
An Introduction to Information Theory

and Applications

F. Bavaud J.-C. Chappelier J. Kohlas

version 2.04 - 20050309 - UniFr course

2

Contents

1 Uncertainty and Information 9

1.1 Entropy . 10

1.1.1 Choice and Uncertainty . 10

1.1.2 Choice with Known Probability 18

1.1.3 Conditional Entropy . 28

1.1.4 Axiomatic Determination of Entropy 37

1.2 Information And Its Measure . 44

1.2.1 Observations And Events . 44

1.2.2 Information and Questions . 51

1.2.3 Mutual Information and Kullback-Leibler Divergence 61

1.2.4 Surprise, Entropy and Information 69

1.2.5 Probability as Information . 73

2 Efficient Coding of Information 81

2.1 Coding a Single Random Variable . 82

2.1.1 Prefix-Free Codes . 84

2.1.2 n-ary Trees for Coding . 87

2.1.3 Kraft Inequality . 90

2.2 Efficient Coding . 95

2.2.1 What Are Efficient Codes? . 95

2.2.2 Probabilized n-ary Trees: Path Length and Uncertainty 96

2.2.3 Noiseless Coding Theorem . 99

2.2.4 Huffman Codes . 103

3 Stationary processes & Markov chains 113

3.1 The entropy rate . 114

3.2 The AEP theorem . 116

3.2.1 The concept of typical set: redundancy and compressibility . . . 118

3.3 First-order Markov chains . 122

3.3.1 Transition matrix in n steps . 122

3.3.2 Flesh and skeleton. Classification of states 124

3.3.3 Stationary distribution . 125

3.3.4 The entropy rate of a Markov chain 127

3.3.5 Irreversibility . 130

3.4 Markov chains of general order . 132

3.4.1 Stationary distribution and entropy rate 132

3.5 Reconstruction of Markov models from data 134

3

4 CONTENTS

3.5.1 Empirical and model distributions 134

3.5.2 The formula of types for Markov chains 137

3.5.3 Maximum likelihood and the curse of dimensionality 139

3.5.4 Testing the order of a Markov chain 140

3.5.5 Simulating a Markov process . 143

4 Coding for Noisy Transmission 147

4.1 Communication Channels . 148

4.1.1 Communication Channels . 149

4.1.2 Channel Capacity . 152

4.1.3 Input-Symmetric Channels . 154

4.1.4 Output-Symmetric Channels . 155

4.1.5 Symmetric Channels . 156

4.1.6 Transmission Rate . 157

4.2 A Few Lemmas . 158

4.2.1 Multiple Use Lemma . 158

4.2.2 Data Processing Lemma . 159

4.2.3 Fano’s Lemma . 160

4.3 The Noisy Coding Theorem . 163

4.3.1 Repetition Codes . 163

4.3.2 The Converse to the Noisy Coding Theorem for a DMC without
Feedback . 165

4.3.3 The Noisy Coding Theorem for a DMC 169

5 Complements to Efficient Coding of Information 177

5.1 Variable-to-Fixed Length Coding: Tunstall’s Code 178

5.1.1 Introduction . 178

5.1.2 Proper Sets . 178

5.1.3 Tunstall message sets . 180

5.1.4 Tunstall Code Construction Algorithm 182

5.2 Coding the Positive Integers . 184

5.3 Coding of Sources with Memory . 186

5.3.1 Huffman coding of slices . 188

5.3.2 Elias-Willems Source Coding Scheme 188

5.3.3 Lempel-Ziv Codings . 191

5.3.4 gzip and bzip2 . 194

6 Error Correcting Codes 197

6.1 The Basics of Error Correcting Codes 198

6.1.1 Introduction . 198

6.1.2 Hamming Distance and Codeword Weight 199

6.1.3 Minimum Distance Decoding and Maximum Likelihood 201

6.1.4 Error Detection and Correction 203

6.2 Linear Codes . 206

6.2.1 Definitions . 207

6.2.2 Some Properties of Linear Codes 208

6.2.3 Encoding with Linear Codes . 211

CONTENTS 5

6.2.4 Systematic Form of a Linear Codes 212

6.2.5 Decoding: Verification Matrix . 214

6.2.6 Dual Codes . 217

6.2.7 Syndromes . 218

6.2.8 Minimum Distance and Verification Matrix 220

6.2.9 Binary Hamming Codes . 221

6.3 Cyclic Codes . 224

6.3.1 Introduction . 225

6.3.2 Cyclic Codes and Polynomials 226

6.3.3 Decoding . 231

6.4 Convolutional Codes . 234

6.4.1 Introduction . 234

6.4.2 Encoding . 235

6.4.3 General Definition . 237

6.4.4 Lattice Representation . 239

6.4.5 Decoding . 242

6.4.6 Minimum Distance . 245

7 Cryptography 253

7.1 General Framework . 254

7.1.1 Cryptography Goals . 254

7.1.2 Historical Examples . 255

7.2 Perfect Secrecy . 258

7.2.1 Definition and Consequences . 258

7.2.2 One Example: One-Time Pad . 259

7.2.3 Imperfect Secrecy and Unicity Distance 260

7.2.4 Increasing Unicity Distance: Homophonic Coding 262

7.3 Practical Secrecy: Algorithmic Security 264

7.3.1 Algorithmic Complexity . 264

7.3.2 One-Way Functions . 266

7.3.3 DES . 267

7.4 Public-Key Cryptography . 269

7.4.1 A bit of Mathematics . 270

7.4.2 The Diffie-Hellman Public Key Distribution System 272

7.4.3 Trapdoor Functions . 273

7.4.4 RSA . 274

7.5 Authentication . 277

7.5.1 Diffie-Lamport Authentication 279

7.5.2 Authentication with RSA . 280

7.5.3 Shared secrets . 281

6 CONTENTS

Notations

VX : set of values for random variable X.

ε: the empty string.

E [X]: expected valued of X.

P (X = 3): general probability function.

pX(3): probability distribution of a given random variable (here X).
Notice that pX(3) = P (X = 3)

an u bn: asymptotic exponent equivalence: lim
n→∞

1

n
log(

an

bn
) = 0.

X := Y , and Y =: X: equal by definition.
Both cases mean “X is by definition equal to Y ”.

7

8 CONTENTS

Chapter 1

Module C1: Uncertainty and

Information

by Jürg Kohlas

Learning Objectives for Chapter 1

After studying this module you should understand

• why it is important to measure the amount of uncertainty in a situation
of choice;

• why entropy is an appropriate measure of uncertainty;

• how information and uncertainty are related and why therefore entropy
plays an important role in measuring information;

• that information is always relative to a precise question and to prior
information.

Introduction

Welcome to this first step into the world of information theory. Clearly, in a world
which develops itself in the direction of an information society, the notion and concept
of information should attract a lot of scientific attention. In fact, although pragmatic
information processing in computers, in the Internet and other computer networks
develops at an extremely fast pace, the theoretical and conceptual study of what infor-
mation is, and how it should be treated hardly keeps up with this frantic development.

Information theory, in the technical sense, as it is used today goes back to the work
of Claude Shannon and was introduced as a means to study and solve problems of
communication or transmission of signals over channels. Although it is quite a narrow
view of information, especially focusing on measurement of information content, it must
be part of any larger theory of information. Therefore this basic module introduces

9

10 CHAPTER 1. UNCERTAINTY AND INFORMATION

the basic elements of information theory as laid down by Shannon and his successors.

But already in this first module we try to open the view on information. We emphasize
that information must always be considered with respect to precisely specified ques-
tions. The same piece of information may bear on different questions; with respect to
each question its information content will be different. For some questions, the content
may even be void. The amount contained in a piece of information with respect to
a given question will be measured by the reduction, or more generally, the change of
uncertainty regarding this question induced by the information. We follow Shannon
by measuring uncertainty by the entropy and our approach is in the spirit of Shannon
also insofar, as information is measured by change of entropy. But by expliciting the
question to which the information is applied, we go beyond Shannon.

Also we stress the importance of the prior information, with respect to which infor-
mation amount is to be measured. Although this is implicit in Shannons approach,
expliciting it makes the concept more clear. In fact, with this view it becomes evi-
dent, that probabilities are themselves information whose content can be measured by
change of entropy.

In the course of the discussions it becomes clear, that information has also an algebraic
structure: information can be combined or aggregated, information must be focussed
on specified questions. This important aspect however is not treated in depth. This
will be reserved to other modules. The same holds true for the application of classical
information theory to coding, communication and other domains.

So we wish you a lot of pleasure in studying this module.

1.1 Entropy

Learning Objectives for Section 1.1

After studying this section you should

• know how entropy is defined and what its most important properties are;

• understand why it is an appropriate measure of uncertainty.

1.1.1 Choice and Uncertainty

Learning Objectives for Subsection 1.1.1

After studying this subsection you should

• know how a situation of choice is formally described;

• understand how a game of questions and answers leads to a measure of
the amount of uncertainty in a situation of choice;

• understand why this measure is a logarithm and what its units are;

• how possible choices can be coded using the game of questions and an-
swers.

1.1. ENTROPY 11

Any situation of uncertainty can be described as a situation where there are several
possibilities, and it is unknown which one will be selected. A typical example related
to computers is the question “what will be the next keystroke of a user of a computer”.
There are, depending on the keyboard, several dozens of possibilities, if combined
strokes are allowed. A more complex situation of uncertainty arises, if a whole sequence
of keystrokes in a dialog session is considered. Of course there is an abundance of
situations of uncertainty in daily life, scientific inquiry, medical diagnostics, statistical
inference, criminal investigations, etc. So, there is clearly much interest in studying
uncertainty and in measuring the amount of uncertainty in a given situation. In fact
the latter is a basic issue in communication and information theory.

We start by a formal description of a situation of uncertainty. Suppose there is a
case where one of say m different possibilities exist. We denote these possibilities by
e1, e2, . . . , em. Such a set of possibilities, denoted by S = {e1, e2, . . . , em} is called
a (finite) scheme of choice. The idea is that somebody, or some process or some
mechanism, etc. selects one of these possibilities. The uncertainty arises, because we
do not know which one of the m possibilities is selected.

How do we measure the amount of uncertainty in a scheme of choice S? Intuitively,
the larger the cardinality |S| of S (the number of elements), the larger the uncertainty.
So much seems clear. Then, why not simply take |S| as the measure of uncertainty? It
is indeed a possibility. But we prefer another approach. Imagine the following game:
I select a possibility of S and you can ask me questions about my choice. However I
accept only questions with “yes-no” answers. For all purposes we may assume that the
possibilities are represented by numbers 1, 2, . . . ,m = |S|. So you may ask questions
like: is the number you selected odd? is it less than 10? greater than 13? etc. The
more questions you need, the greater is the uncertainty. So the idea is to measure the
uncertainty by the number of questions you need to find my choice out.

Of course, you should ask clever questions. You may ask whether the number is 1, if
no, is it 2, etc. In this way, you may need up to m questions to find my choice out.
This is clearly not an optimal way to proceed. However, if you ask first, if the number
is smaller than m/2, my answer allows you to limit your subsequent search to only half
of the initial possibilities. And then you may proceed in a similar manner. So, this
seems to be a clever way to find out my choice.

To get a bit more formal assume first, that m is a power of 2, m = 2n. Then we may
partition S with the first question (is your choice greater than 2n−1?) into two halves
of equal size: {1, . . . , 2n−1} and {2n−1 + 1, . . . , 2n}. Each half can be further halved by
the second question. If the answer to the first question is “no”, then the next question
determines either {1, . . . , 2n−2} or {2n−2 + 1, . . . , 2n−1}. If the answer to the first
question is “yes”, then the next question distinguishes between {2n−1 + 1, . . . , 2n−1 +
2n−2} and {2n−1 +2n−2 +1, . . . , 2n}. This process of questions and answers is depicted
in Figure 1.1. Each question is represented by a node, starting with the first question.
A question node is labelled by the set of possibilities identified so far. So the first node
is labelled by the whole set S. Nodes on the first level by the two half sets, on the
second level by the four quarter sets, etc. Each possible answer is indicated by an arc
leaving the node. We label a “no” answer by a “0” and a “yes” answer by a “1”.

The process of dividing sets of possibilities into equal halves ends eventually after
exactly n steps with the actual choice. Now, the number n is nothing else than the
logarithm of m = 2n in base 2, that is, n = log2 m. And this is a lot smaller than m
itself.

12 CHAPTER 1. UNCERTAINTY AND INFORMATION

Figure 1.1: The question-answer tree for the binary search for an unknown choice
among 2n elements.

So it seems reasonable to express the amount of uncertainty in a choice system S
with |S| = 2n possibilities with the logarithm in base 2. Lets denote the amount of
uncertainty of a choice system S by h(|S|). So we propose h(|S|) = log |S|, at least
if |S| is a power of 2. But what about the general case, where the cardinality |S|
is any number? We may try the same scheme of questions. The only difference we
encounter is, that some question nodes may represent sets of odd cardinality, say 2k+1
for example. Then the questions partition this set into two slightly unequal sets, one
with k + 1, the other with k elements. Figure 1.2 shows this situation schematically.

Figure 1.2: The typical node of a question-answer tree for the binary search for an
unknown choice in the general case.

If the number of possibilities in the choice system S is between the two powers of 2,
2n ≤ |S| < 2n+1, then we may either remove some possibilities to get 2n possibilities,
or add some possibilities to get 2n+1 possibilities. In the first case we need n questions,
in the latter n + 1 to find out the actual choice. So the amount of uncertainty of S
must be somewhere between these two limits. Now, we have n ≤ log |S| < n + 1. So,
we may again take h(|S|) = log |S| as a measure of the amount of uncertainty in the
general case, however this time log |S| is not necessarily an integer value. We finally
adopt the following definition:

1.1. ENTROPY 13

Definition 1.1 The Amount of Uncertainty of a Choice Scheme. For a choice
system S with |S| possible choices, we define the amount of uncertainty h(|S|)
by

h(|S|) = log |S|.

Example 1.1 (Chess Board) As a first example take an empty chess board. There
are exactly m = 64 = 26 possibilities to place a piece on it. Thus the system of choice
can be represented by S = {1, 2, . . . , 64}, where each number stands for a field. The
amount of uncertainty in the position of a given piece on a chessboard is

h(|S|) = log 64 = 6.

As any definition, this one is also arbitrary to a certain degree. Its justification will have
to be proved by its usefulness and beauty in applications. And this will be attempted
in what follows in this module, as well as in other ones.

By the way, we may play the game of question and answer also with questions having
more than 2 possible answers. Suppose the questions have k > 2 possible answers.
Then each question allows the partition of the set of, say m possibilities into k subsets
of approximately m/k elements. So, as above, if |S| = kn, then we need exactly
n = logk |S| questions. This time we use the logarithm with base k. So, we might also
have defined

h(|S|) = logk |S|.

But we have

logk |S| = logk(2) · log2 |S|.

So, changing the base of the logarithm is like changing the unit of measurement, and
thus not really essential. In the future log without indication of the base means by
default base 2.

If we have a choice system S and a corresponding question tree (like Figure 1.1), then
we have at the same time a coding of the possibilities of the choice system. In fact,
concatenate the “0” and “1” on the path of the root to the possibility in question. This
is a code of this possibility. If we use binary questions, then we have a binary code for
the choice system. Note that the length of the code of each possibility equals either
the next smaller or the next greater integer of h(|S|) = log |S|. This is a first hint of
the close relation between our measure of uncertainty and coding.

Example 1.2 (Binary Question Tree) A system of choice is given by S =
{1, 2, 3, 4, 5}. Its amount of uncertainty is

h(|S|) = log 5 ≈ 2, 3219 bit.

A possible corresponding binary question tree is depicted in Figure 1.3. It is easy
to see, that the code 001 represents the possibility {2} and its length 3 is the next
greater integer of h(|S|). The possibility {3} has code length 2, {4} has length 2, etc.

Here are now a few very simple properties of our measure of uncertainty h(|S|):

14 CHAPTER 1. UNCERTAINTY AND INFORMATION

Figure 1.3: Example: A binary question tree of a 5-possibilities system.

1. If S1 and S2 are two choice systems and |S1| = |S2|, then h(|S1|) = h(|S2|). Only
the number of possibilities in a choice system matters, not their nature.

2. If S1 and S2 are two choice systems and |S1| < |S2|, then h(|S1|) < h(|S2|),
since the logarithm is a non-decreasing function. That is what we expect: the
uncertainty increases with the number of possibilities of a choice.

3. If S1 and S2 are two choice systems and S2 has twice as many possibilities as
S1 (|S2| = 2 · |S1|), then, using base 2 for the logarithm, we obtain h(|S2|) =
h(|S1|)+1. This follows from the additivity of the logarithm, and from log2 2 = 1,

h(|S2|) = log2 |S2| = log2 (2 · |S1|) = log2 2 + log2 |S1| = 1 + h(|S1|).

4. If S is a choice system with only two possibilities, then, with the logarithm in
base 2, h(|S|) = log2 2 = 1. This unit for the measurement is called a bit (binary
information unit). We shall see that uncertainty is closely related to information,
and the latter is measured in the same units as uncertainty. Also here we enter
the realm of computers. That is why binary questions are most popular.

If we have two choice systems S1 = {e1,1, e1,2, . . . , e1,n} and S2 = {e2,1, e2,2, . . . , e2,m},
then the corresponding two choice possibilities can be compounded into a combined
system, which contains all n ·m pairwise combinations of possible choices,

{(e1,1, e2,1), (e1,1, e2,2), . . . , (e1,2, e2,1), . . . , (e1,n, e2,m)} .

Such a set of pairs is called a cartesian product of the two individual sets, and is written
as

S1 × S2 = {(e1,1, e2,1), (e1,1, e2,2), . . . , (e1,2, e2,1), . . . , (e1,n, e2,m)} .

We call this new choice system a system of independent choices. This expresses the
idea, that the choice in each of the two system is made independently of the choice in
the other system, to get the combined choice. How is the amount of uncertainty of
such a system of independent choices related to the amount of uncertainty in each of
the two choice systems? The simple answer is given in the following theorem.

1.1. ENTROPY 15

Theorem 1.1 Additivity of Uncertainty. The uncertainty of the system of
independent choices is the sum of the uncertainty of both simple systems,

h(|S1 × S2|) = h(|S1|) + h(|S2|).

Proof The proof is simple, since this is essentially the additivity of the logarithm.
In fact,

h(|S1 × S2|) = log |S1 × S2| = log(|S1| · |S2|)

= log |S1|+ log |S2| = h(|S1|) + h(|S2|).

This theorem is a strong justification for our definition of the measure of uncertainty:
One would expect that the uncertainties in two independent situations add, when they
are considered together.

Example 1.3 (Chess Board - Continuation) We return to the chess board sit-
uation of example 1.1. We saw, that the amount of uncertainty of the position of a
piece on the whole board is h(|S|) = log 64 = 6. In the same way, we see, that the
amount of uncertainty of the position of a piece in a single row or column is log 8 = 3.
So we get the expected result

6 = log 64 = log 8 + log 8.

Of course this can be generalized to the combination of more than two independent
choices. Let S1, S2, . . . , Sm be m choice systems. Then the cartesian product of m-
tuples

S1 × S2 × · · · × Sm = {(e1,1, e2,1, . . . , em,1), . . .}

is the corresponding system of independent choices

Corollary 1.1

h(|S1 × S2 × · · · × Sm|) = h(|S1|) + h(|S2|) + · · · + h(|Sm|). (1.1)

Example 1.4 (Dice) We throw m times a dice and assume that the throws are
independent. This can be modelled by m independent systems of choices S1, . . . , Sm,
where each system contains 6 possibilities. From corollary 1.1 we get that

h(|S1 × S2 × · · · × Sm|) = h(|S1|) + h(|S2|) + · · ·+ h(|Sm|) = m · log 6.

Summary for Section 1.1

• We formalized situations of uncertainty by choice systems S, where one of a
finite number of possibilities will be selected, but it is unknown which one;

16 CHAPTER 1. UNCERTAINTY AND INFORMATION

• The uncertainty associated with a choice system is measured by the (least)
number of questions to be asked in order to find out the actual choice. This
leads to propose log |S| as a measure of the uncertainty. With binary questions
the unit of measurement is called a bit ;

• The question game defines a tree, which can be used to define codes for the pos-
sibilities of the choice system S. The lengths of these codes are approximately
equal to the measure of uncertainty log |S|. If binary questions are used we get
binary codes;

• We found that the uncertainty of systems of independent choices add together.

Control Question 1

For x > 0, the logarithm log2(x) is

1. always positive;

2. a non decreasing function;

3. maximal in x = 10;

4. equal to 0 in x = 0;

5. equal to 0 in x = 1;

6. equal to 1 in x = 2.

Answer

1. That is not correct. The logarithm log2(x) takes negative numbers for all 0 <
x < 1. This will play a significant role in the next subsection, where the so-called
entropy will be defined as H(X) = −

∑
pX(x) log pX(x).

2. That is right. This is an important property of the logarithm.

3. The logarithm has no maximum, so that is wrong.

4. No, the logarithm is not even defined in x = 0.

5. That is correct and important. Take as an example the system of choice given
by S = {1}. Since we have only one possibility, there is no uncertainty. In fact,
we really obtain h(|S|) = h(1) = log 1 = 0.

6. Yes, that is true. Once more this property is significant. Take as an example a
system of choice S with only two possibilities. Then we get h(|S|) = h(2) = 1.
That is why we call the unit of uncertainty “bit”.

Control Question 2

If we have two choice systems S1 = {e1,1, e1,2, . . . , e1,n} and S2 = {e2,1, e2,2, . . . , e2,m},
then the system of independent choices S1 × S2 has

1.1. ENTROPY 17

1. n + m elements;

2. n ·m elements.

Answer

Since the system of independent choices S1 × S2 is given by the cartesian product of
the two individual sets, that is

S1 × S2 = {(e1,1, e2,1), (e1,1, e2,2), . . . , (e1,n, e2,m)},

we get |S1 × S2| = n ·m.

Control Question 3

Given two choice systems S1 and S2 with |S2| = 2 · |S1|, then h(|S1 × S2|) equals

1. h(|S1|) + h(|S2|);

2. 1 + 2 · h(|S1|);

3. log(|S1| · |S2|);

4. h(|S1|) · h(|S2|);

5. 1 + 1
2 · h(|S2|).

Answer

1. Due to the additivity of the logarithm, this is correct.

2. That is true; once more because of the additivity of the logarithm.

3. Since |S1 × S2| = |S1| · |S2|, this one is also correct.

4. The logarithm is additive, but not multiplicative, that means log(x·y) 6= log x log y,
hence the assertion is incorrect.

5. That is wrong. But we have h(|S1 × S2|) = 1 + 2 · h(|S1|).

Control Question 4

We are going back to the last control question. Which of the correct assertions will
remain true for arbitrary S1 and S2 without the property |S2| = 2 · |S1|.

Answer

1. Remains true.

2. Now, the assertion becomes incorrect, because we can’t expect that h(|S2|) =
h(S1) + 1.

3. Remains true.

18 CHAPTER 1. UNCERTAINTY AND INFORMATION

1.1.2 Choice with Known Probability

Learning Objectives for Subsection 1.1.2

After studying this subsection you should

• understand how uncertainty is affected, if probabilities for the possible
choices are known;

• know the definition of entropy and some of its elementary properties;

• get a first appreciation of entropy as a measure of uncertainty.

There are situations, where probabilities are known for the different possibilities which
may arise. For example, if we know that a user is typing an English text on the
keyboard, then we know that some letters occur more often than others and thus some
keys are more likely to be struck. Or, on the level of words, if we know that the user
is programming, then we know that some keywords like “if”, “then”, “else”, etc. are
more likely to be typed in than most other combinations of letters. We shall see in this
section how this additional knowledge of probabilities affects the amount of uncertainty
in a choice system.

To start, we formally introduce probabilities into a choice system S = {e1, e2, . . . , em}
by assigning probabilities pi to the possibilities ei for i = 1, 2, . . . ,m. These probabili-
ties have to satisfy the following conditions:

0 ≤ pi ≤ 1, for i = 1, 2, . . . m,
m∑

i=1

pi = 1. (1.2)

The second condition expresses the fact that exactly one of the m possibilities must be
selected. The choice system S together with the set of probabilities P = {p1, p2, . . . , pm}
forms a probabilistic choice system. Here is the formal definition:

Definition 1.2 Probabilistic Choice System. If S is a choice system, and P
a set of probabilities on S satisfying conditions (1.2), then the pair (S,P) is
called a probabilistic choice system. �

If E ⊆ S is a subset of S, called an event in the language of probability theory, then
its probability is given by

p(E) =
∑

ei∈E

pi.

What is then the amount of uncertainty in a probabilistic choice system? We may
attempt the same game of questions and answers as in the previous question. However,
now it is no more clever to partition the set of possibilities into subsets of equal size,
because this neglects the probabilities. Suppose for example that one possibility, say
e1, is much more likely than all others. Then of course we should first ask, whether
this is the actual possibility. There is a big chance that we hit the actual possibility
with just one question. Only if the answer is “no” do we have to continue. Let’s look
at an example.

1.1. ENTROPY 19

Example 1.5 (Trees related to a Probabilistic Choice System) Given
a probabilistic choice system (S,P) with S = {e1, e2, . . . , e8} and P =
{0.3, 0.2, 0.1, 0.05, 0.05, 0.1, 0.15, 0.05}. A corresponding binary- and an alter-
native, better tree of (S,P) are depicted in Figure 1.4 and Figure 1.5. A simple
computation shows, that the expected word length in the binary tree is 3 and 2.75
in the better one.

Figure 1.4: The binary tree of our example with expected worth length 3.

Figure 1.5: In this alternative tree the expected worth length reduces to 2.75.

As the example shows, we should try to select our questions such as to minimize the
expected, or average, number of questions needed. Now, this is not a trivial task.
Nevertheless, the solution to this problem is known and very much used in coding
theory . The key idea is to partition a set not into subsets of equal cardinality, but
into subsets of equal probability. It is especially known from coding theory that the
expected number of questions is then approximately

−

m∑

i=1

pi log pi.

20 CHAPTER 1. UNCERTAINTY AND INFORMATION

This quantity is called entropy and we propose to use it as a measure of the amount
of uncertainty in a probabilistic choice system. We do not exclude that some of the
probabilities pi vanish, pi = 0. For this case we adopt the convention that 0 log 0 = 0,
which is reasonable since limx→0 x log x = 0.

Definition 1.3 The Amount of Uncertainty of a Probabilistic Choice System.
Let (S,P) be a probabilistic choice system. Then we define the amount of
uncertainty in (S,P) to be the entropy

H(P) = −

m∑

i=1

pi log pi. (1.3)

Again there is some amount of arbitrariness in this definition. The base k of the
logarithm in the entropy corresponds, as in the previous section, to the number k of
possible answers for each question in the game of questions and answers. We leave this
open, as a change of the base corresponds only to a change of the unit. As before,
the binary case is most popular, with the unit bit. This is the base we usually use in
examples.

Example 1.6 (Trees related to a Probabilistic Choice System - Continuation)
We continue the example 1.5 by computing the amount of uncertainty in the given
probabilistic choice system, that means computing the entropy.

H(P) = −
8∑

i=1

pi log pi

= −0.3 · log 0.3− 0.2 · log 0.2− 0.2 · log 0.1

−0.15 · log 0.05− 0.15 · log 0.15

≈ 2.7087 bit

Thus H(P) is less than the expected word length in the better tree.

Entropy is a really fundamental notion of information and communication theory as the
rest of this course will demonstrate. Therefore, it is worthwhile studying its properties.
Note that we sometimes write

H(P) = H(p1, p2, . . . , pm),

if P = {p1, p2, . . . , pm}.

First we make the connection between the general notion of entropy as introduced here
and the measure of uncertainty for choice systems without probabilities as defined in
the previous subsection. We see that if P is the uniform distribution over n choices,
then

H

(
1

n
, . . . ,

1

n

)
= −

n∑

i=1

1

n
log

1

n
= − log

1

n
= log n = h(n).

Property 1.1 The entropy of a uniform probability distribution over n pos-
sibilities equals the measure of uncertainty of the corresponding choice system
without probability.

1.1. ENTROPY 21

This is an expression of Laplace’s principle of insufficient reason, which says, if you
know nothing other, assume equal probabilities. In this context this works nicely.
Hence, it turns out that entropy also covers in this sense the particular case of choice
systems without probabilities.

For a given choice system S with |S| = n, intuitively, we have maximal uncertainty,
if we know no probabilities, or if we assume uniform (equal) probabilities over all
possibilities,

H(P) ≤ h(|S|) = log n.

This is in fact true and can be proved.

In order to prove this result, we need the following lemma.

Lemma 1.1 Let p1, p2, . . . , pm and q1, q2, . . . , qm be two probability distribu-
tions over the same number of m possibilities. Then

m∑

i=1

pi log qi ≤

m∑

i=1

pi log pi (1.4)

and equality holds if, and only if, pi = qi.

Proof We have log x = log e · ln x, where ln denotes the natural logarithm to the
base e. ln x is a convex function, that is, its graph is below its tangent in all points
(see Figure 1.6). If we take the derivative of ln x in the point x = 1, then this gives
us ln x ≤ x− 1 with equality if, and only if, x = 1. Therefore, we have

ln
qi

pi
≤

qi

pi
− 1,

hence

m∑

i=1

pi ln
qi

pi
≤

m∑

i=1

qi −

m∑

i=1

pi = 1− 1 = 0.

From this we conclude that

m∑

i=1

pi log qi −

m∑

i=1

pi log pi = log e

m∑

i=1

pi ln
qi

pi
≤ 0.

This shows that (1.4) holds with equality if, and only if, qi/pi = 1 for all i, i.e. pi = qi.

�

We apply this lemma now,

H(P)− log m = −
m∑

i=1

pi log pi +
m∑

i=1

pi log
1

m
≤ 0,

with equality if, and only if, pi = 1/m. We have proved the following theorem:

22 CHAPTER 1. UNCERTAINTY AND INFORMATION

Figure 1.6: Convexity of the function y = ln x and the tangent at the point x = 1.

Theorem 1.2

maxH(P) = log m, (1.5)

where the maximum is taken over all probability distributions P for m possi-
bilities. This maximum is reached only for the equiprobable distribution.

We add further elementary properties of entropy.

1. If (S1, P1) and (S2, P2) are two probabilistic choice systems with |S1| = |S2| and
P1 = P2, then H(P1) = H(P2). This says that the entropy depends only on
the probability distribution, but not on the nature of the possibilities ei in the
choice system. This follows directly from the definition of the entropy (1.3) which
depends only on the probabilities pi.

2. We have

H(p1, p2, . . . , pn) = H(p1, p2, . . . , pn, 0).

This comes from the convention 0 · log 0 = 0. It says that possibilities with van-
ishing probability are irrelevant to the amount of uncertainty. This is reasonable,
since we may be sure that such possibilities are never selected.

3. Consider a two stage scheme as depicted in Figure 1.7. In the first stage one of
two possibilities are selected with probabilities p and q = 1 − p. If in the first
stage the first possibility is selected, then in the second stage one of n possibilities
is selected with probabilities pi/p. If the second possibility is selected in the first
stage, then one of m possibilities is selected in the second stage with probabilities
qi/q. Here it is assumed that

n∑

i=1

pi = p,

m∑

i=1

qi = q.

1.1. ENTROPY 23

Note that this implies

p1 + p2 + · · · pn + q1 + q2 + · · · qm = 1,

i.e. {p1, . . . , pn, q1, . . . , qm} is a probability distribution on n+m elements. Then
we have the following equality between entropies of the two stages:

H(p1, p2, . . . , pn, q1, q2, . . . , qm)

= H(p, q) + pH(
p1

p
,
p2

p
, . . . ,

pn

p
) + qH(

q1

q
,
q2

q
, . . . ,

qm

q
).

This can be verified, by the definition of entropy.

Figure 1.7: A two-stage probabilistic choice where in the first stage one of two possibil-
ities are selected with probabilities p and q = 1− p and in the second stage either one
of n possibilities with probability pi/p or one of m possibilities with probability qi/q.

We add a number of more technical properties of entropy.

Proposition 1.1 1. H(p1, p2, . . . , pn) = H(pπ(1), pπ(2), . . . , pπ(n)) for every
permutation π.

2. H(p1, p2, . . . , pn) is continuous in all its variables.

3. We have the equation

H(p1, . . . , pn) = H(p1 + p2, p3, . . . , pn)

+(p1 + p2)H(
p1

p1 + p2
,

p2

p1 + p2
),

for every probability distribution p1, . . . , pn with n ≥ 2.

4. H(1
n , . . . , 1

n) is monotone increasing with n.

These propositions are very easy to prove. Their importance resides in the fact, that
they are characterizing properties for entropy. That, is, when we impose these four

24 CHAPTER 1. UNCERTAINTY AND INFORMATION

reasonable conditions on a measure of uncertainty, then we necessarily get the entropy
for this measure. We shall return to this interesting point in section 1.1.4.

Proof (1) Follows directly from the definition of entropy and commutativity of ad-
dition.

(2) Follows from the fact that the logarithm is a continuous function.

(3) Needs some simple computations,

H(p1, p2, . . . , pn)

= −p1 log p1 − p2 log p2 −
n∑

i=3

pi log pi

= −(p1 + p2) log(p1 + p2)−

n∑

i=3

pi log pi

+p1 log(p1 + p2)− p1 log p1 + p2 log(p1 + p2)− p2 log p2

= H(p1 + p2, p3, . . . , pn)− (p1 + p2)

(
p1

p1 + p2
log

p1

p1 + p2
+

p2

p1 + p2
log

p2

p1 + p2

)

= H(p1 + p2, p3, . . . , pn) + (p1 + p2)H(
p1

p1 + p2
,

p2

p1 + p2
).

(4) Follows since H(1
n , . . . , 1

n) = log n and the logarithm is monotone increasing. �

For further reference we introduce an alternative notion. A probabilistic choice scheme
(S,P) may also be represented by a finite random variable X, which takes values ei

from S = {e1, e2, . . . , em}. The probability that X = ei is then pX(ei) and P is called
the probability density of X. Inversely, each finitely-valued random variable gives rise
to probabilistic choice systems. Formally, a random variable with values in S is an
application of some sample space Ω into S. A probability distribution in S is then
induced by

pX(x) =
∑

ω∈Ω:X(ω)=x

p(ω),

if {p(ω) : ω ∈ Ω} are the probabilities defined in the finite sample space Ω. The set
{pX(x) : x ∈ S} then defines the probabilities on the choice space S. So we may
as well speak of random variables instead of probabilistic choice systems, and define
accordingly the entropy of random variable X with values in S by

H(X) = −
∑

x∈S

pX(x) log pX(x).

This then measures the uncertainty associated with random variable X. In what follows
this will often be a more convenient way to look at things.

Example 1.7 (Bernoulli) Let X be a binomial random variable representing n
Bernoulli trials, that is with

pX(x) =

(
n

x

)
px(1− p)n−x.

1.1. ENTROPY 25

The entropy of X is given by

H(X) = −

n∑

i=0

(
n

i

)
pi(1− p)n−i · log

((
n

i

)
pi(1− p)n−i

)
.

Let us take n = 4 and p = q = 0.5. Hence

H(X) = −
4∑

i=0

(
4

i

)
(0.5)i · (0.5)4−i · log

((
4

i

)
(0.5)i · (0.5)4−i

)

= −0.1250 log 0.0625 − 0.5 log 0.25 − 0.375 log 0.375

≈ 2.0306 bit.

To conclude this section, we consider a random variable X associated with a proba-
bilistic choice situation (S,P). Assume that an event E ⊆ S is observed. How does
this affect the uncertainty? This event induces a new probabilistic choice situation
(E,PE). Here PE refers to the conditional probabilities

pX|E(x) =
pX(x)

pX(E)
, for all x ∈ E.

The uncertainty related to this new situation is

H(X|E) = −
∑

x∈E

pX|E(x) log pX|E(x).

This is also called the conditional entropy of X given E.

Example 1.8 (Conditional Entropy) Let X be a random variable related to
the probabilistic choice situation (S,P) given by S = {1, 2, 3, 4}, P =
{0.5, 0.25, 0.125, 0.125}, and E = {1, 3} an event. Thus

H(X) = −0.5 log 0.5− 0.25 log 0.25 − 0.125 log 0.125 − 0.125 log 0.125

= 1.75bit.

With pX(E) = 0.625, pX|E(1) = pX(1)/pX (E) = 0.8 and pX|E(3) = pX(3)/pX(E) =
0.2 we obtain

H(X|E) = −pX|E(1) log pX|E(1)− pX|E(3) log pX|E(3)

= −0.8 log 0.8− 0.2 log 0.2

≈ 0.7219 bit.

Summary for Section 1.1

• We have seen that for a probabilistic choice, represented by a probabilistic choice
system, a different strategy in the game of questions and answer must be used:
rather than partitioning the set of possibilities into subsets of equal cardinality,
we partition it into subsets of nearly equal probability. This leads to the entropy
as approximately the expected number of questions and thus as an appropriate
measure of uncertainty;

26 CHAPTER 1. UNCERTAINTY AND INFORMATION

• We have seen that the uncertainty of a choice system equals the entropy of a
probabilistic choice system with equal probabilities, that is a uniform probability
distribution. This corresponds to Laplace’s principle of insufficient reason. So
the concept of entropy also covers the case of non probabilistic choice systems;

• In fact, equal probabilities, or choice systems without known probabilities rep-
resent, for a set S of a given cardinality, the largest uncertainty;

• Entropy depends only on the probability distribution of a choice system, but
not on the nature of the possibilities;

• We saw some simple properties of entropy which characterize the concept en-
tropy.

Control Question 5

Given a probabilistic choice system (S,P) by S = {e1, e2, . . . , en} and P = {p1, p2, . . . , pn}.
Then, H(P)

1. = −
∑n

i=1 pi log pi

2. = h(n)

3. ≤ log n

4. ≤ h(|S|)

5. > 0

Answer

1. This is correct. It is simply the definition of the amount of uncertainty of a
probabilistic choice system, also known as the entropy.

2. In general, this assertion is wrong. But it becomes correct if P is the uniform
probability distribution, that is if p1 = . . . = pn = 1/n.

3. We saw, that if we assume uniform probabilities for all possibilities, we have
maximal entropy, so this is correct.

4. Since h(|S|) = log n, this case equals the case above. Thus, this assertion is also
true.

5. Take as an example the probability distribution p1 = 1, p2, . . . , pn = 0. The
entropy is then H(P) = log 1 = 0. This counter-example shows, that the propo-
sition is wrong. However, H(P) ≥ 0 holds for all probability distributions P .

Control Question 6

Given the binary tree as depicted in figure 1.8. Compute

1.1. ENTROPY 27

1. the expected word length;

2. the entropy.

0.10 0.01

0.05 0.05

0.03 0.07

0.40 0.29

0.11 0.10 0.10 0.69

0.21 0.79

Figure 1.8: Compute the expected word length and the entropy in this binary tree.

Answer

1. The expected word length is equal to

3 · (0.1 + 0.01 + 0.05 + 0.05 + 0.03 + 0.07 + 0.4 + 0.29) = 3.

This is not a surprise, since the tree is equilibrated.

2. For the entropy we get

−0.1 log 0.1 − 0.01 log 0.01 − 0.1 log 0.05

−0.03 log 0.03 − 0.07 log 0.07 − 0.4 log 0.4 − 0.29 log 0.29 ≈ 2.2978.

Control Question 7

Given a probabilistic choice system (S,P) by S = {e1, e2, . . . , en} and P = {p1, p2, . . . , pn}.
Then, H(p1, p2, . . . , pn)

1. = H(0, p1, . . . , pn);

2. = H(p1 + p2, p3, . . . , pn) + (p1 + p2)H(p1

p1+p2
, p2

p1+p2
);

3. = H(p1 + pn, p2, . . . , pn−1) + (p1 + pn)H(p1

p1+pn
, pn

p1+pn
);

4. =
∑n

i=1 pi log
1
pi

.

Answer

28 CHAPTER 1. UNCERTAINTY AND INFORMATION

1. Follows directly from the convention 0 · log 0 = 0.

2. That is correct (see proposition 1.1).

3. Same case as above (use the permutation property).

4. Since we have log 1
pi

= log 1− log pi = − log pi, the assertion is correct.

Control Question 8

Let X be a random variable related to a probabilistic choice situation (S,P) and E an
event E ⊆ S. Then H(X|E) ≤ H(X). Is this assertion correct?

Answer

No, the assertion is incorrect. Here is a counter-example:

Let S = {e1, e2, e3}, p1 = 0.99, p2 = 0.005, p3 = 0.005 and E = {e2, e3}. Hence we get
H(X) = −0.99 log 0.99 − 0.01 log 0.005 ≈ 0.0908 and H(X|E) = − log 0.5 = 1.

1.1.3 Conditional Entropy

Learning Objectives for Subsection 1.1.3

After studying this section you should

• know how the entropy of compound choice systems or multidimensional
variables is related to the entropy of the components or single variables;

• understand how then knowledge of the choice in one component or the
value of one variable affects the uncertainty of the remaining components
or variables.

We start by considering two choice systems S1 and S2 and the associated system
of independent choices S1 × S2 = {(e1,1, e2,1), (e1,1, e2,2), . . . , (e1,n, e2,m)}. By affect-
ing probabilities pi,j to the compound choice (e1,i, e2,j), we extend the system of
independent choices to a compound probabilistic choice system (S1 × S2, P), where
P = {pi,j; i = 1, 2, . . . , n; j = 1, 2, . . . ,m}. We must have

0 ≤ pi,j,

n∑

i=1

m∑

j=1

pi,j = 1.

This is a two-dimensional probability distribution. We may compute the two marginal

distribution P1 = {p
(1)
1 , p

(1)
2 , . . . , p

(1)
n }, and P2 = {p

(2)
1 , p

(2)
2 , . . . , p

(2)
m }, defined by

p
(1)
i =

m∑

j=1

pi,j, p
(2)
j =

n∑

i=1

pi,j. (1.6)

This gives us then two associated probabilistic choice systems (S1, P1) and (S2, P2).

1.1. ENTROPY 29

We shall introduce a random variable for each probabilistic choice system as explained
at the end of the previous subsection. So let X be associated with the system (S1, P1)
and Y with the system (S2, P2). The pair of variables (X,Y) is then associated with
the compound probabilistic system (S1 × S2, P). We have the two-dimensional prob-
ability distribution p(X,Y)(e1,i, e2,j) = pi,j for the pair of random variables (X,Y).

Variable X has the marginal distribution pX(e1,i) = p
(1)
i and Y the marginal distri-

bution pX(e2,j) = p
(2)
j . We remind you that two probabilistic choice systems, or two

random variables X and Y are called independent, if, and only if,

pX,Y (x, y) = pX(x) · pY (y), for all pairs (x, y) ∈ S1 × S2.

We have three different entropies associated with the three probabilistic choice systems:
The two single variables X and Y and the two-dimensional variable (X,Y),

H(X,Y) = −
∑

x∈S1

∑

y∈S2

pX,Y (x, y) log pX,Y (x, y),

H(X) = −
∑

x∈S1

pX(x) log pX(x),

H(Y) = −
∑

y∈S2

pY (y) log pY (y).

Example 1.9 (Compound Probabilistic Choice System) Given a compound
system of independent choices

S1 × S2 = {(e1,1, e2,1), (e1,1, e2,2), (e1,2, e2,1), (e1,2, e2,2)},

P = {0.5, 0.1, 0.3, 0.1},

and two random variables (X, Y) associated with (S1 × S2, P). It is easy to identify
the ’single’ choice systems

S1 = {e1,1, e1,2}, S2 = {e2,1, e2,2}.

Applying (1.6) gives us the two marginal distributions P1 = {0.6, 0.4} and P2 =
{0.8, 0.2}. We are now able to compute the entropies

H(X,Y) = −
∑

x∈S1

∑

y∈S2

pX,Y (x, y) log pX,Y (x, y)

= −0.5 · log 0.5− 0.1 · log 0.1 − 0.3 · log 0.3− 0.1 · log 0.1

≈ 1.6855 bit,

H(X) = −
∑

x∈S1

pX(x) log pX(x) = −0.6 log 0.6− 0.4 log 0.4

≈ 0.9710 bit,

H(Y) = −
∑

y∈S2

pY (y) log pY (y) = −0.8 log 0.8− 0.2 log 0.2

≈ 0.7219 bit.

The question arises, how the three entropies above are related. The answer is contained
in the following theorem

30 CHAPTER 1. UNCERTAINTY AND INFORMATION

Theorem 1.3 For any pair of random variables X and Y , we have

H(X,Y) ≤ H(X) + H(Y). (1.7)

Equality holds if, and only if, X and Y are independent random variables.

Proof This theorem is proved by straightforward calculation and using lemma 1.1:

H(X) + H(Y)

= −

(
∑

x

pX(x) log pX(x) +
∑

y

pY (y) log pY (y)

)

= −

(
∑

x

∑

y

pX,Y (x, y) log pX(x) +
∑

x

∑

y

pX,Y (x, y) log pY (y)

)

= −

(
∑

x

∑

y

pX,Y (x, y) log pX(x) · pY (y)

)
.

Now, lemma 1.1 gives us the following inequality,

−

(
∑

x

∑

y

pX,Y (x, y) log pX(x) · pY (y)

)

≥ −

(
∑

x

∑

y

pX,Y (x, y) log pX,Y (x, y)

)

= H(X,Y).

This proves the inequality (1.7). According to lemma 1.1 we have equality in the last
inequality, if, and only if, pX,Y (x, y) = pX(x) · pY (y), which means, that X and Y are
independent. �

This theorem tells us, that entropies of two variables add up to the entropy of the
compound, two-dimensional variables, only if the variables are independent. Otherwise
there is less uncertainty in the compound situation than in the two simple choice
systems. The reason is, that the dependence between the variables (their correlation)
accounts for some “common” parts of uncertainty in both single variables.

Example 1.10 (Compound Probabilistic Choice System - Continuation)
In example 1.9 we had the random variables X and Y . Check yourself that
H(X,Y) < H(X) + H(Y).

Theorem 1.3 generalizes easily to more than two variables. Let X in a general setting
denote the vector (X1,X2, . . . ,Xm) of m random variables Xi. This vector random
variable has the probability distribution pX(x), where x = (x1, x2, . . . , xm) and each
variable Xi has the marginal distribution

pXi
(xi) =

∑

x1,...,xi−1,xi+1,...,xm

pX(x1, x2, . . . , xi−1, xi, xi+1, . . . , xm).

The random variables X1,X2, . . . ,Xm are called (mutually) independent, if, and only

1.1. ENTROPY 31

if,

pX(x) = pX1
(x1) · pX2

(x2) · · · pXm(xm)

holds. The common entropy of the multidimensional variable X is defined by

H(X) = −
∑

x

pX(x) log pX(x).

Then theorem 1.3 can be generalized as in the following corollary.

Corollary 1.2 For any multidimensional random variable X =
(X1,X2, . . . ,Xm) we have

H(X) ≤
m∑

i=1

H(Xi).

Equality holds if, and only if, the variables X1,X2, . . . ,Xm are mutually inde-
pendent.

Proof Goes by induction over m. The corollary holds for m = 2 according to
theorem 1.3. Suppose it holds for m. Then consider the pair of random variables
Xm = (X1,X2, . . . ,Xm) and Xm+1, such that Xm+1 = (Xm,Xm+1). Again by
theorem 1.3 and by the assumption of induction, we have

H(Xm+1) ≤ H(Xm) + H(Xm+1) ≤
m∑

i=1

H(Xi) + H(Xm+1) =
m+1∑

i=1

H(Xi).

�

Example 1.11 (Independence) Let X1, . . . ,Xn be independent random variables
supplying the result 0 with probability 0.5 and 1 with probability 0.5, which means

pXi
(0) = 0.5, pXi

(1) = 0.5, for i = 1, . . . , n.

Hence H(X1, . . . ,Xn) = n ·H(X1) = n.

We come back to the case of two variables X and Y . Suppose, we observe the value
of one variable, say Y = y. How does this affect the uncertainty concerning variable
X? We remark that this observation changes the distribution pX(x) to the conditional
distribution pX|y(x, y) defined as

pX|y(x, y) =
pX,Y (x, y)

pY (y)
.

Therefore, we obtain the conditional entropy of X, given Y = y,

H(X|Y = y) = −
∑

x

pX|y(x, y) log pX|y(x, y).

To simplify the notation we often abbreviate H(X|Y = y) by H(X|y). So, the ob-
servation that Y = y changes the uncertainty regarding X from H(X) to H(X|y).

32 CHAPTER 1. UNCERTAINTY AND INFORMATION

As the following example shows, the new entropy or uncertainty may be smaller or
larger than the old one. A particular observation may increase or decrease uncer-
tainty. Note however, that if the two random variables are independent, then we have
pX|y(x, y) = pX(x) for every x and y. In this case we see that

H(X|y) = −
∑

x

pX(x) log pX(x) = H(X).

The uncertainty in X does not change, when a variable Y which is independent of X
is observed.

Example 1.12 (Conditional Entropy) Given pX,Y (0, 1) = pX,Y (1, 0) =
pX,Y (0, 0) = 1

3 , pX,Y (1, 1) = 0, pX(0) = pY (0) = 2
3 and pX(1) = pY (1) = 1

3 . Hence

H(X|Y = 0) = −pX|y(0, 0) log pX|y(0, 0) − pX|y(1, 0) log pX|y(1, 0)

= −
pX,Y (0, 0)

pY (0)
log

pX,Y (0, 0)

pY (0)
−

pX,Y (1, 0)

pY (0)
log

pX,Y (1, 0)

pY (0)

= −0.5 log 0.5 − 0.5 log 0.5

= 1,

H(X|Y = 1) = −
pX,Y (0, 1)

pY (1)
log

pX,Y (0, 1)

pY (1)
−

pX,Y (1, 1)

pY (1)
log

pX,Y (1, 1)

pY (1)

= 0,

H(X) = H(Y) = −
2

3
log

2

3
−

1

3
log

1

3
≈ 0.9183.

So we get that H(X|Y = 1) < H(X) < H(X|Y = 0).

In addition to the conditional entropy of X given a particular observation Y = y we
may consider the expected conditional entropy of X given Y , which is the expected
value of H(X|y) relative to y,

H(X|Y) =
∑

y

pY (y)H(X|y).

We emphasize the difference between H(X|y), H(X|E) and H(X|Y). In the former
case we understand the conditional entropy of the variable X given an observed event
Y = y or E. In the latter case we denote the expected conditional entropy.

Note that

pX,Y (x, y) = pY (y)pX|y(x, y).

Therefore, we can develop the expected conditional entropy as follows,

H(X|Y) =
∑

y

pY (y)H(X|y)

= −
∑

x

∑

y

pY (y)pX|y(x, y) log pX|y(x, y)

= −
∑

x

∑

y

pX,Y (x, y) log
pX,Y (x, y)

pY (y)

= −
∑

x

∑

y

pX,Y (x, y) (log pX,Y (x, y)− log pY (y))

= H(X,Y)−H(Y).

1.1. ENTROPY 33

Here we have proven the following very important theorem.

Theorem 1.4 For a pair of random variables X and Y we always have

H(X,Y) = H(Y) + H(X|Y). (1.8)

This theorem tells us, that we can always consider the uncertainty of a pair of variables
as the result of a chaining, where we start with the uncertainty of one of the variables,
say Y , and add the (expected) conditional uncertainty of the second one, given the
first one. Of course, we may start with any of the two variables. Thus,

H(X,Y) = H(X) + H(Y |X)

also holds true.

Example 1.13 (Expected Conditional Entropy) We continue example 1.12 by
computing the expected conditional entropy of X given Y and the compound entropy
of (X,Y).

H(X|Y) = pY (0)H(X|Y = 0) + pY (1)H(X|Y = 1) =
2

3
bit

H(X,Y) = − log
1

3
≈ 1.5850 bit.

As you can check H(X,Y) = H(Y) + H(X|Y).

In communication theory, channels for the transmission of signals are considered. Sup-
pose that at the input random signs from a certain choice system I appear with known
probabilities. This then defines a random variable X. During a transmission an input
sign can be changed into some output sign from an output choice system O. Of course
there must be some dependence between the sign at the input and the sign at the out-
put. If we denote the output sign by the variable Y , then this dependence is described
by the conditional probabilities pY |x(y, x), where

0 ≤ pY |x(y, x) for all x ∈ I, y ∈ O,
∑

y

pY |x(y, x) = 1 for all x ∈ I.

This is called the transmission matrix. Figure 1.9 shows this channel system. Then
the equation

H(X,Y) = H(X) + H(Y |X)

says that the whole uncertainty in the system is composed of the uncertainty of the
input signal H(X) and the transmission uncertainty over the channel H(Y |X).

Figure 1.9: Transmission channel.

Example 1.14 (Symmetric Binary Channel) A simple symmetric binary chan-

34 CHAPTER 1. UNCERTAINTY AND INFORMATION

nel with random variables X for the input and Y for the output is given by the
following transmission matrix:

P =

(
pY |x(0, 0) pY |x(1, 0)

pY |x(0, 1) pY |x(1, 1)

)
=

(
1− ε ε

ε 1− ε

)

Thus, the probability of a transmission error is ε. Let pX(0) = p and pX(1) = q =
1− p. Hence H(X) = −p log p− (1− p) log(1− p) and

pY (0) = pY |x(0, 0) · pX(0) + pY |x(0, 1) · pX(1)

= (1− ε)p + ε(1 − p),

pY (1) = pY |x(1, 0) · pX(0) + pY |x(1, 1) · pX(1)

= εp + (1− ε)(1 − p).

With

H(Y |0) = −pY |x(0, 0) log pY |x(0, 0) − pY |x(1, 0) log pY |x(1, 0)

= −(1− ε) log(1− ε)− ε log ε,

H(Y |1) = −pY |x(0, 1) log pY |x(0, 1) − pY |x(1, 1) log pY |x(1, 1)

= −ε log ε− (1− ε) log(1− ε) = H(Y |0),

we obtain

H(Y |X) = pX(0)H(Y |0) + pX(1)H(Y |1) = pH(Y |0) + (1− p)H(Y |0)

= H(Y |0) = H(Y |1).

This is not a surprise, since the channel is symmetric. With a certain amount of effort
you can show that H(X,Y) = H(X) + H(Y |X). Let us consider now a numerical
example. Given ε = 0.1, pX(0) = p = 0.2 and pX(1) = q = 0.8. Thus H(X) =
−0.2 log 0.2 − 0.8 log 0.8 ≈ 0.7219 bit,

pY (0) = 0.9 · 0.2 + 0.1 · 0.8 = 0.26,

pY (1) = 0.1 · 0.2 + 0.9 · 0.8 = 0.74,

and H(Y |X) = H(Y |0) = −0.9 log 0.9 − 0.1 log 0.1 ≈ 0.4690 bit. Since

pX,Y (0, 0) = pY |x(0, 0)pX (0) = 0.9 · 0.2 = 0.18,

pX,Y (1, 0) = pY |x(0, 1)pX (1) = 0.1 · 0.8 = 0.08,

pX,Y (0, 1) = pY |x(1, 0)pX (0) = 0.1 · 0.2 = 0.02,

pX,Y (1, 1) = pY |x(1, 1)pX (1) = 0.9 · 0.8 = 0.72,

we obtain finally H(X,Y) = −0.18 log 0.18 − 0.08 log 0.08 − 0.02 log 0.02 −
0.72 log 0.72 ≈ 1.1909 bit.

Theorem 1.4 again generalizes easily to a sequence of more than two variables.

Contrary to the conditional entropy of X, given an observation Y = y, the expected
conditional entropy of X given Y is always smaller or at most equal to the entropy of
X. So, on the average, an observation of Y does decrease the uncertainty of X.

1.1. ENTROPY 35

Corollary 1.3 For any pair of random variables X and Y , we have

H(X|Y) ≤ H(X). (1.9)

Equality holds, if, and only if, X and Y are independent.

Proof To prove inequality (1.9) we use the chaining rule and theorem 1.3.

H(X|Y) = H(X,Y)−H(Y) ≤ H(X) + H(Y)−H(Y) = H(X).

With equality if and only if X and Y are independent. �

If X and Y are independent, then observing any one of these two variables does not
change the uncertainty of the other one. That is, intuitively in this case, one variable
can not give information about the other one.

Corollary 1.4 Let X1,X2, . . . ,Xm be random variables. Then

H(X1,X2, . . . ,Xm)

= H(X1) + H(X2|X1) + · · ·+ H(Xm|X1,X2, . . . ,Xm−1). (1.10)

Proof The proof is by induction. It holds for m = 2 from theorem 1.4. Suppose
it holds for some m. Then, let Xm = (X1,X2, . . . ,Xm). From theorem 1.4 and the
assumption of induction, we obtain that

H(X1,X2, . . . ,Xm,Xm+1) = H(Xm,Xm+1)

= H(Xm) + H(Xm+1|Xm) = H(X1,X2, . . . ,Xm) + H(Xm+1|X1,X2, . . . ,Xm)

= H(X1) + H(X2|X1) + · · ·

· · ·+ H(Xm|X1,X2, . . . ,Xm−1) + H(Xm+1|X1,X2, . . . ,Xm).

So equation (1.10) holds for m + 1, hence for all m. �

(1.10) is called the (generalized) chaining rule. It is especially very important for
communication theory.

Summary for Section 1.1

• We found that the joint entropy of several random variables is always less or
equal to the sum of the entropies of the individual variable. It equals the sum
only if the variables are independent.

• The conditional entropy measures the uncertainty of a variable, when the value
of another variable is observed. This uncertainty may, depending on the ob-
servation, increase or decrease. The expected conditional entropy however is
always smaller than the original entropy. Conditional entropy equals uncondi-
tional entropy, if the random variables are independent.

36 CHAPTER 1. UNCERTAINTY AND INFORMATION

Control Question 9

Relate

1. H(X|y);

2. H(X|Y);

3. H(X|E);

with

a. expected conditional entropy;

b. entropy conditioned on an observed event.

Answer

H(X|y) and H(X|E) are denoting the entropy conditioned on an observed event.
Whereas H(X|Y) is the expected conditional entropy.

Control Question 10

H(X) may be

1. < H(X|Y);

2. < H(X|y);

3. > H(X|y);

4. = H(X|y);

5. = H(X|Y).

Answer

The first assertion is incorrect, since for any pair of random variables X and Y we
have H(X) ≥ H(X|Y). The second and third proposition are indeed correct (see
example 1.12). If X and Y are independent random variables, we always have H(X) =
H(X|Y) = H(X|y), hence the fourth and fifth assertions are also true.

Control Question 11

Relate, if possible,

1. H(X,Y);

2. H(X|Y);

1.1. ENTROPY 37

with

a. ≤ H(X);

b. ≤ H(Y);

c. ≤ H(X) + H(Y);

d. = H(Y) + H(X|Y);

e. = H(X) + H(Y |X);

f. = H(Y) + H(Y |X);

g. =
∑

x,y pX|Y (x, y) log pX|Y (x, y);

h. = H(X,Y)−H(X).

Answer

For H(X,Y) we have

c. ≤ H(X) + H(Y);

d. = H(Y) + H(X|Y);

e. = H(X) + H(Y |X).

For H(X|Y) we have

a. ≤ H(X);

c. ≤ H(X) + H(Y).

1.1.4 Axiomatic Determination of Entropy

Learning Objectives for Subsection 1.1.4

After studying this section you should understand

• that entropy is characterized by some simple conditions;

• how entropy is derived from these conditions.

We introduce here four simple conditions, which should be satisfied by a measure of
uncertainty related to a probability over a finite choice system. If S = {e1, e2, . . . , en}
is a finite choice system and p1 = p(e1), p2 = p(e2), . . . , pn = p(en) a probability
distribution over it, then the measure of uncertainty of this system is assumed to be a
function H(p1, p2, . . . , pn) of p1, p2, . . . , pn only. But at this point the form this function
should take is undefined. In particular, H does not denote the entropy here, but some
unknown function. Rather than to define H by some formula, we impose the following
conditions on H:

38 CHAPTER 1. UNCERTAINTY AND INFORMATION

(H1) H(p1, p2, . . . , pn) = H(pπ(1), pπ(2), . . . , pπ(n)) for any permutation π of 1, 2, . . . , n.

(H2) H(p1, p2, . . . , pn) is a continuous function in all variables.

(H3) The equation

H(p1, p2, . . . , pn) = H(p1 + p2, p3, . . . , pn) + (p1 + p2) ·H(
p1

p1 + p2
,

p2

p1 + p2
)

holds for all probability distributions p1, p2, . . . , pn.

(H4) For a uniform probability distribution pi = 1
n for i = 1, . . . , n, H(p1, . . . , pn) =

H(1
n , . . . , 1

n) as a function of n ≥ 1 is monotone increasing.

These are reasonable conditions to impose on a measure of uncertainty of a probability
distribution. (H1) says that the measure does not depend on the numbering of the
possible choices. (H2) requires that small changes in the probabilities should only
provoke small changes in the measures of uncertainty. Condition (H3) is more technical,
it is a simple form of a chaining formula like theorem 1.4. (H4) expresses the idea that
with uniform distribution (equivalent to choice without probabilities), the uncertainty
should increase with the number of possibilities.

Entropy as defined in subsection 1.1.2 indeed satisfies these conditions as is stated in
proposition 1.1. In this subsection we shall prove that H must be the entropy, if (H1)
to (H4) are required.

Theorem 1.5 (H1), (H2), (H3) and (H4) are satisfied if, and only if,

H(p1, p2, . . . , pn) = −

n∑

i=1

pi log pi. (1.11)

The logarithm may be taken to any base.

The “if” part of the theorem has already been proved in proposition 1.1. The “only
if” part remains to be proved. That is, we assume conditions (H1) to (H4) and derive
(1.11). We do this in three steps. In each step, we prove a lemma, each of which is
also interesting in itself.

We start by showing that (H3) essentially already contains a general form of chaining.
We consider a probability distribution p1, p2, . . . , pn. But instead of selecting one of
the possibilities directly according to these probabilities, we use a two-stage choice
scheme as represented by a tree in in Figure 1.10. In the first stage one of several arcs
is selected with probability p1 + · · · + pi1 , pi1+1 + · · · + pi2 , In the second stage,
depending on the choice in the first stage, a second arc is selected. For example, if in
the first stage the left most arc has been selected, then the next selection is according
to the probabilities

p1

p1 + · · ·+ pi1

,
p2

p1 + · · · + pi1

, . . . ,
pi1

p1 + · · · + pi1

.

We see, that with this two-stage scheme we finally select one of the n possibilities with
the original probabilities p1, p2, . . . , pn.

We have now the following lemma.

1.1. ENTROPY 39

Figure 1.10: A two-stage probabilistic choice system.

Lemma 1.2 (H1) and (H3) imply that

H(p1, p2, . . . , pi1 , pi1+1, . . . , pi2 , . . . , pis−1+1, . . . , pis , pis+1, . . . , pn) =

H(p1 + · · ·+ pi1, pi1+1 + · · ·+ pi2, . . . , pis−1+1 + · · ·+ pis , pis+1 + · · · + pn)

+(p1 + · · · + pi1) ·H(
p1

p1 + · · ·+ pi1

, . . . ,
pi1

p1 + · · ·+ pi1

)

+(pi1+1 + . . . + pi2) ·H(
pi1+1

pi1+1 + . . . + pi2

, . . . ,
pi2

pi1+1 + . . . + pi2

)

· · ·

+(pis−1+1 + . . . + pis) ·H(
pis−1+1

pis−1+1 + . . . + pis

, . . . ,
pis

pis−1+1 + . . . + pis

)

+(pis+1 + . . . + pn) ·H(
pis+1

pis+1 + . . . + pn
, . . . ,

pn

pis+1 + . . . + pn
).

Proof First we prove that

H(p1, . . . , pi, pi+1, . . . , pn)

= H(p1 + · · ·+ pi, pi+1, . . . , pn)

+(p1 + · · ·+ pi) ·H(
p1

p1 + · · · + pi
, . . . ,

pi

p1 + · · ·+ pi
). (1.12)

This is proved by induction over i. It holds for i = 2 by (H3). Suppose (1.12) holds

40 CHAPTER 1. UNCERTAINTY AND INFORMATION

for i. Then, applying the formula for i = 2 to (1.12), we obtain

H(p1, . . . , pi, pi+1, . . . , pn)

= H(p1 + · · ·+ pi, pi+1, . . . , pn)

+(p1 + · · · + pi) ·H(
p1

p1 + · · ·+ pi
, . . . ,

pi

p1 + · · ·+ pi
)

= {H((p1 + · · · + pi) + pi+1, pi+2, . . . , pn)

+ ((p1 + · · ·+ pi) + pi+1) ·H(
p1 + · · ·+ pi

p1 + · · ·+ pi + pi+1
,

pi+1

p1 + · · ·+ pi + pi+1
)}

+(p1 + · · · + pi) ·H(
p1

p1 + · · ·+ pi
, . . . ,

pi

p1 + · · ·+ pi
).

