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Abstract 

Like some existing vocal-tract models, this synthesizer views the vocal apparatus as a 
sequence of straight tubes. The walls of all these tubes, however, are modelled as coupled 
mass-spring systems, which in most models is privileged to the vocal cords. This, 
together with the ability to continuously vary the lengths of the tubes, leads to a 
principled treatment of the problems of source-filter interaction, which makes our model 
especially suitable for the generation of speech signals that include consonants. 

The model is restricted to the last step in articulatory synthesis: from a list of time­
target pairs for every articulator and a table with speaker characteristics, find the resulting 
acoustic signal. Among the examples that we show are various brands of voicing 
contrasts and their articulatory correlates. 

1 The model 

Figure 1 shows a simplified picture of our model. As a model of the human vocal 
apparatus, it is a straightened one-dimensional approximation to the curved shape of the 
vocal tract, glottis and lungs. It consists of a sequence of straight tubes that contain air. 

These tubes could represent from left to right: the lungs, the bronchi, the trachea, the 
glottis, the part of the larynx above the glottis, the pharynx, the volume between the 
tongue dorsum and the velum, the volume between the tongue dorsum and the palate, 
the volume between the apex of the tongue and the alveoli, and the lip opening. This 
resembles the subdivision that we shall use in the examples of chapter 8 .  

Air is forced to flow into and out ofthese tubes a s  a result o f  its mass inertance and 
its elasticity. An acoustic output is derived from the air flow at the right boundary of the 
rightmost tube in figure 1: it is the sound radiated from the lips into the atmosphere. 

The walls of the tubes yield to pressure changes. At the same time, the equilibrium 
positions of the walls can be adjusted by the articulatory muscles. The walls are, 
therefore, modelled as mass-spring systems. The tensions of some of these springs can 
be adjusted, too. This reflects the ability of the vocal cords to produce tone differences, 
and the ability of the supralaryngeal musculature to distinguish fortis and lenis 
obstruents. An acoustic output is radiated from the moving masses. 

The main source of energy in the tract is the variation of lung pressure. In some 
models, the lungs are modelled as an ideal pressure source. In our model, lung 
pressure is, more realistically, brought about by decreasing the lung volume, i.e., 
reducing the neutral width of the leftmost tube in figure 1 .  The modelling of the 
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Fig. 1 .  Mid-sagittal view of our model of the speech apparatus. The model features a 
sequence of straight tubes with walls consisting of masses and springs. The leftmost of 
these tubes represents the lung volume and is closed at the left edge, the rightmost tube 
forms the opening between the lips and is open to the atmosphere at the right edge, 
where fluctuations in the air flow are radiated as sound. The glottis is represented by one 
or two tubes, which are treated exactly the same way as all other tubes. The speech 
muscles can alter the rest positions and the tensions of the vertical springs. Some of the 
masses are connected with springs to their nearest neighbours. 

respiratory mechanism as lung-volume control rather than as an ideal pressure source, 
expresses the finite capacity of the lungs. 

The walls of a tube can oscillate if they are close enough together and there is 
·sufficient air flow along them. This follows automatically from the aerodynamic and 
myo-elastic equations. Thus, the vocal cords can easily vibrate in this model. Nothing 
withholds other articulators, though, from vibrating as well; tongue tip, velum and lips 
are likely candidates for producing trills. 

If the particle velocity exceeds a certain threshold, noise is generated immediately 
downstream from the constriction; the portion of the kinetic energy that is converted 
into turbulence depends on the relative widths of both tubes involved. 

The lengths of the tubes do not have to be equal. The upper part of the glottis, for 
instance, may be 1 mm thick, whereas other regions, like the pharynx, can span several 
centimetres (though the implementation of our model subdivides these large regions 
into tubes approximately 10 mm long, for reasons of computation). More important, 
though, is the advantage of allowing the lengths of tube·s to vary with time. This 
pennits us to model appropriately the lengthening and shonening of certain tubes by lip 
rounding, dorsal constriction, or up and down movements of the larynx. 

The present model does not feature a nasal tract. 
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Fig. 2. Mid-sagittal view of one tube, showing its springs and masses (lower springs not 
shown). The articulatory muscles can directly adjust the rest position w eq• the linear 
spring constant kCll, and the tube length t..x, and may also indirectly vary the mass m, 
the damping Bopem and the cubic spring constant k<3l. All these parameters, plus the air 
pressure inside the tube, determine the development of the state of the tube walls, which 
is represented by their mutual distance wand their mutual velocity dw/dt. 

2 The springs and the masses 

Every tube is supposed to be enclosed along the y-axis in figure 1, by two opposing 
walls that consist of equal masses and springs (see figure 2). The acceleration of the 
walls in they-direction is given by the total force on the two walls (which is twice the 
force on either wall): 

d2w lfi · fi d · fi · fi (
1
) m 

dt2 = tota o rce = tenswn orce + amping orce + a1r pressure orce 

where m is the mass of either wall (in kg), and w is the distance between the two walls 
(in meters). The mass m need not be constant, because it is the part of the wall that 
actually moves; it could slowly vary in time as a function of the tension in the wall. 

The tension force is the force in the spring that tries to bring the wall to its neutral 
position. It is due to the tension of the muscles inside the wall (e.g. vocalis muscle, 
pharyngeal constrictor muscles) and to the tension of the muscles that pull the edges of 
the wall (e.g. cricothyroid muscle). For small displacements from this position, the 
tension force is approximately proportional to the displacement. For larger 
displacements, a third-power te1m comes in. If the walls are not in contact with each 
other, the tension force is 

tension fo rce= k{l) (weq - w) + k(3) (weq - w)3 (2) 

where k{l) is the linear spring "constant" (in N/m) of either spring, which is a function 
of muscle activity, we is the equilibrium distance between the walls, which can also be 
adjusted by the articulatory muscles (e.g., posterior c1ico-arytenoid activity causes an 
increase of w eq in the glottis, risorius does the same for the lips, and expiration is 
equivalent to reducing w eq in the lungs), and k(3) is one quarter of the cubic spring 
constant (in N/m3) of either spring. 
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The damping force is due to internal friction in the tissue. It tries to bring the velocity 
of the moving wall to zero. It is proportional to this velocity: 

d . +. B 
dw amping 1 orce = - open di 

(3) 

where Bopen is the damping (in kg/s) of either spring, which depends on the properties 
of the tissue and dynamically also on kCl), kC3>, and m. 

If the air pressure inside the tube is greater than the atmospheric pressure, the air 
pressure force tries to push the walls apart. If this pressure is less than the atmospheric 
pressure, it tries to pull the walls toge!her: 

air pressure force = 2 P L1x & (4) 

where P is the mean air pressure inside the tube, & is the length of the tube, and .-1z 
the third dimension of the tube, making L\x& the area of the wall. The factor 2 appears 
because there are two walls. 

