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Abstract. This paper shows that Error-Driven Constraint Demotion (EDCD), an error-

driven learning algorithm proposed by Tesar (1995) for Prince and Smolensky’s (1993)

version of Optimality Theory, can fail to converge to a correct totally ranked hierarchy of

constraints, unlike the earlier non-error-driven learning algorithms proposed by Tesar and

Smolensky (1993). The cause of the problem is found in Tesar’s use of “mark-pooling

ties”, indicating that EDCD can be repaired by assuming Anttila’s (1997) “permuting

ties” instead. Proofs show, and simulations confirm, that totally ranked hierarchies can

indeed be found by both this repaired version of EDCD and Boersma’s (1998) Minimal

Gradual Learning Algorithm.
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1  The Goal of Learning Algorithms for Optimality Theory

Optimality Theory (OT), in the original version proposed by Prince and Smolensky

(1993/2004), regards a grammar as a totally ranked hierarchy of constraints, i.e., no

two constraints are ranked at the same height. For this original version of OT, Tesar

and Smolensky (1993) and Tesar (1995) devise a number of learning algorithms,

collectively called Constraint Demotion (CD), whose goal it is, given a set of input-

output pairs drawn from the target language, to find a grammar (constraint ranking)

that is compatible with that set of language data. Since the target language is assumed

to be generated from a totally ranked hierarchy, a learning algorithm can be said to

converge to a correct grammar only if the algorithm finds at least one totally ranked

hierarchy that makes all the given input-output pairs optimal. Imagine, for instance, a

language with one input form i1, two output candidates o1 and o2, and three constraints

C1, C2, and C3, with as yet unknown rankings. The violation patterns are as in tableau

(1).

    (1)  A small language

i1 C1 C2 C3

  o1

o2

The check mark before the first candidate in (1) indicates that the input-output pair

(i1, o1) is optimal in the target language. The goal of a learning algorithm for OT now

is to find at least one total ranking of the three constraints so that candidate o1

becomes the optimal candidate in the tableau for i1.

                                                  
*
 I would like to thank Bruce Tesar, Joe Pater, and two anonymous reviewers for comments on earlier

versions of this paper.
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2  Algorithms That Succeed

All learning algorithms discussed by Tesar and Smolensky (1993) (Recursive CD,

Batch CD, On-line CD) succeed in finding at least one totally ranked hierarchy for the

language in (1), as well as for any other language for which a totally ranked hierarchy

exists.

For (1), all these algorithms work in the same way. In the beginning, all three

constraints are ranked at the same height: in the same stratum. The input-output pair

(i1, o1) is then given to the algorithm as a “correct” learning datum. Since candidate o1

is apparently the winning candidate in the target language, it is called the winner. The

learning algorithm then selects from the tableau a loser, which can be any competing

candidate. Since tableau (1) contains only one competing candidate, namely o2, this

candidate is deemed the loser. The algorithm now investigates which constraints

prefer which of the two candidates, and finds that C1 and C2 prefer the winner

(namely o1) over the loser (o2), whereas C3 prefers the loser over the winner. The

algorithm then takes action by demoting the loser-preferring constraint C3 to a new

stratum just below the first stratum, where C1 and C2 remain. Since all information

from this simple language has now been used, the learning algorithm stops processing

any further language data. The end result is the stratified hierarchy in (2).

    (2)  Target stratified hierarchy obtained by the 1993 CD algorithms

   { C1, C2 } >> { C3 }

Tesar and Smolensky (1993: 18) call the ranking (2) the target stratified

hierarchy, because it contains all crucial constraint dominance relations of the target

language while at the same time having all constraints ranked as high as possible. We

can see this as follows. First, the constraints C1 and C2 are never violated in any

correct form of the language (i.e., they are not violated in (i1, o1)), so that they can be

ranked in the top stratum. Second, the constraint C3 must be outranked by either C1 or

C2 in any totally ranked hierarchy (otherwise candidate 1 would never win), so it

cannot be in the top stratum. The result in (2) generalizes to any language generated

by a totally ranked hierarchy: all learning algorithms presented by Tesar and

Smolensky (1993) are guaranteed to yield a unique target stratified hierarchy.

Although after finding the target stratified hierarchy in (2) the algorithm has

stopped processing language data, it has not finished yet, because (2) is not a totally

ranked hierarchy. In order to make the learning algorithm yield a totally ranked

hierarchy, the target stratified hierarchy has to be converted to at least one totally

ranked hierarchy. Tesar and Smolensky (1993: 22) provide a way for doing this: “any

totally ranked hierarchy consistent with the output (partially ranked) stratified

hierarchy will correctly evaluate all of the data presented.” Specifically, a result as in

(2) “represents a class of all totally-ranked constraint hierarchies which give rise to

the target language [...]: the same optimal outputs arise regardless of the ranking of

[the constraints within a stratum]” (Tesar and Smolensky 1993: 12). This class is thus

obtained by refining each stratum in (2) into all the possible total rankings of the

constraints within that stratum; this can be achieved by free permutation (Tesar and

Smolensky 2000: 92). Thus, stratum 1 contains the constraints C1 and C2, and these
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can be totally ranked in 2! (2-factorial) ways, i.e. either as C1 >> C2 or as C2 >> C1;

stratum 2 contains only the constraint C3, and this can of course be totally ranked in

just one way. The totally ranked hierarchies that can be derived from (2) are therefore

those given in (3).

    (3)  Totally ranked hierarchies obtained by the 1993 CD algorithms

   C1 >> C2 >> C3

   C2 >> C1 >> C3

The set of totally ranked hierarchies in (3) is the real output of the CD algorithms:

unlike the stratified hierarchy in (2), the totally ranked hierarchies in (3) are grammars

that fit in Prince and Smolensky’s model of possible grammars, which are totally

ranked hierarchies.

It must be noted here that the procedure does not necessarily find all totally

ranked hierarchies that are consistent with the data. For instance, the total rankings

C1 >> C3 >> C2 and C2 >> C3 >> C1 are consistent with (1) yet do not show up in (3).