Since (1.12) holds for i, we conclude that

H(
p1

p1 + · · ·+ pi + pi+1
, . . . ,

pi

p1 + · · ·+ pi + pi+1
,

pi+1

p1 + · · ·+ pi + pi+1
)

= H(
p1 + · · ·+ pi

p1 + · · · + pi + pi+1
,

pi+1

p1 + · · ·+ pi + pi+1
)

+
p1 + · · · + pi

p1 + · · ·+ pi + pi+1
·H(

p1

p1 + · · ·+ pi
, . . . ,

pi

p1 + · · · + pi
).

If we substitute this above, we obtain

H(p1, . . . , pi, pi+1, . . . , pn)

= H(p1 + · · ·+ pi + pi+1, pi+2, . . . , pn)

+(p1 + · · · + pi + pi+1) ·H(
p1

p1 + · · · + pi + pi+1
, . . . ,

pi+1

p1 + · · ·+ pi + pi+1
).

So (1.12) holds for every i = 2, . . . , n.

Now, by (H1) we then also have

H(p1, . . . , pi−1, pi, pi+1, . . . , pj−1, pj , pj+1, . . . , pn)

= H(p1, . . . , pi−1, pi + · · · + pj, pj+1, . . . , pn)

+(pi + · · · + pj) ·H(
pi

pi + · · ·+ pj
, . . . ,

pj

pi + · · ·+ pj
),

and this for 1 ≤ i < j ≤ n. If we apply this successively to

H(p1, p2, . . . , pi1, pi1+1, . . . , pi2 , . . . , pis−1+1, . . . , pis , pis+1, . . . , pn),

then Lemma follows. �

In the next step of our overall proof, we consider the case of uniform probability
distributions, or the case of choice without probabilities. That is, we put pi = 1/n for
i = 1, . . . , n. We define

h(n) = H(
1

n
, . . . ,

1

n
).

Then we prove the next lemma:

1.1. ENTROPY 41

Lemma 1.3 (H1), (H3) and (H4) imply

h(n) = c · log n

for some constant c > 0 and all integers n.

Proof Let n = m · l for some integers n,m, l. By lemma 8 we have

h(m · l) = H(
1

m · l
, . . . ,

1

m · l
)

= H(
1

l
, . . . ,

1

l
) + l ·

1

l
·H(

1/ml

1/l
, . . . ,

1/ml

1/l
)

= h(l) + h(m). (1.13)

This fundamental equation has the solution h(n) = c · log n. We show that this is the
only solution. If m and l are integers, select an integer N and determine n such that

ln ≤ mN < ln+1.

Then, from (H4) we conclude that

h(ln) ≤ h(mN) < h(ln+1).

But by the fundamental equation (1.13) h(ln) = n ·h(l) and h(mN) = N ·h(m), hence

n · h(l) ≤ N · h(m) < (n + 1) · h(l).

We note that for l = 1 we have h(ln) = h(l) = n · h(l), hence h(l) = 0. For l > 1,
(H4) implies that h(l) > 0. Thus suppose l > 0. Then

n

N
≤

h(m)

h(l)
<

n + 1

N
.

But, we also have log ln ≤ log mN < log ln+1 by the monotonicity of the logarithm.
Hence

n · log l ≤ N · log m < (n + 1) · log l,

or

n

N
≤

log m

log l
<

n + 1

N
.

These inequalities imply

|
h(m)

h(l)
−

log m

log l
|<

1

N
.

Since this holds for all integers N , we conclude that

h(m)

h(l)
=

log m

log l
.

42 CHAPTER 1. UNCERTAINTY AND INFORMATION

This in turn is valid for all integers m, l. Therefore,

h(m)

log m
=

h(l)

log l
= c,

for a certain constant c. Thus we have h(m) = c · log m for m > 1. But for m = 1
we have both h(m) = 0 and c log 1 = 0. Thus h(m) = c · log m for all m ≥ 1. Since
by (H4) h(n) is monotone increasing, we must have c > 0. �

In the third step we use the results obtained so far to prove (1.11) for rational proba-
bilities. We formulate the corresponding lemma:

Lemma 1.4 (H1), (H3) and (H4) imply for rational probabilities p1, . . . , pn

that

H(p1, . . . , pn) = −c ·

n∑

i=1

pi log pi. (1.14)

Proof Assume that

p1 =
q1

p
, . . . , pn =

qn

p

for some integers q1, . . . , qn and p such that

q1 + · · ·+ qn = p.

We have by definition

h(p) = H(
1

p
, . . . ,

1

p
)

= H(
1

p
, . . . ,

1

p︸ ︷︷ ︸
q1

,
1

p
, . . . ,

1

p︸ ︷︷ ︸
q2

, . . . ,
1

p
, . . . ,

1

p︸ ︷︷ ︸
qn

),

where the first group contains q1, the second q2, and the last qn arguments. From
lemmas 8 and 1.3 we then obtain, using this grouping of variables, that

h(p) = H(
q1

p
, . . . ,

qn

p
)

+
q1

p
·H(

1

q1
, . . . ,

1

q1
) + · · · +

qn

p
·H(

1

qn
, . . . ,

1

qn
)

= H(p1, . . . , pn) + c · p1 log q1 + · · ·+ c · pn log qn.

This implies that

H(p1, . . . , pn)

= c · log p− c · p1 log q1 − · · · − c · pn log qn

= c · (p1(log p− log q1) + · · ·+ pn(log p− log qn))

= −c · (p1 log p1 + · · ·+ pn log pn).

This proves (1.14). �

1.1. ENTROPY 43

Now, we are nearly at the end of the overall proof of theorem 1.5. If pi are arbitrary
probabilities, not necessarily rational ones, then they can be approximated by a se-
quence of rational ones, converging to pi. Since (1.11) holds for all rational probability
distributions, the required continuity (H2) of H(p1, . . . , pn) and the continuity of the
right hand side of (1.14) then implies that (1.11) holds for any probability distribution.
This concludes the overall proof of theorem 1.5.

This theorem tells us, that we may select the base of the logarithm, as well as the
constant c > 0 arbitrarily. These choices only determine the measurement unit for the
measure of uncertainty.

Summary for Section 1.1

• In this subsection we proved that the elementary requirements, that the function

H(p1, . . . , pn)

be continuous, does not depend on the ordering of the probabilities and satisfies
a simple decomposition property, together with the requirement that h(n) =
H(1

n , . . . , 1
n) be monotone increasing with n imply that H must be the entropy;

• The proof was done in three steps: In the first one a more general decomposition
property was derived. In the second step, it was proved that h(n) is essentially
a logarithm. In the third step it was shown that H is the entropy, if the prob-
abilities are rational numbers. The theorem follows then from the requirement
of continuity.

Control Question 12

Which conditions do not characterize the entropy H?

1. H(p1, p2, . . . , pn) = H(pπ(1), pπ(2), . . . , pπ(n)) for exactly one permutation π of
1, 2, . . . , n;

2. H(p1, p2, . . . , pn) is a continuous function in all variables;

3. H(p1, . . . , pn) = H(1
n , . . . , 1

n) as a function of n ≥ 1 is monotone decreasing.

Answer

1. Since H(p1, p2, . . . , pn) = H(pπ(1), pπ(2), . . . , pπ(n)) must hold true for all permu-
tations π of 1, 2, . . . , n, this condition does not characterize the entropy H, thus
the answer is correct.

2. That is indeed a characterization of the entropy.

3. The uncertainty should increase with the number of possibilities, hence this is
not a characterization of H.

44 CHAPTER 1. UNCERTAINTY AND INFORMATION

1.2 Information And Its Measure

Learning Objectives for Section 1.2

After studying this section you should understand

• how information is measured;

• that the measure of information is always relative to a precise question
and also relative to previous information;

• that information and questions have a natural algebraic structure;

• other quantities, related to the measure of information, like the mutual
information, the divergence and the degree of surprise, together with
their properties and the relations among them.

1.2.1 Observations And Events

Learning Objectives for Subsection 1.2.1

After studying this subsection you should understand

• that an observation of a random variable or an event related to a random
variable is information;

• that the amount of information gained by observing the value of a vari-
able or an event is measured by the resulting change of uncertainty;

• that therefore entropy and measure of information are intimately related.

What is information and how is it measured? We start studying this question in this
subsection. The basic idea is that information is something that changes uncertainty,
preferably decreasing it. Accordingly, we propose to measure the amount of information
by the amount of change of uncertainty. This idea will be developed in this section
step by step, progressing from very simple to more involved situations. The emphasis
in this section will be on the measurement of information content, and less on the
representation of information and other properties it may have besides quantity.

To start let’s consider a probabilistic choice system (S,P) represented by a random
variable X taking values x ∈ S with probabilities pX(x) (see subsection 1.1.2). This
random variable describes a certain experiment where the outcome is uncertain. The
uncertainty of this situation is measured by the entropy

H(X) = −
∑

x∈S

pX(x) log pX(x). (1.15)

When the experiment is carried out, a certain value x ∈ S of the random variable is
observed. There is no uncertainty left. So the previous uncertainty H(X) is reduced
to the posterior uncertainty 0. The difference H(X) − 0 = H(X) is the amount
of information gained by performing the experiment. So the entropy of a random
variable measures the amount of information gained by observing the actual value of
the variable.

1.2. INFORMATION AND ITS MEASURE 45

This idea calls for two important remarks:

• Since information is a change of entropy it is measured in the same unit as entropy,
i.e. bits, if base 2 is selected for the logarithm.

• The amount of information gained by an observation is the same for all possible
observations. In particular, it is the same whether the probability of the actual
observation is small or large. We return to this point in subsection 1.2.4.

Example 1.15 (Binary Random Variable) If, for a binary variable X the out-
come ′0′ arises with probability p and ′1′ with probability q = 1 − p, then ob-
serving the outcome of this binary experiment results in a gain of information
H(X) = −p log p − q log q. In particular, in the case of a fair coin, observing the
outcome of a throw gives 1 bit of information.

Let’s now slightly generalize the situation. We still consider a random variable X
related to a probabilistic choice situation (S,P). The associated uncertainty is still
H(X). But this time, we carry out the experiment only partially. We do not observe
the exact value of X, but only some event E ⊆ S. Obviously this is also information.
But what is its amount? The observation of the event E changes the random variable
X to the conditional variable X|E related to the new probabilistic choice situation
(E,PE). Here PE denotes the conditional probabilities

pX|E(x) =
pX(x)

pX(E)
, for all x ∈ E.

This new situation, created by the observation of the event E, has the uncertainty
which corresponds to the conditional entropy H(X|E) (see subsection 1.1.2),

H(X|E) = −
∑

x∈E

pX|E(x) log pX|E(x).

So, the observation of E changes the uncertainty from H(X) to H(X|E). The amount
of information gained is thus H(X)−H(X|E). We shall see in a moment, that this is
not always really a gain of information, since H(X|E) may be greater than H(X), such
that the observation of event E increases uncertainty, which corresponds according to
our definition of negative information.

Example 1.16 (Murderer) Assume that we have n suspected murderers, but one
of them (say number 1) is a lot more suspect than the other n − 1 ones. We may
represent the probability that suspect 1 is the murderer by pX(1) = 1 − ε, which is
nearly one. The probabilities that one of the other suspects could be the murderer is
only pX(i) = ε/(n − 1). The entropy is then

H(X) = −(1− ε)(log 1− ε)− ε log
ε

n− 1
. (1.16)

If ε is small, then this entropy will be very small. This reflects the fact, that we are
pretty sure that no. 1 is the murderer. But suppose now that all of a sudden no.
1 produces an alibi. We are then forced to exclude no. 1 from the list of suspects.
This corresponds to the event E that X ∈ {2, . . . , n}. The conditional distribution
of X given E is then pX|E(i) = 1/(n − 1) for i = 2, . . . , n. The corresponding new

46 CHAPTER 1. UNCERTAINTY AND INFORMATION

uncertainty is H(X|E) = log(n−1). This can be much larger than H(X). So, the new
information, i.e. the alibi of no. 1, changes (unexpectedly) a clear and neat situation
into a very uncertain, messy situation. The information is therefore negative. This
example should convince that negative information is a reality.

We introduce now some new notation. First we denote the conditional random variable
X given an event E ⊆ S by XE . It corresponds, as noted above, to the probabilistic
choice situation (E,PE), where PE is the set of conditional probabilities pX|E(x) for
x ∈ E. Then, we denote the amount of information of the event E with respect to the
random variable by i(E/X). So we have

i(E/X) = H(X)−H(XE). (1.17)

If, in particular, the event E corresponds to the observation of a precise value x of the
random variable, E = {x}, then we write the corresponding amount of information
i(x/X). And we have H(X|x) = 0, hence, as already noted above

i(x/X) = H(X). (1.18)

In this sense, and only in this sense, entropy is a measure of information.

If we are interested whether a particular event E takes place or not, we are confronted
with a new choice situation ({E,Ec}, P). Associated with it is a new random variable
Y with the following probability distribution

pY (E) = pX(E) =
∑

x∈E

pX(x), pY (Ec) = pX(Ec) =
∑

x∈Ec

pX(x).

What will be the expected information, when we learn whether E takes place or not?
It is

I(X|Y)

= pY (E)i(E/X) + pY (Ec)i(Ec/X)

= H(X) − (pY (E)H(X|E) + pY (Ec)H(X|Ec))

= H(X) −H(X|Y). (1.19)

But we know (see corollary 1.3) that H(X|Y) ≤ H(X). So, the expected measure
of information gained by observing whether some event takes place or not, is never
negative, i.e. I(X|Y) ≥ 0. We shall get back to the important notion of expected
information in subsection 1.2.3.

Example 1.17 (Murderer - Continuation) Let’s return to the murder example
1.16 above. Suppose somebody announces that he will produce proof of the guilt or
innocence of no. 1 (by examining DNA for example). We expect with probability
1− ε that we will prove the guilt of no. 1. This represents event Ec in the notation
of example 1.16. The resulting uncertainty in this case will be 0 and the information
obtained H(X) (see (1.16)). With probability ε we expect that the innocence of no.
1 will be proved (event E). The remaining uncertainty is then, as seen in example
1.16 log(n−1) and the information obtained H(X)− log(n−1). So, in this particular
case, the expected information to be gained by this proof is equal to

(1− ε)H(X) + ε(H(X) − log(n− 1))

= H(X)− ε log(n− 1)

= −(1− ε) log(1− ε)− ε log ε ≥ 0.

1.2. INFORMATION AND ITS MEASURE 47

The last equation is obtained using (1.16). Note that this is exactly the amount of
information when we learn whether suspect no. 1 is guilty or not.

Suppose now that information, in the form of events observed, comes in successive
steps. First we observe an event E1 ⊆ S, and then we get more precise information
from an event E2 ⊆ E1. Since event E1 changes the random variable X to the condi-
tional random variable XE1

, the information gained by E2 with respect to the former
information E1 is i(E2/XE1

) = H(XE1
)−H(XE2

). The next theorem shows then that
we can add the information gained in each step to get the full information.

Theorem 1.6 Let X be a random variable associated with a probabilistic
choice situation (S,P) and E1, E2 two events, E2 ⊆ E1 ⊆ S. Then

i(E2/X) = i(E1/X) + i(E2/XE1
). (1.20)

Proof The proof is straightforward, using the definition of information

i(E2/X)

= H(X)−H(XE2
)

= H(X)−H(XE1
) + H(XE1

)−H(XE2
)

= i(E1/X) + i(E2/XE1
).

We want at this step to stress the following important aspect of information:

• An amount of information is always relative to prior information. So, the amount
of information of the event E2 relative to the original variable X is generally
not the same as its amount relative to the information given by the event E1.
That is, in general i(E2/X) 6= i(E2/XE1

). The notation we use underlines this:
i(E2/X) is the amount of information contained in the event E2 relative to the
prior information or prior probability distribution of X, whereas i(E2/XE1

) is
the amount of information of the same event E2 relative to the prior information
or probability distribution of XE1

.

Example 1.18 (Relativity to prior Information) This remark can be illus-
trated by the special case of choice without probabilities. Thus, assume S to be
a deterministic choice system. If E ⊆ S is an observed event, then we may denote its
amount of information relative to the prior information S by i(E/S). Then we have

i(E/S) = log |S| − log |E| = log
|S|

|E|
.

If, as in the theorem 1.6, we have E2 ⊆ E1 ⊆ S, then, once E1 is observed, we have
a new choice system E1. If we next observe E2, we gain information i(E2/XE1

) with

48 CHAPTER 1. UNCERTAINTY AND INFORMATION

respect to the former information E1. Thus,

i(E1/S) = log |S| − log |E1|,

i(E2/S) = log |S| − log |E2|,

i(E2/XE1
) = log |E1| − log |E2|.

Of course, in this case we also have i(E2/S) = i(E1/S) + i(E2/XE1
).

We note that we obtain exactly the same results, if we do not assume a choice system
S without probabilities, but a probabilistic choice system (S,P), where P is the
uniform probability distribution over S.

This discussion seems to indicate that not only events represent information, but also
random variables or rather that their associated probability distributions, are informa-
tion. This is indeed so. Subsection 1.2.5 will discuss probabilities as information.

Of course theorem 1.6 generalizes to more than two events.

Corollary 1.5 If Em ⊆ Em−1 ⊆ . . . ⊆ E1 ⊆ S, then

i(Em/X) = i(E1/X) + i(E2/XE1
) + · · · + i(Em/XEm−1

). (1.21)

Example 1.19 (Fair Die) Let X be the random variable associated with the toss
of a fair die. Then we have H(X) = − log 1

6 = log 6 bit. Someone is telling us, that
X 6= 1. So let E1 be the event X 6= 1. Thus

i(E1/X) = H(X)−H(XE1
) = log 6− log 5 = log

6

5
bit,

since H(XE1
) = log 5 bit. A litte while later, we receive the information, that X 6= 1

and X 6= 2 and we associate the event E2 with it. So

i(E2/X) = H(X)−H(XE2
) = log 6− log 4 = log

3

2
bit,

since H(XE2
) = log 4 bit. Finally we compute

i(E2/XE1
) = H(XE1

)−H(XE2
) = log 5− log 4 = log

5

4
bit.

We verify that indeed

i(E2/X) = log
3

2
= log

6

5
+ log

5

4
= i(E1/X) + i(E2/XE1

).

We may also have the situation where two different sources of information report two
events E1, E2 ⊆ S relative to a probabilistic choice situation (S,P) and an associated
random variable X. These two pieces of information can be combined into the event
E1∩E2. We assume that E1∩E2 is not empty, since this would represent contradictory
or incompatible information. The amount of the combined information is then i(E1 ∩
E2/X). By theorem 1.6 we see that

i(E1 ∩ E2/X) = i(E1/X) + i(E1 ∩ E2/XE1
) = i(E2/X) + i(E1 ∩ E2/XE2

).

1.2. INFORMATION AND ITS MEASURE 49

It does not matter in which sequence the two pieces of information are combined. In
both cases we get the same result. Here we observe that information may come in pieces
and can then be combined. This points to a certain algebraic structure of information,
besides its quantitative aspect.

Example 1.20 (Fair Die - Continuation) Once again we are tossing a fair die
(random variable X). As before H(X) = log 6 bit. We observe, that the result is an
even number (event E1). Since H(XE1

) = log 3 bit, we get that

i(E1/X) = H(X) −H(XE1
) = log 6− log 3 = log

6

3
= log 2 = 1 bit.

We observe next, that the result is smaller than 4 (event E2). So, with H(XE2
) = log 3

bit,

i(E2/X) = H(X)−H(XE2
) = log 6− log 3 = 1 bit.

Note that E1 ∩E2 = {2}. Since H(XE1∩E2
) = 0 bit, we finally obtain

i(E1 ∩ E2/X) = log 6 bit,

i(E1 ∩ E2/XE1
) = log 3 bit,

i(E1 ∩ E2/XE2
) = log 3 bit.

And we see that

i(E1 ∩ E2/X) = log 6 = i(E1/X) + i(E1 ∩ E2/XE1
) = 1 + log 3.

Summary for Section 1.2

• In this subsection we have seen that events or, more particularly, observations
of values of random variables are information.

• The amount of information gained by an event is measured by the change of
uncertainty, that is, the entropy. So information is measured in bits, like the
entropy.

• The amount of information gained by observing an event may be negative, that
it, uncertainty may be increased.

• In case the exact value of a random variable is observed, the amount of infor-
mation gained equals the entropy of the variable, which is always non-negative.

• The amount of information gained is relative to the prior information. That is,
an event has not an absolute amount of information, but the amount depends
on what was known before - the prior probability distribution.

• If information, represented by events, comes in successive steps, then the total
information gained is the sum of the information gained in each step relative to

50 CHAPTER 1. UNCERTAINTY AND INFORMATION

the previous step.

Control Question 13

What is the relation between entropy and the measure of information?

1. There is no relation.

2. Since a probability distribution P represents information, then, in this sense, and
only in this sense, H(P) measures at the same time entropy and information.

3. Information is defined by the change of entropy.

4. Entropy and Information are both measured in bits.

Answer

1. That is wrong (see below).

2. It is correct that a probability distribution represents information. But this is
not a relation between entropy and information and, additionally, the assertion
is nonsense.

3. Yes, that is the main idea of an information measure.

4. That is indeed correct, but this is due to the relation between the entropy and
information. Hence, the answer is wrong.

Control Question 14

i(E/X) is always positive, since

1. H(X|Y) ≤ H(X);

2. H(X|E) ≤ H(X);

3. H(X) ≥ 0;

4. information is always relative to a prior information;

5. the assertion is wrong; information can be negative.

Answer

1. It is correct, that H(X|Y) ≤ H(X), but this has nothing to do with the assertion.

2. We can’t expect that H(X|E) ≤ H(X), hence this is wrong.

3. It is correct, that H(X) ≥ 0, but this has nothing to do with the assertion.

1.2. INFORMATION AND ITS MEASURE 51

4. It is correct, that information is always relative to a prior information, but this
has nothing to do with the assertion.

5. Yes, information can also be negative, see example 1.16.

Control Question 15

Let X be a random variable related to the probabilistic choice situation (S,P) and
E2 ⊆ E1 ⊆ S. Then i(E2/X)

1. = 0, if E2 corresponds to the observation of a precise value x of X;

2. = H(X) −H(X|E2);

3. = i(E1/X) + i(E2/XE1
);

4. = − log |E2|
|S| if X is uniform distributed.

Answer

1. That is wrong. If E2 corresponds to the observation of a precise value x of X,
we get i(E2/X) = H(X).

2. This is the definition of i(E2/X), hence it is correct.

3. Since i(E2/X) = H(X) −H(XE1
) + H(XE1

)−H(XE2
) it is correct.

4. Correct. Follows directly from − log |E2|
|S| = log |S|

|E2|
= log |S| − log |E2|.

1.2.2 Information and Questions

Learning Objectives for Subsection 1.2.2

After studying this subsection you should understand

• that information may relate to different questions;

• that the amount of an information can only be measured relative to a
precisely specified question, as well as relative to prior information;

• that information and questions exhibit an algebraic structure;

• what independent information means and that the total amount of inde-
pendent information is the sum of the amounts of individual information.

We start by considering the simple case of a compound probabilistic choice system
(S1 × S2, P) and the corresponding pair of random variables X and Y (we refer to
subsection 1.1.3 for these notions). This simple situation will serve as a model to

52 CHAPTER 1. UNCERTAINTY AND INFORMATION

study how information pertains to different questions, and why therefore, the content
of information can only be measured relative to a specified question. Also this simple
case serves to exhibit the important fact that information and questions possess an
inherent algebraic structure.

Assume we observe the value of one of the two variables, say Y = y ∈ S2. As we
have seen in the previous section this reduces the uncertainty regarding Y to zero,
and the observation contains i(y/Y) = H(Y) bits of information relative to the prior
information Y . But this observation also changes the prior probability distribution of
X, which becomes a conditional random variable X|y with probability distribution

pX|y(x, y) =
pX,Y (x, y)

pY (y)
, for all x ∈ S1.

This means that the uncertainty regarding the variable X changes too. So the obser-
vation Y = y also contains information relative to X. But its amount is not the same,
as that relative to Y . In fact, the change in entropy of X, which measures the amount
of information of y relative to X, is as follows:

i(y/X) = H(X)−H(X|y).

We saw in subsection 1.1.3, example 1.12, that the entropy H(X|y) may be smaller or
greater than H(X). In the latter case, we get a negative amount i(y/X) of information.
So, this is another case where negative information may arise.

The observation y also changes the common entropy of the two variables also. That is,
we have

i(y/X, Y) = H(X,Y)−H(X,Y |y).

We note that

pX,Y |y(x, y′) =
pX,Y (x, y′)

pY (y)

for all x ∈ S, if y′ = y. And we have pX,Y |y(x, y′) = 0, if y′ 6= y. But this shows that
pX,Y |y(x, y) = pX|y(x). So, we conclude that H(X,Y |y) = H(X|y) and hence,

i(y/X, Y) = H(X,Y)−H(X|y). (1.22)

Using theorem 1.4, we also find

i(y/X, Y) = H(X) −H(X|y) + H(Y |X) = i(y/X) + H(Y |X). (1.23)

The information gained by y with respect to both variables X and Y equals the infor-
mation gained by y with respect to variable X plus the expected uncertainty remaining
in Y , when X is observed.

So, the same simple observation Y = y is information, which has a different measure
relative to different references or questions. i(y/Y) is the amount of information with
respect to the question of the value of Y , i(y/X) the amount of information regarding
the unknown value of X and finally i(y/X, Y) the amount of information with respect
to the unknown common value of the two variables X and Y together. So, we em-
phasize, the amount of an information is to be measured relative to the question to
be considered. This is a second principle of relativity. The first one was introduced in
the previous subsection, and says that the amount of information is always measured
relative to the prior information. Let’s summarize the two basic principles of relativity
of information:

1.2. INFORMATION AND ITS MEASURE 53

• Relativity regarding the question: The amount of information is to be measured
relative to a specified question. Questions are so far represented by random
variables or choice situations. The question is, what is the value of the random
variable, or the element selected in a choice situation?

• Relativity regarding the prior information: The amount of information is to be
measured relative to the prior information. Prior information is represented by
the prior probability distribution of the variable or the probabilistic choice situ-
ation.

If X and Y are independent random variables, then H(X|y) = H(X) and thus
i(y/X) = 0. The information Y = y has no content relative to X, it does not bear on
X. And i(y/X, Y) = i(y/Y) from (1.23), since H(Y |X) = H(Y) in this case.

Example 1.21 Assume pX,Y (0, 1) = pX,Y (1, 0) = pX,Y (0, 0) = 1
3 , pX,Y (1, 1) = 0,

hence pX(0) = pY (0) = 2
3 and pX(1) = pY (1) = 1

3 like in examples 1.12 and 1.13.
Since

pX,Y |Y =0(0, 0) =
pX,Y (0, 0)

pY (0)
= pX,Y |Y =0(1, 0) =

pX,Y (1, 0)

pY (0)
=

1

2
,

pX,Y |Y =0(0, 1) = pX,Y |Y =0(1, 1) = 0,

it follows, that H(X,Y |Y = 0) = −1
2 log 1

2 −
1
2 log 1

2 = − log 1
2 = 1 bit. With

H(X,Y) = −1
3 log 1

3 −
1
3 log 1

3 −
1
3 log 1

3 = − log 1
3 bit, we obtain

i(Y = 0/X, Y) = H(X,Y)−H(X,Y |Y = 0) = − log
1

3
+ log

1

2
= log

3

2
bit.

Example 1.22 (Compound Choice Situation without Probabilities)
Consider a compound choice situation S1 × S2 without probabilities. Then
any observation of y ∈ S2 yields the amount of information

i(y/S1 × S2) = log |S1 × S2| − log |S1| = log |S1|+ log |S2| − log |S1| = log |S2| bit.

This is not a surprise, since there is no uncertainty left in S2, and, as we have seen,
the information gained is then the uncertainty in S2.

Example 1.23 (Symmetric Binary Channel - Continuation) The communi-
cation channel is an important example (see example 1.14 in subsection 1.1.3). X
refers to an uncertain input signal and Y to the output signal. In practice one ob-
serves the output signal Y = y and would like to infer about the unknown input
signal, which was transformed into y. Then i(y/X) = H(X) −H(X|y) is the infor-
mation content of the information y relative to this question. If there is no distortion
of the input signal during the transmission, then X = Y and H(X|y) = 0 bit. In
this case i(y/X) = H(X), that is, y contains all the information about X. But in
general, we have H(X|y) > 0 and hence i(y/X) < H(X). There is a loss of informa-
tion associated with the transmission. It is also of interest to look at the expected

54 CHAPTER 1. UNCERTAINTY AND INFORMATION

information at the output regarding the input,

I(X|Y) =
∑

y∈S2

pY (y)i(y/X).

This is a very important quantity in communication theory. We shall come back to
this in subsection 1.2.3.

We now generalize the discussion above by considering events related to the two vari-
ables X and Y . We notice that there may be events E related to the variable X, that
is E ⊆ S1, events related to Y , i.e. E ⊆ S2 and finally events related to both variables,
E ⊆ S1 × S2. We label an event E by d(E) to indicate to what domain it belongs. So
d(E) = {x} means E ⊆ S1, and d(E) = {x, y} means E ⊆ S1 × S2. If d(E) = {x, y},
then we define the projection of E to domain x by

E↓x = {x ∈ S1 : there is a y ∈ S2 such that (x, y) ∈ E}.

The projection E↓y is defined similarly. We refer to figure 1.11 for a geometric picture
of projections.

Figure 1.11: The projection of an event to a smaller domain, illustrated in the case of
two dimensions.

We start by considering an event E with d(E) = {x, y} (see figure 1.11). This is clearly
information relative to X, to Y and to (X,Y). The corresponding measures are

i(E/X) = H(X)−H(X|E),

i(E/Y) = H(Y)−H(Y |E),

i(E/X,Y) = H(X,Y)−H(X,Y |E).

At this point we need to clarify conditional random variables such as X|E, if E is
an event relative to S1 × S2, that is, E ⊆ S1 × S2. Clearly, the conditional random
variables X,Y |E has the probability distribution

pX,Y |E(x, y) =
pX,Y (x, y)

pX,Y (E)
, for (x, y) ∈ E.

Otherwise, that is, if (x, y) 6∈ E, we have pX,Y |E(x, y) = 0. The conditional variable
X|E has now the marginal probability distribution of pX,Y |E(x, y), that is

pX|E(x) =
∑

y∈S2

pX,Y |E(x, y) for all x ∈ E↓x.

1.2. INFORMATION AND ITS MEASURE 55

For x 6∈ E↓x, we have pX|E(x) = 0. Similarly, we have

pY |E(y) =
∑

x∈S1

pX,Y |E(x, y) for all y ∈ E↓y,

and pY |E(y) = 0 for y 6∈ E↓y. This clarifies how H(X|E) and H(Y |E) have to be
computed,

H(X|E) = −
∑

x

pX|E(x) log pX|E(x),

H(Y |E) = −
∑

y

pY |E(y) log pY |E(y).

Again, one or several of these information measures may be negative in the general
case.

Example 1.24 (Fair Coin) Consider a fair coin which is thrown twice. X is the
result of the first throw, Y the result of the second one. Since the coin is fair, we
have pX,Y (x, y) = 1/4 for all four possible results. Therefore H(X,Y) = log 4 = 2
bit. If we learn that the coin did not show both times heads, then we know that
the event E = {(0, 0), (0, 1)(1, 0)} took place assuming that 0 indicates “tails” and 1
means “heads”. So we obtain that pX,Y (x, y) = 1/3 for the three remaining possible
results in E. Thus, H(X,Y |E) = log 3 and we gained the amount of information
i(E/X,Y) = 2− log 3 = log 4/3 bit. Regarding the first throw, we obtain

pX|E(0) = pX,Y (0, 0) + pX,Y (0, 1) =
2

3
,

pX|E(1) = pX,Y (1, 0) =
1

3
.

So the remaining uncertainty is

H(X|E) = −
2

3
log

2

3
−

1

3
log

1

3
= (log 3)−

2

3
bit.

The information obtained relative to the first throw is therefore

i(E/X) = H(X) −H(X|E) = 1− (log 3−
2

3
) = log

2

3
+

2

3
≈ 0.0817 bit

Due to the symmetry of the situation, the same amount of information is also gained
relative to the second throw.

Next, we look at the case when an event E relative to the second variable Y is observed,
i.e. d(E) = {y}. As usual, we have in this case i(E/Y) = H(Y)−H(Y |E). But what
can be said about the information relative to X,Y or to X alone. To answer these
questions, we need to extend the event relative to E to an event relative to X,Y , but
without adding information. We define

E↑{x,y} = E × VX .

This is the so-called cylindric extension of E to the domain {x, y} (see figure 1.2.2). A
look at fig. 1.12 shows that no information relative to the variable X has been added,
which is not already contained in E.

56 CHAPTER 1. UNCERTAINTY AND INFORMATION

{x,y}

Figure 1.12: The cylindric extension of an event to a larger domain, illustrated in the
case of two dimensions

First, we define

i(E/X,Y) = i(E↑{x,y}/X, Y) = H(X,Y)−H(X,Y |E↑{x,y}).

That is, we consider that E and E↑{x,y} represent the same information relative to
X,Y . Note that

pX,Y |E↑{x,y}(x, y)

=
pX,Y (x, y)

pX,Y (E↑{x,y})
=

pX,Y (x, y)

pY (E)
, for all (x, y) ∈ E↑{x,y},

because

pX,Y (E↑{x,y}) =
∑

(x,y)∈E↑{x,y}

pX,Y (x, y) =
∑

x∈S1,y∈E

pX,Y (x, y) = pY (E).

In the same way, we define

i(E/X) = i(E↑{x,y}/X) = H(X)−H(X|E↑{x,y}).

Remembering that

pX|E↑{x,y}(x) =
∑

y∈E

pX,Y |E↑{x,y}(x, y) (1.24)

and

H(X|E↑{x,y}) = −
∑

x∈S1

pX|E↑{x,y}(x) log pX|E↑{x,y}(x). (1.25)

We notice that this information is in general different from zero. Thus, even an event
relating to variable Y carries information relative to variable X. This results from the
correlation between the two variables X and Y . Indeed, assuming that X and Y are
stochastically independent, i.e. pX,Y (x, y) = pX(x)pY (y), then

pX,Y |E↑{x,y}(x, y) =
pX(x)pY (y)

pY (E)
= pX(x)pY |E(y).

1.2. INFORMATION AND ITS MEASURE 57

Thus in this case we obtain

pX|E↑{x,y}(x) =
∑

y∈E

pX,Y |E↑{x,y}(x, y) = pX(x).

Thus, we have that H(X|E↑{x,y}) = H(X) and therefore i(E/X) = 0.

Of course, by symmetry, a similar analysis can be carried out for an event related to
variable Y .

Example 1.25 (Fair Coin - Continuation) We are referring to the example 1.24.
But now, we observe, that the second throw resulted in “heads”. This is represented
by the event EY = {1}. We easily see, that p(E) = 0.5. To compute i(EY /X, Y) we
need the cylindric extension of EY given by

E
↑{x,y}
Y = {(0, 1), (1, 1)}.

Regarding both throws, we obtain

p
X,Y |E

↑{x,y}
Y

(0, 1) = p
X,Y |E

↑{x,y}
Y

(1, 1) =
1

2

and 0 otherwise. So the information obtained by EY relative to both throws is

i(E/X,Y) = H(X,Y)−H(X,Y |E
↑{x,y}
Y)

= 2 +
1

2
log

1

2
+

1

2
log

1

2
= 1 bit.

Assume next, that E = {(x, y)}, that is that an exact value is observed for both random
variables X and Y . Then, we obtain the following measures of information,

i(x, y/X) = i(x/X) = H(X),

i(x, y/Y) = i(y/Y) = H(Y),

i(x, y/X, Y) = H(X,Y) ≤ i(x/X) + i(y/Y). (1.26)

The first two equalities hold true since H(X|x, y) = H(X|x) = 0 and H(Y |x, y) =
H(Y |y) = 0. The last inequality is nothing else than (1.7) (subsection 1.1.3). In this
case, clearly all three information measures are non-negative. Equality holds in the last
inequality, when X and Y are independent. Then the individual pieces of information,
bearing on the variables X and Y respectively, add to the total information bearing
on both variables simultaneously.

The condition for the additivity of information can be generalized as shown in the
following theorem.

Theorem 1.7 Let X and Y be independent random variables relative to a
probabilistic choice situation (S1 × S2, P). If E = E↓{x} × E↓{y}, then

i(E/X,Y) = i(E/X) + i(E/Y). (1.27)

58 CHAPTER 1. UNCERTAINTY AND INFORMATION

Proof Since X and Y are independent, we have H(X,Y) = H(X)+H(Y) (see (1.7)
in subsection 1.1.3). Furthermore, the conditional variables X|E↓{x} and Y |E↓{y} are
still independent, since, for x ∈ E↓{x} and y ∈ E↓{y} we have

pX,Y |E(x, y)

=
pX,Y (x, y)

pX,Y (E)

=
pX(x)pY (y)

pX(E↓{x})pY (E↓{y})

= pX|E↓{x}(x)pY |E↓{y}(y).

Therefore, again from (1.7), we also have H(X,Y |E) = H(X|E↓{x}) + H(Y |E↓{y}).
Thus, we obtain

i(E/X,Y)

= H(X,Y)−H(X,Y |E)

= (H(X)−H(X|E↓{x})) + (H(Y)−H(Y |E↓{y}))

= i(E↓{x}/X) + i(E↓{y}/Y).

Example 1.26 (Fair Coin - Continuation) We are referring to the example 1.25.

Since we know the result of the second throw, we get i(E
↑{x,y}
Y /Y) = H(Y) = log 2 = 1

bit. The cylindric extension of the event EY does not add information relative to X,

thus i(E
↑{x,y}
Y /X) = 0 bit. So we get the expected result

i(E
↑{x,y}
Y /X, Y) = i(E

↑{x,y}
Y /X) + i(E

↑{x,y}
Y /Y) = 1 bit.

Two events E1 and E2 which each bear on one of the variables X and Y , i.e. d(E1) =
{x} and d(E2) = {y}, are called independent. Theorem 1.7 says that the information
content of their combination E1 × E2 is the sum of the information contents of each
event, provided that the random variables X and Y are independent. This carries the
addition theorem from entropies over to information measures.

In the previous sections, we showed that a choice situation without probabilities has
the same entropy as the probabilistic choice situation with uniform probability distri-
bution over the possible choices. This corresponds to Laplace’s principle of insufficient
reason. In the next example, we want to draw attention to the danger of an unreflected
application of this principle.

Example 1.27 (Fair Coin - Continuation) We refer back to example 1.24 where
a fair coin is thrown twice and the event E reported that heads did not turn out
twice. We now drop the assumption that the coin is fair. The coin can be anything.
So we do not have a uniform distribution over the four possible outcomes. In fact
we have no probability distribution at all. That is, we have a scheme of choice
S = {(0, 0), (0, 1), (1, 0), (1, 1)} without probabilities. The uncertainty h(|S|) of this
compound choice scheme is 2 bit as before; here Laplace’s principle of insufficient
reason still applies. Also h(|E|) = log 3 bit as before.

But what is the uncertainty regarding the first throw? We insist that we have no

1.2. INFORMATION AND ITS MEASURE 59

reason to assume a uniform distribution over the four possibilities before the event E
is reported and over the three remaining possibilities, after event E is reported. We
then simply have a choice scheme E = {(0, 0), (0, 1), (1, 0)} without probabilities. So,
when we regard the first throw, we have the two possibilities given by E↓{x} = {0, 1}
and hence the corresponding choice situation without probabilities. So the remaining
uncertainty is h(|E↓{x}|) = 1 bit as before the event E became known. Hence the
information is null, i(E/X) = 0 bit.

The fact is, knowing that the coin is fair is information, represented by the uniform
distribution. This additional information together with the event E yields information
on the first throw. If we do not know that the coin is fair, or if we have no reason to
assume that it is so (like if the coin is ordinary), then we do not have this information
and the inference would be biased, if we simply assumed it without reason.

What this example shows, is that a probability distribution over a set of possible
choices is information. And assuming a uniform distribution is replacing ignorance by
information. Sometimes this does not matter, but in general it does! This reinforces
the relativity principle of information stating that a measure of information is always
relative to prior information.

In particular, this example shows that we need to treat choice schemes without prob-
abilities and those with probabilities differently. In fact, it will be possible to join
both cases in an appropriate unique formalism. But this goes beyond this introductory
chapter and is postponed until chap. 1.2.5.

Another thing, we saw with the model case of two variables, is that events or informa-
tion may relate to different questions, but still carry information to other questions.
In fact there is some order between questions: The question related to variable X or
domain {x}, and represented by the set of possible values VX is somehow coarser, than
the question related to both variables X,Y or domain {x, y}, and represented by the
set VX × VY . And an information related to some domain (say {x, y}) also carries
information for the coarser domains {x} and {y}.

So already this first very simple model case of two variables hints to a lot of the structure
of information and questions; structure which has to be formalized, if information in
all its generality is to be understood. We shall treat these aspects in a more general
case in the next subsection.

Summary for Section 1.2

• Events refer to one or the other or to both variables. In any case they represent
information. But its amount is to be measured with respect to a specified
variable or question.

• The second principle of relativity says that the amount of information in an ob-
served event is also measured relative to a prior information. Prior information
is represented by the prior probability distribution (before observation of the
event) of the considered question, that is the probabilistic choice situation or
random variable.

• Independent events with respect to independent random variables carry infor-
mation which sum up to the total information represented by the two events

60 CHAPTER 1. UNCERTAINTY AND INFORMATION

simultaneously. This is the addition theorem for independent information.

• Since probability distributions also represent information, choice situations
without probabilities must be carefully distinguished from choice situations with
probabilities.

Control Question 16

Relativity regarding the

1. posterior information;

2. question;

3. maximal gain;

4. expected change of entropy;

is a basic principle of information.

Answer

1. No, one of the basic principles of information is relativity regarding prior infor-
mation.

2. That is correct; information is always relative to a question.

3. We have never seen a relativity principle called “maximal gain”.

4. We have never seen a relativity principle called “expected change of entropy”.

Control Question 17

Someone is telling you that the weather will be fine tomorrow. Is this information a
gain for you?

1. Yes, of course.

2. No!

Answer

Both possibilities are wrong, because information is always measured relative to a
specified question. Hence it depends on the question if the information is a gain or a
loss.

Control Question 18

What are conditions on the random variables X and Y relative to a probabilistic choice
system (S1×S2, P) and an event E, such that the additivity of information holds, that
is i(E/X,Y) = i(E/X) + i(E/Y):

1.2. INFORMATION AND ITS MEASURE 61

1. X and Y are independent.

2. P is the uniform probability distribution.

3. E = E↓{x} × E↓{y}.

4. H(X,Y) = H(X) + H(Y).

Answer

1. That is correct. X and Y have to be independent.

2. No, there is no limitation on P .

3. That is indeed an important condition.

4. This is equivalent to the condition “X and Y independent”; since X and Y have
to be independent, this condition is correct.

Control Question 19

Given a choice system (S1 × S2) with the corresponding random variables X, Y and
an event E = {y} ⊆ S2. Then

1. i(E/Y) = 0;

2. i(E/X) = 0;

3. i(E/X,Y) = 0.

Answer

1. Information is definded by the change of entropy, hence, here we have i(E/Y) =
H(Y)−H(Y |E) = H(Y). So this assertion is wrong.

2. Since the observation of an event E ⊆ S2 can also affect the random variable X,
this proposition is wrong.

3. i(E/X,Y) = H(X,Y)−H(X,Y |E) and we can’t expect that H(X,Y) = H(X,Y |E).
It follows that this assertion is also untrue.

1.2.3 Mutual Information and Kullback-Leibler Divergence

Learning Objectives for Subsection 1.2.3

After studying this subsection you should understand

• the notion of mutual information and its relation to entropy and infor-
mation;

• the notion of informational distance (Kullback-Leibler divergence) and
its relation to mutual information.

62 CHAPTER 1. UNCERTAINTY AND INFORMATION

We look once more at a compound probabilistic choice situation (S1 × S2, P) and the
associated random variables X and Y . If a value y is observed for Y , then as seen in
subsection 1.2.2, we get the amount of information i(y/X) = H(X) − H(X|y) with
respect to X. But rather than looking at a particular observation y, we look at the
expected amount of information relative to X gained by observing Y . This value is

I(X|Y) =
∑

y

pY (y)i(y/X) =
∑

y

pY (y)(H(X) −H(X|y)) = H(X)−H(X|Y).(1.28)

I(X|Y) is called the mutual information between X and Y . It is an important notion
in information theory, but it is not an information, strictly speaking. It is the expected
or average amount of information obtained on X by observing Y . In the corollary 1.3
in subsection 1.1.3, we have seen that always H(X|Y) ≤ H(X) and equality holds only,
if X and Y are independent. This implies that the following property holds.

Theorem 1.8

I(X|Y) ≥ 0, (1.29)

and I(X|Y) = 0 if, and only if, X and Y are independent.

So, although in a particular case the information i(y/X) may be negative, on average
we expect a positive amount of information about X from observing Y .

Example 1.28 (Communication Channel) Consider a communication channel,
with X the input source and Y the output. By observing the output Y we expect
a positive amount of information regarding the input X. Although in particular
transmissions, uncertainty about the input is increased, on average the observation
of the output decreases uncertainty about the input. This is of course extremely
important for reasonable communication.

Furthermore, from (1.8) we obtain

I(X|Y) = H(X) + H(Y)−H(X,Y).

Because this formula is symmetric in X and Y , we conclude that I(X|Y) = I(Y |X).
We expect as much information on X by observing Y than on Y by observing X.

Theorem 1.9

I(X|Y) = I(Y |X).

That is a remarkable result. So mutual information between X and Y is the same as
between Y and X. This symmetry is also evident from the following formula for the
mutual information, which we obtain from (1.28), if we introduce the definition of the

1.2. INFORMATION AND ITS MEASURE 63

entropies appearing there,

I(X|Y) = −
∑

x

pX(x) log pX(x) +
∑

x,y

pY (y)pX|Y (x, y) log pX|Y (x, y)

=
∑

x,y

pX,Y (x, y)(log
pX,Y (x, y)

pY (y)
− log pX(x))

=
∑

x,y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
. (1.30)

Finally, we conclude from I(X|Y) ≥ 0 and H(X|Y) ≥ 0 that I(X|Y) ≤ H(X) =
i(x/X). By symmetry we have also I(Y |X) ≤ H(Y) = i(y/Y). The expected infor-
mation on either variable obtained by observing the other one, is always less than the
information gained by directly observing either of the variables. Now, of course in a
transmission system, it is not possible to observe the input directly. That is why a loss
of information has to be expected when transmitting information.

Example 1.29 (Statistical Inference) Let X and Y be binary random variables
representing a throw of a coin. The coin may be fair or not. This is represented
by a choice system or a random variable Q. Its probability distribution is given by
pQ(fair) = pQ(unfair) = 0.5. We know, that if the coin is fair, we have

pX|Q(0|fair) = pX|Q(1|fair) = pY |Q(0|fair) = pY |Q(1|fair) = 0.5

and if it is unfair,

pX|Q(0|unfair) = pY |Q(0|unfair) = 0.9,

pX|Q(1|unfair) = pY |Q(1|unfair) = 0.1.

We further assume that X and Y are independent, thus, the conditional probability
distribution of (X,Y |Q) is given by

pX,Y |Q(0, 0|fair) = pX,Y |Q(0, 1|fair) = pX,Y |Q(1, 0|fair) = pX,Y |Q(1, 1|fair) = 0.25,

pX,Y |Q(0, 0|unfair) = 0.81,

pX,Y |Q(0, 1|unfair) = pX,Y |Q(1, 0|unfair) = 0.09,

pX,Y |Q(1, 1|unfair) = 0.01.

Since

pX,Y (0, 0) = pX,Y |Q(0, 0|fair)pQ(fair) + pX,Y |Q(0, 0|unfair)pQ(unfair)

= 0.25 · 0.5 + 0.81 · 0.5 = 0.53,

pX,Y (0, 1) = pX,Y |Q(0, 1|fair)pQ(fair) + pX,Y |Q(0, 1|unfair)pQ(unfair)

= 0.25 · 0.5 + 0.09 · 0.5 = 0.17,

pX,Y (1, 0) = pX,Y |Q(1, 0|fair)pQ(fair) + pX,Y |Q(1, 0|unfair)pQ(unfair)

= 0.25 · 0.5 + 0.09 · 0.5 = 0.17,

pX,Y (1, 1) = pX,Y |Q(1, 1|fair)pQ(fair) + pX,Y |Q(1, 1|unfair)pQ(unfair)

= 0.25 · 0.5 + 0.01 · 0.5 = 0.13,

64 CHAPTER 1. UNCERTAINTY AND INFORMATION

we obtain

H(X,Y) = −pX,Y (0, 0) log pX,Y (0, 0) − pX,Y (0, 1) log pX,Y (0, 1)

−pX,Y (1, 0) log pX,Y (1, 0) − pX,Y (1, 1) log pX,Y (1, 1)

= −0.53 log 0.53 − 0.17 log 0.17 − 0.17 log 0.17 − 0.13 log 0.13

≈ 1.7373 bit.

An finally, with

H(X,Y |fair) = −
∑

x,y

pX,Y |Q(x, y|fair) log pX,Y |Q(x, y|fair)

= −pX,Y |Q(0, 0|fair) log pX,Y |Q(0, 0|fair)

−pX,Y |Q(0, 1|fair) log pX,Y |Q(0, 1|fair)

−pX,Y |Q(1, 0|fair) log pX,Y |Q(1, 0|fair)

−pX,Y |Q(1, 1|fair) log pX,Y |Q(1, 1|fair)

= log 4 = 2 bit,

H(X,Y |unfair) = −0.81 log 0.81 − 0.09 log 0.09− 0.09 log 0.09− 0.01 log 0.01

≈ 0.938 bit,

H(X,Y |Q) =
∑

q

pQ(q)H(X,Y |q)

= pQ(fair)H(X,Y |fair) + pQ(unfair)H(X,Y |unfair)

≈ 0.5 · 2 + 0.5 · 0.938

≈ 1.469 bit,

we have

I(X,Y |Q) = H(X,Y)−H(X,Y |Q) ≈ 1.7373 − 1.469 ≈ 0.2683 bit.

This is the expected information about the question whether the coin is fair, if we
observe two throws of the coin.

Example 1.30 (Symmetric Binary Channel - Continuation) In a communi-
cation channel we must expect to get less information on the input by observing
the output, than by directly observing the input. For example consider the symmet-
ric binary channel from example 1.14 with ε = 0.1, pX(0) = 0.2 and pX(1) = 0.8. We
saw, that pY (0) = 0.26 and pY (1) = 0.74, thus

H(Y) = −0.26 log 0.26 − 0.74 log 0.74 ≈ 0.8267 bit,

and we obtain

I(X|Y) = I(Y |X) = H(Y)−H(Y |X)

= −0.26 log 0.26 − 0.74 log 0.74 + 0.9 log 0.9 + 0.1 log 0.1

≈ 0.3578 bit.

But H(X) = −0.2 log 0.2 − 0.8 log 0.8 ≈ 0.7219 bit > I(X|Y). That means that the
expected loss of information is H(X)− I(X|Y) ≈ 0.7219 − 0.3578 = 0.3641 bit.

1.2. INFORMATION AND ITS MEASURE 65

We introduce another important notion of information theory. Consider two probabilis-
tic choice systems, with the same choice set S, but different probability distributions.
If X and Y are the corresponding random variables, then we define

K(PX , PY) =
∑

x∈S

pX(x) log
pX(x)

pY (x)
. (1.31)

This is called the Kullback-Leibler divergence between X and Y . It is a kind of distance
between the probability distributions of X and Y , although d(PX , PY) 6= d(PY , PX).
But

Theorem 1.10

K(PX , PY),K(PY , PX) ≥ 0,

and

K(PX , PY) = K(PY , PX) = 0

if, and only if, PX = PY .

Proof Indeed, we have

K(PX , PY) =
∑

x∈S

pX(x) log pX(x)−
∑

x∈S

pX(x) log pY (x).

Lemma 1.1 tells us then that K(PX , PY) ≥ 0 and equal to 0 only if pX(x) = pY (x).

�

Example 1.31 (Symmetric Binary Channel - Continuation) Once more we
consider the symmetric binary channel from the examples 1.14 and 1.30. Here we
have

K(PX , PY) = pX(0) log
pX(0)

pY (0)
+ pX(1) log

pX(1)

pY (1)

= 0.2 log
0.2

0.26
+ 0.8 log

0.8

0.74
≈ 0.0143 bit,

K(PY , PX) = pY (0) log
pY (0)

pX(0)
+ pY (1) log

pY (1)

pX(1)

= 0.26 log
0.26

0.2
+ 0.74 log

0.74

0.8
≈ 0.0152 bit.

Consider a compound probabilistic situation (S × S,P) and the associated pair of
random variables X and Y , which have both the same set of values S. Denote by
(S,PX) and (S,PY) the probabilistic choice situations related to the two variables X
and Y . That is, pX and pY are the marginal distributions of X and Y , given by

pX(x) =
∑

y

pX,Y (x, y), pY (y) =
∑

x

pX,Y (x, y).

66 CHAPTER 1. UNCERTAINTY AND INFORMATION

Furthermore PX · PY denotes the probability distribution with values pX(x) · pY (y).
Then (1.30) shows that

I(X|Y) = I(Y |X) = K(P,PX · PY). (1.32)

In this view, I(X|Y) measures to what degree the common probability distribution
of the pair (X,Y) diverges from the case of independence. That is, why the mutual
information is also sometimes considered as a measure of dependence between two
random variables with the same set of values.

Finally we have (see 1.30)

I(X|Y) =
∑

x,y

pX,Y (x, y) log
pY |x(x, y)

pY (y)

=
∑

x,y

pX(x)pY |x(x, y) log
pY |x(x, y)

pY (y)

=
∑

x

pX(x)K(PY |x, PY)

=
∑

x

pX(x)i(x/Y). (1.33)

i(x/Y) = H(Y) − H(Y |x) measures the information gained on Y by observing X =
x. Thus, although in general K(PY |x, PY) 6= i(x/Y), there is equality on average
over x between this information and the Kullback-Leibler divergence K(PY |x, PY). By
symmetry we also have

I(Y |X) =
∑

y

pY (y)K(PX|y, PX) =
∑

y

pY (y)i(y/X).

Example 1.32 (Kullback-Leibler Divergence and Mutual Information)
Consider S = (e1, e2), S × S = {(e1, e1), (e1, e2), (e2, e1), (e2, e2)} and
P = {0.5, 0.1, 0.3, 0.1}. Let X and Y be the random variables associated to
the compound probabilistic situation (S × S,P). Thus, the marginal distributions of
X and Y are given by

pX(e1) = pX,Y (e1, e1) + pX,Y (e1, e2) = 0.5 + 0.1 = 0.6,

pX(e2) = pX,Y (e2, e1) + pX,Y (e2, e2) = 0.3 + 0.1 = 0.4,

pY (e1) = pX,Y (e1, e1) + pX,Y (e2, e1) = 0.5 + 0.3 = 0.8,

pY (e2) = pX,Y (e1, e2) + pX,Y (e2, e2) = 0.1 + 0.1 = 0.2.

We define the distribution PX · PY by p(x, y) = pX(x)pY (y). Let us now compute
some entropies. With

1.2. INFORMATION AND ITS MEASURE 67

pX|Y =e1
(e1, e1) =

pX,Y (e1, e1)

pY (e1)
=

0.5

0.8
= 0.625,

pX|Y =e1
(e2, e1) =

pX,Y (e2, e1)

pY (e1)
=

0.3

0.8
= 0.375,

pX|Y =e2
(e1, e2) =

pX,Y (e1, e2)

pY (e2)
=

0.1

0.2
= 0.5,

pX|Y =e2
(e2, e2) =

pX,Y (e2, e2)

pY (e2)
=

0.1

0.2
= 0.5,

we obtain

H(X) = −0.6 log 0.6− 0.4 log 0.4 ≈ 0.9710 bit,

H(X|e1) = −pX|Y =e1
(e1, e1) log pX|Y =e1

(e1, e1)− pX|Y =e1
(e2, e1) log pX|Y =e1

(e2, e1)

= −0.625 log 0.625 − 0.375 log 0.375

≈ 0.9544 bit,

H(X|e2) = −pX|Y =e2
(e1, e2) log pX|Y =e2

(e1, e2)− pX|Y =e2
(e2, e2) log pX|Y =e2

(e2, e2)

= −0.5 log 0.5− 0.5 log 0.5

= 1 bit,

H(X|Y) = pY (e1)H(X|e1) + pY (e2)H(X|e2)

≈ 0.8 · 0.9544 + 0.2 · 1 = 0.9635 bit.

Hence I(X|Y) = H(X)−H(X|Y) ≈ 0.9710 − 0.9635 ≈ 0.0074 bit. Since

K(P,PX · PY) =
∑

(x,y)∈S×S

pX,Y (x, y) log
pX,Y (x, y)

p(x, y)

= pX,Y (e1, e1) log
pX,Y (e1, e1)

p(e1, e1)
+ pX,Y (e1, e2) log

pX,Y (e1, e2)

p(e1, e2)

+pX,Y (e2, e1) log
pX,Y (e2, e1)

p(e2, e1)
+ pX,Y (e2, e2) log

pX,Y (e2, e2)

p(e2, e2)

= 0.5 log
0.5

0.6 · 0.8
+ 0.1 log

0.1

0.6 · 0.2
+ 0.3 log

0.3

0.4 · 0.8
+ 0.1 log

0.1

0.4 · 0.2
≈ 0.0074 bit,

we verify that I(X|Y) = K(P,PX · PY). And finally, with

pY |X=e1
(e1, e1) =

pX,Y (e1, e1)

pX(e1)
=

0.5

0.6
=

5

6
,

pY |X=e1
(e2, e1) =

pX,Y (e1, e2)

pX(e1)
=

0.1

0.6
=

1

6
,

pY |X=e2
(e1, e2) =

pX,Y (e2, e1)

pX(e2)
=

0.3

0.4
=

3

4
,

pY |X=e2
(e2, e2) =

pX,Y (e2, e2)

pX(e2)
=

0.1

0.4
=

1

4
,

68 CHAPTER 1. UNCERTAINTY AND INFORMATION

and

H(Y) = −0.8 log 0.8− 0.2 log 0.2 ≈ 0.7219 bit,

i(e1/Y) = H(Y)−H(Y |e1) ≈ 0.7219 +
5

6
log

5

6
+

1

6
log

1

6
≈ 0.0719 bit,

i(e2/Y) = H(Y)−H(Y |e2) ≈ 0.7219 +
3

4
log

3

4
+

1

4
log

1

4
≈ −0.00894 bit,

we obtain

I(X|Y) =
∑

x

pX(x)i(x/Y) = pX(e1)i(e1/Y) + pX(e2)i(e2/Y)

≈ 0.6 · 0.0719 − 0.4 · 0.0894 ≈ 0.0074 bit.

It is interesting to note that i(e2/Y) is negative.

Summary for Section 1.2

• We have defined mutual information I(X|Y) between two random variables X
and Y as the expected gain in information on one variable, obtained if the other
one is observed. Remarkably, this value is symmetric, I(X|Y) = I(Y |X).

• Mutual information is also the difference between the sum of the individual
entropies of the two variables and the actual entropy of the pair. This shows
that mutual information is always non-negative and vanishes exactly, if the
two variables X and Y are independent. Thus it also measures the reduction
of uncertainty of the actual situation with respect to the case of independent
variables.

• The Kullback-Leibler divergence K(PX , PY) of two probability distributions
PX and PY measures the “distance” from PX to PY . However, in general
K(PX , PY) 6= K(PY , PX). Nevertheless we have K(PX , PY) = K(PY , PX) = 0
if PX = PY .

• The mutual information I(X|Y) equals the Kullback-Leibler divergence from
the common distribution of the pair (X,Y) to the product of their marginal
distributions. This is another measure of the distance of the actual situation
and the assumed case of independence.

• The information gained on a variable Y by observing another variable X equals
on average the Kullback-Leibler divergence between the conditional distribution
of Y given X = x and the unconditional marginal distribution of Y .

Control Question 20

What can we say about the mutual Information between X and Y ?

1. The mutual information is the expected amount of information relative to X by
observing Y .

2. In some cases the mutual information can be negative.

1.2. INFORMATION AND ITS MEASURE 69

3. The mutual information can be zero; even if X and Y are independent.

4. The mutual information between X and Y equals the mutual information between
Y and X.

Answer

1. That fits our definition of the mutual information exactly, hence it is correct.

2. Incorrect, since I(X|Y) = H(X)−H(X|Y) and H(X|Y) ≤ H(X) it follows, that
I(X|Y) ≥ 0.

3. The mutual information is equal to zero, if, and only if, X and Y are independent,
hence the assertion is wrong.

4. We have I(X|Y) = H(X) + H(Y) − H(X,Y) = H(X) + H(Y) − H(Y,X) =
I(Y |X), hence the proposition is correct.

Control Question 21

1. K(PX , PY) = K(PY , PX), since K is a kind of distance.

2. K(PX , PY) = 0, if X and Y are independent.

3. I(X|Y) = K(PX ·PY , P), if X and Y are the random variables associated to the
compound probabilistic situation (S × S,P).

Answer

1. We said that K is a kind of distance, however, K(PX , PY) 6= K(PY , PX).

2. K(PX , PY) = 0 if, and only if, PX = PY , hence the assertion is false.

3. It is true, that I(X|Y) = K(P,PX · PY), but, since K(PX , PY) 6= K(PY , PX),
the proposition is wrong.

1.2.4 Surprise, Entropy and Information

Learning Objectives for Subsection 1.2.4

After studying this subsection you should understand

• the notion of degree of surprise associated with an event;

• its relation to entropy, measures of information and mutual information.

70 CHAPTER 1. UNCERTAINTY AND INFORMATION

If E ⊆ S is a rare event in a probabilistic choice situation (S,P), then we may be very
surprised when we actually observe it. So, it may be interesting to measure the degree
of unexpectedness or of surprise of an event. Let’s denote the degree of unexpectedness
of the event E by s(E). The following characteristics seem reasonable to assume for it:

• s(E) should only depend on the probability p(E) of the event E, i.e.

s(E) = f(p(E)).

• s(E) should be a monotone decreasing function of its probability p(E). The
greater the probability, the smaller the unexpectedness of the event; the smaller
the probability, the greater the surprise.

• If two events E1 and E2 are independent, then the degree of surprise of their
common occurrence should be the sum of their individual degrees of surprise,

s(E1 ∩E2) = s(E1) + s(E2).

The logarithm is the only function satisfying these requirements,

s(E) = − log p(E).

If we (arbitrarily) require in addition that the degree of surprise of an event with
probability 1/2 equals 1, f(1/2) = 1, then the logarithm must be taken to the base 2.
So − log2 p(E) is considered as a measure of the degree of surprise or unexpectedness
of an event E.

Some authors define − log p(E) to be the “information contained in E” or the “self-
information of E”. We disagree with this view: An information is a, possibly partial,
answer to a precise question and it is information in so far as it changes the uncertainty
about the possible answer to this question. If we consider a single event E, then no
specific question is associated with it. On the other hand, the degree of unexpectedness
is associated with an event and not a specified question.

Example 1.33 (Lottery) Suppose you win in a lottery where odds are 1 to say 1015

or something like that. You will be (agreeably) surprised. If you do not win, you
will not be surprised at all. The amount of information that you win relative to the
question “win or not?” is the same, as it is if you find out that you do not win. The
amount of the same information (i.e. the number drawn in the lottery) relative to the
question “which number is drawn” is much larger. The degree of surprise associated
with the number drawn on the other hand does not depend on the question asked.

Example 1.34 (Swiss-Lotto) We are playing Swiss-Lotto, that means choosing 6
numbers out of 45. There are exactly

(
45

6

)
=

45!

6! · (45− 6)!
= 8‘145‘060

possibilities, so, the degree of unexpectedness s(win) = log 8‘145‘060 ≈ 22.9575. Let
X denote the random variable whether we win or not. Thus

p(X = win) =
1

8‘145‘060
,

p(X = not win) = 1−
1

8‘145‘060
,

1.2. INFORMATION AND ITS MEASURE 71

and hence

H(X) = −
1

8‘145‘060
log

1

8‘145‘060
−

(
1−

1

8‘145‘060

)
log

(
1−

1

8‘145‘060

)

≈ 2.9957 · 10−6 bit.

The uncertainty whether we win or not is really small, because it is almost sure that
we will not win.

To further clarify the difference between surprise and information, consider a proba-
bilistic choice situation where the possible choices S are only E or not E (that is Ec)
with probabilities p and 1 − p for the two possible cases. The uncertainty associated
with this situation is

−p log p− (1− p) log(1− p).

