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ABSTRACT 
 
There is a potential close correspondence between 
multi-level linguistic theories and bidirectional deep 
artificial neural networks. This paper shows that in a 
deep Boltzmann machine, simulated distributional 
learning of spectral content leads to the emergence of 
appropriate categorical behaviour, both along a one-
dimensional continuum (three sibilant places) and 
along a two-dimensional continuum (five vowels). 
 
Keywords: neural networks, deep learning, 
emergence, distributional learning, categories. 

1. BIDIRECTIONAL PARALLELLISM 

Bidirectional multi-level models of phonology and 
phonetics [11, 3] are models that contain multiple 
levels of representation and in which processing 
works bidirectionally, i.e. the same connections or 
constraints are used for comprehension and 
production [cf. 14 for the 1-level case]. Typically, the 
evaluation of the best path from sound to meaning in 
comprehension works in parallel across levels [11, 4]. 
 

Figure 1: Bidirectional phonology and phonetics. 

 
 
Models like the one in Fig. 1 have been shown to 
work nicely for many kinds of phenomena that 
involve existing phonological categories, but are not 
good at all at informing us of where those categories 
come from in the first place (for an attempt, see [2]). 

2. NETWORK STRUCTURE 

The present paper shows that the deep Boltzmann 
machine [13, 12] in Figure 2 is capable of showing 
how discrete phonological categories can emerge in a 
simulated first-language learner as a result of 

auditory-driven distributional learning alone, i.e. 
without any top-down supervision from a lexicon. 

For simplicity, our network has three levels of 
nodes. As for the network state during processing (in 
our case only listening), the input nodes have 
activities 𝑥", where 𝑘 runs from 1 to 𝐾 = 30, the 
middle level of nodes has activities 𝑦*, with 𝑙 running 
from 1 to 𝐿 = 50, and the top level has activities 𝑧/, 
with 𝑚 from 1 to 𝑀 = 20. As for the long-term 
memory (the parameters) of this network, each node 
𝑘 at the input level is connected to each node 𝑙 at the 
middle level by a strength (weight) 𝑢"*, and the 
middle level is fully connected to the top level by 
weights 𝑣*/; also, the input nodes have biases 𝑎", the 
middle nodes 𝑏*, and the top nodes have biases 𝑐/. 
 

Figure 2: Our deep Boltzmann network (only 10 
percent of the connections is visible). 

 
 
The lowest level 𝑥" represents any auditory-phonetic 
continuum. In this paper it reflects the basilar 
membrane, with low frequencies at the left and high 
frequencies at the right. In Fig. 2, 𝑥" is activated as 
for a token of the vowel /o/, with an F1 around node 
8 and an F2 around node 13.5 (i.e. between nodes 13 
and 14). The higher levels contain hidden nodes that 
are binary, i.e. their activity is either on or off (black 
or white in Fig. 2); note that none of these levels is to 
be equated (yet) with any of the levels in Fig. 1. 

Just as the model in Fig. 1, the network in Fig. 2 is 
bidirectional, in the sense that information can flow 
down from 𝑧/ to 𝑥" using the exact same connection 
weights as information flowing up from 𝑥" to 𝑧/, and 
the intermediate biases 𝑏* influence information 
flowing up from 𝑥" to 𝑦* in the same way as they 
influence information flowing down from 𝑧/ to 𝑦*. 

Meaning

Underlying form

Phonological surface form

Phonetic representation (sound)

Activities:

xk

yl

zm
Parameters:

ak

bl

cm

ukl

vlm

1520



3. TRAINING PROCEDURE 

To train the network, we apply multiple sounds to its 
input level, and let the network process each sound 
freely without supervision, i.e., we do not tell the 
network how many categories it should create or 
whether it performs “correctly”. Each incoming 
datum is handled in four consecutive phases: initial 
settling, Hebbian learning, dreaming, and anti-
Hebbian learning. 
 