But this is not important. What is important is that the procedure finds at least one

total ranking. This is guaranteed, because the procedure is guaranteed (by Tesar and

Smolensky’s proof) to find a target stratified hierarchy, from which at least one totally

ranked hierarchy can always be derived by the factorial refinement procedure

described above.

The final totally ranked hierarchies in (3) can be illustrated with production

tableaus, as in (4). They show that for each total ranking, the same correct candidate

wins in production.

    (4)  Correct outputs after learning, in both totally ranked hierarchies

i1 C1 C2 C3 i1 C2 C1 C3

  o1   o1

o2 ! o2 !

There is a way to combine these two tableaus into a single stratified tableau, as in (5).

    (5)  A stratified tableau with permuting ties

i1 C1 C2 C3

  o1

o2 (!) (!)

This tableau represents the target stratified hierarchy in (3). The dashed line between

C1 and C2 indicates that the { C1, C2 } stratum consists of a set of two tied constraints.

It is important that the constraint tie in (5) is a permuting tie (Anttila 1997): the tie

represents a set of rankings derivable from all the permutations of the constraints

involved (if there are multiple strata, the set of total rankings is obtained by permuting

the constraints in each stratum independently).
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3  The Problem: An Algorithm That Fails

Tesar (1995: 95) notes that the CD algorithms described above do not have a very

principled way of choosing a loser. The illustrations of the algorithms in Tesar and

Smolensky (1993) typically consider all nonoptimal candidates as losers (one at a

time), but this (as well as choosing an informative candidate randomly) is problematic

in cases where the candidate set is infinite. For this reason, Tesar (1995: 95) asks

himself: “Can informative competitors be efficiently selected?” The answer Tesar

provides is a variant of On-Line CD. In an on-line learning algorithm, learning data

are provided to the learning algorithm one at a time; the algorithm receives a datum,

then processes it, perhaps making a change to the algorithm’s currently hypothesized

ranking, and then forgets it. Tesar proposes an error-driven variant on this (Error-

Driven Constraint Demotion; EDCD), where the loser is defined simply as the

candidate that is optimal under the learner’s current grammar hypothesis. This makes

perfect sense, because precisely any mismatch between the learner’s optima and the

learning data signals that the learner has not yet arrived at a grammar appropriate for

the target language.

Here is how EDCD works for the language in (1). Tableau (6) shows the learner’s

initial grammar hypothesis, in which all constraints are ranked at the same height. The

tableau also shows the first (and only) language datum, which is the input-output pair

(i1, o1); this is the “winner”, as indicated by the check mark.

    (6)  The learner’s optimal candidate in the initial state: EDCD with pooling ties

i1 C1 C2 C3

  o1

o2

Subsequently, EDCD has to compute the “loser”, i.e. the candidate that is optimal

under the current ranking of the three constraints. However, in this initial state of (6),

all three constraints tie. Since constraint ties are very common during CD learning,

Tesar had to devise a proposal for how constraint ties are to be interpreted. Instead of

proposing the permuting ties of (5), Tesar proposes that the violations of all the

constraints within a stratum should add up (the marks of the constraints are pooled),

as if these constraints together count as one larger constraint: “This extension treats

constraints in the same stratum as having equivalent Harmonic value. When

comparing two descriptions, a mark assessed by one constraint may cancel with a

mark assessed by a different constraint in the same stratum” (Tesar 1995: 96). On the

basis of terminology by Tesar (2000: 25), I call this a pooling tie. In tableau (6), this is

indicated by having no vertical lines between the tied constraints. Under the pooling-

tie regime, then, the optimal candidate in tableau (6) is candidate o1: this form wins in

production (as indicated by the pointing finger), because it incurs only one violation

in the top stratum, whereas candidate o2 incurs two violations in the top stratum.

Candidate o1, then, is chosen as the “loser”.

The intermediate result of processing the first datum, now, is that both the winner

and the loser are candidate o1. This is a situation that cannot occur for the earlier CD

algorithms, in which the loser can only be chosen from the non-winners. For EDCD,
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the situation means that no learning can be performed. This situation is general for

error-driven learning algorithms: if the incoming language datum is grammatical in

the learner’s current grammar hypothesis, no learning will take place.

Since (i1, o1) is the only possible language datum, and EDCD has noticed that it

cannot learn from it any longer, EDCD stops processing any more language data. The

final stratified grammar is given in (7).

    (7)  Final stratified hierarchy obtained by EDCD

   { C1, C2, C3 }

This final hierarchy is a correct grammar of the target language, under the assumption

that in production the violations of tied constraints are pooled. However, EDCD is not

finished yet, because it has to derive one or more totally ranked hierarchies from (7)

in order to make the end result compatible with Prince and Smolensky’s OT.

Unfortunately, this is impossible: the permutations of the three constraints in the top

stratum of (7) include the grammars C3 >> C1 >> C2 and C3 >> C2 >> C1, which

would incorrectly map the input i1 on the output o2.

EDCD’s failure to yield a correct set of totally ranked hierarchies is in contrast

with Tesar and Smolensky’s (1998) claim that it does yield such a hierarchy:

When learning is successful, the learned stratified hierarchy, even if not totally ranked, is

completely consistent with at least one total ranking. (Tesar and Smolensky 1998: 249)

How does the learner get to a totally ranked hierarchy? At the endpoint of learning, the

hierarchy may not be fully ranked. The result is a stratified hierarchy with the property

that it could be further refined into typically several fully ranked hierarchies, each

consistent with all the learning data. [...] In human terms, one could suppose that by

adulthood, a learner has taken the learned stratified hierarchy and refined it to a fully

ranked hierarchy. (Tesar and Smolensky 1998: 250)

The “refining” that the authors refer to here, and which has to be performed by

randomly imposing an order on the constraints within strata, is not possible for the

language in (1). We must conclude, then, that EDCD fails in a way the authors did not

foresee, a way that renders the original version of EDCD incapable of learning the

languages it was designed for.

One could think that it might be possible to replace Prince and Smolensky’s

grammar model by a model that allows stratified hierarchies (with pooling ties), so

that the final hierarchies with pooling ties such as (7) are valid end results of learning.