In figure 1.13, the graph of this uncertainty and the degree of surprise − log p as a
function of p is drawn. Uncertainty is maximal for p = 1/2. This is also the maximum
information obtained by observing E with respect to the question whether E happens
or not. Uncertainty is null if either p = 0 or p = 1. Surprise however is maximal
(infinite in fact), if p = 0. In this case we do not at all expect E to happen. Surprise
is null on the other hand, if p = 1. In this case we are sure that E will happen, and
are not surprised at all, if E indeed occurs.

Figure 1.13: Information contained in event E relative to the question “E or not E”
versus degree of surprise in E.

If we look at the entropy

H(X) = −pX(x1) log pX(x1)− pX(x2) log pX(x2)− · · · − pX(xm) log pX(xm)

of a random variable X, then we see that it is the expected value of the unexpectedness
− log pX(xi) of the events X = xi. So, surprise, entropy and information are closely
related, but different concepts. The amount of information (of a value of a random
variable observed) is the average or expected degree of surprise of the possible events.

There is even another relation. Let X and Y be two random variables associated with
the compound probabilistic choice situation (S1×S2, P). How does the unexpectedness

72 CHAPTER 1. UNCERTAINTY AND INFORMATION

of the event X = x change, if Y = y is observed? Originally, the degree of surprise of
the event {X = x} is − log pX(x). Once Y = y is observed it changes to

− log pX|y(x|y) = − log
pX,Y (x, y)

pY (y)
.

So, the change of surprise is

− log pX(x) + log
pX,Y (x, y)

pY (y)
= log

pX,Y (x, y)

pX(x)pY (y)
.

From this we see that the mutual information

I(X|Y) =
∑

x,y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)

is the expected change of surprise for a value of X given that a value of Y is observed.
Or, in other words, the expected amount of information gained with respect to X by
observing Y equals the expected change of unexpectedness of observing X given that
Y is observed. So, this is another link between amount of information and degree of
surprise.

Summary for Section 1.2

• We defined the degree of unexpectedness or of surprise of an event as the nega-
tive of the logarithm of its probability. It grows as the probability of the event
decreases, is zero for a probability of one, and infinite for a probability of zero.

• Surprise is not to be confused with information. The former is simply associated
with an event, the latter is measured with respect to a question. That is, an
event always has the same unexpectedness. However the amount of information
it carries depends on the question considered.

• However surprise and information are related: Entropy of a variable , hence
information, equals the expected value of surprise of the possible values of the
random variable. And mutual information, i.e. expected information with re-
spect to one variable, given the observation of the other, equals the expected
change of surprise in the first variable, given the observation of the second one.

Control Question 22

Let E be an event with p(E) = 0. Then

1. s(E) = 0, since we are sure that E can not happen;

2. s(E) = 1, since s(E) is maximal if p(E) = 0.

Answer

Surprise is infinite (and hence maximal) if p(E) = 0. So both answers are wrong.

1.2. INFORMATION AND ITS MEASURE 73

Control Question 23

The degree of surprise s(E)

1. is monotone decreasing (as a function of p(E));

2. is continuous;

3. can be zero;

4. is measured with respect to a specified question.

Answer

1. The greater the probability, the smaller the surprise, hence it is correct. One can
also argue that the logarithm is monotone increasing and log x ≤ 0 if 0 < x ≤ 1.

2. Follows directly from the fact that the logarithm is a continuous function.

3. If p(E) = 1, there is no surprise left, and we indeed get s(E) = 0.

4. The degree of surprise is associated with an event and not, like information, to a
specified question. It is important to understand this difference.

1.2.5 Probability as Information

Learning Objectives for Subsection 1.2.5

After studying this subsection you should understand

• that not only events or observations of values of random variables rep-
resent information, but that a probability distribution represents infor-
mation too;

• how the Kullback-Leibler divergence measures in a special, but impor-
tant case, the amount of information of a probability distribution.

We look at a choice situation S without probability. As we know, its uncertainty is
measured by h(|S|) = log |S|. But now we also understand, that we may consider the
probabilistic choice situation (S, pV) too, where pV = 1/|S| is the uniform distribution
over S. We have H(V) = h(|S|) = log |S|. The set of possible choices is all we know
in a given situation.

But, now suppose, that some source of information tells us, that in fact, not all elements
of S are equally probable, but that we rather have a probabilistic choice situation
(S,P), where P represents some non uniform probability distribution over S. Let X
be the random variable associated with this choice situation. We know that H(X) <
H(V). Thus, we really have new information with respect to the initial choice situation
without probabilities, namely information in our sense, that changes the measure of

74 CHAPTER 1. UNCERTAINTY AND INFORMATION

uncertainty. The amount of information contained in the probability distribution P ,
relative to the prior uniform distribution, is expressed by the change of entropy,

i(X/V) = H(V)−H(X)

= log |S|+
∑

x

pX(x) log pX(x)

=
∑

x

pX(x) log(|S|pX(x))

= K(PX , PV).

So, the information content of P relative to the original uniform distribution equals
the Kullback-Leibler divergence between the probability distribution P and the original
uniform distribution. We notice that

0 ≤ i(X/V) ≤ log |S|.

The first inequality holds since H(X) ≤ H(V) = log |S| and the second one because
H(V) − H(X) ≤ H(V), since H(X) ≥ 0. So, the amount of information i(X/V) is
always positive, and the maximal amount log |S| is obtained, when the event X = x
is observed, that is H(X|x) = 0. In fact, the last case corresponds to a degenerate
random variable Y with probability distribution pY (x) = 1, and pY (y) = 1, if y 6= x.

So, here we go one step further and consider not only events or values of random vari-
ables which are observed or reported as information, but more generally specifications
of probability distributions over choice sets as well. This is in fact more general, also
in the sense that an observed event may be represented by the conditional probability
distribution it induces. So, in fact, if we start with the uniform random variable V over
S and observe event E ⊆S, then this amounts to considering the conditional random
variable VE = V |E, which has a uniform distribution over E,

pV |E(x) =

{ 1
|E| if x ∈ E,

0 otherwise.

}

Then we obtain

i(E/V) = i(VE/V) = H(V)−H(VE) = log |S| − log |E| = log
|S|

|E|
.

Note that |E|/|S| = p(E) and according to the last result,

i(E/V) = − log p(E).

Here we see that the surprise is a measure of information, but a very particular one.
It is the amount of information gained by an event E relative the prior information
represented by the uniform random variable V , that is, the choice without probability.

We stress once more, that in this more general setting as well, the amount of an
information is still to be measured relative to a) a precisely specified question and b) a
specified prior information.

In order to emphasize these remarks we consider the case of compound choice situations.
So let S1 × S2 be a compound choice situation. We associate with it two uniform
random variables V1 over S1 and V2 over S2. Then in the pair (V1, V2) with the uniform
distribution over S1 × S2, the two variables V1 and V2 are independent. Consider now

1.2. INFORMATION AND ITS MEASURE 75

any pair of random variables (X,Y), associated with a probabilistic choice situation
(S1 × S2, P). Then this represents an information relative to (V1, V2) of amount

i(X,Y/V1, V2) = log |S1|+ log |S2| −H(X,Y).

We have (use theorem 1.3):

i(X,Y/V1, V2)

≥ (log |S1| −H(X)) + (log |S2| −H(Y))

= i(X/V1) + i(Y/V2). (1.34)

Equality holds exactly, if X and Y are independent. The probability distribution P
over S1×S2 of course contains also information with respect only to S1 (or S2). In fact,
knowing the distribution P gives an uncertainty of H(X) with respect to S1. Hence,
we have

i(X,Y/V1) = H(V1)−H(X) = i(X/V1).

Similarly we obtain i(X,Y/V2) = i(Y/V2).

Example 1.35 (Symmetric Binary Channel - Continuation) Given a com-
pound choice situation S1×S2 = {(0, 0), (0, 1), (1, 0), (1, 1)} (symmetric binary chan-
nel). With it we associate two uniform random variables V1 and V2 as described
above. This means that we know nothing about the channel and its input/output.
But now consider the pair (X,Y) of random variables associated with the compound
choice situation (S1 × S2, P) given in the examples 1.14 and 1.30. This is new infor-
mation describing how the channel works. We have seen, that H(X,Y) ≈ 1.1909 bit,
H(X) = 0.7219 bit and H(Y) = 0.8267 bit. Hence

i(X,Y/V1, V2) = log |S1|+ log |S2| −H(X,Y)

= 2 log 2−H(X,Y) ≈ 0.8091 bit,

i(X/V1) = log |S1| −H(X) ≈ 0.2781 bit

i(Y/V2) = log |S2| −H(Y) ≈ 0.1733 bit.

Note that 0.4514 bit ≈ i(X/V1) + i(Y/V2) < i(X,Y/V1, V2) ≈ 0.8091 bit.

A particular case arises, if one of the two random variables X or Y is degenerate.
Suppose for example that Y = y. Then we have pX,Y (x, y′) = pX(x) if y′ = y and
pX,Y (x, y′) = 0, if y′ 6= y. In such a case we have

i(X, y/V) = log |S1|+ log |S2| −H(X, y).

But

H(X, y) = −
∑

x,y

pX,Y (x, y) log pX,Y (x, y) = −
∑

x

pX(x) log pX(x) = H(X).

Thus we see that, in correspondence to (1.34)

i(X, y/V) = (log |S1| −H(X)) + log |S2| = i(X/V1) + i(y/V2)

If both variables X and Y are degenerate, that is X = x and Y = y, then the last
result implies that

i(x, y/V) = i(x/V1) + i(y/V2).

76 CHAPTER 1. UNCERTAINTY AND INFORMATION

This is of course the same information as observing the values x and y for the possible
choices in S1 and S2.

Another particular case is that only a probabilistic information relative to S1 is known,
whereas relative to S2 we have a choice without probabilities. This situation can be
represented by a pair of random variables X and Y such that

pX,Y (x, y) =
pX(x)

|S2|
,

such that X has the marginal probability distribution pX(x) and Y the uniform dis-
tribution pY (y) = 1/|S2|, representing a choice without probabilities. Then we find
that

i(X,Y/V) = log |S1|+ log |S2| −H(X,Y)

= log |S1|+ log |S2| −
∑

x,y

pX(x)

|S2|
log

pX(x)

|S2|

= log |S1| −
∑

x

pX(x) log pX(x)

= i(X/V1).

So, if nothing is known about the choice in S2, then the amount of information relative
to the question V is the same as the information relative to V1.

Example 1.36 (Probability as Information) Consider S1 = {0, 1}, S2 = {0, 1}
and the random variables X associated with S1 and Y associated with S2. Let
pY (0) = 0.1 and pY (1) = 0.9. Relative to S1 we have a choice without probabilities.
Thus

pX,Y (0, 0) =
pY (0)

|S1|
=

0.1

2
= 0.05,

pX,Y (0, 1) =
pY (1)

|S1|
=

0.9

2
= 0.45,

pX,Y (1, 0) =
pY (0)

|S1|
=

0.1

2
= 0.05,

pX,Y (1, 1) =
pY (1)

|S1|
=

0.9

2
= 0.45,

and, with H(X,Y) = −0.05 log 0.05−0.45 log 0.45−0.05 log 0.05−0.45 log 0.45 ≈ 1.469
bit, we obtain

i(X,Y/V) = log |S1|+ log |S2| −H(X,Y)

= 2 log 2−H(X,Y) ≈ 0.531 bit.

Since we have a choice without probabilites relative to S1 we get that H(X) =
−0.5 log 0.5 − 0.5 log 0.5 = log 2 = 1 bit. Since H(Y) = −0.1 log 0.1 − 0.9 log 0.9 ≈
0.469 bit we finally obtain

i(X/V1) = H(V1)−H(X) = log |S1| −H(X) = 1− 1 = 0 bit,

i(Y/V2) = H(V2)−H(Y) = log |S2| −H(Y) ≈ 1− 0.469 ≈ 0.531 bit.

Note that i(Y/V2) = i(X,Y/V).

1.2. INFORMATION AND ITS MEASURE 77

To conclude we prove a theorem, which is to information what theorem 1.4 is to entropy.
In order to formulate the theorem, we introduce a new concept. If X and Y are a pair
of variables associated with the compound probabilistic choice situation (S1 × S2, P),
then let Yx denote the conditional random variable Y given that X = x. We may
consider the amount of information carried by this variable, or rather its probability
distribution, with respect to the question V2,

i(Yx/V2) = log |S2| −H(Y |x).

It is the measure of the information contained in the pair of random variables (X,Y)
and the observation X = x with respect to V2. We consider the expected value of this
information

I(Y |X/V2) =
∑

x

pX(x)i(Yx/V2) = log |S2| −H(Y |X)

Now we have the following theorem.

Theorem 1.11 Let X and Y be a pair of random variables associated with
the probabilistic choice situation (S1 × S2, P). Then

i(X,Y/V) = i(X/V1) + I(Y |X/V2).

Proof The proof is straightforward, using theorem 1.4,

i(X,Y/V)

= log |S1|+ log |S2| −H(X,Y)

= (log |S1| −H(X)) + (log |S2| −H(Y |X))

= i(X/V1) + I(Y |X/V2).

This theorem says that the measure of information contained in X,Y relative to the
choice situation S1×S2 without probabilities, is the sum of the information contained
in X with respect to S1 and the expected information of Y given an observation of X
with respect to S2.

Example 1.37 (Symmetric Binary Channel - Continuation) We continue ex-
ample 1.35. Since H(X|Y) ≈ 0.4690 (see example 1.14), we obtain

I(Y |X/V2) = log |S2| −H(Y |X)

= log 2− 0.4690 ≈ 0.5310 bit.

Thus 0.8091 bit ≈ i(X,Y/V) = i(X/V1) + I(Y |X/V2).

We have seen that both observations of random variables or events, as well as proba-
bility distributions represent information. In many cases it seemed that events could
be replaced by probability distributions, i.e. the conditional distribution, to obtain the
same amount of information. Also choice without probability turned out to be equiva-
lent to probabilistic choice with a uniform probability distribution. So, finally, it seems

78 CHAPTER 1. UNCERTAINTY AND INFORMATION

that probability distributions are the ultimate form of information. This however is a
premature conclusion, as the following example shows.

Example 1.38 (Probability Distributions and Events as Information)
Suppose a coin is thrown two times and it is reported that the result was not heads
both times. How much information does this provide for the question whether the
first throw was heads or tails?

If we know nothing about the coin, in particular, if we cannot assume that it is
a fair coin, then we are faced with a choice situation without probability. In fact
S = {(h, h), (h, t), (t, h), (t, t)}, if h stands for heads and t for tails. The observation
is the event E = {(h, t), (t, h), (t, t)} and the amount of information gained with
respect to the original choice situation is log 4/3 bit. The event E projected to the
choice situation of the first throw is {h, t}, that is both results are equally possible.
Hence, the information gained by E with respect to this question is 0 bit.

Assuming an uniform probability distribution over S means to assume that the coin
is fair. Then, event E conditions the probability distribution to 1/3 for the three
possible outcomes {(h, t), (t, h), (t, t)}. The marginal distribution with respect to the
first throw assigns probability 1/3 to heads and 2/3 to tails. Thus, this time the
information gained with respect to the first throw, is log 4 + 1/3 log 1/3 + 2/3 log 2/3
bit, which is different from 0. But note that in this case we have used the additional
information that the coin is fair.

So, probabilistic choice situations with uniform distributions and choice situations
without probability are not always identical and equivalent. In general, we have
to carefully distinguish between probability distributions as information and non-
probabilistic information such as events.

This concludes our introductory discussion of the measure of information.

Summary for Section 1.2

• Probability distributions on choice situations represent information relative to
the choice without probability. Its amount is measured, as usual, by the reduc-
tion of uncertainty that is achieved.

• Observed events or values also represent information which can be subsumed
into the conditional probability distributions they induce, relative to the prior
probability distribution.

• As before, in the case of compound choice situations, probability distributions
carry information with respect to different questions, and in general the re-
spective amounts are different. The relativity of information with respect to
specified questions is still valid in this more general framework.

Control Question 24

Consider the probabilistic choice situation (S, pV) with pV = 1/|S| and let X be a
random variable associated with (S,P). Then i(X/V)

1.2. INFORMATION AND ITS MEASURE 79

1. = H(V)−H(X);

2. = K(PX , PV · PX);

3. can be negative.

Answer

1. This is correct, since information is defined by the change of entropy.

2. The relation between the Kullback-Leibler divergence and the information con-
tent of P relative to the uniform distribution is given by K(PX , PV), hence the
assertion is false.

3. That is not possible. i(X/V) ≥ 0 because H(X) ≤ H(V) if V is uniformly
distributed.

Control Question 25

Let X and Y be a pair of random variables associated with (S1 × S2, P). Then,
i(X,Y/V) = i(X/V1) + I(Y |X/V2), if, and only if,

1. X and Y are independent;

2. X and Y have a uniform probability distribution;

3. pX = pY .

Answer

All answers are wrong, since i(X,Y/V) = i(X/V1) + I(Y |X/V2) holds for all random
variables X and Y .

Summary for Chapter 1

• We have seen that entropy is used to measure the uncertainty in a probabilistic
choice situation or in a random variable. Entropy is related to the game of (bi-
nary) questions and answers in the sense, that it indicates the expected number
of questions to find out the actual element selected in the choice situation or
the actual value of the random variable. Uncertainty is essentially measured in
bits.

• Information is given by an observed event or an observed value of a random
variable. A probability distribution specified on a choice situation also repre-
sents information relative to the situation without known probabilities. The
amount of information is measured by the change in the uncertainty between
the situation before the information is obtained and afterwards. Like uncer-
tainty, information is measured in bits.

• The amount of information is relative to a specified question, which is indicated

80 CHAPTER 1. UNCERTAINTY AND INFORMATION

or represented by a choice situation. It is also relative to the prior information
which is given by the prior probability distribution. Information leads to a
posterior probability distribution. The amount of information is the difference
between the entropies of these two distributions.

• Mutual information between two random variables is the expected amount of
information gained on one variable, if the other one can be observed. It is
symmetric: the expected gain of information is the same for both variables.

• The degree of surprise of an event can also be measured. It turns out, that
entropy is the expected degree of surprise in a choice situation. So surprise,
uncertainty and information are closely linked, but different concepts.

OutLook

This module contains an elementary introduction into the basics of information theory.
However there are still two questions that need to be looked at briefly:

1. What are the applications of this theory?

2. In what directions is this theory to be further developed?

The main application of information theory is in coding theory. This theory studies how
to code most economically the signals or the information coming from some sources
of specified characteristics. It also addresses the question of coding signals or infor-
mation for transmission over noisy channels, where information is lost. The problem
is to introduce enough redundancy into the code such that information loss can be
compensated. These problems are studied in modules C2, C3 and C4.

But coding is only a relatively narrow aspect of information. There are many more
questions related to information:

1. How is information processed, that is, how is information from different sources
combined and focussed on the questions of interest? This relates to information
processing in general, and on the computer in particular.

2. What does it mean that information is uncertain?

3. How is information represented and how can consequences be deduced or inferred
from it? This brings logic and general inference methods, for example from statis-
tics into the game.

These questions raise many issues of research. Subsequent modules treat these ques-
tions in some depth.

Chapter 2

Module C2: Efficient Coding of

Information

by J.-C. Chappelier

Learning Objectives for Chapter 2

In this chapter we present:

1. the basics of coding a discrete information source for compressing its
messages;

2. what conditions a code needs to meet in order to compress efficiently;

3. the fundamental limit for the compression of data;

4. and methods for producing efficient compression codes.

Introduction

In the preceding chapters, we introduced Shannon’s measure of uncertainty and several
of its properties. However, we have not yet experienced how useful this measure can
be in practice. In this chapter, we exhibit the first practical problem which benefits
from Shannon’s measure. This problem is the problem of coding a discrete information
source into a sequence of symbols. We also develop some efficient methods for perform-
ing such codings, and study under which conditions it can be done. In this framework,
entropy appears to be the fundamental limit to data compression; i.e. related to the
minimal coding expected length.

But what are the general reasons for coding after all? There are basically three different
purposes:

• coding for compressing data, i.e. reducing (on average) the length of the messages.
This means trying to remove as much redundancy in the messages as possible.

81

82 CHAPTER 2. EFFICIENT CODING OF INFORMATION

Source Encoder
Ut

Z t

Figure 2.1: Basic schema for source coding: the source symbol Ut at time t is trans-
formed into the corresponding codeword Zt.

• coding for ensuring the quality of transmission in noisy conditions.
This requires adding redundancy in order to be able to correct messages in the
presence of noise.

• coding for secrecy: making the message impossible (or hard) to read for unau-
thorized readers. This requires making the access to the information content of
the message hard.

This chapter focuses on the first aspect of coding: coding for efficiency.

The current chapter addresses the problem of coding a discrete information source.
But what does all this mean? The following section answers that question. The next
section then focuses on the efficiency of coding for compressing data. Finally, the last
section provides an algorithm to actually construct an efficient code.

2.1 Coding a Single Random Variable

Learning Objectives for Section 2.1

After studying this section you should know:

1. what “coding a discrete memoryless information source” means;

2. what the general properties of a code are;

3. what the relation between codes and trees is;

4. under which conditions certain codes may exist.

An information source∗ is a message∗ generator, i.e. a generator of sequences of sym-
bols. A symbol is simply an element of a set, called an alphabet. In this course, only
finite alphabets will be addressed. When the alphabet is finite, the information source
is said to be discrete; and the size of the alphabet is called the arity∗ of the source.
Finally, only messages of finite length will be considered.

For instance, a newspaper can be regarded as a discrete information source whose
messages are the texts contained in the newspaper, the symbols simply being the
letters of the usual alphabet (including the whitespace and other punctuation marks).

The messages from the source come then into a encoder which transforms them into
a sequence of codewords∗ . The basic schema of such a coding framework is given in
figure 2.1.

A codeword∗ is simply a (non empty) sequence of symbols taken into the coding alpha-
bet, another alphabet used by the encoder. Coding therefore maps source symbols to

2.1. CODING A SINGLE RANDOM VARIABLE 83

codewords, each of which may consist of several code symbols.

More formally, an information source∗ Ut, and more generally U when the time index
is not pertinent, is a random process on a given alphabet VU ; i.e. a sequence of random
variables on VU .

Each symbol as a probability P (Ut = ui) to be emitted by the source at time t. The
source is said to be memoryless if the probability for a symbol ui to be emitted does
not depend on the past emitted values; i.e. if

∀t ≥ 1 ∀ui ∈ VU P (Ut = ui|U1...Ut−1) = P (Ut = ui).

Furthermore, only stationary sources∗, i.e. sources for which P (Ut = ui) does not
depend on t, are addressed in this chapter. In such a case, and when no ambiguity is
possible, P (U = ui) will be denoted by pi. We assume that pi 6= 0 for all considered
symbol ui in the source alphabet; that is, we do not bother with those symbols of the
source whose probability to occur is zero.

Regarding the coder, only the simplest case where one single codeword is associated
to each source symbol, is considered. Technically speaking, the encoding process Z :=
f(U) is a mapping from the source alphabet VU to the set of codewords VZ .

Denoting Z∗ the set of all finite length sequences of symbols from the code alphabet
Z, the set of codewords VZ is a subset of Z∗ not containing the empty string (i.e. the
unique sequence of length 0).

Furthermore, we focus on such codes where different source symbols map to different
codewords. Technically speaking, the mapping f is injective.
Such codes, where Z = f(U) is an injective mapping, are called non-singular codes∗

Definition 2.1 (Non-singular Code) A code of a discrete information
source is said to be non-singular when different source symbols maps to dif-
ferent codewords.
Formally, denoting zi the codeword corresponding to source symbol ui, we
have:

ui 6= uj =⇒ zi 6= zj .

All the codes considered in the rest of this chapter are non-singular.

Since there is no reason to create codewords which are not used, i.e. which do not
correspond to a source symbol, the mapping f from VU to VZ is surjective, and is
therefore a one-to-one mapping.

Example 2.1 (Finite Source Encoding) A very common example of code is
given by the Morse code. This code is used for coding letters. It uses essentially
of two symbols: a dot (·) and a dash (–).1For instance, the letters E, A and K are
respectively coded “·”, “· –” and “– · –”.

As we are interested in coding messages (i.e. sequences of symbols) and not only single
symbols alone, we focus on codes such that each encoded message can be uniquely

1Actually four symbols are used in the Morse code: a letter space and a word space code are also
used.

84 CHAPTER 2. EFFICIENT CODING OF INFORMATION

decoded. Such codes are called non-ambiguous codes∗A code for which any sequence
of codewords uniquely corresponds to a single source message.

Definition 2.2 (Non-Ambiguous Codes) A code of a discrete source is
said to be non-ambiguous if and only if each (finite length) sequence of code-
words uniquely corresponds to a single source message. �

More formally, a code is said to be non-ambiguous if and only if the trivial extension
f̂ of the coding mapping f to the set of messages V∗U , taking its value into the set of

finite length sequences of codewords V∗Z (f̂ : V∗U → V
∗
Z), is a one-to-one mapping.

Example 2.2 (Ambiguous Code) Consider the source consisting of the three sym-
bols a, b and c. Its messages can be any sequence of these symbols; for instance
“aabca” is a message of this source.

Then, the following encoding of this source:
a 7→ 1 b 7→ 00 c 7→ 11

is ambiguous.

For instance, there is no way, once encoded, to distinguish the message “aaaa” from
the message “cc”. Indeed, both are encoded as “1111”.

Example 2.3 (Non-Ambiguous Code) Keeping the same source as in the previ-
ous example, consider now the following code:

a 7→ 1 b 7→ 00 c 7→ 10

It can be show that this code is non-ambiguous. For instance the sequence “10000”
decodes into “abb” and the sequence “1000” into “cb”.

2.1.1 Prefix-Free Codes

Among the class of non-ambiguous codes, certain are of some particular interest. These
are the prefix-free codes. Before defining what such a code is, we need to introduce the
notion of prefix ∗.

A sequence z of length n (n ≥ 1) is said to be a prefix ∗ of another sequence z′ if and
only if the first n symbols of z′ form exactly the sequence z. For instance, abba is a
prefix of abbabc. Note that any sequence is trivially a prefix of itself.

Definition 2.3 (Prefix-Free Code) A code of a discrete source is said to
be prefix-free when no codeword is the prefix of another codeword.
More formally, a code Z, the alphabet of which is Z and the set of codewords
of which is VZ , is said to be prefix-free if and only if

∀z ∈ VZ ∀y ∈ Z∗ (zy ∈ VZ =⇒ y = ε)

(ε denoting the empty (i.e. 0-length) string). �

2.1. CODING A SINGLE RANDOM VARIABLE 85

General codes

Non-singular codes

Non-ambiguous codes

Prefix-free codes
= Instantaneously decodable codes

Figure 2.2: How the different types of codes are related.

Example 2.4 (Prefix-Free Code) Consider the source consisting of the three sym-
bols a, b and c.

The following encoding of this source:
a 7→ 0 b 7→ 10 c 7→ 11

is prefix-free.

On the other hand, the following encoding:
a 7→ 1 b 7→ 00 c 7→ 10

is not prefix-free as 1 (the codeword for a) is a prefix of 10 (the codeword for c).

Why focusing on prefix-free codes? The answer lies in the following next two properties
(2.1 and 2.2), which emphasize their interest.

Property 2.1 Any prefix-free code is non-ambiguous.

It is important to notice however that there exists some non-ambiguous code which are
not prefix-free as the example 2.3 shows.

Let us now come to the second interesting property of prefix-free codes.

Definition 2.4 A code is said to be instantaneously decodable∗ if and only if
each codeword in any string of codewords can be decoded as soon as its end
is reached. �

Property 2.2 A code is instantaneously decodable if and only if it is prefix-
free.

This definition ensures that there is no need to memorize the past codewords nor to
wait for the following ones to achieve the decoding. Such a code saves both time and
space in the decoding process of a encoded message.

We up to now have encountered many different types of codes: non-singular, non-
ambiguous, prefix-free. How these different types are related one to another is summa-
rized in figure 2.2.

Control Question 26

86 CHAPTER 2. EFFICIENT CODING OF INFORMATION

Consider some information source U , the symbols of which are u1 = 1, u2 = 2, u3 = 3,
and u4 = 4, with the following probability distribution:

ui 1 2 3 4

P (U = ui) 0.5 0.25 0.125 0.125

Consider then the following encoding of it (where zi is the codeword for ui):

z1 z2 z3 z4

0 10 110 111

1. Is this code non ambiguous?

2. Encode the message 1423312.

3. Decode the sequence 1001101010.

Answer

1) In this code no codeword is prefix of another codeword. Therefore this code is
prefix-free. Since any prefix-free code is non-ambiguous, this code is non-ambiguous.

2) 1423312 → 011110110110010

3) 1001101010→ 21322

Control Question 27

Are these codes prefix-free? non-ambiguous? Instantaneously decodable?

a. z1=00, z2=10, z3=01, z4=11

b. z1=0, z2=1, z3=01

c. z1=1, z2=101

Answer

First of all, any prefix-free code is instantaneously decodable and, conversely, any
instantaneously decodable is prefix-free. Therefore the answer to the first question is
the same to the answer to the last one.

The code defined in a- is prefix-free: indeed no codeword is prefix of another one. It
is therefore also a non-ambiguous code.

The code defined in b- is not prefix-free as z1 is prefix of z3. It is furthermore ambiguous
as, for instance, 01 corresponds to both sequences “z1 z2” and “z3”.

The code defined in c- is not prefix-free since z1 is prefix of z2. However, this code is
non ambiguous.

Indeed, the only way to get 0 is with z2. Therefore, when receiving a 1, waiting for
one bit more (or the end of the message) can decode the message: if the next bit is 1

2.1. CODING A SINGLE RANDOM VARIABLE 87

leaves

interior
nodes

depth

root

Figure 2.3: Summary of the terms related to trees.

then we decode into u1 u1; and if we received a 0 instead, we decode as u2, swallowing
meanwhile the next digit which is surely a 1.

For instance, 1011111011011 is to be understood as:

z2 z1 z1 z1 z2 z2 z1

and decoded into
u2 u1 u1 u1 u2 u2 u1.

Notice: This is an example of a code which is non-ambiguous although it is not prefix-
free.

2.1.2 n-ary Trees for Coding

In order to study more deeply the properties of prefix-free codes, we now need to
introduce some more definitions and formulate some theorems. Among them, the most
useful tool for the study of prefix-free codes are n-ary trees.

Let us first very briefly summarize the concept of tree and related terms (cf figure 2.3).
A tree is basically a graph (nodes and arcs) which begins at a root node (simply “the
root”). Each node in the graph is either a leaf or an interior node.2 An interior node
has one or more child nodes and is called the parent of its child nodes. The arity∗ of a
node is the number of its child nodes. A leaf node is a node without child, i.e. a node
of arity 0.

As opposed to real-life tree, the root is usually depicted at the top of the figure, and
the leaves are depicted at the bottom. The depth of a node in a tree the number of
arcs to go from the root to this node. By convention the depth of the root is null. The
depth of a tree is the maximum depth of its leaves, i.e. the maximum number of arcs
to go from the root to a leaf. Finally, a node n1 is said to cover another node n2 if the
path from the root to n2 contains n1. Notice that a node covers at least itself.

Definition 2.5 (n-ary tree) A n-ary tree (n ≥ 1) is a tree in which each
interior node has arity n, i.e. has exactly n child nodes.
A full n-ary tree is a n-ary tree in which all the leafs have the same depth. �

2Notice that by this definition, the root is also an interior node.

88 CHAPTER 2. EFFICIENT CODING OF INFORMATION

Example 2.5 (n-ary tree)

Binary tree (n = 2) Ternary tree (n = 3) Full Ternary tree

Property 2.3 In the full n-ary tree of depth d ≥ 0, each node at depth δ
(0 ≤ δ ≤ d) covers exactly nd−δ leaves.

Definition 2.6 (Coding Tree) A coding tree is a n-ary tree, the arcs of
which are labeled with letters of a given alphabet of size n, in such a way that
each letter appears at most once out of a given node.
The codewords defined by such a tree correspond to sequences of labels along
paths from the root to a leaf. �

Example 2.6 (Coding Tree)

a cb

b ba c a c
2

1

A ternary coding tree: the codeword represented by leaf 1 is “ac” and leaf 2 represents
the codeword “c”.

Definition 2.7 (n-ary code) A code with an alphabet of size n is called a
n-ary code. �

Property 2.4 For every n-ary prefix-free code, there exists at least one n-ary
coding tree such that each codeword corresponds to the sequence of labels of an
unique path from the root to a leaf.
Conversely, every coding tree defines a prefix-free code. The codewords of this
prefix-free code are defined as the sequences of labels of each path from the root
to each leaf of the coding tree.

Shortly speaking, prefix-free codes and coding trees are equivalent.

Example 2.7 The coding tree corresponding to the prefix-free code of example 2.4

2.1. CODING A SINGLE RANDOM VARIABLE 89

({0, 10, 11}) is

10

0 1a

b c

As a standard display convention, the leaves are labeled by the source symbol, the
codeword of which is the path from the root.

Notice that when representing a (prefix-free) code by a tree, it can occur that some
leaves do not correspond to any codeword. Such leaves are called “unused leaves”.

For instance, the binary coding tree corresponding to the code
{ 0, 101 } has two unused leaves as shown on the right.

10

0 1

0 1

Indeed, neither 11 nor 100 correspond to codewords. They are
useless.

Definition 2.8 (Complete Code) When there is no unused leaf in the cor-
responding n-ary coding tree, the code is said to be a complete code∗. �

Control Question 28

For all the trees below, with the convention that all the branches out of a same node
are labeled with different labels (not displayed here), tell if it is a coding tree or not;
and, in the case it is a coding tree, tell

1. what is its arity,

2. if the corresponding code is complete,

3. the length of the codeword associated to message “c”.

1)

c da b e

2)

h i gf j kb ea dc

3)

h i j k gfa edcb

4)

b c da e
5)

ca b

Answer

90 CHAPTER 2. EFFICIENT CODING OF INFORMATION

1) yes, arity=2, complete, length for codeword coding c is 3
2) no, this tree is not a coding tree since the arity of its nodes is not constant (sometimes
3, sometimes 4)
3) yes, arity=4, not complete, length for codeword coding c is 2
4) yes, arity=5, complete, length for codeword coding c is 1
5) yes, arity=3, not complete, length for codeword coding c is 3

2.1.3 Kraft Inequality

We are now looking at the conditions that must hold for a prefix-free code to exist.
The “Kraft inequality” appears as a necessary and sufficient condition.

Theorem 2.1 (Kraft Inequality) There exists a D-ary prefix-free code of
N codewords and whose codeword lengths are the positive integers l1, l2, . . . , lN
if and only if

N∑

i=1

D−li ≤ 1. (2.1)

When (2.1) is satisfied with equality, the corresponding prefix-free code is com-
plete.

Example 2.8 For the binary (D = 2) complete prefix-free code of example 2.4

({0, 10, 11}), the sum

N∑

i=1

D−li is 2−1 + 2−2 + 2−2, i.e. 1
2 + 1

4 + 1
4 which is indeed

equal to 1.

Similarly, Kraft inequality tells us that there exists at least one ternary prefix-free
code whose codeword lengths are 1, 2, 2 and 4. Indeed

3−1 + 3−2 + 3−2 + 3−4 =
46

81
' 0.57 < 1.

Such a code would not be complete.

e-pendix: Kraft Inequality

Warning! A classical pitfall to avoid with this theorem is the following: the theorem
only tells us when a prefix-free code may exists, but it does not at all answers the
question if a given code (with such and such lengths for its codewords) is indeed prefix-
free.

For instance, the first code given in example 2.4 ({1, 00, 10}) is not prefix-free. However
the corresponding sum

∑
D−li is 2−1 + 2−2 + 2−2 = 1. The pitfall to avoid is that

Theorem 2.1 does not tell us that this code is prefix-free, but that there exists a prefix-
free code with the same codeword lengths. Indeed such a code is given in the second
part of example 2.4 ({0, 10, 11}).

Let us now proceed with the proof of Theorem 2.1.

2.1. CODING A SINGLE RANDOM VARIABLE 91

Proof

=⇒ Suppose first that there does exist a D-ary prefix-free code whose codeword
lengths are l1, l2, . . . , lN . Let L := max

i
li + 1. Consider constructing the correspond-

ing coding tree Tcode by pruning3the full D-ary tree of depth L, Tfull, at all nodes
corresponding to codewords.

Tcode
Tfull

10

0 1

0 1

0

0 1 0 1

1

0 1

Because of the prefix-free condition, no node corresponding to a codeword can be
below another node corresponding to another codeword. Therefore each node cor-
responding to a codeword prunes its own subtree. Looking at the ith codeword and
applying property 2.3 to li (which is < L), Tcode has, for this node only, DL−li leaves
less than Tfull.

Considering now the whole code, Tcode has
∑N

i=1 DL−li = DL
(∑N

i=1 D−li
)

leaves less

than Tfull.

However at most DL leaves can be removed since Tfull has precisely DL leaves. There-
fore

DL

(
N∑

i=1

D−li

)
≤ DL,

i.e.
N∑

i=1

D−li ≤ 1.

Furthermore, in the case where the considered code is complete, all the leaves cor-
respond to a codeword; therefore all the corresponding subtrees in Tfull have been
“removed”, and therefore all the DL leaves of Tfull have been “removed”. This means

that
N∑

i=1

DL−li = DL, i.e.
N∑

i=1

D−li = 1.

⇐= Conversely, suppose that l1, l2, . . . , lN are positive integers such that (2.1) is
satisfied. Let L be the largest of these numbers L := max

i
li, and nj be the number

of these li that are equal to j (1 ≤ j ≤ L).

Inequality (2.1) can then be written as

L∑

j=1

nj D−j ≤ 1, i.e. nL ≤ DL −

L−1∑

j=1

nj DL−j .

Since nL ≥ 0, we have:

D nL−1 ≤ DL −

L−2∑

j=1

nj DL−j,

i.e.

nL−1 ≤ DL−1 −
L−2∑

j=1

nj DL−j−1.

92 CHAPTER 2. EFFICIENT CODING OF INFORMATION

And since all the nj are non-negative, we successively get, for all 0 ≤ k ≤ L− 1

nL−k ≤ DL−k −

L−k−1∑

j=1

nj DL−j−k.

These inequalities constitute the key point for constructing a code with codeword
lengths l1, l2, . . . , lN :

1. start with a single node (the root)

2. for all k from 0 to L do

(a) assign each codeword such that li = k to a node of the current depth (k).
These nk nodes becomes therefore leaves of the coding tree.

(b) extend all the remaining nodes of current depth with D child nodes.

Doing so, the number of nodes which are extended at step (2b) is Dk −
∑

j≤k

njD
k−j

leading to Dk+1 −
∑

j≤k

njD
k+1−j new nodes for next step. Because of the former

inequalities, this number is greater than nk+1, leaving therefore enough nodes for
next step (2a).

The algorithm can therefore always assign nodes to codewords; and finally construct
the whole coding tree for the code.

Therefore, if the li satisfy inequality (2.1), we are able to construct a prefix-free code
with the corresponding codeword lengths.

Furthermore, in the case where
∑

i D−li = 1, the number of nodes remaining after
step (2a) when j = L is

DL −
∑

j≤L

njD
L−j = DL −

N∑

i=1

DL−li = DL(1−
∑

i

D−li) = 0,

which means that all the nodes have been affected to a codeword, i.e. that the code
is complete. �

Note that this proof of the Kraft inequality actually contains an effective algorithm
for constructing a D-ary prefix-free code given the codeword lengths (whenever such a
code exists).

Example 2.9 Does a binary prefix-free code with codeword lengths l1 = 2, l2 = 2,
l3 = 2, l4 = 3, and l5 = 4 exist?

The answer is “yes” since
5∑

i=1

2−li = 1/4 + 1/4 + 1/4 + 1/8 + 1/16 = 15/16 < 1. An

example of such a code can be:

3i.e. removing the whole subtree at given node

2.1. CODING A SINGLE RANDOM VARIABLE 93

0 10 1

10

0 1

0 1

u1 u2 u3

u4

u5

U u1 u2 u3 u4 u5

Z 00 01 10 110 1110

Example 2.10 Does a binary prefix-free code with codeword lengths 1, twice 2, 3,
and 4 exist?

The answer is “no”, since
5∑

i=1

2−li = 1/2 + 1/4 + 1/4 + 1/8 + 1/16 = 19/16 > 1.

Control Question 29

Does there exists a ternary prefix-free code with codeword lengths 1, 2, 2, 3 and 4?

Answer

Since

5∑

i=1

3−li = 1/3 + 1/9 + 1/9 + 1/27 + 1/81 = 49/81 < 1, we know that such a

prefix-free code exists.

Here is one example, as a matter of illustration:

a cb

a cb

a cb

a cb

u1

u2 u3

u4

u5

U u1 u2 u3 u4 u5

Z a ba bb bca bcba

Control Question 30

Which of the following trees (maybe several) has for its codeword lengths: 2, 2, 3, 3
and 4.

54321u u u u u 1 2 3 4 5u u u u u 321 uu u

432 32u u u u u 1 2 3 4 5u u uuu

Answer

94 CHAPTER 2. EFFICIENT CODING OF INFORMATION

Trees 2 and 5. Notice that tree 4 is even not a conding tree, since in a coding tree one
message must correspond to one leaf and one leaf only.

Summary for Chapter 2

Codes: prefix-free =⇒ non-ambiguous =⇒ non-singular

Prefix-Free Codes: • no codeword is prefix of another

• equivalent to instantaneously decodable codes

• equivalent to coding trees

Kraft Inequality: ∃ prefix-free D-ary code ⇐⇒
∑

i D−li ≤ 1

2.2. EFFICIENT CODING 95

2.2 Efficient Coding

Learning Objectives for Section 2.2

In this section, you should:

1. understand what “efficient” means for a compression code;

2. learn how prefix-free codes and probabilized n-ary trees are related;

3. learn what the universal bound on “efficiency” is for memoryless source
coding;

4. see an example of efficient codes.

2.2.1 What Are Efficient Codes?

It is now time to start addressing the question of original interest, namely coding for
efficiency. Our goal is to code the information source so as to minimize the average
code length; i.e. the average length of a sequence of codewords.

Provided that the source has certain general properties (which almost often hold) min-
imizing the average code length is equivalent to minimizing the expected code length∗.

Definition 2.9 (Expected code length) Formally, recalling that source
symbol ui (1 ≤ i ≤ N) has a probability pi to be emitted, and denoting
li the length of the corresponding codeword, the expected code length∗ E [L] is
the expected value of the length of a codeword, i.e.

E [L] =

N∑

i=1

pi li (2.2)

When precision is required, the expected length of the code Z will be denoted by
E [LZ].

We are therefore looking for (prefix-free) codes such that E [L] is as small as possible.

From (2.2), it is obvious that we should assign the shorter codewords to the most
probable values of U . Indeed, if pi > pj and l ≥ l′ then pi l + pj l′ ≥ pi l′ + pj l.

But how do we know what codeword lengths to use? And what is the smallest E [L]
that can be targeted?

We will address these questions shortly, but we first have to look more accurately at
the properties of coding trees within this perspective.

Control Question 31

Consider some information source U , the symbols of which are u1 = 1, u2 = 2, u3 = 3,
and u4 = 4, with the following probability distribution:

96 CHAPTER 2. EFFICIENT CODING OF INFORMATION

ui 1 2 3 4 5

P (U = ui) 0.125 0.3 0.125 0.25 0.2

Consider then the following encoding of it (where zi is the codeword for ui):

z1 z2 z3 z4 z5

1110 110 10 1111 0

What is the expected code length?

Answer

By definition the expected code length is the expected value of the length of the code-
words, i.e., denoting li the length of zi:

E [L] =
4∑

i=1

p(Z = zi)·li =
4∑

i=1

p(U = ui)·li = 0.125·4+0.3·3+0.125·2+0.25·4+0.2·1 = 2.85

2.2.2 Probabilized n-ary Trees: Path Length and Uncertainty

Recall that a prefix-free code defines a n-ary tree in which each codeword corresponds to
a leaf (through its path from the root). On the other hand, the probability distribution
of the source to be coded assigns probabilities to the codewords, and hence to the
leaves of the corresponding n-ary tree. By convention, a probability 0 is assigned to
any unused leaf (i.e. that does not correspond to a codeword).

The probability assignment can further be extended to interior nodes by recursively
assigning them, from the leaves to the root, a probability equal to the sum of the
probabilities of the child nodes.

Doing so we create a probabilized n-ary tree.

Definition 2.10 (Probabilized n-ary tree) A probabilized n-ary tree is a
n-ary tree with nonnegative numbers between 0 and 1 (“probabilities”) as-
signed to each node (including the leaves) in such a way that:

1. the root is assigned with a probability 1, and

2. the probability of every node (including the root) is the sum of the
probabilities of its child nodes.

Example 2.11 Taking p1 = p5 = 0.1, p2 = p4 = 0.2 and p3 = 0.4 for the binary
prefix-free code in example 2.9, page 92, results in the following binary tree with
probabilities:

2.2. EFFICIENT CODING 97

0.1

1

0.70.3

0.3

0.1 0.2
0.4

0.2

0.1 0

u1 u2

u4

u5

3u

Notice that, in a probabilized n-ary tree, the sum of the probabilities of the leaves must
be one.

Lemma 2.1 (Path Length Lemma) In a probabilized n-ary tree, the aver-
age depth of the leaves is equal to the sum of the probabilities of the interior
nodes (i.e. excluding the leaves but including the root).

Proof The probability of each node is equal to the sum of the probabilities of the
leaves of the subtree stemming out from that node. Therefore the sum of the proba-
bilities of interior nodes is a sum over leaf probabilities.

Furthermore, a leaf probability appears in this sum exactly as many times as the
depth d of the corresponding leaf. Indeed, a leaf at depth d is covered by exactly d
interior nodes: all these nodes that are on the path from the root to that leaf.

Thus, the sum of the probabilities of all the interior nodes equals the sum of the
products of each leaf probability and its depth. This latter sum is precisely the
definition of the average depth of the leaves.

More formally, let νi, 1 ≤ i ≤ M be the M interior nodes and λj, 1 ≤ j ≤ N be
the N leaves. Let furthermore Pi be the probability of interior node νi and pj the
probability of leaf λj . Finally, let δ(λj) be the depth of leaf λj and let us denote by
νi ≥ λj the fact that interior node νi covers the leaf λj .

Then the the sum of the probabilities of interior nodes is equal to:

M∑

i=1

Pi =
M∑

i=1

∑

j:νi≥λj

pj =
N∑

j=1

∑

i:νi≥λj

pj =
N∑

j=1

pj

∑

i:νi≥λj

1

 .

Moreover,
∑

i:νi≥λj

1 in nothing but the number of interior nodes covering leaf λj. There-

fore ∑

i:νi≥λj

1 = δ(λj)

and
M∑

i=1

Pi =

N∑

j=1

pj δ(λj) =: E [δ] .

Example 2.12 (Path Length Lemma) In the preceding example, the average

98 CHAPTER 2. EFFICIENT CODING OF INFORMATION

depth of the leaves is 1 + 0.3 + 0.7 + 0.3 + 0.1 = 2.4 by the Path Length Lemma. As
a check, note that (definition of the expected code length) 2 · 0.1 + 2 · 0.2 + 2 · 0.4 +
3 · 0.2 + 4 · 0.1 = 2.4 .

We now consider some entropy measures on a probabilized n-ary tree.

Definition 2.11 (Leaf Entropy of a Probabilized n-ary Tree) Let N
be the number of leaves of a probabilized n-ary tree and p1, p2, . . . , pN their
probabilities.
The leaf entropy of such a tree is defined as

Hleaf = −
∑

i

pi log pi (2.3)

Property 2.5 For the probabilized n-ary tree corresponding to the prefix-free
coding tree of an information source U , we have:

Hleaf = H(U) (2.4)

Proof Let Z be the prefix-free code under consideration. By definition (of a coding
tree), pi is the probability of the ith codeword, and therefore Hleaf = H(Z).

Furthermore, since the code is non-singular (Z = f(U) is injective), H(Z) = H(U).

Therefore Hleaf = H(U). �

Definition 2.12 Let M be the number of interior nodes of a probabi-
lized n-ary tree and P1, P2, . . . , PM their probabilities. Let furthermore
qi1, qi2, . . . , qini

be the probabilities of the ni child nodes (including leaves)
of the interior node whose probability is Pi. The branching entropy Hi at this
node is then defined as

Hi = −

ni∑

j=1

qij

Pi
log

qij

Pi
, (2.5)

Notice that, because of the second property of the definition of a probabilized
n-ary tree (definition 2.10, page 96), we have

Pi =

ni∑

j=1

qij.

Example 2.13 Suppose that the M = 5 nodes for the tree of examples 2.9, page 92,
and 2.11, page 2.11, are numbered in such a way that P1 = 1, P2 = 0.3, P3 = 0.7,
P4 = 0.3 and P5 = 0.1.

Then

Hleaf = −
5∑

i=1

pi log pi ' 2.122 bit.

2.2. EFFICIENT CODING 99

We have n1 = 2 and q11 = 0.3 and q12 = 0.7, thus

H1 = −0.3 log 0.3 − 0.7 log 0.7 ' 0.881 bit.

Similarly, n2 = 2 and q21 = 0.1, q22 = 0.2, thus

H2 = −
0.1

0.3
log

0.1

0.3
−

0.2

0.3
log

0.2

0.3
' 0.918 bit.

It is left as an exercise to show that H3 ' 0.985 bit, H4 ' 0.918 bit, H5 = 0.

Theorem 2.2 (Leaf Entropy Theorem) The leaf entropy of a probabilized
n-ary tree equals the sum over all interior nodes (including the root) of the
branching entropy of that node weighted by its probability. Using the above
defined notations:

Hleaf =

M∑

i=1

Pi Hi (2.6)

Example 2.14 Continuing Example 2.13, we calculate Hleaf by (2.6) to obtain

Hleaf = 1 ·H1 + 0.3 ·H2 + 0.7 ·H3 + 0.3 ·H4 + 0.1 ·H5

' 0.881 + 0.3 · 0.918 + 0.7 · 0.985 + 0.3 · 0.918 + 0 bit

' 2.122 bit.

in agreement with the direct calculation made in example 2.13.

Theorem 2.3 For any two prefix-free codes of the same information source,
the code which has the shortest expected code length has the highest symbol
entropy rate.

Shortly speaking, compressing the data increases the symbol entropy.

2.2.3 Noiseless Coding Theorem

We now use the results of the previous sections to obtain a fundamental lower bound
on the expected code length of a prefix-free code of some information source.

Lower Bound on the Expected Codeword Length for Prefix-Free Codes

Theorem 2.4 (Shannon Coding Theorem, Part 1) For any discrete
memoryless information source of entropy H(U), the expected code length
E [L] of any D-ary prefix-free code for this source satisfies:

E [L] ≥
H(U)

log D
, (2.7)

100 CHAPTER 2. EFFICIENT CODING OF INFORMATION

The bound (2.7) could possibly have been anticipated on intuitive grounds. It takes
H(U) bits of information to specify the value of U . But each D-ary digit of the
codeword can, according to Theorem 1.2 and mutual information definition (equation
(1.28)), provide at most log D bits of information about U . Thus, we surely will need
at least H(U)/ log D code digits, on the average, to specify U .

Control Question 32

Consider some information source U , the symbols of which are u1 = 1, u2 = 2, u3 = 3,
and u4 = 4, with the following probability distribution:

ui 1 2 3 4

P (U = ui) 0.5 0.25 0.125 0.125

Consider then the following encoding of it (where zi is the codeword for ui):

z1 z2 z3 z4

0 10 110 111

1. What is the expected code length?

2. Is the code considered an efficient code, i.e. optimal from the expected code
length point of view?

Answer

By definition the expected code length is the expected value of the length of the code-
words, i.e., denoting li the length of zi:

E [L] =

4∑

i=1

p(Z = zi) · li =

4∑

i=1

p(U = ui) · li = 0.5 ·1+0.25 ·2+0.125 ·3+0.125 ·3 = 1.75

Let us compare the expected code length of that code to the source entropy: it can
easily be computed that H(U) = 1.75 bit.

We know, by the part 1 of Shannon Noiseless Coding Theorem, that for any prefix-free
code Z ′ of U we must have H(U) ≤ E [L′] (here log D = 1 since we have a binary code
(D = 2)). Therefore, since we have E [L] = H(U), for any prefix-free code Z ′ of U we
have E [L] ≥ E [L′]. This means that, from the point of view of expected code length,
the proposed code is optimal: there cannot exists another prefix-free code with a
strictly shorter expected code length.

The above theorem is our first instance where the answer to a technical question turns
out to be naturally expressed in terms of Shannon’s entropy. However, this is not a
full justification yet of the use of entropy, since only a lower bound has been specified.
For instance, the value “1” is trivially another valid lower bound for the expected code
length, but we would not claim this bound as a justification for anything! Only when
the given lower bound is, in some sense, the best possible one, it can be used as a
justification. To show that the bound expressed in the above theorem is indeed the
best possible one, we need to show that there exist some codes whose expected code
length can be arbitrarily close to it.

2.2. EFFICIENT CODING 101

Shannon-Fano Prefix-Free Codes

We now show how to construct “efficient” prefix-free codes, although non-optimum in
general, but close enough to the lower bound on the expected code length.

The key idea is to use as codeword for ui, a code whose length is

li =

⌈
−

log pi

log D

⌉
,

where dxe denotes for any x the only integer such that x ≤ dxe < x + 1.

Such a code is called a Shannon-Fano code since the technique is implicit in Shannon’s
1948 paper but was first made explicit by Fano.

But does such a prefix-free code always exists? The answer is “yes” due to the Kraft
inequality.

Indeed, since by definition li ≥ −
log pi

log D , we have

∑

i

D−li ≤
∑

i

D
log pi
log D =

∑

i

DlogD pi =
∑

i

pi = 1.

Let us now measure how “good” such a code is in terms of its expected code length.
By definition of li we have:

li < −
log pi

log D
+ 1. (2.8)

Multiplying both side by pi and summing over i gives:

∑

i

pi li <
−
∑

i pi log pi

log D
+
∑

i

pi, (2.9)

i.e.

E [L] <
H(U)

log D
+ 1. (2.10)

We see that the Shannon-Fano code has an expected code length which is within one
symbol of the lower bound (2.7) satisfied by all prefix-free codes. This code is thus
quite good. Indeed, we know, from the first part of the coding theorem previously seen,
that no prefix-free code can beat the expected code length of the Shannon-Fano code
by more than one symbol. Therefore, when the entropy of the encoded source H(U)
is large, Shannon-Fano coding is nearly optimal. But when H(U) is small, we can
generally do much better than Shannon-Fano coding, as discussed in the next section.

Let us now foccus on the second part of Shannon’s First Coding Theorem.

Theorem 2.5 (Shannon Coding Theorem, Part 2) For any discrete
memoryless information source of entropy H(U), there exists at least one
D-ary prefix-free code of it whose expected code length E [L] satisfies:

E [L] <
H(U)

log D
+ 1. (2.11)

102 CHAPTER 2. EFFICIENT CODING OF INFORMATION

Example 2.15 Consider binary (D = 2) Shannon-Fano coding for the 4-ary source
U for which p1 = 0.4, p2 = 0.3, p3 = 0.2 and p4 = 0.1. Such a coding will have as
codeword lengths (since log2(2) = 1)

l1 = −dlog2 0.4e = 2, l2 = −dlog2 0.3e = 2,

l3 = −dlog2 0.2e = 3, and l4 = −dlog2 0.1e = 4.

We then construct the code by the algorithm given in the proof of the Kraft inequality,
page 92, to obtain the code whose binary tree is

0 10 1

10

u1

0 1

u2

u3

u4

1

By the Path Length Lemma, we have:

E [L] = 1 + 0.7 + 0.3 + 0.3 + 0.1 = 2.4,

and a direct calculation gives:

H(U) = 0.4 log 0.4 + 0.3 log 0.3 + 0.2 log 0.2 + 0.1 log 0.1 ' 1.8 bit.

We see indeed that (2.11) is satisfied.

Notice, however, that this code is clearly non-optimal. Had we simply used the 4
possible codewords of length 2, we would have had a shorter code (E [L] = 2).

e-pendix: Shannon Noiseless Coding Theorem

Control Question 33

Consider a source U , the entropy of which is 2.15 bit. For the following values (2.75,
2.05, 3.25, 2.15), do you think a binary binary prefix-free codes of U with such a
expected code length could exist? Do you think a better code, i.e. another binary
prefix-free codes of U with a shorter expected code length, can exist? (yes, no, or
maybe)

expected does a better code exist?
code length could exist? no maybe yes, for sure

2.75

2.05

3.25

2.15

Answer

2.2. EFFICIENT CODING 103

expected does a better code exist?
code length could exist? no maybe yes, for sure

2.75 yes X

2.05 no X

3.25 yes X

2.15 yes X

From the first part of Shannon Noiseless Coding Theorem, we know that no prefix-free
binary code of U can have an expected length smaller than 2.15. Therefore 2.05 is
impossible, and there is no better prefix-free code than a code having an expected
length of 2.15.

The second part of the theorem tells us that we are sure that there exists at least one
code whose expected code length is smaller than H(U) + 1 i.e. 3.15. Therefore we are
sure that there exist a better code than a code having an expected length of 3.25.

For the other aspect of the question, the theorem doesn’t say anything, neither that
such code exist nor that they cannot exist. So maybe such codes could exist, according
to our knowledge up to now.

2.2.4 Huffman Codes

Huffman Coding Algorithm

We now show how to construct an optimum D-ary prefix-free code for a discrete mem-
oryless information source U with n symbols. The algorithm for constructing such an
optimal code is the following:

1. Start with n nodes (which will finally be the leaves of the coding tree) corre-
sponding to the n symbols of the source u1, u2, . . . , un.
Assign the probability pi to node ui for all 1 ≤ i ≤ n.
Mark these n nodes as “active”.
Compute the remainder r of 1−n divided by D− 1. Notice that, although 1−n
is negative, r is positive by definition of a remainder.
Notice also that in the binary case (D = 2), r is always null.

2. Group together, as child nodes of a newly created node, the D− r least probable
active nodes together with r unused nodes (leaves):

... ...

leaves
r unused
leaves

... ...

node
new

D-r useful

Mark the D − r active nodes as “not active” and the newly created node as
“active”.
Assign the newly created node a probability equal to the sum of the probabilities
of the D − r nodes just deactivated.

104 CHAPTER 2. EFFICIENT CODING OF INFORMATION

3. If there is only one active node, then stop (this node is then the root of the coding
tree). Otherwise, set r = 0 and go back to step 2.

The prefix-free code resulting from such a coding algorithm is called a Huffman code∗,
since the simple algorithm here described was discovered by D. Huffman in the fifties.

Example 2.16 (Binary Huffman Coding) Consider the information source U
such that

U u1 u2 u3 u4 u5 u6

pi 0.05 0.1 0.15 0.27 0.20 0.23

One Huffman code for U is given by:

0 1

u1 u2

0 1

u3

0 1

10

0 1

u5
u4 u6

z1 z2 z3 z4 z5 z6

0000 0001 001 01 10 11

The probabilities associated to the interior nodes are the following:

v1 = u1 ⊕ u2 v2 = v1 ⊕ u3 v3 = u5 ⊕ u6 v4 = v2 ⊕ u4 v5 = v4 ⊕ v3

0.15 0.30 0.43 0.57 1

Finally, notice that E [L] = 2 (0.2 + 0.23 + 0.27) + 3 (0.15) + 4 (0.1 + 0.05) = 2.45
(or by the Path Length Lemma: E [L] = 1 + 0.57 + 0.43 + 0.30 + 0.15 = 2.45), and

H(U) = −
6∑

i=1

pi log pi = 2.42 bit.

Example 2.17 (Ternary Huffman Coding) For the same source U as in the pre-
vious example and using a ternary code (D = 3), we have for the remainder of
1 − n := 1 − 6 = −5 by D − 1 := 2: r = 1. Indeed, −5 = −3 · 2 + 1. Therefore one
unused leaf has to be introduced.

The ternary Huffman code is in this case:

u1 u2

u3 u5

u6 u4

a cb

a

a

c

c

b

b

z1 z2 z3 z4 z5 z6

aab aac ab c ac b

The probabilities associated to the interior nodes are the following:

v1 = u1 ⊕ u2 v2 = v1 ⊕ u3 ⊕ u5 v3 = v2 ⊕ u6 ⊕ u4

0.15 0.50 1

Finally, notice that E [L] = 1 + 0.5 + 0.15 = 1.65 (by the Path Length Lemma), and

2.2. EFFICIENT CODING 105

H(U)
log 3 = 2.42

1.59 = 1.52.

Control Question 34

Consider the unfair dice with the following probability distribution:

1 2 3 4 5 6

0.17 0.12 0.10 0.27 0.18 0.16

The purpose of this question is to build one binary Huffman code for this dice. For this
code, we will use the convention to always give the label 0 to the least probable branch
and the label 1 to the most probable branch. Furthermore, new nodes introduced will
be named 7, 8, etc..., in that order.

1. What are the first two nodes to be regrouped? What is the corresponding prob-
ability?

2. What are then the next two nodes that are regrouped? What is the corresponding
probability?

3. Keep on giving the names of the two nodes to be regrouped and the corresponding
probability.

4. Give the Huffman code found for this source:

ui = 1 2 3 4 5 6

zi =

Answer

Huffman coding consists in iteratively regrouping the least two probable values. Let
us then first order the source messages by increasing probability:

3 2 6 1 5 4

0.10 0.12 0.16 0.17 0.18 0.27

1) The first two values to be regrouped are then 3 and 2, leading to a new node ”7”
whose probability is 0.10 + 0.12 = 0.22.

The corresponding subtree (useful for building the whole tree) is

3

0 1

2

using the

convention defined in the question.

2) The next iteration of the algorithm now regroups 6 and 1: 0 1

6 1

and the corre-

sponding probability is 0.33.

The new set of values is therefore:

5 7 4 8

0.18 0.22 0.27 0.33

106 CHAPTER 2. EFFICIENT CODING OF INFORMATION

3) Here are the next iterations:

9 is made with 5 and 7 , its probability is 0.4
10 is made with 4 and 8 , its probability is 0.6
11 is made with 9 and 10 , its probability is 1.0

4) The corresponding Huffman code (i.e. fullfiling the convention) is therefore:

45 23 6 1

10

10

1
0

1

10 0

i.e.

ui = 1 2 3 4 5 6

zi = 111 011 010 10 00 110

e-pendix: Huffman Coding

e-pendix: Efficient Coding

Optimality of Huffman Coding

We now want to demonstrate that Huffman coding is an optimal coding in the sense
that no other prefix-free code can have an expected code length strictly shorter than
the one resulting from the Huffman coding.

It is however important to remember that there are many optimal codes: permuting
the code symbols or exchanging two codewords of the same length will give another
code with the same expected length. The Huffman algorithm constructs only one such
optimal code.

Before proving the optimality of Huffman codes, we first need to give a few properties
of optimal codes in general.

A code is optimal if
n∑

i=1

pi li is minimal among all possible prefix-free code of the same

source, denoting li the length of the codeword corresponding to the symbol ui.

Lemma 2.2 For an optimal code of some information source with n possible
symbols we have: ∀i(1 ≤ i ≤ n) ∀j(1 ≤ j ≤ n) pi > pj =⇒ li ≤ lj.

Proof Let Z be an optimal code of the considered source. For a given i and a given
j, consider the code Y in which the codewords zi and zj are swapped, i.e. yj = zi,

2.2. EFFICIENT CODING 107

yi = zj and yk = zk for k 6= i, k 6= j. Then

E [LY]− E [LZ] = pj li + pi lj − (pi li + pj lj)

= (pi − pj) (lj − li).

Because Z is optimal, E [LY] ≥ E [LZ]. Therefore, if pi > pj , lj − li has to be
non-negative. �

Lemma 2.3 (Node-Counting Lemma) The number of leaves in a D-ary
tree is 1 + k · (D − 1) where k is the number of interior nodes (including the
root).

Proof Each interior node has D child nodes, therefore the total number of nodes in
the tree which are a child of another node is k ·D. The only node in the tree which
is not a child of another nodes is the root. The total number of nodes in the tree is
then k ·D + 1.

But there are by definition k interior nodes, therefore the number of leaves (i.e. the
number of nodes which are not interior nodes) is

k ·D + 1− k = 1 + k · (D − 1).

Lemma 2.4 For a given information source U , in the coding tree of an op-
timal prefix-free D-ary code of U , there are at most D − 2 unused leaves and
all these unused leaves are at maximum depth.
Moreover, there is an optimal D-ary code for U in which all the unused leaves
are child nodes of the same parent node.

Proof If there is at least one unused leaf which is not at the maximum length,
the expected code length could be decreased by transferring one of the codewords
at maximum length to this unused leaf. The original code would therefore not be
optimal.

