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Abstract

Variation is controlled by the grammar, though indirectly: it follows automatically from
the robustness requirement of learning. If every constraint in an Optimality-Theoretic
grammar has a ranking value along a continuous scale, and the disharmony of a
constraint at evaluation time is randomly distributed about this value, the phenomenon of
optionality in determining the winning candidate follows automatically from the
finiteness of the difference between the ranking values of the relevant constraints; the
degree of optionality is a descending function of this difference.

In the production grammar, a symmetrized maximal gradual learning algorithm will
cause the learner to copy the degrees of optionality from the language environment. In
the perception grammar, even the slightest degree of noise in constraint evaluation will
cause the learner to become a probability-matching listener, whose categorization
distributions match the production distributions of the language environment. Evidence
suggests that natural learners follow a symmetric demotion-and-promotion strategy,
rather than a demotion-only strategy.

A typical example of optionality in speech production is place assimilation of nasals
at the sentence level, i.e. a word underlyingly ending in ñanñ and a word starting with
ñpañ may, when concatenated, be pronounced either as [anpa]  or as [ampa]. This
poses a problem for a theory with fixed relative constraint rankings, like the original
version of Optimality Theory (Prince & Smolensky 1993).

Let’s say that the relevant constraints for our example are *GESTURE (tongue tip:
close & open) and *REPLACE (place: coronal, labial / nasal / _C), i.e., the choice
between [anpa]  and [ampa] is the outcome of a struggle between the importance of
not performing a tongue-tip opening-and-closing gesture and the importance of
honouring an underlying specification for the value [coronal] on the perceptual place
tier as conditioned by a nasal environment before a consonant (Boersma 1997). The
candidate [anpa]  would win if the ranking were *REPLACE (cor) >> *GESTURE (tip):

ñan+pañ *REPLACE (cor) *GESTURE (tip)

☞    [anpa]   /anpa/ *

[ampa]  /ampa/ *! (1)

A short explanation of the notation may be appropriate. According to the ideas of
Functional Phonology, the gestural constraint evaluates the articulatory candidate
[anpa] , and the faithfulness constraint evaluates the difference between the
                                                
* An earlier version of this paper appeared as Rutgers Optimality Archive #221.
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underlying perceptual specification ñan+pañ and the output /anpa/, which is the
acoustic result of [anpa]  as perceived by the listener; the similarities between these
forms are deceptive: the brackets contain shorthand notations for articulatory events,
the slashes contain shorthands for perceptual features.

If (1) were the only possible outcome, we could describe it with the following
grammar (the dotted line depicts a language-specific crucial ranking):

*REPLACE (cor)

*GESTURE (tip)

No assimilation

(2)

With the reverse ranking, [ampa] would win:

ñan+pañ *GESTURE (tip) *REPLACE (cor)

[anpa]  /anpa/ *!

☞    [ampa]  /ampa/ * (3)

With the following grammar, nasals would assimilate, but plosives would not:

*REPLACE (cor /  plosive)

*GESTURE (tip)

*REPLACE (cor /  nasal)

Nasal place assimilation

(4)

If place assimilation is optional, and if we cannot have both grammars (2) and (4) at
the same time, then we have a problem.

One possibility would be to rank *REPLACE (cor) and *GESTURE (tip) equally
high. We should then not follow the suggestion by Tesar & Smolensky (1993), who
interpret equal ranking in such a way that the violation marks incurred by the two
constraints are capable of cancelling each other. Rather, we should interpret equal
ranking in a probabilistic manner: if the two constraints are in conflict, either of them
could win at evaluation time, both with a probability of 50% (Anttila 1995).
However, real life learns us that optionality is often gradient, e.g., one form may
occur in 80%, the other in 20% of the cases, and these numbers differ between
neighbouring dialects. The proposal of the current paper shows that a continuously
ranking OT grammar can maintain any degree of optionality, that speakers will learn
to reproduce the degree of optionality of their language environment, and that
listeners will learn to match the degree of optionality of their language environment
in their categorization systems.

1. Continuous ranking scale and stochastic disharmony

Our optionality problem is solved by a random stochastic element in constraint
evaluation (in §2.4, we will see that this random element is independently needed to
implement the robustness requirement of a natural language user’s learning strategy).

