Comparing methods to find a best exemplar in a multidimensional space
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Abstract

We present a simple algorithm for running a listening experi-
ment aimed at finding the best exemplar in a multidimensional
space. For simulated humanlike listeners, who have perception
thresholds and some decision noise on their responses, the algo-
rithm on average ends up twelve times closer than Iverson and
Evans’ algorithm [1].

Index Terms: listening experiments, prototypes, search algo-
rithm

1. Introduction

The best exemplars, or prototypes, of phoneme categories are
thought to play an important role in speech perception and lan-
guage acquisition [2]. However, vowel exemplars that listeners
perceive to be the best exemplars are at more extreme positions
in the vowel space than their average productions [3]. Percep-
tion experiments are thus necessary to find these best exemplars.

Since every phoneme has multiple acoustic properties, the
search for the best exemplar of a given category has to be con-
ducted in a multidimensional acoustic space. Iverson and Evans
[1] (henceforth “I&E”) note that it is difficult to obtain good-
ness judgments from listeners across a whole multidimensional
space, and therefore present an experiment procedure (hence-
forth “algorithm”) that is based on fast interpolation techniques
from the literature on numeric computation. Their algorithm
draws a number of well-chosen lines in the multidimensional
space and requires listeners to provide goodness judgments for
only five or six vowels per line.

In section 2 we explain why I&E’s fast interpolation tech-
nique may not work well with human listeners. In section 3
we therefore present a simpler and “slower” algorithm that ap-
proaches the best exemplar with fixed decreasing step sizes in-
stead. Simulations in section 4 confirm that this algorithm is
indeed more robust to humanlike, noisy responses.

2. Iverson and Evans’ procedure

Suppose that you are a participant in an experiment that aims
at finding the sound that you consider to be the best possible
exemplar of the vowel /a/. I&E’s algorithm can help you find
that best exemplar. The following two sections discuss the one—
and four-dimensional cases, respectively.

2.1. In one dimension: goodness interpolation

If there is only one acoustic dimension in which sounds can
vary, the algorithm starts by presenting you the two sounds with
the smallest and the largest possible values on the axis (a1 and
az in Fig. 1). It asks you to give goodness judgments in terms
of the perceived distance to your prototype, with lower judg-
ments indicating closer, i.e. better, sounds. These are d; and
da, respectively. The algorithm then computes its first estimate
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Figure 1: Iverson and Evans’ goodness interpolation.

of what you might find a good /a/ exemplar, by taking an av-
erage of the previous two values, weighted by your goodness
ratings:
da d1

d1+d2+a2.d1+d2 W
If for example di = 2.5 and d> = 5.0, the algorithm regards
a1 as closer to your prototype than a2, and az will be at one
third along the route from a; to a2 (see Fig. 1). The algorithm
then presents you the sound a3. If its perceived distance to your
prototype, ds, is smaller than both d; and d2, the algorithm
computes a new estimate of where your best exemplar could
be, by means of parabolic interpolation over the hitherto best
exemplar (a3) and its two neighbours (a1 and a2):

(a3 — a1)*(ds — d2) — (a3 — a2)*(ds — d1)

(ag - a1)(d3 - dz) - (a3 - CLQ)(dS - dl)(z)
When a4 is played and judged, a similar parabolic interpolation
(on the hitherto best exemplar and its two neighbours) is per-
formed to obtain the next estimate as, and analogously for ae.
If in any of the last three steps the hitherto best exemplar is a; or
a2 (which don’t have two neighbours), then the next estimate is
obtained by computing a weighted average between the hitherto
best exemplar and its sole neighbour, using Eq. (1). In the end,
the location that the algorithm regards as the final best is the
value of the set {a1, a2, as, a4, as, as} that you have judged to
have the lowest perceived distance to the prototype.