Moreover, if there are more than D unused leaves at the maximum length, at least D
of these unused nodes can be regrouped as child nodes of the same node and replaced
by this only one unused node, which is at a depth shorten by 1. Therefore if there
are more than D unused leaves, the code cannot be optimal.

Finally, if there are precisely D − 1 unused leaves at the maximum length, they can
be regrouped as child nodes of the same parent node, which also has one used leaf as
its last child node. But the code can then be shorten by simply removing this last
useless digit. Indeed, this last digit is not discriminative as all its sibling nodes are
useless nodes. �

Lemma 2.5 The number of unused leaves in the tree of an optimal D-ary
prefix-free code for a discrete information source U with n possible symbols, is
the (positive) remainder of the division of 1− n by D − 1.

108 CHAPTER 2. EFFICIENT CODING OF INFORMATION

Proof Let r be the number of unused leaves. Since U has n different symbols, we
have:

r =

[
number of leaves in the

D-ary coding tree

]
− n.

It follows then from the node-counting lemma that

r = [1 + k(D − 1)]− n,

or
1− n = −k(D − 1) + r.

Moreover, from lemma 2.4, we know that, if the code is optimal, 0 ≤ r < D − 1 . It
follows then, from Euclid’s division theorem for integers, that r is the remainder of
the division of 1− n by D − 1 (the quotient being −k). �

Lemma 2.6 There exists an optimal D-ary prefix-free code for a discrete in-
formation source U with n different symbols (n ≥ 2) such that the D− r least
probable codewords differ only in their last digit, with r the remainder of the
division of 1− n by D − 1 (therefore D − r ≥ 2).

Proof First notice that not all optimal codes are claimed to satisfy this property,
but by rearranging an existing optimal code, we can find at least one optimal code
that satisfy the property.

Let us consider an optimal D-ary prefix-free code for U (this exists since the number
of D-ary prefix-free codes for U is finite). By lemma 2.5, we know that there are r
unused leaves, which by lemma 2.4 are all at maximal depth. Let us consider the
D − r siblings of these unused leaves. They are among the longest length codewords
(since they are at maximal depth).

Let us now build the code where we exchange these D − r longest codewords with
the D − r less probable ones. Due to lemma 2.2 this does not change the expected
length (otherwise the considered code would not have been optimal). Therefore the
resulting code is also an optimal code. But we are sure for this latter code that the
D − r least probable codewords differ only in their last digit. �

Due to lemma 2.6, it is sufficient to look for an optimal code in the class of codes where
the D − r least probable codewords differ only in their last digit.

It is now time to establish the optimality of Huffman coding.

Theorem 2.6 Huffman coding is optimal: if Z is one Huffman code of some
information source U and X is another non-ambiguous code for U , then
E [LX] ≥ E [LZ].

Proof We prove this theorem by induction on the number of codewords (i.e. the
number of source symbols).

2.2. EFFICIENT CODING 109

It is trivial to verify that for any source with less than D symbols, the Huffman code
is optimal.

Suppose now that the Huffman coding procedure is optimal for any source with at
most n− 1 symbols and consider a source U with n symbols (n > D).

Let r be the remainder of the division of 1− n by D − 1: 1− n = q(D − 1) + r.

Without loss of generality, let un−(D−r)+1, ..., un be the D − r least probable source
symbols.

By construction a Huffman code Z for U is made of an Huffman code Y for the source
V whose n− (D − r) + 1 different symbols are v1 = u1, ..., vn−(D−r) = un−(D−r) and
vn−(D−r)+1, with probabilities q1 = p1, ..., qn−(D−r) = pn−(D−r) and qn−(D−r)+1 =
pn−(D−r)+1 + · · ·+ pn.

Indeed the number of unused leaves introduced for Y is the remainder of the division
of 1−[n−(D−r)+1] by D−1, which is 0 since 1−[n−(D−r)+1] = 1−n−r+D−1 =
q(D − 1) + (D − 1) = (q + 1)(D − 1). This shows that Y indeed corresponds to the
code built in the second and following steps of the building of Z.

Z appears then as an extension of Y in the codeword yn−(D−r)+1: z1 = y1, ...,
zn−(D−r) = yn−(D−r) and yn−(D−r)+1 is the prefix of all the codewords zn−(D−r)+1,...,
zn which all differ only by the last symbol.

Then, denoting by li the length of zi and by l′i the length of yi:

E [LZ] :=

n∑

i=1

pi li =

n−D+r∑

i=1

pi li +

n∑

i=n−D+r+1

pi li

=
n−D+r∑

i=1

pi l′i +
n∑

i=n−D+r+1

pi (l′i + 1)

=
n∑

i=1

pi l′i +
n∑

i=n−D+r+1

pi

= E [LY] +

n∑

i=n−D+r+1

pi

Since

n∑

i=n−D+r+1

pi is independent of the coding process (it only depends on the source

U), due to lemma 2.6 and to the fact that Y , by induction hypothesis, is optimal for
V (which has less than n symbols), we then conclude that Z is optimal for U (i.e.
that E [LZ] is minimal). �

110 CHAPTER 2. EFFICIENT CODING OF INFORMATION

2.2. EFFICIENT CODING 111

Summary for Chapter 2

Prefix-Free Codes:

• no codeword is prefix of another

• prefix-free =⇒ non-ambiguous =⇒ non-singular

• prefix-free ≡ instantaneously decodable

Kraft Inequality: ∃ prefix-free D-ary code ⇐⇒
∑

i D
−li ≤ 1

Entropy bound on expected code length:

E [L] =
∑

i

pi li ≥
H(U)

log D

Shannon-Fano code:

li =

⌈
−

log pi

log D

⌉

E [L] =
∑

i

pi li ≤
H(U)

log D
+ 1

Huffman code:

1. introduce 1− n mod (D − 1) unused leaves with probability 0

2. recursively regroup least probable nodes

3. is optimal (regarding the expected code length) among non-ambiguous
codes

Historical Notes and Bibliography

Shannon Noiseless Coding Theorem 1948
Kraft Inequality 1949
Huffman Coding 1952

OutLook

For further details on coding for compression, refer to [9].

112 CHAPTER 2. EFFICIENT CODING OF INFORMATION

Chapter 3

Module C3: Entropy rate of

stationary processes. Markov

chains

by F. Bavaud

Introduction

Consider a doubly discrete system Xt which, at each time t ∈ ZZ := {. . . ,−2,−1, 0, 1, 2, . . .},
is in some state xt ∈ Ω := {ω1, . . . , ωm}. In the description we adopt, the state space Ω
is finite with m = |Ω| states; also, the set of times t ∈ ZZ is also discrete but bi-infinite
at both extremities.

Definition 3.1 A stochastic process is a bi-infinite sequence

X∞
−∞ = . . . X−2X−1X0X1X2 . . . = {Xt}

∞
−∞

of random variables Xt indexed by an integer t. �

Example 3.1 Let Xt be the local temperature of the t-th day at noon. The sequence
of successive Xt constitutes a stochastic process, which can be modelled by variously
sophisticated models: for instance, the distribution of each Xt is independent of the
other Xt′ , or depends on Xt−1 only, etc. The observation of a numerical series of
values . . . x−2x−1x0x1x2 . . . constitutes a realization of the stochastic processs.

Let xt ∈ Ω represent the observed value of variable Xt. The stochastic process is
completely determined provided all the joint (= multivariate) probabilities of the form

p(xl . . . , xn) = p(xn
l) := P (Xl = xl,Xl+1 = xl+1, . . . ,Xn = xn)

113

114 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

are defined, for all l and n with l ≤ n. Note that sequence xn
l contains n − l + 1

elements. To be consistent, the probability measure must add up to one:

∑

xn
l
∈Ωn−l+1

p(xn
l) = 1

Also, the probability of a subsequence contained in a sequence must obtain by summing
over all the values of the states of the sequence not appearing in the subsequence, that
is, for instance

∑

(x2 x3 x5) ∈Ω3

p(x1 x2 x3 x4 x5) = p(x1 x4)

The probabilistic dynamics of a stochastic process might or might not depend ex-
plicitely of the time i at which it is observed. In the second case, the process is said to
be stationary:

Definition 3.2 A stochastic process is stationary if the joint probability of a
subsequence is invariant with respect to an overall shift in time, i.e.

P (Xl+T = xl,Xl+T+1 = xl+1 . . . Xn+T = xn)

= P (Xl = xl,Xl+1 = xl+1 . . . Xn = xn)

for any T ∈ ZZ. �

3.1 The entropy rate

Learning Objectives for Section 3.1

After studying this section you should

• be familiar with the concept of entropy rate, in relation to the concepts
of typical set, redundancy and compression

• be able to assess whether or not a given compression scheme (diminishing
the length and/or the number of categories of the message) is feasible in
principle

Consider a stationary process. The joint entropy of the sequence X1,X2, . . . ,Xk = Xk
1 ,

measuring the total uncertainty in the joint outcome of the sequence, is

H(Xk
1) = −

∑

xk
1∈Ωk

p(xk
1) log p(xk

1)

H(Xk
1) is increasing in k: adding more arguments increases uncertainty. One defines

the entropy rate ĥ∞ of the process as the limit (if existing)

ĥ∞ := lim
k→∞

1

k
H(Xk

1) (3.1)

3.1. THE ENTROPY RATE 115

Also, consider the conditional entropy hk, for k = 1, 2, 3 . . ., measuring the uncertainty
in Xk conditionnaly to X1 . . . ,Xk−1, as well as its limit when k →∞:

hk := H(Xk|X
k−1
1)

(a)
= H(Xk

1)−H(Xk−1
1) h∞ := lim

k→∞
hk (3.2)

where (a) follows from H(Y |Z) = H(Y,Z)−H(Z). The quantity ĥ∞ in 3.1 measures
the uncertainty per variable in an infinite sequence, and the quantity h∞ in 3.2 measures
the residual entropy on the last variable when all the past is known. It turns out that
those two quantities coincide for stationary processes:

Theorem 3.1 For a stationary processes, the non-negative quantity hk de-
fined in 3.2 is non-increasing in k. Its limit h∞ := limk→∞ hk defines the
entropy rate h∞ of the process exists and can be computed either way as

h∞ = lim
k→∞

1

k
H(Xk

1) = lim
k→∞

H(Xk|X
k−1
1) (3.3)

Example 3.2 For an i.i.d. process, H(Xk
1) = k H(X), where H(X) is the entropy

for a single variable. As a result, h∞ = limk→∞
1
k kH(X) = H(X). The behavior of

hk for this and other processes is depicted in figure 3.10.

Theorem 3.2 h∞ ≤ log m, where m := |Ω| be the alphabet size. Equality
holds iff the process is independent (that is p(xk

1) =
∏k

i=1 p(xi)) and uniform
(that is p(xi) = 1/m).

Proof

h∞ = lim
k→∞

H(Xk|X
k−1
1)

(a)

≤ lim
k→∞

H(Xk)
(b)

≤ log m

where equality in (a) holds under independence, and equality in (b) holds under
uniformity. �

The entropy rate h∞ measures the conditional uncertainty associated to each single
outcome of a process, knowing its whole past. For fixed m, this uncertainty is maximal
when the predictibility of the outcome is minimal, that is when the process is maximally
random. Theorem 3.2 says that a maximally random process must be uniform and
independent, exacly as a fair dice with m sides which must be unbaised (= uniform)
and without memory (= independent successive outcomes).

More generally, the following exact decomposition holds:

116 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

Theorem 3.3 For a stationary process,

hk = log m−Kk(p||p
IND)−K(p||pUNI)

where Kk(p||p
IND) ≥ 0 is the Kullback-Leibler departure from independence,

namely

Kk(p||p
IND) :=

∑

xk
1

p(xk
1) log

p(xk
1)

pIND(xk
1)

pIND(xk
1) := p(xk−1

1) p(xk) (3.4)

and K(p||pUNI) is the Kullback-Leibler departure from uniformity, namely

K(p||pUNI) :=
∑

xk

p(xk) log
p(xk)

1/m
(3.5)

Note: observe K(p||pUNI) to be independent of k by stationarity.

Proof By construction

hk = H(Xk|X
k−1
1) = −

∑

xk−1
1

p(xk−1
1)

∑

xk

p(xk|x
k−1
1) log p(xk|x

k−1
1) =

= −
∑

xk−1
1

p(xk−1
1)

∑

xk

p(xk|x
k−1
1) log[

p(xk
1)

p(xk−1
1)

p(xk)

p(xk)

1/m

1/m
] =

= −
∑

xk
1

p(xk
1) log

p(xk
1)

p(xk−1
1) p(xk)

−
∑

xk

p(xk) ln
p(xk)

1/m
+ log m

Remark: using information-theoretical quantities, the proof can alternatively be
presented as

hk = H(Xk
1)−H(Xk−1

1) =

= H(Xk
1)−H(Xk−1

1)−H(Xk)︸ ︷︷ ︸
−Kk(p||pIND)

+ H(Xk)− log m︸ ︷︷ ︸
−K(p||pUNI)

+ log m

3.2 The AEP theorem

Recall that a variable Zn is said to converge in probability towards the constant c

(noted Zn
P
→ c) iff

lim
n→∞

P (|Zn − c| ≤ ε) = 1) ∀ε > 0 (3.6)

Example 3.3 Let {Yi} represent a sequence of i.i.d. numerical variables with mean
µ and finite variance σ2. The variable Sn := 1

n

∑n
t=1 Yt then converges in probability

to µ. That is, for n sufficiently large, the probability to observe a deviation Sn − µ
larger than any finite quantity ε > 0 becomes negligible.

3.2. THE AEP THEOREM 117

Theorem 3.4 AEP (= asymptotic equipartition property) theorem: for a sta-
tionary ergoodic processes, the variable

Zn := −
1

n
log p(Xn

1) (3.7)

converges in probability towards the entropy rate h∞ defined in 3.3: Zn
P
→ h∞.

Equivalently (see theorem 3.5 (a)), and using from now on natural logarithms for
simplicity, theorem 3.4 tells that

∀ε > 0 , lim
n→∞

P (exp[−n(h∞ + ε)] ≤ p(Xn
1) ≤ exp[−n(h∞ − ε)]) = 1

Definition 3.3 The (n, ε)-typical set Tn(ε) is the set of all empirical sequences
xn

1 (called typical) whose probability p(xn
1) is close to exp(−nh∞) in the sense

Tn(ε) := {xn
1 ∈ Ωn | exp[−n(h∞ + ε)] ≤ p(xn

1) ≤ exp[−n(h∞ − ε)]} (3.8)

The probability for data to belong to Tn(ε) is

P (Tn(ε)) := P (Xn
1 ∈ Tn(ε)) =

∑

xn
1∈Ωn

p(xn
1) I(xn

1 ∈ Tn(ε)) (3.9)

and theorem 3.4 can be rewritten as

∀ε > 0 , lim
n→∞

P (Xn
1 ∈ Tn(ε)) = 1 (3.10)

That is, for increasingly large n, it becomes increasingly certain that, drawing a n-gram
Xn

1 turning out to be xn
1 , one finds that p(xn

1) is very close exp(−n h∞): “most” of the
observed empirical sequences xn

1 have a probability increasingly close to exp(−n h∞):
”for n large, almost all events are almost equally surprising”. The following theorem
makes this statement precise and rigorous:

Theorem 3.5

1. xn
1 ∈ Tn(ε) iff | − 1

n ln p(Xn
1)− h∞| ≤ ε.

2. P (Tn(ε)) > 1− ε for n large enough.

3. |Tn(ε)| ≤ exp(n (h∞ + ε)).

4. |Tn(ε)| > (1− ε) exp(n (h∞ − ε)) for n large enough.

Proof

1. apply definition 3.6.

2. as a consequence of equation 3.10, P (Tn(ε)) is arbitrarily close to 1 for n large
enough.

118 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

3.

1 =
∑

xn
1∈Ωn

p(xn
1) ≥

∑

xn
1∈Tn(ε)

p(xn
1) ≥

∑

xn
1∈Tn(ε)

exp[−n(h∞ + ε)] =

= exp[−n(h∞ + ε)] |Tn(ε)|

4.

1− ε < P (Tn(ε)) ≤
∑

xn
1∈Tn(ε)

exp(−n(h∞ − ε)) = exp(−n(h∞ − ε)) |Tn(ε)|

3.2.1 The concept of typical set: redundancy and compressibility

The set Ωn of all sequences xn
1 of length n with m = |Ω| categories contains mn distinct

elements. Supppose the probabilistic process producing them to be independent and
uniform; then each sequence possesses the same probability, namely P (xn

1) = m−n.
In the other direction, suppose the dependence in the process to be so strong that a
single sequence of length n can possibly be produced; by construction, this sequence
has probability one, and the remaining mn − 1 sequences have probability zero.

In general, that is inbetween those two extreme situations, the key quantity control-
ling the number of “typically observable” sequences as well as their probability is the
entropy rate h∞ (recall h∞ = log m in the first case above, and h∞ = 0 in the second
case). One has that the Ωn of all sequences xn

1 of length n splits, for n large enough,
into two subsets 1:

• the set Tn(ε) of typical sequences, containing essentially |Tn(ε)| ∼= exp(nh∞)
sequences, each of them having probability exp(−nh∞). For n large, all the
probability is concentrated in the typical set: P (Tn(ε)) ∼= 1.

• the set of non-typical sequences T c
n(ε) := Ωn \ Tn(ε), containing mn − exp(nh∞)

sequences, each of them having negligible probability: P (T c
n(ε)) ∼= 0.

Thus, the higher the entropy rate h∞, that is the more uncertain the future given the
whole past, the more numerous the typical sequences, the only ones to be actually
observable (for n large). Closely associated to the concept of entropy rate is the notion
of redundancy :

Definition 3.4 (redundancy) The redundancy R of a stationary ergodic
stochastic process on m states with entropy rate h∞ is

R := 1−
h∞

log m
(3.11)

It is understood that the same logarithmic unit (e.g. bits or nats) is used in log m
and in the defintion of h∞, which makes R independent of the choice of units. It

1The previous statements can be given a fully rigorous status, thanks to the asymptotic equipartition

property (AEP) theorem; here Tn(ε) denotes the set of sequences of length n whose probability stands
between exp(−n(h∞ + ε)) and exp(−n(h∞ − ε)).

3.2. THE AEP THEOREM 119

Figure 3.1: The AEP theorem: for 0 < h∞ < log m and n large, almost all sequences of
Ωn are non-typical (sand grains) and their contribution to the total volume is negligible.
By contrast, the relative number of typical sequences (peebles) is negligible, but their
volume accounts for the quasi-totality of the total volume.

follows from 0 ≤ h∞ ≤ log m (theorem 3.2) that 0 ≤ R ≤ 1. By construction,
h∞ = (1 − R) log m and exp(nh∞) = m(1−R)n. Thus, among all the mn sequences of
Ωn, a total of |Tn(ε)| ∼= m(1−R)n of them are typical; each of those typical sequences
has probability m−(1−R)n. In particular:

• a maximally random process (i.e. independent and uniform) is characterized by
h∞ = log m, or equivalently R = 0. The number of typical sequences is equal
to mn, the total number of sequences; that is, each sequence is typical and has
probability m−n.

• a minimally random process is characterized by h∞ = 0, or equivalently R =
1. The process is eventually deterministic: given a large enough piece of past
. . . , xl, xl+1, . . . , xn, the value xn+1 of the next state Xn+1 can be predicted with
certainty. The number of typical sequences is equal to m0 = 1: that is, there is
asymptotically an unique typical sequence with probability 1, namely the only
sequence produced in a deterministic process.

• inbetween those extreme cases, a generic stochastic process obeying 0 < h∞ <
log m satisfies 0 < R < 1: the process is partly redundant and partly impre-
dictible. The proportion of typical sequences is

m(1−R)n

mn
= m−R n

and vanishes for n→∞.

Example 3.4 The following metaphor, due to Hillman (1996), might help making
the AEP concept intuitive (see figure 3.1). A beach of total volume mn represents the
totality of the sequences. Most of the volume is made up of exp(nh∞) peebles, each
having a volume of exp(−nh∞). The beach also contains about mn sand grains, but
so small that their total contribution to the volume of the beach is of order ε << 1.

Thus, among the mn possible sequences, only m(1−R) n can indeed occur, all with
the same probability (for n large). That is, the total average amount of information
n h∞ carried by a sequence of length n with entropy rate h∞ on an alphabet m can
equivalently be obtained

120 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

A) by the set of sequences of effective length neff = (1−R)n equiprobably distributed
over m categories; the entropy rate of this new process reaches now its maximum
log m.

B) by the set of sequences of length n equiprobably distributed over m(1−R) cate-
gories, with a corresponding entropy rate of log m(1−R) = (1−R) log m.

Modifying the original process does not modify the total information, which remains
equal to nh∞:

neff log m = n (1−R) log m = n h∞ (A)

n log m(1−R) = n (1−R) log m = n h∞ (B)

However, the redundancy of the modified processes is now zero in both cases: applica-
tion of 3.11 yields

RA = 1−
log m

log m
= 0 (A) RB = 1−

(1 −R) log m

(1 −R) log m
= 0 (B)

The precise, detailled ways in which the initial sequences can be compressed (from the
point of view of their lengths (A) or their alphabet size (B)) constitutes a part of the
coding theory (see module C2).

Example 3.5 The entropy of a “representative” text in simplified english with m =
27 categories (no punctuation nor distinction of cases, that is 26 letters plus the blank)
has been estimated to about h = 1.3 bits per letter, corresponding to an redundancy
of about R = 1−1.3/ log2 27 = 0.73 (Shannon 1950, cited in Cover and Thomas 1991).
That is, a 300 pages novel could typically be reduced to a 300(1 − 0.73) = 81 pages
novel on the same alphabet, or to a novel of same length with only 27(1−0.73) = 2.43
(i.e. at least 3) symbols. The aspect of a sample of the latter could be something like

MUUMMXUUMMMMUMXXUMXMMXMMUXMUMXMMMMXXXUUXMXMUUXMUXMUXMU

UMUXUMUUUXMMUUUMXMMMXXXXMUMXXMMXXMUMXUMUUXMUUXMMMXMUXX

UXXXUXXUUMMUXUXMUUMXUUXMUXXUXUMUUUXXXMMXXUMXUUUMMUXMXM

where the redundancy of the new text is now zero, meaning that the slightest mod-
ification of the latter will irreversibly alter its content. By contrast, the high redun-
dancy (R = 0.73) of standard english permits to correct and recover an altered text,
containing for instance misspellings.

Note: the above example presupposes that written english is produced by a station-
ary stochastic process, which is naturally questionnable.

Control Question 35

A stationary stochastic process produces a sequence of n consecutive symbols (n large)
on an alphabet with m signs. Suppose the redundancy of the process to be R = 0.25.
Then

1. it is possible to compress (without diminishing the total information) the sequence
length from n to 0.75 × n? Possible answers: yes - no - it depends on n.

3.2. THE AEP THEOREM 121

2. it is possible to compress (without diminishing the total information) the alphabet
length from m to 0.75 ×m? Possible answers: yes - no - it depends on m.

Answer

1. “yes”: correct answer: compression scheme A) above permits to compress the
sequence length (on the same alphabet) from n to neff = (1− 0.75) n = 0.75× n
(maximum compression, asymtotically attainable for n→∞).

2. “it depends on m”: correct answer: the alphabet size can be taken (with out
diminishing the sequence length) to m1−R = m0.75. But one readily checks
m0.75 > 0.75 × m (unfeasible compression) if m = 2, and m0.75 < 0.75 × m
(feasible compression) if m = 3, 4,

Example 3.6 A highly simplified meteorological description assigns each day into
one of the three categories “nice” (N), “rainy” (R) or ”snowy” (S). For instance,
“NNRNSRN” constitutes a possible a meteorological week. The are a maximum
of 3n different sequences of n days; each of those sequence would be equiprobable
(with probability 3−n) if the whether did follow a perfectly random process (with
a maximum entropy rate of h∞ = log 3, as given by theorem 3.2). However, real
weather is certainly not a completely random process, that is its redundancy R is
strictly positive:

• if R = 0.5 for instance, then, among all possible 3n different sequences of n
days, 3(1−0.5) n = 1.73n are typical, that is likely to occur.

• if R = 0.75, only 3(1−0.75) n = 1.32n sequences of n days are typical.

• if R = 1, only 3(1−1) n = 30 = 1 sequence is typical, that is the only sequence
generated by the deterministic (R = 1) process.

In this example, the number of effective “full” possible types of weather for next day
(as measured by the uncertainty conditional to the day before) passes from 3 to 1.73,
1.32 and even 1 as R increases from 0 to 1.

122 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

3.3 First-order Markov chains

Learning Objectives for Section 3.3

After studying this section you should

• be familiar with the concept of (first-order) Markov chain, its transition
matrix and their iterates, and the concept of stationary distribution.

• be able to classify the states as recurrent, transient, absorbing and peri-
odic.

• understand the theoretical meaning as well as the computation of the
associated entropy.

• understand the nature of the irreversibility produced by temporal evo-
lution.

Definition 3.5 A first-order Markov chain, or simply Markov chain, is a dis-
crete stochastic process whose memory is limited to the last state, that is:

p(xt+1|x
t
−∞) = p(xt+1|xt) ∀t ∈ ZZ

Let Ω := {ω1, . . . , ωm} represent the m states of system. The Markov chain is
entirely determined by the m×m transition matrix

pjk := P (Xt+1 = ωk|Xt = ωj) = p(ωk|ωj)

obeying the consistency conditions

pjk ≥ 0
m∑

k=1

pjk = 1

Example 3.7 Consider a two-states process with state space Ω = {a, b}. When the
system is in state a, it remains in the same state with probability 0.7 (and moves
to state b with probability 0.3). When the system is in state b, it remains in the
same state with probability 0.6 (and moves to state a with probability 0.4). The
conditional probabilities are p(a|a) = 0.7, p(b|a) = 0.3, p(b|b) = 0.6 and p(a|b) = 0.4.
Numbering a as 1 and b as 2, the probabilities equivalently express as p11 = 0.7,
p12 = 0.3, p21 = 0.4 and p22 = 0.6, or, in matrix form,

P =

(
0.7 0.3
0.4 0.6

)
(3.12)

Observe each row to sum to 1.

3.3.1 Transition matrix in n steps

Consider a process governed by a Markov chain which is in state ωj at time t. By
definition, its probability to be in state k at time t + 1 is pjk. But what about its

3.3. FIRST-ORDER MARKOV CHAINS 123

Figure 3.2: The probability to reach state k at time t + 2 (say k = 3) starting from
state j at time t obtains by summing over all possible intermediate states l at time
t + 1.

probability to be in state k at time t + 2 ?

Figure 3.2 shows that the searched for probability obtains by summing over all possible
intermediate states l at time t + 1 (here m = 3). That is

p
(2)
jk := P (Xt+2 = ωk|Xt = ωj) =

m∑

l=1

pjl plk (3.13)

Denoting P := (pjk) and P (2) := (p
(2)
jk) the m ×m one-step and two-steps transition

matrices respectively, equation 3.13 shows the latter to obtain from the former by
straighforward matrix multiplication, that is P (2) = P 2 := P · P . The mechanism
generalizes for higher-order lags and we have the result

Theorem 3.6 The n-step transition matrix P (n) whose components p
(n)
jk :=

P (Xt+n = ωk|Xt = ωj) give the probability to reach state k at time t+n given
that the system was in state j at time t obtains from the (one-step) transition
matrix P = (pjk) as

P (n) = P · P · P · · ·P︸ ︷︷ ︸
n times

= Pn

Example 3.8 (example 3.7, continued:) The two- and three-steps transition ma-
trices giving the probabilitites to reach state k from state j in n = 2, respectively
n = 3 steps, are P (2) and P (3) with

P (2) := P · P =

(
0.61 0.39
0.52 0.48

)
P (3) := P · P · P =

(
0.583 0.417
0.556 0.444

)

Note the property that each row of P sums to 1 to be automatically inherited by P (2)

and P (3).

124 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

Figure 3.3: State a reaches itself and states b, c, d and e. State b reaches itself and
states c, d and e. State c reaches itself and states d and e. State d reaches itself and
states c and e, etc. The communication equivalence classes are {a}, {b}, {c, d, e}, {f},
{g} and {h}.

3.3.2 Flesh and skeleton. Classification of states

The concept of communication between states defines an equivalence relation among
the set of m states involved in a finite Markov chain:

Definition 3.6

• state j reaches state k, written j → k, if there is a path jl1l2 · · · ln−1k of
length n ≥ 0 such that pjl1 pl1l2 · · · pln−1k > 0, i.e. if there is a n ≥ 0 such

that p
(n)
jk > 0. As p

(0)
jj = 1 > 0, each state reaches itself by construction:

j → j for all j.

• states j and k commmunicate, noted j ↔ k, iff j → k and k → j.

Thus the relation “→” is reflexive (j → j) and transitive (j → l and l→ k imply j →
k). The communicability relation “↔” is in addition symmetric (j ↔ k imply k ↔ j).
That is, the relation “communicates with” is an equivalence relation, partitioning states
into groups of states, each state inside a group communicating with all the other states
inside the same group.

Note that the “skeleton” aspects (i.e whether a transition is possible or not) dominate
the “flesh” aspects (i.e. the question of the exact probability a possible transition) in
the above classification. That is, j and k communicate iff there are integers n and n′

with p
(n)
jk > 0 and p

(n′)
kj > 0; the question of the exact values of p

(n)
jk > 0 and p

(n′)
kj > 0

is of secondary importance relatively to the fact that those two quantities are stricly
positive.

Example 3.9 Consider a Markov chain whith skeleton given by figure 3.3. The
arrows denote reachability in one step. State a reaches itself as well as states b, c, d
and e. However, a can be reached from itself only. Thus the equivalence class of a
(relatively to the relation ”↔”) contains a itself. Reasonning further, one finds the
equivalence classes to be {a}, {b}, {c, d, e}, {f}, {g} and {h}.

Definition 3.7 State j is recurrent (or persistent, or ergodic) if the probability
that the process starting from j will eventually return to j is unity. State j
is transient if it is not recurrent, that is if the probability of no return to j
starting from j is non zero. �

3.3. FIRST-ORDER MARKOV CHAINS 125

Figure 3.4: Example 3.10: the communication equivalence classes are {a}, {e} (recur-
rent classes) and {b, c, d} (transient class). States a et e are absorbing.

One can show that states belonging to the same equivalence class are either all recurrent
or all transient, which justifies the following definition:

Definition 3.8 Reccurent classes are equivalence classes whose elements are
all recurrent. Transient classes are equivalence classes whose elements are
transient. �

In example 3.9, the recurrent classes are {c, d, e} and {h}. All other classes are tran-
sient.

Example 3.10 Consider the following Markov transition matrix

P =

1 0 0 0 0
0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0 0 1

(3.14)

whose skeleton is represented in figure 3.4. There are two recurrent classes, namely
{a} and {e}, and one transient class, namely {b, c, d}. Recurrent states which are
single members of their class, such as a and e, cannot be left once entered. Such
states are said to be absorbing. A necessary and sufficient condition for a state j to
be absorbing is pjj = 1, as demonstrated in rows 1 and 5 of 3.14.

It might happen that p
(n)
jj = 0 for all n not divisible by d, and d is the greatest such

integer. This means that if the chain is in state j at some time t, it can only return
there at times of the form t + md where m is an integer. Then state j is said to have

period d. A state with period d = 1 is said to be aperiodic. If p
(n)
jj = 0 for all n ≥ 1,

state j has an infinite period d =∞. One can show that states belonging to the same
equivalence class have all the same period: for instance, in figure 3.4, states a and e
are aperiodic, while b, c and d have period d = 2.

Example 3.11 A tree is a graph containing no circuit. Figure 3.5 left depicts a
Markov chain on a symmetric tree: there is a single recurrent equivalence class
{a, b, c, d, e, f}, all states of which have period d = 2. Adding a single circuit such as
in figure 3.5 middle or right still conserves the single equivalence class {a, b, c, d, e, f},
but all states are now aperiodic (d = 1).

3.3.3 Stationary distribution

From now on one considers regular Markov chains only, that is consisting of a single
aperiodic recurrent class: equivalently, each state can be attained from each other after

126 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

Figure 3.5: Example 3.11. Left: the underlying skeleton is a symmetric tree, and all
states have period d = 2. The addition of a single circuit (middle or right) makes all
states aperiodic (d = 1).

sufficient lapse of time, i.e. there exist an integer N such that p
(n)
jk ≥ 0 for all states j,

k and all times n ≥ N .

Theorem 3.7 Let P = (pjk) be the m × m transition matrix of a regular
Markov chain on m states. Then

• for n→∞, the powers Pn approach a transition matrix P∞ of the form

P∞ =

π1 π2 · · · πm−1 πm

π1 π2 · · · πm−1 πm

· · · · · · · · · · · · · · ·
π1 π2 · · · πm−1 πm

π1 π2 · · · πm−1 πm

with πj > 0 and

m∑

j=1

πj = 1 (3.15)

• the distribution π = (π1, π2, . . . , πm)′ is the only solution of the equation

m∑

j=1

πj pjk = πk ∀k i.e. P ′π = π (3.16)

obeying the normalization condition
∑m

j=1 πj = 1.

The distribution π is referred to as the stationary or equilibrium distribution associated
to the chain P .

Proof *** classical proof remaining to be done *** �

Example 3.12 Consider the following transition matrix

P =

0.823 0.087 0.045 0.044
0.058 0.908 0.032 0.001
0.030 0.032 0.937 0.001
0.044 0.002 0.001 0.952

 (3.17)

3.3. FIRST-ORDER MARKOV CHAINS 127

Some of its successive powers are

P (5) =

0.433 0.263 0.161 0.143
0.175 0.662 0.137 0.025
0.107 0.137 0.741 0.014
0.143 0.037 0.021 0.798

P (25) =

0.204 0.308 0.286 0.202
0.205 0.349 0.305 0.140
0.191 0.305 0.390 0.114
0.202 0.211 0.171 0.416

P (∞) =

0.2 0.3 0.3 0.2
0.2 0.3 0.3 0.2
0.2 0.3 0.3 0.2
0.2 0.3 0.3 0.2

 =

π1 π2 π3 π4

π1 π2 π3 π4

π1 π2 π3 π4

π1 π2 π3 π4

and the corresponding equilibrium distribution is π = (0.2, 0.3, 0.3, 0.2). One can
verify

∑m
j=1 πj pjk = πk to hold for each k: indeed

0.2 · 0.823 + 0.3 · 0.087 + 0.3 · 0.045 + 0.2 · 0.0.044 = 0.2 (k = 1)

2 · 0.058 + 0.3 · 0.908 + 0.3 · 0.0.032 + 0.2 · 0.001 = 0.3 (k = 2)

2 · 0.030 + 0.3 · 0.0.032 + 0.3 · 0.937 + 0.2 · 0.001 = 0.3 (k = 3)

2 · 0.044 + 0.0.3 · 0.002 + 0.3 · 0.001 + 0.2 · 0.952 = 0.2 (k = 4)

3.3.4 The entropy rate of a Markov chain

Theorem 3.8 The entropy rate of a first-order regular Markov chain with
transition matrix P = (pjk) is

h∞ = −
∑

j

πj

∑

k

pjk log pjk (3.18)

where π is the stationary distribution associated with the transition matrix P .

Proof Theorem 3.1 yields

h∞ = lim
n→∞

H(Xn|X
n−1
1)

(a)
= lim

n→∞
H(Xn|Xn−1)

(b)
= lim

n→∞

m∑

j=1

p
(n−1)
j [−

m∑

k=1

pjk log pjk]
(c)
= −

∑

j

πj

∑

k

pjk log pjk

where (a) follows from definition 3.5, (b) follows from the definition H(Xn|Xn−1)

involving p
(n−1)
j , the probability for the system to be in state j at time n− 1, and (c)

follows from theorem 3.7, implying limn→∞ p
(n−1)
j = πj. �

128 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

Figure 3.6: A first-order Markov chain on Ω = {a, b}.

Example 3.13 Consider the Markov chain (of order 1) on 2 states Ω = {a, b}, with
p(a|a) = 2/3, p(b|a) = 1/3, p(b|b) = 2/3 and p(a|b) = 1/3 (figure 3.6). By symmetry,
the corresponding stationary distribution is π(a) = π(b) = 0.5. In view of 3.18, its
entropy rate is

h∞ = h2 = −π(a) [p(a|a) ln p(a|a) + p(b|a) ln p(b|a)]

−π(b) [p(a|b) ln p(a|b) + p(b|b) ln p(b|b)] =

−
1

2
[
2

3
ln

2

3
+

1

3
ln

1

3
]−

1

2
[
1

3
ln

1

3
+

2

3
ln

2

3
] = 0.325 nats = 0.469 bits

Example 3.14 Consider the following mobility table N = (njk), cross-classifying
father’s occupation (rows j = 1, . . . , 5) by son’s first full time civilian occupation
(columns k = 1, . . . , 5) for 19’912 U.S. men in 1973 in five categories: a = “upper
nonmanual”; b = “lower nonmanual”; c = “upper manual”; d = “lower manual”; e =
“farm” (source: Hout 1986, cited in Mirkin 1996).

N =

a b c d e total

a 1′414 521 302 643 40 2′920
b 724 524 254 703 48 2′253
c 798 648 856 1′676 108 4′086
d 756 914 771 3′325 237 6′003
e 409 357 441 1′611 1′832 4′650

total 4′101 2′964 2′624 7′958 2′265 19′912

(3.19)

Dividing each cell njk by its row total nj• results in a transition matrix P = (pjk) with
pjk := njk/nj•, giving the conditional probabilities for an individual (whose father
has occupation j) to have first full time civilian occupation k:

P =

a b c d e

a 0.48 0.18 0.10 0.22 0.01
b 0.32 0.23 0.11 0.31 0.02
c 0.20 0.16 0.21 0.41 0.03
d 0.12 0.15 0.13 0.55 0.04
e 0.09 0.08 0.09 0.35 0.39

(3.20)

The components of the stationary solution π associated to the transition matrix 3.20
are πa = 0.26, πb = 0.17, πc = 0.13, πd = 0.40 and πe = 0.04. That is, under the
fiction of a constant transition matrix 3.19, one will observe in the long run 26% of
people in category a, 17% in category b, etc. The conditional entropies H(Xn|Xn−1 =
j) = −

∑
k pjk log pjk, measuring the uncertainty on the son’s occupation Xn (knowing

3.3. FIRST-ORDER MARKOV CHAINS 129

the father’s occupation Xn−1 = j) are (in bits):

H(Xn|Xn−1 = a) = 1.85 H(Xn|Xn−1 = b) = 2.01

H(Xn|Xn−1 = c) = 2.02 H(Xn|Xn−1 = d) = 1.83

H(Xn|Xn−1 = e) = 1.95

Thus son’s occupation is most uncertain when the father is upper manual (2.02 for
Xn−1 = c) and least uncertain when the father is lower manual (1.83 for Xn−1 = d).
On average, the uncertainty is

5∑

j=1

πj H(Xn|Xn−1 = j) = 0.26 × 1.85 + 0.17 × 2.01 + 0.13× 2.02 +

+0.40 × 1.83 + 0.04× 1.95 = 1.90 = h∞

which is nothing but the entropy rate of the process h∞ in virtue of 3.18: as expected
and by construction, the entropy rate of a Markov process measures the mean con-
ditional uncertainty on the next state knowing the previous state. By contrast, the
corresponding unconditional uncertainty is −

∑
j πj log πj = 2.05 bits, which is larger

than h∞ = 1.90 but smaller than the uniform uncertainty log2 5 = 2.32 bits.

Control Question 36

True or false?

1. the entropy rate h∞ of a first-order Markov chain can never exceed its uncondi-
tional entropy H(X) Possible answers: true - false

2. the entropy rate h∞ of a first-order Markov chain can never equal its uncondi-
tional entropy H(X) Possible answers: true - false

3. the entropy rate h∞ of a first-order Markov chain is not defined if the chain is
not regular Possible answers: true - false

4. the entropy rate h∞ associated to a chain with m categories can never exceed
log m. Possible answers: true - false

Answer

1. “true”, since, for first-order Markov chains, h∞ = H(X2|X1) ≤ H(X2).

2. “false”, since first-order Markov chains include the trivial case of independent
sequences (= Markov chain of order 0), whose entropy rates h∞ equal their
unconditional entropies H(X).

3. “true”, since in general the stationary distribution πj is not defined if the chain
is not regular.

4. “true”, since h∞ ≤ H(X) ≤ log m

130 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

3.3.5 Irreversibility

Consider a (m × m) transition matrix P = (pjk) defining a regular Markov process,

with associated stationary distribution π. Let f
(0)
j ≥ 0 (obeying

∑m
j=1 f

(0)
j = 1) be the

initial distribution (t = 0) of the system across its different possible states j = 1, . . . ,m.

At time t = 1, the distribution becomes f
(1)
k =

∑m
j=1 f

(0)
j pjk. More generally, the

distribution f (n) at time t = n is given by

f
(n)
k =

m∑

j=1

f
(0)
j p

(n)
jk (3.21)

As limn→∞ p
(n)
jk = πk from theorem 3.7, formula 3.21 shows limn→∞ f

(n)
k =

∑m
j=1 f

(0)
j πk =

πk. That is, irrespectively of the profile of the initial distribution f (0), the long run dis-
tribution f (n) converges in the long run n→∞ towards the stationary distribution π.
One speaks of equilibrium if f (0) = π. In summary, a general non-equilibrium pro-
file f (0) 6= π evolves towards the equilibrium profile f (∞) = π where it remains then
unchanged, since πk =

∑m
j=1 πj pjk by virtue of 3.16.

Thus the Markov dynamics is irreversible: any initial distribution f (0) always evolves
towards the (unique) stationary distribution π, and never the other way round; also the
dissimilarity between any two distributions fades out during evolution, as the following
theorem shows:

Theorem 3.9 Let f (n) and g(n) be any two distributions whose evolution 3.21
is governed by the same regular Markov process P = (pjk). Then evolution
makes the two distributions increasingly similar (and increasingly similar with
the stationary distribution π) in the sense

K(f (n+1)||g(n+1)) ≤ K(f (n)||g(n))

where f (n+1) and g(n+1) are the corresponding next time distributions, namely

f
(n+1)
k =

m∑

j=1

f
(n)
j pjk g

(n+1)
k =

m∑

j=1

g
(n)
j pjk (3.22)

Particular cases:

K(f (n+1)||π) ≤ K(f (n)||π) (obtained with g(n) := π, which implies g(n+1) = π): the
relative entropy of f (n) with respect to π decreases with n: again, limn→∞ f (n) =
π.

K(π||g(n+1)) ≤ K(π||g(n)) (obtained with f (n) := π, which implies f (n+1) = π): the
relative entropy of π with respect to g(n) decreases with n.

K(f (n+1)||f (n)) ≤ K(f (n)||f (n−1)) (obtained with g(n) := f (n−1), which implies g(n+1) =
f (n)): the dissimilarity between the actual distribution and the previous one (as
measured by K(f (n)||f (n−1))) decreases with n.

Example 3.15 (example 3.13, continued:) suppose the initial distribution f (0)

3.3. FIRST-ORDER MARKOV CHAINS 131

to be f (0)(a) = 0.9 and f (0)(b) = 0.1. Using 3.21 and theorem 3.6, the successive
distributions f (n) at time t = n and their divergence K(f (n)||π) (in nats) with respect
to the stationary distribution π = f (∞) (with π(a) = π(b) = 0.5) are, in order,

n f (n)(a) f (n)(b) K(f (n)||π)

0 0.9 0.1 0.420
1 0.633 0.367 0.036
2 0.544 0.456 0.004
3 0.515 0.485 0.0005
.
∞ 0.5 0.5 0

Control Question 37

Determine the unique correct answer:

1. once leaving a state, the system will return to it with probability one if the state
is a) transient; b) absorbing; c) recurrent; d) aperiodic.

2. the identity matrix I is the transition matrix of a Markov chain, all states of
which are a) transient; b) absorbing; c) irreversible; d) aperiodic.

3. let P be a two-by-two transition matrix. The minimal number of non-zero com-
ponents of P insuring the regularity of the associated Markov chain is a) 1; b) 2;
c) 3; d) 4.

4. suppose P 5 = I, where P is a finite Markov transition matrix and I the identity
matrix. Then P is a) undetermined; b) regular; c) I; d) aperiodic.

Answer

1. c) recurrent

2. b) absorbing

3. c) 3

4. c) I

132 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

3.4 Markov chains of general order

Learning Objectives for Section 3.4

After studying this section and the following one, you should

• be able to generalize the concepts of the previous section to Markov
chains of arbitrary order r

• understand the theoretical foundations of the test of the order of the
chain and be able to apply it

• be familiar with the concept of over-parameterization and of its conse-
quences in text simulation

Definition 3.9 A Markov chain of order r > 0 is a discrete stochastic process
whose memory is limited to the r past states, that is:

p(xn|x
n−1
1) = p(xn|x

n−1
n−r) ∀n ≥ r + 1

A Markov chain of order r = 0, also called Bernoulli process, is a stochastic
process without memory, that is

p(xn|x
n−1
1) = p(xn) ∀n ≥ 1

A zero-order Markov chain is then plainly an independent process. All Markov
processes considered here are stationary, that is their transition probabili-
ties p(xn|x

n−1
n−r) are time independent. The latter are generically denoted as

p(ω|α) where ω ∈ Ω is the present state and α ∈ Ωr specifies the r imme-
diately anterior states. By construction, p(ω|α) := p(αω)/p(α) ≥ 0 with∑

ω∈Ω p(ω|α) = 1. �

3.4.1 Stationary distribution and entropy rate

An r-th order Markov chain on Ω, defined by the transitions p(ω|α) where ω ∈ Ω and
α ∈ Ωr, can formally be considered as a first-order Markov chain on Ωr with a (mr×mr)
transition probability matrix Q = (qαβ) (where α = αr

1 ∈ Ωr and β = βr
1 ∈ Ωr) given

by

qαβ = q(β|α) := δβ1α2
δβ2α3

. . . δβr−1αr
p(βr|α

r
1) (3.23)

where δab := 1 if a = b and δab := 0 if a 6= b. Equation 3.23 tells that the transition
α→ β is possible iff the r − 1 first elementary states of β correspond to the r − 1 last
elementary states of α (see figure 3.7)

Supposing in addition the chain Q = (qαβ) to be regular (i.e. each state of Ωr commu-
nicates with each state of Ωr and the chain is aperiodic), there is a unique stationary
distribution π(α) = π(αr

1) on Ωr satisfying 3.16 on Ωr, that is, using 3.23:

∑

α1∈Ω

π(α1, α2, . . . , αr) p(αr+1|α1, α2, . . . , αr) = π(α2, . . . , αr, αr+1) (3.24)

3.4. MARKOV CHAINS OF GENERAL ORDER 133

Figure 3.7: A Markov chain of order r (here k = 4) on Ω is specified by the set of
conditional probabilities of the form p(β4|α1α2α3α4). The same chain can be considered
as a first-order Markov chain qαβ on Ωr where α = (α1α2α3α4) and β = (β1β2β3β4);
as expressed by 3.23, the transition matrix qαβ is zero unless β1 = α2, β2 = α3 and
β3 = α4.

Similarly, 3.18 shows the corresponding entropy rate h∞ to be h∞ = −
∑

α π(α)
∑

β qαβ log qαβ,
or, using 3.23

h = −
∑

α∈Ωr

π(α)
∑

ω∈Ω

p(ω|α) log p(ω|α) (3.25)

Recall in general the conditional entropy hk := H(Xk|X
k−1
1) to be non-increasing in k.

On the other hand, 3.25 shows the entropy rate to coincide with hr+1. In conclusion:

Theorem 3.10 For a r-th order Markov chain, h = hr+1. That is

h1 ≥ h2 ≥ hr ≥ hr+1 = hr+2 = hr+3 = . . . = h∞ (3.26)

The behavior 3.26 of hk is illustrated in figure 3.10 b) for r = 1 and in figure 3.10 c)
for r = 3.

Particular cases:

r = 1: the entropy rate becomes

h∞ = −
∑

α∈Ω

π(α)
∑

ω∈Ω

p(ω|α) log p(ω|α) = −
∑

j

πj

∑

k

pjk log pjk

which is the same expression as 3.18.

r = 0: the entropy rate becomes

h∞ = −
∑

ω∈Ω

p(ω) log p(ω) = −
∑

k

πk log πk

which is the entropy of the corresponding stationary distribution.

Example 3.16 Consider (figure 3.8) the Markov chain of order r = 2 on m = 2
states Ω = {a, b}, with

p(a|aa) = 0.3 p(b|aa) = 0.7 p(a|ab) = 0.6 p(b|ab) = 0.4

p(a|ba) = 0.7 p(b|ba) = 0.3 p(a|bb) = 0.4 p(b|bb) = 0.6

134 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

Figure 3.8: A second-order Markov chain p(ω|α) on Ω = {a, b} (example 3.16) written
as a first order chain qαβ on bigrams α = α1α2 ∈ Ω2 and β = β1β2 ∈ Ω2. Transitions
are forbiden if α2 6= β1: for instance, transition form α = ab to β = aa is impossible.

By symmetry, the stationary distribution π(α1, α2) obeying 3.24 turns out to be the
uniform distribution on Ω2, that is π(aa) = π(ab) = π(ba) = p(bb) = 1

4 . For instance,
one verifies the following equality to hold

π(aa) p(a|aa) + π(ba) p(a|ba) =
1

4
0.3 +

1

4
0.7 =

1

4
= π(aa)

as well as other equalities involved in 3.24. The entropy rate 3.25 is

h∞ = −π(aa) [p(a|aa) log p(a|aa) + p(b|aa) log p(b|aa)]

−π(ab) [p(a|ab) log p(a|ab) + p(b|ab) log p(b|ab)]

−π(ba) [p(a|ba) log p(a|ba) + p(b|ba) log p(b|ba)]

−π(bb) [p(a|bb) log p(a|bb) + p(b|bb) log p(b|b)] =

−
1

2
[0.3 log 0.3 + 0.7 log 0.7 + 0.6 log 0.6 + 0.4 log 0.4] = 0.189 nats

3.5 Reconstruction of Markov models from data

Up to now, we have assumed the diverse models of interest (stationary, Markov of
order r, Markov of of order 1, etc.) to be given. Very often, however, we only have
at disposal an empirical realization of a process, i.e. only the data D are known, and
models M must be inferred form data D. This kind of situation is paradigmatic of
inferential statistics (see module S1). For clarity sake, empirical (respectively model)
quantities will be indexed from now one by the letter D (respectively M).

3.5.1 Empirical and model distributions

A sequence of k consecutive states xl+r−1
l ∈ Ωk is called a k-gram. Given the k-gram

β ∈ Ωk and the l-gram γ ∈ Ωl, the k + l-gram obtained by concatenating γ to the right
of β is simply denoted by βγ. The length of a subsequence α is simply denoted as |α|:
for instance, k = |β| and l = |γ|.

Data D consist of xn
1 , the complete observed sequence of size n. Let n(β) be the

empirical count of k-gram β ∈ Ωk, that is the number of times subsequence β occurs

3.5. RECONSTRUCTION OF MARKOV MODELS FROM DATA 135

Figure 3.9: The identity
∑

γ∈Ωl n(βγ) = n(β) holds iff there is no occurence of a symbol
of β in the l last symbols of xn

1 .

in xn
1 (for instance, the bigram β = 11 is contained n(β) = 3 times in the sequence

x7
1 = 0111011). The number of all k-grams contained in a sequence of length n is (for

n ≥ k)

∑

β∈Ωk

n(β) = n− k + 1

Also, one has

∑

γ∈Ωl

n(βγ) ≤ n(β)

where identity holds iff data xn
1 do not contain occurences of elements of β closer than

l places from the right boundary (see figure 3.9).

The empirical distribution and empirical conditional distribution are defined as

fD(β) :=
n(β)

n− k + 1
fD(γ|β) :=

n(βγ)∑
γ′∈Ωl n(βγ′)

β ∈ Ωk γ ∈ Ωl (3.27)

where the denominators insure proper normalization, namely
∑

β∈Ωk fD(β) = 1 and∑
γ∈Ωl fD(γ|β) = 1. Asymptotically, that is for n large, one has approximatively

n− k + 1 ∼= n and
∑

γ∈Ωl n(βγ) ∼= n(β), and thus

fD(β) ∼=
n(β)

n
fD(γ|β) ∼=

n(βγ)

n(β)
β ∈ Ωk γ ∈ Ωl (3.28)

To emphasize the contrast with empirical distributions, the corresponding theoretical
distributions will from now on be denoted as fM(β) and fM(γ|β) with

fM(β) := p(β) fM(γ|β) :=
p(βγ)

p(β)

where p(. . .) is the consistent probability measure defined in section 3.

Example 3.17 The l-th Thue-Morse sequence Dl is a binary sequence recursively
constructed as follows:

D0 = 1 Dl+1 = Dl · D̄l

where · denotes concatenation and D̄ binary inversion, replacing each symbol of D (in
order) by its complement, namely 1̄ = 0 and 0̄ = 1. The first Thue-Morse sequences
are

136 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

l Thue-Morse sequence Dl

0 1
1 10
2 1001
3 10010110
4 1001011001101001
5 10010110011010010110100110010110
6 1001011001101001011010011001011001101001100101101001011001101001

In general, the l-th sequence Dl contains 2l binary symbols in equal proportion (for
l ≥ 1). Dl can also be obtained by applying l times the substitution rule 1→ 10 and
0→ 01 to the initial sequence D0 = 1. Also, the odd entries of Dl+1 reproduce Dl.

Although purely deterministic, the sequences Dl can be used to define empirical
distributions fD(β) and conditional empirical distributions fD(γ|β). For instance,
for D = D6, one finds

symbol 1 0 total

relative empirical frequency 1
2

1
2 1

bigram 11 10 01 00 total

relative empirical frequency 10
63
∼= 1

6
21
63 = 1

3
21
63 = 1

3
11
63
∼= 1

6 1

trigram 111 110 101 100 011 010 001 000 total

rel. emp. frequency 0 10
62
∼= 1

6
10
62
∼= 1

6
11
62
∼= 1

6
10
62
∼= 1

6
10
62
∼= 1

6
11
62
∼= 1

6 0 1

conditional symbol 1|11 0|11 total 1|10 0|10 total

relative empirical frequency 0 1 1 10
21
∼= 1

2
11
21
∼= 1

2 1

conditional symbol 1|01 0|01 total 1|00 0|00 total

relative empirical frequency 1
2

1
2 1 1 0 1

The behavior of hk for k ≥ 1 for the sequence D14 (containing 16’384 binary symbols)
is depicted in figure 3.10.

The values of the empirical distributions fD(β) and conditional distributions fD(γ|β)
(such as those as found in example 3.17) can serve to define model or theoretical dis-
tributions fM (β) and fM(γ|β). New stochastic sequences D̃ can in turn be simulated
from the Markov chains with parameters fM (β) and fM(γ|β). By construction, the
statistical properties of the resulting sequence D̃ will look similar to those of the “train-
ing sequence” D:

3.5. RECONSTRUCTION OF MARKOV MODELS FROM DATA 137

3.5.2 The formula of types for Markov chains

Consider a r-th order Markov chain defined by the conditional distribution fM (ω|α)
where ω∈Ω and α ∈ Ωr. The probability to observe data xn

1 is

P (xn
1) = p(xr

1)

n∏

i=r+1

p(xi|x
i−1
i−r) = p(xr

1)
∏

α∈Ωr

∏

ω∈Ω

fM(ω|α)n(αω)

For r fixed and for n → ∞, the contribution of the term p(xr
1) becomes negligible

relatively to the contribution of the product. Thus, asymptotically, that is for n large,
the “boundary effects” caused by the finitude of n, and occuring at the very beginning
or the very end of the sequence xn

1 , become negligible and one can write approximatively

P (xn
1) ∼=

∏

α∈Ωr

∏

ω∈Ω

fM(ω|α)n(αω) (3.29)

In the same approximation (compare with 3.27) one has

fD(α) ∼=
n(α)

n
fD(ω|α) ∼=

n(αω)

n(α)
α ∈ Ωr ω ∈ Ω (3.30)

Intuitively, one expects that, for n large, the empirical distribution fD(ω|α) tends to
fM(ω|α) with fluctuations around this value. The next theorem (where entropies are
expressed in nats for convenience) shows this to be indeed the case; morevover, the
fluctuation of the empirical values around the theoretical ones are controlled by the
conditional Kullback-Leibler divergence Kr(f

D||fM) of order r:

Theorem 3.11 (formula of types for Markov chains) For Markov
chains of order r, the probability to observe the conditional empirical
distribution fD(ω|α) (for all ω ∈ Ω and α ∈ Ωr) is, asymptotically

P (fD | fM) u exp(−n Kr(f
D||fM)) (3.31)

where

Kr(f
D||fM) :=

∑

α∈Ωr

fD(α) K([fD||fM]|α) (3.32)

K([fD||fM]|α) :=
∑

ω∈Ω

fD(ω|α) ln
fD(ω|α)

fM(ω|α)
(3.33)

In particular, for given counts n(αω) (and thus given fD(α) and fD(ω|α)), the prob-
ability 3.31 is maximum iff f̃M (ω|α) = fD(ω|α): as expected, the maximum-likelihood
estimate of the model M is simply given by the corresponding empirical quantity (see
module S1 for a more detailed exposition for the independent case).

Remark: K0(f
D||fM) is the ordinary (unconditional) divergence:

K0(f
D||fM) = K(fD||fM) =

∑

ω∈Ω

fD(ω) log
fD(ω)

fM (ω)

138 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

Proof Recall that an u bn means limn→∞
1
n log(an/bn) = 0. For instance, Stirling’s

approximation is n! u nn exp(−n).

The value of fD(ω|α) is the same for all n(α)!/(
∏

ω∈Ω n(αω)!) data xn
1 possessing the

same counts n(αω) but differing by the occurence order. Thus

P (fD | fM) ∼=
∏

α∈Ωr

n(α)!
∏

ω∈Ω

1

n(αω)!
fM(ω|α)n(αω)

Taking the logarithm, using 3.30 and Stirling’s approximation yields

ln P (fD | fM) ∼=
∑

α∈Ωr

∑

ω∈Ω

ln

[
n(α)n(αω)

n(αω)n(αω)
fM(ω|α)n(αω)

]
=

=
∑

α∈Ωr

∑

ω∈Ω

n(αω) ln
fM (ω|α)

fD(ω|α)
= −n

∑

α∈Ωr

fD(α)
∑

ω∈Ω

fD(ω|α) ln
fD(ω|α)

fM(ω|α)

Example 3.18 Consider a first order Markov chain with two states a and b. When in
a given state (a or b), the system remains in the same state with probability 0.9, and
changes with probability 0.1. That is, fM (a|a) = 0.9, fM(b|a) = 0.1, fM (b|b) = 0.9
and fM(a|b) = 0.1. Suppose data to be of the form

D ≡ aaaa · · · aaaa︸ ︷︷ ︸
n times

Then fD(a) = 1, fD(b) = 0, fD(a|a) = 1 and fD(b|a) = 0. Then

K([fD||fM]|a) = fD(a|a) ln
fD(a|a)

fM(a|a)
+ fD(b|a) ln

fD(b|a)

fM(b|a)
=

= 1 ln
1

0.9
+ 0 ln

0

0.1
= 0.105 nats

On the other hand, neither fD(a|b) nor fD(b|b) are defined, since the system has
never been observed in state b: equations 3.27 or 3.28 return the undetermined value
0/0 (assumed finite). Thus K([fD||fM]|b) is not defined, but K1(f

D||fM) is:

K1(f
D||fM) = fD(a) K([fD||fM]|a) + fD(b) K([fD||fM]|b) =

= 1× 2.30 + 0×K([fD||fM]|b) = 0.105 nats

Thus

P (fD | fM) u exp(−n 0.105) = (0.9)n

For instance, the probability of observing the sequence aaaaaaaaaa under the model
(n = 10) is approximatively (0.9)10 = 0.35 (the formula is exact up to the initial term
P (X1 = a), already neglected in 3.29); the probability of observing the sequence
aaaaaaaaaaaaaaaaaaaa (n = 20) is (0.9)20 = 0.12, etc.

Example 3.19 (example 3.18, continued) By symmetry, the stationary proba-

3.5. RECONSTRUCTION OF MARKOV MODELS FROM DATA 139

bility associated to the chain is π(a) = π(b) = 0.5, and the entropy rate is

h∞ = −π(a)[fM (a|a) ln fM(a|a) + fM (b|a) ln fM(b|a)] − π(b)[fM (a|b) ·

· ln fM (a|b) + fM(b|b) ln fM(b|b)] = −0.9 ln 0.9− 0.1 ln 0.1 = 0.325 nats

Thus the size of the typical sequences set grows as |Tn(ε)| ∼= exp(0.325 ·n) = (1.38)n,
instead of 2n for a maximally random (= independent + uniform) process. Otherwise
said, the dynamics of the system under investigation behaves as if only 1.38 effective
choices were at disposal at each step, instead of 2 effective choices (namely a and b)
for the maximally random dynamics.

3.5.3 Maximum likelihood and the curse of dimensionality

Suppose one observes a sequence xn
1 ∈ Ωn of length n with m := |Ω| states, believed

to be generated by a Markov chain of order r. The complete specification a the latter
model necessitates to determine all the quantitites of the form fM(ω|α) for all ω ∈ Ω
and α ∈ Ωr, that is a total of mr(m − 1) quantities (the quantities fM(ω|α) are not
completely free, but must obey the mr constraints

∑
ω∈Ω fM(ω|α) = 1 for all α ∈ Ωr,

whence the factor m− 1).

But, even for relatively modest values of m and r, the number of free parameters
mr(m− 1) grows very fast (for instance 48 free parameters for m = 4 and r = 2, or 54
free parameters for m = 3 and r = 3). In consequence, the amount of data D required
to estimate all those parameters with a reasonably small error becomes very large!
This phenomenon, sometimes referred to as the curse of dimensionality, constitutes a
major drawback, severely restricting the use of Markov chain modelling for growing r,
despite the generality and flexibility of the latter.

Concretely, consider the maximum likelihood estimation, consisting in estimating fM(ω|α)
as the value f̃M(ω|α) maximizing P (fD|fM) for given fD. The formula of types 3.31
then demonstrates the searched for estimate f̂M(ω|α) to be simply given by the corre-
sponding empirical distribution f̃M(ω|α) = fD(ω|α). But a sequence D = xn

1 of length
n contains a maximum of n − r distinct transitions α → ω, and if m or r are large
enough, the majority of the theoretically observed transitions will simply not occur in
D = xn

1 , and the corresponding maximum likelihood estimates will be given the value
f̂M(ω|α) = 0, even if fM (ω|α) > 0.

This problem of unobserved transitions occurs each time the number of possible states
m as well as the order of the chain r are large in comparison of the sample size n.
Different remedies have been proposed to allevy the problem, such as the “trigram
strategy” consiting in estimating fM(ω3|ω1ω2) (for a Markov chain of order r = 2) as

f̂M(ω3|ω1ω2) = λ0f
D(ω3) + λ1f

D(ω3|ω2) + λ2f
D(ω3|ω1ω2)

where the optimal choice of the non-negative weights λ0, λ1 and λ2, obeying λ0 + λ1 +
λ2 = 1, is typically determined by trial and error, aiming at maximizing some overall
performance index relatively to a given application.

Although sometimes satisfactory for a given practical application, such estimates lack
theoretical foundation and formal justification. This situation is somewhat analogous
to the problem of unobserved species, occuring each time the number of possible states
m is so large in comparison to the sample size n that some states might have not

140 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

been observed at all in the data D. Although well identified in textual and biological
data for a while, this problem has nevertheless not received a simple and universally
aggreed upon solution; see however module L1 for a strategy aimed at estimating the
total number of possible (= observed + unobserved) states.

3.5.4 Testing the order of a Markov chain

Denote by fD(. . .) be the empirical distribution function determined from data D =
xn

1 ∈ Ωn, and denote by fM (. . .) ≡ p(. . .) its theoretical counterpart, relatively to some
model M . The corresponding empirical, respectively theoretical conditional entropies
hk introduced in section 3.1 are

hM
k = H(Xk

1)−H(Xk−1
1) = −

∑

α∈Ωk−1

fM(α)
∑

ω∈Ω

fM(ω|α) ln fM(ω|α)

hD
k := −

∑

α∈Ωk−1

fD(α)
∑

ω∈Ω

fD(ω|α) ln fD(ω|α)

Suppose the model M to be a Markov chain of order r. Then theorem 3.10 implies

hM
1 ≥ hM

2 ≥ hM
r ≥ hM

r+1 = hM
r+2 = hM

r+3 = . . . = hM
∞ = hM

Euqivalently, the quantity dM
k defined for k ≥ 1 by

dM
k := hM

k − hM
k+1 = 2H(Xk

1)−H(Xk−1
1)−H(Xk+1

1)

obey, for a Markov chain of order r, the following:

dM
1 ≥ 0 dM

2 ≥ 0 dM
r ≥ 0 dM

r+1 = dM
r+2 = . . . dM

∞ = 0

Thus the greatest k for which dM
k is strictly positive indicates the order r = k of the

Markov chain M . Intuitively, dM
k measures the uncertainty reduction when the last

symbol of a sequence is predicted using a past of length k instead of k − 1, whence
dM

k = 0 if k > r.