If place assimilation occurs more often than not, we say that *GESTURE (tip) is
ranked higher than *REPLACE (cor) along a continuous scale (whose physiological
correlate could be synaptic strength), with a real number attached to each constraint:
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*REPLACE (cor)
*GESTURE (tip)

45

49
52
55 Adult model (target grammar)

(5)

In this example, the ranking value of *REPLACE (cor) is 49, and the ranking value of
*GESTURE (tip) is 52. In the absence of stochastic evaluation these values would
determine the order of the constraints in an evaluation tableau, in which case this
ranking would be equivalent to grammar (4). However, with stochastic evaluation
(whose physiological correlate could be the noise in the amount of locally available
neurotransmitter), this order is determined by the disharmonies  (“effective” rankings)
of the constraints, which are determined at evaluation time from the ranking value
and a random variable:

disharmony  = ranking + rankingSpreading  · z (6)

where z is a Gaussian random variable with mean 0 and standard deviation 1. For
instance, a simulation of ten implementations of ñan+pañ with a rankingSpreading  of
2 yielded the following disharmonies:

trial 1 2 3 4 5 6 7 8 9 10

*GESTURE disharmony 50.5 51.2 50.2 49.1 52.9 52.9 52.7 53.8 55.4 54.3

*REPLACE disharmony 50.8 48.3 50.7 51.2 48.9 48.8 48.2 50.3 48.1 48.7

outcome np mp np np mp mp mp mp mp mp

(7)

We see that in most replications, *GESTURE (tip) was evaluated as higher than
*REPLACE (cor), but that *REPLACE (cor) was higher in three of the ten cases. Thus,
our simulated speaker would have said [ampa] seven times, and [anpa]  three times.
The distribution of the disharmony difference between two constraints C1 and C2 with
rankings r1 and r2 is given by

disharmony disharmony r r rankingSpreading1 2 1 2 1 2− = − + ⋅ −( )z z (8)

Now if both z1 and z2 are Gaussian distributions with standard deviations of 1, their
difference z1 − z2  is also Gaussian, with a standard deviation of 2 , so that the
probability that C1 is evaluated higher than C2 is

P disharmony disharmony erf
r r

rankingSpreading1 2
1
2

1
2

1 21 2
2

>( ) = ⋅ − ⋅ −
⋅











 (9)

which for a ranking spreading of 2 can be tabulated as

r1–r2 0 1 2 3 4 5 6 7 8 9 10 11 12

P 1/2 36% 24% 14% 7.9% 3.9% 1.7% 0.7% 0.2% 7·10-4 2·10-4 5·10-5 1·10-5

(10)

So our speaker will say [anpa]  14% of the times. If the ranking difference is less than
10 (or so), we may talk of optionality; if it is greater, of obligation. The optionality
may still divide into variation  (for distances below, say, 7) and error, though these
subjective labels will generally be assigned with more criteria than rate of occurrence
alone.
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In Boersma (to appear), I show that the continuous ranking scale allows some very
simple and robust gradual learning algorithms, and that the current idea of optionality
leads to a realistic learning curve. In this paper, I will show that optionality in the
production grammar can be learned and that the listener’s categorization system
automatically adapts to asymmetries in the distributions of variations in production.
Finally, I present a shallow proof of the correctness of the “maximal gradual”
algorithm for learning stochastic grammars.

2. Learning optionality in production

In this section, I will show that if adults exhibit place assimilation of nasals in 86% of
all cases, like with grammar (5), then their children will copy this degree of
optionality in their production grammars.

2.1. Learning that faithfulness can be violated in an adult grammar

At four years of age, Dutch children tend to pronounce ñan+pañ faithfully as [anpa] ,
though their parents probably say [ampa] most of the time. This is a natural stage in
phonological development: the underlying form ends in ñ-anñ, which the learner can
easily deduct from the form as spoken in isolation. Because the child perceives her
own form [anpa]  as /anpa/, no faithfulness constraint is violated. In fact, earlier
stages in learning have centred around acquiring all the gestures necessary for
implementing the perceptual contrasts of the language, and the adult form, as
perceived by the learner, has always been taken to be the underlying specification,
with respect to which she evaluates the faithfulness constraints. Thus, the child’s
grammar is something like

   

*REPLACE (cor)

*GESTURE (tip)
35

49

40

55 Sandhi initial state (after motor learning)

(11)

The next step in phonological development is to learn that faithfulness constraints can
be violated: the separation between perceived and underlying forms can begin. The
learner will notice that she says /anpa/, but that adults sometimes say /ampa/. The
discrepancy within this learning pair  is shown in the following tableau:

[ampa] /ampa/ ñan#pañ *REPLACE
(place:

cor)

*REPLACE
(place
/ nas)

*REPLACE
(place
/ _C)

*GESTURE
(lip)

*GESTURE
(tip)

☞    [anpa] /anpa/ * *

√   [ampa] /ampa/ *! * * *

(12)

In this tableau, the top left shows the adult production [ampa] and the child’s
perception of it: /ampa/. Her own production is [anpa] , which she perceives as
/anpa/. This is the winner of the evaluation, as shown by the pointing finger (☞ ).
However, the learner knows that /ampa/ should have been the winner, and she has
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already learned in an earlier stage that she can implement that by saying [ampa].
Therefore, the row with the check mark (√) shows the correct, but losing candidate.
Something will have to be done. The learner will take a learning step .