When the two masses approach one another, they collide and fold into each other. 
This leads us into modifying the equation of motion, which becomes 

m 
d2w = k(l) (w - w)

.
+ k(3) (w - w) 3 + pCl) + p(3) 

dt2 eq eq s s 

dw 
- (B open + B closed) di + 2 P At L\z 

(5) 

where the stiffness forces F;1) and F?) (in Newtons) represent the reaction of the tissue 
against being pressed together, and Bc1osed is the damping inside the compressed tissue. 
Because the masses are not exactly parallel, the collision is not simultaneous for all 
points along the z-axis. Figure 3 shows a cross-sectional view of our stylization of this 
process; the walls smoothly close upon one another, like a zipper. The force due to the 
linear part of the stiffness can be computed from the average penetration depth (over the 
whole width &) and is then found to be 

0 for w � L\w 

p(l) = sCl) (.-1w - w)2 
for -L\ w ::::; w ::::; L1w s 4 L\w (6) 

- sCl) w for w S -L\w 

where sCl) is the linear spring constant of the tissue stiffness. The cubic part is 
computed from the average cubed depth and is expressed as 

0 for w � L\w 

p(3) = 
sC3) (L1w - w) 4 

fo r -L\ w ::::; w ::::; L1w s 8 L\w (7) 

- sC3) w ( w2 + L\ w2) for w S -b.w 
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Fig. 3. Cross-sectional view of a tube, showing how the walls make contact. In the right 
figure, the mean distance w between the masses is flw/2. This distance can even become 
negative. The cross section A stays positive as long as w is greater than -flw. 

where s<3) is one quarter of the cubic spring constant of the tissue stiffness. Both forces 
F�1) and F?) are smooth functions of w (they are differentiable in -llw and in llw). 

If the walls of tube m are connected to the walls of the adjacent tubes m-1 and m+ 1 ,  
the coupling stiffness of the spring is expressed as 

(8) 

This term should be added to the tension forces. 
The cross section A of a tube is computed from the distance w between the walls and 

is approximately w times llz if this distance is larger than llw. For smaller distances, 
the cross section is determined from figure 3. However, if we allowed very small 
values of A (which would appear when w comes near -llw), the aerodynamics would 
show unrealistic behaviour. This is because the existence of ve1y small values of the 
volume of air in a tube causes very high positive or negative pressures to arise 
immediately before or after the moment of contact. We shall circumvent this by 
allowing a very small leakage wmin through every tube, giving for the cross section A a 
smooth function of the distance w (again differentiable in -llw and in llw): 

A= 

(w + w min) llz ((�w + w )2 ) 
+ wmin llz 

4 ll w  

w min llz 

for w � ll w  

for - ll w:::; w :::; ll w  (9) 

for w :::; - ll w  

A good value for wmin is 0.01 mm. In this case, the relative changes in A during a 
sampling period are not too large (if llw � wmin), whereas the amount of air that leaks 
through the orifice is negligible due to the large viscous resistance. 
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3 Air flows and pressures 

3.1 Continuity of mass flow 

The principle of the conservation of mass is expressed as follows: "The increase during 
a certain amount of time of the mass contained in a volume is equal to the mass that 
flows into that volume during that time minus the mass that leaves that volume during 
that time". 

In three dimensions this is formulated as the continuity equation of hydrodynamics 
(see e.g. Landau & Lifshitz, 1953): 

Tr + div (pv) = 0 

where p(x,t) is the mass density of the fluid in units of kilograms per cubic meter, and 
v(x,t) is the particle velocity in units of meters per second. A "particle" is considered 
an infinitesimally small piece of the fluid; it is supposed to contain, however, infinitely 
many molecules. 

We will now consider the one-dimensional case of a straight tube with iigid walls, 
where air flows only in the x-direction (the left-right direction in figure 1). If the 
transverse velocities vy and v2 are zero, the continuity equation reduces to 

'dp 
+ 
'd(pv) _ 0 dt dX -

where v is now the signed velocity in the x-direction, averaged over all y- and .:z­
coordinates inside the tube. 

A special almost one-dimensional case is our straight tube with moving walls. Inside 
a straight tube with time-varying cross section A(t) (in units of square meters), the 
velocity components vy and v2 are not zero, but the continuity equation retains a simple 
fo1m: 

'd(pA) + 
'd(pvA) _ O dt dX - (10) 

It is of crucial importance here that the area A should be inside the parentheses in 
equation (10). Note, e.g., that in the case of an incompressible fluid 

which states correctly that an incompressible fluid will flow out of any shrinking tube. 
Flanagan and Ishizaka (1977) show that this effect is negligible for vocal cord 
vibration. It can, however, probably not be neglected in modelling lung volume 
changes and variations in the tension of the supra.laryngeal musculature like those that 
are partly responsible for voicing contrasts in obstruent consonants. 

If the boundaries of the tube are moving in the x-direction, i.e., the tube becomes 
longer or shorter in time, equation (10) receives a change that is true to the definition of 
mass conservation given above, giving approximately 
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d(pA&) 
dt + (pvA)right - (pvA)Jeft = 0 (11) 

where At is the length of the tube, and v is the particle velocity relative to the velocity 
of the left or right boundary. 

3.2 Equation of fluid motion 

The second principle describes the influence of forces on the motion of air: "The 
particle experiences a force in the down-hill direction of the pressure gradient. At the 
same time, its velocity is impeded by viscous friction with other particles that have a 
different velocity." 

In three dimensions this is expressed as 

where P(x,t) is the pressure expressed in Newtons per square meter, µis the coefficient 
of shear viscosity, which is 1.86· 105 Ns/m2 for air, and L\ is the Laplace operator. 
From this is derived the Navier-Stokes equation in three dimensions: 

dv (dv 1 2 ) -grad P = p dt - µ L\ v = p dt + 2 gr ad v - v x cur 1 v - µ L\ v 

Inside a straight tube, neglecting vy and v2, this reduces to 

dvx 'OP ovx 
P---;Jt=-ax-p vxax +µL\vx 

The viscous resistance of a tube shaped as in figure 3 can be solved from the boundary 
condition that vx = 0 on the walls. For L\w << L\z, this yields in the stationary-flow 
approximation 

Rvisc 

12 µ 

w2 + L\ w2 + w . 2 m1n 

12 µ 

l.(L\ w + w )2 + w . 2 
2 mtn 

12 µ --? wmin-

for  w;;;;:L\w 

for  �L\w ::;;w ::;;L\w 
(12) 

for w ::;; -L\w 

where v is vx averaged over ally between the plates. If there are other resistances, they 
are subsumed under one term R v: 

ov dP ov p-+-+ p v-+R v = 0 dt dx ox 

One such resistance is due to turbulent noise and will be introduced in section 3 .6. 
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3.3 The equation of state 

The third equation relates the air mass density p to the air pressure P. If we assume that 
the processes that we are interested in, are so swift that we can neglect heat conduction 
in the fluid, the temperatures vary with the material pressure, and no air particles 
exchange any heat. In this case, the relation between pressure and mass density is given 
by the adiabatic pressure law 

where P0 and Po are a reference pressure and density, and y is a constant of the fluid, 
equal to apx. 1.4 for a diatomic gas like air. If we choose for P 0 and Po the atmospheric 
pressure and density (no flow, no temperature gradient) Parm and Parm• a differential 
pressure change is given by 

dp ? dP = Parm y -- = c-dp 
Parm 

for some constant c that depends only on temperature and mean pressure and that has 
the dimensions of a velocity. The value of this constant, which is called the velocity of 
sound, can be computed as 353 m/s, for Parm = 1.013· 105 N/m2 and Parm = 1.14 
kg/m3. 