a3z = az -

a4 = as *0.5

2.2. The search in multiple dimensions

In a multidimensional space, the search for the best exemplar
can consist of multiple instances of the line optimization pro-
cedure of the previous section. Evans and Iverson [4] (“E&I”)
search the best vowel exemplars through a sequence of five line
optimizations in a four-dimensional vowel space defined by F1,
F2, F3, and duration. The quadrilateral in Fig. 2 (it’s almost a
triangle) shows what the algorithm regards as the outer bounds
of your auditory vowel space defined by F1 and F2. The loca-
tion of your best exemplar of /a/ is the circle in the quadrilat-
eral, but at the beginning of the experiment nobody knows its
location yet. The algorithm does have an initial guess of where
your best /a/ exemplar might be found (shown as ao in the Fig-
ure), and an estimate of the centre of the vowel space (shown
as a schwa). In the first stage of the experiment, the algorithm
draws a line through schwa and ao, which intersects the vowel
quadrilateral in the points a1 and a2. Using Egs. (1) and (2),
the algorithm will play you six vowel exemplars along the line
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Figure 2: Three of Evans and Iverson’s line optimizations.

piece a1 —az and estimate your best /a/ exemplar (shown as
a7).

In the second stage, the algorithm draws a line that runs
through a- and is perpendicular to the first line.! This line inter-
sects the quadrilateral in the points ag and ag. Using (1) and (2)
again, the algorithm computes a new estimate of your best /a/
exemplar along the line piece ag —ag, given as a14 in the Fig-
ure. The best F1 and F2 values found are passed on to the third
stage and fourth stage, in which one-dimensional optimizations
of duration and F3 are performed. In the fifth stage, the algo-
rithm draws a line through three-dimensional space: from the
F1, F2 and duration values of schwa, through the F1 and F2 of
a14 combined with the best duration found thus far. This line in-
tersects the boundary of the F1-F2 space at a;5. The algorithm
then searches for the best exemplar along this line, changing F1,
F2 and duration simultaneously and ending up with a21, which
is very close to your real best exemplar.

2.3. Problems with the goodness interpolation method

The basis of the goodness interpolation method are the listener’s
goodness judgments to the stimuli. However, rating the close-
ness of some observation to an abstract ideal is an intrinsically
difficult task and we doubt that listeners are able to give reliable
goodness judgments. An additional problem for goodness judg-
ments are stimulus order effects: a moderately good exemplar
played after a particularly bad one will be judged to be better
than that same exemplar played after a very good one. Espe-
cially listeners that are not used to participating in perception
experiments might have difficulties with rating the goodness of
sound stimuli. Such noise in the goodness judgments may cause
a3 to be judged worse than a1 or ag, or a4 to be judged worse
than az. Every time an acoustic value is judged worse than its
neighbours, the algorithm steers off to the left or right side of
that value, and will never be able to pass that value again. We
therefore set out to design an algorithm that can search in a mul-
tidimensional space without goodness judgments and is robust
against reasonable amounts of noise.

3. An algorithm with pairwise comparisons

The alternative algorithm we propose is an instance of an op-
timization technique that is “robust” rather than “fast”, namely

I E&I do not say what they regard as perpendicular. It seems likely
that in their case the two lines are perpendicular within a space in which
F1 and F2 are expressed in Hertz; this overestimates the importance
of F2 with respect to F1, so in Fig. 2 and our simulations of the I&E
method below, we express F1 and F2 in the psycho-acoustic Bark scale.

local hill-climbing with gradually decreasing step size. The ba-
sic working is that the algorithm repeatedly asks you, the lis-
tener, to compare the quality of two sounds, namely the sound
that the algorithm currently thinks is your best exemplar and
a sound that is acoustically some distance removed from it.
Whenever you judge the latter sound to be a better exemplar,
the algorithm accordingly changes its opinion of what your best
exemplar is. We illustrate this for one and for four dimensions.

