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Abstract. This paper argues that if phonological and phonetic phenomena found in language data and 
in experimental data all have to be accounted for within a single framework, then that framework will 
have to be based on neural networks. We introduce an artificial neural network model that can handle 
stochastic processing in production and comprehension. Specifically, the model is able to handle two 
seemingly disparate phenomena at the same time: gradual category creation and auditory dispersion. 
As a result, two aspects of the transmission of language from one generation to the next are integrated 
in a single model. The model therefore solves the hitherto unsolved problem of how symbolic-looking 
discrete language behavior can emerge in the child from gradient input data from her language 
environment. We conclude that neural network models, besides being more biologically plausible than 
other frameworks, contain a promise for fruitful theorizing in an area of linguistics that traditionally 
assumes both continuous and discrete levels of representation. 

1. Why a comprehensive model must be based on neural networks 

What will be the ultimate model of phonology and phonetics and their interactions? It will 
have to be a model that accounts for at least four types of valid behavioral data that have been 
assembled, namely 1) the generalizations that phonologists have found within and across 
languages, 2) the phenomena that psycholinguists and speech researchers have found 
observing speakers, listeners, and language-acquiring children, 3) the mergers, splits, chain 
shifts and other sound change phenomena found by historical phonologists and 
dialectologists, and 4) the phenomena that have been observed when languages come in 
contact, such as loanword adaptations. Besides having to account for all these types of 
behavioral data, the model will have to be compatible with what is known about the biology 
of the human brain, because that is where language is produced and comprehended. In this 
paper we argue that the ultimate model has to be reductionist, i.e. that it has to consist of 
artificial neural networks. We provide a first proposal of a neural network model that can 
handle two important aspects of the transmission of a sound system from one generation to 
the next. 

1.1. A model of phonological and phonetic representations and knowledge 

If the model consists of levels of representation, it may look like Fig.1, which can be thought 
of as containing the minimum number of levels needed for a sensible description: phonetics 
seems to require at least an Auditory Form (AudF, specifying a continuous stream of sound) 
and an Articulatory Form (ArtF, specifying muscle activities), and phonology seems to 
require at least an Underlying Form (UF, containing at least lexically contrastive material) 
and a Surface Form (SF, containing a whole utterance divided up in prosodic structure such as 
syllables); the Morpheme level connects the phonology to the syntax and the semantics in the 
lexicon. 
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Fig. 1.  Levels of representation and stored knowledge in a model of phonology and phonetics. 

 The five levels in Fig. 1 are a simplified combination of what phonologists have been 
proposing in models of phonological production (e.g. refxx structuralism, Kiparsky 1982) and 
what psycholinguists have been proposing in models of comprehension (e.g. Cutler 19xx) and 
production (e.g. Levelt, Roelofs and Meyer 1999). These specific five levels, and the special 
way in which they are connected in Fig. 1, were established by Boersma (1998, 2007) and 
Apoussidou (2007). In numerous papers, Boersma and co-workers investigated the capability 
of this “Bidirectional Phonology and Phonetics” (BiPhon) model to account for experimental 
as well as linguistic data (for an overview, see Boersma 2011). The model hitherto used the 
decision mechanism of Optimality Theory (OT) and can therefore be called BiPhon-OT. The 
present paper introduces the neural-network (NN) edition of the model, which we call 
BiPhon-NN. 
 Language users have knowledge of the relationships between levels of representation. In 
Fig. 1, such relationships exist between adjacent levels only, so that the language user has 
knowledge about sensorimotor, cue, phonological and lexical relationships. The language user 
also has knowledge about restrictions within levels: the articulatory, structural and 
morpheme-structure constraints. In OT, such knowledge is represented as a grammar 
consisting of ranked constraints; in NN models, such knowledge is represented as a long-term 
memory consisting of connection weights. 

1.2. Phonological and phonetic processes 

A comprehensive model has to take into account the behavior of the speaker, the listener, and 
the learner. Figure 2 shows the various processes that can be distinguished when travelling 
the levels of representation of Fig. 1. Globally, the path from AudF to Morphemes following 
the upward arrows in Fig. 2 is comprehension, i.e. the task of the listener, and the path from 
Morphemes to ArtF following the downward arrows is production, the task of the speaker. 
More locally, there are partial processes. The local mapping from UF to SF is phonological 
production, an example being the mapping from an underlying two-word sequence |an#pa| 
(“#” denotes a word boundary) to the phonological surface structure /.am.pa./ (“.” denotes a 
syllable boundary) in a language with nasal place assimilation. At the interface between 
phonetics and phonology, the local mapping from AudF to SF is (prelexical) perception, an 
example being the mapping from concrete continuous formant values to abstract discrete 
vowel categories. 
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Fig. 2.  Processes in a comprehensive model of phonology and phonetics. 

 The partial processes and their acquisition have been modeled in various frameworks. 
Phonologists have been modeling phonological production within OT since Prince and 
Smolensky (1993), and its acquisition since Tesar & Smolensky (1998). The acquisition of 
prelexical perception was modeled with neural networks such as the perceptron by refxx, and 
within BiPhon-OT by Boersma (1997) and Escudero and Boersma (2004). [xx Norris (1994) 
geeft met Shortlist een NN implementation van SF>UF mapping] The present paper in section 
5 handles the perceptual magnet effect, i.e. perceptual warping as an early stage of category 
creation in the AudF-to-SF mapping, which was observed in the lab by Kuhl (1992). The 
emergence of this effect was modeled before with neural networks by Guenther and Gjaja 
(1996) and with BiPhon-OT by Boersma, Escudero and Hayes (2003). 
 The way in which the language user’s knowledge is represented in Fig. 1 suggest that the 
same knowledge is used for both directions of processing in Fig. 2, i.e. for comprehending 
and producing speech. For OT, this bidirectionality was first argued for by Smolensky (1996). 
Specifically, it has often been argued that the same structural constraints play a role in 
comprehension as well as in production (Tesar 1997; Tesar & Smolensky 1998, 2000; 
Boersma 1998, 2000, 2007, 2009; Pater 2004), sometimes with very dissimilar effects 
(Boersma and Hamann 2009). For the present paper it is relevant that the “cue knowledge” at 
the interface of phonology and phonetics is bidirectional, i.e. used in both prelexical 
perception and phonetic implementation (Boersma 2009): the same knowledge that allows 
you to perceive a loud high-frequency noise as /s/ forces you to implement the phoneme /s/ 
as a sound with a loud high-frequency noise. In section 6 we handle the phenomenon of 
auditory dispersion, i.e. the evolution of optimal distances at AudF between the members of 
phoneme inventories at SF (refxx). This was modeled before within exemplar theory by 
Wedel (2004: 140–169, 2006: 261–269) and in BiPhon-OT by Boersma and Hamann (2008); 
in both cases, bidirectionality was a crucial element of the explanation, as explained in detail 
in §6. 
 Thus, the perceptual magnet effect and auditory dispersion were both modeled before, 
although never within the same framework. 
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1.3. The need to model it all at the same time 

There are at least two reasons why one would want to model all the processes of §1.2 within a 
single comprehensive model. One reason is that there are phenomena whose complete 
explanation necessarily requires all levels of representation, and the other reason is that there 
seem to exist processes that require an interaction between levels that are far away from each 
other in Fig. 1 or 2. We discuss these reasons now, with the goal of finding candidate 
comprehensive modeling frameworks. 
 
1.3.1. Comprehensive processes. There exist seemingly unitary processes whose 
explanation nevertheless requires all levels of representation. One such process is loanword 
adaptation, where the input (the foreign stream of sound that impinges on the borrower’s ear) 
and the output (the borrower’s phonetic production) are the only direct observables. If one 
wants to understand this phenomenon solely on the basis of acquired L1 behavior, one has to 
assume that the borrower starts by filtering the incoming auditory form through L1-specific 
cue knowledge and L1-specific structural constraints into a phonological surface structure 
(see Figs. 1 and 2), then stores it as a new morpheme in the lexicon with an appropriate 
underlying form. When speaking, the borrower takes this morpheme and underlying form, 
filters the latter with her L1-specific phonological knowledge, then filters the result again with 
her phonetic implementation device, which computes an auditory form and an articulatory 
form, perhaps filtered by L1-specific articulatory effort constraints. An explanation of 
loanword adaptation, therefore, requires all arrows in Fig. 2, as has been argued in detail by 
Boersma and Hamann (2009). 
 Another phenomenon whose explanation requires all levels of representation is first-
language acquisition. This happens much slower than the initial adaptation of a loanword, but 
is also much more central to linguistic theory and experimentation. The search, therefore, is 
for a single comprehensive framework. 
 
