
(to appear in Proceedings of 30th Child Language Research Forum,
 Stanford University, april 1999. Copyright CSLI.)

Draft, August 27, 1999.

Gradual Constraint-Ranking Learning
Algorithm Predicts Acquisition Order1

PAUL BOERSMA AND CLARA LEVELT

We will show that the Gradual Constraint-Ranking Learning Algorithm is
capable of modelling attested acquisition orders and learning curves in a
realistic manner, thus bridging the gap that used to exist between formal
computational learning algorithms and actual acquisition data.

1    An Attested Acquisition Order

Levelt, Schiller, and Levelt (to appear) found that the acquisition order for
syllable types for twelve children acquiring Dutch is as depicted in Figure 1.
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Figure 1. Acquisition order for syllable types in Dutch.

Thus, syllables with unbranching codas (-VC) are always acquired before
syllables without onsets (V-), but there is variation in the order of the
acquisition of complex codas (-VCC) and complex onsets (CCV-).

2    An Optimality-Theoretic Account

To account for the acquisition order in Figure 1, Levelt et al. proposed that
the child’s syllable forms are determined by a developing Optimality-

1 This work is supported by grants from the Netherlands Organization for Scientific Research.
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Theoretic grammar (Prince and Smolensky 1993) of interacting markedness
and faithfulness constraints . Four markedness constraints play a role:

   *CODA  “don’t produce codas (-VC or -VCC)”
   ONSET  “don’t produce vowel-initial syllables (V-)”
   *COMPLEXCODA  “don’t produce complex codas (-VCC)”
   *COMPLEXONSET  “don’t produce complex onsets (CCV-)”

A single faithfulness constraint is involved. It militates against deleting or
inserting segments:

   FAITH   “realize lexical segments; don’t realize non-lexical segments”

In the initial state of the child’s grammar, all markedness constraints are
ranked above the faithfulness constraint (Gnanadesikan 1995). Faithfulness
then gradually rises in the hierarchy, overtaking the markedness constraints
one by one: first *CODA, then ONSET, then (variably) *COMPLEXCODA or
*COMPLEXONSET, and finally the remaining one. In the end, faithfulness is
ranked on top and the child masters all syllable structures.

3    The frequency hypothesis

On the basis of cross-linguistic data on syllable inventories, Levelt and Van
de Vijver (1998) noted that several developmental orders are possible in
principle, next to the order in Figure 1. They hypothesized that language-
particular orders are determined by the relative frequency of appearance of
the different syllable types in adult, child-directed speech.

The attested distribution of overt syllable types in adult Dutch child-
directed speech is shown in Table I.

CV 44.81 % CCVC 1.98 %

CVC 32.05 % CCV 1.38 %

VC 11.99 % VCC 0.42 %

V 3.85 % CCVCC 0.26 %

CVCC 3.25 %

Table I. Frequencies of various syllable types in Dutch.

These data were extracted from a corpus of 112,926 primary stressed
syllables (Joost van de Weijer, p.c.). We see that adults violate *CODA in
49.95 percent of the forms, ONSET in 16.26 percent, *COMPLEXCODA in
3.93 percent, and *COMPLEXONSET in 3.62 percent. Thus, the order of the
frequencies of violations of markedness constraints is equal to the order in
which FAITH was proposed (in §2) to overtake these constraints.
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Having noted that the Gradual Constraint-Ranking Learning Algorithm
(Boersma 1997; 1998: chs. 14–15) is sensitive to differences in frequencies
of constraint violations, we will model Dutch syllable-type acquisition with
the help of this algorithm, which we will describe next.

4    Gradual Constraint-Ranking Learning Algorithm

The algorithm consists of three ingredients:2

Continuous ranking scale. Each constraint has a ranking value along a
continuous scale. This is in contrast with original Optimality Theory, where
constraints are ranked along an ordinal scale. On the continuous scale, the
distance between constraints can vary: some lie relatively close to each
other, others are separated by a larger distance. This can have an effect at
evaluation time, because of the following property.

Noisy evaluation. Every time an Optimality-Theoretic tableau has to be
evaluated, an amount of normally distributed noise is temporarily added to
the ranking value of each constraint. The constraints in the tableau are then
ordered on the basis of the resulting effective ranking values, after which the
familiar Optimality-Theoretic principle of strict domination determines the
winning candidate. If two constraints A and B are at a relatively close
distance from each other (not more than a few noise standard deviations),
the effective ranking value will sometimes be higher for A, sometimes for B,
which can lead to variation in the surface form, with the relative
probabilities depending on the difference between the ranking values.