From now on, the pressure P is taken as the difference of the real pressure and the 
atmospheric pressure, so that for small pressures the equation of state is approximated 
by the well-known equations 

P = c2 (p- Parm) 
(14) 

3.4 The aerodynamic equations in terms of continuous quantities 

On the boundary between two tubes of different area, most quantities show a 
discontinuity. The particle velocity, for example, suddenly increases when the fluid 
flows into a narrower tube. At the same time, the pressure suddenly drops (Bernoulli 
effect), and, as a consequence, the density drops as well. Some quantities are 
continuous, however, on tube boundaries. One of them is the flow of mass: the amount 
of air that leaves a certain tube through one of its boundaries during a certain period of 
time must enter the adjacent tube in the same time span, and no matter is lost. This 
means that the mass flow J, which is a vector defined as 

J:pvA (15) 

and which is expressed in kilograms per second, is continuous at the boundaries of 
tube sections. The other continuous quantity is the flow of energy: the energy that 
leaves a tube through one of its boundaries must enter the adjacent tube without delay. 
If the fluid flow stays laminar in crossing the boundary, the particle keeps moving in 
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the x-direction, and we can implicitly define the continuous pressure, which is denoted 
by Q and expressed in Newtons per square meter, by 

dQ = dP +f p d(v2) (16) 

Thus, /'-.Q = 0 over the boundaries of tubes. Note that this equation expresses the 
conservation of the sum of a potential energy term dP and a kinetic energy term 
� p d(v2). Bernoulli's law states that dQ = 0 for stationary inviscid non-turbulent 
flow. To a good approximation (1 % error in � p v2, if v < 0.2 c), equation (16) is 
equivalent to stating that the continuous quantity is 

(17) 

The third quantity that is continuous in the hydrodynamics of unbounded fluids, is the 
flow of momentum p v. In our case, this is not continuous: at tube boundaries, the air 
transfers momentum to the vertical walls, and vice versa. 

As so happens, the quantities J and Q are exactly the ones that appear in the 
divergence and gradient parts of the aerodynamic equations (10) and (13). The three 
one-dimensional aerodynamic equations can thus be written as 

d(pA) 
+ 

dl _ O dt dX -

dV dQ p-+-+Rv=O dt ax 

dP = c2 dp 

3.5 Boundary conditions 

(18) 

No air flows into the lungs from the bottom. The condition at the leftmost boundary in 
figure 1 is therefore: 

1=0 (19) 

At the rightmost boundary, sound radiates from the lips. For a round orifice, the 
relation between Q and J can be expressed as (Sondhi & Resnick, 1983) 

(20) 

where alip is the radius of the opening at the lips. This radius is taken constant at 
2 centimetres in order not to attain unrealistically low damping values for small lip 
openings; radiation damping will still be smaller for small openings than for large ones, 
due to the A lip factor in (20). 

At the time point t = 0, all flows and pressures vanish. 
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3.6 Turbulence 

Turbulent air movements are generated when air with a velocity greater than some 
critical velocity vcrit flows out of a narrower tube with cross section A< into a tube with 
a larger cross section A>. This causes an energy loss given by the pressure drop 

1 ( A <)2 
Qturb = 2 pv (lvl - V crit) 1 - A> (21) 

In reality, this is not a pressure drop, but a failure to completely recover from the 
Bernoulli pressure drop & p v2• Equation (21) is in accordance with equation (6) of 
Ishizak:a & Flanagan (1972), which describes the pressure recovery if v crit = 0 . From 
Van den Berg et al. (1957), the critical velocity can be computed as 10 m/s (critical 
volume velocity 200 cm3/s, area 1.07 x 20 mm; for a larger opening, they found a 
greater critical volume velocity, which suggests a constant critical velocity). 

The energy loss gives rise to an extra resistance term in equation (13): 

R V = Qturb 
turb .0.x 

where .0.x is the length of the tube section. 

(22) 

Ishizak:a & Flanagan (1972) use a similar resistance not only at the exit of the glottis, 
but also at the entrance of the glottis. The pressure drop there, however, is just the 
Bernoulli pressure for a vena contracta, i.e., the sn·eam is conn·acted and the area of the 
entrance is smaller than would be expected from the distance of the walls (though 
Ishizaka & Flanagan acknowledge this, they do not use this smaller area in their 
subsequent computations). Therefore, if the flow at the inlet is laminar, the "resistance" 
represents no energy loss, and the pressure loss is recovered somewhere in the glottis. 
In this case, the effect can be neglected, and equation (21) would be approximately 
right in predicting, for A< = 0.1 A>, a turbulence loss of 0.81 relative to the Bernoulli 
pressure, comparing favourably with Van den Berg's measured value of 0.875, as 
opposed to the value of 1.19 predicted by Ishizak:a & Flanagan. 

Thus, turbulence causes a pressure drop due to the loss of kinetic energy in the x­
direction. This energy is converted into chaotic particle movements with the same 
kinetic energy, one third of which is again in the x-direction. If we assume that this 
acoustic energy is translated into a low-pass Gaussian noise with a cut-off frequency 
fcutoff' th�n the noise pressure to be added to the pressure at the boundary between the 
sect10ns is 

Qnois/t) = (1 - 2n:fcutoffdt) Qnoise(t - dt) + 

(23) 

where N(t) is Gaussian white noise whose power is unity. In our implementation, a 
frequency cut-off is automatically caused as a side-effect of our method of integration: 
if the longest tubes are approximately 1 cm long, the cut-off frequency of the 
integration is just above 6 kHz; the only noise pressure that remains to be added to the 
continuous pressure is the second term of equation (23). 

88 IFA Proceedings 1 5, 1991 



4 Articulatory parameters and their time evolution 

In our implementation of the model, the only parameters that are governed by the 
articulatory muscles are: 
1 .  The equilibrium wall distances w eq of the lungs, the glottis, the pharynx, the 

velum, the palate, the apex, and the lips. 
2. The relative sprinf constant krel of the vocal cords. This influences the linear 

spring constants k< >, the masses m, and the dampings B 0 en in the glottis. 
The relative spring constant krel of the supralaryngeal tubes. This influences the 
linear spring constants, masses and dampings of the vocal tract walls. 