1.3.2. Distant interactions The arrows in Fig. 2 only connect levels that are adjacent. Thus, 
an incoming sound at AudF first activates a representation at SF, which then activates a 
representation at UF, which then activates one or more morphemes at the topmost level; there 
are no more direct routes that skip a level. 
 However, there is evidence that the partial processes are not entirely sequential. Feedback 
from “later” levels of representation to “earlier” levels in processing has been identified 
experimentally and theoretically in several locations, and several models that exhibit such 
interactions have already been proposed. In comprehension, lexical influence (from the 
Morpheme level) back to prelexical perception (AudF-to-SF) was found in listeners by 
Ganong (1980), and modeled with neural networks by McClelland and Elman (1986) and 
with BiPhon-OT by Boersma (2009, 2011); likewise, semantic considerations above the 
Morpheme influence the access of underlying forms in the mapping from SF to UF (Warner 
and Warner 1970). In production, allomorph selection is sometimes determined by ‘later’ 
considerations at SF, such as that between |vjø| and |vjɛj| ‘old-MASC’ in French. Likewise, 
phonetic considerations such as articulatory effort (at ArtF) and cue quality (between SF and 
AudF) may influence choices in the phonology (between UF and SF), as modeled by Boersma 
(1998, 2007). Also, cue knowledge and articulatory constraints must interact in the phonetic 
implementation process. 
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 As a result of these examples of interactive processing, most of the arrows in Fig. 2 are 
two-sided. Levels that are activated “later” in comprehension or production can thereby 
influence “earlier” levels backwards. In NN models, interactivity is implemented by having 
activity spread bidirectionally (McClelland and Elman 1986); in BiPhon-OT the interactivity 
is implemented by having candidates be entire paths from AudF to Morpheme in 
comprehension or from Morpheme to ArtF in production (Boersma 2007, 2009, 2011; 
Apoussidou 2007; Berent et al. 2009). 
 The existence of such feedback in processing is controversial in some locations 
(McQueen, Cutler and Norris 2000 deny the influence of the lexicon on prelexical perception, 
and Hale and Reiss 20xx deny any influence of phonetic considerations on phonological 
production). For the time being, however, we assume interactivity is everywhere. The need 
for a comprehensive model does not depend on whether such interactivity is only apparent or 
is an integral element of the underlying mechanism. 

1.4. Choosing the framework that models it all: neural networks 

When discussing existing models in §1.1 through §1.3, we identified three frameworks: 
neural networks, exemplar theory, and OT. 
 At first sight, BiPhon-OT might seem to be the best framework, because it provided an 
account of all of the processes mentioned. However, this is deceptive, because it did not 
provide an account of all the processes combined. When modeling category creation 
(Boersma 1998: ch.8; Boersma, Escudero and Hayes 2003) the BiPhon model shares with NN 
category creation models (refxx, Guenther and Gjaja 1996) and noncomputational emergentist 
work (refxx, Blevins 2004) the assumption that phonological categories emerge from the 
distributions of auditory forms in the child’s environment. Both computational models 
successfully arrive at a stage of continuous perceptual warping (an incoming sound is 
received as a slightly different sound because of distributional learning), but have to stop 
there, because linguistic modeling in e.g. OT requires that categories are discrete. This 
discrepancy between the gradiency of category creation that is needed in an emergentist 
model, and the discreteness of categories that is needed to do OT phonology, means the 
failure of OT as a comprehensive framework for emergentist phonology and phonetics. 
Moreover, OT’s biological plausibility is low, because it works with nearly infinite lists of 
candidates, which is especially problematic if one has five levels of representation; typically, 
the number of candidate paths to evaluate is exponential in the length of the input (both in 
comprehension and in production) as well as exponential in the number of levels of 
representation. 
 Exemplar theory (refxx) might do better with respect to the transition between continuous 
and discrete (massive storage of single events leads to observed continuous knowledge), but 
despite its long existence the theory has not yet been able to model even the most 
straightforward of phonological processes, such as productive nasal place assimilation 
(Boersma 2012). 
 Which leaves neural network modeling. If Fig. 1 is implemented in a neural network, 
each of the five levels of representation should be thought of as a large set of network nodes, 
each of which can be active or inactive. The pattern of activity of these nodes forms the 
current representation at that level. The processes of Fig. 2 can be regarded as the spreading 
of activity between and within levels; the knowledge in Fig. 1 is stored as connection weights, 
i.e. the strengths of the connections between the nodes. We show in section 5 that if the 
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elements of representations are distributed over multiple nodes, they can start out as 
continuous and gradually come to exhibit more discrete behavior during acquisition, thus 
ensuring the compatibility between underlying continuity and observed discreteness. One and 
the same framework, then, succeeds in accounting for both symbolic and subsymbolic 
behavior. As far as biological plausibility goes, neural networks form the best of the three 
frameworks as well: the number of connections in a NN model tends to rise linearly with the 
number of levels of representation, and linearly or quadratically with the size of the 
representations. 
 We confess here that we choose NN modeling not only because it wins out by 
elimination, but also because it is reductionist: in the end, it is uncontroversial that humans 
represent language in neural networks in their brains, and both OT and exemplar theory work 
at a higher level of abstraction. If the abstractions fail, one has to go one level of concreteness 
deeper. 
 Let’s proceed to looking at the ingredients of our linguistic NN model. 

2. Nodes, connections, weights and activities 

2.1. A toy example: phonological production 

We introduce artificial neural networks by looking at a traditional toy example of 
phonological production. Using terms that are familiar from both the neural network literature 
(refxx) and OT (Prince and Smolensky 1993: xx), the Underlying Form is the input of this 
mapping and the Surface Form is the output. 
 Our toy language has only four possible underlying utterances, each of which consists of 
two words. The first word is either underlyingly |an| or |am|, and the second word is either 
|pa| or |ta|. The four underlying utterances are therefore |an#pa|, |an#ta|, |am#pa| and 
|am#ta|, where “#” stands for the word boundary. In the surface form, the language exhibits 
nasal place assimilation in a manner reminiscent of Dutch: an underlying coronal nasal tends 
to assimilate to the place of any following consonant, so that underlying |an#pa| becomes 
/ampa/ on the surface; meanwhile, an underlying labial nasal tends not to assimilate: |am#ta| 
becomes /amta/. As in real languages, the tendencies are not true 100% of the time: the 
assimilation of the coronal nasal is optional, and likewise, the labial nasal does assimilate in a 
small minority of cases. For our example we suppose that underlying |an#pa| becomes 
/ampa/ on the surface 70% of the time, and the “faithful” form /anpa/ 30% of the time, and 
that underlying |am#ta| becomes faithful /amta/ 95% of the time, and assimilated /anta/ 5% 
of the time. 
 This probabilistic state of affairs is a situation that we know (Stochastic) OT can 
represent (e.g. Boersma 2008), because an existing learning algorithm for Stochastic OT (the 
“GLA”) typically turns a learner into a probability matcher. In comprehension, an auditory 
form that was intended by the speaker as the surface form A in 70% of the cases and as the 
surface form B in 30% of the cases, will come to be perceived by the GLA perception learner 
as A in 70% of the cases and as B in 30% of the cases (Boersma 1997). In production, an 
underlying form that is produced in the learner’s language environment as C in 70% of the 
cases and as D in 30% of the cases will come to be produced by the GLA production learner 
as C in 70% of the cases and as D in 30% of the cases (Boersma and Hayes 2001). Our NN 
model should be able to replicate this or a similar kind of optimal behavior. 
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 There are several ways to represent this toy language in a neural network. The most 
straightforward and OT-like (and probably least realistic) way is to represent each possible 
underlying utterance (input) with one node, and each possible output utterance as one node. 
This is done in Fig. 3, where each of the four possible underlying forms shows up as a single 
node along the top and each of the four surface candidates shows up as a single node along 
the bottom. 

 

Fig. 3. A network that performs phonological production. 

 Biologically, a node can be regarded as representing a neuron (or small group of neurons) 
in the cerebral cortex. Representing an entire linguistic form with a single node (a local 
representation), as we do here, is an unrealistic oversimplification, employed here only for 
purposes of illustration; more realistic distributed representations, where a single 
phonological category is represented by multiple nodes, appear in §4. 
 In Fig. 3, each node is represent by a dotted circle. Each of the four UF nodes is 
connected to each of the four SF nodes, although only six of the 16 connections are visible. 
Biologically, a connection corresponds to a synapse (point of contact) between an outgoing 
branch of one neuron and a receiving branch of another neuron. Such a synapse is 
unidirectional: it permits an electric signal to flow from one neuron to another. In general, 
therefore, the total strength of the synapses that carry signals from neuron A to neuron B is 
not equal to the total strength of the synapses that carry signals from neuron B to neuron A. 
Nevertheless, we maintain in this paper the simplification that the strength of the connection 
from node A to node B equals the strength of the connection from node B to node A, and that 
it can therefore be called the strength of the connection between nodes A and B. Such 
bidirectional connections are known to provide stability in neural network models (refxx, 
Hopfield 1982), and they guarantee the bidirectionality (§1.2) of the BiPhon model, thus 
providing the desired dispersion effect in §6. The present paper can do with, and indeed 
crucially employs, bidirectional connections; if in future modeling this simplification turns 
out to be untenable, it can then be dispensed with. 
 In NN modeling, connection strengths are called weights. The weight of the connection 
between the input node |an#pa| and the output node /anpa/ is 0.30, and this is visualized in 
Fig. 3 in two ways: the number 0.30 is written next to this line, and the thickness of the 
connection line is 0.30. Biologically, the connection weight indeed corresponds to the 
thickness of the synapse, i.e. the area with which the sending neuron is connected to the 
receiving neuron. When a neuron fires, a neuron with which it has a thick (strong) synapse 
will be influenced stronger than a neuron with which it has a thinner (weaker) synapse. In the 
figure, therefore, thicker lines denote stronger information flows than thinner lines. For 
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instance, the weight of the connection between |an#pa| and /ampa/ is 0.70, which is stronger 
than that between |an#pa| and /anpa/ because the underlying form |an#pa| should send 
stronger signals to /ampa/ than to /anpa/ in this toy language. Likewise, the weight of the 
connection between |an#pa| and /anta/ is zero, because we never want |an#pa| to be realized 
as /anta/; this zero-weight connection is not visible in the figure (the line has zero width). 
 To be more precise about the numbers: we deliberately chose the weight of each UF–SF 
connection in Fig. 3 to be equal to the probability that the connected UF node is realized as 
the connected SF node in our toy language. As a further example of this, an underlying 
“homorganic” |an#ta| has 100% chance of being realized as /anta/, and this is reflected with 
the number 1.00 next to the relevant connection line in the figure. We will show that with 
these chosen connection weights the network in Fig. 3 can indeed simulate the data of the toy 
language if the network has four common additional properties: all-or-none activation of the 
input nodes (§2.2), additive excitation of the output nodes (§2.3), a linear excitation-to-
activity function (§2.4), and a linear activity-to-probability function (§2.5). We illustrate these 
concepts with Fig. 4, which shows the production of underlying |an#pa|. 