2.2. The minimal gradual learning step: demoting the offender

The offending incorrectly ranked constraint is the one with the crucial violation (the
exclamation mark) in the evaluation of the correct candidate [ampa] (in the row with
the check mark). This offending constraint is *REPLACE (cor). A simple strategy that
will eventually prevent the mistake from reoccurring after a number of errors, is to
demote the offender , i.e., to lower the ranking of *REPLACE (cor) by a small amount
(e.g. a step of 0.01) along the continuous ranking scale. In Boersma (to appear), I
show that with this and related strategies (gradual learning algorithms) any target
constraint ranking can be learned within a reasonable time, independently of the
initial rankings of the constraints.

Demotion will proceed until the ranking of *REPLACE (cor) is below *GESTURE
(tip). But suppose that at a certain moment in time, the ranking is already as follows:

*REPLACE (cor)
*GESTURE (tip)

35
38
40

45 Half–way

(13)

According to table (10), the probability that a subsequent learning pair will contain an
adult model /ampa/ and a learner’s utterance /anpa/, is still 86%·24% = 21%, and
such a case will lead to a further demotion of *REPLACE (cor); the probability that the
adult model is /anpa/ and the learner’s utterance is /ampa/, is 14%·76% = 11%, and
such a case would lead to demotion of *GESTURE (tip). Thus, even now that
faithfulness has fallen below the gestural constraint, there will still be more
demotions of *REPLACE than of *GESTURE, and this will raise the difference between
the ranking values even further. However, if the ranking difference becomes large,
there will be more demotions of *GESTURE than of *REPLACE:

*REPLACE (cor)

*GESTURE (tip)

3535

40

45 Too far

(14)

In this case, a demotion of *GESTURE will occur in only 86% · 3.9% = 3.3% of the
cases, and a demotion of *REPLACE in 14% · 96.1% = 14% of the cases. The net
result is that the two constraints will get closer.

A state of stable equilibrium will be reached when the ranking difference has
become such that the demotion probabilities of *GESTURE and *REPLACE are equal,
i.e., when they are 86%·14% and 14%·86%, respectively. This, of course, occurs
when the ranking difference is 3, as in the adult grammar:
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*REPLACE (cor)
*GESTURE (tip)

35
37
40

45 Learning completed

(15)

Thus, stochastically evaluating learners acquire not only the adult ranking order, but
also the adult ranking differences and, therefore, the adult degree of optionality in
production. In §3, we will see that for a demotion-only learner, this result is valid
only if there are only two interacting constraints.

2.3. A remedy for downdrift of constraint pairs: symmetric demotion & promotion

Optionality causes a problem for demotion-only learning. Considered as a whole, the
grammar is not very stable, because the finite error probabilities that come with
optionality cause the relevant constraint pair to keep on falling down the constraint
hierarchy: in (14), learning may be completed but demotion of both constraints will
continue. In general, such a movement will push along any constraint that is crucially
ranked lower than this pair in the target (adult) hierarchy, and it will drag down any
constraint that is ranked higher and has an optionality relationship with one of the
members of the pair. For instance, if place assimilation for plosives has a probability
of 2%, the constraint *REPLACE (cor / plosive) will be dragged along at a distance of
6 above *GESTURE (tip) (in first approximation, but see §3.7).

Several stabilizing scenarios can be thought of, and one local scenario involves a
symmetric combination of demotion of one of the members of the pair, and
promotion of the other: when *REPLACE falls by 0.01, *GESTURE will rise by 0.01.
More precisely, we should look at the evaluation of the incorrect winner (the row
with the pointing finger) and find the highest violated constraint that is not violated by
the correct (but losing) candidate. If our constraint set is correct, we know that such
an uncancelled mark must exist in the winner, because the winner is obviously not the
optimal candidate in the target (adult) grammar. In (12), this constraint is *GESTURE
(tip). We now promote this constraint by a small step along the continuous ranking
scale. With an original ranking as in (11), the two constraints will end up in the
following grammar:

*REPLACE (cor)
*GESTURE (tip)

40
43
46

50 Final state

(16)

We see that the centre of the two constraint rankings is still at 44.5, as in the initial
state (11). We are justified in calling (16) the “final state” because the rankings will
stay in the vicinity of where they are in (16), without joining in a wholesale demotion
race.

