# Loanword phonology

Three approaches:

- Adaptation is perceptual, similarity between loan and native segments determines integration (e.g. Peperkamp & Dupoux 2003)
- Adaptation is phonological only, and performed by bilinguals (e.g. Paradis 1996)
- Adaptation involves native phonology *and* phonetic similarity between loan and native segments (e.g. Silverman 1992, Kenstowicz 2001, Broselow 2003, Yip 2006)

2

4

### Our proposal: phonological perception

Phonological perception in

loanword adaptation

OPC 4 Rhodes, January 20, 2007

Paul Boersma

Silke Hamann

3

5

- Loan adaptation involves your L1 (and possibly your L2) perception, and no loanword-specific devices
- Speech perception is the construction of an abstract phonological surface form from raw auditory material
- Speech perception is constrained by the familiar language-specific structural constraints

# Bidirectional two-level OT models of loanword adaptation



- loanword-specific device: different FAITH constraints in comprehension and production (e.g. MATCH by Davidson & Noyer 1996, MIMIC by Yip 2006)
- loanword-specific device: STRUCTURAL constraints work on different representations (e.g. Broselow 2003)
- general problem for two-level grammar models: is the surface form abstract or phonetically detailed?

# Psycholinguistic three-level model



COMPREHENSION PRODUCTION underlying form underlying form phonological phonological parsing generation / phonological form / /phonological form/ Loan adaptation: phonetic phonetic Peperkamp & parsing generation Dupoux (2003) [phonetic form] [phonetic form]

"All loanword adaptations are phonetically minimal transformations that apply in perception" Problem: how is the similarity between loan and native segment determined? No formalization

# Present approach: three-level OT

Use existing model for bidirectional L1 phonology & phonetics (Boersma 1998: serial comprehension; 2005: parallel production), without any loanword-specific constraints or modules



#### Japanese: final consonants

Polivanov (1931): Japanese listeners perceive the Russian word *tak* 'so' [tak] as /.ta.ku./

(modelled in OT by Escudero & Boersma 2004)

| [ta{velar,burst}] | Coda<br>Cond | *[burst]<br>// | *[ ]<br>/o/ | *[ ]<br>/u/ |
|-------------------|--------------|----------------|-------------|-------------|
| /.tak./           | *!           |                |             |             |
| /.ta./            |              | *!             |             |             |
| /.ta.ko./         |              |                | *!          |             |
| IS /.ta.ku./      |              |                |             | *           |

No similarity calculations between loan and native segments! Loan segment is categorized via native constraint rankings (acquired on the basis of L1 input)

#### Japanese: initial clusters

Russian [drama] is perceived as /.do.ra.ma./ (Polivanov 1931)

| [{alv,burst}rama] | */.CC/ | *[burst]<br>// | */du/ | *[alv]<br>/vel/ | *[burst]<br>/fric/ | *[ ]<br>/o/ | *[]<br>/u/ |
|-------------------|--------|----------------|-------|-----------------|--------------------|-------------|------------|
| /.dra.ma./        | *!     |                |       |                 |                    |             |            |
| /.ra.ma./         |        | *!             |       |                 |                    |             |            |
| /.du.ra.ma./      |        |                | *!    |                 |                    |             | *          |
| /.zu.ra.ma./      |        |                |       |                 | *!                 |             | *          |
| ☞ /.do.ra.ma./    |        |                |       |                 |                    | *           |            |
| /.gu.ra.ma./      |        |                |       | *!              |                    |             | *          |

See also the findings by Dupoux et al. (1999): Japanese listeners perceive both [ebzo] and [ebuzo] as /.e.bu.zo./

Structural and cue constraints

We use no loanword-specific devices:

1. structural and cue constraints are independently needed for native-language perception;

2. structural constraints are independently needed in production.

Empirical prediction: we should find cases of crucial intertwining of structural and cue constraints.

# Cue constraints can override structural constraints

Example: Dutch adaptation of English long high vowels as in *team* 

| $[t^{h}i\{long\}m]$ | *[long]<br>/µ/ | */high, long/ |
|---------------------|----------------|---------------|
| /.tim./             | *!             |               |
| IS ∕.ti:m./         |                | *             |

Borrowing creates new phonotactics!