As with any inferential problem in statistics, the difficulty is that the conditional
entropies hM

k are theoretical quantities defined by (m− 1)mk parameters, not directly
observable. But, if the data D = xn

1 are numerous enough, one then expects hD
k to be

close to hM
k , for k small. Also, the ratio “number of parameters to be estimated/number

of data” is small iff k is small relatively to log n
log m . Thus empirical estimates are good as

long as k ≤ kmax, where kmax is of order of log n
log m . Figures 3.10 and 3.11 suggest that

kmax :=
1

2

log n

log m
(3.34)

is a satisfactory pragmatic choice.

Hence, for k ≤ kmax, large values of dD
k constitute an evidence pointing towards a

model of order k, as confirmed by the following maximum likelihood test:

The order test

Consider a Markov process on |Ω| = m states, observed n successive times, about
which, for some k ≤ kmax, two hypotheses compete, namely:

3.5. RECONSTRUCTION OF MARKOV MODELS FROM DATA 141

Figure 3.10: Observed values hD
k (continuous line) and theoretical values hM

k (dotted
line) in terms of k for different models. In a), b) and c), empirical maximum likelihood
estimates hD

k coincide approximatively with theoretical values hM
k as far as k ≤ kmax =

1
2

log n
log m . Estimates with k > kmax are not reliable due to the proliferation of unobserved

transitions. a): uniform and independent process (fair heads or tails) of length n =
1024 on m = 2 states. b): Markov chain of order r = 1 of length n = 1024 on m = 2
states (see example 3.13). c): Markov chain of order r = 3 of length n = 1024 on m = 2
states (see example 3.20). d): the figure depicts the empirical values hD

k obtained from
the 14-th Thue-Morse sequence D14, of length n = 214 on m = 2 states (see example
3.17).

Hk
0 : : “the process is governed by a Markov chain of order k − 1”

Hk
1 : “the process is governed by a Markov chain of (strict) order k”

Then Hk
0 is rejected at level α if

2n dD
k = 2n [hD

k − hD
k+1] ≥ χ2

1−α[(m− 1)2mk−1] (3.35)

where dD
k is measured in nats.

The test can be applied in succession for k = 1, 2, ... ≤ kmax := 1
2

lnn
ln m . Potential k-th

order candidate models are signalized by high values of dD
k . For instance, if all dk are

small, an independence model can be considered (see figure 3.11). If all dk are large,
each k + 1-th model beats the immediately inferior k-order model. Figure 3.11 shows
the order r of the chain to be signalized by a peak at dD

k (for k ≤ kmax).

Example 3.20 Let M be a binary Markov chain of order 3 specified by

142 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

Figure 3.11: Observed (line) and expected (dots) values of dk = hk − hk+1 in terms of
k for the models presented in figure 3.10.

fM(ω4|ω1ω2ω3) on Ω = {a, b}. A sequence of length n = 1024 is generated form
this model, from which empirical distributions fD are determined, and conditional
entropies hD

k are computed.

The values of hD
k and dD

k as well as the threshold χ2
1−α[df] with df = (m − 1)2mk−1

at the significance level α = 0.001 are:

k hD
k dD

k 2n dD
k df χ2

0.999[df]

1 0.692 0 0 1 10.8

2 0.692 0.001 2.05 2 13.8

3 0.691 0.054 110.59 4 16.3

4 0.637 0.006 12.29 8 18.

5 = kmax 0.631 0.0088 18.022 16 20.5

Proof Likelihood ratio strategies, shown by Neyman and Pearson to minimize er-
rors of both kinds (see module S1), command to take as decision variable the ratio
of probabilities corresponding to both models, or equivalently their logarithmic like-
lihood ratio LL

P (fD|f̃k)

P (fD|f̃k−1)
LL := log

P (fD|f̃k)

P (fD|f̃k−1)

where f̃k is the best (in the ML-sense) modelling of fD by a Markov chain of order k,
and f̃k−1 is the best model for fD of order k−1. The former is more general than the

3.5. RECONSTRUCTION OF MARKOV MODELS FROM DATA 143

latter and thus bound yield a better fit, that is P (fD|f̃k) ≥ P (fD|f̃k−1), i.e. LL ≥ 0.
On the other hand, formula 3.31 of types P (fD | fM) u exp(−n Kr(f

D||fM)) yields

LL = n [Kk−1(f
D||f̃k−1)−Kk(f

D||f̃k)] ≥ 0

Finally, Kullback-Leibler conditional divergences Kr(f
D||f̃r) are, for n large,

well represented by their quadratic approximations, the “computed chi-squares”
1

2 nχ2(fD||f̃r). Remarkably, the latter have been shown to behave, under model f̃r,
as a chi-square distribution χ2[df], where df is equal to the number of free parameters
assigned to models of order r. Also, the difference 2n[Kk−1(f

D||f̃k−1)−Kk(f
D||f̃k)],

caused by fluctuations of fD accountable by f̃k but not by f̃k−1, has been shown
to behave as χ2[df] with df equal to the difference in the number of free parameters
between the two models.

Gluing the pieces together yields the following inferential recipy “reject model f̃k−1

and accepts model f̃k at level α if 2n [Kk−1(f
D||f̃k−1) − Kk(f

D||f̃k)] ≥ χ2
1−α[df]”

where df is here (m− 1) mk − (m− 1) mk−1 = (m− 1)2 mk−1.

The proof is complete if we finally show that Kk−1(f
D||f̃k−1) = hD

k (and that
Kk(f

D||f̃k) = hD
k+1). But it follows from 3.2 that

hD
k = H(Xk

1)−H(Xk−1
1) = −

∑

β∈Ωk

fD(β) log fD(β) +
∑

α∈Ωk−1

fD(α) log fD(α)

(a)
= −

∑

ω∈Ω

∑

α∈Ωk−1

fD(αω) log fD(αω) +
∑

α∈Ωk−1

fD(α) log fD(α)

(b)
= −

∑

α∈Ωk−1

fD(α)
∑

ω∈Ω

fD(ω|α) log fD(ω|α)

3.5.5 Simulating a Markov process

Given the n observations xn
1 , and, under the hypothesis that the underlying process is

a Markov chain of order r,

• one first determines the order k of the chain (with k ≤ 1
2

lnn
ln m) by using the test

3.35.

• one then estimates the corresponding theoretical transitions fM(ω|α) (with ω ∈

Ω and α ∈ Ωr) by the empirical ones fD(ω|α) := n(αω)
α (maximum likelihood

estimation).

At this stage, one is in position to simulate the Markov process, simply by running
a k-th order process with transition matrix fD(ω|α) from some initial state α ∈ Ωr

drawn with probability fD(α).

Example 3.21 Written with m = 27 states (the alphabet + the blank, without punc-
tuation), the english version of the Universal declaration of Human Rights constitutes
a text xn

1 of length n = 8′149, from which conditional empirical distributions fD(ω|α)
can be computed. One can imagine the text to have been produced by a Markov chain
of order r, defined by the set of theoretical conditional probabilities {fM (ω|α)} where

144 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

α is a r-gram. Those theoretical probabilities can be estimated (ML-estimation) by
the corresponding empirical estimates, that is f̃M(ω|α) := fD(ω|α), and, in virtue of

3.34 the estimate is guaranteed to reliable for r ≤ 1
2

log n
log m = 1

2
log 8′149
log 27 = 1.36, which is

rather small! Simulations based on f̃M (ω|α) = fD(ω|α) with |ω| = r yield:

r = 0 (independent process)

iahthire edr pynuecu d lae mrfa ssooueoilhnid nritshfssmo nise yye

noa it eosc e lrc jdnca tyopaooieoegasrors c hel niooaahettnoos rnei s

sosgnolaotd t atiet

The relative frequencies of all m = 27 symbols are correctly sampled; in particular,
the proportion of blanks (16.7%) is respected and words have about the correct length.
However, original transitions between symbols are obviously not correctly reproduced.

r = 1 (First-order Markov chain)

erionjuminek in l ar hat arequbjus st d ase scin ero tubied pmed beetl

equly shitoomandorio tathic wimof tal ats evash indimspre tel sone aw

onere pene e ed uaconcol mo atimered

First-order transitions are taken into account, which makes the sample more readable
than the previous one (in particular, the consonants-vowels transitions are respected).

r = 2 (Second-order Markov chain)

mingthe rint son of the frentery and com andepent the halons hal

to coupon efornitity the rit noratinsubject will the the in priente

hareeducaresull ch infor aself and evell

The sample begins to look like english, with a zest of latin....

r = 3 (Third-order Markov chain)

law socience of social as the right or everyone held genuinely

available sament of his no one may be enties the right in the cons

as the right to equal co one soveryone

The text definitely looks like english, with whole words correctly reproduced. How-
ever, we are beyond the safe limit kmax = 1.36: the simulated text betrays its ori-
gin, namely the Universal declaration of Human Right, and not another original
english text of comparable size, such as a a cooking recipy or a text about math-
ematics. Equivalently, the model estimates f̃M(ω|α) = fD(ω|α) with |α| = 3 are
over-parameterized.

r = 4 (Fourth-order Markov chain)

are endowed with other means of full equality and to law no one is the

right to choose of the detent to arbitrarily in science with pay for

through freely choice work

All simulated words are now genuine english words, which reflects the high redundancy
of english R ∼= 0.73 (see example 3.5). Meanwhile, the over-parameterization problem
is getting worse....

r = 9 (Markov chain of order 9)

democratic society and is entitled without interference and to seek

receive and impartial tribunals for acts violating the fundamental

3.5. RECONSTRUCTION OF MARKOV MODELS FROM DATA 145

rights indispensable for his

The over-parameterization has reached outrageously scandalous levels by statistical
standards: the set {fM(ω|α)} of nine-order transitions (|α| = 9) contains (27 −
1)279 = 6.1×1013 parameters estimated from a text of length n = 8.1×103 only! As
a result, whole chunks of the original text are reproduced without alteration in the
simulated text.

Control Question 38

Determine the unique correct answer:

1. the “curse of dimensionality” alludes to a problem of a) visualization in high-
dimensional spaces; b) lack of regularity for Markov chains; c) unability to per-
form hypothesis testing; d) over-parameterization.

2. the number of arguments of the stationary distribution function associated to a
Markov chain of order r is a) 1;; b) r − 1; c) r; d) variable.

3. the observation of a transition vorbiden by a Markov model a) is a rare event; b)
is possible is the sample is small enough; c) should occur in proportion less than
the significance level; d) indicates the inadequacy of the model.

4. the conditional Kullback-Leibler divergence Kr(f
D||fM) of order r a) is zero iff

a vorbidden transition occurs; b) is infinite iff a vorbidden transition occurs; c)
is increasing in r; d) increases with the probability P (fD|fM).

Answer

1. d) over-parameterization

2. c) r

3. d) indicates the inadequacy of the model

4. b) is infinite iff a vorbidden transition occurs

Historical Notes and Bibliography

Section 3.3.5. Irreversible behavior was first clearly attested and formalized in Ther-
modynamics in the middle of the XIXth century under the name of the Second
Principle of Thermodynamics, stating that “the (physical) entropy of an isolated
non-equilibrium physical system grows until it reaches equilibrium”. The mod-
ern, purely information-theoretical formulation of the second principle is given
(in the framework of Markov processes) by theorem 3.9. It shows in particular
K(f (n)||π) to decrease to zero for n → ∞. If the stationary distribution π is
uniform (i.e. πj = 1/m for all j = 1, . . . ,m), then K(f (n)||π) = log m−H(f (n))
where H(f) is Shannon’s entropy of distribution f : here theorem 3.9 confirms
that H(f (n)) is indeed increasing in n with limit log m. But in the general case

146 CHAPTER 3. STATIONARY PROCESSES & MARKOV CHAINS

where π is not uniform, the Second Principle should be more correctly stated as
“the relative entropy (with respect to π) of an isolated non-equilibrium physical
system grows until it reaches equilibrium”.

Section 3.5. The Universal Declaration of Human Rights was adopted by UNO’s
General Assembly (resolution 217 A (III)) of 10 December 1948.

OutLook

• Cover,T.M. and Thomas,J.A. Elements of Information Theory, Wiley (1991)

• Hillman, C. An entropy primer, http://www.math.washington.edu/ hillman/PUB/primer.ps,
(1996)

• Jelinek,F. Statistical Methods for Speech Recognition, The MIT Press, Cambridge,
MA (1998)

• Mirkin,B. Mathematical Classification and Clustering, Kluwer, Dordrecht, (1996)

• Shields, P.C. The Ergodic Theory of Discrete Sample Paths, Graduate Studies in
Mathematics, Volume 13, American Mathematical Society (1996)

• Xanthos, A. Entropizer 1.1: un outil informatique pour l’analyse séquentielle.
Proceedings of the 5th International Conference on the Statistical Analysis of
Textual Data (2000).

Chapter 4

Module C4: Coding for Noisy

Transmission

by J.-C. Chappelier

Learning Objectives for Chapter 4

In this chapter, we present:

1. the basics of coding a discrete information source in order to be able to
accurately transmit its messages even in the presence of noise;

2. how a noisy transmission can be formalized by the notion of a “channel”;

3. the two fundamental notions ruling noisy transmissions: the “channel
capacity” and the “transmission rate”;

4. the fundamental limit for the transmission error in the case of a noisy
transmission.

Introduction

When dealing with “information”, one of the basic goals is to transmit it reliably. In
this context, “transmit” both means “transmitting some information from one point
to another”, as we usually understand it, but also to “transmit” it through time;
for instance to store it somewhere (to memorize it) and then retrieve it later on. In
both cases however, transmission of information can, in real life, hardly be achieved
in a fully reliable manner. There always exists a risk of distortion of the transmitted
information: some noise on the line, some leak of the memory or the hard disk storing
the information, etc.

What effect does noise have on the transmission of messages? Several situations could
be possible:

147

148 CHAPTER 4. CODING FOR NOISY TRANSMISSION

• it is never possible to transmit any messages reliably (too much noise);

• it is possible to transmit messages with a “reasonable” error probability;

• it is possible to transmit messages with with an error probability which is as
small as we can wish for (using error correcting codes).

The purpose of the present chapter is to study how coding can help transmitting
information in a reliable way, even in the presence of noise during the transmission.
The basic idea of such codings is to try to add enough redundancy in the coded message
so that transmitting it in “reasonably” noisy conditions leaves enough information
undisturbed for the receiver to be able to reconstruct the original message without
distortion.

Of course, the notions of “enough redundancy” and “reasonably noisy conditions” need
to be specified further; and even quantified and related. This will be done by first
formalizing a bit further the notion of “noisy transmission”, by introducing the notion
of a “communication channel”, which is addressed in section 4.1.

As we will see in section 4.3, the two fundamental notions ruling noisy transmissions
are the channel capacity and the rate use for transmitting the symbols of the messages.
These notions are first introduced in section 4.1.

Received
codeword

Transmitted

Received

codeword

i Uznz1
i

Z

i
z 1U

Source

z

message
Channel

Noise

DecodingCoding

{Z i

{... n
...

Figure 4.1: Error correcting communication over a noisy channel.

The general framework this chapter will focuses on is summarized in figure 4.1.

4.1 Communication Channels

Learning Objectives for Section 4.1

This section presents the notion of a communication channel and the main
characterization of it: the capacity.
After studying it, you should be able to formalize a communication (i.e. to
give the corresponding channel) and to compute its capacity, at least in the
most simple cases.
You should also know what a symmetric channel is, and what this implies on
its capacity
We finally also introduce the notion of transmission rate.

4.1. COMMUNICATION CHANNELS 149

4.1.1 Communication Channels

Roughly speaking, a communication channel∗ (shorter “channel”) represents all that
could happen to the transmitted messages between their emission and their reception.

A message∗ is a sequences of symbols. A symbol is simply an element of a set, called
an alphabet. In this course, only finite alphabets will be addressed.

The input sequence X1,X2,X3, . . . (i.e. the message to be transmitted) is fully deter-
mined by the source alone; but the transmission determines the resulting conditional
probabilities of the output sequence Y1, Y2, Y3, . . . (i.e. the message received) knowing
the input sequence.

In mathematical terms, the channel specifies the conditional probabilities of the vari-
ous messages that can be received, conditionally to the messages that have been emit-
ted; i.e. P (Y1 = y1, ..., Yn = yn|X1 = x1, ...,Xn = xn) for all possible n and values
y1, x1, ..., yn, xn.

Definition 4.1 (Discrete Memoryless Channel) The discrete memory-
less channel (DMC ∗) is the simplest kind of communication channel. For-
mally, DMC consists of three quantities:

1. a discrete input alphabet, VX , the elements of which represent the possi-
ble emitted symbols for all input messages (the source X);

2. a discrete output alphabet, VY , the elements of which represent the pos-
sible received symbols (output sequence); and

3. for each x ∈ VX , the conditional probability distributions pY |X=x over
VY which describe the channel behavior in the manner that, for all n =
1, 2, 3, . . .:

P (Yn = yn|X1 = x1, . . . ,Xn = xn, Y1 = y1, . . . , Yn−1 = yn−1)

= P (Y = yn|X = xn), (4.1)

These are called the transmission probabilities∗ of the channel.

Equation (4.1) is the mathematical statement that corresponds to the “memoryless”
nature of the DMC. What happens to the signal sent on the n-th use of the channel is
independent of what happens on the previous n− 1 uses.

Notice also that (4.1) implies that the DMC is time-invariant, since the probability
distribution pYn|xn

does not depend on n.

When VX and VY are finite, a DMC is very often specified by a diagram where:

1. the nodes on the left indicate the input alphabet VX ;

2. the nodes on the right indicate the output alphabet VY ; and

3. the directed branch from xi to yj is labeled with the conditional probability
pY |X=xi

(yj) (unless this probability is 0, in which case the branch is simply omit-
ted.)

150 CHAPTER 4. CODING FOR NOISY TRANSMISSION

Example 4.1 (Binary Symmetric Channel) The simplest (non trivial) case of
DMC is the binary symmetric channel (BSC ∗), for which VX = VY = {0, 1} (“bi-
nary”) and

pY |X=0(1) = pY |X=1(0)

(“symmetric”). This value p = pY |X=0(1) = pY |X=1(0) is called the error rate and is
the only parameter of the BSC. Indeed, pY |X=0(0) = pY |X=1(1) = 1− p.

The BSC is represented by the following diagram:

11

0 0

p

p

1−p

1−p

X Y

Example 4.2 (Noisy Transmission over a Binary Symmetric Channel)
Suppose we want to transmit the 8 following messages: 000, 001, 010, 011, 100, 101,
110 and 111.

Suppose that the channel used for transmission is noisy in such a way that it changes
one symbol over ten, regardless of everything else; i.e. each symbol has a probability
p = 0.1 to be ”flipped” (0 into 1, and 1 into 0). Such a channel is a BSC with an
error rate equal to p = 0.1,

What is the probability to transmit one of our messages correctly?

Regardless of which message is sent, this probability is

(1− p)3 = 0.93 = 0.719

(corresponding to the probability to transmit 3 times one bit without error).

Therefore, the probability to receive and erroneous message is 0.281, i.e 28%; which
is quite high!

Suppose now we decide to code each symbol of the message by twice itself:

message 000 001 010 011 100 ... 111

code 000000 000011 001100 001111 110000 ... 111111

What is now the probability to have a message sent correctly? In the same way, this
is (1− p)6 = 0.531

And the probability to receive and erroneous message is now 0.469... ...worse than
previously, it seems!

However, what is the probability to receive a erroneous message which seems to be
valid; i.e. what is the probability to receive a erroneous message and to not detect it
as wrong?

Not detecting an erroneous message means that two corresponding symbol have both
been changed. If for instance we sent 000000, but 110000 is received, there is not
way to see that some errors occurred. However, if 010000 is received, clearly at least

4.1. COMMUNICATION CHANNELS 151

one error occurred (and retransmission could for instance be required).

So, not detecting an error could come either from 2 changes (at the corresponding
places) or 4 changes or the whole 6 symbols. What is the probability to change 2
symbols? Answer:

(6
2

)
p2 (1 − p)4 = 15 p2 (1 − p)4 What is the probability to change

2 corresponding symbols? Only
(
3
1

)
p2 (1− p)4 = 3 p2 (1− p)4.

Similarly, the probability to change 4 corresponding symbols is 3 p4 (1 − p)2, and to
change the whole six symbols is p6.

Therefore, the probability of not detecting an error is

3 p2 (1− p)4 + 3 p4 (1− p)2 + p6 = 0.020

which is much smaller. This means that the probability to make a error in the
reception (i.e. to trust an erroneous message without being aware of) is only 0.02.

Conclusion: some codings are better than other for the transmission of messages over
a noisy channel.

Finally, we wish to clearly identify the situation when a DMC is used without feedback∗,
i.e. when the probability distribution of the inputs does not depend on the output.
More formally, a DMC is said to be ”without feedback” when:

pXn|x1,...,xn−1,y1,...,yn−1
= pXn|x1,...,xn−1

(4.2)

for all n = 1, 2, 3, Notice that (4.2) does not imply that we choose each input digit
independently of previous input digits, only that we are not using the past output
digits in any way when we choose successive input digits (as we could if a feedback
channel was available from the output to the input of the DMC).

Let us now give a fundamental result about DMC without feedback.

Theorem 4.1 For a DMC without feedback, we have for all n ∈ N:

H(Y1 . . . Yn|X1 . . . Xn) =

n∑

i=1

H(Yi|Xi)

where X1...Xn stands for an input sequence of length n and Y1...Yn for the
corresponding output.

Proof From the chain rule for probabilities, we have

pX1,...,Xn,Y1,...,Yn(x1, ..., xn, y1, ..., yn) =

pX1
(x1) pY1|x1

(y1)

n∏

i=2

pXi|x1,...,xi−1,y1,...,yi−1
(xi)pYi|x1,...,xi,y1,...,yi−1

(yi)

152 CHAPTER 4. CODING FOR NOISY TRANSMISSION

Making use of (4.1) and (4.2), we get:

pX1,...,Xn,Y1,...Yn(x1, . . . , xn, y1, . . . yn)

= pX1
(x1) pY1|x1

(y1)

n∏

i=2

pXi|x1,...,xi−1
(xi) pY |xi

(yi)

=

[
pX1

(x1)
n∏

i=2

pXi|x1,...,xi−1
(xj)

] [
n∏

i=1

pY |xi
(yi)

]

= pX1,...,Xn(x1, . . . , xn)

n∏

i=1

pY |xi
(yi).

Dividing now by pX1,...,Xn(x1, . . . , xn), we obtain:

pY1,...,Yn|x1,...,xn
(y1, ..., yn) =

n∏

i=1

pY |xi
(yi) (4.3)

The relationship (4.3) is so fundamental that it is sometimes (erroneously) given as
the definition of the DMC. When (4.3) is used instead of (4.1), the DMC is implicitly
assumed to be used without feedback.

e-pendix: Cascading Channels

4.1.2 Channel Capacity

The purpose of a channel is to transmit messages (“information”) from one point (the
input) to another (the output). The channel capacity∗ precisely measures this ability:
it is the maximum average amount of information the output of the channel can bring
on the input.

Recall that a DMC if fully specified by the conditional probability distributions pY |X=x

(where X stands for the input of the channel and Y for the output). The input
probability distribution pX(x) is not part of the channel, but only of the input source
used. The capacity of a channel is thus defined as the maximum mutual information
I(X;Y) that can be obtained among all possible choice of pX(x). More formally:

Definition 4.2 (Channel Capacity) The capacity C of a Discrete Memo-
ryless Channel is defined as

C = max
pX

I(X;Y), (4.4)

where X stands for the input of the channel and Y for the output. �

We will shortly see that this definition is indeed very useful for studying noisy trans-
missions over channels, but let us first give a first example.

Example 4.3 (Capacity of BSC) What is the capacity C of a BSC, defined in
example 4.1?

4.1. COMMUNICATION CHANNELS 153

First notice that, by definition of mutual information,

C = max
pX

(
H(Y)−H(Y |X)

)
.

Furthermore, since in the case of a BSC, P (Y 6= X) = p and P (Y = X) = 1− p, we
have H(Y |X) = −p log(p)− (1− p) log(1− p) =: h̃(p), which does not depend on pX .
Therefore

C = max
pX

(
H(Y)

)
− h̃(p).

Since Y is a binary random variable, we have (by theorem 1.2): H(Y) ≤ log 2,
i.e. H(Y) ≤ 1 bit. Can this maximum be reached for some pX? Indeed, yes: if X is
uniformly distributed, we have pY (0) = p·pX(1)+(1−p)·pX (0) = 0.5 p+0.5 (1−p) =
0.5; which means that Y is also uniformly distributed, leading to H(Y) = 1 bit.
Therefore: maxX H(Y) = 1 bit and

C = 1− h̃(p) (in bits).

Control Question 39

What is the capacity of the “binary erasure channel” defined by the following graph:

p
X (lost) Y

1

0

p

1−p

1−p

1

0

Is it (in the most general case):

1. C = 1− h̃(p) = 1 + p log p + (1− p) log(1− p),

2. C = 1− p,

3. C = 1,

4. C = 1 + h̃(p) = 1− p log p− (1− p) log(1− p),

5. or C = 1 + p?

Answer

Let r be r = P (X = 0) (thus P (X = 1) = 1− r). By definition, the channel capacity
is:

C = max
P (X)

I(Y ;X) = max
r

[H(Y)−H(Y |X)]

Let us first compute H(Y |X):

H(Y |X) = −
∑

x

P (X = x)
∑

y

P (Y |X = x) log P (Y |X = x)

= −
∑

x

P (X = x) [p log p + (1− p) log(1− p) + 0]

= − [p log p + (1− p) log(1− p)]

= h̃(p)

154 CHAPTER 4. CODING FOR NOISY TRANSMISSION

Since H(Y |X) = h̃(p) is independent of r

C = max
r

[H(Y)]− h̃(p)

Let us now compute H(Y). We first need the probability distribution of Y :

P (Y = 0) = r (1− p)

P (Y = 1) = (1− r) (1− p)

P (Y = lost) = r p + (1− r) p = p

Thus

H(Y) = −r (1− p) log(r (1− p))− (1− r) (1− p) log((1− r) (1− p))− p log p

Since P (Y = lost) is independent of r, H(Y) is maximal for P (Y = 0) = P (Y = 1) i.e.
r (1− p) = (1− r) (1− p) and thus r = 1− r = 0.5.

Another way to find the maximum of H(Y) is to see that

H(Y) = −r (1− p) log(r (1− p))− (1− r) (1− p) log((1 − r) (1− p))− p log p(4.5)

= −r (1− p) log(r)− r (1− p) log(1− p)− (1− r) (1− p) log(1− r)

−(1− r) (1− p) log(1− p)− p log p

= (1− p) h̃(r)− (r + 1− r) (1− p) log(1− p)− p log p

= (1− p) h̃(r) + h̃(p)

which is maximum for r = 0.5.

Eventually, the maximum of H(Y) is (1− p) + h̃(p), and at last we find:

C = 1− p + h̃(p)− h̃(p) = 1− p.

Thus, the right answer is 2).

4.1.3 Input-Symmetric Channels

We here consider only DMC with a finite alphabet, i.e. a finite number, K, of input
symbols, and a finite number, J , of output symbols.

Definition 4.3 Such a DMC is said to be input-symmetric if the error prob-
ability distributions are all the samea for all input symbols; i.e. the sets{
pY |xi

(y) : y ∈ VY

}
are independent of xi. �

aapart from a permutation

Example 4.4 (Input-Symmetric Channels)

4.1. COMMUNICATION CHANNELS 155

(lost)

aa

X

1

YY

0

bc

a

b

c

X

ba

cc

1/2

1/2

1/2

1/2

 which is not input−symmetric.

1/2
1/4

1/4

1/2

1/2

1/2

1/4

1/4

(a) A input−symmetric DMC
 which is not output−symmetric.

(b) An output−symmetric DMC

1

0

A BSC is input-symmetric. That of Figure (a) above is also input-symmetric, but
the channel of Figure (b) is not input-symmetric.

Lemma 4.1 For a input-symmetric DMC, H(Y |X) is independent of the dis-
tribution pX , and H(Y |X) = H(Y |xi) for any given xi ∈ VX .

Proof It follows from the definition of a input-symmetric channel that

∀xi ∈ VX H(Y |X = xi) = H0 = −

J∑

j=1

pj log pj (4.6)

where {p1, p2, . . . , pJ} the set of probabilities pY |xi
(y) (which is indepent of the input

letter xi). Therefore

H(Y |X) =
∑

x

pX(x)H(Y |X = x) =
∑

x

pX(x)H0 = H0

For a input symmetric DMC, finding the input probability distribution that achieves
capacity (i.e. achieves the maximum of I(X;Y)) reduces to simply finding the input
distribution that maximizes the uncertainty of the output.

Property 4.1 For a input-symmetric DMC, we have

C = max
PX

[H(Y)]−H0 (4.7)

where H0 = H(Y |X = xi) for any of the xi ∈ VX .

Proof This property directly derives from definition 4.2 and lemma 4.1. �

4.1.4 Output-Symmetric Channels

A input-symmetric channel is one in which the probabilities leaving each input symbol
are the same (appart from a permutation). We now consider channels with the prop-

156 CHAPTER 4. CODING FOR NOISY TRANSMISSION

erty that the probabilities reaching each output symbol are the same (appart from a
permutation).

More formaly, a DMC is said to be output-symmetric when the sets
{
pY |x(yi) : x ∈ VX

}

are independent of yi. Notice that in this case the sums
∑

x pY |x(yi) are independent
of yi.

1

Example 4.5 (Output-Symmetric Channel) The BSC (see example 4.1) is
output-symmetric. The channel of example 4.4, figure (b), is output-symmetric, but
that of figure (a) is not.

Lemma 4.2 For a output-symmetric DMC, the uniform input probability dis-
tribution (i.e., pX(xi) is the same for all xi) results in the uniform output
probability distribution (i.e., pY (yi) is the same for all yi).

Proof

pY (yj) =
∑

xi

pY |xi
(yj)pX(xi) =

1

|VX |

∑

xi

pY |xi
(yj)

But, since the DMC is output-symmetric, the sum on the right in this last equation
is independent of yj. Thus pY is independent of yj; i.e. is the uniform probability
distribution. �

Property 4.2 For an output-symmetric DMC, the input of which is X and
the output of which is Y , we have:

max
pX

H(Y) = log |VY |. (4.8)

Proof This property comes immediately from Lemma 4.2 and theorem 1.2 on the
entropy upper bound. �

4.1.5 Symmetric Channels

Definition 4.4 (Symmetric Channel) A DMC is symmetric when it is
both input- and output-symmetric. �

Theorem 4.2 The capacity of a symmetric channel (the input of which is X
and the output of which is Y) is given by:

C = log |VY | −H0 (4.9)

where H0 = H(Y |X = xi) for any of the input symbol xi ∈ VX .

1Some authors called this property “week (output-)symmetry”.

4.1. COMMUNICATION CHANNELS 157

Proof The above theorem is an immediate consequence of properties 4.1 and 4.2. �

Example 4.6 The BSC (see Example 4.1) is a symmetric channel for which H0 =
h̃(p) = −p log p− (1− p) log(1− p). Thus,

CBSC = log 2− h̃(p) = 1− h̃(p) (in bits)

4.1.6 Transmission Rate

Definition 4.5 (Transmission Rate) The transmission rate (in base b) of
a code encoding a discrete source U of |VU | messages with codewords of fixed
length n is defined by:

Rb =
logb |VU |

n

Notice that |VU | is also the number of possible codewords (deterministic non-singular
coding).

In practice, the base b chosen for the computation of the transmission rate is the arity
of the code.

Example 4.7 The (binary) transmission rate of the code used in example 4.2 is
R = log 8

6 = 3
6 = 1

2 . This sounds sensible since this code repeats each message twice,
i.e. uses twice as many symbols as originally emitted.

Control Question 40

On a noisy channel, we plan to use a code consisting of tripling each symbol of the
messages. For instance a will be transmitted as aaa.

What is the transmission rate R of such a code?
(If you are a bit puzzled by the base, choose for the base the arity of the source, i.e.
the number of different symbols the source can emit)

Answer

Whatever the alphabet used for the messages, each symbol is repeated 3 times. There-
fore whatever the message is, it will always be encoded into a coded message three
times longer. Therefore, the transmission rate is R = 1

3 .

For people preferring the application of the definition, here it is:
the fixed length of codewords is n = 3m, where m is the length of a message. If D is
the arity of the source U (i.e. the size of its alphabet), the number of possible messages
of length m is |VU | = Dm. Thus, we have:

RD =
logD |VU |

n
=

logD Dm

3m
=

m

3m
=

1

3

158 CHAPTER 4. CODING FOR NOISY TRANSMISSION

Summary for Section 4.1

Channel: input and output alphabets, transmission probabilities (pY |X=x).

DMC = Discrete Memoryless Channel.

Channel Capacity: C = maxpX
I(X;Y)

Code/Transmission Rate: Rb = logb |VU |
n

Capacity of Input-symmetric channels: C = max
PX

[H(Y)] − H(Y |X = xi) for

any of the xi ∈ VX .

Capacity of Symmetric channels: C = log |VY | − H(Y |X = xi) for any of the
xi ∈ VX .

4.2 A Few Lemmas

Learning Objectives for Section 4.2

In this section, we introduce several general results that we shall subsequently
apply in our study of channels, but have also many other applications.

4.2.1 Multiple Use Lemma

We previously define the capacity of a channel as the maximum amount of information
the output of the channel can bring on the input. What can we say if we use the same
channel several times (as it is expected to be the case in real life!)?

Lemma 4.3 If a DMC without feedback of capacity C is used n times, we
have:

I(X1 . . . Xn;Y1 . . . Yn) ≤ n C

where X1...Xn stands for an input sequence of length n and Y1...Yn for the
corresponding output.

Proof Using definition of mutual information and theorem 4.1, we have:

I(X1 . . . Xn;Y1 . . . Yn) = H(Y1 . . . Yn)−H(Y1 . . . Yn|X1 . . . Xn)

= H(Y1 . . . Yn)−
n∑

i=1

H(Yi|Xi) (4.10)

Recalling that

H(Y1 . . . Yn) = H(Y1) +
n∑

i=2

H(Yi|Y1...Yi−1)

4.2. A FEW LEMMAS 159

Processor
no. 1

Processor
no. 2

X ZY

Figure 4.2: The conceptual situation for the Data Processing Lemma.

and that
H(Yi|Y1...Yi−1) ≤ H(Yi)

we have:

H(Y1 . . . Yn) ≤
n∑

i=1

H(Yi)

which, after substitution into (4.10) gives

I(X1 . . . Xn;Y1 . . . Yn) ≤

n∑

i=1

[H(Yi)−H(Yi|Xi)]

=
n∑

i=1

I(Xi;Yi)

≤ n C (4.11)

by the definition of channel capacity. �

4.2.2 Data Processing Lemma

We here consider the situation shown in Figure 4.2, where several “processors” are used
successively. “Processors” considered here are completely arbitrary devices. They may
be deterministic or even stochastic. They may even have anything at all inside. The
only thing that Figure 4.2 asserts is that there is no “hidden path” by which X can
affect Z, i.e., X can affect Z only indirectly through its effect on Y . In mathematical
terms, this constraint can be expressed as

pZ|x,y(z) = pZ|y(z) (4.12)

for all y such that pY (y) 6= 0, which means simply that, when y is given, then z is not
further influenced by x.

More formally the sequence X,Y,Z is a first-order Markov chain.

The Data Processing Lemma states essentially that information cannot be increased
by any sort of processing (although it can perhaps be put into a more accessible form!).

Lemma 4.4 (Data Processing Lemma) When X,Y,Z is a first-order
Markov chain, i.e. when (4.12) holds, we have:

I(X;Z) ≤ I(X;Y) (4.13)

and
I(X;Z) ≤ I(Y ;Z). (4.14)

160 CHAPTER 4. CODING FOR NOISY TRANSMISSION

In other words, the mutual information between any two states of a Markov chain is
always less or equal to the mutual information between any two intermediate states.

Proof (4.12) implies that
H(Z|XY) = H(Z|Y) (4.15)

and hence

I(Y ;Z) = H(Z)−H(Z|Y)

= H(Z)−H(Z|XY)

≥ H(Z)−H(Z|X) = I(X;Z)

which proves (4.14). To prove (4.13), we need only show that Z, Y,X (the reverse of
the sequence X,Y,Z) is also a Markov chain, i.e. that

pX|yz(x) = pX|y(x) (4.16)

for all y such that pY (y) 6= 0.

Indeed,

pZ|x,y(z) = pZ|y(z) =⇒

pX|y,z(x) =
pZ|x,y(z) · pXY (x, y)

pY Z(y, z)

=
pZ|y(z) · pXY (x, y)

pY Z(y, z)

=
pY Z(y, z) · pXY (x, y)

pY (y) · pY Z(y, z)

=
pXY (x, y)

pY (y)

= pX|y(x)

4.2.3 Fano’s Lemma

Now, for the first time in our study of information theory, we introduce the notion
of “errors”. Suppose we think of the random variable Û as being an estimate of the
random variable U . For this to make sense, Û needs to take on values from the same
alphabet as U . Then an error is just the event that Û 6= U and the probability of
error, Pe, is thus

Pe = P (Û 6= U). (4.17)

We now are ready for one of the most interesting and important results in information
theory, one that relates Pe to the conditional uncertainty H(U |Û).

4.2. A FEW LEMMAS 161

Lemma 4.5 (Fano’s Lemma) Let U and Û be two D-ary random variables
with the same values. Denoting by Pe the probability that U is different from
Û , we have:

h̃(Pe) + Pe log2(D − 1) ≥ H(U |Û) (4.18)

where the uncertainty H(U |Û) is in bits, and h̃ is is the entropy of a binary
random variable: h̃(p) = −p log(p)− (1− p) log(1− p).

Proof We begin by defining the random variable Z as the random variable indicating
a difference between U and Û :

Z =

{
0 when Û = U

1 when Û 6= U,

Z is therefore a binary random variable with parameter Pe. So, we have:

H(Z) = h̃(Pe). (4.19)

Furthermore:

H(UZ|Û) = H(U |Û) + H(Z|UÛ)

= H(U |Û),

since U and Û uniquely determine Z (therefore H(Z|UÛ) = 0. Thus

H(U |Û) = H(UZ|Û)

= H(Z|Û) + H(U |ÛZ)

≤ H(Z) + H(U |ÛZ) (4.20)

But
H(U |Û , Z = 0) = 0 (4.21)

since in this case U is uniquely determined, and

H(U |Û , Z = 1) ≤ log2(D − 1) (4.22)

since, for each value u of Û , there are, when Z = 1, at most D−1 values with non-zero
probability for U :

∀u ∈ VU H(U |Û = u,Z = 1) ≤ log2(D − 1)

Equations (4.21) and (4.22) imply

H(U |ÛZ) = pZ(0)H(U |Û , Z = 0) + pZ(1)H(U |Û , Z = 1)

= 0 + pZ(1)H(U |Û , Z = 1)

≤ pZ(1) log2(D − 1) =

≤ Pe log2(D − 1). (4.23)

Substituting (4.19) and (4.23) into (4.20), we obtain (4.18) as was to be shown. �

162 CHAPTER 4. CODING FOR NOISY TRANSMISSION

e

e e

D−1

D

~

1 P0

h(P) + P log(D − 1)

log D

log(D − 1)

Figure 4.3: Evolution according to Pe of the bound on H(U |Û) given by Fano’s Lemma.

We can provide an interpretation of Fano’s Lemma. Notice first that the function on
the left of (4.18), sketched in figure 4.3, is concave in Pe) and is positive for all Pe such
that 0 ≤ Pe ≤ 1.

Thus, when a positive value of H(U |Û) is given, (4.18) implicitly specifies a positive
lower bound on Pe.

Example 4.8 Suppose that U and Û are binary-valued (i.e., D = 2) and that
H(U |Û) = 1

2 bit. Then (4.18) gives

h̃(Pe) ≥
1

2

or, equivalently,
.110 ≤ Pe ≤ .890.

The fact that here (4.18) also gives a non-trivial upper bound on Pe is a consequence
of the fact that the given H(U |Û) exceeds the value taken on by the left side of (4.18)
when Pe = 1, i.e. log2(D − 1) = 0.

This is not always the case. For instance, taking D = 3 and H(U |Û) = 1
2 bits, (4.18)

becomes

h̃(Pe) + Pe ≥
1

2

which leads to
Pe ≥ .084,

but does not provide any useful upper bound. Only the trivial bound Pe ≤ 1 can be
asserted.

A review of the proof of Fano’s Lemma reveals that equality holds in (4.18) if and only
if the probability of an error given that Û = u is the same for all u and when there is an
error (i.e., when U 6= Û), the n− 1 erroneous values of U are always equally likely. It
follows that (4.18) gives the strongest possible lower bound on Pe, given only H(U |Û)

4.3. THE NOISY CODING THEOREM 163

and the size, n, of the alphabet for U .

Summary for Section 4.2

Data Processing Lemma: pZ|x,y(z) = pZ|y(z) =⇒ I(X;Z) ≤
I(X;Y) and I(X;Z) ≤ I(Y ;Z)

Fano’s Lemma: h̃(Pe) + Pe log2(|VU | − 1) ≥ H(U |Û)

4.3 The Noisy Coding Theorem

Learning Objectives for Section 4.3

This section is the core of the chapter and gives the important “Noisy Coding
Theorem”, which explains under what conditions reliable communication is
possible or not.
After studying this section, you should be able to decide:

1. what is the maximum transmission speed you can use on a noisy com-
munication channel to be able to construct reliable communication on
this channel using error correcting codes;

2. what is the minimum amount of errors you are sure to make if you
transmit information faster than this maximum.

4.3.1 Repetition Codes

The role of this section is to give a concrete example of very simple (naive) error-
correcting codes.

As such, there is not much to be learned from this section, but the fact that naive
coding is not very good and that other, more appropriate, codes should be considered.

We here consider binary repetition codes; i.e. codes Rk for which each (binary) input
symbol is repeated n = 2 k + 1 times (k > 1). For instance the code R1 was used
in example 4.2. We consider only odd number of repetitions because decoding such
codes is done by the majority. We thus avoid the non-determinism that even number
of repetitions could introduce (in cases where the received codeword contains as many
0s as 1s).

With such codes, the probability of a wrong decision on decoding a symbol is the
probability that at least k + 1 errors have occurred on the corresponding block.

Let us consider the case where such a code is used over a BSC. The number of errors
made in this case by the channel has then a binomial distribution with parameters
(n, p). Therefore, the expected number of errors at the level of the transmission of
codeword symbols is n p.

For p < 0.5, this expected number is less than k + 0.5, therefore the probability that
at least k + 1 errors have occurred on a codeword (i.e. one coding block), tends to

164 CHAPTER 4. CODING FOR NOISY TRANSMISSION

be negligible as k (hence n) tends to infinity. In other words, the probability that we
take a wrong decision when decoding becomes negligible as the number of repetition
increases (hence the length of the codewords). Thus we are able to compensate the
loss due to the noise on the channel to any desired degree by choosing a large enough
number of repetitions.

However, the price we pay for this is in this case quite huge in terms of efficiency.
Indeed the transmission rate of such a code is 1

n ...
...which also tends to 0 as n grows to infinity! For large n this is likely to be an
unacceptably low transmission rate.

The importance of the Noisy Coding Theorem is precisely that it ensures that good
codes can be achieved for any given transmission rate below the capacity. The trans-
mission rate can be fixed a priori and does not need to be ridiculously small as in the
above example. It only requires to be below the channel capacity.

e-pendix: Repetition Codes over a BSC

Control Question 41

On a BSC with error probability p, we plan to use the repetition code R1 consisting
of tripling each symbol of the messages. Decoding is done according to the majority
in the received block.

What is, as a function of p, the output bit error probability Pb for such a communication
system?

1. p2 − p3

2. p2

3. 3p2 − 2p3

4. 2p2 − 3p3

5. p3

Answer

The correct answer is 3.

When does an error occur in decoding? When 2 or 3 symbols of the block have been
corrupted.

What is the probability of this to occur? The probability of one erroneous block with
exactly two symbols are wrong is p2 (1−p), and there are exactly

(3
2

)
= 3 ways to have

2 wrong symbols among 3. Therefore the probability to get a wrong block with exactly
2 errors is 3 p2 (1 − p).

Similarly, the probability to get a wring block with exactly 3 errors is p3.

Therefore:

Pb = 3 p2 (1− p) + p3 = 3 p2 − 2 p3

4.3. THE NOISY CODING THEOREM 165

4.3.2 The Converse to the Noisy Coding Theorem for a DMC without

Feedback

In this section, we show that it is impossible to transmit information reliably through
a DMC at a transmission rate above the capacity of this DMC. Without loss of es-
sential generality, we suppose that the “information” to be transmitted is the output
from a binary symmetric source (BSS ∗), which is a (memoryless) binary source with
P (0) = P (1) = 1

2 . We here consider the case where the DMC is used without feedback
(see Figure 4.1), for which we now give an important result on noisy transmissions
(introduced by C. Shannon), known as the “Converse Part of the Noisy Coding Theo-
rem”.

Theorem 4.3 (Converse Part of the Noisy Coding Theorem) If a
BSS is used at rate R on a DMC without feedback of capacity C, and if
R > C, then Pb, the bit error probability at the output, satisfies:

Pb ≥ h̃
−1
(

1−
C

R

)
, (4.24)

where h̃
−1

(x) = min{p : −p log(p)− (1− p) log(1− p) = x}.

Here, we have written h̃
−1

to denote the inverse binary entropy function defined by

h̃
−1

(x) = min{p : −p log(p) − (1 − p) log(1 − p) = x}, where the minimum is selected
in order to make the inverse unique (see figure 4.4).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.4: The function h̃
−1

, the inverse binary entropy function defined by h̃
−1

(x) =
min{p : −p log(p)− (1− p) log(1− p) = x}.

166 CHAPTER 4. CODING FOR NOISY TRANSMISSION

One important consequence of this fact is that, whenever R > C, (4.24) will specify a
positive lower bound on the output bit error probability Pb that any coding system, as
complex as it might be, can overcome. More clearly:. it is impossible to transmit any
amount of information reliably at a rate bigger than the channel capacity.

Before going to the proof of the theorem, let us first give an example.

Example 4.9 (Converse Part of the Noisy Coding Theorem) Suppose we
are using a DMC with capacity C = 1

4 bit for transmitting message out of a BSS. If
we transmit at a rate R = 1

2 , then (4.24) gives us an error of at least 11%:

Pb ≥ h̃
−1
(

1−
1

2

)
= .11.

This means that at least 11% of the binary symbols will be transmitted incorrectly
(even after error correction decoding).

Proof We want to show that, when R > C, there is a positive lower bound on Pb

that no manner of coding can overcome. As a first step in this direction, we note that
the output bit error probability is

Pb =
1

m

m∑

i=1

P (Ûi 6= Ui). (4.25)

where m is the length of the input message.

By the use of Fano’s Lemma, we have in the binary case considered here:

h̃(P (Ûi 6= Ui)) ≥ H(Ui|Ûi)

thus:
m∑

i=1

H(Ui|Ûi) ≤

m∑

i=1

h̃(P (Ûi 6= Ui)) (4.26)

To proceed further, we observe that

H(U1 . . . Um|Û1 . . . Ûm) = H(U1|Û1) +

m∑

i=2

H(Ui|Û1 . . . ÛmU1 . . . Ui−1)

≤
m∑

i=1

H(Ui|Ûi) (4.27)

since further conditioning can only reduce uncertainty.

Furthermore, because h̃(x) is concave in x (for 0 ≤ x ≤ 1):

1

m

m∑

i=1

h̃(P (Ûi 6= Ui)) ≤ h̃

(
1

m

m∑

i=1

P (Ûi 6= Ui)

)
= h̃(Pb). (4.28)

4.3. THE NOISY CODING THEOREM 167

Thus, up to this point we have:

h̃(Pb) ≥
1

m
H(U1...Um|Û1...Ûm).

Let us continue with H(U1...Um|Û1...Ûm):

H(U1 . . . Um|Û1 . . . Ûm) = H(U1 . . . Um)− I(U1 . . . Um; Û1 . . . Ûm)

= m− I(U1 . . . Um; Û1 . . . Ûm)

because in the case where the input source U is a BSS, H(U1 . . . Um) = log 2m = m .

What about I(U1 . . . Um; Û1 . . . Ûm)?

If we consider the “Coding” and the “Channel” in Figure 4.1 respectively as “Pro-
cessor #1” and “Processor #2” of Figure 4.2, using the Data Processing Lemma we
have:

I(U1 . . . Um; Û1 . . . Ûm) ≤ I(z1 . . . zn; Û1 . . . Ûm) (4.29)

where zi is the code of Ui (see figure 4.1).

Next, consider the “Channel” and the “Decoder” respectively as “Processor #1” and
“Processor #2”. Using the Data Processing Lemma again we conclude that:

I(z1 . . . zn; Û1 . . . Ûm) ≤ I(z1 . . . zn; ẑ1 . . . ẑn). (4.30)

Combining (4.29) and (4.30), we obtain:

I(U1 . . . Um; Û1 . . . Ûm) ≤ I(z1 . . . zn; ẑ1 . . . ẑn).

which combined with lemma 4.3 leads to:

I(U1 . . . Um; Û1 . . . Ûm) ≤ n C (4.31)

So we finally can conclude that

H(U1...Um|Û1...Ûm) ≥ m− n C

and thus
h̃(Pb) ≥ 1−

n

m
C

i.e., by definition of the transmission rate R:

h̃(Pb) ≥ 1−
C

R

You may wonder whether (4.24) still holds when feedback is permitted from the output
of the DMC to the channel encoder. The answer is a somewhat surprising yes. To arrive
at (4.11), we made strong use of the fact that the DMC was used without feedback – in
fact (4.11) may not hold when feedback is present. However, (4.31) can still be shown
to hold so that the converse (4.24) still holds true when feedback is present. This fact
is usually stated as saying that feedback does not increase the capacity of a DMC. This

168 CHAPTER 4. CODING FOR NOISY TRANSMISSION

does not mean, however, that feedback is of no value when transmitting information
over a DMC. When R < C, feedback can often be used to simplify the encoder and
decoder that would be required to achieve some specified output bit error probability.

Control Question 42

On a DMC without feedback of capacity C , we want to transmit message with a bit
error probability Pb lower than a given value Pbmax ∈ (0, 1

2).

We do not now already which kind of code will be used. However, we wish to determine
the maximal transmission rate Rmax we can use on that channel (and compatible with
Pb ≤ Pbmax).

What is Rmax in terms of C and Pbmax?

1. C

2. h̃
−1

(Pbmax)

3. C − h̃(Pbmax)

4.
C

(1− h̃(Pbmax))

5.
1

(C − h̃
−1

(Pbmax))

6. h̃
−1

(1− C/Pbmax)

Answer

The correct answser is 4.

We are looking for the maximal transmission rate Rmax we can use. Let us see if this
maximal rate could be above the capacity C.

The converse part of the noisy coding theorem tells us that if we are transmitting at a
rate R = Rmax > C we have:

Pb ≥ h̃
−1

(1−
C

R
)

Since Pbmax ≥ Pb, if R = Rmax > C we also have:

Pbmax ≥ h̃
−1

(1−
C

R
)

And thus, h being non-decreasing on (0, 1
2):

R ≤
C

1− h̃(Pbmax)

Therefore, the maximal transmission rate we could use is

Rmax =
C

1− h̃(Pbmax)
.

4.3. THE NOISY CODING THEOREM 169

zi
Z

zj

zk

r

Figure 4.5: Example of decoding error in the random coding framework: zi was send,
ẑ was received and will here be decoded into zj .

Indeed, if R > Rmax then R > C (since C

1−eh(Pbmax)
> C), and therefore Pb > h̃

−1
(1 −

C
R) > h̃

−1
(1− C

Rmax
) = Pbmax.

So if R > Rmax, we are sure that Pb > Pbmax.

Notice that this does not mean that if R < Rmax we are sure to have Pb ≤ Pbmax. We
do not know if there exist such a code that R = Rmax and Pb ≤ Pbmax. All what we
now is that if we transmit too fast (R > Rmax) we are sure to make too many errors (
Pb > Pbmax).

4.3.3 The Noisy Coding Theorem for a DMC

Up to now, we have seen that it is impossible to have a transmission error below a
certain level if the transmission rate R is bigger than the capacity. We now study what
is going on when we wish to transmit a BSS over a DMC at a rate below its capacity.

Theorem 4.4 (Noisy Coding Theorem for a DMC) Consider trans-
mitting messages at rate R on a DMC without feedback of capacity C. For all
R < C and all ε > 0, there exists some (error-correcting) code whose rate is
R and with an output bit error probability Pb < ε.

This important theorem claims that by choosing an appropriate way of encoding in-
formation over a channel, one can reach as small error probability as wished.

Proof At the level of this introductory course, let us, for the sake of simplicity, prove
the theorem only in the case of a BSC. The proof will in this case be constructive in
the sense that we actually construct a code verifying the theorem.

General proof of Shannon’s theorem extends to DMC with arbitrary input and output

170 CHAPTER 4. CODING FOR NOISY TRANSMISSION

alphabet, and arbitrary channel capacity. The main idea of the general proof is the
same, namely to code messages randomly and to decode with “nearest codeword”
decision. Difficulties in the proof are caused mainly by the general form of the channel
capacity when it is not a BSC. Interested readers can find complete proofs for the
general situation in [1] or [6].

Let us now proceed with the proof in the case of a BSC.

The sketch of it is the following:

1. given R and ε, choose the appropriate codeword length n and number of code-
words M = 2R n.

2. Then choose the M codewords z1, ..., zM at random (as binary vectors of length
n), without repetition. If VU , the number of possible binary messages to be
transmitted, is bigger than M , then each input message will be split into pieces
of at most n symbols which will be encoded separately (by one of the codewords
zi).

3. compute the “decoding threshold” r. This in fact corresponds to the maximum
number of transmission errors the code is able to correct.

4. Use the following decoding procedure:

• if there exists one and only one codeword zi such that d(ẑ, zi) ≤ r, decode
as zi.
Here ẑ denotes the message received after transmission, i.e. at the output
of the channel, and d(x, y) is the Hamming distance between two binary
strings, i.e. the number of different symbols between x and y.

• otherwise decode as z1.

Such a coding scheme (called “random coding”) is enough to ensure Pb < ε (provide
the right n have been chosen).

Let us now be more precise and go in the details.

First recall that the capacity of a BSC is C = 1− h̃(p), where p is the error probability
of the channel and h̃(x) is the binary entropy function: h̃(x) = −x log x−(1−x) log(1−
x).

Since 0 < R < C, we have 1 > 1−R > h̃(p), and therefore:

∃λ, 0.5 ≥ λ > p, such that R < 1− h̃(λ)

as illustrated in this figure:

4.3. THE NOISY CODING THEOREM 171

h (1−R)
−1

� � � � �� � � � �

h(x)

0.5

x

1

0

1−R

p

λ

~

~

~

h(p)

For such a λ, we have:

lim
n→∞

[
p (1− p)

n (λ− p)2
+ 2n(R+eh(λ)−1)

]
= 0

since R + h̃(λ)− 1 < 0.

Therefore, for any given ε > 0, there exists n0 such that

∀n ≥ n0
p (1− p)

n · (λ− p)2
+ 2n (R+eh(λ)−1) ≤ ε

For technical reasons that will appear clear later on, we also need to have n such that
bλnc = max {q ∈ N : q ≤ λn} > n p. This is the case provided that n > n1 = 1

(λ−p) .

To summarize up to this point, we get to the following result:

∀p ∈ [0, 0.5) ∀R, 0 < R < 1− h̃(p),∀ε > 0,
(
∃n ∈ N ∃λ ∈ (h̃

−1
(1−R), p) such that

p (1− p)

n · (λ− p)2
+ 2n (R+eh(λ)−1) ≤ ε

and bλnc > n p
)

This is in fact true for all n > max {n0, n1} above defined.

So we found one of “the appropriate codeword length n”. Let us proceed as explain
in the beginning with M = 2n R codewords and r = bλ nc = max {m ∈ N : m ≤ λ n}.
In this framework, for a given codeword zi, an error occurs when (see figure 4.5)

1– there have been more that r transmission errors: d(ẑ, zi) > r
or
2– a) d(ẑ, zi) ≤ r

and
b) ∃z ∈ C, z 6= zi : d(ẑ, z) ≤ r

and
c) i 6= 1

where C = {z1, ..., zM} denotes the code.

Therefore, the probability Perr(zi) that a given codeword zi is incorrectly transmitted
(including decoding) is bounded by

Perr(zi) = P (case 1) + P (case 2) ≤ P (d(ẑ, zi) > r) + P (∃z ∈ C \ {zi} : d(ẑ, z) ≤ r)

172 CHAPTER 4. CODING FOR NOISY TRANSMISSION

Let us now find upper bounds for these two terms.

d(ẑ, zi) is the number of transmission errors at the output of the BSC (i.e. before
decoding). It is a binomial random variable with probability distribution P (d(ẑ, zi) =
k) =

(n
k

)
pk(1− p)n−k. Thus, its average and variance respectively are:

E[d(ẑ, zi)] = n p var(d(ẑ, zi)) = n p (1− p)

Then, by Chebyshev’s inequality we have (since r > n p)2:

P (|d(ẑ, zi)− n p| ≥ r − n p) ≤
n p (1− p)

(r − n p)2

Therefore:

P (d(ẑ, zi) > r) ≤ P (d(ẑ, zi) ≥ r) = P (d(ẑ, zi)− n p ≥ r − n p)

≤ P (|d(ẑ, zi)− n p| ≥ r − n p)

≤
n p (1− p)

(r − n p)2
(4.32)

For the second term (P (∃z ∈ C \ {zi} : d(ẑ, z) ≤ r)), we have:

P (∃z ∈ C \ {zi} : d(ẑ, z) ≤ r)

= P (d(ẑ, z1) ≤ r or ... or d(ẑ, zi−1) ≤ r or d(ẑ, zi+1) ≤ r or ... or d(ẑ, zM) ≤ r)

≤
∑

z∈C\{zi}

P (d(ẑ, z) ≤ r) = (M − 1) · P (d(ẑ, z) ≤ r)

since there are M − 1 codewords z such that z 6= zi.

Moreover, for a given z ∈ C, the number of possible ẑ such that d(ẑ, z) = k is equal
to the number of binary strings of length n that differ from z in exactly k positions.

Thus, this number is
(n
k

)
= n !

k ! (n− k) !

Therefore, the total number of possible ẑ such that d(ẑ, z) ≤ r is equal to

r∑

k=0

(
n

k

)

and thus

P (d(ẑ, z) ≤ r) =
1

2n

r∑

k=0

(
n

k

)

So we get:

P (∃z ∈ C \ {zi} : d(ẑ, z) ≤ r) ≤
M − 1

2n

r∑

k=0

(
n

k

)

Moreover, as proven at the very end of this proof, we have for all r, 0 ≤ r ≤ n
2 :

r∑

k=0

(
n

k

)
≤ 2n eh(r

n
),

4.3. THE NOISY CODING THEOREM 173

so (recall that M = 2nR and that r ≤ n
2 since λ < 0.5) we finally found:

P (∃z ∈ C \ {zi} : d(ẑ, z) ≤ r) ≤
2nR − 1

2n
2nh(r

n
)

≤ 2n(R+eh(r
n

)−1) (4.33)

Now, regrouping equations (4.32) and (4.33) together, we find:

Perr(zi) ≤
n p (1− p)

(r − n p)2
+ 2n(R+eh(r

n
)−1)

which, by the initial choices of r and n is smaller than ε.

To conclude the proof we only have to notice that Pb = 1
nPerr(zi) ≤ Perr(zi) (for all

i).

The only missing step in the above proof is the proof of the following technical result:

∀n ∈ N ∀r ∈ N, 0 ≤ r ≤
n

2

r∑

k=0

(
n

k

)
≤ 2n eh(r

n
)

which is now given.

r∑

k=0

(
n

k

)
=

n∑

k=0

(
n

k

)
δ(k − r)

where δ(t) =

{
1 if t ≤ 0
0 otherwise

Thus, for all x, 0 < x ≤ 1 : δ(t) ≤ xt, and therefore:

r∑

k=0

(
n

k

)
≤

n∑

k=0

(
n

k

)
xk−r

i.e.
r∑

k=0

(
n

k

)
≤

(1 + x)n

xr

which is in particular true for x = r
n−r , with r ≤ n/2:

r∑

k=0

(
n

k

)
≤

(1 + r
n−r)n

(r
n−r)r

i.e.

r∑

k=0

(
n

k

)
≤ 2n·log(1+ r

n−r
)−r·log(r

n−r
)

174 CHAPTER 4. CODING FOR NOISY TRANSMISSION

But: n · log(1 +
r

n− r
)− r · log(

r

n − r
)

= n ·

(
log(

1

1− r
n

)−
r

n
log(

r
n

1− r
n

)

)

= n ·
(
−

r

n
log

r

n
− (1−

r

n
) log(1−

r

n
)
)

= n · h̃(
r

n
)

which concludes the proof. �

Control Question 43

Consider using a BSC with an error probability p (whose capacity is therefore C =
1 − h̃(p)). In the following cases, tell if a code fulfilling the requirement could be
constructed:

channel p 5% 10%
C 0.801 0.675

code R 2/3 3/4 9/10 2/3 3/4 9/10
Pb (in %) 1 2.2 1 2.2 1 2.2 1 2.2 1 2.2 1 2.2

exists?

Answer

If R < C we are sure that there exists a code with an output bit error probability Pb

as small as we wish.

On the other hand, if R > C we cannot have h̃(Pb) < 1− C
R .

Finally, if R > C and h̃(Pb) ≥ 1 − C
R we cannot conclude since the situation could

be possible (i.e. does not contradict the theorem) but we do not know enough about
coding so as to be sure that such a code actually exists.

So here are the conclusions:

channel p 5%
C 0.801

code R 2/3 3/4 9/10
Pb (in %) 1 2.2 1 2.2 1 2.2

R < C? yes yes no

1− C/R – – 0.109

h̃(Pb) – – 0.081 0.153

exists? yes yes yes yes no maybe

channel p 10%
C 0.675

code R 2/3 3/4 9/10
Pb (in %) 1 2.2 1 2.2 1 2.2

R < C? yes no no

1− C/R – 0.100 0.250

h̃(Pb) – 0.081 0.153 0.081 0.153

exists? yes yes no maybe no no

4.3. THE NOISY CODING THEOREM 175

Summary for Section 4.3

Shannon’s Noisy Coding Theorem: For all ε > 0 and all R < C, C being the
capacity of a DMC, there exists a code, the transmission rate of which is R and
the output bit error probability Pb of which is below ε.

Conversely, all codes for which the transmission rate is above the channel ca-

pacity have a output bit error probability Pb greater than h̃
−1 (

1− C
R

)
.

Summary for Chapter 4

Channel: input and output alphabets, transmission probabilities (pY |X=x).

DMC = Discrete Memoryless Channel.

Channel Capacity: C = maxpX
I(X;Y)

Code/Transmission Rate: Rb = logb |VU |
n

Capacity of Input-symmetric channels: C = max
PX

[H(Y)] − H(Y |X = xi) for

any of the xi ∈ VX .

Capacity of Symmetric channels: C = log |VY | − H(Y |X = xi) for any of the
xi ∈ VX .

Data Processing Lemma: pZ|x,y(z) = pZ|y(z) =⇒ I(X;Z) ≤
I(X;Y) and I(X;Z) ≤ I(Y ;Z)

Fano’s Lemma: h̃(Pe) + Pe log2(|VU | − 1) ≥ H(U |Û)

Shannon’s Noisy Coding Theorem: For all ε > 0 and all R < C, C being the
capacity of a DMC, there exists a code, the transmission rate of which is R and
the output bit error probability Pb of which is below ε.

Conversely, all codes for which the transmission rate is above the channel ca-

pacity have a output bit error probability Pb greater than h̃
−1 (

1− C
R

)
.

Historical Notes and Bibliography

This theorem was the “bombshell” in Shannon’s 1948 paper [10]. Prior to its publi-
cation, it was generally believed that in order to make communications more reliable
it was necessary to reduce the rate of transmission (or, equivalently, to increase the
“signal-to-noise-ratio”, as the 1947 engineers would have said). Shannon dispelled such
myths, showing that, provided that the rate of transmission is below the channel ca-
pacity, increased reliability could be purchased entirely by increased complexity in the
coding system, with no change in the signal-to-noise-ratio.