This combined demotion-promotion scheme seems to be as convergent and robust
as that of §2.2, though it is not as “minimal” and local: to implement it, we will have
to consider one of the violation marks in the “grey cells” of the tableau (12).

In §3, we will see that the matching of the degree of optionality found in §2.2 for a
single constraint pair, extends to larger sets of constraints only if the learner follows
the a combined demotion/promotion strategy described here.
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2.4. Stochastic evaluation independently needed

We did not introduce random constraint evaluation with the intent of accounting for
variation. Rather, this random evaluation is independently needed to guarantee a
fundamental property of the natural language user’s learning behaviour: robustness. If
a minority of errors in the input is to have no dramatic consequences in our grammar,
the learner must be allowed to adjust constraint rankings only by an amount that is
much smaller than the difference between the rankings of relevant constraints. To
prevent a modest number of errors from turning the grammar upside down, a safety
margin  (safe ranking difference) must be maintained. In an error-driven learning
scheme, this can only be achieved by stochastic evaluation: only by making a few
mistakes herself (or a single one, in the “maximal” algorithm of §4) can the learner
refresh a safety margin that has been shrunk by an error. Thus, optionality follows
directly from the robustness requirement of learnability.

3. Learning a perception grammar

Consider perceptual categorization along a continuous auditory dimension with
values from [0] to [100]. Suppose that a language has the three contrastive categories
/30/, /50/, and /70/ along this dimension.

3.1. An OT grammar for perceptual categorization

In the listener’s perception grammar, the relative fitness of the various categories,
given an acoustic input value x, is described by a family of *WARP constraints for
each category y:

Def.    *WARP (f: x, y)
“An acoustic value x on a perceptual tier f is not categorized into the
category whose centre is at y.” (17)

This formulation is slightly different from the one in (Boersma 1997: §6.3) because of
its dependence on y, so that *WARP is now analogous to the *REPLACE family of the
production grammar. Now, a less distorted recognition is preferred over a more
distorted recognition, so the *WARP constraints are locally ranked according to

*WARP (feature: x1, y) >> *WARP (feature: x2, y) ⇔  y − x1 > y − x2 (18)

provided that x1 and x2 are on the same side of the category centre y . The continuous
*WARP families for our three categories could thus be depicted as

A possible initial state (unbiased)
*WARP (x, /30/) *WARP (x, /50/) *WARP (x, /70/)

Acoustic input x
30 50 700 100

–7

0

5

4440 60

/30/ /50/ /70/R
an

ki
ng

(19)
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To see how these constraints interact in the listener’s categorization system, consider
what happens to the datum [44]. The listener has three candidate categories, and the
perception grammar determines the winner:

[44] *WARP ([44], /70/) *WARP ([44], /30/) *WARP ([44], /50/)

/30/ *!

☞    /50/ *

/70/ *! (20)

The ranking of the three relevant * WARP constraints can be read from the dotted line
at [44] in figure (19): in going from the bottom up, it first cuts the *WARP (x, /50/)
curve, then the *WARP (x, /30/) curve, and finally the *WARP (x, /70/) curve.
Because the *WARP (x, /50/) curve is the lowest of these curves for x = 44, the
listener categorizes the acoustic input into the /50/ class. Given the three equally
shaped and equally high curves in (19), the discrimination criteria are obviously at
[40] and [60], and if evaluation is not stochastic, these criteria are hard: every input
above [60] is classified as /70/, every input below [40] as /30/, and every other input
as /50/.

3.2. Production distributions and the optimal listener

Variations within and between speakers will lead to random distributions of the
acoustic input to the listener’s ear. Suppose that a language has three categories with
midpoints at [30], [50], and [70] along a perceptual dimension, and a problematic
three-way contrast: the middle category is weaker than the others (e.g. has fewer
lexical occurrences). The speaker’s productions, which are the inputs to the listener’s
perception grammar, are then distributed as follows:

Production distributions of the three categories /30/, /50/, and /70/.

Produced acoustic value
30 50 70

45.5 54.5

0 100

1

3

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

(21)

The listener will make the fewest mistakes in initial categorization if she uses the
criterion of maximum likelihood, i.e., if given the acoustic input x she chooses the
perceptual category y that maximizes the a posteriori probability

P prod y ac x
P ac x prod y P prod y

P ac x
= =( ) =

= =( ) ⋅ =( )
=( )

(22)

For instance, if the acoustic input is [44], an optimal listener will choose the /30/
category because the curve of the distribution of the production of /30/ in figure (21)
is above the curve associated with the production of the category /50/, although the



IFA Proceedings 21, 1997 51

value [44] is nearer to the midpoint of the /50/ category than to the midpoint of /30/.
Therefore, she will initially categorize all inputs below the criterion [45.5] into the
class /30/, all the values between [45.5] and the second criterion [54.5] into the class
/50/, and all values above [54.5] into the class /70/. I will now show how an OT
listener establishes these criteria.