Error-driven learning. The child’s grammar gradually changes as she
compares her own forms with adult forms. Specifically, if she notices a
difference between her form and the adult form, she will lower the ranking
of all constraints in her grammar that are violated in the correct adult form
by a small value (plasticity) along the ranking scale, and she will raise the
ranking of all constraints violated in her own incorrect form. Gradually, the
child will become more likely to produce the adult form.

5    Modelling the Acquisition Process

5.1   Modelling the Initial State
To model the initial dominance of markedness over faithfulness, we
simulate the child’s initial state by arbitrarily setting the ranking value of all
markedness constraints to 100, and that of FAITH to 50.

2 The algorithm is available in the Praat program, http://www.fon.hum.uva.nl/praat/
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5.2   Modelling the Language Environment
For the distribution of syllable types as inputs to the learning algorithm, we
took the attested distribution of overt syllable types in adult Dutch child-
directed speech (Table I). Thus, our simulated learner was presented with
thousands of syllables, drawn from a distribution equal to the one in Table I.

5.3   Modelling Error-Drivenness
Every time our simulated learner is presented with (“hears”) an adult surface
form, she will compare it to a surface form that would be generated by her
current grammar from an underlying form whose phonological representa-
tion is equal to the adult surface form. If the two surface forms are different,
she will take action by changing some constraint rankings.

5.4   Modelling the Noise
Throughout the simulation, the noise standard deviation was fixed at 2.0.
This entails that if two constraints are ranked by a distance of about 10 or
more, the output is nearly categorical, and that if the distance is much
smaller than 10, there may be variation and optionality in the output.

5.5   Modelling the Plasticity
The error-driven ranking change was fixed at 0.1, which means, for instance,
that for *CODA to fall to a ranking value of 80, the learner would have to
produce 200 violations of *CODA in forms in which the adult correctly
produces a coda.

5.6   The Results of the Simulation
Figure 2 summarizes the result of our simulation. The paths followed by the
constraint rankings as functions of time confirm the proposed account (§2),
with FAITH overtaking first *CODA, then ONSET, then the remaining two.
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Figure 2. Constraint rankings as functions of time.
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5.7   A Detailed Look into What Happens
Suppose that our learner is in the stage of the learning process that
corresponds to having heard 400 data, and is presented with the adult surface
form [a˘p]. Tableau I shows the details of what happens.

/a˘p/ ‘monkey’ *COMPONS *COMPCODA ONSET *CODA FAITH

√   [a˘p] *!→ *→

*☞ *   [pa˘] ←**
[pa˘p] *! *
[a˘] *! *

Tableau I. After 400 data.

The ranking values that can be read off Figure 2 (at 400 data) will probably
give rise to the effective constraint ordering shown along the top row of
Tableau I. On hearing the adult surface form [a˘p], the child will recognize it
as the underlying form /a˘p/ ‘monkey’, which she then takes as an input to
her own grammar, as shown in the top left cell of Tableau I. The tableau
shows four relevant candidates for the child’s output form. According to the
temporary ranking in the tableau, the form [pa˘] will win, as is indicated by
the pointing finger (☞ ). However, the child notices that the adult surface
form is [a˘p], and that this form is different from her own surface form.
Since the adult form is available among the candidates, we can indicate this
correct form with a check mark (√). Likewise, we indicate the incorrectness
of the child’s own form by putting two asterisks around the pointing finger.

Since the child’s surface form is incorrect, the child will take action by
raising the ranking values of all constraints violated in that form. In this
case, only FAITH will have to be promoted, and this is indicated by the
leftward arrow in Tableau I. But the child will take another action. Since the
correct form occurs in the tableau, too, she will lower the ranking values of
the constraints violated in that form (ONSET and *CODA), as indicated by
the rightward arrows. If the child repeatedly says [pa˘] for /a˘p/, she will
eventually manage to rank FAITH above ONSET and *CODA, and become
more likely to produce the adultlike form [a˘p].

