spam discriminating power and should not be treated with ignorance by spam filter designers.

6 Related Work

It is certainly true that there has been an explosion of interest and applications for spam filtering over the last several
years, with many machine-learning techniques having been tried to this task. We recall some of them in this section.

16

[Cohen, 1996] used RIPPER rule learning algorithm to classify personal emails into pre-defined categories with a
set of “keyword-spotting rules” automatically learned from corpus. Cohen showed that RIPPER algorithm can achieve
comparable performance to a traditional TF-IDF weighting method on a multi-class categorization task, with greater
comprehensibility.

Since its first application to spam filtering task [Sahami et al., 1998], Naive Bayes method has been extremely
popular in this field, for its simplicity and fairly good performance, and often serves as baseline classifier for comparison
with other filtering approaches. [Pantel and Lin, 1998]’s work showed NB can work better than RIPPER algorithm
on spam filtering task. [Androutsopoulos et al., 2000b] conducted an extensive comparison of the performance of
Naive Bayes and a memory-based learner. However, in this evaluation we find Naive Bayes is not a suitable choice for
filtering configuration where false positives are assigned a very high cost (such as the situation of λ = 999).

[Kolcz and Alspector, 2001] proposed a content-specific cost model for filtering spam, utilizing the SVM learning
paradigm. In their experiments the cost of misclassifying legitimate was content-specific and the cost of misclassifying
spam was assumed to be uniform. Since their training model needs additional labeling of the training data, we did
not use the content-specific cost model in this research. Yet it is worth noting when applied to real world email
filtering scenario, where the distribution of misclassification is not uniform and is changing across time, incorporating
content-specific misclassification costs during training may be more effective.

[Schneider, 2003] compared two event models for Naive Bayes model: a multi-variate Bernoulli model, where each
term is used in a “bag of words” manner not counting the number of time a term is seen in a document, and a
multi-nomial model which also considers term counts information. Schneider concluded that the multi-nomial model
is less biased towards Bernoulli model, which discards feature count information. While most studies in spam filtering
(including experiments conducted in this paper) concentrate on the multi-variate Bernoulli model, future work on
multinomial model may yield better result.

Almost all filtering methods proposed so far come from the Text Categorization’s point of view: transform data
into the input of a machine learning algorithm and evaluate the output produced by that algorithm. Relatively few
attempts have been made to exploit the linguistic characters of spams. [Orasan and Krishnamurthy, 2002] compared
various linguistic features such as average sentence length, POS distribution, lexical frequencies (N-grams, lemma) in
one junk corpus to BNC corpus, showing quite different characters exist between junk mails and the usual written
text. Incorporating linguistic features can be a useful direction in further spam filtering research.

7 Conclusion

In this paper, we gave a comprehensive evaluation of five commonly used supervised learning approaches in the context
of cost-sensitive spam filtering. Different feature pruning methods and sizes of feature space were tried on three English
spam corpora and one Chinese spam corpus. In particular, we found:

• The “bag of features” filtering model can be quite effective on spam filtering task.

On all the four spam corpora we tried, most classifiers were able to achieve filtering result much better than no
filter is present (baseline) using “bag of features” model. Furthermore, The technique also proves to be language
independent. We have gained satisfactory filtering results on a newly compiled Chinese corpus with a simple
preprocessing of word segmentation.

• SVM, AdaBoost, and Maximum Entropy Model are top performers on cost-sensitive spam filtering task.

The experiments show that in spam filtering the choice of classifier plays a more important role than the choice of
feature selection method. Support Vector Machine, AdaBoost, and Maximum Entropy Model are top performers
in cost-sensitive spam filtering task, outperforming Naive Bayes and a Memory-based learner by a wide margin.
The three learners share similar characteristics: not sensitive to feature selection strategy, easily scalable to
very high feature dimension, and good performances across different datasets. In addition, we notice that the
sensitivity to feature selection method varies greatly from classifier to classifier. CHI and IG generally do a
better job than DF, especially when feature set is small.

The experiment also suggests that aggressive feature pruning should be avoided when building filters to be used
in scenarios where legitimate mails are assigned a much higher weight than spams (such as λ = 999), so as to
maintain a better-than-baseline result (TCR999 >1). The possible reason may be that the higher λ is, the more
features should be used to let the classifier produce a reliable prediction.

• The information from message header is as important as message body.