3.3. The initial state and its inadequacy

Figure (19) shows a possible initial state with unbiased categorization. Given the
language environment, the listener will more often have to recognize a [44] input into
the /30/ class than into the /50/ class, though she will prefer the /50/ class herself.
Therefore, (19) is not an optimal grammar.

3.4. Learning from categorization errors

The categorization according to (19) is independent from what the speaker’s intended
category was, but if the listener gets to know (in the recognition phase, after lexical
access etc.) which category the speaker had meant to produce, she may take a
learning step . Suppose that the speaker had intended the /30/ category. Tableau (20)
can then be enriched in a way analogous to (but somewhat simpler than) the learning
tableau for production grammars (12):

/30/   [44] *WARP ([44], /70/) *WARP ([44], /30/) *WARP ([44], /50/)

√   /30/ *!

☞    /50/ *

/70/ *! (23)

The listener now “knows” that she has made a categorization error. The offending
constraint is the one with the crucial violation (the exclamation mark) in the
evaluation of the intended category /30/ (in the row with the check mark). This
offending constraint is *WARP ([44], /30/). A simple learning strategy (§2.2) is to
demote the offender, i.e., to lower the ranking of *WARP ([44], /30/) by a small
amount (say 0.01) along the continuous ranking scale, which runs from –7 to 5 in
figure (19).1

3.5. Stochastic categorization and the optimal criterion

A crucial ingredient for the model is the stochastic constraint evaluation of §1: the
ranking of each categorization constraint at evaluation time is drawn from a Gaussian
distribution about its ranking in figure (19), again with a spreading of 2. This means
that an acoustic input of [44] has a chance of being initially categorized as /30/, /50/,
or even /70/, with probabilities that depend on the differences between the heights of
the three * WARP ([44], y) curves. Even after *WARP ([44], /30/) has fallen below
*WARP ([44], /50/), there is still a chance that a [44] datum will be initially
perceived as /50/. This optionality will lead to safety margins between the curves:

                                                
1 Because the constraint family is continuous, I used a Gaussian demotion window in the simulations,
i.e., the nearest neigbours (say, [39] through [49]) were also demoted, according to a Gaussian window
with a spreading of 1.58 acoustic units.
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*WARP ([44], /30/) will be demoted below *WARP ([44], /50/) until the error
probabilities, given the production distributions and the categorization noise, are the
same for both classes. After exposure to 100,000 data, the perception grammar of a
demotion/promotion learner will look like

Learned categorization after exposure to 100000 data.
*WARP (x, /30/) *WARP (x, /50/) *WARP (x, /70/)

Acoustic input x
30 50 700 100

-7

0

5

R
an

ki
ng

(24)

In the simulation that led from the initial unbiased grammar (19) to the adult grammar
(24), the perceptual range was divided into 200 steps of 0.5, the error-driven
demotion step (plasticity) was 0.01 (also stochastic, with a relative spreading of 0.1),
and the categorization spreading was 2, and the local-ranking principle was not
enforced2. We see that the minimal gradual learning algorithm causes the two criteria
between the middle category and its neighbours (the cutting points in the figure) to
shift in the direction of the middle category, until they fall together with the optimal
criteria identified in §3.2. Thus, the minimal gradual OT learner will automatically
learn to set the criteria in a way that a maximum-likelihood listener would . Note how
the local learning strategy of demoting a single incorrectly invalidating constraint
implements the global functional principle of maximizing the ease of the effort of
comprehension, i.e. minimizing the number of initial perception errors, thus
minimizing the number of cases that the initial categorization will have to be repaired
by the “higher” parts of the recognition system.

3.6. Probability matching

But our learner does not become a perfect maximum-likelihood listener. This is
because the learned criteria are ‘soft’: because of the stochastic categorization, there
will be regions in the acoustic space where more than one category can be initially
perceived: even though the acoustic input [44] is most likely to come from an
intended /30/ production, there is still a large probability that it is initially perceived
as /50/. From grammar (24), we can determine the perception-probability curves for
the three categories, by the following simulation. We present 1000 acoustic
replications of each of the 200 acoustic stimuli 0.25, 0.75, 1.25, ..., 99.75 to the
(simulated, patient) listener who is defined by the grammar (24). We will ask her
what she hears and force her to choose from the categories /30/, /50/, and /70/; we
will assume that her grammar is fixated, i.e. that she will not adapt her criteria to the
uniform distribution of the stimuli (only computerized listeners can be frozen in this
way). The 200,000 stimuli gave the following three curves for the percentages of the
responses of each of the three categories, as functions of the controlled acoustic
stimulus:

                                                
2 The Praat script that performs these simulations and produces the figures (19), (21), (24), (25), (29),
(34), (35), and (36), is available from http://fonsg3.let.uva.nl/paul/.
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% /30/ responses % /50/ responses % /70/ responses

Acoustic stimulus
30 50 700 100

0

50

100

Pe
rc

en
ta

ge

(25)

These curves are very similar to the categorization curves for controlled acoustic
stimuli, as have been measured for several ternary categorizations: voice-onset time
(the [b]-[p]-[pH] continuum) in Thai (Lisker & Abramson 1967); vowel height (the
[I]-[E]-[Q]  continuum) in English (Fry, Abramson, Eimas & Liberman 1962); and
place “of articulation” (the perceptual [b]-[d]-[g] continuum) in English (Liberman,
Harris, Hoffman & Griffith 1957).

So, the listener does not maintain an accurate maximum-likelihood strategy. We
can compute the categorization probabilities from the production probabilities, if we
realize that in an equilibrium situation, the demotion frequencies of the two
competing categories will be equal. For instance, the acoustic input [40] represents an
intended /30/ category in 74% of all cases, and the /50/ category in 25% of all cases.
Equilibrium has been achieved (for a demotion/promotion learner, who shows no
“downdrift”) when the probability of the error of classifying an intended /30/,
realized as [40], into the /50/ category, is equal to the probability of the error of
classifying an intended /50/, also realized as [40], into the /30/ category:

P prod = 30 ∧ perc = 50 ac = 40( ) = P prod = 50 ∧ perc = 30 ac = 40( ) (26)

Under the assumption that the initially perceived category does not depend on the
speaker’s intended category, but only on the acoustic input, we can rewrite the
combined probabilities as

P prod = 30 ∧ perc = 50 ac = 40( ) = P prod = 30 ac = 40( ) ⋅ P perc = 50 ac = 40( )
P prod = 50 ∧ perc = 30 ac = 40( ) = P prod = 50 ac = 40( ) ⋅ P perc = 30 ac = 40( )

(27)

Combining (26) and (27), we get

P perc = 30 ac = 40( )
P perc = 50 ac = 40( ) =

P prod = 30 ac = 40( )
P prod = 50 ac = 40( ) (28)

Thus, our learner becomes a probability-matching listener: her perception bias is
going to equal the production bias: she will categorize the input [40] into the /30/
class in 74% of all cases, and into the /50/ class in 24% of the cases. We may note
the similarity between (25) and a graph of the posterior production probabilities given
any acoustic input, which can be derived easily by dividing the three values for each
acoustic value in (21) by the sum of these three values:
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Demotion/promotion learner matches production probabilities

Acoustic stimulus
30 50 700 100

0

50

100

Pe
rc

en
ta

ge

(29)

The probability-matching strategy automatically results from OT learning with
stochastic evaluation, no matter how weak the random part of it is, as long as it is
greater than the plasticity.

Note that this strategy does not minimize the global number of perception errors,
though it may aid in the recovery from initial errors if the acoustic signal is still in
short-term memory.

3.7. Poor categorization performance of a demotion-only learner

The results of §3.6 are valid for demotion-only learners in learning a single constraint
pair, and for combined demotion/promotion learners in general. We will now see
how a demotion-only learner would mess up the three  constraint families that are
relevant for our categorization problem.

For a given acoustic input, say [40], an equilibrium is reached when all three
*WARP constraints are demoted equally often, i.e., when the listener makes an equal
amount of “mistakes” in classifying an intended /30/, /50/, or /70/ production.
Thus, suppressing the condition clause, (26) expands to

P prod perc P prod perc

P prod perc P prod perc

P prod perc P prod perc

= ∧ =( ) + = ∧ =( ) =

= ∧ =( ) + = ∧ =( ) =

= ∧ =( ) + = ∧ =( )

30 50 30 70

50 30 50 70

70 30 70 50 (30)

Again under the assumption of independent categorization, this becomes

P prod P perc P perc

P prod P perc P perc

P prod P perc P perc

=( ) ⋅ =( ) + =( )( ) =

=( ) ⋅ =( ) + =( )( ) =

=( ) ⋅ =( ) + =( )( )

30 50 70

50 30 70

70 30 50

(31)

Remembering that

P perc P perc P perc=( ) + =( ) + =( ) =30 50 70 1 (32)

we can compute the three unknown perception probabilities by solving the three
linear equations (31) and (32). Instead of the probability-matching formula (28), we
get (with a notation adapted to the width of the page):