176 CHAPTER 4. CODING FOR NOISY TRANSMISSION

The first rigorous proof of Shannon’s noisy coding theorem was due to Feinstein in
1954 [4]. A simpler proof using random coding was published by Gallager in 1965 [5].
The converse part of the theorem was proved by Fano in 1952, published in his class
notes.

OutLook

The Noisy Coding Theorem lacks practical considerations, for it does not give concrete
ways to construct good codes efficiently. For instance, no indication of how large the
codewords need to be for a given ε; i.e. how complex the encoder and decoder need to
be to achieve a given reliability. This is the reason why “coding theory” has become a
so important field: finding good error correcting codes, “good” in the sense that the
error probability is low but the transmission rate is high, is indeed challenging.

Chapter 5

Module I1: Complements to

Efficient Coding of Information

by J.-C. Chappelier

Learning Objectives for Chapter 5

In this chapter, we present several different complements to the basics of effi-
cient coding, i.e. data compression.
Studying this chapter, you should learn more about

1. how to perform optimal variable-to-fixed length coding (Tunstall codes);

2. how to simply and efficiently encode the integers with a prefix-free binary
code (Elias code);

3. some of the techniques used for coding sequences with inner dependen-
cies (stationary source coding), as for instance the famous Lempel-Ziv
coding.

177

178CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

5.1 Variable-to-Fixed Length Coding: Tunstall’s Code

Learning Objectives for Section 5.1

In this section, you will learn:

• what ”variable-to-fixed length” coding is about;

• what ”proper message sets” are and why are they useful;

• how the first part of Shannon Noiseless Coding Theorem generalizes to
variable-to-fixed length coding of proper sets;

• what ”Tunstall message sets” are;

• and what are they useful for: providing optimal variable-to-fixed length
coding;

• how to build such sets, i.e. Tunstall codes.

5.1.1 Introduction

The variable length codewords considered in chapter 2 are not always convenient in
practice. If the codewords are, for instance, to be stored in memory, codewords the
length of which is equal to the memory word length (e.g. 8, 16 or 32 bits) would
certainly be preferred. However, it was precisely the variability of the codeword lengths
that provided efficiency to the codes presented in chapter 2! So the question is if it
is possible to get similar coding efficiency when all codewords are forced to have the
same length? The answer is yes, provided that codewords are no longer assigned to
fixed length blocks of source symbols but rather to variable-length sequences of source
symbols, i.e. variable-length segmentation of the source stream must be achieved. This
is called “Variable-to-Fixed Length coding”: the D-ary codewords have all the same
length n, but the length, LV , of the messages V to which the codewords are assigned,
is a random variable.

Since n/E [LV] is the average number of D-ary code digits per source symbol, the
optimality criterion of such a code becomes E [LV], the average encoded message length;
which should be made as large as possible.

5.1.2 Proper Sets

What properties should variable-to-fixed length codes have?

In order to be prefix-free, the codewords should correspond to the leaves of a coding
tree (see property 2.4). Furthermore, in order to be able to code any sequence from
the source, the coding tree must be complete (see definition 2.8). If indeed the code
is not complete, the sequence of symbols corresponding to unused leaves can not be
encoded!

A variable-to-fixed length code is thus required to be a proper code; i.e. its codewords
should form a proper set.

5.1. VARIABLE-TO-FIXED LENGTH CODING: TUNSTALL’S CODE 179

Definition 5.1 (Proper Set) A set of messages is a proper set if and only
if it corresponds to the complete set of leaves of a coding tree. �

Example 5.1 (Proper Set) The set
{
a, b, ca, cb, cc

}
is a proper set.

The sets
{
a, b, ca, cb

}
and

{
aa, ac, b, cb, cc

}
are not proper sets.

Here are the corresponding coding trees:

a b c

a b c

a b c

a b c

a

a b c

b c

a b c

Control Question 44

For each of the following sets, decide whether it is a proper set or not:

1. 010, 00, 1, 011

2. 000, 010, 001, 01, 1

3. 110, 010, 011, 10, 00

4. 110, 011, 00, 010, 111, 10

Answer

1. yes.

2. no: it is not prefix free.

3. no: it is not complete.

4. yes.

Theorem 5.1 The uncertainty H(V) of a proper set V for a D-ary discrete
memoryless information source, the uncertainty of which is H(U), satisfies:

H(V) = E [LV] ·H(U),

where E [LV] is the average encoded message length.

Proof The coding tree corresponding to a proper set is by definition a complete
tree, and thus the entropy of each of its internal nodes is equal to the entropy of the
source U .

180CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

Then, from the leaf entropy theorem (theorem 2.2), we have:

H(V) =
∑

PiH(U) =
(∑

Pi

)
·H(U)

et from the Path Length Lemma (lemma 2.1):

H(V) = E [LV] ·H(U)

We now can see how Shannon Noiseless Coding Theorem (part 1) applies to proper
sets of memoryless information sources:

Theorem 5.2 For any D-ary prefix-free encoding Z of any proper message
set V for a discrete memoryless information source U , the ratio of the aver-
age codeword length E [LZ], to the average encoded message length, E [LV],
satisfies

H(U)

log D
≤

E [LZ]

E [LV]

where H(U) is the uncertainty of a single source symbol.

Proof From Theorem 5.1:

H(V) = E [LV]H(U)

and from the Shannon Noiseless Coding Theorem (theorem 2.4):

H(V)

log D
≤ E [LZ] ,

thus:
H(U)

log D
E [LV] ≤ E [LZ] .

5.1.3 Tunstall message sets

Next section considers the effective procedure for building efficient variable-to-fixed
length codes, but we first require another definition; which is the topic of this section.

Definition 5.2 (Tunstall message set) A set of messages is a Tunstall
message set if and only if it is a proper set such that, in the corresponding
coding tree, every node is at least as probable as every leaf. �

5.1. VARIABLE-TO-FIXED LENGTH CODING: TUNSTALL’S CODE 181

Example 5.2 (Tunstall set)

0.49 0.21 0.21

0.063 0.027

0.09

0.30.7

0.147

0.49
0.21

0.7

0.343

0.240 0.103

0.3

This is not a Tunstall set since there is
a leaf and an internal node such that
the probability of that leaf (0.49) is
bigger than the probability of that in-
ternal node (0.3).

This is a Tunstall tree since every in-
ternal node is more probable than ev-
ery leaf.

Tunstall message sets are optimal variable length to block coding i.e. provide maximal
average length of encoded messages as the following theorem states:

Theorem 5.3 A proper message set maximizes the average encoded message
length (over all proper message sets) if and only if it is a Tunstall message
set.

Proof Let us first prove that is a proper set is not a Tunstall set then it cannot
maximize the average encoded message length.

Let W be a proper set that is not a Tunstall set. Therefore there exist in the corre-
sponding coding tree a leaf w and an internal node n∗ such that

P (n∗) < P (wi)

Consider then the coding tree consisting of moving the subtree below n∗ to the leaf
w (n∗ thus becomes a leave and w an internal node).

With the former example:

0.49

0.343 0.147

0.103 0.044

0.30.7

0.21

0.063 0.027

0.090.21

0.7

0.21

0.027

0.09

0.063

0.21

n*

0.49
w

0.3

The tree obtained by this operation still defines a proper set.

Furthermore, since P (n∗) < P (wi) the probability of all the nodes of the moved
subtree are greater in the new coding tree than in the original tree.

Thus, the average encoded message length, which according to the Path Length
Lemma is the sum of all the internal nodes probabilities, is greater for the new message
set than for the former.

Thus the former message set could not perform the maximum average encoded mes-
sage length.

182CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

Conversely, using a similar argument, a tree that is not maximal cannot be a Tunstall
set: consider the upper node where it differs from a tree that is maximal. �

5.1.4 Tunstall Code Construction Algorithm

Let n be the desired size of the codewords, and let DU and DZ respectively be the
arity of the source U and the arity of the code Z. The maximum number of codewords
is thus DZ

n.

We want to build a Tunstall set of size M for U (M ≤ DZ
n), i.e. we are looking

(among other things) for a complete coding tree, i.e. with no unused leaves. Thus we
must have M in the form of (see lemma 2.3)

M = 1 + k (DU − 1)

for some k.

To be optimal we are looking for maximal M (with M ≤ DZ
n). Thus, we must choose:

k =

⌊
DZ

n − 1

DU − 1

⌋

This leads to the following algorithm:

Tunstall’s Algorithm for Optimum Variable-to-Fixed Length Coding

1. Check whether DZ
n ≥ DU . If not, abort: variable-to-fixed length coding is

impossible.

2. Compute k = bDZ
n−1

DU−1 c

3. Compute the encoded message set size M as M = 1 + k (DU − 1)

4. Construct the Tunstall coding tree of size M (i.e. M leaves) by repeating k times
(root included):

• extend (with DU branches) the most probable node

It is easy to check that the obtained set is indeed a Tunstall set.

5. Assign a distinct DZ -ary codeword of length n to each leaf, i.e. to each message
in the Tunstall message set.

Example 5.3 DZ = 2, n = 3 (i.e. codeword = 3 bits)
U ternary source (DU = 3) such that P (U = −1) = 0.3, P (U = 0) = 0.2 and
P (U = 1) = 0.5.

Then we have:
k = b(8− 1)/2c = 3

and
M = 1 + 3 · 2 = 7

k loops:
1) extend the root

5.1. VARIABLE-TO-FIXED LENGTH CODING: TUNSTALL’S CODE 183

2) extend the most probable node:

3) extend the most probable node:

Finally, affect codewords:

V 1,1 1,0 1,-1 0 -1,1 -1,0 -1,-1

Z 000 001 010 011 100 101 110

Control Question 45

We are interested in an optimal 4 bits binary variable-to-fixed length code of the ternary
source, the symbols probabilities of which are P (U = a) = 0.6, P (U = b) = 0.3 and
P (U = c) = 0.1.

1. How many codewords has this code?

2. How many steps are required to build the tree?

3. How is the input message acaaabaaaabbaaabbbc segmented (i.e. split into parts
to be encoded)?

4. How is acaaabaaaabbaaabbbc (same message) encoded, using the convention
that the leaves are numbered according to increasing probabilities?

Answer

1. M = 15

2. k = 7

3. ac,aaab,aaaa,bb,aaab,bb,c

184CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

4. 0111011000000101011001010100: 0111, 0110, 0000, 0101, 0110, 0101, 0100.

Here is the corresponding coding tree:

.6000 .3000 .1000

a b c

.1296 .0648 .0216

.3600 .1800 .0600

a a
b b

cc

.1800 .0900 .0300

.1080.1080 .0540 .0180 .0180.0540.0360.1080.2160

0000

0100

0101

0110

0111

1010

1011

1100

0001 0010 1001 1101 0011 1000 1110

Summary for Chapter 5

variable-to-fixed length coding: encoding segment of variable length of the input
information source with codewords that have all the same size

proper set: a complete set of leaves of a coding tree (no useless leaf).

Tunstall set: a proper set such that every node of the corresponding coding tree is
at least as probable as any of its leaves.

optimality of Tunstall sets: A proper set maximizes the average encoded message
length if and only if it is a Tunstall set.

Tunstall algorithm: k = bDZ
n−1

DU−1 c,M = 1 + k (DU − 1), extend k times the most
probable node.

5.2 Coding the Positive Integers

Learning Objectives for Section 5.2

In this section, we study how to simply and efficiently encode the integers with
a prefix-free binary code (Elias code).

Let us now turn to another, completely different, aspect of efficient coding: how to
efficiently represent integers with binary codes? In this section we describe a very
clever binary prefix-free code for the positive integers that was brought by Elias.

Let us start from a usual code for integer the reader should be awared of: (most
significant bit) binary representation. Here is an example of this code, we call it here
Z0:

n 1 2 3 4 5 6 7 8

Z0(n) 1 10 11 100 101 110 111 1000

5.2. CODING THE POSITIVE INTEGERS 185

The length of these codewords is:

|Z0(n)| = blog2 nc+ 1

which is pretty close to theoretical optimum in the most general case (log2 n).

However, this code suffers a major drawback: it is far from being prefix-free. In fact,
every codeword Z0(n) is the prefix of infinitely many other codewords!

The first idea brought by Elias was to add an encoding of the length |Z0(n)| in front of
Z0(n) to make the code prefix-free. The encoding proposed is to add |Z0(n)| − 1 zeros
in front of Z0(n). Here is an example of this code, we call Z1:

n 1 2 3 4 5 6 7 8

Z1(n) 1 010 011 00100 00101 00110 00111 0001000

Z1 is now a prefix-free code. However, it length is far from being the desired one: it is
twice as long:

|Z1(n)| = 2blog2 nc+ 1

The clever trick used by Elias to get rid of this drawback was to change the encoding
of the length made by zeros for the Z1 encoding of this length. A codeword is thus
made of the concatenation of Z1(|Z0(n)|) and Z0(n).

For instance, 7 is encoded into 111 with Z0, having thus a length of 3. This leads to
the prefix Z1(3) =011, and therefore 7 is encoded into 011111 (=011,111). Here are
more examples:

n 1 2 3 4 5 6 7 8

Z ′
2(n) 11 01010 01011 011100 011101 011110 011111 001001000

Notice that Z0(n) is always starting with a 1, which is now no longer required to avoid
ambiguity. We thus can get ride of this useless 1. This leads us to the final Elias
encoding for integers, here denoted by Z2:

n 1 2 3 4 5 6 7 8

Z2(n) 1 0100 0101 01100 01101 01110 01111 00100000

This code is prefix-free. What about its length?

• for the main part:

|Z0(n)| = blog2 nc+ 1

• and for the prefix:

|Z1(|Z0(n)|)| = 2blog2(blog2 nc+ 1)c+ 1

Thus:

|Z2(n)| = 2blog2(blog2 nc+ 1)c+ 1 + blog2 nc+ 1− 1 (5.1)

= blog2 nc+ 2blog2(blog2 nc+ 1)c + 1

186CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

It is remarkable enough that Elias found a binary prefix-free code for integers, the
length of which is quite close to the optimal log2 n, and which is furthermore easily
implementable.

Control Question 46

What is the Elias encoding for 255?

Answer

Z2(255) =00010001111111.

Indeed: Z0(255) =11111111 and Z1(|Z0(255)|) = Z1(8) =0001000

Summary for Chapter 5

Elias Codes are prefix-free binary codes for integers, whose length is (asymptoti-
cally) close to optimal log2(n).

These codes result from the concatenation of a prefix, made of the first Elias code of
the length of the usual binary representation of the number to be encoded, and
a suffix, made of the usual binary representation without its most significant
bit.

5.3 Coding of Sources with Memory

Learning Objectives for Section 5.3

After studying this session, you should know:

1. how first part of Shannon Noiseless Coding Theorem generalizes to sta-
tionary sources;

2. several methods to perform compression of stationary sources message
flows:

(a) Elias-Willems Recency encoding;

(b) Lempel-Ziv codes.

Let us finish this chapter by touching upon the difficult subject of coding sources with
memory, i.e. with internal dependencies in the symbol sequences.

We have see in chapter 2 that Huffman coding is optimal for coding a fixed number
of independent and identically distributed random variables (i.e. several independent
occurrences of the same source). What about the case where the symbols are depen-
dent?

The sources considered in this section are thus stationary stochastic process (see
definitions 3.1 and 3.2 in chapter 3); more precisely, sources that emit sequences
U1, U2, U3, . . . of D-ary random variables such that for every t ≥ 1 and every n ≥ 1, the

5.3. CODING OF SOURCES WITH MEMORY 187

random vectors (U1, U2, . . . , Un) and (Ut+1, Ut+2, . . . , Un+n) have the same probability
distribution.

Example 5.4 Let us consider as an example of a source with internal dependencies,
the ”oscillatory source” U consisting of a stationary binary source such that pU(0) =
pU (1) = 0.5 and:

P (Ui = 0|Ui−1 = 0) = 0.01 P (Ui = 1|Ui−1 = 0) = 0.99
P (Ui = 0|Ui−1 = 1) = 0.99 P (Ui = 1|Ui−1 = 1) = 0.01

(and no other longer term dependencies, i.e. P (Ui|Ui−1...U1) = P (Ui|Ui−1), otherwise
at least one of the above equations could not hold).

The entropy of a single symbol of this source is clearly H(U) = 1 bit. What about
the entropy rate?

h∞ = lim
i→∞

H(Ui|Ui−1Ui−2...U1)

= lim
i→∞

H(Ui|Ui−1)

stationarity
= H(U2|U1)

= P (U1 = 0) · h̃(0.01)

+ P (U1 = 1) · h̃(0.99)

= 2 · 0.5 · h̃(0.01)

= 0.081 bit

where h̃(p) is the entropy of a binary random variable of parameter p:
h̃(p) = −p log(p)− (1− p) log(1− p).

For such discrete stationary sources, the first part of the Shannon Noiseless Coding
Theorem generalizes as:

Theorem 5.4 The average length E [LZ] of a prefix-free D-ary code Z for
segments of length k of a stationary discrete source U verifies:

h∞(U)

log D
≤

E [LZ]

k

where h∞(U) is the entropy rate of the source U as defined in theorem 3.1.

Proof The proof comes directly from the first part of the Shannon Noiseless Coding
Theorem and the properties of entropy rates. Indeed:

k · h∞(U)

log D
≤

H(U1...Uk)

log D
≤ E [LZ]

188CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

5.3.1 Huffman coding of slices

One simple way to efficiently encode stationary sources consists in segmenting the
source symbol flow into sequences of fixed length k and consider this new source,
hereby designed as U (k), for (memoryless) Huffman coding.

For instance, if the original flow is 001010011010... and we take k = 3, we will
consider the messages 001, 010, 011, etc... separately.

The larger k, the more dependencies U (k) handles and the more efficient the corre-
sponding Huffman coding will be. This solution is unfortunately requiring too much
computation power to be used in practice for large k.

Example 5.5 Here is the Huffman code of the oscillator source of example 5.4 with
slices of size 3.

U P (U)

000 0.5 · 0.01 · 0.01 = .00005
001 0.5 · 0.01 · 0.99 = .00495
010 0.5 · 0.99 · 0.99 = .49005
011 0.5 · 0.99 · 0.01 = .00495
100 0.5 · 0.99 · 0.01 = .00495
101 0.5 · 0.99 · 0.99 = .49005
110 0.5 · 0.01 · 0.99 = .00495
111 0.5 · 0.01 · 0.01 = .00005

111000 001

0.0001

0.00505

110

0.01

0.0199

011 100 101 010

0.0099

0.50995

E [L] = 1 + 0.50995 + 0.0199 + 0.01 + 0.0099 + 0.00505 + 0.0001 = 1.5549

= 0.5183 per symbol

5.3.2 Elias-Willems Source Coding Scheme

The Elias-Willems scheme for coding source with memory is the following:

1. split the source symbol flow in blocks of size k (i.e. U (k) as in the former section)

2. code each block with the Elias code of its recency distance1.

The only piece in the above scheme we are still at this point lacking is the “recency
distance”.

1Elias-Willems is actually using recency rank, which is smaller than recency distance but does not
affect the general results presented here.

5.3. CODING OF SOURCES WITH MEMORY 189

Definition 5.3 (Recency Distance) The Recency Distance of a symbol v
at position n in a symbol sequence V is Rn(v) = n − Ln(v), where Ln(v) is
the last index t (before n) such that Vt = v:

Ln(v) = max {t < n : Vt = v}

Rn(v) is thus the number of symbols received at time n since the last reception
of v (before n).
For recency distance to be defined for every possible n (even the first ones), a
convention needs to be chosen to give an initial index value to every possible
symbols. �

Definition 5.4 (Recency Distance Series) The recency distance series N
associated with a random process V is the random process defined by Nn =
Rn(Vn). �

Example 5.6 (Recency Distance) As first example, consider the sequence
01011010 out of a binary source. The corresponding recency distances, with the
convention that 0 has default initial index -1 and symbol 1 has 0, are then:

vn Rn(0) Rn(1) Nn

0 2 1 2
1 1 2 2
0 2 1 2
1 1 2 2
1 2 1 1
0 3 1 3
1 1 2 2
0 2 1 2

And the corresponding recency distance series is thus 2,2,2,2,1,3,2,2.

For a second example, consider the source V the symbols of which are 2 bits words:
00, 01, ... and the convention that 00 has initial default index value -3, 01 -2, 10 -1
and 11 0.

For the sequence 11,01,00,10,01,11,01,01,00, the recency distance series will thus
be 1,4,6,5,3,5,2,1,6.

Control Question 47

Considering a binary source with single bit symbols and the convention that 0 has initial
default index -1 and 1 0, what is the recency distance series for the corresponding source
sequence: 0001101000111?

Answer

2,1,1,4,1,3,2,2,1,1,4,1,1.

190CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

Control Question 48

Considering a binary source with single bit symbols and the convention that 0 has
initial default index -1 and 1 0, what is source sequence corresponding to the recency
distance series: 1,3,1,3,1,3,2,2?

Answer

10011010

Here comes now a property that will be useful to see how efficient the Elias-Willems
scheme is.

Property 5.1 If the source V is stationary and ergodica, then the symbol v
appears on average every 1/pV (v) times:

E [Ni|Vi = v] = E [Ri(v)] =
1

pV (v)

aIf you do not know what “ergodic” means, do not bother too much here, since almost
all interesting real information sources are ergodic. If you want to know, look in any good
book of probabilities, dealing with random process.

Proof Let kn(v) be the number of occurrences of v in a sequence of length n from
source V . The number of intervals between two consecutive repetitions of v is thus
kn(v) and the total length of these intervals is n. The average interval on a sequence
of length n is thus n/kn(v). When n grows to infinity, because the source is ergodic,
kn(v) tends to infinity as (n · pV (v)) and thus

E [Ri(v)] = lim
n→∞

n

kn(v)
=

1

pV (v)

Let us now prove that Elias coding of recency distance performs a coding that is asymp-
totically efficient, i.e. asymptotically to the theoretical optimum given by theorem 5.4.

Theorem 5.5 The expected length E [|Z2(N)|] of a Elias-Willems encoding
with blocks of size k of a stationary source U verifies:

hk(U) ≤
E [|Z2(N)|]

k
≤ hk(U) +

2

k
log2(k · hk(U) + 1) +

1

k

Corollary 5.1 The expected length E [|Z2(N)|] of a Elias-Willems encoding
with blocks of size k of a stationary source U verifies:

lim
k→∞

E [|Z2(N)|]

k
= h∞(U)

5.3. CODING OF SOURCES WITH MEMORY 191

Proof What is the expected length of a Elias-Willems code?

E [|Z2(N)|] =
∑

v∈V

pV (v) ·E [|Z2(Ni(Vi))||Vi = v] =
∑

v∈V

pV (v) ·E [|Z2(Ri(v))|]

But, from equation 5.2 we have:

E [|Z2(Ri(v))|] ≤ log2(Ri(v)) + 2 log2(log2(Ri(v)) + 1) + 1

Using Jensen inequality we have:

E [|Z2(N)|] ≤
∑

v∈V

log2(E [Ri(v)]) + 2 log2(log2(E [Ri(v)]) + 1) + 1

and from property 5.1

E [|Z2(N)|] ≤ −
∑

v∈V

log2(pV (v)) + 2
∑

v∈V

log2(1− log2(pV (v))) + 1

i.e., using Jensen inequality once again:

E [|Z2(N)|] ≤ H(V) + 2 log2(H(V) + 1) + 1

Notice finally that H(V) = H(U (k)) = H(U1, ..., Uk) = k · hk(U), thus:

E [|Z2(N)|]

k
≤ hk(U) +

2

k
log2(k · hk(U) + 1) +

1

k

Control Question 49

How is the sequence 100000101100 encoded using Elias-Willems scheme with k = 2
and the convention that 00 has initial default index value -3, 01 -2, 10 -1 and 11 0?

Answer

The answer is 01000110110101011010101.

With k = 2, 100000101100 is split into 10,00,00,10,11,00 which corresponds to the
recency distance series: 2,5,1,3,5,3

which is encoded, using Elias code for integers, into 0100, 01101, 1, 0101, 01101, 0101.

5.3.3 Lempel-Ziv Codings

The idea of the very popular Lempel-Ziv codings is quite similar to the former Elias-
Willems coding scheme: using ideas similar to the recency distance, it also aims at being
universal, i.e. to work well for different kind of stationary source without precisely
knowing all their statistical properties.

There exist many variations of the basic Lempel-Ziv algorithm, using dictionaries, post-

192CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

processing and many other improvements. Among the most famous variants we can
cite:

Name Authors Method

LZ77 Lempel & Ziv 1 character and 1 pair of fixed-
size pointers

(1977) no dictionary

LZ78 Lempel & Ziv same as LZ77 but with a dictio-
nary

(1978) (pointers in the dictionary)

LZSS Storer & Szymanski 1 fixed-size pointer or 1 character
(+ 1 indicator bit)

(1982) no dictionary

LZW Welch only fixed-size pointers
(1984) alphabet included in the dictio-

nary

These algorithms are the most largely used compression algorithms in practice (e.g.
in zip, compress, gzip, ...). The main reasons are because these algorithms perform
good compression rate in a efficient manner. These algorithms are indeed linear time
complex and do not require much memory.

In this section, we focus on the core of these compression algorithms by presenting the
simplest of them: LZ77.

For this code, the codewords are tuples (i, j, u). i and j are integers and u is a source
symbol.

The codeword (i, j, u) represents a sequence of symbols that can be obtained from the
current sequence by

• copying j symbols starting from i position back

• and adding the symbol u at the end.

If i is null, j is ignored.

Example 5.7 (LZ77 codeword) For instance, if the current decoded sequence is
10010, the codeword (3, 2, 1) represents the sequence 011: copying 2 symbols (01)
starting from 3 positions back (10|010), and adding 1 at the end.

If j is greater than i, the copying of character continues with the newly copied char-
acters (i.e. the buffer starting at i positions back is cyclic).

For instance, if the current decoded sequence is 10010, the codeword (3, 5, 1) rep-
resents the sequence 010011: starting from three positions back (10|010) copying
five symbols: first the thre symbols already existing at i = 3 positions back (010),
leading to 10010|010, and going on with the next two characters, 01 from the newly
added character, leading to 1001001001. The decoding finally ends adding the 1 (last
element of the codeword) at the end, leading to 10010010011.

In summary: 10010 + (3, 5, 1) = 10010010011.

5.3. CODING OF SOURCES WITH MEMORY 193

Example 5.8 (LZ77 decoding) Here is an example of how the sequence
(0,0,0) (0,0,1) (2,1,0) (3,2,1) (5,3,1) (1,6,0)
is decoded:

codeword cyclic buffer added sequence complete decoded sequence
(0,0,0) – 0 0

(0,0,1) 0 1 01

(2,1,0) 01 0101... 00 0100

(3,2,1) 0 100 100100... 101 0100101

(5,3,1) 01 00101 00101... 0011 01001010011

(1,6,0) 0100101001 1 1111... 1111110 010010100111111110

The final result is thus 010010100111111110.

The corresponding coding algorithm, using a sliding window buffer for remembering
the past context, is the following:

1. look in the current context (i.e. the beginning of the sequence still to be encoded)
for the shortest sequence that is not already in the buffer;

2. remove the last character u of this unseen sequence and look for the closest
corresponding sequence back in the buffer;

3. emit the corresponding back position (i) and length (j), followed by the removed
last character (u)

4. update the buffer (with the newly encoded sequence) and go back in 1 as long as
there is some input.

Here is an example of this encoding algorithm:

Example 5.9 (LZ77 encoding) Consider the message 111111111101111011 to be
encoded. At the beginning, since the buffer is empty, the first pointer pair must be
(0,0) and the corresponding character is the first character of the sequence. Thus the
first codeword is (0, 0, 1).

Now the buffer is updated into 1. With the convention used for j > i, we are now
able to encode sequences of any length made only of 1. Thus the sequence considered
for encoding, i.e. the shortest sequence starting after the last encoded sequence and
not already in the (cyclic) buffer is now: 1111111110.

This sequence is encoded into the codeword (1, 9, 0): loop 1 step back in the buffer,
copy 9 characters from the buffer (with repetitions since 9 > 1, and add the last part
of the codeword, here 0.

So the part of the message encoded so far (and the buffer) is 11111111110, and the
part still to be encoded is 1111011.

Back to step 1: what is the shortest sequence to be encoded that is not contained in
the buffer?

At this stage, it is 1111011. Removing the last char (1) we end up with 111101 which
in the current buffer correspond to i = 5 and j = 6 (using once again the cyclic aspect
of the buffer: i < j).

194CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

The corresponding codeword is thus (5, 6, 1).

To summarize: 111111111101111011 is encoded into (0, 0, 1)(1, 9, 0)(5, 6, 1).

Control Question 50

How is the sequence 100000101100 encoded using LZ77 algorithm?

Answer

The answer is (0,0,1) (0,0,0) (1,4,1) (2,2,1) (3,1,0)

Control Question 51

How is the sequence (0,0,0) (1,2,1) (2,5,0) decoded (assuming LZ77 encoding)?

Answer

0001010100

5.3.4 gzip and bzip2

When I will have time, I will here add a few words on gzip and maybe on bzip2,
compression algorithms which are very popular in GNU world.

What I can now say in the only minute I have is that gzip is using a variation of the
LZ77 algorithm combined with a post-processing of pointers using Huffman coding.

Interested readers could refer to http://www.gzip.org/algorithm.txt for more de-
tails.

Summary for Chapter 5

Shannon Noiseless Coding Theorem for prefix-free codes of stationary source:
h∞(U)
log D ≤ E[LZ]

k .

Recency Distance Rn(v) is the number of symbols received at time n till the last
reception of v (before n).

Elias-Willems Codes Elias coding of recency distance.

Lempel-Ziv Algorithm LZ77: using a (cyclic) buffer remembering past sequences,
encode sequences with codewords consisting of one position back in the buffer,
one length and one character to be added at the end of the sequence encoded
so far.

5.3. CODING OF SOURCES WITH MEMORY 195

Summary for Chapter 5

variable-to-fixed length coding: encoding segment of variable length of the input
information source with codewords that have all the same size

proper set: a complete set of leaves of a coding tree (no useless leaf).

Tunstall set: a proper set such that every node of the corresponding coding tree is
at least as probable as any of its leaves.

optimality of Tunstall sets: A proper set maximizes the average encoded message
length if and only if it is a Tunstall set.

Tunstall algorithm: k = bDZ
n−1

DU−1 c,M = 1 + k (DU − 1), extend k times the most
probable node.

Elias Codes are prefix-free binary codes for integers, whose length is (asymptoti-
cally) close to optimal log2(n).

These codes result from the concatenation of a prefix, made of the first Elias code
of the length of the usual binary representation of the number to be encoded,
and a suffix, made of the usual binary representation without its most significant
bit.

Shannon Noiseless Coding Theorem for prefix-free codes of stationary source:
h∞(U)
log D ≤ E[LZ]

k .

Recency Distance Rn(v) is the number of symbols received at time n till the last
reception of v (before n).

Elias-Willems Codes Elias coding of recency distance.

Lempel-Ziv Algorithm LZ77: using a (cyclic) buffer remembering past sequence,
encode sequences with codewords consisting of one position back in the buffer,
one length and one character to be added at the end of the sequence so far.

Historical Notes and Bibliography

In spite of its fundamental importance, Tunstall’s work was never published in the
open literature. Tunstall’s doctoral thesis (A. Tunstall, “Synthesis of Noiseless Com-
pression Codes”, Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, 1968),
which contains this work, lay unnoticed for many years before it became familiar to
information theorists.

To be continued...

OutLook

196CHAPTER 5. COMPLEMENTS TO EFFICIENT CODING OF INFORMATION

Chapter 6

Module I2: Error Correcting

Codes

by J.-C. Chappelier

Learning Objectives for Chapter 6

After studying this chapter, you should know more about error-correcting
codes, and more precisely:

1. what is minimum distance of a code and how many errors a code of a
given minimum distance can correct;

2. the basics of linear codes: how to construct such codes, how to encode
and decode with linear code, ...;

3. what ”Hamming Codes” are and how to use them;

4. the basics of cyclic codes;

5. and the basics of convolutional codes: encoder circuit, lattice represen-
tation, Viterbi algorithm for decoding.

Introduction

The fundamental Shannon’s Noisy Coding Theorem presented in chapter 4 provides
theoretical bounds on the coding of messages for transmission over a noisy channel.
Unfortunately, this important theorem (nor its proof) does not give any hint on how
to actually build “good” error correcting codes in practice.

This is the reason why a theory of error correcting codes has been developing for many
years. This theory focuses mainly on the algebraic structure of codes. The basic idea
is to give structure to the set of codewords in order to use this structure to provide
hints for decoding messages in case of transmission error.

197

198 CHAPTER 6. ERROR CORRECTING CODES

Due to its strong mathematical grounding, “algebraic coding theory” is now well es-
tablished as a full scientific field on its own, with applications to many problems going
beyond channel coding.

The purpose of this chapter is certainly not to provide an exhaustive view of algebraic
error correction codes (a whole book would hardly do it) but rather to introduce the
key ideas of the domain. The reader interested in investing this topic further is referred
to the rather vast literature of this field.

The study of this chapter requires a bit of mathematical background, especially in the
field of algebraic structures.

6.1 The Basics of Error Correcting Codes

Learning Objectives for Section 6.1

In this section, the following key points about error correcting codes are pre-
sented:

1. what is a block-code;

2. how distance between codewords is measured;

3. what is the weight of a codewords;

4. what are minimum distance and minimum weight of a code;

5. and how useful they are for determining how many errors a code can
detect and/or correct.

6.1.1 Introduction

The context of the present chapter is noisy transmission as presented in the introduction
of chapter 4.

When a codeword zi is transmitted via a noisy channel and ẑ is received, the trans-
mission error corresponds to the difference between ẑ and zi: e = ẑ − zi.

The key idea of algebraic coding is to add algebraic structure to the set of codewords
such that the transmission error can easily be expressed in term of the operations
defining this algebraic structure (starting from the above “difference” operation).

For instance, if we are dealing with binary codewords (e.g. 10011) the “natural”
difference on binary words is the bit by bit difference (a.k.a. “exclusive or” for readers
familiar with computer sciences), i.e. the difference in each position such that there is
a 0 whenever the two corresponding bits are the same and 1 when they are not: 0 - 1
= 1 and, as usual, 0 - 0 = 0, 1 - 1 = 0, 1 - 0 = 1.

Example 6.1 (Binary Difference) Here is an example of the difference of two bi-
nary words:

11011− 01101 = 10110

Technically speaking, the above defined operation actually corresponds to “modulo 2”

6.1. THE BASICS OF ERROR CORRECTING CODES 199

arithmetic, i.e. the Galois Field GF(2) is considered and codewords are elements of the
vector space GF(2)n (where n is the length of the codewords). This framework easily
extends to any D-ary codes using “modulo D” arithmetic.

Definition 6.1 (Block-Code) A D-ary block-code∗ of length n is an non-
empty subset of the vector space of n-tuples GF(D)n (i.e. D-ary words of the
same length n, considered as “row vector”). �

Example 6.2 (Block-Codes) The set {1101, 0110, 1110} is an example of a bi-
nary block-code.

Another example of block-code, considering ternary codes using the symbols 0 1 and
2, such that 1+2 = 0 (i.e. GF(3) arithmetic), is given by the set {120, 201, 222, 010}.

The set {011, 110, 10} is not a block-code since these words have not all the same
length.

Two important notions in the field of algebraic error codes are now introduced: the
Hamming distance between words and the weight of a word. How this notions relates
to the problem of error correction is shown in the following section.

6.1.2 Hamming Distance and Codeword Weight

Definition 6.2 (Hamming distance) The Hamming distance∗, d(zi, zj),
between two words of the same length z and z′ (i.e. two n-tuples in the
most general case) is the number of symbols (i.e. positions) in which z and z′

differ. �

Example 6.3 (Hamming distance) The Hamming distance between 101010 and
111010 is 1 since these two words differ only in the second position.

The Hamming distance between 1010 and 0101 is 4 since these two words differ in
all positions.

The Hamming distance between 1010 and 111010 in not defined (and will not be
considered).

The Hamming distance is indeed a metric (i.e. following three axioms of metric dis-
tance) for n-tuples (over a non empty set!). The demonstration is left as an exercise.

Definition 6.3 (Codeword Weight) The weight∗ of a word is the number
of non-zero symbols in it. �

Example 6.4 (Codeword Weight) The weight of 10110 is 3, whereas the weight
of 00000000 is 0 and the weight of 001000 is 1.

200 CHAPTER 6. ERROR CORRECTING CODES

Property 6.1 The Hamming distance between two codewords is the weight of
their difference :

d(zi, zj) = w(zi − zj)

denoting by d(·) the Hamming distance and w(·) the weight.

Proof zi and zj differ in a position if and only if zi− zj is non-zero in that position.

�

Example 6.5 Here is an example of the equivalence between the Hamming distance
of two binary words and the weight of their difference:

d(10110, 11010) = 2

w(10110− 11010) = w(01100) = 2

Here comes now some useful properties of the codeword weights.

Property 6.2 The weight of a codeword is always positive or null.

Trivial: by definition.

Definition 6.4 (null codeword) The null codeword∗ is the codeword made
only of zeros.
It will be denoted by 0. �

Property 6.3 The weight of a codeword is 0 if an only if the codeword is the
null codeword 0.

Property 6.4 The weight is symmetric: for every codeword zi, w(zi) =
w(−zi) (where −zi is the word in which each symbol is the opposite of the
corresponding symbol in zi).

Example 6.6 (Weight symmetry) Considering ternary codes using the symbols
0 1 and 2, such that 1 + 2 = 0 (i.e. GF(3) arithmetic), we have:

w(−1202102) = w(2101201) = 5 = w(1202102)

Notice that in the binary case, the latest property is trivial since in that case −zi = zi

for every zi.
1

Property 6.5 For every codewords zi and zj, we have:

w(zi) + w(zj) ≥ w(zi + zj)

1Recall that in the binary case, −1 = 1.

6.1. THE BASICS OF ERROR CORRECTING CODES 201

Example 6.7 In the binary case, we have for instance:

w(110101) + w(010101) = 4 + 3 = 7 ≥ 1 = w(100000) = w(110101 + 010101)

Considering ternary codes using the symbols 0 1 and 2 as above, we have for instance:

w(01221021)+w(21002010) = 6+4 = 10 ≥ 5 = w(22220001) = w(01221021+21002010)

Proof These properties directly comes from property 6.2 and the fact that the Ham-
ming distance is indeed a metric. �

Control Question 52

1. What is the weight of 11101101?

2. What is the weight of 0?

3. What is the weight of 1?

4. What is the weight of 2?

5. What is the weight of 1221032?

6. What is the Hamming distance between 11 and 00?

7. What is the Hamming distance between 101 and 001?

8. What is the Hamming distance between 1234 and 3214?

Answer

Weights: 6; 0; 1; 1; 6.

Hamming distances: 2; 1; 2.

Why are Hamming distance and weight of fundamental importance for algebraic error
correction?

In the framework defined in the previous section, where the error e that occurred in
the transmission where zi was emitted and ẑ received is defined as e = ẑ − zi, the
number of errors that occurred in transmission now appears to be simply the weight
of e, i.e. w(ẑ − zi). Due to property 6.1 this is the Hamming distance d(ẑ, zi) between
the emitted codeword and the one received.

In this framework, detecting an error then simply means detecting non-null weights.
Correcting an error however, implies to be able to further compute the actual difference
(without knowing zi, of course! Only ẑ is known at the reception).

6.1.3 Minimum Distance Decoding and Maximum Likelihood

How could a block-code decoder take its decision to decode a received word? A natural
intuitive answer is to assume the smallest number of errors (i.e. w(e) minimum), which,

202 CHAPTER 6. ERROR CORRECTING CODES

according to what has just been said, leads to take the closest codeword (i.e. d(ẑ, zi)
minimum).

For instance, if the only two possible codewords are 000 and 111 and 010 is received,
we certainly would like2 to have it decoded as 000.

Definition 6.5 (Minimum Distance Decoding) A code C is said to use
minimum distance decoding∗ whenever the decoding decision D consists, for
any received word ẑ, in choosing (one of) the closest codeword(s):

D(ẑ) = Argmin
z∈C

d(z, ẑ)

How is minimum distance decoding mathematically sound?

In the case of the Binary Symmetric Channel (see example 4.1), this intuitively sensible
minimum distance decoding procedure follows from “Maximum Likelihood Decoding”.

Let us see the decoding procedure from a probabilistic (Bayesian) point of view. When
a word ẑ is received, the most likely codeword to have been emitted (knowing that this
word is received) is the codeword z which maximize the probability P (X = z|Y = ẑ)
(where X is the input of the channel and Y its output).

In practice this probability is not easy to cope with3 if the distribution P (X = zi)
of the codewords at the emission (so called “a priori probabilities”) are not known.
In this context, no further assumption is made but the less biased one that all the
codewords are equally likely (maximum entropy assumption). Then it comes:

Argmax
z∈C

P (X = z|Y = ẑ) = Argmax
z∈C

P (Y = ẑ|X = z) · P (X = z)

P (Y = ẑ)
(6.1)

= Argmax
z∈C

P (Y = ẑ|X = z) · P (X = z) (6.2)

= Argmax
z∈C

P (Y = ẑ|X = z) (6.3)

(6.4)

The last equality is obtained using the equally likely codewords hypothesis.

The remaining term P (Y = ẑ|X = z) is the so-called likelihood, and it finally happen
that the decoder should decode ẑ by the most likely codeword, i.e. the codeword z
that maximizes P (Y = ẑ|X = z).

So what?

Well, the last term P (Y = ẑ|X = z) appears to be more easy to handle than the first
P (X = z|Y = ẑ). For instance in the case of a discrete memoryless channel (DMC,
see 4.1) this turns into the product of the transmission probabilities for each symbol.

In the further case of a BSC, where all symbols have the same error probability p, this
probability simply becomes:

P (X = z|Y = ẑ) = pd(z,bz)(1− p)n−d(z,bz)

2knowing nothing else
3or even to estimate, although this is possible.

6.1. THE BASICS OF ERROR CORRECTING CODES 203

since there are exactly d(z, ẑ) symbols which have been corrupted by the transmission
and n− d(z, ẑ) which have been transmitted correctly.

It is then easy to see that the the codeword z that maximizes P (Y = ẑ|X = z) = is
the one that minimizes the distance d(z, ẑ).

This proves that for a BSC, minimum distance decoding and maximum likelihood
decoding are equivalent.

6.1.4 Error Detection and Correction

Is there a way to know a priori how many errors a given code can correct? detect?4

The answer is yes and relies mainly on an important characteristic of a block-code: its
minimum distance.

Definition 6.6 (Minimum Distance of a Code) The Minimum Dis-
tance∗ dmin(C) of a code C = {z1, ..., zi, ..., zM} is the minimum (non null)
Hamming distance between any two different of its codewords:

dmin(C) = min
i6=j

d(zi, zj).

The following results about error correction and detection illustrates why the minimum
distance of a code is of central importance in error correcting coding theory.

Theorem 6.1 (Error-Correcting and Detection Capacity) A block-
code of length n using minimum distance decoding can, for any two integers
t and s such that 0 ≤ t ≤ n and 0 ≤ s ≤ n − t, correct all patterns of t or
fewer errors and detect all patterns of t + 1, ..., t + s errors if and only if its
minimum distance is strictly bigger than 2t + s.

Proof The implication is demonstrated ad absurdio:
C cannot correct all patterns of t or cannot detect all patterns of t + 1, ..., t + s errors
if and only if dmin(C) ≤ 2t + s

If the code C cannot correct all patterns of less than (including) t errors, this means
there exists at least one codeword zi and one error pattern e of weight less than t such
that the decoding D(zi + e) is not zi. Let us call zj the codeword decoded instead of
zi in this case: zj = D(zi + e).

Using triangle inequality for metric d, we have:

d(zi, zj) ≤ d(zi, zi + e) + d(zi + e, zj)

But d(zi, zi + e) = w(e) ≤ t and d(zi + e, zj) ≤ d(zi + e, zi) since the code is using
minimum distance decoding. Thus

d(zi, zj) ≤ t + t ≤ 2t + s

4By “detecting an error” we actually mean “detecting but not correcting an error”, since of course
correcting an error implies having detected it!

204 CHAPTER 6. ERROR CORRECTING CODES

and therefore dmin(C), which is less than or equal to d(zi, zj), is also less than or equal
to 2t + s.

If on the other hand the code can correct all patterns of less than (including) t errors
but cannot detect all patterns of t+1, ..., t+s, there exists at least one codeword zi and
one error pattern e of weight between t+1 and t+s which is not detected but decoded
into another codeword zj : D(zi + e) = zj. Introducing the error e′ = zj − (zi + e),
we also have D(zj + e′) = zj , i.e. e′ is an error that is corrected when applied to zj .
Since w(e′) = d(zj +e′, zj) = d(zi +e, zj) ≤ d(zi +e, zi) (because of minimum distance
decoding), we have both w(e′) ≤ t + s and D(zj + e′) = zj . Thus w(e′) must be less
than (or equal to) t. This allows us to conclude similarly to above:

d(zi, zj) ≤ d(zi, zi + e) + d(zi + e, zj) ≤ (t + s) + t = 2t + s

and therefore dmin(C) ≤ 2t + s.

Thus if C cannot correct all patterns of t or cannot detect all patterns of t+1, ..., t+s
errors then dmin(C) ≤ 2t + s.

Conversely, if dmin(C) ≤ 2t + s, there exists two distinct codewords, zi and zj , such
that d(zi, zj) ≤ 2t + s. This means that the weight of the vector z = zi − zj is also
less than 2t + s.

But any vector z of weight less than (or equal to) 2t + s can be written as the sum of
two vectors e and f such that w(e) ≤ t and w(f) ≤ t + s: take the first components
up to t non-zero as the components of e [or all the components if w(z) < t] and the
remaining components (zero elsewhere) for f . For instance 011010, can be written
as 010000+ 001010 (t = 1 and s = 1).

Thus, there exists two errors e and e′ (take e′ = −f) such that w(e) ≤ t, w(e′) ≤ t+s
and zi − zj = e− e′; i.e. zi + e′ = zj + e.

This means that two distinct codewords and two error patterns will be decoded the
same way (since zi + e′ = zj + e, D(zi + e′) = D(zj + e).

This implies that (at least) either zi + e′ is not corrected (D(zi + e′) 6= zi) or zj + e
is not detected (D(zj + e) = zi).

Thus not all patterns of less than (including) t error can be corrected or not all
patterns of t + 1, ... t + s errors can be detected. �

Property 6.6 (Maximum Error-Detecting Capacity) A block-code C
using minimum distance decoding can be used to detect all error patterns of
dmin(C)− 1 or fewer errors.

Proof Use t = 0 and s = dmin(C)− 1 in the above theorem. �

Property 6.7 (Maximum Error-Correcting Capacity) A block-code C
using minimum distance decoding can be used to correct all error patterns
of (dmin(C) − 1)/2 (Euclidean, also called integer, division) or fewer errors,
but cannot be used to correct all error patterns of 1 + (dmin(C) − 1)/2 errors.

6.1. THE BASICS OF ERROR CORRECTING CODES 205

Proof Use t = (dmin(C)− 1)/2 and s = 0 in the above theorem.

(dmin(C)−1)/2 is furthermore the maximum t that can be used in the above theorem,
since dmin(C) ≤ 2 · (1+(dmin(C)−1)/2) [Recall that / denotes the Euclidean division].

�

Example 6.8 A block-code having a minimum distance of 8 can be used to either

• correct all error patterns of less than (including) 3 errors and detect all patterns
of 4 errors (t = 3, s = 1);

• correct all error patterns of less than 2 errors and detect all patterns of 3 to 5
errors (t = 2, s = 3);

• correct all error patterns of 1 error and detect all patterns of 2 to 6 errors (t = 1,
s = 5);

• detect all patterns of less than (including) 7 errors (t = 0, s = 7).

A block-code having a minimum distance of 7 can either

• correct all error patterns of less than (including) 3 errors (t = 3, s = 0);

• correct all error patterns of less than 2 errors and detect all patterns of 3 to 4
errors (t = 2, s = 2);

• correct all error patterns of 1 error and detect all patterns of 2 to 5 errors (t = 1,
s = 4);

• detect all patterns of less than (including) 6 errors (t = 0, s = 6).

Example 6.9 To be able to correct all patterns of 1 error (and that’s it), a block-code
must have a minimum distance at least equal to 3.

Control Question 53

1. A communication engineer want to have a channel where all patterns of 3 or less
errors are corrected. Can he use a block code with a minimum distance of 5?

2. How many errors can be corrected at most with a block code with a minimum
distance of 6?

3. Can such a code furthermore detect errors? If yes, how many?

Answer

1. A block code with minimum distance of 5 can at most correct all patterns of
(5− 1)/2 = 2 or less errors.

The answer is thus: no.

206 CHAPTER 6. ERROR CORRECTING CODES

2. A block code with minimum distance of 6 can at most correct all patterns of
(6− 1)/2 = 2 or less errors.

3. In such a case 2t = 2 · 2 = 4, thus the code can furthermore detect all patterns
of 3 errors (s = 1). Indeed: 6 > 2 · 2 + 1 (dmin(C) > 2t + s).

Summary for Chapter 6

block-code: a non-empty set of words of the same length, considered as “row vec-
tors”.

weight: (of a word) the number of non-zero symbols.

Hamming distance: the number of coordinates in which two vectors differ.

The Hamming distance between two words is the weight of their difference.

minimum distance decoding: error correction framework in which each received
word is decoded into the closest (according to Hamming distance) codeword.

maximum likelihood decoding: error correction framework in which each re-
ceived word ẑ is decoded into (one of) the most likely codeword(s) z, i.e. a
codeword such that P (Y = ẑ|X = z) is maximal (with X the input of the noisy
channel and Y its output).

minimum distance of a code: the minimum (non null) Hamming distance be-
tween any two (different) codewords.

error correcting and detecting capacity: A block-code C of length n using min-
imum distance decoding can, for any two integers t and s such that 0 ≤ t ≤ n
and 0 ≤ s ≤ n−t, correct all patterns of t or fewer errors and detect all patterns
of t + 1, ..., t + s errors if and only if its minimum distance dmin(C) is strictly
bigger than 2t + s:

dmin(C) > 2t + s ⇐⇒ C corrects t and detects t + s errors.

6.2 Linear Codes

Because of their properties and their simplicity, linear codes, which are studied in this
section, are of major interest in error coding. One of their main advantage in practice
is that they are easy to implement.

6.2. LINEAR CODES 207

Learning Objectives for Section 6.2

In this section, the basics of linear codes are presented. What you should know
about this topic is:

1. what is a (n,m)D-ary linear code is;

2. that for such codes minimum distance and minimum weight are equiva-
lent;

3. how to encode using a generator matrix;

4. what the systematic form generator matrix of a linear code;

5. how to decode using verification matrix and syndrome table;

6. how to compute the minimum distance of a linear code;

7. what binary Hamming codes are and how to use them.

6.2.1 Definitions

Linear codes are block-codes on which an algebraic structure is added to help decoding:
the vector space structure.

Definition 6.7 (Linear Code) An (n,m)D-ary linear code∗ (1 ≤ m ≤ n) is
a m-dimensional subspace of the vector space GF(D)n of n-tuples over GF(D).

�

Looking at the definition of block-codes, the above definition could be rephrased: a
linear code is a block-code which is a vector space.

Example 6.10 (Linear Code) The code {1101, 0110, 1110} given in example 6.2
is not a linear code since 0000 is not part of it (it could therefore not be a vector
space).

The (binary) code {0000, 1101, 0110, 1011} is a linear code since any (binary) linear
combination of codewords is also a codeword. It is furthermore a (4, 2) binary linear
code since its dimension (i.e. the dimension of the vector subspace) is 2 and its length
is 4.

Notice further that the minimum distance of this code is 2 (easy to check) and there-
fore this code can only be used for single error detection (refer to theorem 6.1).

Control Question 54

For each of the following binary codes, say whether or not this is a linear code. If yes,
give the two numbers n and m of the definition:

1. C = {0000, 1000, 0001, 1001}

2. C = {1000, 0001, 1001}

208 CHAPTER 6. ERROR CORRECTING CODES

3. C = {00, 01, 11}

4. C = {0000, 1000, 1100, 0100, 1101, 0001, 0101, 1001}

5. C = {0, 1, 10, 11}

6. C = {00, 11, 10, 01}

7. C = {0000, 0001, 0010, 0100}

Answer

1. yes: any linear combination of codewords is also a codeword (it is enough to check
that for instance the last codeword is the combination of the first two non null).

It’s a (n = 4,m = 2) linear codeword.

2. no: this code does not have the null codeword.

3. no (e.g. 01 + 11 = 10 is not a codeword)

4. yes (the thirds column is always 0, the other 3 generates all 3 bits words).

It’s a (n = 4,m = 3) code.

5. No! This is even not a block code since the codewords do not all have the same
length.

6. yes. n = 2 and m = 2

7. no (e.g. 0001 + 0010 = 0011 is not a codeword).

6.2.2 Some Properties of Linear Codes

Property 6.8 Every linear code contains the null codeword 0.

This comes directly from the fact that a linear code is a vector (sub)space.

Let us now study further these linear code. First of all, how many codewords contains
a (n,m)D-ary linear code?

Property 6.9 A (n,m) D-ary linear code contains Dm different codewords
(including the null codeword).

Notice that this property can be used to quickly determine that codes with a wrong
number of codewords (not a power of D) are not linear. For linear codes, this can also
be used to quickly determine m (e.g. to ”guess” the size of a basis).

Proof Since a linear code is a vector space of dimension m, every codeword is the
linear combination of m basis codewords (one basis for this vector space).

6.2. LINEAR CODES 209

For a (n,m)D-ary code, there are therefore exactly Dm different codewords: all the
Dm linear combinations. �

What is then the transmission rate of such a code?

Property 6.10 The transmission rate of a (n,m) linear code is

R =
m

n

Proof Recall that the transmission rate of a D-ary code encoding a source of M
different messages with codewords of length n is R =

logD M
n .

How many different messages could be encoded using a (n,m) linear code? As many
as there are codewords, i.e. Dm.

Thus,

R =
logD Dm

n
=

m

n

Let us now come to another useful property of linear code.

Theorem 6.2 (Minimum Weight and Minimum Distance Equivalence)
For every linear code C

dmin(C) = wmin(C)

where wmin(C)is the minimum weight of the code, i.e. the smallest weight of
non-zero codewords:

wmin(C) = min
z∈C
z 6=0

w(z)

This result is very important in practice since wmin(C)is much easier to compute than
dmin(C).

Proof For a code C = {z1, ..., zi, ...}, we have by definition 6.6 dmin(C) =
mini6=j d(zi, zj).

Thus, using property 6.1, dmin(C) = mini6=j w(zi − zj).

But if C is a linear code, for every two codewords zi and zj, zi−zj is also a codeword.
It is furthermore the null codeword if and only if zi = zj (i.e. i = j).

Thus dmin(C) ≥ wmin(C).

Conversely, for every codeword zi, w(zi) = d(zi,0). Since 0is always part of a linear
code, we get: wmin(C) ≥ dmin(C), which concludes the proof. �

Example 6.11 The (11, 3) binary code {00000000000, 10011110000,
01000111100, 00111001111, 11011001100, 10100111111, 01111110011,
11100000011} has a minimum weight of 5 and thus a minimum distance of
5.

210 CHAPTER 6. ERROR CORRECTING CODES

This code can therefore correct all error patterns with 1 or 2 errors (cf Property 6.7).

[It is left as an exercise to check that this code is indeed a linear code.]

Control Question 55

What is the minimum distance of the following codes?

1. C = {0000, 1000, 0001, 1001}

2. C = {0000, 1000, 1100, 0100, 1101, 0001, 0101, 1001}

3. C = {00000000, 00001011, 00110000, 00111011, 11000000, 11001011, 11110000, 11111011}

4. C = {1000, 0001, 0010, 0100}

Answer

1. dmin(C) = wmin(C) = 1

2. dmin(C) = wmin(C) = 1

3. dmin(C) = wmin(C) = 2 (e.g. third codeword)

4. dmin(C) = 2!! Although wmin(C) = 1! This is a pitfall! This code not a linear
code. Thus the minimum weight theorem cannot be applied. Her the minimum
distance is simply computed using its definition. It is easy to see that the distance
between any two codewords is 2.

Control Question 56

How many errors can (at most) correct the following linear codes:

1.

2. C = {0000, 1000, 1100, 0100, 1101, 0001, 0101, 1001}

3. C = {000000000, 000000111, 000111000, 000111111, 111000000, 111000111, 111111000, 111111111

Answer

1. dmin(C) = wmin(C) = 1 thus this code can correct (1 − 1)/2 = 0 errors!! This is
not a very useful code!

2. dmin(C) = wmin(C) = 3 thus this code can correct (2− 1)/2 = 1 error.

6.2. LINEAR CODES 211

6.2.3 Encoding with Linear Codes

The relationship linking messages to be encoded to corresponding codewords must now
be emphasized further: it is time to see how to efficiently use linear codes to encode
messages.

If the m codewords chosen to be a basis of a (n,m) linear code (vector space)5 are
denoted by z1, ..., zm, then any codeword zi can be written as

zi =

m∑

k=1

ui,k zk

where ui,k is the component of zi on the basis vector zk.

In a more compact way, using linear algebra, we have:

zi = (ui,1, ..., ui,m) ·G = ui ·G

where ui is the row vector (ui,1, ..., ui,m) and G the matrix whose rows are z1, ..., zm.

It is then very natural to choose to encode the m symbol message ui by the codeword
zi which results from the above multiplication by G.

For this reason, the matrix G is called a generator matrix ∗ of the code.6

Definition 6.8 (Generator Matrix) A m × n matrix G is said to be a
generator matrix of a (n,m) linear code C if and only if its m row vectors are
a basis of the vector space C.
The encoding of a message u (of size m) is then done by z = u ·G. �

Example 6.12 (Generator Matrix) Let us go on with the (4, 2) binary linear code
used in example 6.10: {0000, 1101, 0110, 1011}.

This code, having four codewords, can encode four messages: the four binary words of
two bits, u0 =00, u1 =10, u2 =01, u3 =11. Let us do this encoding using a generator
matrix.

One basis for this linear code could be z1 = 1101, z2 = 0110, which leads to

G =

[
1 1 0 1
0 1 1 0

]

u1 is then encoded into

u1 ·G = (10) ·

[
1 1 0 1
0 1 1 0

]
= (1101) = z1

and similarly u2 into z2, u3 into 1011 and u0 into 0000.

Notice that a linear code always encode the null message with the null codeword 0.
This is precisely due to the linear (i.e. vector space) aspect of the code.

5Recall that in most cases this choice is not unique
6Notice that, for a given code, this generator matrix is not unique: it depends on the basis chosen

for representing the code.

212 CHAPTER 6. ERROR CORRECTING CODES

Using this way of encoding with generator matrix the actual encoding of messages
is very easy to implement in practice. In the binary case for instance, only a few7

exclusive-or (XOR) gates can do the encoding.

6.2.4 Systematic Form of a Linear Codes

Among all possible generator matrices, one is of special interest (if it exists): the
systematic form.

Definition 6.9 (Systematic Form) A generator matrix G of a (n,m) linear
code is said to be in systematic form when it is written as

G = [Im P] =

1 0 · · · 0 p1,1 · · · p1,n−m

0 1 · · · 0 p2,1 · · · p2,n−m
...

...
. . .

...
...

. . .
...

0 0 · · · 1 pm,1 · · · pm,n−m

where Im is the identity matrix of size m and P a m× (n−m) matrix, often
call “Parity Matrix”. �

Notice that, when it exists for a given code, the systematic generator matrix is unique.

Definition 6.10 (Systematic Linear Code) A linear code that uses a gen-
erator matrix in systematic form is called a systematic (linear) code. �

When a (n,m) linear code uses systematic form generator matrix, the m first symbols
of the n symbols of a codeword are exactly the symbols of the encoded message:

zi = (ui,1 ui,2 ... ui,m zi,m+1, ... zi,n)

In other words, systematic codes send first the message unencoded and then (n −m)
encoding symbols used for error detection/correction.

Example 6.13 Recalling example 6.12, another choice for the basis vectors could
have been z1 = 1011, z2 = 0110, leading to

G =

[
1 0 1 1
0 1 1 0

]

which is the systematic form generator matrix for this code.

Example 6.14 (Parity-Check Bit) For binary messages, the Parity-Check Bit is
the bit that corresponds to the parity of the message, i.e. the (binary) sum of its bits.

For instance the parity-check bit for 01101 is 1 + 1 + 1 = 1 and the parity-check bit
for 00101 is 1 + 1 = 0.

7at most n · (m − 1) actually

6.2. LINEAR CODES 213

Parity-Check Bit encoding consists simply in sending first the message as it is, follow
by its parity-check bit. In terms of codes, this corresponds to the (m + 1,m) binary
linear code, the generator matrix of which is

G =

Im

1
...
1

which is in systematic form.

Notice that the minimum distance of this code is 2 (using Theorem 6.2), thus this
code is only able to do single error detection (refer to Theorem 6.1).

Control Question 57

For the following matrices

1. say if it could be a generator matrix.

2. if yes, say if it is in systematic form.

3. if the matrix is not in systematic form, give the systematic form matrix for the
corresponding code.

4. (when it is a generator matrix) how will the message 1011 be encoded using the
systematic form?

1. G =

1 1 0 0 1 1 0
0 1 0 1 1 1 0
0 0 1 1 1 0 1
1 0 1 0 1 0 1

2. G =

1 0 0 0 1 1 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1

3. G =

1 1 0 0 1 0 0
0 1 0 1 0 0 1
1 0 1 1 0 0 0
1 0 1 0 1 1 1

Answer

1. This is not a generator matrix since the four rows are linearly dependent (their
sum is zero) they cannot be a basis of a vector space.

2. Yes this matrix is a generator matrix (for a (7, 4) binary linear code). It is
furthermore the generator matrix of this code since the four first columns make
the identity matrix.

The encoding of 1011 with this code is 1011001.

214 CHAPTER 6. ERROR CORRECTING CODES

3. Yes, this matrix is indeed a generator matrix. The four rows are four linearly
independent vector: to have a zero in the next to last column you must have a
zero coefficient on the last line, then to have a 0 at the last column you need to
annihilate the second row and then it’s easy to see that the first and third row
are linearly independent (using for instance the second column).

This matrix is not in systematic form.

To find the systematic form generator matrix, we need to find a basis of this
linear code whose four first coordinates form the identity matrix. There are
several mathematical way to do this. Here is one rather basic:

adding the fours rows, we get
[

1 0 0 0 0 1 0
]

which can make the first
vector.

Then adding this vector to the first row of the original matrix, we get
[

0 1 0 0 1 1 0
]

which is the second vector. Similarly adding the first new vector to the last row of
the original matrix leads to

[
0 0 1 0 1 0 1

]
which is the third vector we

are looking for. And for the last one, we can add the second row of the original ma-
trix

[
0 1 0 1 0 0 1

]
to the new second vector

[
0 1 0 0 1 1 0

]

to get
[

0 0 0 1 1 1 1
]

and the systematic form generator matrix is:

G′ =

1 0 0 0 0 1 0
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 1

The encoding of 1011 with this matrix is 1011000.

6.2.5 Decoding: Verification Matrix

At this level, we know how to encode with linear codes. But what about decoding?
How can errors be corrected? This is the whole story after all!

Here is precisely where the linearity of linear codes will help.

Suppose that a matrix F such that, for every codeword z, z · F = 0 has been found8.
Then, if an error e occurs during the transmission of z and ẑ = z + e is received, we
have

ẑ · F = (z + e) · F = z · F + e · F = 0 + e · F = e · F

This last result is very useful since ẑ · F is independent of the emitted codeword z
but depends only on the error e. The result of this transmission error appears as a
linear combination of the rows of F . In order to correct/detect the error, the vectors
of the vector space generated by the rows of F “simply” needs to be mapped to the
corresponding correction (or detection message).

This is this key idea that is formalized and studied an bit further now.

For good mathematical reasons9, the above equation z · F = 0 is always given in the
following form:

z ·HT = 0
8As you will see in a while, this is not so difficult.
9orthogonality: G · H

T = 0

6.2. LINEAR CODES 215

where T is the transpose operator and H = F T .

Definition 6.11 (Verification Matrix) A (n−m)× n matrix H is a veri-
fication matrix ∗ for a (n,m)D-ary linear code C if and only if

∀z ∈ GF(D)n z ·HT = 0 ⇐⇒ z ∈ C

In other words, a verification matrix for a code C is a matrix, the kernel of
which is C. �

Notice that a given linear code might have several different verification matrices: any
matrix, the rows of which are a basis of the vector space orthogonal to the linear code10

is a verification matrix for this code.

How to find verification matrices?