3. 

4. The relative tube le_ngths lure! of the lips (rounding) and those of the pharynx 
(variations in larynx height). 

These eleven quantities are, therefore, slowly varying functions of time. In our 
implementation, their values are interpolated linearly between the nearest target values 
specified. For instance, if the spring k is specified as k1 at a time t1 and as k2 at a time 
t2, and there are no specifications fork at times between t1 and t2, the spring at a time t 
between t1 and t2 is expressed as 

(24) 

At least two targets have to be specified for each articulatory dimension: 
1. The starting points at t = 0. The starting values of H'eq are the staiting values of 

the distances w as well. 
2. The end points at t = T, which is the time at which the simulation stops. 

5 Speaker characteristics 

The vocal apparatus is thought to consist of 10 or 1 1  regions: lungs, bronchi, trachea, 
glottis (one region for a one-mass model, or two regions for a two-mass model of the 
vocal cords), upper part of lai·ynx, pharynx, velum, palate, apex, and lips. Some of 
these regions consist of one tube (glottis), some consist of several tubes; for reasons of 
correct simulation of short wavelengths, these tubes must not be much smaller than 1 
cm. Within each region, the tubes have equal properties (if our model should be applied 
to questions of supraglottal aiticulation, instead of focussing on glottis-tract interaction, 
we should use a more sophisticated model of the transition from articulator positions to 
tube properties). Our model needs the following constant speaker-specific parameters 
for every region: 
1. The number of tubes that this region is divided into. 
2. The equilib1ium length !ueq· 
3. The third dimension ("breadth") �z. 
4. The "zipperiness" �w. 
5 .  The equilibrium mass of a wall meq· 
6. The equilib1ium lineai· spring constant k�I)· 
7.  The cubic spring constant k(3). 

q 

8. The damping ratio Brei· 
9. The equilibrium distance weq if it cannot be adjusted by the aiticulatory muscles: 

this goes for the bronchi, the trachea, and the upper part of the larynx. 
In table 1 ,  we define three simple model speakers (meant to sound like a woman, a 

man, and a young child, respectively). In the following sections, we will elaborate on 
the individual roles of the various parameters. 
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Table 1. Dimensions of the vocal tracts of three speakers (a woman, a man and a child). 
The tract is divided into 1 1  regions for a two-mass vocal-cord model (the adults), or into 
10 parts for a one-mass model (the child). Each part consists of several tubes, whose 
lengths are not much more than 1 cm. 

Name Nurnber Equilibrium Third Zipperiness Equilibrium 
of the of tube length dimension fi.w (mm) wall distance 
region tubes fi.Xeq (mm) b.z (mm) Weq (mm) 

Lungs 23 9, 10, 6 207, 230, 138 0.01 

Bronchi 6 9, 10, 6 28, 30, 19 0.01 15 

Trachea 6 9, 10, 6 15, 16, 10 0.0 1  15 

Lower glottis 1 1.4, 2, 1 10, 18, 6 0.01 

Upper glottis 1, 1, 0 0.7, 1, - 10, 18, -- 0.01 

Larynx 2 9, 10, 6 15, 16, 10 0.0 1  15 

Pharynx 6, 6, 4 9, 10, 6 ± 28, 30, 19 0.01 

Velum 3 9, 10. 6 ± 28, 30, 19 0.0 1 

Palate 4 9, 10, 6 28, 30, 19 0.01 

Apex 3 9, 10, 6 28, 30, 19 0.01 

Lips 4 4.5.  5. 3 ± 19. 20, 12 0.0 1  

5.1 The dimensions of the tubes 

The lengths L1x of some tubes can vary in time: 
1. The length of the lip region depends on spreading and rounding. For spread lips 

(risorius muscle contracted), it is only half the value found in table 1. For 
rounded lips (orbicularis oris muscle contracted), it is twice the value of table 1. 
Note that the lips can be brought together or drawn apart without spreading or 
rounding. 

2. The length of the pharynx region depends on the height of the larynx. Contraction 
of the stylohyoid muscle can decrease the pharynx length by 20%, whereas 
contraction of the sternohyoid muscle can increase it by 30%. We neglect the 
influences that these muscles have on the shape of what is below the glottis. 

3. The length of the velum region depends on the height of the tongue body, i.e., it 
becomes larger if the area of this section gets smaller. This is due to the curvature 
of the vocal tract near the velum. In the present implementation, we neglect this. 

The lengths depend on the articulatory parameter lixrel as 

Table 1 further expresses the following disproportions: 

(25) 

1. Male vocal cords are relatively thick (large /ix) and relatively long (large �z), 
whereas those of the child are relatively thin and short. 

2. The child's pharynx is relatively short (only four sections). 

Not in table 1 are the following prope11ies of the shape of the tract: 
1. The leakage wmin• which is 0.01 mm for all regions of all three model speakers. 
2. The critical velocity vcri1> which is 10 rn/s for all regions of all three speakers. 

The zipperiness �w is taken to be the minimum needed for smooth contact. 
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Table 2. Properties of the walls of the vocal tracts of the same speakers as in table 1 .  

Lungs 
Bronchi 

Trachea 
Lower glottis 
Upper glottis 
Larynx 
Pharynx 
Velum 
Palate 
Apex 
LiQS 

Equilibrium 
mass of 
one tube 

meq (g) 

72, 80, 48 

9, 1 0, 6 

4, 5, 3 

Equilibrium Damping 
tension of 0 l ratio 
one tube keq BIB crit 
(N/m) 

200 0.8 

40 0.8 

1 60 0.8 

0.02. 0. 1 ,  0.005 1 0, 1 2, 8 0.1 

0.0 1 ,  0.05, - 4, 4, - 0.6 

4, 5, 3 40 0.8 

9. 10, 6 40 0.8 

9. 10, 6 40 0.3 

9, 10, 6 40 0.8 

9, 10, 6 40 0.3 

6. 6, 4 1 0  0.5 

5.2 Masses and tensions 

Relative 
coupling 
between 
regions 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

If the muscles in the walls of the tube sections contract, the masses of the vibrating 
parts of these walls are decreased and their tensions increased, according to 

k(l) = k(l) k eq re/ (26) 

where the articulatory parameter kret is the dimensionless relative tension (Flanagan & 
Landgraf, 1968; Ishizaka & Flanagan, 1972). For the vocal cords, for instance, this 
relative tension is made greater than 1 by the combined efforts of the cricothyroid 
muscle (which pulls the cords from the outside) and by the vocalis muscle (which 
contracts them from within). Note that for small displacements the frequency of free 
oscillation is prop01tional to krel: 

J 
__ 1 � [k<1'> _ krel _... (0} 
- 2n ''V m - 2n -\J � 

The speakers of table 2 have equilibrium lower-glottis resonance frequencies of 112.5, 
55.1, or 201.3 Hz, and equilibrium upper-glottis resonances at 100.7 Hz and 45.0 Hz. 