P perc
P P

P P P P P P
prod prod

prod prod prod prod prod prod

=( ) = −
( ) ⋅ ( )

( ) ⋅ ( ) + ( ) ⋅ ( ) + ( ) ⋅ ( )
30 1 2

50 70

30 50 30 70 50 70
(33)

This predicts the following categorization probabilities for each acoustic input:
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Behaviour of a demotion-only learner in equilibrium

Acoustic stimulus
30 50 700 100

-100

0

100
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(34)

The situation is clearly pathological: we see negative probabilities except in a small
range of acoustic values around [50]. This just means that outside this domain there is
no concerted downdrift of the three constraints: at [60], for instance, *WARP (x, /50/)
and *WARP (x, /70/) will be drifting down the ranking scale, but *WARP (x, /30/)
will be left behind, driving the probability that the listener classifies an acoustic input
[60] as /30/ to zero. In the limit, therefore, the listener’s perception will seem to
follow a two-constraint probability-matching strategy outside the small acoustic
domain in the centre:

Predicted behaviour of demotion-only learner

Acoustic stimulus
30 50 700 100

0

50

100
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(35)

A simulated demotion-only learner confirmed this when asked to classify the whole
acoustic range after a million learning data3:

% /30/ responses % /50/ responses % /70/ responses

Acoustic stimulus

30 50 700 100
0
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ge

(36)

To my knowledge, the discontinuities and exact zeroes exhibited by (35) and (36)
have not been found in categorization experiments. To the extent that the response
distributions (25) and (29) are more realistic, we must conclude that a symmetric
demotion/promotion learning model better represents reality than a demotion-only
model. This, added to the solution of the grammatical downdrift problem, leads us
                                                
3 The small differences between (35) and (36) arise from using the Gaussian demotion window (fn. 2).
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into questioning the validity of demotion-only learning schemes, be they gradual
(Boersma, to appear) or not (Tesar & Smolensky 1993, 1996).

4. The correct maximal algorithm for learning a stochastic grammar4

Contrary to what §3.6 suggested, the symmetric version of the minimal gradual
learning algorithm often does not lead to probability matching. Instead, the correct
algorithm must demote all  violated constraints in the adult’s utterance, and promote
all  violated constraints in the learner’s utterance. In the example of (23), there would
be no difference between this maximal algorithm and the minimal algorithm, but in a
grammar with a larger number of constraints, there would.

Suppose that there are K candidates, each of which has a probability Pk
L  (k = 1...K)

of being chosen by the learner, and a probability of Pk
A  of being chosen by the adult.

Suppose that the grammar contains N constraints with rankings rn (n = 1...N). As a
result of the demotion of all the adult’s violated constraints, the ranking of constraint
n will increase upon the next learning pair by a negative amount ∆r n, whose
expectation value is

EA ∆rn[ ] = −p ⋅ Pk
Amkn

k=1

K

∑ (37)

where p is the plasticity constant, and mkn is 1 if candidate k violates constraint n and
0 otherwise (for now, we consider only constraints that can be violated only once).
Likewise, the promotion of all the learner’s violated constraints will lead to an
expected positive ranking increase of

EL ∆rn[ ] = p ⋅ Pk
Lmkn

k=1

K

∑ (38)

The total expected change in the ranking is

E ∆rn[ ] = p ⋅ Pk
L − Pk

A( )mkn
k=1

K

∑ (39)

We can see that if a candidate occurs with greater probability in the speaker than in
the adult, its violated constraints will rise on average, so that the probability of this
candidate in the speaker will decrease. Thus, the expected ranking change seems to
decrease the gap between the two grammars. Now, we will have to find a more formal
proof.

We can see immediately that if the learner’s grammar equals the adult’s grammar,
i.e. if Pk

L  equals Pk
A  for all k, the expected ranking change of every constraint n is

zero, i.e. the expected change in the learner’s grammar is zero. To prove learnability,
however, we have to show the reverse, namely the convergence of the learner’s
grammar upon the adult’s grammar. An important part of the proof involves showing
that the learner cannot end up in a different grammar from the adult. Suppose the
learner does end up in such a local maximum, i.e. E ∆rn[ ]  is zero for every constraint
n. We can write this situation in vector-matrix notation:

mT PL − PA( ) = 0 (40)

                                                
4 This section did not occur in the ROA version of this chapter. The maximal algorithm evolved after a
computer simulation of the learning of the extensive optionality data from Hayes & MacEachern (to
appear).
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Given a violation matrix m, the learner can end up in any grammar PL  that satisfies
(40). As we now from linear algebra, however, the vector PL − PA  must be zero if
the matrix m behaves well. We can distinguish the following cases of ill-behaved
violation matrices:

1. There are two candidates k  and l who violate the same set of constraints.
Equation (40) is then valid for any P for which there is an a so that Pk

L = Pk
A − a

and Pl
L = Pl

A + a. However, under our evaluation regime, these candidates are
equally harmonic in every respect, so they must have equal probabilities in the
learner’s grammar Pk = Pl( )  as well as in the adult’s grammar Pk = Pl( ).
Combining the four equations, we see that a must be zero.