Having seen the details of the learning algorithm, we can return to the
child’s initial stage. In the beginning, the constraint ranking causes the child
to produce CV syllables only. In 44.81 percent of the cases, the adult form
will be CV as well, so nothing happens. In 49.95 percent of the cases,
though, the adult form will contain one or more coda consonants. The child
takes this as her underlying form, but still generates a CV surface form
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herself, and notices the difference. As a result, she will lower *CODA and
raise FAITH. After 400 data, *CODA has moved down the ranking scale by a
distance of approximately 49.95% · 400 · 0.1 = 20.0, and FAITH has risen to
about 72. At that time, the constraints will be ranked as in Tableau I.

After about 800 data, *CODA has fallen far below FAITH, so that the
child will make few errors in pronouncing simple codas. Thus, there will be
no differences between the number of *CODA violations in the adult and
learner forms, so that *CODA will stop moving through the hierarchy.
However, ONSET still outranks FAITH, so that the child may now produce
/a˘p/ with an epenthesized onset as [pa˘p], which is a form attested in one
of the twelve live subjects. As Tableau II shows, this error will cause
gradual demotion of ONSET, and further raising of FAITH.

/a˘p/ ‘monkey’ *COMPONS *COMPCODA ONSET FAITH *CODA

√   [a˘p] *!→ *
[pa˘] **!

*☞ *   [pa˘p] ←* *

Tableau II. After 800 data.

After 1200 data, ONSET is dominated most of the time, so the child begins
to sound more adultlike again. She will still have trouble, however, with
complex onsets and codas, as witnessed by her production of underlying
/e˘nt/ ‘duck’ as [e˘t] (Tableau III). Again, [e˘t] is a form attested in reality.

/e˘nt/ ‘duck’ *COMPONS *COMPCODA FAITH ONSET *CODA

√   [e˘nt] *!→ * *
*☞ *  [e˘t] ←* * *

[te˘t] **! *

Tableau III. After 1200 data.

This proceeds until faithfulness has overtaken the constraints against
complex onsets and codas. As can be guessed from Figure 2, however, the
rankings will continue to diverge until FAITH is ranked by a distance of 10
above all the others. The cause of this safety margin is noisy evaluation: if
FAITH is ranked above *COMPLEXCODA by a distance of only 4.0, the
probability of /e˘nt/ being produced as [e˘t] is still 7.9 percent. The curves
of the rankings as functions of time get gradually flatter, because the learner
will produce fewer errors as her rankings approach the adult’s grammar.
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6    Replicating the Acquisition Order

6.1   Predicted and attested learning curves
After every 100 data, we measured the performance of our learner by
feeding her 10,000 underlying CVC syllables, having her stochastic
grammar generate the corresponding surface forms, and seeing what
percentage of these surfaced faithfully as CVC. We did the same for four
other syllable types. The resulting learning curves are in Figure 3.
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Figure 3. Five learning curves for our simulated learner.

Let us compare this to the behaviour of an actual child. Figure 4 shows the
percentage of underlying CVC forms that he produced faithfully (we ignored
forms with final liquids, which are often vocalized).
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Figure 4. CVC learning curve for Tom.

Both the simulated learner and the actual child show gradual learning. For
instance, Jarmo (at 1;9.9) pronounced /bo˘m/ ‘tree’ as [po˘], [bç], [bo˘X],
[pAÉom], variably violating and satisfying *CODA during a single recording
session. Such realistic modelling is not possible with learning algorithms
based on ordinal ranking, like that by Tesar and Smolensky (1998).
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6.2   Replicating variation in acquisition order
In our first simulation (Fig. 3), complex codas were acquired before complex
onsets, but we repeated the whole experiment 30,000 times and found the
reverse order in 31 percent of the cases. This variability is due to the
proximity of the rates of adult *COMPLEXONSET and *COMPLEXCODA
violations (§3). This result matches the behaviour of the twelve live subjects,
three of whom acquired complex onsets before complex codas (Fig. 1).

7   Conclusions

The things that we modelled realistically were:

• The fixed order of acquiring syllables with codas, then vowel-initial
syllables, then complex codas and onsets.

• The variable order of acquisition of complex codas and onsets.
• The graduality of the learning curves: no one-shot learning.
• The rapid initial rise and slow approach to 100 percent correctness.

There is also room for improvement. We could model on-line acquisition
more precisely by taking more segmental details into consideration, e.g. by
not regarding [sp-], [kl-], and [kn-] indiscriminately as ‘complex onsets’.
Also, instead of making the simplifying assumptions in §5.3, we could take
into account the development of perception and lexicalization as well. The
learning algorithm is already well equipped to handle these refinements.
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