10

8

## Cantonese: final consonant clusters

Data from Silverman (1992) and Yip (1993, 2002). Adaptation of English *tips* as [t<sup>h</sup>i:psi:] and *send* as [se:n]

| [ttp{ <i>fric</i> }]       | */CC./ | */F./ | *[fric]<br>// | *[]<br>/V/ |
|----------------------------|--------|-------|---------------|------------|
| /.t <sup>h</sup> ips./     | *!     | *     |               |            |
| /.t <sup>h</sup> is./      |        | *!    |               |            |
| /.t <sup>h</sup> ip./      |        |       | *!            |            |
| ☞ /.t <sup>h</sup> ip.si./ |        |       |               | *          |

#### Cantonese: final consonant clusters

| $[se\{nas\}\{^d\}]$ | */CC./ | */F./ | *[nas]<br>// | *[fric]<br>// | *[]<br>/V/ | *[ <sup>d</sup> ]<br>// |
|---------------------|--------|-------|--------------|---------------|------------|-------------------------|
| /.sɛnd./            | *!     |       |              |               |            |                         |
| /.sɛn.di./          |        |       |              |               | *!         |                         |
| /.sɛd./             |        |       | *!           |               |            |                         |
| 🖙 /.sεn./           |        |       |              |               |            | *                       |

Yip (1993, 2002): difference between auditory salience of [tɪps] and [send] causes difference in *production* via PARSE(salient) or MIMIC-SALIENT. Simpler proposal: locus is in *perception*, as here.

7

9

#### Cantonese: liquids Adaptation of English *plum* as [powlem] but *freezer* as [fi:sa:]

| [p{ <i>liquid</i> }ʌm]   | */.CC/ | $^*/^{\omega/}_{/\sigma\sigma\sigma/}$         | *[liquid]<br>//  | *[]<br>/V/  |
|--------------------------|--------|------------------------------------------------|------------------|-------------|
| /.plem./                 | *!     |                                                |                  |             |
| /.pem./                  |        |                                                | *!               |             |
| IS /.pow.lem./           |        |                                                |                  | *           |
| [f{ <i>liquid</i> }i:zə] | */.CC/ | $^{*}/^{\omega/}_{\sqrt{\sigma\sigma\sigma/}}$ | *[liquid]<br>/ / | *[ ]<br>/V/ |
| /.fli.sa./               | *!     |                                                |                  |             |
| /.fi.li.sa./             |        | *!                                             |                  | *           |
| IS /.fi.sa./             |        |                                                | *                |             |

13

### Cantonese: tone of epenthetic vowels

| [plʌ{ <i>hi</i> }m]    | */Ø/<br> -<br>/ơ/ | *[]<br>/M/ | *[]<br>/L/ |
|------------------------|-------------------|------------|------------|
| H<br>powlem            | *!                |            |            |
| L H<br>I I<br>™ powlem |                   |            | *          |
| M H<br>I I<br>powlem   |                   | *!         |            |

Silverman (1992: 303): At the Operative Level, "a L tone (the least prominent tone) is provided, since its **acoustic properties most closely correspond** to those of the input."

More natural locus: a L tone is provided in perception.

14

#### Desano

Data from Kaye (1971), analysis from Boersma (2000/2003) Adaptation of Portuguese [3wɛ̃w̃] 'John' as /ŋū/

| [3wē̃ŵ]       | */ØN/<br>  <br>/CV/ | */ØN/<br>  <br>/σσ/ | *[V±nas]<br>/V±nas/ | *[C±nas]<br>/C±nas/ |
|---------------|---------------------|---------------------|---------------------|---------------------|
| N<br> <br>3 u | *!                  |                     |                     |                     |
| N<br>Jua      |                     | *!                  |                     |                     |
| r≆ ∧<br>jiu   |                     |                     |                     | *                   |
| 3 u           |                     |                     | *!                  |                     |