The cubic spring constant is chosen as 

(27) 

which means that for a relative tension krel = 1, the distance where the third-power 
force equals the linear force, is L1z/10. For pharynx, velum and palate, the i'.'1z in 
equation (27) is doubled, due to the different attachment of the muscles in the cheeks. 

The linear tissue stiffness is proportional to the equilib1ium area of the wall: 

(28) 
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and the cubic stiffness constant is chosen to be 

s<3) - s< 1) 
- (0.9 mm)2 (29) 

If the tension of the tissue is isotropic, the coupling-spring constants within the 
regions of the tract are approximately equal to the average of k11z/2!1xeq) times the 
linear spring constants of the separate masses, whereas the cubic spring constants of 
the coupling springs approximately equal the averages of ¥.,.11z/211xeq)3 times those of 
the separate masses. No couplings are found, however, between the regions of the 
tract, except between the two parts of the glottis, as seen in table 2. 

5.3 Damping 

Critical damping is the damping that allows a spring to reach equilibrium as quickly as 
possible without oscillations. As is seen from equations (26), the critical damping of 
the walls 'does not depend on k,ez for small displacements: 

However, we prefer to have damping that is constant relative to the true critical 
damping, which involves the cubic spring constants as well. Otherwise, the relaxation 
times of the oscillations would be longer in the cubic-force region than in the linear­
force region, instead of the other way around. We write therefore 

B open.crit = 2 --J k 
eff m 

where the effective spring constant is 

k _ iJ(tension force) _ k(l) 3 k(3) ( )2 ff- - '.'\ - + w - w e ow � 

The damping ratios in table 2 are relative to this critical damping: 

B open = B re! B open,crit 

The damping of the compressed tissue is chosen to be critical: 

where the effective mass meff is the mass of the wall that is in contact with its 
counterpart 

0 for  w 2". 11w 

11w - w 
for  -11 w ::; w ::; /1 w meff= m 

2 11w 

m for w ::; -11 w 

(30) 

(31) 

(32) 

(33) 

(34) 
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and the effective stiffness Self is 

0 for w � 11 w 

11w-w ( ) s<l) + s<3) (11w -w)2 for -11w � w � 11w 
2 11w 

s<1) + s<3) (3 w2 + 11 w2) for w :::;; -11w 
(35) 

If some tissue should be able to vibrate, the open-damping ratio must be appreciably 
smaller than 1. Flanagan and Landgraf (1968), for instance, use a damping factor of 0 
for the vocal cords in an open glottis; Ishizaka and Flanagan (1972) use factors of 0.1 
and 0.6 for the lower and upper glottis, respectively. 

5.4 Viscosity 

The viscous resistance is basically computed from equation (12). However, this cannot 
be correct for the lung region, as this region is subdivided into many "parallel" 
branches. For the lung region, therefore, the viscosity is multiplied by 

11x1 - x 
1 + ungs (parallel subdivision -1) 

l1x1ungs 
(36) 

where 11x1ungs is the total length of the lung region, x is the distance of the centre of 
each tube to the bottom of the lungs, and parallel subdivision is a number that we 
choose to be 1000. 

6 Implementation 

The aerodynamic and myo-elastic differential equations are integrated by a finite­
differencing method that is described in detail in the Appendix. The time step 11t of this 
integration is taken as the time that it takes sound to travel the smallest tube length (this 
is the largest time that guarantees a stable integration). 

The state of the system at a time nl1t is defined by the distances w: between the 
walls, their velocities w:, and the lengths 11x:, for every tube m from the first tube in 
the lungs (m = 1) to the last tube in the lips (m = M), and by the values of the 
continuous quantities � and Q;1 at the tube boundaries m = O . . . M (see figure A l  in the 
Appendix). 

The changes in the state of the system between the times nl1t and (n+ 1)11t come from 
three sources :  the aerodynamic equations (see chapter 3), the myoelastic equations 
(chapter 2), and the articulation data (chapter 4). 

The resulting acoustic pressure at a certain distance from the mouth is derived from 
the flow at the lips and from the vibrations of the walls: 

output pressure = 

1 n+ 1 n . n+ 1 . n ( M 

. JM -]M+Pa1ml1xl1z � (wm -w m
)J 4n 11t distance ,L...J m=l 
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7 Comparison to Ishizaka and Flanagan (1972) 

The purposes of both their model and ours is a simulation of the interaction between 
glottis and vocal tract, that accounts for the facts of speech. Some of the differences 
between the two models are: 
1. By I&F, the pressures are computed inside the tubes, whereas the flows are 

computed at the boundaries; except in the glottis, where pressures as well as 
flows are computed inside. Our integration computes the flows at the same places 
as the pressures, for all tubes. This might be a more principled modelling of the 
glottis-tract interaction. 

2. The use of different tube lengths enhances our chances of treating glottis and tract 
alike. 

3. The use of time-varying lengths enables our system to model some extra 
articulatory gestures that are found in the sounds of the languages of the world. 

4. The direct influence of moving walls on flows allows us to model the lungs as a 
finite-capacity volume, and consonants that use sucking. 

5. The influence of air pressure on wall motion allows us to model the acoustic 
correlates of the articulatory feature "tense". 

6. The smooth closing of the walls prevents spurious pressure peaks and allows 
walls to vibrate even if there is no complete closure. 

7. Turbulence is used as an acoustic pressure source, making frication noise 
possible in most tubes. 

8. Damping is dynamic: if the cubic spring forces play a role, there is larger 
damping. 

9. The cubic spring constant does not depend on the linear spring constant, which is 
true at least to the model of a perfect string (we do not know if this is an 
improvement). 

10. In I&F's glottis, a turbulence resistance is found above the glottis, regardless of 
the direction of the flow in the glottis. This is not realistic. 

11. We neglect the effects of vena contracta, because we decided that our speakers 
have a laminar flow there. 

8 Examples 

Figure 5 shows the voicing of an [a] and an [u] (male speaker). The rest width of the 
glottis is 1 mm, the relative tension is 1.5, and the equilibrium lung width is reduced 
from 100 to 90 mm during the first 0.1 seconds (we used a very strong coupling here, 
effectively simulating a one-mass model of the vocal cords). It is seen that the 
frequency of oscillation is lower in [u] than it is in [a]. This could simply be due to the 
fact that the amplitude of vocal-cord oscillation is higher in [u] (the constriction causes a 
higher mean pressure in the glottis; this pushes the cords apart). By the way, the 
acoustic power radiated in [ u] is 17 dB lower than the power radiated in [a]. 