 

Fig. 4. The production of underlying |an#pa|. 

2.2. Activity of the input nodes 

To compute how the network handles an incoming underlying form, we apply an activity 
pattern to UF and compute from it the activity pattern that will arise at SF. To see what the 
network does to an underlying |an#pa|, we activate the |an#pa| node by setting its activity to 
1.00. This is shown in two ways in Fig. 4: by painting the whole node in black, and (in this 
figure only) by drawing the number 1.00 above the node. At the same time, we set the 
activities of the three remaining underlying forms to 0, which is indicated in the figure by not 
painting these three nodes. 
 Biologically, an activity can be thought of as a firing rate. A node with an activity of 1.00 
can be seen as a neuron (or group of neurons) with a maximum firing frequency of, say, xx 
spikes per second (refxx); a node with an activity of 0 can be seen as a neuron (or group of 
neurons) with a minimum firing frequency (say, xx spikes per second; refxx). 
 The circles for the UF nodes in Fig. 4 look different from those for the SF nodes. In the 
phonological production process the UF level is the input, so that the activities of the four UF 
nodes will be held constant during evaluation. In neural-network terminology, the UF nodes 
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are clamped (kept fixed). This is indicated in the figure by the circles for the UF nodes now 
having solid rather than dotted edges. By contrast, the SF level is the output of the process, so 
that the activities of the four SF nodes must be free to adapt themselves to the activities of the 
input nodes; dotted circles in the figure visualize the fact that the output nodes are unclamped. 

2.3. Excitation of the output nodes 

When an input node is activated, as node |an#pa| is in Fig. 4, the information about its 
activity will spread towards the nodes with which it is connected: the activity will excite every 
connected node to some extent. For instance, in Fig. 4 node |an#pa| has activity 1.00 and the 
connection between |an#pa| and /ampa/ has weight 0.70. The amount to which |an#pa| will 
excite /ampa/ is therefore 1.00·0.70 = 0.70. Likewise, node |am#pa| has activity 0 and the 
connection between |am#pa| and /ampa/ has weight 1.00; |am#pa| will therefore excite 
/ampa/ by an amount 0·1.00 = 0. Node |an#pa| excites /ampa/ by an amount 0 (the activity 
of |an#pa|) times 0 (the weight of the connection from |an#pa| to /ampa/), which is 0·0 = 0, 
and so does |am#ta|. 
 Biologically, these four excitations can be regarded as “post-synaptic potentials”, rises in 
the potential (in millivolts) of the membrane of the receiving neuron. These rises tend to be 
additive, i.e. all the small excitations add up to yield the total excitation of the receiving 
neuron (refxx). Artificial neural network models also tend to assume additive excitation. 
Thus, the total excitation of /ampa/ becomes 0.70 + 0 + 0 + 0 = 0.70. In a formula, the 
excitation of the output nodes, i.e. nodes 5 through 8, can be computed as 

 ej = wijai (for j = 5..8)
i=1

4

∑  (1) 

where ai  is the activity of UF node i, and wij  is the weight of the connection between UF 
node i and SF node j. 

2.4. Activity of the output nodes 

When a node is excited, it becomes active itself. Biologically, this corresponds to the fact that 
if the membrane potential of a neuron rises, the probability that it will fire increases; in a 
continuous (and simplified) view of neuronal activity (refxx) this means that if the time-
averaged membrane potential rises, the firing frequency of the neuron will rise as well. The 
simplest assumption about the relation between excitation and activity is that it is linear, i.e. 
the activity rises and falls with the excitation by a constant factor. If this factor is 1, the 
activity of an SF node in our example becomes equal to its excitation: 

 aj = ej (for j = 5..8)  (2) 

As a result, activating |an#pa| causes an activity of 0.70 in node /ampa/. This number is 
written over the node in the figure and is also visible as the size of the black disk in that node. 
Likewise, activating |an#pa| causes an activity of 0.30 in node 5, which is visualized in the 
figure as the small black disk in that node. 
 Other excitation-to-activity functions are possible. If one wants to make sure that the 
activities of the SF nodes stay between 0 and 1 (which seems reasonable, given the biological 
interpretation of these limiting values as the minimum and maximum possible firing 
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frequency), one could simply clip the activity between those values, maintaining linearity of 
all activities between 0 and 1: 

 aj =max 0, min ej,1( )( ) (for j = 5,8)  (3) 

or one could apply a “top-sigmoid” clipping, which is linear for small excitations and goes to 
1 smoothly for large excitations: 

 aj =max 0, 2
1+ e−2ej

−1
"

#
$

%

&
' (for j = 5..8)  (4) 

In the end, combining the assumption of additive excitation (the contributions from the four 
underlying forms are added up) and the assumption of a linear excitation-to-activity function 
(the activity of an output node is a linear function of its excitation) causes the activity of an 
SF node to become the sum of the activities from the input nodes, weighted by the weights of 
the connections. 

2.5. Probabilistic interpretation of the activity of the output nodes 

Having computed the activities of the output nodes is not the end of the story. If we want to 
use neural networks to model linguistic behavior, we will have to provide a behavioral 
interpretation of the result in Fig. 4. After all, there is no third level of representation that the 
activities on nodes 5 through 8 could feed into (in this toy example). The only behavior one 
can then think of is that the virtual speaker chooses one of the four surface forms to actually 
produce. The question is: which SF will the virtual speaker choose? 
 One possible answer is that the speaker chooses the node that has the highest activity, i.e. 
the node /ampa/. This is an option often found in neural network modelling, especially in 
competitive learning (Grossberg 1976, Rumelhart and Zipser 1985). Here, however, this 
option would throw away the /anpa/ candidate entirely, and such nonstochastic behavior is 
not desirable if we want to model the 70–30 variation of our toy language. 
 Another possible answer is that the speaker somehow produces both /ampa/ and /anpa/. 
Such a mix might be imaginable at a continuous level of representation such as ArtF, where 
we can imagine what mixed gestures would look like, but the notion of mixed phonological 
representations at SF is difficult to envision (but see §5.xx). 
 The third possible answer is that the activities denote probabilities: /ampa/, with an 
activity of 0.70, is chosen with a probability of 70%, and the only other competing candidate 
/anpa/, which has an activity of 0.30, is chosen with a probability of 30%. This means that if 
we ask the network to produce an SF from the input |an#pa| 1000 times, the network will say 
“/ampa/” approximately 700 times, and “/anpa/” approximately 300 times. In general, then, 
the probability of an output candidate is its activity, scaled by the sum of all output activities: 

 Pj =
aj

ak
k=5

8

∑
(for j = 5..8)  (5) 
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Thus, since the candidate /ampa/ has an activity of 0.70 and the other candidates have 
activities of 0.30, 0, and 0, the probability of /ampa/ can be computed under the linear-
activity-to-probability assumption of (5) as 0.70/(0.30+0.70+0+0) = 70%. 
 Such an interpretation of an activity as a relative probability has a biological correlate. If 
activity can be regarded as firing frequency, and /ampa/’s activity is 0.70 while /anpa/’s 
activity is 0.30, then node /ampa/ fires 2.333 times as often as node /anpa/ in any given 
period of time. This means that if, from a certain moment in time on, one waits until either 
node /ampa/ or node /anpa/ fires, the odds will be 7 to 3 that node /ampa/ fires earlier than 
node /anpa/. In other words, there will be a probability of 70% that node /ampa/ fires first, 
and a probability of 30% that node /anpa/ fires first. If the first node to fire determines the 
speaker’s behavior, the relative activities have apparently determined the relative probabilities 
of the behavior. 
 Different interpretations of the relation between activity and probability are nevertheless 
possible. In the Boltzmann machine (refxx), the probabilities are 

 Pj =
eaj T

eak T

k=5

8

∑
(for j = 5..8)  (6) 

where T is called the temperature. The simpler linear relation of (5), however, will suffice for 
the present paper. 