However, such an alternative grammar model will exhibit cases of multiple optimal

outputs, and therefore be unlearnable by EDCD, as the authors note (Tesar 1995: 103;

Tesar and Smolensky 1998: 249–250).

We conclude that EDCD with pooling ties, as envisaged by Tesar and

Smolensky, is not guaranteed to converge to a correct grammar of any known type of

target language: when given data from a language generated by a totally ranked

hierarchy, it does not always produce a correct totally ranked hierarchy (as I have

shown in this section), and when given data from a language generated by a stratified

hierarchy (with pooling ties), it often does not converge to any such stratified

hierarchy at all (as Tesar and Smolensky note themselves).
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4  How Bad is the Problem?

The reader might be concerned that the problematic case presented in section 3 is just

a carefully contrived counterexample to the correct convergence of EDCD and that

this algorithm might fare much better in typical realistic cases. To investigate this

possibility, this section evaluates the performance of EDCD on 1 million randomly

generated languages.
1

Each of the 1 million languages is created in the way described in (8), which

creates a totally ranked hierarchy and then derives a language from it (in the

description, “randomly” refers to uniform distributions of integer numbers).

    (8)  Simulation procedure: language creation

1. Randomly choose a number of constraints N between 2 and 20.

2. Put the constraints in a (random) total order.

3. Randomly choose a number of inputs M between 1 and 20.

4. Randomly choose a maximum number of violations Vmax (per cell) between 1

and 5.

5. For each of the M inputs:

5a. Randomly choose a number of output candidates between 2 and 20.

5b. Fill all tableau cells (for every candidate and every constraint) with a

random number of violations between 0 and Vmax.

5c. Determine the optimal output(s) given the total constraint ranking.

6. If any input has more than one optimal output (which can sometimes occur if

two candidates have the same violation pattern), go back to (1); else stop.

The procedure in (8) is guaranteed to yield a nonvarying language for which at least

one correct totally ranked hierarchy exists (namely the one that the language was

derived from in the first place). From it, we create a language environment (dataset)

for learners by making a list of the M possible correct input-output pairs, and

determining that each of these input-output pairs is equally likely to appear as a

learning datum.

Subsequently, we create a learner, who has the same set of N constraints as the

language of (8), the same set of M inputs, the same output candidates, and the same

violations in the cells. The learner’s initial grammar is therefore identical to the

grammar that generated the language in (8), except that all constraints are ranked in

the same stratum.

The learner subsequently receives language data, which are input-output pairs

drawn randomly from the language environment. Specifically, these data are drawn

from the M possible input-output pairs determined in (8), with equal probability. For

each learning datum, the learner performs the steps in (9), which is a description of

the learning procedure explicit enough for computer implementation.

                                                  
1
 The Praat script that performs the simulations is available from http://www.fon.hum.uva.nl/paul/gla/.
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    (9)  Learning procedure of Tesar and Smolensky’s EDCD

1. The learner receives an input-output pair (i, o).

2. The learner determines her own output, given the input i:

2a. The learner creates a total hierarchy from her current stratified ranking by

collapsing each stratum (all the constraints in a stratum are considered a

single megaconstraint, whose number of violations equals the sum of the

numbers of violations of the separate constraints).

2b. The learner determines the outputs that are optimal under this total

ranking (there may be multiple optimal outputs, as a result of identical

violation patterns after the mark pooling of step 2a).

2c. The learner randomly chooses her output from the set of optimal outputs

determined in 2b.

3. If the learner’s own output for i is different from o:

3a. Determine the stratum s that contains the highest-ranked constraint that

prefers o over the learner’s own output.

3b. All constraints that prefer the learner’s own output over o and that are not

already ranked in a lower stratum than s, are demoted into the stratum just

below s.

For each language created in (8) we wait until the learner in (9) has converged to the

final pooling-tie-based stratified hierarchy. Correctness is inferred only if all totally

ranked hierarchies derivable from this final stratified hierarchy correctly map each of

the M inputs to its corresponding correct output. The result of the simulations is that

EDCD correctly converges for only 31 percent of the 1 million languages. The

conclusion must be that failures of EDCD are typical rather than rare, and that the

algorithm is therefore in need of correction.
2

5  The Cause of the Problem

When studying tableau (6), one can see that the cause of EDCD’s failure, and the

success of the earlier CD algorithms, lies in the fact that EDCD has no way of

regarding candidate o2 as a loser. Tableau (6) will instead always yield o1 as a loser,

and this is a totally uninformative loser, since it is identical to the “correct” form

given in the language data.

The failure of EDCD is thus caused by the inaccessibility of the potentially

informative candidate o2. The following remark by the authors (in a discussion of

EDCD) comes to mind:

An antagonistic learning environment can of course always deny the learner necessary

informative examples, making learning the target grammar impossible. We consider this

uninteresting and assume that as long as there remain potentially informative positive

examples, these are not maliciously withheld from the learner. (Tesar and Smolensky

1998: 246)

                                                  
2
 Just for comparison, the “gradual learning algorithm” (GLA) for Stochastic OT (Boersma 1998)

correctly converges for 99.5 percent of the languages (Boersma and Pater 2008), which means that that

algorithm’s odds of convergence are 400 times better than those of EDCD (at least on these randomly

generated datasets). See Pater 2008 for examples of misconvergence of the GLA.
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However, the learning algorithm itself turns out to have withheld the informative loser

o2 from the learner. Tesar and Smolensky’s proofs of convergence are based on

bounding the number of “errors” (the output mismatches that lead to a grammar

change in step 3) from above; for EDCD, they show that the learner can make no

more than some maximum number of errors. These proofs are correct. In the example

studied here, however, the learner will never even make her first error, which is the

error she needs in order to change grammar (7) into grammar (2).

The inaccessibility of candidate o2 as a loser is caused by the assumption of

pooling ties: only under that assumption will candidate o1 always be better than

candidate o2 if all the constraints are ranked at an equal height. Under the assumption

of permuting ties, which was needed to interpret the strata of the target stratified

hierarchy in (2), candidate o2 will be able to win under at least some total rankings of

the tied constraints C1, C2, and C3.