Figure 6 show how the lips move if there is a closing gesture between 0.1 and 0.2 
seconds (from an equilibrium width of 40 mm to -10 mm), and an opening gesture 
between 0.3 and 0.4 seconds. This articulation results in an [a9a]-like utterance if it is 
superimposed on the [a] of figure 5. Figure 6 also shows the lung volume as a function 
of time. It seems to follow only reluctantly the equilibrium volume that was set by the 
expiration muscles after 0.1 seconds. This is because the relatively narrow glottis 
blocks the expiration. From 0.2 to 0.3 seconds, the glottis is open (see figure 7a), but 
the lung volume does not decrease at all, because no air is allowed to escape into the 
atmosphere. The lung pressure is also constant dming this period; between 0.1 and 0.2 
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Fig. 5. Realized width of the glottis as a function of time, for an [a)-like and an [u]-like 
shape of the vocal tract. 

seconds, and between 0.3 and 0.5 seconds, the pressure is seen to fall from 5 to 3 cm 
water. Finally, figure 6 shows the particle velocity in the glottis. During the labial 
closure, it is small, because the glottis is open. Comparison with figure 7a shows that 
the velocity oscillation lags somewhat behind the glottal-width oscillation; this phase 
difference keeps the cords vibrating. 

· 
Figure 7 shows several attempts to make [apa]- and [aba]-like utterances from the 

same contraction of the lungs and lip movements that were used in figure 6. In figure 
7 a, there are no articulatory gestures, apart from the lip movements, and voicing stops 
one period after the closing of the lips (the rest width of the glottis stays 1 mm, the 
relative tension of the vocal cords stays 1 .5). We see that the glottal width during oral 
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Width at lips (mm) 

0. 1 0.2 Time 0.3 0.4 

w 

Lung width (mm) 

Time 

Lung pressure (cm water) 

Time 

Particle velocity in glottis (rn/s) 

Time 

Fig. 6. Some articulatory and realized properties of an [apa]-like articulation. The top 
figure shows the target position (equilibrium width) of the lips (straight lines) and the 
position realized. The second figure shows the same for the lungs. The third figure shows 
the pressure at the bottom of the lungs. The bottom figure shows the mean particle 
velocity in the glottis. 

0.5 s 

0.5 s 

0.5 s 

0.5 s 

closure is greater than the maximum width dming phonation, even without any activity 
of the larynx. 

The consonant can be made more voiceless by spreading the glottis to 4 mm (in a 
movement synchronous with the movement of the lips), as is seen in figure 7b. This 
gesture is used in aspiration. Another voiceless consonant is made if the glottis is 
constricted to -1 mm (figure 7d); this is used in ejectives, in which the release burst, 
deprived from pulmonic excitation, is obtained by pulling up the larynx. Yet another 
voiceless consonant is made if the vocal-tract walls are stiff (figure 7f). 
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Fig. 7. The glottal widths of eight [aba]- and [apa]-like utterances as functions of time. 
The plots have been scaled between - 1  and +5 millimetres. 

Voicing can be maintained longer if the vocal cords are brought together (to 0 mm), 
as we see in figure 7c. If this nan·owing is done dming phonation, the acoustic power 
diminishes, as is also seen in figure 7c. Note that the fundamental frequency falls even 
if there is no adjustment of the tension of the vocal cords. An additional lowering of the 
larynx between 0.2 and 0.4 seconds so that at 0.4 seconds the length of the pharynx is 
1 .3 times longer than it was at 0.2 seconds, helps voicing considerably (figure 7h); this 
is the implosive articulation. 

Making the vocal cords slack during closure causes phonation to continue only a 
little longer (figure 7e). The same goes for reducing the tension of the pharynx walls 
(this is the "lax" or "lenis" articulation, see figure 7g); if the cubic spring constant of the 
speaker is reduced as well, the consonant does become very voiced (not in the figure), 
which points to the possibility that the perfect-string approximation is not realistic here. 
Thus, voicing can be maintained during labial closure, either by relaxing the wall 
muscles in the vocal tract, or by simultaneously nan·owing the glottis and lowering the 
larynx (thus making an implosive consonant). 
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9 Conclusion 

The model can make the following sounds: 
1 .  Vowels. The fundamental frequency is influenced by the vocal-tract shape. 
2 .  Voiceless plosives. After an oral closure, the inu·a-oral pressure rises, the glottal 

flow falls, and the cords stop vibrating and part. All this does not involve any 
gestures of the muscles in the larynx. 

3 .  Voiced plosives. A smaller tension of the pharynx wall supports the maintenance 
of a glottal flow; a smaller tension of the vocal cords helps the Bernoulli force. 

4 .  Implosives. The larynx is lowered during oral closure; this helps to maintain a 
flow through the glottis. At the release of the stop, air is sucked into the mouth. 

5 .  Ejectives. The pressure behind the constriction is greater than in the case of plain 
plosives, and the volume is smaller. The noise burst is therefore stronger and 
shorter. 

6 .  Aspiration. Enlarge the equilibrium width of the glottis. 
7 .  Fricatives. If the damping is too high for the walls to vibrate, a narrow 

constriction can easily be maintained; this is accompanied by turbulence noise. 
8 .  Clicks. These can only be made if there is a coupling between the different 

regions in the mouth. After making two constrictions, the rest width of the region 
in-between is enlarged, the pressure falls, the two constrictions are pulled tighter 
by this pressure, and the coupling finally causes a strong release. 

9 .  Trills. The damping of the apex is low enough for it to be able to vibrate. 

10 Discussion 

The focus of this article is on the "manner" features of speech production. If we like to 
model realistically the "place" features as well, we have to use other subdivisions of the 
supralaryngeal vocal tract. In particular, a more realistic transition from the position of 
the articulators to the area functions of the supra.glottal vocal tract has been modelled by 
Mermelstein ( 1 973). Ideally, the articulato1y parameters should be the activities of the 
twenty-odd most important muscles, instead of our seven equilibrium positions, two 
relative tensions and two relative lengths. 

Breathy voicing can be included by making L'.1 w  of the vocal cords dynamically 
dependent on w eq• thus maintaining a uiangular rest shape of the glottis. The vocal 
cords can then vibrate without closing. However, realistic values of L'.1w (about 1 mm) 
do not lead to vibration, due to the rigidity of the walls in our model. Breathy voicing is 
heard in our model output if L'.1w is about 0. 1 mm. 

The model makes no nasal sounds. A nasal tract, however, can be added in a 
straightforward manner. 

98 IPA Proceedings 1 5 ,  1991 



Axm 
Axm+l 

Wm Wm+ l  
Jm-1 Am Jm Am+l Jm+l 
Qm-1 Vm Qm Vm+ l  Qm+l 

Pm Pm+l 

Fig. Al.  Some inner tubes, showing some aerodynamic quantities with place labels. The 
only quantities defined on boundaries, are the mass flow J and the continuous pressure Q. 