It the case where the code is systematic, it is easy to find a verification matrix as the
following theorem show:

Theorem 6.3 For a systematic (n,m) linear code, the systematic form gen-
erator matrix of which is

G = [Im P] ,

the matrix
H =

[
−P T In−m

]

is a verification matrix.

Proof For every message ui, the corresponding codeword is

zi = ui ·G

= ui · [Im P]

i.e. {
(zi,1, ..., zi,m) = ui

(zi,m+1, ..., zi,n) = ui · P

Thus
(zi,m+1, ..., zi,n) = (zi,1, ..., zi,m) · P

i.e.
−(zi,1, ..., zi,m) · P + (zi,m+1, ..., zi,n) = 0

or in its matrix form:

zi ·

[
−P

In−m

]
= 0

Therefore, we have found a matrix (
[
−P T In−m

]T
) such that its product with every

10recall: a linear code is a vector subspace

216 CHAPTER 6. ERROR CORRECTING CODES

codeword gives the null vector.

It is easy to see that the inverse construction leads to the result that every word x

such that x ·
[
−P T In−m

]T
= 0 verifies

x = (x1, ..., xm) ·G

and appears therefore as a codeword. �

Notice that in the binary case (GF(2)) −P = P .

Example 6.15 Consider the systematic code C, the generator matrix of which is

G =

[
1 0 1 0 1
0 1 1 1 1

]
=

[
I2

1 0 1
1 1 1

]

Then (n = 5 and m = 2)

H =

[[
1 0 1
1 1 1

]T

I3

]
=

1 1 1 0 0
0 1 0 1 0
1 1 0 0 1

is one possible verification matrix for C.

It has just been shown how easy it is to find the verification matrix when the systematic
form generator matrix is know. What about the general case, when a generator matrix
not is systematic form is used?

A verification matrix H for a (n,m)D-ary linear code with generator matrix G, the
rows of which are denoted by z1, ..., zm, can be constructed using the following proce-
dure11:

1. For i = m + 1 to n, choose zi as any GF(D)n vector linearly independent of
z1, ..., zi−1

2. Compute the inverse M−1 of the matrix M the rows of which are z1, ..., zn.

3. Extract HT as the last n−m columns of the matrix M−1.

Example 6.16 Let us come back to example 6.12 and the (4, 2) code, one generator
of which was given as:

G =

[
1 1 0 1
0 1 1 0

]

Let’s first find two vectors linearly independent of the former. Choose for instance
1000 and 0100.

Thus M =

1 1 0 1
0 1 1 0
1 0 0 0
0 1 0 0

 and M−1 =

0 0 1 0
0 0 0 1
0 1 0 1
1 0 1 1

11This is a standard procedure in linear algebra used to construct orthogonal subspaces.

6.2. LINEAR CODES 217

Finally, we have HT =

1 0
0 1
0 1
1 1

, i.e. H =

[
1 0 0 1
0 1 1 1

]
.

Control Question 58

Give one verification matrix for the linear code the systematic form encoding matrix is

G =

1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 1 0 1
0 0 0 1 0 1 1 1 1
0 0 0 0 1 0 0 1 1

Answer

H =

1 1 0 1 0 1 0 0 0
0 1 1 1 0 0 1 0 0
1 0 0 1 1 0 0 1 0
0 0 1 1 1 0 0 0 1

Control Question 59

Is the word z =1001101 a codeword of the code, one verification matrix of which is

H =

1 1 1 0 1 0 0
0 1 1 0 0 1 0
0 0 1 1 0 0 1

Answer

yes: z ·HT = 0 thus z is a codeword.

6.2.6 Dual Codes

A verification matrix for a (n,m)D-ary linear code C is a (n−m)× n matrix H such
that its kernel ker(H) is C: ker(H) = C.

Furthermore, by the fundamental property of dimensions of vector space, dim(ker(H))+
rank(H) = n, i.e. dim(C) + rank(H) = n or rank(H) = n−m.

So the n−m rows of H generate a n−m dimension subspace of G(D)n, i.e. a (n, n−m)
linear code. Thus H appears to be the generator matrix of a (n, n −m) linear code.
This code is called the dual code of C (and vice versa).

Property 6.11 The dual code of a dual code of a code C is the code C itself.

218 CHAPTER 6. ERROR CORRECTING CODES

Property 6.12 A generation matrix of a code is a verification matrix for its
dual code, and conversely.

6.2.7 Syndromes

Let us now repeat the important key idea of linear code.

If z is the transmitted codeword and an error e occurs, the received word is then
ẑ = z + e. If H is a verification matrix for the code used, then

ẑ ·HT = (z + e) ·HT = z ·HT + e ·HT = 0 + e ·HT = e ·HT

This illustrates the important fact that ẑ ·HT depends only on the actual error pattern
e and not at all on the transmitted codeword ẑ. For this reason, this result ẑ · HT is
of peculiar importance for decoding. This is call the syndrome (of ẑ relative to H).

Definition 6.12 (Syndrome) The syndrome∗ of a word ẑ relative to a ver-
ification matrix H is the product ẑ ·HT . �

Property 6.13 The syndrome s = ẑ · HT of a received word ẑ relative to
the verification matrix H of a code C depends only on the transmission error
e = ẑ − zi and not on the transmitted codeword zi (zi ∈ C).

Furthermore, the error pattern e is decomposed into elementary errors ek (i.e. made
of only one error on one single symbol): e = (e1, ..., en), then

s(ẑ) = ẑ ·HT = e ·HT =
∑

k

ek hk

where hk is the k-th column of H: H = [h1, ..., hn].

To find the corrector (i.e. the opposite of the error), only the correctors corresponding
to single errors need to be known and then sum up.

Correcting can then simply done by mapping the columns of H to corrector (stored in a
memory) and adding the one corresponding to the non-zero positions of the syndrome.

Example 6.17 (Syndrome-based Correction Table) Suppose that

H =

1 1 1 0 0
0 1 0 1 0
1 1 0 0 1

is a verification matrix for the binary code used.

Then the following correctors can be derived from the columns of H:

6.2. LINEAR CODES 219

Syndrome Corrector
101 10000

111 01000

100 00100

010 00010

001 00001

This is simply obtained by listing the columns of H.

Reordering by syndromes the above table in order to actually use it in practice (where
only the syndrome is know), we get:

Syndrome Corrector
000 00000

001 00001

010 00010

011 ?
100 00100

101 10000

110 ?
111 01000

Notice that:

1. The null syndrome always maps to no correction, due to Definition 6.11;

2. For 011 and 110, the corrector is not unique in this example: for instance
011 = 010 + 001 leads to 00011 (00001 + 00010), but 011 = 111 + 100 leads
to another correction, 01100.

This is due to the fact the minimal distance of this code is 3 (see next section),
and thus this code can only correct all the patterns with 1 error, but not all the
patterns with 2 errors!

These two syndromes actually corresponds to two transmission errors.

In practice the correspondence table between syndromes and errors is stored in a mem-
ory and the general mechanism for decoding (and correcting) a received message ẑ is
the following:

1. Compute the syndrome s(ẑ) = ẑ ·HT ;

2. Get the correction c = −e (i.e. the opposite of the error) from the linear combi-
nation of correctors stored in the memory;

3. Decode by z = ẑ + c.

Example 6.18 (Decoding with a Linear Code) Let us go on with the last ex-
ample (Example 6.17), the generator of which is

G =

[
1 0 1 0 1
0 1 1 1 1

]

220 CHAPTER 6. ERROR CORRECTING CODES

Suppose that u = 10 is to be transmitted. This message is encoded into z = 10101

with the above (5, 2) binary linear code.

Suppose that ẑ = 00101, i.e. that the first bit has been corrupted.

The syndrome computation gives s = z ·HT = 101 leading to the corrector e = 10000
(see correctors table given in Example 6.17).

Thus the decoded codeword is ẑ + e = 00101 + 10000 = 10101, which leads to the
decoded message (the first two bits, since a systematic code is being used): 10, which
corresponds to the original message.

Control Question 60

What was the original message if you receive 101011001 and the code verification
matrix is

H =

1 1 0 1 0 1 0 0 0
0 1 1 1 0 0 1 0 0
1 0 0 1 1 0 0 1 0
0 0 1 1 1 0 0 0 1

?

Answer

The original message was 10001.

Explanation:

ẑ ·HT = 0101 which correspond to the third column of H, thus one error occurred in
the third position.

Thus the emitted codeword was 100011001 (change the third bit), and since the code
is systematic (see H), the original message was 10001 (take the m = 9 − 4 = 5 first
bits).

6.2.8 Minimum Distance and Verification Matrix

The general presentation of linear code is now ended by a useful result which allows to
compute the minimum distance of a code12 directly from its verification matrix.

Theorem 6.4 (Verification Matrix and Minimum Distance) If H is a
verification matrix for an (n,m) D-ary linear code C (with 1 ≤ m < n), then
the minimum distance dmin(C) of this code is equal to the smallest number of
linearly dependent columns of H.

Proof For every vector z, z ·HT is a linear combination of w(z) columns of H. And
by Definition 6.11: z ∈ C if and only if z ·HT = 0.

Thus if z ∈ C then there exists w(z) columns of H are linearly dependent; and
conversely, if q columns of H are linearly dependent, there exists a codeword of

12and thus the maximum number of errors to be corrected

6.2. LINEAR CODES 221

weight q.

Thus wmin(C) is the minimum number of columns of H that are linearly dependent,
and we conclude using Theorem 6.2. �

For a binary linear code C with verification matrix H, this last results implies that

• If H does not have a null column, dmin(C) > 1.

• If H does further not have twice the same column, dmin(C) > 2.

Example 6.19 A binary linear code one verification matrix of which is H =

1 1 1 0 0
0 1 0 1 0
1 1 0 0 1

 has a minimum distance of 3.

Indeed, H does not have a null column nor twice the same column so dmin(C) > 2.
Furthermore, there is a set of there columns of H that is linearly dependent. For
instance, h1, h3 and h5.

Property 6.14 (Singleton’s bound) For a (n,m) linear code C,

dmin(C) ≤ n−m + 1.

Proof Columns of H are vectors in GF(D)(n−m), so any set of n −m + 1 of these
column is linearly dependent. Therefore, using Theorem 6.4, dmin(C) ≤ n−m + 1. �

Control Question 61

What is the minimum distance of a code, the verification matrix of which is

H =

1 1 0 1 0 1 0 0 0
0 1 1 1 0 0 1 0 0
1 0 0 1 1 0 0 1 0
0 0 1 1 1 0 0 0 1

?

How many errors can this code correct?

Answer

dmin(C) = 3, and thus t = 1.

e-pendix: Linear Code

6.2.9 Binary Hamming Codes

Let us now study further what are the “good” codes that can correct one error (in the
binary case).

Since we are looking for only one error, it is sufficient for the syndrome to indicate
where this error holds. The idea is to have a code such that the syndrome directly

222 CHAPTER 6. ERROR CORRECTING CODES

indicates the position of the error; for instance as its binary code (0...001 for the first
position, 0...010 for the second, 0...011 for the third, etc.).

Recall that a single error in position k leads to a syndrome which is the k-th column
of H. The above idea thus leads for the verification matrix to construct a matrix, the
columns of which are the binary representation of their position (see example below).

What is not clear yet is

1. what dimensions should this verification matrix have?

2. does this construction actually lead to a verification matrix of a code?

3. can such a code actually correct all patterns of 1 error?

Regarding the first point, recall that the size of a syndrome of a (n,m) linear code is
n−m. If the syndrome is directly encoding the error position, it could then represent
2n−m−1 positions. So no place is lost if the total number of positions to be represented
(i.e. the length n of the codeword) is n = 2n−m − 1.

Despite the trivial case n = 3,m = 1, here are some possible sizes for such codes:

n m r = n−m

7 4 3
15 11 4
31 26 5
63 57 6

...
...

...

and here are two examples of verification matrix (for n = 7 and 15):

H3 =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

H4 =

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The second above question is easy to answer: yes this construction actually leads to a
linear code since matrices constructed this way are full rank (i.e. rank(H) = n −m),
since it is easy to construct the In−m identity matrix out of their columns (take the
first, second, forth, eighth, etc.. columns). Thus the dimension of their kernel is m,
leading to a (n,m) linear code.

Finally, to address the last question (can such a code actually correct all patterns of 1
error?), we have to compute its minimum distance. The verification matrices resulting
from the above construction never have null column nor the same column twice so at
least dmin(C) ≥ 3. Moreover, the first three column (binary representations of 1, 2 and
3) are always linearly dependent. So the minimum distance of such codes is always 3.
Thus such codes can correct all patterns of 1 error.

Such codes are called “(binary) Hamming codes”.

6.2. LINEAR CODES 223

Definition 6.13 (Hamming code) A Hamming code is a (2r−1, 2r−r−1)
binary linear code (r ≥ 2), the verification matrix of which is

Hr =
[
br(1)

T br(2)
T · · · br(n)t

]
=

0 0 · · · 1
...

...
. . .

...
0 1 · · · 1
1 1 · · · 1

where bn(i) is the binary representation of i on n bits (e.g b4(5) = (0101)). �

Property 6.15 Every binary Hamming code can correct all patterns of one
error.

Example 6.20 (Hamming code) Let us take r = 3 and construct the (7, 4) binary
Hamming code.

We have:

H3 =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

To find one generator matrix, we look for 4 vectors z such that z ·HT = 0, for instance
(easy to check, and there are many others):

z1 = 1110000

z2 = 1101001

z3 = 1000011

z4 = 1111111

leading to

G =

1 1 1 0 0 0 0
1 1 0 1 0 0 1
1 0 0 0 0 1 1
1 1 1 1 1 1 1

Suppose now the message u = 1001 has to be send. It is encoded into z = u ·
G = 0001111. Let’s assume further that an error occurred on the third bit, so that
ẑ = 0011111 is received. How will this be decoded?

The syndrome is s(0011111) = ẑ ·HT = 011, i.e. 3 in binary, indicating that an error
occurred on the third bit. So the result of the decoding is ẑ − 0010000 (error in the
third position) which is 0001111, the codeword that was actually emitted.

Summary for Chapter 6

linear code: a block code which is a vector space (i.e. any linear combination of
codewords is also a codeword).

224 CHAPTER 6. ERROR CORRECTING CODES

A (n,m) D-ary linear code is a dimension m vector subspace of the dimension
n vector space of D-ary words.

minimum distance: for linear code minimum distance of the code is equal to the
minimal weight.

generator matrix: (of a (n,m) linear code) a m× n matrix the rows of which are
a basis of the code (they are thus linearly independent).

systematic form: a m× n generator matrix of a (n,m) linear code is said to be in
systematic form only if its left most m×m submatrix is the identity matrix (of
size m).

encoding: the encoding with linear codes is done by matrix multiplication: the
word to be encoded u is multiply by one chosen generator matrix G of the code
producing the codeword z = u ·G.

If the generator matrix is in systematic form, the first m symbols of the codeword
are exactly the symbols of the message. Thus only the n − m last symbols
actually need to be computed.

verification matrix: A (n −m) × n matrix H is a verification matrix for a (n,m)
linear code C if and only if

∀z ∈ GF(D)n z ·HT = 0 ⇐⇒ z ∈ C

The verification matrix is very useful for decoding.

syndrome: The result of the product of a word by the verification matrix: s = z ·HT .

The syndrome is used to determine the error to be corrected. It indeed corre-
spond to the linear combination of columns of H which precisely is the product
of the error pattern by HT .

binary Hamming codes: • (2r − 1, 2r − r− 1) linear codes that can correct all
patterns of 1 error;

• the verification matrix is given in the form of the binary enumeration of
the columns.

6.3 Cyclic Codes

Learning Objectives for Section 6.3

After studying this section you should know:

1. what a cyclic code actually is;

2. how to (and why!) represent codewords using polynomials;

3. how to encode and decode cyclic code using the generator polynomial.

6.3. CYCLIC CODES 225

6.3.1 Introduction

Although cyclic codes is the most largely used class of error correcting codes, only a
very short introduction to this topic is here presented. Indeed, a detailed presentation
of cyclic codes is far enough to be the matter of a whole course in itself, which is largely
out of the scope of the present lectures. Interested readers who wish to study deeper
the subject should refer to the rather large literature on the domain.

Definition 6.14 A cyclic code∗ is a linear code such that for every codeword
zi with n symbols zi = zi,1...zi,n, the word zi,2...zi,nzi,1 resulting of a (left-
)cyclic permutation (also called “shift”) of the symbols of zi is also a codeword.

�

Notice that this definition implies that then any cyclic permutation of a codeword is
also a codeword.

Example 6.21 (Cyclic Code) The following (binary) linear code is a cyclic code:

z1 = 000, z2 = 101, z3 = 011, z4 = 110

Conversely, the following code

z1 = 000, z2 = 001, z3 = 010, z4 = 011

(which is linear) is not cyclic since, for instance, the cyclic permutation 100 of z3 is
not a codeword.

Cyclic codes are an important subclass of linear codes since they have many algebraic
properties that simplify the encoding and decoding implementations.

Control Question 62

For each of the following binary codes, say whether this is a cyclic code or not.

1. C = {0000, 1000, 0001, 1001}

2. C = {1000, 0001, 0100, 0010}

3. C = {000, 100, 010, 001, 110, 011, 111, 101}

4. C = {0000, 0001, 0010, 0011}

5. C = {00, 11, 10, 01}

Answer

1. no.

2. no! This is not a linear code! A cyclic code must first of all be a linear code.

3. yes.

226 CHAPTER 6. ERROR CORRECTING CODES

4. no.

5. yes.

6.3.2 Cyclic Codes and Polynomials

In order to algebraically take into account this new constraints on codewords (cyclic
permutations of codewords are also codewords), more complete algebraic structure than
vector space one (which cope with linearity) is required. The algebra of polynomials is
precisely a good way to represent this new constraint.

Indeed, suppose a codeword zi with n symbols zi = zi,1...zi,n is represented by the
polynomial zi(X) = zi,1 ·X

n−1 + zi,2 ·X
n−2 + ... + zi,n−1 ·X + zi,n, i.e. the jth symbol

zi,j of a codeword zi of size n is the coefficient of Xn−j in the corresponding polynomial
zi(X). What is then X · zi(X) modulo (Xn − 1)? A bit a simple polynomial algebra
directly shows that this indeed corresponds to the left-cyclic permutation of zi.

Proof Let us prove that monome multiplication corresponds to left-cyclic permuta-
tion.

X · zi(X) = X ·

n∑

j=1

zi,j ·X
n−j

=

n∑

j=1

zi,j ·X
n−j+1

=

n−1∑

k=0

zi,k+1 ·X
n−k

= zi,1 ·X
n +

n−1∑

k=1

zi,k+1 ·X
n−k

Working “modulo (Xn − 1)” simply means that Xn corresponds to 1,13 Xn+1 cor-
responds to X, etc. Therefore zi,1 · X

n mod (Xn − 1) equals zi,1, and the above
equation, modulo (Xn − 1), leads to

X · zi(X) = zi,1 +

n−1∑

k=1

zi,k+1 ·X
n−k

=
n−1∑

k=1

zi,k+1 ·X
n−k + zi,1 ·X

n−n

which indeed corresponds to the codeword zi,2...zi,nzi,1, the left-shift of zi. �

Since cyclic codes precisely deal with cyclic permutation of their codewords, poly-
nomials seem to be a very appropriate way to represent them. This aspect will be
emphasized further after a short example.

6.3. CYCLIC CODES 227

Example 6.22 (Modulo (Xn
− 1) arithmetic) Here is a short example of a

modulo (Xn − 1) computation:

(X2 + 1) · (X + 1) = X3 + X2 + X + 1

= 1 + X2 + X + 1 mod (X3 − 1)

= X2 + X + (1 + 1) mod (X3 − 1)

= X2 + X mod (X3 − 1)

since in binary 1 + 1 = 0.

Example 6.23 (Polynomial Representation of Cyclic Code) Recall the bi-
nary cyclic code of the last example:

z1 = 000z2 = 101z3 = 011z4 = 110

The polynomial representation of this code is:

z1(X) = 0

z2(X) = 1 ·X2 + 0 ·X + 1 = X2 + 1

z3(X) = 0 ·X2 + 1 ·X + 1 = X + 1

z4(X) = 1 ·X2 + 1 ·X + 0 = X2 + X

Notice furthermore that X · z2(X) = z3(X) mod (X3 − 1), which express that z3 is
the left-shift of z2.

Control Question 63

What is the polynomial representation of the following codewords:

1. 00000000

2. 10001

3. 0000001

4. 1111

Answer

1. 0

2. X4 + 1

3. 1

4. X3 + X2 + X + 1

228 CHAPTER 6. ERROR CORRECTING CODES

Control Question 64

Considering the two codewords z1 and z2 of a cyclic code, what is z1 ·z2 in the following
cases:

1. z1 = 010110, z2 = 000100

2. z1 = 1010, z2 = 0101

3. z1 = 11001, z2 = 01010

Answer

1. 011001, this one is easy since z2 corresponds to a 2-left shift.

2. 0

There are two ways to get this result. Either direct polynomial computation
1010 · 0101 = (X3 + X) · (X2 + 1) = X5 + X3 + X3 + X = X5 + X = X + X
mod (X4 − 1) = 0

or understanding that multiplying by 0101 means adding the 2-left shift (0100)
with the message itself (0101 = 0100 + 0001), which in this case lead to 0 since
the 2-left shift is the same as the message itself.

3. 11101

The condition defining cyclic codes can now be used to characterize further cyclic code
using polynomial properties:

Property 6.16 If z(X) is the polynomial corresponding to a codeword z of a
cyclic code of size n, then for any polynomial p(X), p(X) ·z(X) mod (Xn−1)
is also a polynomial corresponding to a codeword of this code (left-shifts and
linear combinations).

Proof • for any k, Xk · z(X) mod (Xn− 1) is also a polynomial corresponding
to a codeword of this code (left-shifts)

• a cyclic code is a linear code, so any linear combination of codewords is also a
codeword.

A cyclic code corresponds therefore to an ideal of the ring GF(X).

Theorem 6.5 For every (n,m) cyclic code C, there exist one polynomial
gC(X) of degree n−m such that

C = {gC(X) · p : p ∈ GF(X),deg(p) < m}

i.e. every codeword polynomial is a multiple of gC(X) and conversely.
In other words, the code C is generated by gC(X). gC(X) is actually called the
generator of C.

6.3. CYCLIC CODES 229

Proof This simply comes from the fact that GF(X), as any polynomial ring in one
variable over a field, is a principal ring: every ideal is principal; i.e. can be generated
by a single element. �

Coding a word u using a cyclic code C could then simply consist of sending z(X) =
u(X) ·gC(X). However, systematic form coding, i.e. coding in such a way that the first
symbols corresponds to the message itself is often preferred.

For a (n,m) cyclic code the procedure is then the following:

1. multiply the message polynonmial u(X) by Xn−m (i.e. in practice to n−m left
shifts of the message) Notice that n−m is the degree of the generator.

2. divide Xn−mu(X) by the generator g(X) and get the remainder r(X)

3. Then encoding of u(X) is then z(X) = Xn−mu(X) − r(X) (which is a multiple
of g(X), the m higher symbols of which correspond to the m symbols of u).

Example 6.24 (Systematic Coding with Cyclic Code) Consider for instance
the (7, 4) binary cyclic code

z1 = 0000000, z2 = 0001011, z3 = 0010110, z4 = 0101100,

z5 = 1011000, z6 = 0110001, z7 = 1100010, z8 = 1000101,

z9 = 1010011, z10 = 0100111, z11 = 1001110, z12 = 0011101,

z13 = 0111010, z14 = 1110100, z15 = 1101001, z16 = 1111111

This code has for generator g(X) = z2(X) = X3 + X + 1.

[It is left as an exercise that z2(X) is actually a generator of this code.]

Using this code, we want to transmit the message u = 1101, i.e. u(X) = X3 +X2 +1.

Let us first divide X3u(X) = X6 + X5 + X3 by g(X):

X6+X5+ X3 X3 + X + 1
X6+ X4+X3 X3 + X2 + X + 1

X5+ X3+X2

X4+ X2+X
X3+ X+1

1

i.e. X3u(X) = (X3 + X2 + X + 1)g(X) + 1.

Thus the codeword is z(X) = X3u(X) + 1 = X6 + X5 + X3 + 1 which represents
1101001.

To summarize: the message 1101 is encoded 1101001 by the above cyclic code. Notice
that, as wanted, the first 4 bits are the bits of the original message u.

Theorem 6.6 The generator of a cyclic code of length n is a factor of Xn−1.

230 CHAPTER 6. ERROR CORRECTING CODES

Proof Consider a cyclic code of length n the generator of which is g(X) of degree
r.

Then X(n−r)g(X) is of degree n and can be written (Euclidean division by (Xn−1)):

X(n−r)g(X) = (Xn − 1) + q(X)

with q(X) a polynomial of degree less than n.

Since g(X) is a codeword of cyclic code of length n, q(X) = X(n−r)g(X) mod (Xn−1)
is also a codeword of this code (Property 6.16).

Thus (Theorem 6.5), there exists p(X) such that q(X) = p(X) · g(X).

Coming back to (62), we have:

X(n−r)g(X) = (Xn − 1) + p(X) · g(X)

i.e.
Xn − 1 =

(
X(n−r) − p(X)

)
· g(X)

Thus g(X) is a factor of Xn − 1. �

Let us now see the converse:

Theorem 6.7 Every factor of Xn−1 of degree r is the generator of a (n, n−r)
cyclic code.

Proof Let g(X) be a factor of Xn − 1 of degree r. The n − r polynomials
g(X),Xg(X), ...,X(n−r−1)g(X) are all of degree less than n. Furthermore, any linear
combination of these n − r polynomials is also a polynomial of degree less than n,
i.e. g(X),Xg(X), ...,X(n−r−1)g(X) is a basis of a vector subspace of GF(X). Thus
g(X),Xg(X), ...,X(n−r−1)g(X) generates a (n, n− r) linear code.

Is this code cyclic? Let z(X) = z0 + z1X + ... + zn−1X
(n−1) be one codeword of this

code. Then

X · z(X) = z0X + z1X
2 + ... + zn−1X

n

= zn−1(X
n − 1) + zn−1 + z0X + z1X

2 + ... + zn−2X
(n−1)

= zn−1(X
n − 1) + y(X)

where y(X) is a left shift of z(Y). But z(X) is a multiple of g(X) since it is a
codeword of the linear code generated by g(X),Xg(X), ...,X(n−r−1)g(X), and Xn−1
is also a multiple of g(X) by assumption. Thus y(X) = X · z(X) − zn−1(X

n − 1)
appears also to be a multiple of g(X), i.e. is an element of the subspace generated by
g(X),Xg(X), ...,X(n−r−1)g(X).

Therefore any left shift of a codeword is also a codeword, i.e. the code is cyclic. �

Control Question 65

How are the following messages encoded in systematic form with a code, the generator

6.3. CYCLIC CODES 231

of which is g(X) = X6 + X3 + 1:

1. 000

2. 111

3. 101

Answer

1. 000000000

The null word is always encoded into the null codeword. The only problem here
is to know the size of the codewords. Since the degree of the generator is 6 and
the length of the input messages is 3, the size of the codewords is 6 + 3 = 9.

2. 111111111

(X2 + X + 1) ·X6 = X8 + X7 + X6

X8 + X7 + X6 = (X2 + X + 1)g(X) + X5 + X4 + X3 + X2 + X + 1

X8 + X7 + X6 − (X5 + X4 + X3 + X2 + X + 1) = X8 + X7 + X6 + X5 + X4 +
X3 + X2 + X + 1 which is the codeword.

3. 101101101

(X2 + 1) ·X6 = X8 + X6

X8 + X6 = (X2 + 1)g(X) + X5 + X3 + X2 + 1

X8 + X6 − (X5 + X3 + X2 + 1) = X8 + X6 + X5 + X3 + X2 + 1 which is the
codeword.

There is actually a fastest way to encode with this special code. Looking at the gener-
ator you might see that this code simple consists in repeating the message three times!

6.3.3 Decoding

We know how to encode messages with cyclic codes. What about decoding then?

The decoding process is similar to the framework used of linear codes in general:

1. first compute a syndrome from the received word (which depends only on the
error, not on the emitted codeword, and which is null when the received word is
a codeword)

2. then deduce the corrector (i.e. the opposite of the error)

3. Finally, apply the corrector to the received codeword.

The construction of the syndrome of a word ẑ(X) is simple: it is the remainder of the
division of ẑ(X) by the generator g(X) of the code.

232 CHAPTER 6. ERROR CORRECTING CODES

Indeed, we know that every codeword z(X) is a multiple of g(X). Thus the remainder
of z(X) + e(X) (w.r.t. g(X)) is the same as the one of e(X):

z(X) = α(X)g(X)
e(X) = β(X)g(X) + s(X)

}
=⇒ z(X) + e(X) = [α(X) + β(X)]g(X) + s(X)

with deg(s(X)) < deg(g(X)).

It is also clear from the above construction that the syndrome s(X) is null if an only
if ẑ(X) is a codeword (i.e. multiple of g(X)).

The correctors, corresponding to all the non null syndromes, can be obtained by division
by g(X). Notice that

• for a single error Xi of degree i less that n−m (the degree of g(X)), the syndrome
is simply Xi;

• for the single error X(n−m), the syndrome is X(n−m) − g(X).

Example 6.25 (Decoding with cyclic code) Let us continue with the previous
example: the message 1101 has been encoded into 1101001 and is now transmitted
over a noisy channel.

Suppose that the second symbol has been flipped, i.e. that we receive 1001001. What
is the corresponding decoded word?

1001001 corresponds to ẑ(X) = X6 + X3 + 1, the division of which by g(X) gives:

X6+ X3+ 1 X3 + X + 1
X6+X4+X3 X3 + X

X4+ X2+X
X2+X+1

Thus the syndrome is here X2 + X + 1.

The corrector/syndrome table for g(X) = X3 + X + 1 is the following:

syndrome corrector

1 1
X X
X2 X2

X + 1 X3

X2 + X X4

X2 + X + 1 X5

X2 + 1 X6

[The four first rows have been obtained using the above notices. The last three by
division of the error by g(X)]

Thus we found that the corrector has to be X5 and the decoded word is finally
z(X) = ẑ(X) + X5 = X6 + X5 + X3 + 1, i.e. 1101001.

Since a systematic code is being used, the first 4 symbols of this codeword are the 4
bits of the original message: 1101.

6.3. CYCLIC CODES 233

Control Question 66

Consider the (7, 4) linear code, the generator of which is g(X) = X3 + X2 + 1. How
will the following received messages be decoded

1. 1001011

2. 1011001

3. 0000001

(provided that systematic form coding was used).

Answer

1. 1001

Indeed, 1001011 is a codeword:

1001011 = X6 + X3 + X + 1 = (X3 + X2 + X + 1)(X3 + X2 + 1)

Since systematic form coding was used, the four first bits are the message.

2. 1010

1011001 = X6 + X4 + X3 + 1 = (X3 + X2)g(X) + X2 + 1

but X2 + 1 = g(X) + X3, thus there is an error pattern of weight 1 (e = X3)
whose syndrome is X2 + 1.

Minimum distance decoding thus lead to X6 + X4 + X3 + 1 + X3 = 1010001.

3. 0000 (from corrected codeword 0000000).

Summary for Chapter 6

Cyclic Code: a linear code such that any (symbol) shift of any codeword is also a
codeword.

Polynomial Representation: z = z1...zn is represented by the polynomial z(X) =
z1 ·X

n−1 + z2 ·X
n−2 + ... + zn−1 ·X + zn, i.e. the jth symbol zj of a codeword

z of size n is the coefficient of Xn−j in the corresponding polynomial z(X).

The polynomial multiplication by X (degree one monome) corresponds to the
(1 position) left shift.

All operations are made modulo Xn − 1.

Generator: For every cyclic code, there exist one polynomial such that every code-
word polynomial representation is a multiple of it and conversely.

Systematic Form Encoding: The encoding method such that the m first symbols
of a codeword are exactly the m symbols of the encoded message.

234 CHAPTER 6. ERROR CORRECTING CODES

For cyclic codes, systematic form encoding is achieved through the following
steps:

1. multiply the message polynonmial u(X) by Xn−m

2. divide Xn−m u(X) by the generator g(X) and get the remainder r(X)

3. encode u(X) by z(X) = Xn−mu(X)− r(X).

Decoding: The decoding process is similar to the framework used of linear codes in
general:

1. compute the syndrome of the received word: it is the remainder of the
division of this word by the generator of the code;

2. then deduce the corrector from a precomputed mapping of syndromes to
correctors (the division of the corrector by the generator gives the syn-
drome as the remainder)

3. Finally, apply the corrector to the received codeword and decode the orig-
inal words as the first m symbols of the decoded codeword (provided that
systematic encoding has been used).

6.4 Convolutional Codes

Learning Objectives for Section 6.4

After studying this section, you should know:

1. what convolutional codes are;

2. how encoding of such codes is achieved;

3. what a state and state diagram are;

4. what is the lattice representation associated with a convolutional code;

5. how to use Viterbi algorithm on lattices to do minimum distance decod-
ing;

6. how to compute the minimal distance of a convolutional code.

6.4.1 Introduction

In this section, a non-block error coding framework is considered: convolutional codes.
Convolutional codes differ from block codes in that the coding mechanism keeps mem-
ory about the encoded symbols.

In one sense, convolutional codes can appear as unbounded block codes, i.e. block codes
with “infinite” size blocks. However, there is an significant difference in the design of
these coding/decoding techniques. Furthermore, convolutional codes have been found
much superior to block-codes in many applications.

6.4. CONVOLUTIONAL CODES 235

u
i−1

u
i−2

+

+

u
i

z
2i

z
2i−1

z
2i−1

z
2i

se
ri

al
iz

at
io

n

Figure 6.1: A first example of a convolutional encoder. Each message symbol ui is
encoded into two codeword symbols z2i−1 and z2i.

6.4.2 Encoding

The starting point of a convolutional code is the encoder. Rather than beginning with
precise definitions and a general analysis of convolutional codes, we prefer to start with
a simple example that still contains the main features of convolutional coding.

The encoder of the example chosen for this section is depicted in Figure 6.1.

At each time step i, one message symbol ui enters the encoder and two codewords sym-
bols z2i−1 z2i are emitted; i.e. u = (u1, ..., ui, ...) is encoded into z = (z1, z2, ..., z2i−1, z2i, ...).
The rate of this code is thus 1/2.

The message symbols ui and the codeword symbols zj considered here are all binary
digits. The additions shown in Figure 6.1 are binary addition (i.e. “exclusive-or”).

More formally, the encode depicted in Figure 6.1 can be written as

z2i−1 = ui + ui−2 (6.5)

z2i = ui + ui−1 + ui−2 (6.6)

i.e.

ui 7→ (ui−2 + ui, ui−2 + ui−1 + ui)

These equations can be viewed as a “discrete convolution” of the input sequence with
the sequences 1, 0, 1, 0, 0, . . . and 1, 1, 1, 0, 0, . . ., respectively. This explains the name
“convolutional code”.

However, nor the above equations, nor Figure 6.1, fully determine the codewords since
the values of ui−2 and ui−1 are required. What are they at time i = 1, i.e. what is the
initial state of the system?

The convention is that there are always null, i.e. u−1 = u0 = 0.

To ensure that this is always the case, i.e. that whenever a new message has to be
encoded the initial state of the encoder is always 0 in all memories, the encoding of
a former message must leave the encoder in this null state. Thus every encoding of a
message must contain enough zeros at then end so as to ensure that all the memories
of the system have return to 0. In the case of the encoder presented in Figure 6.1, this
means that the encoding of every message will finish by encoding two more zeros.

Example 6.26 (Coding with convolutional code) Suppose we want to then the
message u = 101 using the encoder depicted in Figure 6.1. How does it work?

236 CHAPTER 6. ERROR CORRECTING CODES

Let us trace all the components of the encoding:

i ui
State z2i−1z2i(ui−1ui−2)

1 1 00 11

2 0 10 01

3 1 01 00

4 (0) 10 01

5 (0) 01 11

The corresponding codeword is thus z = 1101000111.

The last two line corresponds to the two zero bit that must be introduced in the coder
at the end of every message so as to put the coder back into its initial state.

Control Question 67

Consider the convolutional code, the encoder of which is described by the following
diagram:

u
i

u
i−1

u
i−2

u
i−3

+

+

+

+

se
ri

al
iz

at
io

n

z
4i−3

z
4i−1

z
4i

z
4i−2

z
4i−3

z
4i−2

z
4i

z
4i−1

1. How many zeros must be added after each word to encode?

(a) 1

(b) 2

(c) 3

(d) 4

(e) 5

2. How is 10110 encoded?

(a) 0011110010101000100111100111

(b) 10110

(c) 00111100101010000101111001110000

(d) 0010010110011010110001001001

(e) 11110000111111110000000000000000

(f) 11000011010100011010011111100000

Answer

6.4. CONVOLUTIONAL CODES 237

1. (c)

2. (c): 00111100101010000101111001110000

ui ui−1 ui−2 ui−3 z4i−3 z4i−2 z4i−1 z4i

1 0 0 0 0 0 1 1
0 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 0 1 1 0 0 0
0 1 1 0 0 1 0 1
0 0 1 1 1 1 1 0
0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0

Let us now wonder what is in general the code generated by the encoder depicted in
Figure 6.1?

Consider for instance a 3 bits message u = (u1, u2, u3). As we have seen, what has to
be actually encoded is (u1, u2, u3, 0, 0), i.e two zero bits are added at the end of the
original message in order to put the memory of the encoder back into its initial state.
The size of the corresponding codeword is thus 2 · 5 = 10.

The bits of this codewords are given by equations (6.5) and (6.6), i.e. in a matrix
format:

(z2i−1, z2i) = (ui−2, ui−1, ui) ·

1 1
0 1
1 1

 (6.7)

Thus the complete codeword z is obtained by multiplying (u1, u2, u3, 0, 0) by the matrix

G3 =

1 1 0 1 1 1 0 0 0 0
0 0 1 1 0 1 1 1 0 0
0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 1 1

,

or more simply by multiplying u = (u1, u2, u3) by

G3 =

1 1 0 1 1 1 0 0 0 0
0 0 1 1 0 1 1 1 0 0
0 0 0 0 1 1 0 1 1 1

 .

The encoded codeword is thus z = u ·G3.

For a message of length m, this generalizes to z = u ·Gm where Gm is the m×(2m+4)
matrix made of one row two columns shifts of the small block matrix of equation (6.7).

This result is true in general, independently of the length of the encoded message. This
illustrates why convolutional codes are presented as “unbounded” linear block codes.

6.4.3 General Definition

Let us now give a general definition of convolutional codes.

238 CHAPTER 6. ERROR CORRECTING CODES

Definition 6.15 A (n, k, r) D-ary convolutional code is an unbounded linear
code, the generator matrix of which is in the following form (infinite):

G =

F0 F1 F2 · · · Fr [0] [0] [0] · · ·
[0] F0 F1 · · · Fr−1 Fr [0] [0] · · ·
[0] [0] F0 · · · Fr−2 Fr−1 Fr [0] · · ·
...

...
. . .

. . .
. . .

. . .

with Fi a k × n matrix, and [0] the k × n null matrix; i.e. each set of k rows
of G is the same as the previous set of k rows but shifted n places right.
A message u of finite length m, u = (u1, ..., um) is encoded by z = u · Gm′

where u is the vector of length m′ = qk, with q =
⌈

m
k

⌉
, such that u =

(u1, ..., um, 0, ..., 0), and Gm′ is the top left submatrix of G of size qk×n(r+q).
Notice that u = u, i.e. m′ = m if m is a multiple of k (in particular when
k = 1!). �

In the above definition, k actually corresponds to the number of message symbols
that are going in the encoder (k input lines), n is the number of outgoing codeword
symbols per input (n output lines) and r is the maximum number of memories (a.k.a.
“registers”) on one input line.

Example 6.27 The example encoder of Figure 6.1 builds a (2, 1, 2) convolutional
code: k = 1 input line with r = 2 memories, producing n = 2 codeword bits for each
input bit.

As seen in Section 6.4.2, for an input message of length 3, its generator matrix is the
3× 10 matrix

G3 =

1 1 0 1 1 1 0 0 0 0

0 0 1 1 0 1 1 1 0 0

0 0 0 0 1 1 0 1 1 1

where indeed each row (“set of k = 1 row(s)”) is a 2-left shift of the row above it.

Regarding the definition, we have for the above matrix G3:

• F0 = [1 1], corresponding to the two coefficients of ui in equations (6.5) and
(6.6),

• F1 = [0 1], corresponding to the two coefficients of ui−1,

• and F2 = [1 1], corresponding to the two coefficients of ui−2.

Notice that convolutional codes are linear: any combination of codewords is also a
codeword (with the convention that smaller codewords are padded with zeros at the
end such that the linear combination makes sense, i.e. all added words with the same
length).

Control Question 68

1. What are (n, k, r) of the convolutional code given in the last question?

6.4. CONVOLUTIONAL CODES 239

(a) (1, 3, 4)

(b) (7, 4, 1)

(c) (3, 1, 4)

(d) (4, 1, 3)

(e) (7, 1, 4)

(f) (1, 3, 7)

2. What is the generator matrix of this code?

(a) How many F blocks are there?

(b) What is the size of each F block: ?×? ?

(c) Give all the F blocks.

Answer

1. 4: (4, 1, 3)

2. (a) r = 3

(b) 1× 4

(c) F0 = [0 0 1 1], F1 = [1 1 0 0], F2 = [1 0 0 1], F3 = [0 1 1 1].

Indeed,

z = u ·

0 1 1 1
1 0 0 1
1 1 0 0
0 0 1 1

For instance:

G4 =

0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 1 0 1 1 1

6.4.4 Lattice Representation

The “state” of a system is the set of internal parameters (memories, a.k.a. “registers”),
that is required to compute the corresponding output to a given input block. For the
encoder of Figure 6.1 for instance, the state at time i is the current contents of the two
memories, i.e. Si = (ui−1, ui−2).

The behavior of the encoder depends only on its state and the input: a convolutional
code encoder is a state machine. All its behaviors are described by the state diagram.

240 CHAPTER 6. ERROR CORRECTING CODES

Definition 6.16 (State Diagram) The state diagram of an encoder is a
graph, the nodes of which are all possible internal states of the encoder. An
arc between a node Si and a node Sj in this graph represents the fact there
exists an input that, when received in state Si makes the encoder go in state
Sj .
These arcs are usually labeled with the input symbol(s) and the corresponding
output symbols. �

Example 6.28 (State Diagram) For instance, for the encoder of Figure 6.1, we
have:

10

11

01

00

1 / 01

u i z2i-1 z2i/

/ 101 0 / 10

1 / 00

/ 010

/ 000

1 / 11 0 / 11

where each node represent the state of the encoder i.e. the states of the two internal
memories, the blue label is the input that produces the state change, and the red
label is the corresponding output symbols.

For instance, if in stage 01, a 1 is received as input symbols, then the state becomes
10 and the two output symbols are 00.

The set of codewords of a (n, k, r) convolutional code corresponding to all possible
messages of m bits thus corresponds to the set of all paths of length n(r +

⌈
m
k

⌉
) in the

state diagram that start from the null state (all zero) and return to this null state.

The unfolding in time of all the paths of the same length n(r +
⌈

m
k

⌉
) in the state

diagram is called the lattice∗ of size m of the (n, k, r) convolutional code.

Example 6.29 (Lattice) For the (2, 1, 2) code considered in previous examples, the
lattice of length m = 3, representing the encodings of all input messages of 3 bits is:

11 11

01 01 01

10 10 10

00 00 00 00 00 00

11 11

11

00 00 00 00 00

1
0

1
0

01

01
01

01

10 10

00

1
1

1
1

1
1

in which a the uppermost arc out of a node corresponds to input bit 1 and the lowest

6.4. CONVOLUTIONAL CODES 241

arc to 0.

The first three columns of arcs thus corresponds to the encoding of the 3 message
bits, and the last two columns of arcs corresponds to the ending zeros14, having thus
only bottommost arcs.

Example 6.30 (Encoding in the Lattice) For instance, the encoding of the mes-
sage u = 101 corresponds to the following path :

11 11

01 01 01

10 10 10

00 00 00 00 00 00

11 11

11

00 00 00 00 00

1
0

1
0

01

01

10 10

1
1

1
1

01
01

00 1
1

i.e. to the codeword z = 1101000111.

Control Question 69

Consider the lattice corresponding to the encoding of a message of length 3 with the
encoder of the former control question.

How many columns of states does it have?

For each column, how many states are there?

Give the arc label for the following pairs of states. If no arc is present, answer ”no
arc”:

from 100 to 010:
from 101 to 110:
from 001 to 111:
from 111 to 011:

Answer

8 columns

1,2,4,8,8,4,2,1.

The answer all 8 could also be considered as correct (all column full although sub
obtimal since many states are unreachable in such a lattice).

from 100 to 010: 1100
from 101 to 110: 1000
from 001 to 101: no arc
from 111 to 011: 0010

Here is an example of the lattice (not all labels have been specified):

242 CHAPTER 6. ERROR CORRECTING CODES

000 000

100

000

100

010

110

111

011

101

001

000

100

010

110

000

111

011

101

001

000

100

010

110

0011

011

001

000

010

001

000
0000

11
11

1100

0001

01
10

0010

1110

0111

and here are the codewords emited in each possible situation:

Si\ui 0 1

000 0000 0011

001 0111 0100

010 1001 1010

011 1110 1101

100 1100 1111

101 1011 1000

110 0101 0110

111 0010 0001

6.4.5 Decoding

As we have just seen, a codeword correspond to one path form the starting node to
the ending node of the lattice.

Decoding consist thus in finding the most appropriate path corresponding to the re-
ceived message to decode. In the framework of minimal distance decoding, i.e. decoding
the codeword with minimal number of errors, “the most appropriate path” means the
path with the minimal Hamming distance with the message to be decoded.

Finding this “closest” path can be done using dynamic programming, i.e. the Viterbi
algorithm.

This algorithm is decoding one codeword block after the other (i.e. n message bits
after the others), keeping at each stage only the locally optimal solutions, i.e. for each
node in the column corresponding to the current decoded block, keeping the best path
that come to this node.

At the end, the best path found for the last node is the decoded message.

What is important and useful for this algorithm is that the number of possible best
paths that are kept at each time step is always less than or equal to the number of
states of the encoder. The algorithm is thus of linear complexity, instead of exponential
complexity of the naive algorithm which consists in comparing all the paths with the
message to be decoded.

6.4. CONVOLUTIONAL CODES 243

Let us now give the algorithm more precisely.

Let’s first introduce a bit of notation. For each state s of the encoder, let γi(s) be the
best (i.e. closest, i.e. with minimum number of errors) decoding of length i ending in
state s

γi(s) = min
z1,...,z2i

ending in s

d(z1...z2i, ẑ1...ẑ2i)

The complete decoding thus corresponds to γ|bz|(00)
(
|ẑ| = m + 2 = n

2 ici
)

where |ẑ| is
the length of the message to be decoded.

It is easy to see that for every couple of encode states (s, s′), we have:

γi(s) = min
z2i−1z2i

from s′ to s

(
d(z2i−1z2i, ẑ2i−1ẑ2i) + γi−1(s

′)
)
.

This leads to the following algorithm (Viterbi algorithm):

γ0(00) = 0
for i from 1 to |ẑ| do

for all s do
γi(s) = min

s′→s

(d(z2i−1z2i, ẑ2i−1ẑ2i) + γi−1(s
′))

mark the/one arc from s′ to s that achieves the minimum
end for

end for
reconstruct the optimal path backwards from the ending to the beginning null state

Example 6.31 Suppose that the codeword z = 1101000111 is sent over a noisy
channel and that ẑ = 0101010111 is received, i.e. two errors occurred. The above
algorithm will then go through the following steps, where the minimal number of
error γi(s) at this stage i is written in red above every state s in the lattice:

11 11

01 01 01

1

10 10 10

0 1

00 00 00 00 00 00

ẑ = 01 01 01 01 11

11 11

11

00 00 00 00 00

1
0

1
0

01

01
01

01

10 10

00

1
1

1
1

1
1

⇒

3

11 11

1

01 01 01

1 2

10 10 10

0 1 2

00 00 00 00 00 00

ẑ = 01 01 01 01 11

11 11

11

00 00 00 00 00

1
0

1
0

01

01
01

01

10 10

00

1
1

1
1

1
1

⇒

3 3

11 11

1 2

01 01 01

1 2 2

10 10 10

0 1 2 2

00 00 00 00 00 00

ẑ = 01 01 01 01 11

11 11

11

00 00 00 00 00

1
0

1
0

01

01
01

01

10 10

00

1
1

1
1

1
1

⇒

3 3

11 11

1 2 2

01 01 01

1 2 2

10 10 10

0 1 2 2 3

00 00 00 00 00 00

ẑ = 01 01 01 01 11

11 11

11

00 00 00 00 00

1
0

1
0

01

01
01

01

10 10

00

1
1

1
1

1
1

244 CHAPTER 6. ERROR CORRECTING CODES

⇒

3 3

11 11

1 2 2

01 01 01

1 2 2

10 10 10

0 1 2 2 3 2

00 00 00 00 00 00

ẑ = 01 01 01 01 11

11 11

11

00 00 00 00 00

1
0

1
0

01

01
01

01

10 10

00

1
1

1
1

1
1

⇒

3 3

11 11

1 2 2

01 01 01

1 2 2

10 10 10

0 1 2 2 3 2

00 00 00 00 00 00

ẑ = 01 01 01 01 11

11 11

11

00 00 00 00 00

1
0

1
0

01

01
01

01

10 10

00

1
1

1
1

1
1

In the first step, only two path can be considered:

• either a 1 was encoded, leading from state 00 to state 10. If this occurred then
11 was emitted and thus one error occurred during the transmission (since 01

has been received).

• or a 0 was encoded, leading from state 00 to state 00. If this occurred then 00

was emitted and one error also occurred during the transmission.

At the second step there is still only one possible path to reach each state (i.e. 4 paths
now). The minimal number of errors for each of this 4 states is the minimal number
of errors of the former state plus the number of error of the corresponding path (i.e.
the difference between the emitted and the received symbols). For instance, would
the path going from state 10 to state 11 have been used, two errors occurred then
since in such a case 10 would have been emitted and 01 is received. This leads to a
minimum number of errors for state 11 at step 2 γ2(11) = 1 + 2 = 3.

At step three, we have two possible paths to reach each state. The algorithm keeps
only one of the two, where the minimum number of errors is done. The other arc is
drawn with dashed gray line.

The algorithm goes on like this up to the final stage, where the null state is reached
with a minimal number of error of 2.

The very last step is the backward reconstruction of the path, which is drawn in blue
on the last picture. This path corresponds to the codeword 1101000111.

The final step of the decoding is to reconstruct the original message from the code-
word, which is done by knowing which arc (0 or 1) has been followed (or simply by
looking at the first bit of each state). In this case, we come to 10100, and suppressing
the last 2 zero which are not part of the original message, we end up with 101.

Control Question 70

For the code used in the former control question, how is 1011101011111101101001100010
decoded?

Answer

The answer is 0110.

Here is the corresponding treillis with minimum number of errors at each node:

6.4. CONVOLUTIONAL CODES 245

001

011

111111

0011
100

010

110

001

101

011

010

000

100

000

100

000

010

110

001

101

010

000
0000

1011 1010 1111 1010 0110

0111

10
01

111001
01

0010

0001

01
10

1100

11
11

1101 0010

1

3

5

5

3

3 5

7

7

9

5

5

5

5

7

7

7

7

7

7

5

6

99

9

6

7

8

8

000 000

100

110

011

001

000 000

The received message 1011 1010 1111 1101 1010 0110 0010 has thus 9 errors. The
emitted codeword was 0000 0011 1111 0101 1110 0111 0000 which correspond to
the encoded message 0110000, i.e. the original message 0110.

6.4.6 Minimum Distance

As presented in section 6.4.3, a convolutional code is a linear code. Thus, by Theo-
rem 6.2, its minimum distance is equal to its minimal weight.

Property 6.17 (Minimal Weight of a Convolutional Code) For a
convolutional code, the minimal weight is the minimal number of non zero
symbols on a path going from the null state to the null state.

Proof This comes directly from definition of minimal weight and the fact that a
codeword corresponds to a path in the state diagram going from the null state back
to the null state �

Example 6.32 Consider the convolutional code we have been dealing with since the
beginning of this section. The best way to represent paths in the state diagram is
to use the lattice. For minimal weight computation the lattice of size two is enough
since every arc in the lattice of size three that is not present in the lattice of size two
will come back into a same state with a bigger number of non zero symbol, so cannot
be part of the minimal path.

In out case, this gives us:

246 CHAPTER 6. ERROR CORRECTING CODES

00

10

00

01

00

11

01

00 00

10

11

10

01

10

11 11

0000 00

11

00

01

Poids=6

Poids=5

Thus dmin(C) = 5.

Control Question 71

What is the minimum distance of the encoder given in former control questions?
Answer

dmin(C) = 9. Here is the codeword with this weight:

100

010

0011

000 000

001

0111

1100

10
01

e-pendix: Convolution Code

Summary for Chapter 6

convolutional code: A (n, k, r) D-ary convolutional code is an unbounded linear
code, the generator (infinite) matrix of which is such that each set of k rows is
the same as the previous set of k rows but shifted n places right.

This corresponds to the matrix description of the encoder algorithm which is
often given in the form of a picture of a circuit with k input lines, n output
lines and at most r memories on a input to output path.

encoding: A message u of finite length m, u = (u1, ..., um) is encoded by z =
u · Gm′ where q =

⌈
m
k

⌉
, m′ = qk, u is the vector of length m′ such that

u = (u1, ..., um, 0, ..., 0), and Gm′ is the top left submatrix of size qk × n(r + q)
of the generator matrix.

encoder (internal) state: the set of states of the memories (or registers) of the
encoder

6.4. CONVOLUTIONAL CODES 247

state diagram: The state diagram of an encoder is a graph, the nodes of which are
all possible internal states of the encoder. An arc between a node Si and a node
Sj in this graph represents the fact there exists an input that, when received in
state Si makes the encoder go in state Sj .

These arcs are labeled with the input symbol(s) and the corresponding output
symbols.

lattice representation: The time unfolded representation of all possible paths in
the state diagram.

Viterbi decoding algorithm: The dynamic programming algorithm which, for a
given message to be decoded, finds the ”shortest” path (in terms of number of
errors) in the lattice.

248 CHAPTER 6. ERROR CORRECTING CODES

6.4. CONVOLUTIONAL CODES 249

Summary for Chapter 6

block-code: a non-empty set of words of the same length, considered as “row vec-
tors”.

weight: (of a word) the number of non-zero symbols.

Hamming distance: the number of coordinates in which two vectors differ.

The Hamming distance between two words is the weight of their difference.

minimum distance decoding: error correction framework in which each received
word is decoded into the closest (according to Hamming distance) codeword.

maximum likelihood decoding: error correction framework in which each re-
ceived word ẑ is decoded into (one of) the most likely codeword(s) z, i.e. a
codeword such that P (Y = ẑ|X = z) is maximal (with X the input of the noisy
channel and Y its output).

minimum distance of a code: the minimum (non null) Hamming distance be-
tween any two (different) codewords.

error correcting and detecting capacity: A block-code C of length n using min-
imum distance decoding can, for any two integers t and s such that 0 ≤ t ≤ n
and 0 ≤ s ≤ n−t, correct all patterns of t or fewer errors and detect all patterns
of t + 1, ..., t + s errors if and only if its minimum distance dmin(C) is strictly
bigger than 2t + s:

dmin(C) > 2t + s ⇐⇒ C corrects t and detects t + s errors.

linear code: a block code which is a vector space (i.e. any linear combination of
codewords is also a codeword).

A (n,m) D-ary linear code is a dimension m vector subspace of the dimension
n vector space of D-ary words.

minimum distance of a linear code: for linear code minimum distance of the
code is equal to the minimal weight.

generator matrix of a linear code: (of a (n,m) linear code) a m× n matrix the
rows of which are a basis of the code (they are thus linearly independent).

systematic form of the generator matrix of a linear code: a m×n generator
matrix of a (n,m) linear code is said to be in systematic form only if its left
most m×m submatrix is the identity matrix (of size m).

encoding with a linear code: the encoding with linear codes is done by matrix
multiplication: the word to be encoded u is multiply by one chosen generator
matrix G of the code producing the codeword z = u ·G.

If the generator matrix is in systematic form, the first m symbols of the codeword
are exactly the symbols of the message. Thus only the n − m last symbols
actually need to be computed.

verification matrix of a linear code: A (n − m) × n matrix H is a verification

250 CHAPTER 6. ERROR CORRECTING CODES

matrix for a (n,m) linear code C if and only if

∀z ∈ GF(D)n z ·HT = 0 ⇐⇒ z ∈ C

The verification matrix is very useful for decoding.

syndrome of a word with respect to a linear code: The result of the product
of a word by the verification matrix: s = z ·HT .

The syndrome is used to determine the error to be corrected. It indeed corre-
spond to the linear combination of columns of H which precisely is the product
of the error pattern by HT .

binary Hamming codes: • (2r − 1, 2r − r− 1) linear codes that can correct all
patterns of 1 error;

• the verification matrix is given in the form of the binary enumeration of
the columns.

Cyclic code: a linear code such that any (symbol) shift of any codeword is also a
codeword.

Polynomial representation of cyclic codes: z = z1...zn is represented by the
polynomial z(X) = z1 · X

n−1 + z2 · X
n−2 + ... + zn−1 · X + zn, i.e. the jth

symbol zj of a codeword z of size n is the coefficient of Xn−j in the correspond-
ing polynomial z(X).

The polynomial multiplication by X (degree one monome) corresponds to the
(1 position) left shift.

All operations are made modulo Xn − 1.

Generator of a cyclic code: For every cyclic code, there exist one polynomial such
that every codeword polynomial representation is a multiple of it and conversely.

Systematic form cyclic code encoding: The encoding method such that the m
first symbols of a codeword are exactly the m symbols of the encoded message.

For cyclic codes, systematic form encoding is achieved through the following
steps:

1. multiply the message polynonmial u(X) by Xn−m

2. divide Xn−m u(X) by the generator g(X) and get the remainder r(X)

3. encode u(X) by z(X) = Xn−mu(X)− r(X).

Decoding with cyclic codes: The decoding process is similar to the framework
used of linear codes in general:

1. compute the syndrome of the received word: it is the remainder of the
division of this word by the generator of the code;

2. then deduce the corrector from a precomputed mapping of syndromes to
correctors (the division of the corrector by the generator gives the syn-
drome as the remainder)

3. Finally, apply the corrector to the received codeword and decode the orig-
inal words as the first m symbols of the decoded codeword (provided that

6.4. CONVOLUTIONAL CODES 251

systematic encoding has been used).

Convolutional code: A (n, k, r) D-ary convolutional code is an unbounded linear
code, the generator (infinite) matrix of which is such that each set of k rows is
the same as the previous set of k rows but shifted n places right.

This corresponds to the matrix description of the encoder algorithm which is
often given in the form of a picture of a circuit with k input lines, n output
lines and at most r memories on a input to output path.

Encoding with convolutional code: A message u of finite length m, u =
(u1, ..., um) is encoded by z = u · Gm′ where q =

⌈
m
k

⌉
, m′ = qk, u is the

vector of length m′ such that u = (u1, ..., um, 0, ..., 0), and Gm′ is the top left
submatrix of size qk × n(r + q) of the generator matrix.

Convolutional code encoder (internal) state: the set of states of the memories
(or registers) of the encoder

State diagram: The state diagram of an encoder is a graph, the nodes of which are
all possible internal states of the encoder. An arc between a node Si and a node
Sj in this graph represents the fact there exists an input that, when received in
state Si makes the encoder go in state Sj .

These arcs are labeled with the input symbol(s) and the corresponding output
symbols.

Lattice representation: The time unfolded representation of all possible paths in
the state diagram.

Viterbi decoding algorithm: The dynamic programming algorithm which, for a
given message to be decoded, finds the ”shortest” path (in terms of number of
errors) in the lattice.

Historical Notes and Bibliography

This section still needs to be improved.

The work on error-correcting codes started of course from Shannon pioneer work in
1948. The design of good and efficient codes started in the fifties with the works of
Hamming, Slepian and many others. during the fifties, most of the work in this area
was devoted to the development of a real theory of coding (linear codes, both block
and convolutional).

Convolutional codes were first introduced in 1955 by Elias [3] as an alternative to
block codes. Wozencraft proposed later an efficient sequential decoding method for
such codes [14]. Then in 1967, Viterbi proposed a maximum-likelihood decoding algo-
rithm [13] quite easy to implement which leads to several applications of convolutional
codes, in particular deep-space satellite communications.

A theory to practice shift was made during the seventies, with a rapid growth of military
and spatial communication applications.

252 CHAPTER 6. ERROR CORRECTING CODES

OutLook

See also [2], [6], [12] and [8].

Chapter 7

Module I3: Cryptography

by J.-C. Chappelier

Learning Objectives for Chapter 7

In this chapter, the basics of cryptography are presented. After studying them,
you should know

1. what perfect and practical security are,

2. how much secure modern ciphering systems are,

3. why security and authentication are theoretically incompatible,

4. what RSA and DES are and how they work,

5. what unicity distance is and how to compute it.

Introduction

Cryptography, as its Greek root (“hidden writing”) suggested, is concerned with the
secrecy of information. But in the modern sense, this scientific domain is also concerned
with the authenticity of information.

In the “Information Age” we are now living in, cryptography can no longer be avoided
and, indeed, became a standard tool for communications. As information can nowa-
days be extremely sensitive and have enormous economic value, its transmission over
easily accessible channels, e.g. the Internet, sometimes requires confidentiality and au-
thenticity to be ensured. The purpose of cryptography is to provide such guarantees.

This chapter introduces you to the basics of this rather modern field of computer
sciences and study more formally its two goals: secrecy and authenticity. Roughly
speaking, the goal of secrecy is to ensure that the message is received by authorized
persons; the goal of authenticity is to ensure that the message as been sent by an
authorized person.

253

254 CHAPTER 7. CRYPTOGRAPHY

7.1 General Framework

Learning Objectives for Section 7.1

After studying this section you should know:

1. what cryptography deals with;

2. how to formally describe the general framework cryptography focuses
on;

3. and several historical (unsecure) ciphering examples.

7.1.1 Cryptography Goals

The framework of cryptography is to encode messages so as to ensure either secrecy or
authenticity.

As described in chapter 2, a message M is a sequence of symbols out of an alphabet
Σ. In cryptography, the encoding of message is called encrypting or ciphering. In the
framework considered in this chapter, encrypting will be done using a function e and a
key K, which is itself a finite sequence of symbols out of an alphabet, usually but not
necessarily the same as the message alphabet Σ.

The encrypted message, or cryptogram, is thus C = e(M,K). The encryption function
is here assumed to be deterministic. C is thus perfectly determined once M and K are
given, i.e. H(C|M,K) = 0.

The decrypting (or deciphering) is done using a function d and the key K, such that
(unsurprisingly!) d(e(M,K),K) = M . We also assume that decrypting is determinis-
tic, i.e. H(M |C,K) = 0.

Notice that H(C|M,K) = 0 and H(M |C,K) = 0 do not imply H(K|M,C) = 0;
several keys could indeed be possible for a given (M,C) pair. In practice however this
is hardly the case (and a bad idea), and almost always H(K|M,C) is also 0.

The general framework cryptography focuses on can be summarize by the picture given
in figure 7.1.

Unauthorized
person

SE
N

D
E

R

R
E

C
E

IV
E

R

encryption

Message M

decrypting

Key K

C=e(M,K) D=d(C,K)
public channel

secure channel

Figure 7.1: The general framework cryptography focuses on.

The goal of cryptography is to protect the message against

• wrong receipt (“secrecy”): it should be impossible to get the message M out of

7.1. GENERAL FRAMEWORK 255

the encrypted message C = e(M,K) without knowing K;

• wrong emission (“authentication”): it should be impossible to substitute another
message C ′ without knowing K.

The cryptanalysis is wondering about “cracking” security/authentication on a com-
munication channel. “Cracking” a security systems means finding M or K knowing
C = e(M,K). The hypothesis usually made are:

• encrypting and decrypting algorithms are known by everybody (Kerckhoffs’ hy-
pothesis) and even statistics about the messages (but not the message itself!)
could be collected;

• unauthorized persons doesn’t know the key K;

• everybody can get C = e(M,K) (but not M nor K).

Thus, all the secrecy is due only to the fact that the “enemies” do not know the actual
value of the secret key. It is indeed risky to hope that the design of the ciphering
algorithm could be safeguarded from the enemies. Nonetheless, in many applications
of cryptography, notably in military and diplomatic applications, the cryptographers
try to keep the ciphering algorithm as secret as possible. Kerckhoffs’ hypothesis doesn’t
forbid this, but only warns not to count too much on the success of such safekeeping.
On the other hand, Kerckhoffs would certainly have admired the designers of the Data
Encryption Standard (DES) (see section 7.3.3) who published a complete description
of their encryption system, and is nonetheless perhaps the most widely used cipher
today.