6  The Solution

The solution to the problem that EDCD does not converge to a correct totally ranked

hierarchy, is to use the same assumption for ties as was needed for converting the

target stratified ranking in (2) to the total rankings in (3), namely Anttila’s (1997)

assumption of permuting ties.

Under the assumption of permuting ties, the initial state is not (6) but (10). This

time, the three tied constraints have variable ranking, as indicated by the dashed lines

within the (only) stratum.

    (10)  The learner’s optimal candidates in the initial state: Variationist EDCD

i1 C1 C2 C3

  o1

  o2

Two pointing fingers now appear in tableau (10), because both o1 and o2 can be

optimal outputs under some of the total rankings of the three constraints. I now show

that this leads to successful learning.

In production, permuting ties have to be interpreted as variation in outputs across

evaluations (Anttila 1997). That is, at each tableau evaluation, the learner randomly

chooses a total ranking from among the ones allowed by the stratified hierarchy, i.e.

from all possible permutations of the constraints within each stratum. In (10), the

stratified hierarchy allows six total rankings (they were all mentioned in sections 2

and 3). Starting in the initial state of (10), the learning algorithm will receive language

data. In the case of the language in (1), the data will arrive as (i1, o1), (i1, o1), (i1, o1)...

The tableaus in (11) show how the learner handles these data.

    (11)  Error-driven learning with permuting ties

i1 C1 C3 C2 i1 C3 C1 C2

  o1     o1 !

o2 !   o2
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When the first (i1, o1) comes in, the learner determines that candidate o1 is the

“winner” (because it equals the given output). She then computes her own production

for the given input i1. She does this by establishing a random total ranking of the three

constraints, in this case C1 >> C3 >> C2, as shown on the lefthand side in (11). This

ranking leads to choosing o1 as the optimal form, and therefore as the “loser”. Since

the loser equals the winner, no learning takes place.

Then the second learning datum comes in, again (i1, o1) (for want of alternatives).

The learner again establishes o1 as the “winner”, but when she computes her own

production for i1, she now does that with a new random ranking of the three

constraints, namely C3 >> C1 >> C2, as shown on the right in (11). The result is that

candidate o2 becomes optimal (the “loser”), as indicated by the pointing finger. The

learner has now finally made an “error”, since the winner is different from the loser.

As a result, the learner will demote all constraints that prefer the loser (here, only

constraint C3) into the stratum below the stratum that contains the highest-ranked

constraint that prefers the winner (here, both C1 and C2, which are still in the same

stratum). As a result, the ranking of (10) turns into the ranking in (12).

    (12)  Target stratified hierarchy obtained by EDCD with permuting ties

     { C1, C2 } >> { C3 }

The ranking in (12) is also the final ranking: no amount of incoming (i1, o1) data will

be incompatible with it, because all total rankings associated with (12) will correctly

turn the input i1 input the output o1.

Tesar and Smolensky’s version of EDCD fails to converge to a correct totally

ranked hierarchy because the interpretation of constraint ties is different during

learning than at the point where totally ranked hierarchies have to be created; in

particular, the final hierarchy in (7) is based on pooling ties whereas extracting totally

ranked hierarchies from it requires permuting ties. The version of EDCD presented

here, by contrast, converges to a set of correct totally ranked hierarchies because

constraint ties are interpreted as variationist throughout learning; in particular, the

final hierarchy in (12) is based on permuting ties, so that correct totally ranked

hierarchies can be extracted from it.

7  The Proof

Tesar and Smolensky (2000: 91–100) provide a correctness proof for EDCD.

Interestingly, this proof turns out to be correct for Variationist EDCD, but incorrect

for EDCD-with-pooling-ties.

Tesar and Smolensky begin by showing that given a complete set of informative

winner-loser pairs, the constraint demotion procedure, when starting out with all

constraints ranked in the same stratum, is guaranteed to converge on the unique target

stratified hierarchy, from which a set of correct totally ranked hierarchies can be

derived by a refinement procedure. According to Tesar and Smolensky (2000: 92), a

constraint hierarchy is called a refinement of another hierarchy if the former hierarchy

preserves every constraint domination relation present in the latter hierarchy (and I

will use total refinement for any refinement that is a totally ranked hierarchy). Thus,
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Tesar and Smolensky prove that given a complete set of informative winner-loser

pairs, the constraint demotion procedure yields a hierarchy from which a set of correct

totally ranked hierarchies can be produced by freely permuting the constraints in

every stratum. Tesar and Smolensky go on to show that if all constraints start out in

the same stratum, the target stratified hierarchy will be reached after at most

N(N   1) / 2 informative winner-loser pairs (i.e. pairs that lead to at least one

constraint demotion), where N is the number of constraints. Likewise, they show that

if the constraints start out being ranked in an arbitrary order, a stratified hierarchy will

be reached after at most N(N  1) informative winner-loser pairs:

(7.29) THEOREM.  CD converges to a hierarchy generating L after no more than N(N  1)

informative examples. (Tesar and Smolensky 2000: 99)

where L is any language that can be generated by a totally ranked hierarchy. Although

Tesar and Smolensky do not explicitly state this, all total refinements of the

“hierarchy” mentioned in their (7.29) are again correct totally ranked hierarchies. We

must note again (after section 3) that Tesar and Smolensky regard such exhaustive

total refinability as a crucial property of the hierarchies produced by their learning

procedures (2000: 49).

Tesar and Smolensky’s next step is to define EDCD and to provide a theorem and

proof about its correctness:

(7.31) THEOREM.  EDCD converges to a hierarchy consistent with all positive evidence

from L, and converges after at most N(N  1) informative examples.