3.1. In one dimension: hopping the line

Fig. 3 shows a single acoustic continuum, like Fig. 1. The al-
gorithm’s initial guess of where your best exemplar is (a1), lies
in the middle of the continuum, at 50%. The algorithm com-
putes two new sounds, which are removed from a; by a dis-
tance of 50% - 0.7 = 35% of the extent of the continuum: a}
and a’. The algorithm then asks you which of a or a/ is a bet-
ter exemplar. If you find a} better, the algorithm will ask you to
compare a and a;. If a} “wins” again, it will become the al-
gorithm’s new guess of your best exemplar; if you judge a1 and
a as equally good, the average of a1 and a} will become the
algorithm’s new best guess; and if a; wins, it will remain the
algorithm’s best guess. If on the first trial, you were to judge
a/ better than af, the algorithm will make you compare a1 and
af, which will result in the algorithm’s new best guess being
a1, af, or their average. In Fig. 3, you chose a as better than
a1 and oY, and this is therefore promoted to be the algorithm’s
new best guess, az. In the second stage, the step size is reduced
to 50% - (0.7)% = 24.5% of the size of the continuum. This
gives the points a5 and a5 on both sides of a2 (since values out-
side the continuum are non-acoustic, a5 falls at the left edge).
The first comparison the algorithm will have you make is that
between a2 and a’, since the algorithm remembers and honours
the direction of the previous step taken. If you then judge a5 as
worse than as, but a2 and a4 as equally good, the algorithm’s
next best guess will be a3, right in the middle of the latest two
sounds. In the next stage, the step size is again multiplied by
0.7, and the algorithm will let you compare a3 and a%. If you
judge a4 better than as, the algorithm will turn it into a4. Next,
again with a smaller step, the algorithm plays a4 and aj to you,
but you prefer a4; the algorithm then plays a4 and ajj, but again
you prefer a4, which therefore turns into as. The following
smaller step size (comparing a5 —a? , then a% —as) takes you to
a5, which turns into as. With the last smaller step size you go
to ag , the algorithm’s final guess of your best exemplar.
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Figure 3: Stepwise optimization along a single line.

3.2. In multiple dimensions: interleaving

The stepwise method could perform line-by-line optimizations,
but it also lends itself to interleaved line optimizations. This



means that it can perform a step size of 35% on the F1 contin-
uum, then a step size of 35% on the F2 continuum, then on the
duration continuum, then on the F3 continuum, after which it
can do a step size of 24.5% on each of the four continua, and so
on. The advantage of interleaving is that no energy is spent on
small differences in e.g. F1 if the F2 is still far removed from
the prototype; instead, the initial phases of the search bring all
dimensions to an approximately correct value, after which more
detailed optimizations become more relevant.

An important technical detail about step size is that the size
of a continuum may depend on the values on other continua. In
Fig. 2, for instance, the size of the F2 continuum is smaller for
high F1 values than for low F1 values. For high F1 values, the
step size in the F2 continuum is scaled down accordingly.

Beside the possibility of interleaving the four dimensions,
an important difference with I&E’s goodness interpolation
method is that our decreasing-step-size method seems to be less
sensitive to noise. In Fig. 3, for instance, the search moved to
the left of a1 but could easily have moved to the right of a; later
on (e.g. via a}) if the initial move to the left was a mistake. No
such repair is possible in I&E’s method.

4. Comparing the algorithms by
simulations

‘We now present computer simulations that investigate the effect
of noise on the outcomes of the two algorithms. Both algo-
rithms search the best exemplar in a four-dimensional acoustic
space defined by F1, F2, F3 and duration. Duration is expressed
as the natural logarithm of the duration in milliseconds, with 4
as the lower limit and 6 as the upper limit. The formant space is
limited by the following constraints:

2.73 Bark < F1 < 10.796 Bark 3)

F1 4+ 1.0 Bark < F2 < 28.3 Bark — 1.5 - F1 “)
14.5 Bark < F3 < 18.5 Bark (@)
F2 + 0.5 Bark < F3 (6)

4.1. Properties of the simulation

In the simulations, the goodness interpolation algorithm
searched as described in sections 2.1 and 2.2, with five
stages and six responses per stage, and the stepwise algorithm
searched as described in sections 3.1 and 3.2, with six cy-
cles through the four dimensions. The auditory discrimination
threshold, or JND, for the formants was set to 0.3 Bark [5]. The
JND for duration was set to 0.1 in the natural logarithm domain,
which corresponds to a duration ratio of 10.5%.