Appendix: difference equations 

Difference equations relate the continous quantities at a time t + (n+ 1 )lit to those at a 
time t + nf:,,,t, where f:,,,t is the sampling period or integration-time step, which will be 
constant in our evaluations. They will do so for every tube m from the lungs (m = 1 )  to 
the lips (m = M) and for every tube boundary m from the bottom of the lungs (m = 0) 
through the inner boundaries (m = l . . .M-l ,  where M is the total number of tubes) to 
the place where sound radiates from the lips (m = M). 

In this section we present the complete algorithm for the integration of the myo­
elastic and aerodynamic differential equations. In deriving the states of the springs at 
the time (n+ l )!it from those at the time n!:it, a simple explicit integration scheme 
suffices, because the spring motion is relatively slow and sufficiently damped. For the 
hyperbolic part of the aerodynamic equations we will use a second-order accurate 
integration scheme that is based on the Lax-Wendroff method, which consists of the 
following two steps (see Mitchell 1969, Press et al. 1989): 
1 .  Compute the half-way values (at a time (n-ti)Af) of the "conserved fluxes" (in our 

case, the mass flow J and the continuous pressure Q), from the values at time 
nf:,,,t, using first-order accurate explicit integration (forward Euler) . Second-order 
accuracy could be achieved by taking into account the values at (n-4)t:,.,t, which 
makes this the staggered-leapfrog method instead of Lax-Wendroff; in our case, 
however, this would lead to instabilities. 

2. Use these half-way values for computing the values at the new time (n+ l )l:it to 
second-order accuracy. 

For our case, the Lax-Wendroff method needs two modifications: 
1 .  Because of the discontinuities at the tube boundaries, we have to average in a way 

the left- and right-limit values of the mass flow densities and of the masses. Their 
proper weighting is suggested by the results of an integration along characteristics 
for constant and equal tube lengths. 

2.  Because the lengths of the tubes are not equal, we also have to average the 
distances that appear in the gradient parts of the equations of motion. The method 
of averaging that we use, produces the con-ect resonance frequencies in the tract. 
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The initial state of the system is defined as (upper indices count time steps, lower 
indices count tubes or tube boundaries) 

0 0 

f! = 0 m 

Wm = Weq,m or Weq,m 

Ax
� 
= Ax

�
el,m Axeq,m or just Axeq,m 

for m = O . . .  M 

for m = l . . .M 
(Al) 

for m = l . . .M 

For an integration of the time evolution of the system, we write the aerodynamic 
differential equations in the following way: 

iJ(pAAx) 
dt 

= ]left - ]right 

a�v) = -%� 
-R v 

(A2) 

The quantities that appear in the left-hand side of (A2) are called the mass pAAx and the 
momentum density pv. We can write the continuous quantities J and Q in terms of these 
as 

J = (pv) A 

Q = (pAAx - PatmJ c2 + (pv)2 
A Ax 2Patm 

The inverse relations are given by 

J pv = A 

( Q) J2 Ax pAAx = p aim + 2 A Ax - 2 C 2Patmc A 

For every sampling period, we proceed by the following steps: 

(A3) 

(A4) 

S tep 1 :  "Compute the momentum densities, the masses of air, and the state 
variables in the tubes, from the mass flows and continuous pressures at the tube 
boundaries." 

The mean values of the continuous quantities inside tube m are 

(AS) 
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The mean momentum density is 

(A6) 

The mean value of the state variable P (to be used in the mass-spring equations) is 

- ((pv):)
2 

pn = Qn _ 
m m 2 Patm 

The mean values of the state variables p and v are 

pn 
n m 

P - p + -m - atm c2 

n v = --m n 
Pm 

(A7) 

(A8) 

This velocity v can now be used to compute the resistances. Finally, the total mass of 
air inside the tube is computed as 

(A9) 

Step 2:  "Compute the new cross sections of the tubes from the old cross sections, 
the articulation data and the old mean pressures, using first-order explicit integration. 
Interpolate to find the half-way values of the cross sections." 

The second-order differential equation (5) is divided up into two parts as 

. n !it ( . n n n ) Wm + m: tenSLOnm + 2 p m !J. zm !J.x m 
. n+ l  ----------------Wm = 

n+ 1 _ n + . n+ 1 A t  Wm - Wm Wm Ll 

Bn !i t  m 
1 + --

(AlO) 

where the tension is computed from (2), (6), (7) and (8), and the damping from (30) 
through (35). This integration is first-order explicit for the harmonic part, and first­
order implicit for the dissipative part. The method of the integration of the harmonic 
part, which uses the new value of w to compute the new w, conserves energy. 
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The new value of the cross section A�+ l is derived from w:+ l  with the help of 
equation (9), and the half-way value of the cross section is interpolated as 

An+l /2 = _!_ (An+l + An ) m 2 m m (A l l) 

S tep 3: "Compute the new lengths of the tubes, from the articulation data. 
Interpolate to find the half-way values of these lengths." 

A _n+ l A _n A -L.L\.m = L.L\.rel,m L.L\.eq,m 

m 2 m xm Axn+ l /2 = _!_ (Llxn+ l + � n ) (Al2) 

Step 4 :  "Compute the half-way values of the mean mass flow densities inside the 
tubes, from the old mass flow densities inside the tubes and the old continuous 
pressures at the tube boundaries, using first-order explicit integration. From these, 
compute the half-way values of the mean mass flows inside the tubes." 

For the sake of stability, we use implicit (backward) integration for the resistance 
part: 

or 

( )n+ 1/2 = ( )n + .!. A t pv m pv m 2 Ll 

jn+ 1/2 = ( )n+ 1/2 An+ 1 /2 m pv m m 

( )n+l /2 pv m ----- - R n m Patm 

(Al3) 

Step 5: "Compute the half-way values of the masses inside the tubes, from the old 
masses inside the tubes and the old mass flows at the tube boundaries, using first-order 
explicit integration. From these and the half-way values of the mass flow densities 
inside the tubes, compute the half-way values of the mean continuous pressures inside 
the tubes." 
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P m P m 2 m-1 m ( A.6.x)n+l /2 = ( A.6.x)n + .!_ �t (/! _ Jn ) 
_ ( (pA.6.x);+112 J ((pv):+ l/2)' 
Qn+l/2 2 m = An+ l/2 � n+ l /2 - Pa lm C + 2 p rn X rn aim 

(Al4) 

Step 6: "Compute the new mass flows at the tube boundaries from their old values 
and from the half-way values of the mean continuous pressures inside the tubes, using 
an appropriate weighting of the left- and right-limit values of the new mass flow 
densities at the tube boundaries." 