Proof. The theorem follows directly from theorem (7.29), and the fact that, for any

observed winner, if the learner’s hypothesized hierarchy does not find the winner optimal,

production-directed parsing will produce a competitor guaranteed to result in at least one

demotion when CD is applied.  (Tesar and Smolensky 2000: 100; also 1998: 264)

This theorem cannot be understood without some exegesis of the English terms that

Tesar and Smolensky are using here. First we note the term “positive evidence from

L”; with this term, Tesar and Smolensky must mean to refer to ‘the winners given in

the dataset’, i.e. ‘the correct input-output pairs given in the dataset’. Specifically, the

term “positive evidence” cannot have been meant to include informative “losers”. We

know this because: (1) in their definition of EDCD on page 99 the authors feed the

learner a set of “positive data”, which are “grammatical structural descriptions”, each

of which is a “winner”, whereas the “losers” are generated by the learner herself; (2)

in acquisition research, the term “positive evidence” tends to be restricted to data

entering the learner from outside, not to data generated by the learner herself; (3) in

their following discussion, the authors link the term “positive evidence” to the subset

principle and initial markedness-over-faithfulness rankings (pp. 75–76), i.e. to the

problem of potentially informative inputs (with their corresponding outputs) that are

missing from the dataset; and (4) the authors call the informative losers “indirect

negative evidence” (p. 110), not “positive evidence”. Another potentially problematic

term in the theorem is “hierarchy”; with this, the authors must refer to a totally

refinable hierarchy, given that their proof refers to their theorem (7.29), which inherits

this refinability from the link to the target stratified hierarchy (p. 97), which is totally

refinable (p. 94), and given their general commitment to exhaustive total refinability
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(p. 49). I conclude that the somewhat elliptically formulated theorem means the

following:

(7.31, expanded) THEOREM.  EDCD converges to a stratified hierarchy that can be refined

by intrastratal permutation into a set of totally ranked hierarchies each of which is

consistent with all correct input-output pairs from L that the learner has been given; this

convergence is achieved after at most N(N  1) informative examples.

The second part of this theorem is correct: EDCD converges (to a correct or incorrect

grammar) within N(N  1) informative examples. Interestingly and crucially, this

result is independent of the way in which optimal outputs are determined, i.e. of

whether candidate evaluation proceeds with pooling ties or with permuting ties: Tesar

and Smolensky’s CD convergence proof (pp. 91–99) does not depend on candidate

evaluation at all. It immediately follows that Variationist EDCD, too, converges (to

some grammar) within N(N  1) informative examples.

But the first part of the theorem is incorrect for the original EDCD, as we have

seen. Now that the theorem has been clarified, we can see where the proof fails. The

problematic phrase is the claim “production-oriented parsing will produce a

competitor”. The term “production-oriented parsing” just means the evaluation of a

tableau, i.e. the determination of an optimal output form given an input form, a

constraint ranking, and a set of candidates with violation patterns; the “competitor”

here is simply what the authors elsewhere refer to as a “loser”. Here, the error-

drivenness of the algorithm demands that the loser is the learner’s optimal output form

given her current constraint ranking, i.e. the result of production-oriented parsing. The

proof fails, now, because this production-oriented parsing is performed with the mark-

pooling interpretation of tied constraints, which is incompatible with the permuting

interpretation of tied constraints that theorem (7.29), which is used in the proof, refers

to. By assuming permuting ties rather than pooling ties, the proposal of the present

paper repairs this gap in Tesar and Smolensky’s proof.

Nevertheless, the proof for Variationist EDCD is not complete yet. Tesar and

Smolensky’s claim that the “theorem follows directly from” (7.29) and the “fact” that

if a winner is ungrammatical in the learner’s current grammar production-oriented

parsing will produce a competitor, is at best schematic. Here I provide a more

elaborate proof. First we must note that the number of errors (winner-loser

mismatches) that the learner makes is limited to N(N  1)/2 (when starting with all

constraints ranked at the same height) and that no constraint in the resulting grammar

can be ranked lower than in the target stratified hierarchy. This is what follows from

(7.29) and the theorems and proofs that precede it, such as (7.22), none of which

depends on how constraint ties are handled. Thus, either kind of EDCD learner is

guaranteed to converge on a final constraint ranking, and we only have to prove that

for variationist learners this final grammar is a correct exhaustively totally refinable

stratified hierarchy.

The proof, which works only if the number of inputs is finite and every input

comes with only one correct output (for infinite numbers of inputs, see section 8), is

based on a reductio ad absurdum. The aim of the proof is to show that the final

grammar that the learner arrives at is compatible with the set of input-output pairs that

the learner is given, i.e. that for each input form all total refinements of the final

grammar yield the correct observed output form. Suppose, then, that the final
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grammar that the learner arrives at is not compatible with the dataset. Then at least

one total refinement of the final hierarchy must yield an incorrect output for at least

one input. Since the number of inputs is finite, and under the assumption that no

inputs will be maliciously withheld from the learner, this specific problematic input is

certain to arrive at some time in the future, and in fact at an infinite number of times

in the future. Each of those times, the learner will compute her own output form on

the basis of a newly randomly generated totally ranked hierarchy (the refinement).

Since the number of times that the problematic input will arrive is infinite, and the

number of constraints (and therefore the number of possible total refinements of a

stratified hierarchy) is finite, this problematic total refinement is certain to arrive at

some time. When it does, the learner’s own output form (the “loser”) will have a

different violation pattern from the correct output form (the “winner”) supplied in the

dataset (because otherwise there would be two optimal outputs), so that at least one

constraint will get demoted. Hence, the learner is not yet in the final grammar. Since

the assumption that the final grammar (which is guaranteed to exist) is incompatible

with the dataset leads to a contradiction (namely that the grammar is not final), this

assumption must be false, and the final grammar must be compatible with the dataset.

In fact, if all constraints start out at the same height, no constraint in the final

grammar can be ranked higher than in the target stratified hierarchy, because that

would mean that at least one crucial ranking of the target language is not honoured

(Tesar and Smolensky 2000: 93); since no constraint can be ranked lower than in the

target stratified hierarchy either (as we saw above), the final grammar must be the

target stratified hierarchy.