2.6. Bidirectionality violated? 

The network of Fig. 3 works correctly in the production direction, i.e. with UF as the input 
and SF as the output. In the spirit of the BiPhon model we would like it to work equally well 
in the comprehension direction, i.e. with SF as the input and UF as the output. To model the 
recognition of an incoming /ampa/ as an underlying sequence of words, we can start by 
clamping the four SF nodes by keeping the /ampa/ node at a constant activity of 1.00 and the 
other three nodes constantly at zero. According to Fig. 3 and the procedure of (1) and (2), the 
underlying form |an#pa| will get an activity of 0.70 and the underlying form |am#pa| will get 
an activity of 1.00. Apparently, the network prefers |am#pa| over |an#pa| when it listens. 
 This situation is fine if the underlying forms |an#pa| and |am#pa| occur equally often in 
the language environment: the network’s preference then mimics the likelihood with which 
each of the two underlying forms was intended, given the surface form /ampa/. If, however, 
coronals occur in word-final position three times more often than labials do (which is 
approximately true for Dutch and English), the underlying form |an#pa| is three times more 
likely a priori than |am#pa| is. According to Bayes (refxx), this should shift the preference of 
a listener towards |an#pa|, but in the network of Fig. 3 this is not taken into account. In fact, 
the weights are conditional probabilities on UF only, not on SF. 
 This asymmetry between comprehension and production is a general property of 
symmetric connections. It cannot be completely solved, but it can be made equally 
(un)problematic for both directions of processing, as we do in section 4. 
 
Section 2 has shown that an artificial neural network can replicate the decision mechanism of 
(Stochastic) OT or (Noisy) HG; in other words, the network mimics the decision mechanism 
of a probabilistic grammar. It is unsatisfying, though, that each full utterance is represented as 
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a single node. In a more realistic network, the representation of each phonological element 
will be distributed over multiple nodes. Such a network is discussed in §5. Understanding 
such a network, however, requires understanding how the activities of equation (1) come 
about in processing (§3), and how the weights in Fig. 3 come about in learning (§4). 

3. Activity spreading 

In the example of §2, the initially unknown activities of the unclamped (output) nodes could 
be computed directly by equations (1) and (2) from the given activities of the clamped (input) 
nodes. Such a direct computation is possible for simple two-level mappings as in that 
example, but with larger networks, in which information flows bottom-up, top-down and 
within levels simultaneously, a direct computation is no longer possible, because the activities 
of some unclamped nodes come to depend on the activities of other unclamped nodes that 
themselves are not known from the start. 
 The general solution is to compute the activity in the unclamped nodes iteratively, i.e. in 
small steps, from the given activities of the clamped nodes, and let the network gradually 
approach its equilibrium, i.e. a final state in which its activities stop changing. Such gradual 
activity spreading bears similarities with how activity spreads through biological neural 
networks, and proceeds as follows. After applying some known activities to the clamped 
nodes, we let the excitations (and activities) of the unclamped nodes start at zero, and we then 
update these excitations in small steps several hundreds of times. In the example of §2, the 
excitation in the output nodes 5 through 8 starts at zero, and is incremented at every time step 
(say, every millisecond) with an amount Δej  given by 

 Δej = 0.01⋅ wijai − ej
i=1

4

∑
%

&
''

(

)
** (for j = 5..8)  (7) 

where the factor of 0.01 is the spreading rate. 
 To see that (7) indeed produces the end result of equation (1) after some time, consider 
the situation for the output node /ampa/ at time 0. We already know that Σi=1

4 wi7ai  = 0.70, so 
at time zero, when e7 = 0 , Δe7  will be 0.01·(0.70 − 0) = 0.007. Therefore, e7  becomes 0 (its 
previous value) plus 0.007 (the increment), which makes 0.007. At the next time step, 
Σi=1
4 wi7ai  is still 0.70, but e7  is 0.007, so that the increment Δe7  is 0.01·(0.70 − 0.007) = 

0.00693, just 1% smaller than the previous increment. As a result, the new value of e7  
becomes 0.007 + 0.00693 = 0.01393. Figure 5 shows what happens if this procedure is 
repeated 500 times (i.e. for, say, half a second): while the increment decreases exponentially 
by a factor of 0.99 at each time step, the excitation (and therefore the activity) of output node 
7 grows asymptotically towards 0.70. 
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Fig. 5. The time path of the excitation (and activity) of node /ampa/. 
Bottom curve: starting from 0. Top curve: starting from 1.00. 

 One can predict the end result directly from (7), by realizing that in the equilibrium 
situation Δe7  goes to zero. Equation (7) tells us that in that case Σi=1

4 wi7ai − e7  must go to 
zero as well. This means that e7  goes to Σi=1

4 wi7ai , i.e. to 0.70, so the activity, by (2), also 
goes to 0.70, which is the activity in Fig. 4. This also shows that the starting value of the 
excitation does not matter: the excitation will go to 0.70 no matter where it started; as an 
illustration, Figure 5 also shows how the excitation develops if it starts at 1.00. This kind of 
reasoning from zero increments is a general trick to predict what the final situation will look 
like, given a formula for increments. 
 The evolution of the activities towards a constant final state, as in Fig. 5, is general for 
symmetric networks (refxx). After enough time, each node j reaches a stable equilibrium state 
where its excitation stops changing, i.e. where Δej  approaches zero. As a result, the whole 
network reaches equilibrium, i.e. the excitations of all its nodes stop changing. Symmetric 
networks, where wij  equals wji , are guaranteed to move towards such a stable final state. 
 The general formula for the activity spreading toward an unclamped node j from its 
(clamped or unclamped) neighbors i is 

 Δej =ηa wij − shunting ej( )ai − excitationLeak ej
connected nodes i

∑
$

%
&&

'

(
))  (8) 

Here, 

€ 

ηa is the spreading rate, which in our simulations is kept constant at a value of 0.01. 
The excitation leak factor was set to 1 in (7), but could be set to higher values if we want to 
reduce the ultimate activity values. The shunting factor (Grossberg 1976) is included here 
only for completeness; it is set to 0 in all simulations in this paper. 

4. Learning in a linguistic network 

The representations and processes discussed in §2–3 are transient things: they come and go 
every few seconds as the listener receives more speech or the speaker produces more speech. 
The connection weights contain more persistent information, namely the aspects of 
knowledge seen in Fig. 1. These weights can learn from experience: they change only slowly 
over the months and years as the child is acquiring her language. In this section we explain 
how this can happen in our artificial networks. 
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4.1. Learning the toy language from UF–SF pairs 

Suppose we have the toy language of §2.1, with the coronal bias of §2.6: the UF |an#pa| 
occurs 37.5% of the time, of which the SF will be /ampa/ 70% of the time and /anpa/ 30% of 
the time; the UF |an#ta| occurs 37.5% of the time, yielding the SF /anta/ 100% of the time; 
the UF |am#pa| occurs 12.5% of the time, yielding the SF /ampa/ 100% of the time; and the 
UF |am#ta| occurs 12.5% of the time, yielding the SF /amta/ 95% of the time and /anta/ 5% 
of the time. The task for the virtual learner is start with the network of Fig. 3, but with all 
weights set to 0 (or a small random number), and then to adapt these weights under 
supervision from the language data. 
 For this purpose we feed the network with a large number, say 100,000, of UF–SF pairs 
randomly drawn from the language environment. Thus we feed the learner with the pair 
|an#ta|–/anta/ in 37.5% of these 100,000 cases, and with |an#pa|–/ampa/ 26.25% of the time 
(70% of 37.5% is 26.25%); also with |am#pa|–/ampa/ 12.5% of the time, with |am#ta|–
/amta/ 11.875% (95% of 12.5%) of the time, with |an#pa|–/anpa/ 11.25% (30% of 37.5%) 
of the time, and with |am#ta|–/anta/ the remaining 0.625% (5% of 12.5%) of the time. In Fig. 
3 we see that the five most common pairs are represented in the working network with the 
five strongest weights (though not in exactly the same order). The intuition, then, is that the 
learning algorithm should make those weights strong that connect nodes that are associated 
with each other in the data. 
 Now, what does it mean to “feed” UF–SF data to the network? It means that if at a 
certain point during learning we want to feed the network with, say, the pair |an#pa|–/ampa/, 
we set the activity of nodes 1 (|an#pa|) and 7 (/ampa/) to 1.00 and the activities of the other 
six nodes to 0. This is the situation in Fig. 6. We then let activity settle down by having the 
activity spread 500 times (this does nothing in this case, because all eight nodes are clamped). 
After this, we change all 16 connection weights by a small amount. We will now discuss six 
ways to do that. 