17

While previous studies focused on classifying model based on message body only, we find the message header
is precious and should not be treated with ignorance. Classifiers trained on message headers actually yielded
comparable or better results than the message body solution. Using all information in a message (header +
body) typically generates better classifier than using either part alone.

Acknowledgments

The authors are grateful to two anonymous reviewers whose thoughtful comments improved the quality of this paper,
especially the use of TCR measure in evaluation. We thank Antal van den Bosch for sharing the information on
the internal of the TiMBL learner. This research was partially funded by the National Natural Science Foundation
of China and Microsoft Research Asia under grant No. 60203019 and a grant from the National Natural Science
Foundation of China (No. 60473140).

References

I. Androutsopoulos, J. Koutsias, K.V. Chandrinos, G. Paliouras, and C.D. Spyropoulos. An evaluation of naive
bayesian anti-spam filtering. In G. Potamias, V. Moustakis, and M.n van Someren, editors, Proceedings of the
Workshop on Machine Learning in the New Information Age, 11th European Conference on Machine Learning
(ECML 2000), pages 9–17, Barcelona, Spain, 2000a. URL http://arXiv.org/abs/cs.CL/0006013.

I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C.D. Spyropoulos, and P. Stamatopoulos. Learning to
filter spam e-mail: A comparison of a naive bayesian and a memory-based approach. In H. Zaragoza, P. Gallinari,
, and M. Rajman, editors, Proceedings of the Workshop on Machine Learning and Textual Information Access, 4th
European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2000), pages 1–13,
Lyon, France, 2000b. URL http://arXiv.org/abs/cs/0009009.

Ion Androutsopoulos, John Koutsias, Konstandinos V. Chandrinos, and Constantine D. Spyropou-
los. An experimental comparison of naive Bayesian and keyword-based anti-spam filtering with
personal e-mail messages. In Nicholas J. Belkin, Peter Ingwersen, and Mun-Kew Leong, edi-
tors, Proceedings of SIGIR-00, 23rd ACM International Conference on Research and Development
in Information Retrieval, pages 160–167, Athens, GR, 2000c. ACM Press, New York, US. URL
http://www.acm.org/pubs/articles/proceedings/ir/345508/p160-androutsopoulos/p160-androutsopoulos.pdf.

Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):39–71, 1996.

Xavier Carreras and Llúıs Márquez. Boosting trees for anti-spam email filtering. In Proceedings of RANLP-
2001, 4th International Conference on Recent Advances in Natural Language Processing, 2001. URL
http://www.lsi.upc.es/ carreras/pub/boospam.ps.

W.W. Cohen. Learning rules that classify e-mail. In Spring Symposium on Machine Learning in Information Access,
Stanford, California, 1996.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch. Timbl: Tilburg memory-based learner
- version 4.3 reference guide, 1999.

Stephen Della Pietra, Vincent J. Della Pietra, and John D. Laf ferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

Thomas G. Dietterich. Approximate statistical test for comparing supervised classification learning algorithms. Neural
Computation, 10(7):1895–1923, 1998. URL citeseer.ist.psu.edu/dietterich98approximate.html.

Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles of de-
cision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139–157, 2000. URL
citeseer.nj.nec.com/dietterich98experimental.html.

Harris Drucker, Donghui Wu, and Vladimir N. Vapnik. Support vector machines for spam categorization. IEEE
Transactions on Neural networks, 10(5), 1999.

18

R. Fano. Transmission of Information. MIT Press, Cambridge, MA, 1961.

Y. Freund and R. Schapire. A short introduction to boosting. J. Japan. Soc. for Artif. Intel., 14(5) (1999), 771-780.
11(5):771–780, 1999.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In International Conference on
Machine Learning, pages 148–156, 1996.

E. Jaynes. Papers on Probability, Statistics, and Statistical Physics. D. Reidel Publishing Company, 1983.

T. Joachims. Making large-scale support vector machine learning practical. In A. Smola B. Schölkopf, C. Burges,
editor, Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge, MA, 1998a.

Thorsten Joachims. Text categorization with support vector machines: learning with many relevant features.
In Claire Nédellec and Céline Rouveirol, editors, Proceedings of ECML-98, 10th European Conference on Ma-
chine Learning, number 1398, pages 137–142, Chemnitz, DE, 1998b. Springer Verlag, Heidelberg, DE. URL
citeseer.nj.nec.com/joachims97text.html.