3.1. The initial settling phase. The activity spreads 
up from the input level, which is “clamped” (held 
constant) at the sound 𝑥", and down from the highest 
level, whose nodes 𝑧/ start out with activity 0. This 
determines the middle-level activities 𝑦*: for all l 
from 1 to L, 
 
(1) 𝑦* ← 𝜎:𝑏* + ∑ 𝑥"𝑢"* + ∑ 𝑣*/𝑧/=

/>?
@
">? A 

 
where 𝜎(	)	is a monotonic nonlinearity, here the 
standard logistic function 
 
(2) 𝜎(𝑥) ≔ 1 (1 + exp	(−𝑥))⁄   
After this initial activation of the network, the 
network is allowed to resonate into a near-final state 
[12]. First, new top-level 𝑧/ are computed (𝑥" does 
not change): for all m from 1 to M, 
 
(3) 𝑧/ ← 𝜎:𝑐/ + ∑ 𝑦*𝑣*/K

*>? A 
 
The sequence of (1) and (3) is then repeated 10 times, 
taking the network close to an equilibrium state in a 
deterministic way (mean-field approximation). 
 
3.2. The Hebbian learning phase. After having thus 
spread the influence of the input throughout the 
network, we can perform the first learning step, which 
we call the Hebbian phase: any connection between 
two active nodes is strengthened, so that these nodes 
will be even more often simultaneously active in the 
future [9, 6], and any node that is active receives a 
higher bias, so that this node will be even more often 
active in the future: 
 
(4) 𝑎" ← 𝑎" + 𝜂𝑥" 
(5) 𝑏* ← 𝑏* + 𝜂𝑦* 
(6) 𝑐/ ← 𝑐/ + 𝜂𝑧/ 
(7) 𝑢"* ← 𝑢"* + 𝜂𝑥"𝑦*  
(8) 𝑣*/ ← 𝑣*/ + 𝜂𝑦*𝑧/  
where 𝜂 is a small learning rate (0.001). 
 
3.3. The dreaming phase. In the next phase we have 
the network dream up its own pattern [8]. From [12] 
we take the idea that this is randomly generated, and 
from [7] that this can be based on the actual input, but 
without clamping. Thus, we now let the input level 𝑥" 
be influenced by the middle level 𝑦*:  

(9) 𝑥" ← 𝑎" + ∑ 𝑢"*𝑦*K
*>?  

 
(note that there is no logistic function for 𝑥, which 
should continue to resemble a continuous input). 

We then compute new values for 𝑧/ stochastically 
(i.e., with random variation), after which new values 
for 𝑦* are computed, also stochastically:  
(10) 𝑧/	~	ℬ O𝜎:𝑐/ + ∑ 𝑦*𝑣*/K

*>? AP 

(11) 𝑦*	~	ℬ O𝜎:𝑏* + ∑ 𝑥"𝑢"*@
">? + ∑ 𝑣*/𝑧/=

/>? AP 
 
where ℬ(	) denotes a Bernoulli deviate, i.e. 𝑥	~	ℬ(𝑝) 
will put the number 1 into 𝑥 with probability 𝑝, and 
put the number 0 into 𝑥 with probability 1 − 𝑝. The 
sequence (9)–(11) is performed ten times (Gibbs 
sampling). The stochasticity, together with starting 
from real inputs, should ensure that, in the long run, 
the activation patterns found in the network in this 
phase sample the distribution of possible activation 
patterns faithfully. 
 
3.4. The anti-Hebbian learning phase. After the 
network settles again, the parameters are again 
updated in the second, anti-Hebbian phase [8 ,7, 12]: 
 
(12) 𝑎" ← 𝑎" − 𝜂𝑥" 
(13) 𝑏* ← 𝑏* − 𝜂𝑦* 
(14) 𝑐/ ← 𝑐/ − 𝜂𝑧/ 
(15) 𝑢"* ← 𝑢"* − 𝜂𝑥"𝑦*  
(16) 𝑣*/ ← 𝑣*/ − 𝜂𝑦*𝑧/ 

4. ONE-DIMENSIONAL CONTINUUM 

The input continuum is the cortical representation of 
a basilar excitation pattern, where node 1 is the lowest 
basilar frequency and node 30 the highest. 