 

Fig. 6. Supervised two-level learning: all nodes are clamped, and only one node is on in UF as well as SF. 
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4.2. Unbounded linear learning 

The simplest way to react to the shared activity of nodes 1 and 7 is to raise the weight of their 
connection (w1,7 ) by a small amount, say 0.01, and not change the weight of any of the other 
15 connections. This can be achieved by the following formula: 

 Δwij =ηwaia j (for i =1..4, j = 5..8)  (9) 

where ηw  is the learning rate, which is 0.01 here. This works correctly, because for i = 1 and 
j = 7, aia j  equals 1 (because both a1  and a7  are 1.00), whereas for all 15 remaining i–j 
combinations either ai  is 0, or aj  is 0, or both ai  and aj  are 0. So w1,7  is indeed the only 
weight that changes. 
 If this goes on for 1000 times, w1,7  will change approximately 250 to 275 times, because 
the network will be fed the |an#pa|–/ampa/ pair 26.25% of the time. A simulation with 2000 
randomly drawn pairs is shown in Fig. 7. 

 

Fig. 7. The development of a weight in pure Hebbian learning: linear and without bounds. 

 We see that wij  increases linearly with time, and goes on to do that without bounds. It 
has been known from the beginning of neural network modeling that this “pure Hebbian 
learning” exhibits this pathological behavior (refxx). This is named after Hebb (1949), who 
proposed that a synaptic strength increases when two neurons fire together, but he did not 
propose formula (9). Various devices have been proposed in the literature to keep wij  within 
bounds. 

4.3. Clipped linear learning 

A brute-force method (refxx) to keep wij  within bounds is to clip wij  from below by a value 
wmin  (e.g. 0) and from above by a value wmax  (e.g. 1). This method is known to have the 
tendency of ultimately pushing most weights towards either wmin  or wmax . If the input is 
such that a single node i is on (and all other input nodes are off), and there are 10 output 
candidates (= nodes), then e.g. 3 output candidates will be maximally activated (namely those 
for which wij  equals 1) and 7 candidates will be off (namely those for which wij  equals 0). 
This means that under any scenario from §2.5 three output candidates have a probability of 
1/3 to win, and the remaining seven output candidates have a probability of 0 to win. This 
situation is not good for stochastic decision-making, where we want probabilities to move 
gradually from 0 to 1 or the reverse. 
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4.4. Leaky learning 

A more gradual way to keep wij  within bounds is to introduce leak (refxx): 

 Δwij =ηw aia j −wij( ) (for i =1..4, j = 5..8)  (10) 

The weights now start to rise exactly as in Fig. 6, but after some time they start to rise more 
slowly, growing exponentially towards an equilibrium in very much the same way as in 
Fig. 5, albeit with never-ending fluctuations because of the stochasticity of the input. After 
many pieces of data (UF–SF pairs), the weights come to hover around those in Fig. 8. 

 

Fig. 8. The average end state of leaky learning in the language environment of §4.1. 

 Each weight in Fig. 8 is exactly the probability of the relevant UF–SF pair as mentioned 
in §4.1; the sum of all the weights in the figure is 1. We could have predicted this result from 
equation (10) by realizing that in the equilibrium situation the expected weight change Δwij  
is 0 for each connection; in other words: for each i and j the average of Δwij  over all possible 
UF–SF pairs that could come in next, weighted by the probabilities of these pairs according to 
§4.1, is zero. Equation (10) then tells us that the expectation value aia j −wij  will then move 
towards zero, so that the weight wij  will ultimately go toward the correlation between ai  and 
aj : 

 wij → aia j  (11) 

Thus, wij  can be predicted if we know the statistics of the activity pattern. For instance, 
26.25% of the time node 1 is on (a1 =1) and node 5 is off ( a5 = 0 ), 11.25% of the time nodes 
1 and 5 are both on ( a1 = a5 =1 ), 62.5 percent of the time nodes 1 and 5 are both off (
a1 = a5 = 0 ), and 0% of the time node 1 is off (a1 = 0 ) and node 5 is on (a5 =1); the weight of 
the connection between nodes 1 and 5 will therefore go to aia j  = 0.2625·1·0 + 0.1125·1·1 
+ 0.625·0·0 + 0·0·1 = 0.1125. Since three of the four terms are zero if node 1 and node 5 are 
not both on, this expectation value necessarily equals the probability that both node 1 and 
node 5 are on simultaneously. This is a general result if all activities can take on only the 
values 0 and 1: 
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 wij → P ai =1∧ aj =1( )  (12) 

 Such pure correlation learning looks nice but has a disadvantage. Relatively rare inputs 
will lead to weak connections: |am#pa| has a three times weaker connection in Fig. 8 than the 
three times more common input |an#ta|. This disregards the perfect degree to which the SF 
/ampa/ can be predicted from |am#pa|. The frequency difference between |am#pa| and 
|an#ta| thus leads to large difference in the activities at SF, which means that further on in 
processing the rare UF counts less much less heavily than the more frequent UF. A learning 
rule that focuses on reliability rather than frequency alone may fare better, and is certainly 
closer to how OT handles rare inputs. Another problem is that the small output activities for 
rare inputs (such as 0.125 for /ampa/) do not reflect the full activity that occurred during 
learning (which was 1 for /ampa/). 

4.5. Outstar learning 

One way to take reliability into account is the outstar learning rule (refxx): 

 Δwij =ηw aia j − aiwij( ) (for i =1..4, j = 5..8)  (13) 

For our toy language, this leads to the weights in Fig. 9. 

 

Fig. 9. The average end state of outstar learning in the language environment of §4.1. 

The weights turn out to become the conditional probabilities of SF given UF, so it exhibits the 
probability-matching behavior that we wanted; the sum of the weights going out from each 
UF node is 1. This could have been predicted by realizing that in the equilibrium situation 0 = 
aia j − aiwij = aia j − ai wij , so the weights must go to 

 wij →
aia j
ai

 (14) 

For cases where all activities during learning can only be 0 and 1, equation (14) reduces to the 
conditional probability that output node j is on given that input node i is on: 
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 wij →
P ai =1∧ aj =1( )

P ai =1( )
= P aj =1 ai =1( )  (15) 

 Outstar learning has several advantages. As the weights in outstar learning come to 
reflect conditional probabilities, the weights naturally stay within the limits of 0 and 1. 
Furthermore, outstar learning fares better than correlation learning with respect to reliability, 
mimicking the GLA for Stochastic OT: the connections from |am#pa| and |an#ta| are now 
equally strong, reflecting the fact that their SF outputs can be equally reliably predicted from 
the UF. Also, the activities at SF will now be 1 for these two inputs, just as during learning. 
What is lost now is all dependency of SF activity on the frequency of the input, for which 
there is evidence in the literature (refxx); a way to have both reliability and frequency 
influences is to have a combination of (10) and (13). There is a problem with both (10) and 
(13), though: some nodes at SF, such as /anpa/, are very specific for certain UF forms, and 
this is not rewarded with a strong connection; in other words, (15) does not take into account 
whether or not output node j is on if input node i is off. One can look at this in terms of the 
reliability of the reverse process, i.e. the mapping from SF to UF in word recognition: the 
connection in Fig. 9 from the SF /anpa/ to the UF |an#pa| is only 0.300, although the UF can 
be predicted with 100% reliability from the SF. 
 Outstar learning is close to the delta rule of supervised learning algorithms (refxx), where 
the weight update is proportionate to the error that the network would make when allowed to 
run freely (i.e. with UF clamped but SF unclamped); the error is the difference between the 
desired activity at SF (i.e. the number of 0 or 1, as used as aj  in the SF clamping above) and 
the activity that the SF node j would get when only the input UF nodes are clamped, which is 
Σaiwij  in the examples of §2: 

 Δwij =ηw aia j − ai akwkj
k=1

4

∑
$

%
&&

'

(
)) (for i =1..4, j = 5..8)  (16) 

This, together with the property of probabilities conditional to the input, makes this algorithm 
a good candidate for our use in modeling the auditory dispersion effect in §6. 

4.6. Instar learning 

To take the specificity of SF into account, we can apply the instar learning rule (Grossberg 
1976, Rumelhart & Zipser 1985), which is the outstar learning rule in the opposite direction 
of processing: 

 Δwij =ηw aia j − ajwij( ) (for i =1..4, j = 5..8)  (17) 

For our toy language, this leads to the weights in Fig. 10. 
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Fig. 10. The average end state of instar learning in the language environment of §4.1. 

The weights turn out to become the conditional probabilities of UF given SF; the sum of the 
weights coming in at each SF node is 1. In the equilibrium situation 

 wij →
aia j
a j

 (18) 

For cases where all activities during learning can only be 0 and 1, equation (18) reduces to the 
conditional probability that input node i is on given that output node j is on: 

 wij →
P ai =1∧ aj =1( )

P aj =1( )
= P ai =1 aj =1( )  (19) 

 The two problems with rare inputs are not addressed, but the specificity problem is 
solved: the connection from the SF /anpa/ to its only possible UF |an#pa| has a weight of 1. 
The effect of the different frequencies of the different underlying forms has also returned, 
with the connection from /ampa/ to |an#pa| now being stronger than the connection from 
/ampa/ to |am#pa|, as in leaky learning but not as in outstar learning. The drawback is that 
the infrequent UF |am#pa| will now produce a much smaller activity pattern in SF (a total of 
0.323) than the more frequent UF |an#pa| (a total of 1.677). 
 Instar learning is known from work on competitive learning (Grossberg 1976, Rumelhart 
& Zipser 1985). We can therefore expect that it works well on problems of category creation, 
including our modeling of the perceptual magnet effect of §5. 

