Scaling by Majorizing a Complicated Function, the iterative algorithm to find an optimal Configuration.
- 1. Initialize
- 1.a. Get initial Configuration Z
- 1.b. Set stress σn[0] to a very large value.
- 1.c. Set iteration counter k = 0
- 2. Increase iteration counter by one: k = k + 1
- 3. Calculate distances dij(Z).
- 4. Transform dissimilarities δij into disparities d′ij.
- 5. Standardize the disparities so that ηd′2 = n(n–1)/2.
- 6. Compute the Guttman transform X[k] of Z.
- 7. Compute new distances dij(X[k]).
- 8. Compute normalized stress σn (d′, X[k])
- 9. If |σn[k] – σn[k–1]| / σn[k–1] < ε or k > maximumNumberOfIterations, then stop
- 10. Set Z = X[k], and go to 2.
This algorithm goes back to De Leeuw (1977).
© djmw 19980119