2. There is a candidate k that violates all constraints violated by candidate l as well
as those violated by candidate m . Equation (40) is then valid for any P for which
there is an a so that Pk

L = Pk
A − a, Pl

L = Pl
A + a, and Pm

L = Pm
A + a. However, if

candidate k violates a proper superset of the constraints violated by another
candidate, it should always be judged less harmonic than that other candidate in
the pairwise evaluation, regardless of the constraint ranking. Therefore,
Pk

L = Pk
A = 0, so that a must be zero.

3. Candidate k violates constraints A and C, l violates B and D, m violates A and D,
and n violates B and C. Equation (40) is then valid for any P for which there is
an a so that Pk

L = Pk
A − a, Pl

L = Pl
A − a, Pm

L = Pm
A + a, and Pn

L = Pn
A + a. This

is a genuine case of degeneracy: the constant a will be adjusted so that Pk
L Pm

L

ends up near Pn
L Pl

L , irrespectively of the initial constraint rankings; for
instance, if the adult has Pk

A = 0.1, Pl
A = 0.2, Pm

A = 0.27, and Pn
A = 0.43, the

learner will arrive near Pk
L = 0.2, Pl

L = 0.3, Pm
L = 0.17, and Pn

L = 0.33, and she
will never reach the adult distribution. But! This adult distribution could never
have been derived from a stochastically evaluating OT grammar: there is no
constraint ranking that produces it. In fact, with the given candidates and
violations, any grammar must satisfy the condition that if Pk < Pm  (i.e., C
dominates D), then also Pn < Pl . This is one of the empirical predictions of our
hypothesis of stochastic evaluation: some distributions are impossible.

4. Any more complicated dependencies between the violations of the candidates.
Generally, if there are many more candidates than constraints (which is true
under most interpretations of the candidate generator in OT), and if these
candidates cover the range of possible sets of violations, (40) must lead to the
conclusion that PL = PA , i.e. that the algorithm converges upon the adult
grammar.

We have made plausible, though not yet rigorously proved, that the maximal
symmetrized gradual learning algorithm is capable of learning any stochastically
evaluating OT grammar.

5. Conclusion

Optionality follows directly from the robustness requirement of learnability: a
demotion/promotion learner will show the same error rate herself as she hears in her
environment. To be resistant against 5% errors, you must make 5% errors yourself;
30% variation in your environment will make you produce 30% variation yourself;
and if a certain acoustic input has a 30% probability of stemming from an intended
category x, your perception grammar will make you classify this acoustic input into
the category x 30% of the times.
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These results are exact only for a symmetrized and maximal version of the Gradual
Learning Algorithm, i.e., a version in which the learning step involves demotion of all
constraints with uncancelled marks in the correct (but losing) candidate, and
simultaneous promotion of all constraints with uncancelled marks in the incorrectly
winning candidate. There is some evidence that this combined demotion/promotion
learning scheme is a better model of learning than the demotion-only scheme: apart
from the grammar-internal downdrift problem, the observable quantities of
categorization show unrealistic behaviour with the demotion-only scheme.

The account of optionality presented here naturally encapsulates pragmatics-based
reranking. For instance, if you want to speak more clearly, you may raise all your
faithfulness constraints by, say, 5 along the continuous ranking scale. In this way, an
80%-20% preference for place assimilation will turn into a 18%-82% preference
against. Depending on whether the faithfulness constraint is ranked above or below
its rival, slight variation may turn into obligation or the reverse. If the ranking
difference is large to begin with, however, nothing happens; so we see that discrete
properties of surface rerankability are compatible with, and may well follow from, a
general continuous rerankability of all constraints.

Our account of optionality may well extend to other parts of the grammar,
including the problem of constituent ordering in syntactical theory, which is a field
where optionality is very common. Our account may well explain how the
“interacting and possibly competing principles and preferences” of Functional
Grammar (Dik 1989: 337) determine the choice between, say, surface SVO and OVS
orders in a V2 language: one part of the answer will be pragmatical reranking of the
relevant functional principles (like “subject first”, “human first”), and another part
will be the random variation that occurs at evaluation time; in an obligatory SVO
language, one of the constraints is just ranked so far above the other that the degree of
variation is essentially zero.
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