4.7. Inoutstar learning 

To model category creation we seem to need unsupervised instar learning, and to model 
auditory dispersion we seem to need supervised outstar learning. However, both processes 
occur in the AudF–SF interface, so the same network will have to model them both. Our goal, 
therefore, is to model both the perceptual magnet effect and auditory dispersion with a single 
learning algorithm, perhaps a compromise between instar and outstar. We call this the 
“inoutstar” learning rule: 
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 Δwij =ηw aia j −
ai + aj

2
wij

#

$
%

&

'
( (for i =1..4, j = 5..8)  (20) 

For our toy language, this leads to the weights in Fig. 11. 

 

Fig. 11. The average end state of inoutstar learning in the language environment of §4.1. 

Each weight turns out to become the harmonic mean of the weights of Figs. 9 and 10. In the 
equilibrium situation 

 wij →
2 aia j
ai + aj

 (21) 

For cases where all activities during learning can only be 0 and 1, equation (21) reduces to the 
harmonic mean of the two conditional probabilities: 

 wij →
2 P ai =1∧ aj =1( )
P ai =1( ) P aj =1( )

=
2 P ai =1 aj =1( ) P aj =1 ai =1( )
P ai =1 aj =1( )+P aj =1 ai =1( )

 (22) 

 Inoutstar learning tackles all problems mentioned to some extent, though none of them 
perfectly: it does some probability matching, it has some specificity, and it is even a bit 
frequency-dependent in both directions (because instar and outstar are both frequency-
dependent in one direction). It has the additional advantage over instar and outstar learning 
that it is symmetric in input and output: the formula stays the same if i and j are swapped, i.e. 
the inoutstar learning rule does not care about the direction of processing. This will even be 
true if there are separate weights in the beginning, i.e. if wij  is not equal to wji  in the 
beginning of learning: equation (22) shows that inoutstar learning causes the weights to 
become symmetric. 

4.8. Conclusion 

A general formula for the change in the weight between input node i with activity ai  and 
output node j with activity aj  could be 
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 Δwij =ηw aia j − instar ajwij −outstar aiwij −weightLeak wij( )  (23) 

We investigated pure Hebbian learning (instar = 0, outstar = 0, weightLeak = 0), leaky 
learning (instar = 0, outstar = 0, weightLeak = 1), instar learning (instar = 1, outstar = 0, 
weightLeak = 0), outstar learning (instar = 0, outstar = 1, weightLeak = 0), and inoutstar 
learning (instar = 0.5, outstar = 0.5, weightLeak = 0). Of these, inoutstar learning combines to 
some extent some of the good properties of the other learning algorithms, such as symmetry 
(insensitivity to the direction of processing), probability matching in both directions of 
processing, specificity in both directions of processing, and sensitivity to the frequency of the 
input in both directions. In §5 and §6 we investigate the suitability of this algorithm for two 
hitherto separately modeled phenomena. 

5. Phonological category creation 

In this section we investigate category creation at the phonology-phonetics interface, i.e. the 
emergence of discrete behavior at SF on the basis of continuous input at AudF. 

5.1. A network for category emergence 

Figure 12 shows the network that should perform the task of category creation. 

 

Fig. 12. A network for category creation, with continuous sound coming in at clamped AudF and discrete 
behavior emerging at unclamped SF. 

 Figure 12 contains two levels of representation: the phonetic Auditory Form, which is the 
input for the listening learner, and the phonological Surface Form, which is the listener’s 
output. The figure displays the initial state of the network, with small random weights 
between AudF and SF. 
 The Auditory Form represents an auditory continuum, such as the frequency spectrum 
along the basilar membrane. While the basilar membrane has 3,500 inner hair cells, each of 
which is connected to a fiber in the auditory nerve, we simplify matters here by representing 
the spectrum with only 20 nodes, running from low frequencies at the left to high frequencies 
at the right. We simplify even more by allowing the incoming sound to activate only one 
small region of AudF; this simplification means that the continuum can represent a unitary 
spectral continuum, and for this we choose the first formant (F1). 
 The Surface Form in Fig. 12 will come to represent a phonological feature, namely 
phonological vowel height, because that is the feature that has F1 as its main auditory 
correlate. SF consists of 10 nodes, which should be more than enough to represent any 
number of vowel height categories that can occur in languages (there can be anywhere 
between two and six). In the initial state of Fig. 12, the network cannot classify incoming 
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auditory forms into stable categories yet, because the weights between AudF and SF are still 
small and random: an incoming sound (i.e. a local activity peak in AudF) will just produce a 
random and small pattern on SF. 
 AudF and SF are fully connected: there are 200 connections between AudF and SF, one 
for each pair of AudF node and SF node. Initially, these weights are random: uniformly 
distributed between 0 and 0.1. The weights will change during learning. We thereby hope to 
model the emergence of categorical behavior in SF. 
 There are also 45 connections within SF: one for each pair of SF nodes. These 
connections have fixed negative weights of -0.2 (shown in light gray) in order to make sure 
that the nodes react to different incoming patterns, a mechanism we borrow from competitive 
learning models (Grossberg 1976, Rumelhart and Zipser 1985). These weights do not change 
during learning. 

5.2. An input distribution for vowel height 

The simplest way to model category creation is to feed the network F1 values at AudF, 
without telling the network the associated higher levels of representation, such as meaning. 
For instance, the language environment of our virtual learner could consist of three vowels, 
namely /i/, /e/ and /a/, as in a language with three vowel heights such as Spanish. We 
assume that the F1 of each of these three vowels is distributed according to a Gaussian 
distribution, as in the three dotted curves in Fig. 13. The learner, however, does not know that 
there are three curves; she is only confronted with the sum of the distributions, namely the 
total F1 distribution shown as the solid curve in Fig. 13. In this example, the distance between 
the peaks is one third of range of the continuum, and the standard deviation of each peak is 
one third of that distance; as a result, the valleys are rather shallow, namely approximately 
65% of the height of the peaks. It is on the basis of these peaks and valleys alone that the 
learner will have to figure out that there are three categories. 

 

Fig. 13. An F1 distribution in a language with three vowel heights. 

5.3. Unsupervised teaching of the distribution 

We cannot feed the network the distribution of Fig. 13 at one stroke. Instead, a single F1 
value is drawn from the distribution randomly each time the learner’s language environment 
produces an utterance. The learner receives this F1 value as an activity at AudF, then spreads 
this activity to SF, then updates the weights on the basis of the activities at AudF and SF. 
Amazingly, this procedure does lead to the emergence of categorical behavior at SF after 
10,000 or so incoming F1 values, as we will now show. 
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 Whenever a single F1 value drawn from the summed distribution in Fig. 13 is applied to 
AudF, this produces an activity pattern at AudF of the form shown in Fig. 14. The F1 value is 
turned into a node number between 1 and 20, but not rounded. In Fig. 14, an F1 value is 
turned into node number 15.3. The nodes in the vicinity of location 15.3 are then activated 
according to a Gaussian shape with a standard deviation of 1/21 of the continuum. This 
activates node 15 the strongest (at a distance of 0.3), then node 16 (distance 0.7), then node 14 
(1.2), then 17, then 13, and so on; the activities of nodes further away are too weak to be 
visible in the figure. 

 

Fig. 14. Applying an input. 

 After the input is applied to AudF, the AudF nodes in Fig. 14 are clamped (as shown by 
the solid edges of their circles), i.e. their activities are kept at the applied values (those seen in 
the figure) throughout the spreading of activities. The SF nodes, by contrast, are unclamped 
(as shown by the dotted edges), i.e. their activities adapt to the activities of the AudF nodes as 
well as to the activities of other SF nodes throughout the spreading of activities. The activities 
at SF start at zero, after which the activities of AudF, and soon also SF, excite the nodes at SF 
according to equation (8), with a spreading rate of 0.01, an excitation leak of 1, and a shunting 
factor of 0; basically, this is equation (7), except that the summation is over all AudF and SF 
nodes and the equation applies to all SF nodes. The computation of activity from excitation 
simply follows equation (2), i.e. the activities do not clip. Spreading goes on in this way for 
100 time steps. The result is that after the first time step, the activities at SF start to influence 
SF, and ultimately the whole network would move towards equilibrium, if the spreading were 
not truncated after 100 time steps. 
 After activity spreading, the network is allowed to learn by the inoutstar rule, i.e. 
equation (20) applied to all 200 connections between AudF and SF. There is only one learning 
step per incoming F1 value. 

5.4. Result after learning: three categories have emerged 

After 20,000 incoming F1 values, the weights of the network have become those in Fig. 15. 

 

Fig. 15. A categorizing network. 