Aleksander Kolcz and Joshua Alspector. SVM-based filtering of e-mail spam with content-specific misclassification
costs. In Proceedings of the TextDM’01 Workshop on Text Mining - held at the 2001 IEEE International Conference
on Data Mining, 2001.

Guy Lebanon and John Lafferty. Boosting and maximum likelihood for exponential models. In Advances in Neural
Information Processing Systems, 2001.

David D. Lewis. Evaluating and optmizing autonomous text classification systems. In Edward A. Fox, Peter In-
gwersen, and Raya Fidel, editors, Proceedings of SIGIR-95, 18th ACM International Conference on Research
and Development in Information Retrieval, pages 246–254, Seattle, US, 1995. ACM Press, New York, US. URL
http://www.research.att.com/ lewis/papers/lewis95b.ps.

David D. Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In
Claire Nédellec and Céline Rouveirol, editors, Proceedings of ECML-98, 10th European Conference
on Machine Learning, pages 4–15, Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE. URL
http://www.research.att.com/ lewis/papers/lewis98b.ps. Published in the “Lecture Notes in Computer Sci-
ence” series, number 1398.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Math. Programming,
45(3, (Ser. B)):503–528, 1989.

A. McCallum and K. Nigam. A comparison of event models for naive bayes text classification. In AAAI-98 Workshop
on Learning for Text Categorization, 1998.

Kamal Nigam, John Lafferty, and Andrew McCallum. Using maximum entropy for text classification. In IJCAI-99
Workshop on Machine Learning for Information Filtering, 1999.

C. Orasan and R. Krishnamurthy. A corpus-based investigation of junk emails. In Language Resources and Evaluation
Conference (LREC- 2002), Las Palmas, Spain, 2002.

Patrick Pantel and Dekang Lin. Spamcop: A spam classification & organization program. In Learning for Text
Categorization: Papers from the 1998 Workshop, Madison, Wisconsin, 1998. AAAI Technical Report WS-98-05.
URL http://www.cs.ualberta.ca/ ppantel/Download/Papers/aaai98.pdf.

John C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.
In A. Smola, P. Bartlett, B. Schlkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages
61–74. MIT Press, 1999.

Adwait Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity Resolution. PhD thesis, University
of Pennsylvania, Philadelphia, PA, 1998.

R. Rosenfeld. A maximum entropy approach to adaptive statistical language modeling. Computer, Speech and
Language1996, 10:187– 228, 1996. Longe version: Carnegie Mellon Tech. Rep. CMU-CS-94-138.

19

Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian approach to filtering junk e-mail.
In Learning for Text Categorization: Papers from the 1998 Workshop, Madison, Wisconsin, 1998. AAAI Technical
Report WS-98-05. URL http://robotics.stanford.edu/users/sahami/papers-dir/spam.ps.

Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for text categorization. Machine
Learning, 39(2/3):135–168, 2000.

Karl-Michael Schneider. A comparison of event models for naive bayes anti-spam e-mail filtering. In Proceedings of
the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL’03), 2003.
URL http://www.phil.uni-passau.de/linguistik/mitarbeiter/schneider/pub/eacl2003.pdf.

Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1–47, 2002.
URL http://www.isti.cnr.it/People/F.Sebastiani/Publications/ACMCS02.pdf.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, NY, USA, 1995.

Yiming Yang and Christopher G. Chute. An example-based mapping method for text categorization and retrieval.
ACM Transactions on Information Systems, 12(3):252 – 277, 1994.

Yiming Yang and Xin Liu. A re-examination of text categorization methods. In Marti A. Hearst, Fredric Gey,
and Richard Tong, editors, Proceedings of SIGIR-99, 22nd ACM International Conference on Research and
Development in Information Retrieval, pages 42–49, Berkeley, US, 1999. ACM Press, New York, US. URL
http://www.cs.cmu.edu/ yiming/papers.yy/sigir99.ps.

Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text categorization. In
Douglas H. Fisher, editor, Proceedings of ICML-97, 14th International Conference on Machine Learn-
ing, pages 412–420, Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco, US. URL
http://www.cs.cmu.edu/ yiming/papers.yy/ml97.ps.

Le Zhang and Tianshun Yao. Filtering junk mail with a maximum entropy model. In Proceeding of 20th International
Conference on Computer Processing of Oriental Languages (ICCPOL03), pages 446–453, 2003.

20