We can now see accurately why the original EDCD fails. Analogously to the

proof of the previous paragraph, let us suppose that the final grammar of a mark-

pooling EDCD learner is not compatible with the dataset. Then (as before) at least one

total refinement of the final hierarchy (based on intrastratal permutation) must yield

an incorrect output for at least one input. Once a problematic input arrives, the learner

will compute her own output form on the basis of a stratified hierarchy with pooling

ties. The problematic total refinement is no longer certain to arrive, because the set of

output forms derivable with pooling ties does not necessarily contain all total

refinements (as we have seen in section 3). Therefore, the proof of the previous

paragraph does not apply to the original EDCD, because we do not arrive at a

contradiction. In fact, Variationist EDCD selects exactly the right set of “losers”,

namely all possible total refinements; any algorithm that fails to select a certain total

refinement (like the original EDCD) runs the risk of missing information on crucial

rankings, and any algorithm that selects a larger set of losers (like the On-line CD

algorithm of 1993) will more often regard incoming input-output pairs as

uninformative and therefore converge slower.

This remark about speed of convergence reminds us that the proof of correct

convergence for Variationist EDCD given in this section contains the vague notion of

“certainty to arrive at some point in time”. This notion is made more precise in the

following section.
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8  Convergence Times

The proof given in section 7 relies on the fact that a relevant contesting output is sure

to be generated at some point in the future. This is guaranteed by the fact that all

possible total refinements have an equal probability of being chosen, combined with

the fact that the number of constraints is finite; as a result, the probability that on a

certain occasion (tableau evaluation) a certain total refinement is chosen is nonzero.

Thus, the probability that that total refinement is not chosen is less than 1, and as the

number of such occasions rises with time, the probability that that total refinement

remains unchosen approaches zero. What section 7 has proven, then, is that

Variationist EDCD converges to a correct exhaustively refinable hierarchy with

probability one. In fact, it converges with probability one to the target stratified

hierarchy if all constraints start out being ranked at the same height.

Convergence with probability one, also called “almost sure convergence”, is the

best kind of convergence that one can usually get with a stochastic process, and it is a

very good kind of convergence. The basic mechanism of this kind of convergence can

be exemplified by throwing a perfect die repeatedly: the probability that we have seen

no six will approach zero to within any positive margin, however small. Both the

original (incorrect) EDCD and the Variationist (correct) EDCD rely on this kind of

convergence, the original EDCD by asserting that if there are two equally harmonic

optimal output forms (which can happen if they have identical violation patterns after

mark pooling), there has to be a random choice between them (Tesar 1995: 98–101),

and Variationist EDCD by asserting that a totally ranked hierarchy must be chosen

randomly and that if there are two equally harmonic optimal output forms (which can

happen if they have identical violation patterns without mark pooling), there has to be

a random choice between them.

The mechanism behind convergence with probability one can be extended to the

inputs. If the number of inputs is finite, and each of these inputs has a finite

probability of being chosen in every input-output pair presented to the learner (which

is guaranteed if e.g. the input-output pairs presented to the learner are randomly drawn

with equal probability from a finite number of possible input-output pairs), then any

problematic input (in the proof above) will arrive at some point. This idea can be

extended to a more realistic language, namely one with an infinite number of potential

inputs: if every kind of informative input has a nonzero probability of occurring in the

language data presented to the learner, then any specific kind of informative input will

“almost surely” (i.e. with probability one) arrive at the learner at some point in time.

Tesar and Smolensky just assume without further discussion that this is indeed the

case (the “maliciously withheld” assumption: 1998: 246, 2000: 51). Here I have made

it explicit that convergence is guaranteed if informative inputs have a nonzero

probability of occurring at any point in time.

There remains the question of how long it will take the learner to converge. Tesar

and Smolensky restrict their discussion of convergence times to establishing an upper

bound on the number of “errors”, which is N(N  1). A full discussion of convergence

times, however, requires that one assesses the total convergence time of an algorithm,

i.e. the amount of input-output pairs needed. This includes discussing the time

between errors. This time tends to become longer as learning proceeds, because the

number of potentially informative input-output pairs tends to decrease with every
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error (Boersma 1998: 327–328). Also, the probability that a potentially informative

input-output pair is actually informative can be quite small: with the original EDCD,

the set of the learner’s own optimal outputs, and therefore its subset of uninformative

losers, may be quite large as a result of mark pooling (imagine, for instance, an

infinite candidate set), and with Variationist EDCD, this set and subset may be quite

large if the number of constraints in a stratum is large.

However, it is little relevant to compare the worst-case convergence times of the

original EDCD with those of Variationist EDCD. Since original EDCD ends up in a

correct grammar only 31 percent of the time (for the randomly generated languages of

section 4), its convergence times can be judged concisely as “too short 69 percent of

the time”. In the present section I therefore investigate the convergence times of

Variationist EDCD, by applying it to 1,000,000 languages generated by the method of

(8). The precise learning procedure for Variationist EDCD, which is required for

performing computer simulations, is given in (13).

    (13)  Learning procedure of Variationist EDCD

1. The learner receives an input-output pair (i, o).

2. The learner determines her own optimal output, given the input i:

2a. The learner randomly chooses a total constraint ranking consistent with

her current stratified ranking under the assumption of permuting ties.

2b. The learner determines the outputs that are optimal under this total

ranking (there may be multiple optimal outputs, if two candidates have

identical violation patterns).

2c. The learner randomly chooses her output from the set of optimal outputs

determined in 2b.

3. If the learner’s own output for i is different from o:

3a. Determine the stratum s that contains the highest-ranked constraint that

prefers o over the learner’s own output.

3b. All constraints that prefer the learner’s own output over o and that are not

already ranked in a lower stratum than s, are demoted into the stratum just

below s.

For each of the 1,000,000 randomly generated languages we now simulate one virtual

learner who begins with all constraints ranked at the same height, and we measure the

number of input-output pairs that this learner takes to converge to the target stratified

hierarchy. Figure 1 shows a histogram of the 1,000,000 convergence times.
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Fig. 1.  Histogram of convergence times of 1,000,000 Variationist EDCD learners.

The vertical scale is logarithmic.

The slowest learner requires 1435 pieces of data (input-output pairs) to converge.