[[AudF]]

/SF/
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At SF, nodes 2 and 7 (i.e. the two that are on in the figure) have become associated to low 
([i]-like) F1 values, nodes 4, 9 and 10 to intermediate ([e]-like) F1 values, and nodes 1, 3 and 
5 to high ([a]-like) F1 values. Nodes 6 and 8 have disconnected from AudF. 
 This situation is categorical behavior. When pacing a local activity pattern through AudF, 
the output at SF comes to favor exactly three stable types of patterns of activity, as can be 
seen in Fig. 16. For AudF nodes 1 through 6 (the first six pictures on the left), only SF nodes 
2 and 7 switch on. Since activity patterns are the brain’s way of representing behavior, the 
stable 2–7 pattern at SF represents a stable type of behavior at (and above) SF. This is what it 
means to be a category in neural-network terms: a stable type of behavior. We can call this 
category the “2–7” category when looking at this learner’s SF; it replicates the /i/ category of 
the language of the parents. 
 The degree of the activities within a category at SF is not always the same: the activities 
are much higher for AudF nodes 3 and 4 (where the peak of the first category is located, as 
can be seen in Fig. 13) than for AudF nodes 1 and 6. Thus, the first category is much stronger 
activated for the relatively common sounds around nodes 3 and 4 than for the less frequent 
sounds around nodes 1 and 6. Since category goodness is therefore represented at SF, it will 
not be surprising if the learner turns out to be able to report differences in category goodness 
for the various sounds that she classifies as the same category. 
 There are two more stable types of behavior, i.e. two more categories. For AudF nodes 8 
through 13, the SF pattern (which we could label as /e/) is 4–9–10, and for AudF nodes 15 
through 20 the SF pattern (/a/) is 1–3–5. At the category boundaries, a mixed type of 
behavior appears. For AudF node 7, SF shows a combination of the 2–7 category and the 4–
9–10 category: apparently, both categories are activated to some (small) extent. 
Observationally, this situation can correspond to an uncertainty in the listener about what the 
category is; an interpretation of this is that the SF candidates /i/ and /e/ both move on 
towards UF, activating in the lexicon words with underlying |i| as well as words with 
underlying |e|. Since AudF node 7 can indeed represent two categories from the language 
environment, such uncertainty is adaptive and appropriate. Something similar happens at 
AudF node 14: its reflex at SF is a mixture of the 4–9–10 (/e/) and 1–3–5 (/a/) categories. 
 We conclude that there come to be three types of stable behavior at SF, to be interpreted 
as three phonological categories. This categoricality comes about gradually during learning. 
On the way to the final state of the network, the categoricality of the behavior increases from 
nothing (the random behavior that the network of Fig. 14 would exhibit) to almost perfect (the 
behavior of the network in Figs. 15 and 16). Thus, categoryhood is gradient in this model: 
nearly categorical behavior emerges before strictly categorical behavior does. 
 A difference between the final network of Fig. 15 and the networks we discussed in 
sections 2 through 4, is that the network of Fig. 15 no longer represents a phonological 
category as a single node, but that it represents phonological categories in a distributed 
manner, namely as two or three SF nodes each. The same is true of AudF: every incoming 
sound activates more than one node at AudF. A biologically desirable property of such a 
network is redundancy: if a couple of AudF nodes die, and one SF node dies, the network will 
still perform its classification task quite well: in Fig. 15, every incoming sound will still 
generate one of three stable patterns at SF. For purposes of category creation, it is even more 
important that having 10 SF nodes allows any number of categories to be created: rather than 
forcing the existence of 10 categories, as would be the case for the networks in sections 2 
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through 4, the 10 nodes are divided roughly equally among the two or three or five categories 
that the peaky language distribution suggests there are. 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Pacing through the Auditory Form yields three types of patterns in the Surface Form. 
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5.5. Replicating experimental data: categorical perception and the perceptual magnet effect 

It is known that listeners can discriminate easier two auditory forms that map to different 
phonological categories than two auditory forms that map to the same category (Liberman et 
al. 1957). The network of Fig. 15 can replicate this behavior, under the assumption that a 
listener’s report whether two sounds are the same or different rests on her inspecting her SF, 
not her AudF. That is, when responding to the task of reporting whether two sounds are the 
same or not, the listener is actually reporting how different she judges the two surface forms 
instead. 
 To replicate this with the network of Fig. 15, we first compute the average absolute 
difference between the activities of the SF nodes in the first two pictures in Fig. 16. Node 1 
(at SF) is activated equally (namely, 0) in both pictures, but node 2 is activated a bit more (by 
0.2) in picture 2 than in picture 1. On average, the activity of a node in picture 2 differs from 
the activity in a node in picture 1 by an amount of 0.03. The difference between picture 3 and 
picture 4 is even smaller, namely less than 0.01. The difference between picture 6 and picture 
7 is much larger, namely 0.05, because many nodes switch on or almost off when going from 
picture 6 to picture 7. Figure 17 displays all the 19 differences. It can be seen that the 
difference between the SF activities for adjacent AudF nodes around the category boundaries 
is much greater than the difference between the SF activities for adjacent AudF nodes around 
the category centers. This discrimination curve illustrates the categorical perception effect. 

 

Fig. 17. The discrimination curve. The peaks at the edges represent the difference between nodes 1 and 20. 

 A potential early stage of categorical perception, the perceptual magnet effect (Kuhl 
1991), has been modeled with neural nets before by Guenther and Gjaja (1996). This work 
had four aspects that make it difficult to use their model for our purposes. First, the learning 
rule was instar, which does not work for auditory dispersion (§6). Second, the inputs were 
only four AudF nodes, with a formant value unrealistically represented by the activity levels 
of two AudF nodes rather than by an array of nodes as here. Third, the activities at SF were 
selected less realistically than here, namely by setting all activities that did not exceed a 
certain threshold to zero. Fourth, the magnet effect was established by computing a 
“population vector” based on a computation of auditory distance; in our case, a “warped” 
AudF can be directly computed by clamping an AudF to an incoming F1 value, then 
computing the output SF, then clamping the SF at this output, then unclamping AudF and 
have activity spread back to it from SF; this reflection works correctly thanks to the 
bidirectionality of the connections, which Guenther and Gjaja could not implement. 
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6. Auditory dispersion 

Auditory dispersion is a phenomenon in sound change whereby the auditory correlates of 
phonological elements become optimally distributed along one or more auditory dimensions. 
The emergence of auditory dispersion over the generations was handled successfully in 
BiPhon-OT (Boersma and Hamann 2008). In this section, we test whether BiPhon-NN is 
equally capable of doing the job. 

6.1. Existing work on auditory dispersion 

Languages tend to maximize the auditory contrast between elements in their phonological 
inventories (e.g. Passy 1890; Von der Gabelentz 1901; De Groot 1931; Martinet 1960). In a 
single auditory dimension, languages favor symmetric inventories whose members lie at equal 
distances along the auditory continuum, often with a preference for the center, as in Fig. 18. 
 
 
 
 
 
 
 
 
 
 

Fig. 18. Typically dispersed phonological inventories. 
 
If we take as an example of an auditory continuum the voice onset time (VOT) in bilabial 
plosives, Estonian would be an example of a language with a single category, namely /p/, 
which is realized with zero VOT (Fig. 18a); e.g. Swedish has two categories, namely /b/, 
realized with negative VOT, and /ph/, realized with positive VOT (Fig. 18b); and Thai has 
the three categories /b/, /p/ and /ph/ (Fig. 18c). 
 Inventories as in Fig. 18 are optimally dispersed in the sense that they strike a perfect 
balance between perceptual clarity and articulatory ease (Lindblom 1986; Ten Bosch 1991; 
Boersma 1998). Practically speaking, optimal auditory dispersion entails that the categories 
are sufficiently auditorily distinct to minimize confusion in the listener, and that this 
distinctivity does not come at too large an articulatory cost for the speaker. 
 Boersma and Hamann (2008) formalize auditory dispersion within BiPhon-OT as the 
result of an interaction between cue constraints, whose ranking is a result of optimizing the 
learner’s prelexical perception during acquisition, and articulatory constraints, which aim for 
articulatory ease. When re-using the perception-optimized cue constraint ranking in 
production (phonetic implementation), the dispersion effect automatically emerges. With 
computer simulations, Boersma and Hamann show that optimally dispersed systems are 
diachronically stable, and that poorly dispersed systems evolve into stable systems within a 
small number of generations. The BiPhon-OT account is devoid of teleological devices such 
as the dispersion constraints proposed by Flemming (1995/2002: MINDIST), Kirchner (1998: 
DISP), and Padgett (2003: SPACE), whose sole purpose was to preclude categories from 
approaching each other; nor does the listener have to compute auditory distances, as in 
Wedel’s (2006) exemplar-based account. 
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6.2. A neural network for auditory dispersion 

We will try to replicate Boersma and Hamann’s results with BiPhon-NN. Figure 19 shows a 
neural network like the one we used in section 5, but now with three layers: the phonological 
surface form (SF), the auditory-phonetic form (AudF), and the articulatory-phonetic form 
(ArtF). 

  

Fig. 19. The initial state of the neural network. 