7.1.2 Historical Examples

Before studying further the fundamentals of cryptography with the modern tools of
Information Theory, let us first give three historical (but unsecure) examples of cryp-
tosystems: substitution, transposition and Vigenère ciphers.

Substitution

The substitution cipher simply consists in replacing every symbol of the message alpha-
bet by another symbol of this alphabet, known in advance. The key of such a system
is a permutation of the alphabet Σ, which define the substitution for all the symbols.

Example 7.1 (Substitution cipher) Consider messages out of the usual alphabet
made of 27 letters (including the whitespace!): Σ = {A, ...,Z,′ ′}. A possible key k,
i.e. a permutation of Σ, could be:

A → R
B → I
...

...
Y → B
Z → E
’ ’ → L

256 CHAPTER 7. CRYPTOGRAPHY

In this case e(“A BAY′′, k) = “RLIRB′′.

Transposition

In the transposition cipher, the key consists of a permutation of the d > 1 first integers
(d is also part of the definition of the key).

The encrypting algorithm is then the following:

1. pad the message with (less than d − 1) whitespaces, so that the length of the
message is a multiple of d;

2. split the message in blocks of length d;

3. permute the symbols in each block according to the permutation K.

Example 7.2 (Transposition Cipher) Let us take the permutation (2 4 3 1 5) as
the key (thus d = 5).

[Note on permutation notation: (2 4 3 1 5) means that the second letter of the original
message becomes the first of the encrypted message, the fourth of the original message
becomes the second, etc.]

Suppose now we want to encore the message ’TRANSPOSITION CIPHER IS SIMPLE’.

The length of the message is 29, which is not a multiple of d = 5. One extra whitespace
thus needs to be added at the end.

Then we split the message in six blocks of size 5 (whitespaces have here been marked
by a dot to make them appear more clearly):

TRANS POSIT ION.C IPHER IS.SI MPLE.

And finally we apply the transposition to each block:

RNATS OISPT O.NIC PEHIR SS.II PELM.

The transmitted message is thus ’RNATSOISPTO NICPEHIRSS IIPELM’ (by convention
ending whitespaces could be removed).

The decoding is done exactly the same way but using the inverse permutation (which
in this case is (4 1 3 2 5)).

Vigenère Cipher

The last historical example we want to present is the Vigenère cipher. In this cryp-
tography system, the key is a sequence of symbols from the same alphabet Σ as the
messages. In practice, it is very often one usual word or a sentence of a few words.

Using an order on Σ (e.g. the usual alphabetical order), this key is transformed into a
sequence of integers, e.g. ’A’ = 1, ’B’ = 2, ..., ’Z’ = 26 and ’ ’ = 27.

7.1. GENERAL FRAMEWORK 257

More formally, if

• n is the size of Σ,

• i(a) is the position of symbol a in Σ (according to the order chosen on Σ),
1 ≤ i(a) ≤ n,

• σ(i) the i-th symbol in Σ (1 ≤ i ≤ n, otherwise consider i mod n),

• the key K is made of p symbols K = k1...kp,

• and M of q symbols M = m1...mq,

then

C = σ(i(m1) + i(k1))σ(i(m2) + i(k2)) ... σ(i(mp) + i(kp))σ(i(mp+1) + i(k1))

... σ(i(mq) + i(kq mod p))

Example 7.3 (Vigenère Cipher) Let’s once again consider messages made out of
the 27 English letters (including the whitespace). The key is thus a sequence of
characters, for instance k =’INFORMATION’. How is the message ’VIGENERE CIPHER

IS ALSO QUITE SIMPLE’ encoded?

Assuming that letter ’A’ corresponds to ’1’ and whitespace to 27, letter ’I’ then
corresponds to 9, and thus the first letter of the message, ’V’, is encoded by ’V’+9=’D’,
the second letter of the message ’I’ is encoded by ’I’+’N’=’I’+14=’W’, the third letter
’G’ by ’G’+’F’=’G’+6=’M’, etc.

Here is the complete encoding:

VIGENERE CIPHER IS ALSO QUITE SIMPLE

INFORMATIONINFORMATIONINFORMATIONINF

DWMTERSYIRWYVKFRVTTJ FXNWI FFTAX YZK

i.e. the encoded message is ’DWMTERSYIRWYVKFRVTTJ FXNWI FFTAX YZK’.

Summary for Chapter 7

• cryptography aims at either transmitting messages securely (only authorized
persons can read it) or authenticate messages (no unauthorized persons could
have send it).

• To do so, the clear messages M are encoded using a key K and a deterministic
function: C = e(M,K).

• Encrypted messages can be decoded deterministically using the decoding func-
tion d and the same key K, so that d(e(M,K),K) = M .

• H(C|M,K) = 0.

• H(M |C,K) = 0.

258 CHAPTER 7. CRYPTOGRAPHY

7.2 Perfect Secrecy

Learning Objectives for Section 7.2

After studying this section you should know:

1. what is a perfectly secret cryptosystem;

2. one example of such a cryptosystem;

3. and for imperfectly secure systems, how to estimate the maximum mes-
sage size that can be securely transmitted.

After the entertaining historical examples of the last section, let us now come into the
modern science of cryptography. This begins with a information theoretical definition
of what a good (“perfect” is the word used by Shannon) cryptographic system is.

7.2.1 Definition and Consequences

In the framework depicted in figure 7.1, where only encrypted messages can be captured
by the unauthorized persons1, the system will be safe if the encrypted message does
not bring any information on the original message, i.e. if

I(C;M) = 0,

which also means that M and C are independent random variables.

Definition 7.1 (Perfect Secrecy) A encryption system is said to be perfect,
i.e. provide perfect secrecy, if and only if the mutual information of the clear
message M with the encrypted messages C is null: I(C;M) = 0. �

Theorem 7.1 In a perfect ciphering system, there must be at least as many
possible keys as possible messages.

Proof

I(C;M) = 0

implies that for every message m, P (C|M = m) = P (C).

Let us now consider a possible cryptogram, i.e. an encrypted message c such that
P (C = c) 6= 0.

Thus for every possible original message m, we have P (C = c|M = m) 6= 0 which
means that for every m there exist a key, denoted k(m), such that c = e(k(m),m).

Furthermore, m 6= m′ =⇒ k(m) 6= k(m′) otherwise deciphering would no longer be
deterministic: we would have two different messages that with the same key give the
same cryptogram c!

There are thus at least as many keys as there are possible messages m. �

1This kind of attack is called ciphertext-only attack.

7.2. PERFECT SECRECY 259

Theorem 7.2 In a perfect cryptographic system, the uncertainty on the keys
H(K) is at least as big as the uncertainty on the messages H(M):

H(K) ≥ H(M).

Proof

H(M) = H(M |C)

≤ H(M,K|C)

= H(K|C) + H(M |K,C)

= H(K|C)

≤ H(K)

The consequence of these two theorems is that in a perfect system keys must be complex
enough, at least more complex than the messages themselves.

7.2.2 One Example: One-Time Pad

Let us now present a well-know example of a perfect cryptographic system: the “one-
time pad”, which is actually used by diplomats.

Without any loss of generally, we here consider the binary one-time pad, i.e. messages,
cryptograms and keys are binary sequences (Σ = {0, 1}).

In this system, the key is a random sequence of n independent bits, K = K1K2...Kn:

p(Ki = 0) = p(Ki = 0|K1, ...,Ki−1) = 0.5

where n is the size of the longest message to be transmitted.

The encryption is done simply by adding the symbols of the message and the symbols
of the key2: Ci = Mi + Ki.

Example 7.4 (One Time Pad) Suppose the key is k = 11010101010010101001

and the message to be transmitted m = 11110000111100001111, then the encrypted
message is c = m + k = 00100101101110100110.

Theorem 7.3 “One-time pad” is a perfect cipher.

Proof For 1 < i ≤ n:

p(Ci = 0|C1, ..., Ci−1,M1, ...Mn)

= p(Mi = 0|C1, ..., Ci−1,M1, ...Mn) · p(Ki = 0)

+p(Mi = 1|C1, ..., Ci−1,M1, ...Mn) · p(Ki = 1)

= 0.5 [p(Mi = 0|C1, ..., Ci−1,M1, ...Mn) + p(Mi = 1|C1, ..., Ci−1,M1, ...Mn)]

= 0.5

2binary addition (a.k.a. “exclusive or” for readers familiar with computer sciences) is the usual
modulo 2 addition, without carry: 0 + 1 = 1 and, as usual, 0 + 0 = 0, 1 + 1 = 0, 1 + 0 = 1.

260 CHAPTER 7. CRYPTOGRAPHY

Similarly, p(C1|M1, ...Mn) = 0.5, and p(Ci|C1, ..., Ci−1) = 0.5 for all i, 1 ≤ i ≤ n.

Thus, P (C|M) = P (C), i.e. I(C;M) = 0. �

7.2.3 Imperfect Secrecy and Unicity Distance

We have seen that for a cryptographic system to be perfect, the key must be complex
enough. In practice, at least for wide range usage, this is not very convenient.

For a practical wide range system (e.g. security on the Internet) the key must be small
(at least smaller than the messages) and to be used several times, i.e. the system has
to be “imperfect” from a formal point of view.

What can we thus say about ”imperfect” (but more convenient) systems?

To determine when a ciphering system that did not offer perfect secrecy could in
principle be broken, Shannon introduced the so-called key equivocation function defined
for integers by

a(n) = H(K|C1...Cn).

It seem obvious that the more encrypted text has been seen, the less uncertainty
remains of the key. More formally:

lim
n→∞

a(n) = 0

The unicity distance u is then defined as the smallest n such that a(n) ≈ 0.

Definition 7.2 (unicity distance) The unicity distance of a cryptosystem
is the smallest n such that

H(K|C1...Cn) ≈ 0

Thus, u is the least amount of ciphertext from which unauthorized persons are able to
determine the secret key almost uniquely. Roughly speaking, the unicity distance is
the least amount of ciphertext from which the ciphering system can be broken.

Let us now compute the unicity distance under certain circumstances.

7.2. PERFECT SECRECY 261

Theorem 7.4 If

• M and C are of the same length n and from the same alphabet Σ;

• encrypted messages have roughly maximal uncertainty: H(Cn) ' n ·
log |Σ| (which is something every cryptographer tries to reach);

• the key and messages are independent: H(Mn,K) = H(Mn) + H(K)
(which is also very natural and usual).

Then the unicity distance can be approximated by

u '
H(K)

R(M) · log |Σ|
(7.1)

where R(M) is the redundancy of the unencrypted messages M , as defined in
section 3.2.1 of chapter 3:

R(M) = 1−
H∞(M)

log |Σ|
.

Proof Assume n to be large enough so that H(Mn) ' n·H∞(M), which is a sensible
hypothesis (consider otherwise the maximum of such an n and the value of u obtained
with the given formula).

H(K|Cn) =

H(KCn)︷ ︸︸ ︷
H(MnKCn)−H(Mn|KCn)−H(Cn)

= H(MnKCn)−H(Cn)

= H(MnK)−H(Cn)

= H(Mn) + H(K)−H(Cn)

= n ·H∞(M) + H(K)− n · log |Σ|

Unicity distance u is defined by: H(K|Cu) = 0, i.e.

u
(
H∞(M)− log |Σ|

)
+ H(K) = 0

or:

u =
H(K)

log |Σ| −H∞(M)

=
H(K)

R(M) · log |Σ|

Example 7.5 (unicity distance) Let us consider English messages (made of the
27 letters alphabet, including whitespace) encrypted with a cipher using key of 20
independent letters. H(K) = 20 · log(27).

Knowing that the entropy rate of English is roughly 2 bits per letter, the redundancy
of messages is R(M) = 1−2/ log(27) ' 0.58 and the unicity distance of such a system

262 CHAPTER 7. CRYPTOGRAPHY

is:

u =
H(K)

R log |Σ|

=
20 · log(27)

log(27)− 2
' 35

i.e. cryptograms of about 35 characters will allow to determine the key almost
uniquely!

Shannon was well aware that the formula (7.1) was valid in general and “can be used
to estimate equivocation characteristics and the unicity distance for the ordinary types
of ciphers”. Indeed, cryptographers routinely use this formula to estimate the unicity
distance of almost all ciphers.

Notice also that u is, in principle, the required amount of ciphertext to determine the
key almost uniquely. However, finding K from C1, C2, . . . , Cu may very well be an
intractable problem in practice. This formula only says that all the information is
there, but does not say a word on how much difficult it might be to “extract” it. We
will come to this aspect later on in section 7.3.

7.2.4 Increasing Unicity Distance: Homophonic Coding

It can be seen from (7.1) that a good way to increase the unicity distance (i.e. to tell
less about the system) is to decrease the redundancy of the messages, i.e. to increase
their entropy.

It is for instance a good idea to compress the messages before encrypting them. Indeed,
in the best compression cases, H(Mn) ' n log |Σ| et thus R(M) ' 0, so u→∞.

Another possibility is to use an old cryptographic trick called “homophonic substi-
tution”. In this process, several different “homophones” are used to represent each
symbol of the original alphabet; the more homophones for the most frequent symbols
so that the homophones appear almost equally likely (whereas original symbols do not).

Example 7.6 In English, the most probable symbol is the whitespace, with a proba-
bility about .1859, the next most probable symbol is ‘E’, which has probability about
.1031. The least likely is ‘Z’ with a probability about .0005.

If we want to convert such an English text using almost equally likely symbols, we
need at least 1/0.005 = 2000 symbols (so as to be able to have at least one for the
’Z’). Suppose we are thus using 2000 “homophones” to represent the 27 letters. The
whitespace will be represented by any of the 372 (≈ .1859× 2000) symbols we choose
for it, ’E’ with any of the 206 (≈ .1031 × 2000) other symbols reserved for it, etc.,
and 1 (≈ .0005 × 2000) homophone symbol is used to represent the ‘Z’. The choice
of a substitute for an English letter is then made by a uniform random choice from
the set of homophone substitutes for that letter. The successive choices are made
independently. After such a conversion, each homophone symbol in the converted
text is essentially equally likely to any of the other.

The decoding can be easily achieved by replacing each of the substitutes by the
corresponding letter. There is no need to know in advance which substitutes were

7.2. PERFECT SECRECY 263

randomly chosen in the pre-coding process.

Control Question 72

What is the unicity distance of a cryptosystem ciphering messages of 96 characters
having an entropy rate of 3 bits per character with keys, the entropy of which is 33
bits.

Answer

u =
33

log 96− 3
= 9.2

(if needed: R = 1− 3
log 96 = 54.4%)

Control Question 73

What is the unicity distance of a cryptosystem encoding binary messages which are
25% redundant, with uniformly distributed keys of 16 binary symbols?

Answer

u =
16

0.25 · 1
= 64

Indeed

• entropy of uniformly distributed keys of 16 bits is... 16 bits!

• log |Σ| = log 2 = 1

Summary for Chapter 7

Perfect Secrecy: I(C;M) = 0

• for a system to be perfectly secret there must be at least as many keys as messages
and H(K) must be greater than (or equal to) H(M).

One-Time Pad: for each encryption, a random key is chosen, whose length is equal
to the message length and whose symbols are independent. The key is then
simply added (symbol by symbol) to the message.

• One-Time Pad is a perfect cipher.

unicity distance: the minimum number of encrypted text that must be known to
determine the key almost surely: H(K|C1...Cu) ' 0.

• under certain general assumptions, the unicity distance can be approximated by

u '
H(K)

R(M) · log |Σ|

264 CHAPTER 7. CRYPTOGRAPHY

where R(M) is the redundancy of the unencrypted messages M .

7.3 Practical Secrecy: Algorithmic Security

Learning Objectives for Section 7.3

After studying this section you should know:

1. how practical secrecy is achieved for unperfectly secure cryptosystems;

2. what ’difficult’ means for a computer (algorithmic complexity);

3. what a ’one-way function’ is;

4. how does DES work.

Up to this point, no particular attention has been paid to the computational power
required to actually crack the system. The analysis of secrecy developed up to here
applies independently of the time and computing power available for the attacks. Secu-
rity against computationally unrestrained enemies is called unconditional security (or
“theoretical” security as Shannon used to call it). As we have seen in theorems 7.1 and
7.2, achieving unconditional security usually requires enormous quantities of complex
secret keys much more than what could be accepted in practice for wide scope cryp-
tography applications. Most cryptographic systems used in practice thus do not rely
not on the impossibility of being broken but rather on the difficulty of such a breaking.
In this framework, the goal is to ensure security against unauthorized persons who
have a limited time and computing power available for their attacks. This is called
computational security (or “practical” security as Shannon used to call it). The point
is to change lack of information (unconditional security) for difficulty to access to the
information.

But what does it actually mean to be difficult? How could we measure the difficulty
to crack a code? This is the aim of “algorithmic complexity”.

7.3.1 Algorithmic Complexity

It is not the purpose of this section to provide a complete course on algorithmic com-
plexity, but we would rather present the basic concepts so that the rest of the lecture
regarding computational security can be understood well enough.

Algorithmic complexity aims at defining the complexity of decision problems. A deci-
sion problem is simply a yes/no question on a well defined input. For instance, given
an integer number n (the “input”), is this number a prime number?

If the answer to the decision problem could be found by some algorithm (on a Turing
machine), we call the decision problem “algorithmic”.3

3In the general algorithmic complexity theory, algorithmic decision problems are called “Turing
decidable problems”, but this goes a bit beyond the scope of this chapter.

7.3. PRACTICAL SECRECY: ALGORITHMIC SECURITY 265

For algorithmic decision problems, the (time-)complexity4 is defined as the smallest
number of time steps (on a Turing machine) of the algorithms that can answer the
question.5

For good fundamental reasons, this complexity is not expressed exactly, but only in the
way it depends on the size of the input: a problem is said to be linear, quadratic, expo-
nential, ... this mean that its complexity grows linearly, quadratically, exponentially,
... with the size of the input.

The complexity is thus expressed in terms of ”big O” notation.

Definition 7.3 (Big O notation) For two functions f and g over the real
numbers, g is said to be O(f) if and only if

∃x0 ∈ R, ∃c ∈ R, ∀x ≥ x0 |g(x)| ≤ c · f(x)

Notice that if g is O(f) and f is O(h), g is also O(h). For complexity measure, we are
looking for the ”smallest and simplest” f such that g is O(f) (e.g. such that f is also
O(|g|)).

Example 7.7 (Big O notation) 3 ·n + log n + 4 is O(n). Notice this is also O(n +
n3), O(n log n), O(n2), ... which are not pertinent when used for complexity measure.

5 · x2 − 12 · x7 + 5 · x3 is O(x7).

1/x is O(1).

The complexity of a linear problem is O(n), where n is the size of the input.

A problem whose complexity is O(2n) is an exponential problem.

Definition 7.4 (P and NP) P is the set of algorithmic decision problems,
the complexity of which is polynomial.
NP is the set of algorithmic decision problems, such that if a possible solution
is given, it is possible to verify this solution in a polynomial time. �

A classical pitfall is to think that NP means ’not-P’ or ’non-P’. This is wrong for several
reasons:

• P and NP are not complementary: P is actually totally included in NP;

• there are problems which are neither in P nor in NP.

What does the ’N’ of NP means then? It stands for ”Non-deterministic”. NP prob-
lems are problems which are polynomial in a non-deterministic way: pick up a possible
solution at random, then you can conclude (for that candidate solution only!), in poly-
nomial time.

Clearly P ⊂ NP, but it is for the moment still an open question whether NP ⊂ P or
not.

4only time-complexity is considered in this chapter.
5We do not go here into the details of problems and co-problems.

266 CHAPTER 7. CRYPTOGRAPHY

With respect to this question, there is a subset of NP which is of particular interest:
the NP-Complete (or ’NP-C’) problems.

Definition 7.5 (NP-Complete) A problem is said to be NP-Complete if it
is

• in NP

• at least as difficult as any problem in NP.

This class is of particular importance because if someone manages to prove that one
single NP-C problem is actually in P, then all NP is included in P!

There are finally a last class of problems (the ”difficult” ones): NP-hard problems.

Definition 7.6 A problema is said to be NP-hard if it at least as difficult as
any problem in NP. �

aIn its most general definition, the NP-hard class also includes problems which are not
decision only problems.

NP-C and NP-hard problems are often confused. The difference between NP-C and
NP-hard problems is that a NP-hard problem does not required to be in NP (either
because you do not bother or you do not want to spend time to prove that or, more
fundamentally, because it is a so difficult problem that even testing on single solution
cannot be achieved in polynomial time).

Example 7.8 (NP-Complete problems)
Satisfiability (SAT) :
The input is a set of n boolean (i.e. true/false) variables x1, ..., xn. Decision: could

(xi1 ∨ xj1 ∨ xk1
) ∧ (xi2 ∨ xj2 ∨ xk2

) ∧ (xi3 ∨ xj3 ∨ xk3
) ∧

be satisfied, i.e. be true for some values of the variables xi?

Traveling Salesman Problem (TSP):
The input is a graph (a set of nodes and arcs) G and a distance d. Decision: is there
a circuit going through all nodes of G and whose length is below d?

We now have all the required ingredients to make a code difficult to crack: get inspira-
tion from NP-hard problems. Let us now focus more precisely on the usage of difficult
problems for cryptography: one-way functions and, latter on, trap-door functions.

7.3.2 One-Way Functions

Definition 7.7 (One-Way Function) A one-way function∗ is a function
that is easy to compute but (computationally) difficult to invert. �

How could a one-way function be useful for cryptography?

7.3. PRACTICAL SECRECY: ALGORITHMIC SECURITY 267

The key idea is that both the encoding e(M,K) = C and the decoding d(C,K) = M
are easy to compute but that their inversion is difficult (even if H(K|C,M) = 0).

However, the most obvious application of one-way functions is certainly for password-
based systems.

For each authorized user of the system, his password w is stored in the encrypted form
e(w), where e is a one-way function. When someone wants to use the system (“log in”),
he presents a password w̃ and the system computes (easy way) e(w̃) and checks if it
correspond to the stored information e(w). If so, the user is granted access; if not, he is
denied. The virtue of this system is that the stored encrypted passwords do not need to
be kept secret6. If e is truly a one-way function, an attacker who somehow gets access
to these encrypted passwords can not do anything with that as it is computationally
infeasible for him to find a (pass)word x such that e(x) = e(w).

Notice, interestingly, that this first example application of one-way functions, actually
used in practice, provides authenticity rather than security, in the sense developed
earlier in this chapter.

An example of one-way function is given in the next section.

7.3.3 DES

Data Encryption Standard (DES in short) is one instance of a computationally secure
cryptographic system (or at least thought to be!) that uses one-way functions. Let us
present here the basic idea of DES. We here only focus on the core of the system as
the actual standard contains several other practical tricks.

DES is using a NP-Complete problem very similar to SAT for this: equation systems
in GF(2).

Example 7.9 Deciding if the system

x1x4 + x2x3x5 = 1

x2x3 + x1x3x4 = 1

x1x3 + x1x2x5 = 1

has a solutions or not is NP-Complete with respect to the number of variables.

The fact that the solution

(x1, x2, x3, x4, x5) = (1, 0, 1, 1, 0)

is here easy to find should not hide the fact that for a larger number a variables,
finding a solution is indeed a difficult problem.

How is it used for a cryptographic system?

Choose two integers n and m, and a non-linear function f from GF(2)m ×GF(2)n to
GF(2)n:

f(x1, ..., xm, y1, ..., yn) = (p1, ..., pn)

6although there is also no reason to make it public!

268 CHAPTER 7. CRYPTOGRAPHY

Choose also a key K of (d − 1)m bits, and split it into (d − 1) parts of m bits each:
K = (K1, ..., ,Kd−1).

Suppose that be the binary message M to be send has of 2n bits.7 M is split into two
parts of length n: M = (M0,M1).

The encryption is then done iteratively in d− 1 steps (i = 2, ..., d):

Mi = Mi−2 + f(Ki−1,Mi−1)

Finally, the cryptogram sent is

C = (Md−1,Md)

Decrypting is simply done the other way round (i = d, d− 1, ..., 2):

Mi−2 = Mi + f(Ki−1,Mi−1)

Example 7.10 (DES) Let us consider the following non-linear function (with m = 3
and n = 3):

f(x1, x2, x3, y1, y2, y3)

= (x1x2y1y2, x2x3y1y3, (x1 + x2)y1y3)

and let’s choose a key K = 101011 (d = 3):

K1 = 101, K2 = 011

How will the message 101111 be encoded?

M = 101111⇒M0 = 101,M1 = 111

Iterations:

M2 = M0 + f(K1,M1)

= (1, 0, 1) + f((1, 0, 1), (1, 1, 1))

= (1, 0, 1) + (0, 0, 1) = (1, 0, 0)

M3 = M1 + f(K2,M2)

= (1, 1, 1) + f((0, 1, 1), (1, 0, 0))

= (1, 1, 1) + (0, 0, 0) = (1, 1, 1)

C = (M2,M3) = (1, 0, 0, 1, 1, 1)

So finally, 100111 is send.

Security of DES

The security of DES is based on a NP-Complete problem. As such, there are at least
three possible sources of insecurity:

7otherwise pad and split the original message to have a smaller pieces of length 2n.

7.4. PUBLIC-KEY CRYPTOGRAPHY 269

• NP = P: if indeed someday it happens that polynomial solutions could be found
for NP problems, then these ”difficult” problems will no longer be difficult at all!
However, this is nowadays very unlikely.

• The size of the key is not big enough (recall that complexity is growing with the
size, and thus, only long enough inputs lead to computation time long enough to
be unreached). Actually, ever since DES was proposed, it has a lot been criticized
for its short 56 bits key size.

• But the most serious critic is certainly that, because the problem is NP, any
possible solution can, by definition, be tested in polynomial time, i.e. if by
chance the attacker guesses the right key, it is easy for him to check that it is the
right key!

The main conclusion is that the security is not always guaranteed for all cases: it might,
by chance, be easily cracked on some special cases. The only security comes from the
low chance for the attacker to guess the key.

Summary for Chapter 7

Algorithmic Complexity: how does the time of an algorithm grow with respect to
its input size.

P and NP: A problem is said to be in P if it can be solved by an algorithm, the
complexity of which is polynomial.

A problem is said to be in NP if a proposed solution of it can be check in
polynomial time (with respect to the size of this solution).

Pitfall: NP does not mean ”not P” but rather ”non-deterministic P”.

One-Way function: a function that is easy to compute but difficult to invert.

DES: a cryptosystem based on the difficulty to solve non-linear boolean systems.

7.4 Public-Key Cryptography

Learning Objectives for Section 7.4

After studying this section you should know:

1. what public-key cryptography means and how is it possible;

2. what a “trapdoor function” is;

3. what the “Diffie-Lamport Distribution System” is and how it works;

4. how does RSA work and what is its security.

The main problem to be addressed in large scale cryptographic systems is: how to
transmit the keys in a secure manner?

270 CHAPTER 7. CRYPTOGRAPHY

The intelligent idea of Diffie and Hellman is not to transmit the key at all, but to use
public keys. Each pair of users can, using a generic system for the distribution of keys,
have its own key for their communication. We present in this section two different
schemes for public key distribution: Diffie-Hellman scheme and RSA.

The paper Diffie and Hellman published in 1976, had created a real shock in the
cryptography community at the time. That paper suggested it is possible to build
computationally secure ciphering systems without any secure channel for the exchange
of the keys!

Indeed it was well known that public-key systems can actually not provide any uncon-
ditional security, since H(K) = 0 for such systems! The breakthrough came from their
clever idea that if computational security as been decided to be used (as indeed in most
practical applications), then the secure exchange of secret keys is no longer required.

This rather counter intuitive idea lies on the fundamental notions of one-way functions,
already presented, and trapdoor function, to be introduced in a few sections. But before
going on on this topic, we need a bit more of mathematics.

7.4.1 A bit of Mathematics

Modern computational cryptography is based on finite field algebra and more precisely
on the ”modulo p multiplication” (where p is a prime), i.e. the multiplicative group
GF∗(p) of Galois field GF(p): 1, ..., p− 1.

Since this group has p− 1 elements, Euler-Fermat theorem ensures that:

np−1 = 1 mod p

for every n in GF∗(p).

Example 7.11 (GF∗(5)) Let us consider GF∗(5) = {1, 2, 3, 4} (i.e. p = 5), where,
for instance, 4 · 3 = 2 , 2 · 4 = 3, 2 · 3 = 1. (4 · 3 = 12 = 2 mod 5)

Regarding Euler-Fermat theorem: e.g. for n = 2 we have: 24 = 16 = 1 mod 5.

Definition 7.8 (Primitive Root) An integer n is a primitive root of a
prime p if and only if its modulo order is p− 1, i.e.:

ni 6= 1 mod p, 0 < i < p− 1

and np−1 = 1 mod p

Theorem 7.5 For every prime number p, there exists at least one primitive
root in GF∗(p).

Example 7.12 Let us consider GF∗(5) once again.

n = 2 : 22 = 4, 23 = 3, 24 = 1, thus 2 is a primitive root in GF∗(5).

n = 4 : 42 = 1, i.e. 4 is not a primitive root.

7.4. PUBLIC-KEY CRYPTOGRAPHY 271

Discrete Exponentiation

Consider GF∗(p) for some prime p, and let a be a primitive root. By discrete exponen-
tiation to the base a in GF∗(p) we mean the function expa : GF∗(p) → GF∗(p) such
that expa(n) = an.

Since a is primitive root, the p−1 possible values of expa(x) (as n ranges over GF∗(p))
are all distinct. Thus, its inverse function expa

−1 exists. This function and is called
the discrete logarithm to the base a and is denoted by Loga.

Example 7.13 In GF∗(5), we have seen that 2 is a primitive root.

Log2(3) = 3 (in GF∗(5)): indeed, as seen in example 7.12, 23 = 3 mod 5.

Notice that Loga(a) = 1 and that Loga(1) = p− 1 in GF∗(p).

Control Question 74

Which of the following numbers are primitive roots in GF∗(11): 2, 4, 5, 6, 9, 10?

Answer

2: yes; 4: no (45 = 1); 5: no (55 = 1); 6: yes; 9: no (95 = 1); 10: no (102 = 1).

Control Question 75

In GF∗(11), compute

• Log7 2

• Log7 4

• Log7 5

• Log7 6

• Log7 10

Answer

• Log7 2 = 3. Indeed, 73 = 72 · 7 = 49 · 7 = 5 · 7 = 35 = 2 mod 11.

• Log7 4 = 6: 76 = (73)2 = 22 = 4 mod 11.

• Log7 5 = 2: 72 = 5 mod 11.

• Log7 6 = 7: 77 = 76 · 7 = 4 · 7 = 28 = 6 mod 11.

• Log7 10 = 5: 75 = 73 · 72 = 2 · 5 = 10 mod 11.

272 CHAPTER 7. CRYPTOGRAPHY

Conjecture 7.1 (Diffie-Hellman-Pohlig) The discrete exponentiation is a
one-way function.

First of all, discrete exponentiation is always easy to compute, requiring at most 2 log2 n
multiplications in GF∗(p) using the square-and-multiply algorithm.

On the other hand, the fastest known algorithm known today [7] for finding discrete
logarithms is in O(exp(n1/3(log n)2/3)).

However, there is no proof that there is no algorithm for computing the general discrete
logarithm in a shorter time than the above.

The Diffie, Hellman and Pohlig conjectured that discrete exponentiation in GF∗(p)
(when the base is a primitive root) is a one-way function, provided that p is a large
number such that p− 1 also has a large prime factor.

No proof of the conjecture has been given yet. But neither has an algorithm been
found for efficiently computing the discrete logarithm. In other words, the historical
evidence in favor of the conjecture has been increasing, but no theoretical evidence has
yet been produced.

7.4.2 The Diffie-Hellman Public Key Distribution System

In their 1976 paper, Diffie and Hellman suggested an ingenious scheme for creating a
common secret key between sender and receiver in a network without the need for a
secure channel to exchange secret keys; their scheme relies on the one-way aspect of
discrete exponentiation. Suppose f(x) = ax is truly a one-way function and is known
to all users of the network.

Each person (say, user A) randomly chooses (in secret!) a private (or secret) key xA

and then computes her public key yA = axA , which is publicly published.

When another person (say users B) wish to communicate securely with A, each fetches
the public number of the other, and uses this key to the power his/her own private key
for the communication; i.e user A computes yB

xA and user B computes yA
xB .

What is ”magic” is that these two number are indeed the same: yB
xA = (axB)xA =

axAxB = (axA)xB = yA
xB . This number kAB = axAxB , that both users A and B can

compute, is their “common secret”, which they can safely use as their secret key for
communication using a conventional secret-key cryptosystem.

What the Diffie-Hellman scheme provides is thus a public way to distribute secret keys.

If some unauthorized person wishes to crack the key, he should be able to take discrete
logarithms of either yA or yB (e.g. xA = Loga yA) and then get the desired secret key
as KAB = yB

xA . But if the discrete exponentiation used is truly one-way, this attack
is computationally infeasible.

Up to now (2003), nobody has produced an attack on the Diffie-Hellman public key-
distribution scheme that is not computationally equivalent to computing the discrete
logarithm. However, it has neither been proved that all attacks on this system are
computationally equivalent to computing the discrete logarithm.

Example 7.14 (Diffie-Hellman public key) In a Diffie-Hellman scheme, with

7.4. PUBLIC-KEY CRYPTOGRAPHY 273

p=127 and a=67, a user A chooses as private key xA = 111. He then publishes
his public key yA = 67111 = 102 mod 127.

Another user, B, chooses xB = 97; thus yB = 6797 = 92 mod 127.

These two users can communicate using the key kAB = 92111 = 10297 = 77 mod 127.

Control Question 76

In a Diffie-Hellman public key scheme, with p = 19 and a = 3 (which is indeed a
primitive root in GF∗(19)),

• what is the public key corresponding to the private key 5?

• what key does a person whose private key is 7 use to communicate with a person
whose public key is 14?

Same question with p = 101 and a = 51.

Answer

• 15: 35 = 15 mod 19

• 3: 147 = 3 mod 19

With p = 101 and a = 51:

• 60: 515 = 60 mod 101

• 6: 147 = 6 mod 101

7.4.3 Trapdoor Functions

Trapdoor functions, the second crucial aspect introduced by Diffie and Hellman for
their public key cryptography framework, is more subtle and more difficult than the
first one of one-way functions.

Definition 7.9 A trapdoor function∗ is actually a family of bijective functions
ft, indexed by a parameter t (the “trapdoor” key), such that each function is
a one-way function, but when t is known, ft

−1 is also easy to compute. �

The cryptographic utility of a trapdoor function is the following: each user randomly
(and secretly) chooses a trapdoor key, let us say t, and publishes ft (but not t itself!).
Usually ft is taken in a family of functions so that only some parameters need to be
published. These parameters are called the ”public key”.

If someone want to communicate a message M to the person whose published trapdoor
function is ft, he simply sends ft(M), which is easy to compute since ft is one-way. To

274 CHAPTER 7. CRYPTOGRAPHY

get the proper message, the receiver computes ft
−1 which is also easy to compute for

him since he possesses the trapdoor key t. This computation is however difficult for
any person who does not have the trapdoor key.

An example of trapdoor function is given in the next section.

7.4.4 RSA

The first trapdoor functions was made in 1978 by R. L. Rivest, A. Shamir and L. Adle-
man (RSA in short). The RSA trapdoor function is based on the supposed difficulty
of factorizing integers.

In this framework, both the message and the cryptogram are represented as (huge!)
integers.

Each user chooses two (large) prime numbers p and q (such that p − 1 and q − 1 also
have large prime factors) so that for all possible message M , M < pq (otherwise split
M in several parts so that each part is less that pq and consider as each part as M in
the following).

Let n = pq and m = (p− 1)(q − 1). The user chooses then d < m which is prime with
m (i.e. d and m do not have any divisor in common) and computes e such that ed = 1
mod m. An algorithm that computes e knowing d and m is given in appendix at the
end of this chapter.

The public key (to be published) is then (e, n) and the private key (to be kept secret)
is (d, p, q,m).

The encryption function (which is public) is

C = Me mod n

and the decryption (which is secret) is

D = Cd mod n

RSA framework works properly if D = M , i.e. Med = M mod n.

This is indeed the case: since ed = 1 mod m, there exist some λ > 0 such that
Med = M ·Mλm.

Recall furthermore that since p and q are prime numbers Mp−1 = 1 mod p and
M q−1 = 1 mod q, thus

Med = M ·Mλm = M ·Mλ(p−1)(q−1) = M ·
(
Mp−1

)λ(q−1)
= M · 1 mod p

and similarly
Med = M mod q.

A simple result from basic arithmetic is now required:

Theorem 7.6 Given three integers m,n, p, if n and m do not have any divisor
in common, and x = 0 mod m and x = 0 mod n then x = 0 mod (mn).

The proof is really straightforward. So is the following corollary we are interested in:

7.4. PUBLIC-KEY CRYPTOGRAPHY 275

Corollary 7.1 If p and q are two prime numbers and if x = y mod p and
x = y mod q then x = y mod (pq).

Thus we have Med = M mod n.

Example 7.15 (RSA) Suppose we want to use a RSA system to communicate, and
we choose p = 47 and q = 59 (This is not really secure, but for the illustration
purposes! In practice p and q should have more than 150 digits.)

Then we compute n = pq = 2773 and m = (p− 1)(q − 1) = 2668 and choose a d that
is prime with m; e.g. d = 157.

Finally we compute e such that 157·e = 1 mod 2668 using Euclid’s extended greatest
common divisor algorithm: e = 17.

e and n are published: (17, 2773), but the other numbers are keep secret.

Assume now someone wants to send us the message ITS ALL GREEK TO ME. By a
convention agreed before (and which is public: Kerckhoffs’ hypothesis), she transforms
it into numbers:

09 20 19 00 01 12 12 00 07 18 05 05 11 00 ...

Since M must be less than n, i.e M < 2773, she splits the above stream into integers
of at most 4 digits (indeed the maximum code will then be 2626 corresponding to
ZZ):

920, 1900, 112, 1200, 718, 505, 1100, ...

Then she computes 92017 mod 2773, 190017 mod 2773, 11217 mod 2773, ... and
sends us the corresponding integers; i.e

948, 2342, 1084, 1444, 2663, 2390, 778, ...

This message is decrypted using our own private key:

948157 = 920, 2342157 = 1900, ...

and end the decoding by applying the convention back: 920, 1900, ... =
09, 20, 19, 00, ... = ITS ...

Now you may wonder how did our correspondent compute 190017 mod 2773, or how
did we compute 2342157 mod 2773?...

This is done by the ”square and multiply” method and keeping in mind that

a · b = α · β mod n

for any a = α mod n and b = β mod n

For instance

2342157 = (2342128) · (234216) · (23428) · (23424) · 2342

= 1428 · 239 · 284 · 900 · 2342 = 1900 mod 2773

276 CHAPTER 7. CRYPTOGRAPHY

since
23422 = 4312 = 2743 mod 2773
23424 = 27432 = 302 = 900 mod 2773
23428 = 9002 = 284 mod 2773
234216 = 2842 = 239 mod 2773

and
2342128 = 1428 mod 2773

Control Question 77

Consider a very simple RSA set up where two people have the following parameters:

p q d e

A 3 19 5 29
B 5 11 7 23

1. What is the public key of A?

2. What is the public key of B?

3. How does A send the message ’43’ to B?

4. How does B send the message ’43’ to A?

Answer

1. (29, 57)

2. (23, 55)

3. 32: 4323 = 32 mod 55

4. 25: 4329 = 25 mod 57

Security of RSA

Breaking RSA by finding m = (p− 1)(q− 1) is computationally equivalent to factoring
n. In fact, all attacks thus far proposed against RSA have turned out to be computa-
tionally equivalent to factoring n, but no proof has been forthcoming that this must
be the case.

Furthermore, there is no hard evidence that factoring of integers is inherently difficult,
but there is much historical evidence in support of this second conjecture. Anyone who
has tried to improve upon known factoring algorithms soon convinces himself that this
is a very hard problem.

In 1999, the factorization of the 155 digit (512 bit) RSA Challenge Number was com-
pleted. It required 3.7 (real life) months and 35.7 CPU-years in total. This CPU-effort
was estimated to be equivalent to approximately 8000 MIPS years.8

8see http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa155.html for further de-
tails.

7.5. AUTHENTICATION 277

Up to now (2003), the RSA system is considered safe from attacks made by factoring,
at least with keys of more than 1024 bits... ...until revolutionary advances in factoring
algorithms have been made! [which is unlikely today]

Summary for Chapter 7

primitive root: a number n smaller than a prime p is said to be a primitive root in
GF∗(p) if and only if the only power 1 < i < p such that ni = 1 is p− 1.

discrete logarithm: an integer n is the discrete logarithm to the base a of another
integer m in GF∗(p) if an = m mod p (where p is a prime number and a a
primitive root in mGF).

Diffie-Hellman Public Key Distribution Scheme: being given a prime p and a
primitive root a in GF∗(p), each user chooses a private key x and published his
public key y = ax mod p.

When two users wish to communicate, each one uses the key consisting of the
public key of the other to the power his own private key:

kAB = yB
xA = yA

xB

trapdoor functions: a family of one-way functions depending on a parameter, such
that when this parameter is know, the inverse is no longer hard to compute.

RSA: Each user chooses two prime numbers p and q and a number d < (p−1)(q−1)
which has no common divisor with (p− 1)(q− 1). The public key is then (e, pq)
where e is such that ed = 1 mod (p− 1)(q − 1), and the private key is (d, p, q).

A message M (which is a integer less than pq) is encrypted using public keys by
C = Me mod pq. The decrypting is done using private keys: D = Cd mod pq.

7.5 Authentication

Learning Objectives for Section 7.5

After studying this section you should know:

1. Why authentication and security are theoretically incompatible;

2. how to ensure authentication in practice;

3. what Diffie-Hellman and RSA authentication scheme consist of.

In this last section, we now want to address the second aspect of cryptography: authen-
tication, i.e. ways to ensure that the message as been sent by an authorized person.
In other words we wonder here whether the received cryptogram C is a valid (legal)
one or if it has been faked by an unauthorized person.

278 CHAPTER 7. CRYPTOGRAPHY

Authentication and Security

Authentication was for long not easy to distinguish clearly from security. In fact,
cryptographers have discovered only recently that these two goals are indeed quite
independent, and even incompatible from a pure theoretical point of view.

This result is due to the following theorem.

Theorem 7.7 The probability PI that a cryptogram is falsified (i.e. to find a
cryptogram that is accepted although it has not been emitted by an authorized
person) is bounded by:

PI ≥ 2−I(C;K)

where C is the random variable representing possible cryptograms and K the
possible keys.
This bound is tight and can be reached in special cases.

Proof Let φ(C,K) be the authentication function:

φ(C,K) =

{
1 if ∃M | C = e(M,K)
0 otherwise

The probability that a cryptogram C is accepted as correct is:

P (acc(C)|C) =
∑

K

φ(C,K)P (K)

thus, the probability to have a falsification of authenticity is:

PI = P (acc(C)) =
∑

C

P (C, acc(C))

=
∑

C

P (C)P (acc(C)|C)

=
∑

C,K

φ(C,K)P (C)P (K)

=
∑

C,K,P (C,K)6=0

P (C)P (K)

=
∑

C,K

P (C,K)
P (C)P (K)

P (C,K)

= E

[
P (C)P (K)

P (C,K)

]

i.e.

log(PI) = log E

[
P (C)P (K)

P (C,K)

]

7.5. AUTHENTICATION 279

using Jensen inequality we have

log E

[
P (C)P (K)

P (C,K)

]
≥ E

[
log

P (C)P (K)

P (C,K)

]

= −I(C;K)

Thus
PI ≥ 2−I(C;K)

with equality if and only if P (C)P (K)
P (C,K) is constant for all (C,K) (such that P (C,K) > 0),

e.g. C and K are independent. �

Thus, to guarantee authenticity, i.e. to have small infraction probability, the mutual
information between cryptograms and keys must be big! However, to ensure perfect
confidentiality, we have seen in the former sections that I(C;M) = 0 is required!

Thus, from a strict information content point of view, authentication and confidentiality
appear to be somehow incompatible. Indeed,

I(C;K) = I(C;M) + H(K)−H(M)−H(K|M,C)

thus I(C;M) = 0 (and with the sensible assumption that H(K|M,C) = 0) implies
I(C;K) = H(K) − H(M), which implies PI ≥ 2H(M)−H(K) > 0; i.e. a perfect cryp-
tosystem should have very complex keys (H(K)� H(M)) to also ensure authentica-
tion.

One solution although, is to have I(C;K) � 0 (to ensure authenticity) but ensure
confidentiality by algorithmic security. This is one of the reasons why cryptographic
systems based on algorithmic complexity have become popular for authentication. Let
us see now how this can be done.

The basic idea is to use a digital signature to messages. Such a signature will ensure
that the sender of the message is actually who is claimed to be, and conversely in case
of disagreement, the sender whose message has been signed cannot deny having send
it, since he is the only one to be able to produce this signature.

7.5.1 Diffie-Lamport Authentication

In the Diffie-Lamport authentication framework, each user chooses

• 2n secret keys: k1, ..., kn and κ1, ..., κn

• 2n sequences s1, ..., sn et t1, ..., tn

and then produces the parameters: λi = e(si, ki) and µi = e(ti, κi).

Then he publishes (i.e. make publicly available) λi, µi, si, ti, for i = 1...n.

To sign the the binary message M of length n, M = m1, ...,mn he uses σ = σ1, ..., σn,
where:

σi =

{
ki if mi = 0

κi if mi = 1

Notice that this is a huge signature since ki and κi are not bits but keys, i.e. sequences
of k bits, where k is the size of the key required by the encryption algorithm.

280 CHAPTER 7. CRYPTOGRAPHY

When the receiver receives the message and its signature, he can check that the message
has been sent by the right person by doing:

• if mi = 0, e(si, σi) = λi

• if mi = 1, e(ti, σi) = µi

Such an authentication scheme presents however several drawbacks:

• lot of material needs to be communicated in advance;

• a message of n bits requires a signature of k · n bits!

7.5.2 Authentication with RSA

Diffie and Hellman also showed in 1976 that, provided the domain and the range of the
trapdoor function ft coincide for every t, ft can also be used to ensure the authenticity
of messages with digital signatures. Provided that legitimate messages have sufficient
internal structure to be reliably distinguished from random sequences (which is again
against what is required for security!), if user A wishes to sign a message M so that it
is unmistakable that it came from him, user A applies to M the decryption algorithm
with his private key to compute the signed message M ′ = d(M, k̃A). Any other user,
say user B, who obtains M ′ can use the encryption algorithm with the public key
of A kA to compute e(M ′, kA) = M . However, only user A knows how to write the
meaningful message M as the random-looking string M ′; and it is computationally
difficult for any other user to find M ′ such that e(M ′, kA) = M .

Of course, this scheme does not provide any secrecy. If secrecy is also desired, user A
could send the signed message M ′ using usual encryption method.

Let’s illustrate this general scheme with RSA.

User A sends M to B using the cryptogram C = eB(M), and signs it with S(M) =
eB(dA(M))

B can verify authenticity by doing: eA(dB(S(M))) which must be equal to M .

Notice that this presupposes that dA(M) is in the domain of eB , i.e. in the case of
RSA that dA(M) < nB . There are several practical tricks to do so, among which the
easiest is to split M into smaller pieces so that dA(M) is actually smaller that nB.

Example 7.16 (RSA Authentication) To continue our last example (exam-
ple 7.15), where p = 47, q = 59, d = 157 and e = 17, how will we sign the message
’OK’?

Using the same convention as before, ’OK’ corresponds to the integer 1511. The
signature is then d(1511) = 1511157 = 1657 mod 2773.

If we send this message to someone whose public key is (725, 2881) the encrypted
message will be 1511725 = 1369 mod 2881 and the encrypted signature 1657725 =
2304 mod 2881; i.e. we send (1369, 2304).

The receiver decodes the message using her private key d = 65: M = 136965 = 1511
mod 2881 and checks the signature: S = 230465 = 1657 mod 2881, e(S) = 165717 =
1511 mod 2773. e(S) = M : the message is valid.

7.5. AUTHENTICATION 281

Control Question 78

Consider again the very simple RSA set up where two people have the following pa-
rameters:

p q d e

A 3 19 5 29
B 5 11 7 23

1. What does A send to B to authenticate message ”43”?

2. B receives the message ”22” from A, signed ”41”. Is it really A who send it?

Answer

1. A sends ”07”. The signature is ”28” (435 = 28 mod 57) and is encrypted into
”07” (2823 = 7 mod 55).

2. No, this message doesn’t come from A.

The ciphered text ”22” corresponds the message ”33” (227 = 33 mod 55). The
decoded signature is ”46” (417 = 46 mod 55), which after public encryption for
A should be ”33”. But 462931 mod 57 6= 33.

The correct signature for ”33” is ”42”.

Signature security

A cannot deny having send m : only dA can produce S.

B (or anyone else but A) cannot change m for m′: S(m′) 6= S(m) and computing S(m′)
is not possible without dA.

In practice however, there are several drawbacks to this signature scheme. For instance,
the sender may deliberately publish his private key making then doubtful all digital
signature attributed to him, or he can also deliberately ”loose” his private key so that
the messages he sent become unverifiable. To make up for the later, trusted organisms
where the keys should be recorded before transactions, could play the role of ”private
key banks” .

7.5.3 Shared secrets

Let us finished with a quite different authentication scheme where the access to some
critical resources or information must be shared by several persons. The idea in such
system is that several persons together can reconstruct the complete key, but none can
do it alone. This is the “shared secret” method.

Examples of such situation include, e.g. opening a safe with two keys, missile launch
requiring 3 authorizations.

282 CHAPTER 7. CRYPTOGRAPHY

Suppose that we have n authorized persons (”key holders”) and that k parts of the key
are enough to ”open the door”, i.e. access the secret S. This means:

H(S|pi1 , ..., pik) = 0

for any subset {i1, ..., ik} of {1, ..., n}, where p1, ..., pn are the n parts of the key. How-
ever, less that k parts are not enough to get any information about this secret:

H(S|pi1 , ..., pik−1
) = H(S)

To do so, let’s choose for every secret a polynomial of order k−1 whose lower coefficient
is S:

P (X) = S + a1X + a2X
2 + ... + ak−1X

k−1

The other coefficients ai are chosen at random, and are different from one secret to the
other.

The authorized user i received the part of the secret as the value of the polynomial for
the value i:

pi = p(i),

This fulfills the above conditions: k users can reconstruct the polynomial by interpo-
lation and thus get S, but k − 1 (or less) cannot.

Example 7.17 Secret S = 0105, shared by n = 5 persons among which any two of
them can access the secret (k = 2)

p(x) = 105 + 50x

Thus
p1 = 155, p2 = 205, p3 = 255, p4 = 305, p5 = 355

Reconstruction by 2 participants (e.g. 2 and 5):

p(2) = S + a1 · 2 = 205

p(5) = S + a1 · 5 = 355

⇒ 3S + a1 · (10− 10) = 1025 − 710

S = 105

But the reconstruction by only 1 participant is not feasible.

Secret sharing can usefully be used to create ”access structures” to the secret: there
are less n users and some of there receive more parts than the other.

For example, imagine that opening a bank safe requires 1 director, or 2 authorized
representatives, or 1 authorized representative and 2 cashiers, or 5 cashiers.

For instance, with k = 10

• the bank director receives 10 parts,

• each authorized representatives 6 parts,

7.5. AUTHENTICATION 283

• and each cashiers 2 parts only.

Thus

• the director alone has the required 10 part to open the safe,

• 2 authorized representatives have 12 parts,

• 1 representatives and 2 cashiers 10 parts,

• and 5 cashiers: 10 parts.

The only problem with such solution is that for complex situations the number of parts
may be large.

Summary for Chapter 7

• Authentication (to ensure that the message as been sent by an authorized person)
and secrecy (to ensure that the message is received by authorized persons) are
somehow theoretically incompatible, since the former requires I(C;K) as large
as possible and the latter I(C;M) as small as possible.

• PI ≥ 2−I(C;K)

Diffie-Lamport Authentication scheme: can be used to sign binary messages.
Choose 2n keys and 2n sequences, publish the encryption of the latter by the
former and sign sending one or the other keys depending on the message bits.

RSA Authentication scheme: The signature is the message to the power the pri-
vate key. Send it encrypted using addressee’s public key.

Shared secrets: The access to one common secret is spread among several ”key
holders” using a polynomial.

284 CHAPTER 7. CRYPTOGRAPHY

7.5. AUTHENTICATION 285

Summary for Chapter 7

• cryptography aims at either transmitting messages securely (only authorized per-
sons can read it) or authenticate messages (no unauthorized persons could have
send it).

• To do so, the clear messages M are encoded using a key K and a deterministic
function: C = e(M,K).

• Encrypted messages can be decoded deterministically using the decoding function
d and the same key K, so that d(e(M,K),K) = M .

Perfect Secrecy: I(C;M) = 0

• for a system to be perfectly secret there must be at least as many keys as messages
and H(K) must be greater than (or equal to) H(M).

One-Time Pad: for each encryption, a random key is chosen, whose length is equal
to the message length and whose symbols are independent. The key is then
simply added (symbol by symbol) to the message.

One-Time Pad is a perfect cipher.

unicity distance: the minimum number of encrypted text that must be known (in
unperfect cryptosystems) to determine the key almost surely: H(K|C1...Cu) '
0.

Under certain general assumptions, the unicity distance can be approximated
by

u '
H(K)

R(M) · log |Σ|

where R(M) is the redundancy of the unencrypted messages M .

One-Way function: a function that is easy to compute but difficult to invert.

DES: a cryptosystem based on the difficulty to solve non-linear boolean systems.

discrete logarithm: an integer n is the discrete logarithm to the base a of another
integer m in GF∗(p) if an = m mod p (where p is a prime number and a a
primitive root in mGF).

Diffie-Hellman Public Key Distribution Scheme: being given a prime p and a
primitive root a in GF∗(p), each user chooses a private key x and published his
public key y = ax mod p.

When two users wish to communicate, each one uses the key consisting of the
public key of the other to the power his own private key:

kAB = yB
xA = yA

xB

trapdoor functions: a family of one-way functions depending on a parameter, such
that when this parameter is know, the inverse is no longer hard to compute.

RSA: Each user chooses two prime numbers p and q and a number d < (p−1)(q−1)

286 CHAPTER 7. CRYPTOGRAPHY

which has no common divisor with (p− 1)(q− 1). The public key is then (e, pq)
where e is such that ed = 1 mod (p− 1)(q − 1), and the private key is (d, p, q).

A message M (which is a integer less than pq) is encrypted using public keys by
C = Me mod pq. The decrypting is done using private keys: D = Cd mod pq.

• Authentication (to ensure that the message as been sent by an authorized person)
and secrecy (to ensure that the message is received by authorized persons) are
somehow theoretically incompatible, since the former requires I(C;K) as large
as possible and the latter I(C;M) as small as possible.

Diffie-Lamport Authentication scheme: can be used to sign binary messages.
Choose 2n keys and 2n sequences, publish the encryption of the latter by the
former and sign sending one or the other keys depending on the message bits.

RSA Authentication scheme: The signature is the message to the power the pri-
vate key. Send it encrypted using addressee’s public key.

Historical Notes and Bibliography

Secrecy of messages has for very long be a subject of study. It is indeed claim to date
back to ancient Egypt (1900 BC) or ancient China. In Europe, although Greeks and
Romans (e.g. ’Caesar cipher’) already used ciphers, cryptography and cryptanalysis
really started in the second half of the thirteen century and developed more seriously
from the fifteen century.

Around 1560, the French diplomat Blaise de Vigenère (1523-1596) developed his cryp-
tosystem from the work of several of his predecessors: Alberti (1404-1472), Trithème
(1462-1516) and Porta (1535-1615). Vigenère cipher remained unbreakable for 300
years.

The hypothesis that the security of the cipher should reside entirely in the secret key was
first made in 1883 by Auguste Kerckhoffs (1835-1903); and cryptographic history has
demonstrated his wisdom. A determined enemy is generally able to obtain a complete
“blueprint” of the enciphering and deciphering machines, either by clever deduction or
by outright stealing or by measures in-between these extremes.

The first really scientific treatment of secrecy has only been provided by C. Shannon
in 1949 [11]. Shannon’s theory of secrecy is in fact a straightforward application of the
information theory that he had formulated one year before. The ingenuity of the 1949
paper lies not in the methods used therein but rather in the new way of viewing and
the intelligent formulation that Shannon made of the problem of secrecy.

Although Shannon gave his theory of secrecy in 1949, it was not until 1984 that Sim-
mons gave an analogous theory of authenticity, illustrating how more difficult and
subtle authentication is.

The foundations of cryptographic thinking were once again shook in 1976, when two
Stanford University researchers, Whitfield Diffie and Martin E. Hellman, published
their paper entitled “New Directions in Cryptography”. Diffie and Hellman suggested
that it is possible to have computationally secure cryptographic systems that required
no secure channel for the exchange of secret keys. Ralph Merkle, then a graduate

7.5. AUTHENTICATION 287

student at the Berkeley University, independently formulated the basic ideas of such
“public-key cryptography” and submitted a paper thereon at almost the same time as
Diffie and Hellman, but his paper was published almost two years later than theirs and
unfortunately lost the due credit for his discovery.

The fundamental contribution of the Diffie-Hellman paper consisted in the two crucial
definitions, of a one-way function (which they borrowed from R. M. Needham’s work on
computer passwords) and of a trapdoor function (which was completely new), together
with suggestions as to how such functions could eliminate the need for the exchange of
secret keys in computationally-secure cryptographic systems.

Although Diffie and Hellman shrewdly defined trapdoor functions in their 1976 paper
and clearly pointed out the cryptographic potential of such functions, the first proposal
of such a function was made only two years latter, in 1978 by the M.I.T. researchers
R. L. Rivest, A. Shamir and L. Adleman (thus RSA!).

In the meantime, the basis of DES (1977) came out from the IBM Lucifer cryptosystem
(first published by Feistel in 1973!). However, whereas the Lucifer scheme used a key
of 128 bits, the US National Bureau of Standard (now known as National Institute of
Standards and Technology) who published the DES retains only 56 bits for the key.
Ever since DES was first proposed, it has a lot been criticized for its short key size.

In 1998, the EFF (Electronic Frontier Foundation has built a dedicated machine, Deep
Crack, in order to show to the world that DES is not (or at least no more) a secure
algorithm. Deep Crack, which costed $200’000 and was built with 1536 dedicated chips,
was able to recover a 56 bit key, using exhaustive search, in 4 days in average, checking
92 billions of keys each second.9

Later on (January 18, 1999), with the help of distributed.net, an organization spe-
cialized in collecting and managing computer’s idle time, they broke a DES key in 22
hours and 15 minutes! More than 100’000 computers (from the slowest PC to the most
powerful multiprocessors machines) have received and done a little part of the work;
this allowed a rate of 250,000,000,000 keys being checked every second. 10

In November 2002, AES (Advanced Encryption Standard), the successor to DES was
published. AES uses another type of algorithm (Rijndael algorithm, invented by Joan
Daemen and Vincent Rijmen) and supports key sizes of 128 bits, 192 bits, and 256
bits, which nowadays seems more than enough.

OutLook

D. Welsh, ”Codes and Cryptography”, Oxford University Press, 1988.

http://www.ars-cryptographica.com/

Appendum: Solving e · d = 1 mod m

Finding e and k such that e ·d− k ·m = 1 can be done using Euclid’s greatest common
divisor algorithm (since the greatest common divisor of d and m is precisely 1) .

9This part is borrowed from http://lasecwww.epfl.ch/memo des.shtml
10for more details, see http://www.rsasecurity.com/rsalabs/challenges/des3/index.html

288 CHAPTER 7. CRYPTOGRAPHY

Let u, v and t be vectors of Q2 (i.e. couples of rational numbers).

The initialization step of the algorithm consist of u = (0,m), v = (1, d).

The stop condition is that the second component v2 of v equals 1. In this case the first
component is v1 = e, i.e. at the end of the algorithm v = (e, 1) .

After the initialization step, the algorithm loops until the stop condition is fulfilled:
t← u− r v,
u← v,
v← t
where r = u2

v2

Example 7.18 Let us find e such that 7e = 1 mod 60, i.e. d = 7 and m = 60:

u v r t

(0, 60) (1, 7)
60

7
= 8 (−8, 4)

(1, 7) (−8, 4)
7

4
= 1 (9, 3)

(−8, 4) (9, 3)
4

3
= 1 (−17, 1)

(9, 3) (−17, 1) (stop)

thus e = −17 mod 60, i.e.: e = 43.

Bibliography

[1] R. Ash. Information Theory. Wiley, 1965.

[2] R. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, 1983.

[3] P. Elias. Coding for noisy channels. In IRE Conv. Rec., volume 4, pages 37–47,
1955.

[4] A. Feinstein. A new basic theorem of information theory. IRE Trans. Information
Theory, IT-4:2–22, 1954.

[5] R. G. Gallager. A simple derivation of the coding theorem and some applications.
IEEE Trans. Information Theory, IT-11:3–18, 1965.

[6] R. G. Gallager. Information Theory and Reliable Communication. Wiley, 1968.

[7] D.M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM
Journal of Computing, 1(6):124–138, 1993.

[8] S. Lin and D. J. Costello. Error Control Coding: Fundamentals and Applications.
Prentice-Hall, 1983.

[9] David Salomon. Data Compression – The complete reference. Springer, 1998.

[10] C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. Journal,
27:379–423, 623–656, 1948.

[11] C. E. Shannon. Communication theory of secrecy systems. Bell Sys. Tech. Journal,
28:656–715, 1949.

[12] J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1982.

[13] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm. IEEE Transactions on Information Theory, 13:260–269,
1967.

[14] J. M. Wozencraft and B. Reiffen. Sequential Decoding. MIT Press, 1961.

289

290 BIBLIOGRAPHY

Glossary

BSC: Binary Symmetric Channel. 150

BSS: Binary Symmetric Source: a memoryless binary source with P (0) = P (1) = 1
2 .

165

DMC: Discrete Memoryless Channel, see definition page 149. 149

Hamming distance: is the number of coordinates in which two vectors differ. 199

Huffman code: an efficient coding framework for memoryless information sources.
104

Minimum Distance: the minimum (non null) Hamming distance between any two
(different) codewords. 203

arity: size of the alphabet. For a n-ary tree: n, the number of child nodes of each
node. 82

block-code: a non-empty set of words of the same length, considered as “row vectors”.
199

channel capacity: the maximum average amount of information the output of the
channel can bring on the input. 152

codeword: a non empty sequence of symbols from the coding alphabet. 82

communication channel: formalization of what happens to the the transmitted mes-
sage between their emission and their reception. 149

complete code: a prefix-free code, the coding tree of which does not have unused
leaf. 89

cyclic code: a linear code, every shift of the codewords of which is also a codeword..
225

expected code length: the expected value of the length of the codewords. 95

generator matrix: One matrix the rows of which are linearly independent codeword.
Such a matrix is used to encode the messages.. 211

information source: generator of sequences of symbols. 82

instantaneously decodable: a code is said to be instantaneously decodable if each
codeword in any string of codewords can be decoded as soon as its end is reached.
85

291

292 BIBLIOGRAPHY

lattice: The unfolding in time of all the paths in the state diagram of a convolutional
code corresponding to all the possible the encodings of messages of different
lengths. 240

linear code: a block-code with vector space structure. 207

message: sequence of symbols. 82, 149

minimum distance decoding: decoding framework in which each received word is
decoded into the closest codeword. 202

non-singular codes: codes for which different source symbols maps to different code-
words. 83

null codeword: The codeword made only of zeros. 200

one-way function: a function that is easy to compute but difficult to computationally
invert. 266

stationary sources: information sources, the statistics of which do not depend on
time. 83

syndrome: product of the received word by a verification matrix. 218

transmission probabilities: conditional probability distributions of the output of a
channel knowing the input. 149

trapdoor function: family of one-way functions depending on a parameter, such
that, when the parameter is known, the inverse is no longer hard to compute..
273

weight: the number of non-zero symbols. 199

without feedback: a channel is said to be used without feedback when the probability
distribution of the inputs does not depend on the output.. 151

Index

block-code, 199

capacity, 152
code

block, 199
cyclic, 225
linear, 207

cyclic code, 225

decoding
minimum distance, 202

distance
Hamming, 199

DMC, 149

function
one-way, 266

generator matrix, 211

Hamming
distance, 199

information source, 82

lattice, 240
linear code, 207

message, 82
minimum distance

decoding, 202
minimum distance

of a code, 203

null codeword, 200

one-way function, 266

syndrome, 218

transmission rate, 157

verification matrix, 215

weight, 199

293