15

#### Desano Adaptation of [sebēw] 'soap' as /.sa.bo./

| [sebẽw̃]       | */ØN/<br>  <br>/CV/ | */ØN/<br>  <br>/ơơ/ | *[V±nas]<br>/V±nas/ | *[C±nas]<br>/C±nas/ |
|----------------|---------------------|---------------------|---------------------|---------------------|
| N<br>I<br>sabo | *!                  |                     |                     |                     |
| N<br>∧<br>samo |                     | *!                  |                     | *                   |
| N<br>n a m o   |                     |                     | *                   | *!*                 |
| r≊ sabo        |                     |                     | *                   |                     |

16

### Conclusions

- Loanword adaptation uses already available perception grammar(s)
- OT structural constraints guide perception
- OT cue constraints are ranked by cue reliability

Not needed:

- loanword-specific modules or constraints
- loanword-specific rankings (e.g. Max >> Dep)

#### Assumptions required:

bidirectionality, phonological & phonetic levels

#### References

- Boersma, Paul (1998). Functional phonology. The Hague: Holland Academic Graphics.
- Boersma, Paul (2003). Nasal harmony in functional phonology. In: J. v. d. Weijer, H. v. d. Hulst & V. v. Heuven (eds.) *The phonological spectrum*. Amsterdam, John Benjamins: 3-35. Appeared 2000 on *ROA*, 393
- Boersma, Paul (2005). Some listener-oriented accounts of hache aspiré in French. ROA 730. Revised version to appear in Lingua.
- Broselow, Ellen (2003). Language contact phonology: richness of the stimulus, poverty of the base. *Proceedings of the North-Eastern Linguistic Society* 34.
- Davidson, Lisa & Rolf Noyer (1996). Loan phonology in Huave: nativization and the ranking of faithfulness constraints. WCCFL 15: 65-80.

- Dupoux, E., K. Kakehi, Y. Hirose, C. Pallier, S. Fitneva & J. Mehler (1999). Epenthetic vowels in Japanese: a perceptual illusion. Journal of Experimental Psychology: HPP 25: 1568-1578.
- Escudero, Paola & Paul Boersma (2004). Bridging the gap between L2 speech perception research and phonological theory. *Studies in Second Language Acquisition* 26: 551-585.
- Kaye, Jonathan (1971). Nasal harmony in Desano. Linguistic Inquiry 2: 37–56.
- Kenstowicz, Michael (2001). The Role of Perception in Loanword Phonology. *Linguistique Africaine* 20.
- Levelt, Willem (1989). Speaking: from intention to articulation. Cambridge, Mass.: MIT Press.
- McQueen, James & Anne Cutler (1997). Cognitive processes in speech perception. In W. Hardcastle & J. Laver (eds.) The handbook of phonetic sciences. Oxford: Blackwell, 566–585.

 Paradis, Carole (1996). The inadequacy of filters and faithfulness in loanword adaptation. In: J. Durand & B. Laks (eds.) *Current Trends in Phonology: Models and Methods*. Salford: University of Salford, 509-534.
Peperkamp, Sharon (to appear). A psycholinguistic theory of

- Ioanword adaptation. Proceedings of the 30th Annual Meeting of the Berkeley Linguistics Society.
- Peperkamp, Sharon & Emmanuel Dupoux (2003). Reinterpreting loanword adaptations: the role of perception. *ICPhS* 15: 367-370.
- Polivanov, Evgenij (1931). La perception des sons d'une langue étrangère. Travaux du Cercle Linguistique de Prague 4: 79–96.
- Silverman, Dan (1992). Multiple scansions in loanword phonology: evidence from Cantonese. *Phonology* 9: 289-328.

Steriade, Donca (2001). Directional asymmetries in place assimilation. In E. Hume & K. Johnson (eds.) The role of speech perception in phonology. San Diego: Academic Press, 219-250.

- perception in phonology. San Diego: Academic Press, 219-250.Yip, Moira (1993). Cantonese loanword phonology and optimality theory. *Journal of East Asian Linguistics* 2: 261-291.
- Yip, Moira (2002) Perceptual influences in Cantonese loanword phonology. Journal of the Phonetic Society of Japan 6(1): 4-21.
- Yip, Moira (2006). The symbiosis between perception and grammar in loanword phonology. *Lingua* 116: 950-975.
- 21

19