However, 50 percent of the learners need no more than 41 pieces of data, and 99

percent need no more than 283. The convergence time correlates positively with the

number of inputs M  (r = 0.540) as well as with the number of constraints N

(r = 0.272), and it correlates negatively with the maximum number of violations Vmax

(r = 0.214). The straight envelope (after time 10) suggests that the probability that a

learner has not converged diminishes exponentially with time (like the probability that

no six will fall in repeated die throwing). It can be concluded that Variationist EDCD

converges quite fast in practice, much faster than in the theoretical worst case.
3

9  An Earlier Correct Error-Driven Constraint Demotion Algorithm

Variationist EDCD is not the first correctly converging error-driven constraint

demotion algorithm that has been found. An earlier one is Boersma’s (1998)

“Minimal Gradual Learning Algorithm”, which differs from Variationist EDCD only

in steps 3a and 3b. The whole procedure is given in (14).

                                                  
3
 In the 31 percent of cases in which EDCD-with-pooling-ties converges to a correct grammar, the

convergence times turn out to be comparable to those found here for Variationist EDCD.
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     (14)  Learning procedure of Minimal GLA

1. The learner receives an input-output pair (i, o).

2. The learner determines her own optimal output, given the input i:

2a. The learner randomly chooses a total constraint ranking consistent with

her current stratified ranking under the assumption of permuting ties.

2b. The learner determines the outputs that are optimal under this total

ranking (there may be multiple optimal outputs, if two candidates have

identical violation patterns).

2c. The learner randomly chooses her output from the set of optimal outputs

determined in 2b.

3. If the learner’s own output for i is different from o:

3a. Determine the highest-ranked constraint (highest-ranked in the randomly

selected total ranking) that prefers the learner’s own output over o.

3b. Demote that constraint by one stratum.

In steps 3a and 3b this algorithm is somewhat simpler than Variationist EDCD in that

it does not have to compute the highest-ranked constraint that prefers o over the

learner’s own output; the drawback is that it is expected to be slower than Variationist

EDCD because it can demote only one constraint at a time, and by only one stratum at

a time. Minimal GLA comes with a proof (Boersma 1998: 323–327) that contains

ideas similar to those in Tesar and Smolensky’s CD proofs, and converges with

probability one to a correct exhaustively totally refinable stratified hierarchy within at

most N(N  1) demotions. Again, if all constraints start out being ranked equally high,

the final grammar is the target stratified hierarchy, and it is reached within N(N  1)/2
demotions. Although the proof that the final grammar is a correct grammar of the

target language (Boersma 1998: 325) is not much more explicit than Tesar and

Smolensky’s proof for EDCD (discussed here in sections 7 and 8), we can now (on

the basis of sections 7 and 8) confirm that Minimal GLA does not have the problems

of the original EDCD, because it explicitly uses permuting ties (Boersma 1998: 324)

and therefore shares the correctness proof of Variationist EDCD.

Figure 2 gives a histogram of the convergence times for 100,000 Minimal GLA

learners, each fed with a different set of randomly generated language data.
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Fig. 2.  Histogram of convergence times of 100,000 Minimal GLA learners.
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The slowest learner requires 1920 pieces of data, 50 percent of the learners need no

more than 104 pieces of data, and 99 percent need no more than 629. Again, the

convergence time correlates positively with M  (r = 0.58) and N  (r = 0.52), and

negatively with Vmax (r = 0.04, which is different from zero with p = 5·10
41

). When

comparing these results with those of section 8, we can conclude that Variationist

EDCD, in which multiple constraints can be demoted by multiple strata at once,

converges about twice as fast as Minimal GLA.

Algorithmically, we can see that the correctly convergent Variationist EDCD of

(13) combines steps 1 and 2 of the correctly convergent Minimal GLA of (14) with

step 3 of the incorrectly convergent original EDCD of (9).

10  Implications for Work That Depends on EDCD

Problems with mark pooling have been remarked upon before, although never in

relation to the incorrectness of EDCD as a learning algorithm for OT. It is of some

importance, however, to label the problems with the original EDCD as an issue of

correctness: since mark pooling comes with an incorrect learning algorithm, learning

procedures that rely on pooling ties have to be reformulated in terms of permuting ties

and subsequently reassessed.

As far as I know, the first mention of Variationist EDCD was by Boersma (2003:

440), who compared the performance of several learning algorithms, among which

EDCD with “crucial ties” (pooling ties) and EDCD with “variationist ties” (permuting

ties), on Tesar and Smolensky’s (2000) set of 124 hidden-structure problems:

“learners with crucial ties acquire twelve more languages than those with variationist

ties”. As we now know, the term “acquire” here has merely referred to convergence,

with is incorrect convergence in the case of “crucial ties” and correct convergence in

the case of “variationist ties”. Therefore, by not seeing the incorrectness of pooling

ties and by therefore taking them as a serious option, Boersma’s (2003) assessment of

the various learning algorithms overestimates the performance of EDCD, something

that was corrected by Boersma and Pater (2008: 32) by using Variationist EDCD.

Boersma’s (2003: 440) verdict that pooling ties are unrealistic (“how can one weigh a

single violation of the binary constraint NON-FINALITY against multiple violations of

the gradient constraint FEETL ?”) must now have been reduced to just a secondary

point of concern.