The momentum density is not continuous at tube boundaries. The equation of 
motion is therefore integrated with the use of equation A4: ( rn rn J A rn rn+ l n+ l ( 1 1 J n 4Llt -n+l/2 -n+ l /2 

A-n+-1 + A_n_+_l J m = A-n 
+ -An- 1m + -�-n-+-1/_2_+-�-.n-+_1_/2 (Qm - Q rn+ 1 ) 

rn m+ l  m m+ l  Xm X m+ l 
(A15) 

where 

1 + --- for m = l. . .M 
Palm 

Equation (A15) is second-order accurate for the hyperbolic part, and only first-order 
accurate for the dissipative part (for dissipation, only an implicit, first-order accurate 
integration guarantees results that are stable in the sense of reaching equilibrium faster 
when there are stronger resistances; whereas second-order accuracy features stability 
only in the Von Neumann sense). 

Step 7: "Compute the new continuous pressures at the tube boundaries from their 
old values, from the half-way values of the mean mass flows inside the tubes, and from 
the new mass flows at the tube boundaries, using an appropriate weighting of the left­
and right limit values of the new "masses" at the tube boundaries." 

The masses are not continuous at boundaries. Again, we must use equation (A4): 

( n+1)2 (,6.xn+ l � n + 1 J Jrn rn X m+ l  

( 2 + Qn+ l) (An+ l � n+ l + A n+ l � n+ l )_ -- + PatmC m m X rn rn+l X m+ l  2p A n+l A n+l aim rn m+ l  
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This integration is second-order accurate, too, as it is equally balanced in time. The 
boundary conditions at the lungs are 

.tc;+ l = 0 

( 2 + Qn+l) An+l 6-xn+ l = ( 2 + Qn) An 6-xn _ 2 !it }';+1/2 2 
PatmC O 1 1 Patmc O 1 1 1 C 

(A17) 

and the conditions at the lips are derived from integrating equation (20) to second-order 
precision as 

where 

+l Qn+l + Q n cJ'/.t cJ'/.t c!it M M 
O = Qn+l _ Qn - -- + - + - ----

M M An+ 1 An ar 2 

rraa = 

1 

M M Ip 

Qn+l Qn ,n+l ,n 
M M CJM CJM =-------+-

rrad grad An+ l An M M 

1 1 
c!it grad = c!it + -- 1 2a1ip 2a1ip 

so that the new flow and pressure at the lips are computed from 

Q';/1 
= 
Q� 

+ c 
(1;1 - �J 

!(ad grad An+ 1 An M M 

(Al 8) 

(A19) 

The space-averaging that occurs in equations (A15) ,  (A 1 6) and (A1 9) ,  was 
suggested by the results of an integration along the characteiistics of the hyperbolic 
parts of the aerodynamic equations. These characteristics are the lines x=xo±ct, and an 
integration along them can only be done if the lengths of the tubes are equal and 
constant. This integration runs as follows. An alternative way of writing the 
aerodynamic difference equations ( 18) is 
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1 aJ aQ v aJ = --+-+-- + R v A dt dX A dX 

These equations can be made to look more similar: 

These equations are integrated along the x-coordinate over the entire mth tube, which 
has a constant length &: 

Integrating over time yields: 

2 C m m m-1  m- 1 C 0 = l (I'! + Jn+ 1 _ Jn _ Jn+ 1 ) � t 

+ lAn+l/2 (Qn+l + Qn+ l _ Q n _ Q n )Af 2 m m m-1  m m- 1 

m V m  V m  P m C m m + (- ]n+l /2 ( n+ l _ n ) + n+ l /2 2 (A n+ l _ A n )) Af 

0 = l c (r+l + Jn+ l _ Jn - Jn )Af 2 m - 1  m m - 1  m 

+ .!. An+l /2 (Qn + Qn+ 1 _ Q n _ Qn+ 1 )�et 2 m m m m - 1  m- l 

Vm m m- 1 m m X P m C + ( n+l /2 (Jn+ l /2 _ Jn+ l /2) + Rn+ l /2 Jn+ l � / n+ l /2) � t 

(A20) 

We can define (approximate) the two correction pressures (they represent the deviation 
from simple acoustic waves): 
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p: e2 (A':n+ l  - A :) - J: ( v: - v:1) 
p n+l/2 = ---------------WB,m - An+l/2 m 

v: (J� - 1:_1 ) 
p n+ l/2 = ------
C,m - An+l/2 m 

If & = !!..et, we can lose some terms (this is called integration along characteristics; a 
vocal-tract integration that uses this is found in Sondhi & Resnick ( 1983) ). Equations 
(A20) are added to one another to give 

n n+ l n rm elm - elm- I + Qn+I _ Qn + P  n+l/2 + P  n+l/2 = O ___ A
_n_+-1/_2__ m m-1 WB,m Cm 
m 

Subtraction of equations (A20) gives 

.,n n 1n+ l eJm - r m e m- 1 
------ _ Qn + Qn+ 1 + p n+ 1/2 _ p n+ 1/2 = 0 

A n+ l/2 m m-1 WB,m Cm 
m 

(A21) 

(A22) 

A boundary between two tube sections is a left and a right boundary at the same time" 
Thus, equation (A22) can also be written as 

.,n n n+ l 
eJm+ l  - rm+ l  elm _ Qn + Q"+ 1 + p n+ 1/2 _ p n+ 1/2 = 0 ___ A_n_+-1/_2___ m+l m WB,m+ l Cm+l 

m+ l  

We can now solve �+l from equations (A21) and (A23): 

(A23) 

(A24) 

c./1 cl" m- 1 m+ l  n n n+l/2 _ p n+l/2 + p n+l/2 p n+l/2 
A n+ l/2 + 

An+l/2 
+ Qm-1 - Qm+l -

PwB.m Cm WB,m+ l - C.m+ l 
m m+ l 

The new pressures Q:+ l are computed from l:+ l by equations (A21 )  or (A23) or 
directly by 
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m m+l n+l m n n n n 
(An+ l /2 A n+ l ] An+l /2 
-- + -- Q = (Q - PwB - Pc + cl ) + n n m n m-1 ,m , m m- 1 
rm rm+ l  rm 

An+l/2 m+ l  ( n n 
rn 

Qm+I - PwB,m + l + p C.m+ l  - cl m+ l  
n n ) 

m+ l 

Nothing flows into or out of the lungs other than via the windpipe: 

This can be combined with equation (A23) to give 

cl{ 
Qn+ 1 _ Qn p n + p n 

0 - 1 - An+l/2 - WB, 1  C,1 
1 

(A25) 

(A26) 

(A27) 

At the lips, equation (A 1 8) can be combined with the equation for the rightmost tube 
(A21) ,  which yields 

___ + _rgd_ cJ:+ 1 _ + + Qn _ _ p n _ p n ( r'J.t r J cilI-1 rrad cilI rrad Q
'J.t 

An+l /2 An+ l M - An+l /2 An M-1 g WB,M C,M 
M M M M rad 

(A28) 

after which Q'J.t+1 is computed from (A 18) or from (A2 1) .  Note that if v is small, and 
CJA/CJt=O, and !.u=cflt, then (A 19) and (A28) are the same formula. 
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