For the simulations, we created 10000 virtual participants,
each with a best exemplar (for /a/) drawn from the following
uniform distributions: F1 between 7 and 9 Bark; F2 between
13 and 15 Bark; F3 between 15.5 and 17.5 Bark; and duration
between 5.35 and 5.85 In-ms. To ensure that a best exemplar
fell within the possible vowel space, F1 was sampled first, then
F2 was sampled within the range allowed by this F1, and F3
was sampled last.

Each sampled best exemplar, or “participant”, participated
in six experimental conditions: for each of the two algorithms
they performed the experiment under three noise conditions.
The first noise condition simulated unhumanly perfect listeners,
the two other conditions simulated increasingly more realistic
listeners.

The success of an individual participant in an experimental
condition is expressed as the Euclidean distance in JND units (in
the four-dimensional space of F1, F2, F3 and duration) between
the exemplar found by the algorithm and the true best exemplar
(prototype) of the participant. The larger this distance, the lower
the success of the participant in finding an exemplar close to his
/a/ prototype. We express the success of an entire condition as
the root mean square (rms) of the 10000 Euclidean distances.
The higher the rms, the larger the average distance between the
found exemplar and the best exemplar, and/or the larger the vari-
ation in the success of the participants. As a second measure of
a participant’s success in an experimental condition, we deter-
mine whether the found exemplar could be considered close to
the best exemplar. We arbitrarily consider two vowel tokens as
close to each other if the Euclidean distance in JND units be-
tween the two is equal to or lower than 4. The success of an
entire condition can then be the percentage of participants for
who the algorithm finds an exemplar close to their prototype.

4.2. Results

Fig. 4 displays the success of both optimization methods in each
of the three noise conditions in rms and the percentage of partic-
ipants that have not found an exemplar that is close to their best
exemplar. For both measures, a higher value indicates a lower
success. The noise conditions and the results are discussed be-
low.
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Figure 4: Top: The rms of the goodness interpolation method
(grey) and the stepwise method (white) in the four noise con-
ditions. Bottom: The error rates of the goodness interpolation
method (left) and the stepwise method (right), expressed as the
percentage of participants failing to come close to their true
best exemplar.

The first condition is the No Noise condition, which sim-
ulates listeners with unhumanly perfect ears who make no re-
sponse errors. For the I&E algorithm, the goodness rating these
virtual listeners give to an exemplar is its Euclidean distance to
the best exemplar in JND units. For the stepwise algorithm, the
virtual listeners compute for each exemplar of the pairwise com-
parison the Euclidean distance to their best exemplar in JND
units and choose the exemplar for which the distance thus com-
puted is smaller.

The results show that I&E’s goodness interpolation algo-
rithm is the better performing algorithm in the absence of noise,
although in the stepwise method, too, all 10000 participants find
an exemplar that is closer than 4 JND to their best exemplar.



The Perception Noise condition simulates listeners with
humanlike perceptual thresholds who make no response errors.
These listeners perceive tokens as having acoustic values that
are randomly sampled from a normal distribution around the
actual value, with a standard deviation of 0.5 JND. For I&E’s al-
gorithm, our virtual listeners compute the goodness rating from
these perceived values. For the stepwise algorithm, they judge
two exemplars as “Equal” if these perceived values are within
one “Euclidean” JND or if the perceived distances to the best
exemplar are within one “Euclidean” JND.

The rms computations show that in the Perception Noise
condition the performance of the goodness interpolation method
is much worse than in the No Noise condition. By contrast, the
stepwise method is only 1.8 times worse than in the No Noise
condition, and it is almost 6 times better than the goodness inter-
polation method in the same (Perception Noise) condition. This
indicates that the stepwise method is more robust to noise than
the goodness interpolation method. Detailed inspection of the
individual results shows that the success of the stepwise model
is partly due to the “Equal” answers in the Perception Noise
condition. When a participant answers “Equal”, the algorithm
infers that the best exemplar will be in between the two values,
which is usually a correct inference.