 The network has two SF nodes, each corresponding to a discrete phonological category. 
At the SF layer, a local rather than a distributed representation (§5) was chosen in order to 
simplify the modeling of the production direction. Since the two or three nodes that represent 
a category in §5 came to have the same connection weights to their auditory forms, so that 
they were always activated equally strongly, we can simplify the production model by using 
one SF node per category, without loss of generality. 
 The AudF layer again represents the F1 dimension, sampled this time in 50 steps for 
more precision (for the simulations in section 5 the number of steps does not matter). Each 
AudF node is connected to both SF nodes by excitatory cue connections (drawn in black) 
whose initial weights have random values between 0 and 0.1. Each AudF node is also 
connected to the ArtF node by an inhibitory articulatory connection (drawn in light grey); 
these are stronger (i.e. drawn thicker) at the edges of the AudF layer, to represent the idea that 
the production of a peripheral value requires more articulatory effort than the production of a 
central value. 
 Note that the connections between the AudF and ArtF layers are not sensorimotor 
connections; the speaker is assumed to have perfect sensorimotor knowledge. In a more 
extensive network layout there would be exactly as many ArtF nodes (articulatory-phonetic 
representations) as there are AudF nodes, and the articulatory connections would be 
connections within the ArtF layer (§1); the present network layout, with just one ArtF node, is 
chosen in order to make the interaction of auditory and articulatory factors more perspicuous. 

6.3. Learning to perceive 

The simulated learner will have to establish the appropriate cue connection weights of the 
ambient language through a process of perceptual learning. Before the learning process 
begins, the initial language is created: for every category, a normal distribution of input 
probabilities along the auditory continuum is computed. In each learning step, a combination 
of a category and an auditory value is selected at random; if a value has a high input 
probability given the selected category, it is more likely to be drawn. Combinations of 
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categories and auditory values are chosen because the learning process is supervised by the 
lexicon: somewhat artificially, it is assumed that the learner’s lexicon is already in place, i.e. 
she knows what category she should have perceived. The selected AudF node is switched on, 
as is the selected category node; subsequently, all AudF and SF nodes are clamped, and the 
weights of the cue connections are updated with the outstar rule (§4.5), which replicates the 
OT behavior in optimizing mappings (we will investigate inoutstar later). After 50,000 tokens 
(learning rate = 0.01) from a language with input peaks at 35% (left category) and 65% (right 
category) of the auditory continuum, the network from Fig. 19 comes to look as Fig. 20: 

  

Fig. 20. The neural network after 50,000 learning steps. 

The cue connections between the left half of the AudF layer and the left SF node are 
strongest, so the network has learned that low auditory values are most likely to be intended 
as this category; high auditory values, on the other hand, are mapped to the right-hand 
category, as the language environment dictated. 

6.4. Production 

The network is bidirectional, so it uses the same connections in production. Additionally, now 
the ArtF node comes into play, constraining the activities at the AudF layer. The SF node of 
the category to be produced is switched on and clamped, as well as the ArtF node; the node of 
the other category is switched off (and clamped). Figure 21 shows the resulting activities on 
the AudF layer (negative activities are clipped at zero) in the production of the left category. 
As expected, the activities in Fig. 21 are highest in the left half of the AudF layer. Note that 
while the cue connections to the peripheral AudF nodes are strong, meaning that these 
auditory values constitute non-confusable tokens of the category, these nodes are still inactive 
due to the large articulatory effort that is associated with them. 
 Following Boersma and Hamann (2008) we can define the prototype of a category to be 
the auditory form that is realized if the category is switched on at SF and there is no activity at 
ArtF. The prototype is therefore the AudF node that has the strongest cue connection to the 
category node. When ArtF is switched on, the node with the highest activity in production 
isno longer the prototype: the speaker realizes a more central auditory value than the 
prototype, because (observationally) she prefers values that are at the same time both 
auditorily sufficiently distinctive and easy to pronounce. This replicates the observation that 
listeners choose more peripheral tokens as prototypical than they produce themselves 
(Johnson, Flemming and Wright 1993; explained with BiPhon-OT by Boersma 2006). 
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Fig. 21. Output activities for the left category (peaks in input distribution at 35 and 65%). 

 
 

6.5. Evolution over the generations 

The network is fairly insensitive to the input to the learning process. Whether the contrast 
between the categories is moderate or exaggerated, already in the first generation the activity 
patterns are very similar. Fig. 22 shows a network whose input distribution has peaks at 20% 
and 80% of the auditory continuum, rather than the 35% and 65% from Fig. 21, producing the 
left category. In spite of the peripheral location of the input, the activity pattern has shifted 
towards the center of the AudF level. 

 

Fig. 22. Output activities for the left category (peaks in input distribution at 20 and 80%). 

Fig. 23 shows the evolution of a standard input distribution (peaks at 35% and 65%, Figs. 20–
21), which turns out to be very stable over the generations. The black lines connect the 
average produced nodes of a category, the gray lines connect the average produced node ± 1 
standard deviation. 
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Fig. 23. Evolution of a two-category inventory with a standard input distribution. 

Our simulations predict that an exaggerated system is diachronically unstable. Fig. 24 shows 
the evolution of such a distribution (peaks at 20% and 80%, Fig. 22). The first generation 
resolves the excessive contrast in the system; in fact, this generation even moves its 
production to a slightly more central region than the second generation, because the 
confusability in that region is lowest (see Fig. 22: cue connections to both categories emerge 
from the peripheral regions of the AudF layer). However, after the second generation, the 
system has evolved into the equilibrium seen in Fig. 23. 

 

Fig. 24. Evolution of an exaggerated system (outstar learning). 

Figure 25 shows the evolution of a skewed and confusing initial distribution, with peaks at 
50% and 65%. Unlike the previous distributions, this inventory is not symmetric, and its 
categories lie quite close together. The first generation immediately enhances the contrast 
within the inventory by shifting the left category considerably towards the left periphery; only 
when this has happened does the right category drift downwards slightly. Because of the 
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overlap between the categories in the initial distribution, the standard deviations increase in 
the production of the first generation; they decrease again in subsequent generations, when the 
confusing contrast has been resolved. Within five generations, the system has reached the 
familiar symmetric and stable state. 

 

Fig. 25. Evolution of a skewed and confusing system (outstar learning). 

6.6. Influence of the learning rule 

When we use the inoutstar weight update rule instead of the outstar rule, only the cue 
connections from frequently activated AudF nodes increase in strength, irrespective of the 
predictability of the input-output relation in less frequently activated nodes. Hence, the 
connections are strongest at the peaks in the input. After 50,000 learning steps of a standard 
distribution (35%, 65%), the network thus comes to look differently from Fig. 20, namely as 
in Fig. 26. 

  

Fig. 26. A neural network after 50,000 learning steps (standard distribution, inoutstar learning). 

The difference between outstar and inoutstar learning become most apparent in the evolution 
of exaggerated and confusing contrasts, which are resolved much slower with inoutstar 
learning. Whereas with outstar learning of an exaggerated input distribution, two generations 
sufficed to reach an equilibrium, inoutstar learning requires at least ten, as seen in Fig. 27. 
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Fig. 27. Evolution of an exaggerated system (inoutstar learning). 

The inoutstar rule also does not predict the quick phonetic enhancement of the contrast in a 
confusing inventory that the outstar rule predicted. As seen in Fig. 28, the categories drift 
apart slowly, and the between-category distance only reaches its maximum in the fourth 
generation. We witness the same increased standard deviation observed with outstar learning, 
but this does not decrease until the fourth generation. An optimally dispersed state has not yet 
been reached by generation 20, whereas five generations were enough with outstar learning. 
Nevertheless, inoutstar learning predicts optimally dispersed systems as well. It is an open 
question how fast real inventories get dispersed. 
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Fig. 28. Evolution of a skewed and confusing system (inoutstar learning). 

In summary, our simulations show that BiPhon-NN, just as BiPhon-OT, is capable of 
replicating the emergence of optimal dispersion in phonological inventories. If the network 
learns the appropriate weights of the cue constraints in comprehension and then produces 
using the same connections, any input distribution will evolve into a stable system within a 
small number of generations. It is thus crucial that the neural network is symmetric. The 
fastest results are obtained with the outstar weight update rule, but the inoutstar rule yields 
similar outcomes in the end. 
 For more details on the properties of the neural network and learning procedure used 
here, and for simulations of other inventories, we refer to Seinhorst (2012), who also subjects 
the difference between outstar and inoutstar learning to closer scrutiny. 

7. Discussion 

One and the same network, with a single learning rule, namely “inoutstar” learning, has 
turned out to be able to handle but category creation and auditory dispersion. While the instar 
rule is possible for category creation (as Gunether and Gjaja 1996 have shown), and the 
outstar rule is possible for the emergence of auditory dispersion (as shown here in §6), only 
the inoutstar rule, which is a combination of the instar and outstar rules, works for both. 
 The model achieves this success without having to represent or compute auditory 
distance. The interactivity of the processes is maintained because activity spreading in the 
neural network is interactive, i.e. simultaneously top-down and bottom-up, as in McClelland 
and Elman’s (1986) TRACE model. 
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 The model cannot really represent more than one segment yet: no phonological structure 
beyond single categories can be represented yet in the distributed versions of the network. 
This points at a large-scale programme for future research. 

8. Conclusion 

The BiPhon-NN model is seen to handle some phenomena that psycholinguists and speech 
researchers have found in the lab and have never been modeled without a single framework 
before. The BiPhon-NN model is also biologically more plausible than an OT model. One of 
the main missing areas involves strictly phonological phenomena, which would require the 
model to represent at SF sequential or hierarchical structures. 
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