The problem I noted with EDCD in section 3 was not noted in the original

literature on EDCD (Tesar 1995, Tesar and Smolensky 1998, 2000). In a later

discussion of error-driven learning, however, Tesar (2000: 25–28) says: “The mark-

pooling interpretation [...] of stratified hierarchies [...] can sometimes cause error-

driven learning to stop before reaching a hierarchy in which the desired winner beats

every competitor by constraint domination alone [i.e. a totally ranked hierarchy —

PB].” Tesar relates the problem to mark pooling, but does not link the problem to the

mismatch between the pooling ties of learning and the permuting ties needed to

convert stratified hierarchies to totally ranked hierarchies. Therefore, rather than

resorting to the already known permuting-tie mechanism in tableau evaluation

(Anttila 1997, Boersma 1998), which would have solved the problem

straightforwardly, Tesar provides a different, tentative solution in terms of “conflict

ties” (without a correctness proof). Consider the small language in (13).
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    (13)  Pooling ties, permuting ties, conflict ties

i1 C1 C2

  o1

o2

o3

o4

Tableau (13) can be regarded as the initial state of the grammar, with C1 and C2

ranked at the same height. Under the pooling-tie regime, candidate o3 is optimal,

because it incurs fewer violations (namely, 2) in the top stratum than any other

candidates do; so o3 will be deemed the “loser” for EDCD. Under the permuting-tie

regime, by contrast, candidates o1 and o2 will be optimal interchangeably, depending

on which total ranking will be randomly selected at each evaluation; so both o1 and o2

will perform as “losers”. Under the “conflict tie” regime, finally, the learner looks for

a set of candidates where each two members are preferred by different constraints;

thus, the members of the pair o1~o2 are preferred by different constraints (C1 prefers

o2, C2 prefers o1); the same goes for the members of the pair o2~o3, the members of

the pair o1~o3, the members of the pair o1~o4, and the members of the pair o3~o4; the

learner will therefore consider all members of the set {o1, o 2, o3} as “losers”

(candidate o4 is not included, because the members of the pair o2~o4 do not tie). From

section 7 we can see that this set is larger than necessary: the number of candidates

considered under the “conflict tie” scenario (three) is somewhere between the number

considered by Variationist EDCD (two) and the number considered by the non-error-

driven CD algorithms (four); this implies that convergence times will be longer than

necessary. A more important problem is that the conflict-tie scenario is poorly defined

as a mechanism for determining optimal forms, because the “is tied with”-relation is

no longer transitive (Tesar 2000: 27): if the evaluation of tableau (13) proceeds from

top to bottom, then in order to see that candidate o4 is not optimal, it has to be

compared to the whole set {o1, o2, o3} rather than to just any one of the optimal forms

(as in the mark-pooling and permuting-tie scenarios). Because of this potentially

explosive behavior in evaluation, Tesar is dissatisfied with conflict ties himself: he

rightly judges them “a bad replacement for [mark pooling] in general” (p. 27), and

decides to use them “sparingly” (p. 27).

A problem shared by the pooling and conflict ties has to do with the continuity

between children’s grammars and adult grammars. In (13), an especially problematic

candidate is o3: it can be optimal (and would therefore be produced by the child) in

both the pooling-tie and the conflict-tie scenarios, although in a factorial typology it is

harmonically bounded by the combination of C1 and C2 (and would therefore never be

produced by an adult with a totally ranked hierarchy). By contrast, the permuting-tie

scenario restricts the set of potentially informative “losers” to o1 and o2, precisely the

set of possible optima under intrastratal ranking permutation; since such permutation

is the manner in which totally ranked hierarchies will have to be constructed from the

final stratified hierarchy, Variationist EDCD ensures that both children and adults are

subject to the same general typological restrictions of OT, namely factorial typology.
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The fact that pooling ties generate too few “errors” (section 3) was also noted by

Jesney and Tessier (2007: 7–8), who regarded it as a problem for “restrictive

learning”, rather than as a correctness problem for EDCD. They suggest that “We can

resolve this issue by requiring that constraints be strictly ranked with respect to one

another... either in the grammar itself or with each iteration of Eval” (p. 7). The

former suggestion cannot be implemented yet, as there is no known correctly

convergent constraint ranking algorithm that maintains a totally ranked hierarchy

throughout learning. The present paper therefore shows that the latter suggestion can

be implemented by constructing, in each evaluation, a totally ranked hierarchy from

the stratified hierarchy in a variationist manner, i.e. by random intrastratal

permutation in the manner of Anttila (1997) and Boersma (1998).

11  Conclusion

This paper has identified two error-driven constraint demotion algorithms (Minimal

GLA and Variationist EDCD) that provably converge to a correct “target stratified

hierarchy”, which can be expanded (by exhaustive intrastratal permutation) into a set

of correct totally ranked hierarchies. Both algorithms rely on interpreting constraint

ties in a variationist manner, unlike Tesar’s (1995) original EDCD, which relies on

mark pooling and as a result often converges to an incorrect hierarchy. Variationist

EDCD thus becomes the fastest correctly convergent error-driven learning algorithm

for OT. Conditions on appropriate convergence that remain are that the learner is

given sufficiently rich data and receives full information about the structure of these

data.

This result adds to the evidence that the correct interpretation of ties is

variationist, i.e., that ties reflect a factorial permutation of total rankings. This idea

was first voiced by Pesetsky (1998), although in his case lower strata were allowed to

influence the total subrankings of higher strata. The present full idea of deriving total

rankings by independent permutations within all strata is explicit in one of the

variations on partial ranking that Anttila (1997) proposes, as well as in Stochastic OT

(Boersma 1998), in which two constraints can never be ranked exactly equally high

during an evaluation. The most important empirical result of the present paper for

human language learning, though, is that it predicts that at every moment during

acquisition, the child’s possible outputs form a subset of the ones allowed by factorial

typology, which asserts that languages can have precisely those forms that can be

generated by total rankings of the universal set of constraints; by operating with

permuting ties, the proposed corrected EDCD ensures that the idea of factorial

typology also applies to child language, i.e. that there is a continuity between the

language of children and that of adults; a difference that remains is that in this view

children show variation but adults do not.

The proposed repair of EDCD may influence not only the workings of direct

applications of this algorithm, but also the workings of more elaborate learning

procedures that utilize EDCD. To begin with, Robust Interpretive Parsing with EDCD

(Tesar and Smolensky 2000) was reassessed in this way by Boersma and Pater (2008:

32); similar reassessments could be applied to other work involving Robust

Interpretive Parsing with EDCD (e.g. Apoussidou 2007), to work on the

restrictiveness of EDCD-generated grammars (e.g. Jesney and Tessier 2007), and to
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work involving elaborate learning procedures such as inconsistency detection (e.g.

Tesar 2000). Most investigations into these matters have to be left to the future.
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