The third condition is the Decision Noise condition, which
adds some decision noise to the Perception Noise condition.
For I&E’s algorithm, the goodness judgments that our virtual
listeners give are drawn from a Gaussian distribution with the
correct goodness judgment (perceived distance to prototype) as
the mean and a relative standard deviation of 10%. For the step-
wise algorithm, the listener’s judged distance from each of the
two exemplars to the prototype is drawn from a Gaussian dis-
tribution with the perceived distance as the mean and a 10%
relative standard deviation.

The Decision Noise condition simulates listeners with hu-
manlike ears, who try to give a good response on every trial,
but are subject to slight decision noise: the best human partic-
ipants one can possibly get. Adding decision noise makes the
rms for I&E’s algorithm 3.5 times higher than with perception
noise only, and the majority of the participants do not find an
exemplar close to their best exemplar. The addition of decision
noise makes the stepwise model about 1.5 times worse, but the
overall performance of the method is still very good, with only
6% of the participants finding a bad exemplar. The rms of the
stepwise method in this condition is about 12 times smaller than
the rms of the goodness optimization method. These results il-
lustrate again how sensitive the goodness optimization method
is to noise, which will come naturally with human participants,
and how robust the stepwise method is.

A last point to note here is that all of the experiments with
I&E’s algorithm have taken 30 trials per participant. The av-
erage number of trials needed in the Decision Noise condition
with our stepwise algorithm was 37.04, with a standard devia-
tion of 2.72. The robustness of the stepwise method thus comes
at the cost of being only slightly slower.

5. Discussion and conclusion

In our current implementation of the stepwise method, it is only
possible to move along one-dimensional axes. Imagine, though,
that the perceptual space were formed in such a way that the
good exemplars of the vowel /a/ lie on a steep ridge that runs
diagonally through the F1-F2 space, with the best exemplar on
the highest point of this ridge. If the method ends up on this
ridge, but not on its highest point, a change in either F1 or F2

will decrease the goodness and only a change in F1 and F2 si-
multaneously will lead to the best exemplar. It might thus be
necessary to add “diagonal” axes to the stepwise method.
Oglesbee and De Jong [6] (“O&J”) present a third method
to find best exemplars in a multidimensional space. Similarities
with our method are that it performs interleaved optimizations
of the multiple continua and works with comparisons of three
exemplars. Their strategy for finding the next best guess is
intermediate between I&E’s and ours: like I&E’s, it is based
on goodness interpolation (between the two exemplars judged
best), but like ours, it has a bias towards the best judged
exemplar. However, a large difference between O&J’s method
on the one hand and I&E’s and our methods on the other hand,
is that O&J’s method does not “zoom in”: the two end points
(of the three under consideration) are always separated by a
distance of two-thirds of the acoustic continuum. Depending
on the width and skewness of the listener’s goodness function
on the continuum, this can lead to extremely slow convergence,
large oscillations, or getting stuck at an edge of the continuum.

In this paper we have compared two methods to find the best
exemplar of a phoneme category in a multidimensional acous-
tic space: Iverson & Evans’ goodness interpolation algorithm
and a stepwise algorithm based on pairwise comparisons. We
first argued that the stepwise optimization method requires an
easier response from participants, namely a choice between two
exemplars, than the goodness interpolation algorithm, in which
participants have to give goodness judgments to individual ex-
emplars. Our simulated experiments subsequently showed that
if listeners have perceptual thresholds and some decision noise
in their responses, as most human participants will have, the
stepwise method outperforms the goodness interpolation algo-
rithm. In general, these results show that mathematically fast
models, such as Iverson & Evans’ goodness interpolation algo-
rithm, require high precision in the responses, in order to come
close to the participant’s best exemplar. Humans are unlikely to
give such responses. For finding real humans’ best exemplars
in a multidimensional space a simple, robust algorithm, as our
stepwise algorithm, will do better.
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