We make the network listen to 100,000 pieces of 
data from a language with three sibilant categories 
whose population-average centre frequencies lie at 
nodes 8, 16 and 23. To generate each datum, we 
choose (unbeknownst to the learner) one of the three 
categories with equal probability (1/3), then 
determine a basilar centre frequency by sampling it 
from a Gaussian distribution with mean 𝜇 = 8, 16 or 
23 (depending on the category) and a standard 
deviation of 𝜎 = 2.0: 
 
(17) 𝑓W	~	𝒩(𝜇, 𝜎)  
As a result, the total distribution of centre frequencies 
is as given in Figure 3. 

For our sampled 𝑓W, the network’s input activation 
is then the basilar excitation pattern (for 𝑘 = 1. .30) 
 

(18) 𝑥" = 5	𝑒[
\
]O
^_`a
b P

]

− 0.5  
where 𝑤 = 1.5 is the half-width of the Gaussian peak 
that the sound produces on the basilar membrane (this 
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is admittedly unrealistically sharp for sibilants). Then 
follow phases 3.1 through 3.4, all for each incoming 
piece of data. 
 

Figure 3: Distribution of centres of 1-peak inputs. 

  
After having received, processed and learned from 

300 pieces of data, we test (or measure) our network 
for the first time. Measuring is performed by applying 
the sweep in Figure 4. That is, we apply centre 
frequencies from 3.0 to 28.0, in 251 steps spaced 0.1 
nodes apart, to the input of the network. 
 

Figure 4: Applied input sweep. 

  
With each of the 251 centre frequencies we determine 
the initial state of the network according to 3.1, and 
then resonate with open input according to (9), (3) 
and (1) ten times (no learning has to take place). The 
resulting “reflected” 𝑥" are shown in Figure 5. The 
network has arrived in a structure where on any input 
sound, the network reflects the same activation 
pattern, namely an activation pattern that mimics the 
pooled distribution of Fig. 3, convolved with (18). 

After training for 2700 more pieces of data, the 
network is measured again by the sweep of Figure 4, 
and the network echoes the activity in Figure 6. This 
is categorical behaviour: although the network can 
handle a continuous range of possible inputs, the 
network, on any input, has to settle in one of only 
three possible states, i.e., the organism containing this 
network will be able to extract only three possible 
different messages from the incoming sound. This is 
what categorization is all about! 

Figure 5: Reflection after 300 pieces of data: 
undertrained behaviour. 

  
Figure 6: Reflection after 3,000 pieces of data: 
categorical behaviour. 

  
Figure 7: Reflection after 30,000 pieces of data: 
overtrained behaviour. 

  
After training with 27,000 more pieces of data, the 
network has become good at echoing the input sweep, 
as we can see in Figure 7. The network’s behaviour is 
no longer categorical. 

The final situation is a network that returns its 
input nearly perfectly. The crucial stage here, 
however, is that of Figure 6: the change between input 
and reflection (perceptual warping) can be regarded 
as the perceptual magnet effect observed by Kuhl et 
al. [10] for human infants, which is a phenomenon 
widely held to be associated with phonological 
category creation. 
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5. TWO-DIMENSIONAL CONTINUUM 

The next more complex case is where each category 
is defined by two peaks on the basilar membrane. In 
a language with five vowels, we select one of the 
vowels /a,e,i,o,u/ (again, the network does not know 
which we chose, or that there are supposed to be five) 
randomly with equal probability (1/5), then sample 
an F1 and F2 value (in ERB) randomly from around 
the mean F1 and F2 for that vowel (with 𝜎 =
0.9	ERB). The excitation pattern on the input, where 
node numbers correspond to ERB values, becomes 
 

(19) 𝑥" = 5	 h𝑒[
\
]O
^_i\
b P

]

+ 𝑒[
\
]O
^_i]
b P

]

j − 0.5 
 
The overall distribution of F1 and F2 values that our 
virtual learner is confronted with, is shown in Fig. 8.  

Figure 8: Input distribution in a 5-vowel language. 
The ellipses mark a relative height of 10%. Nodes 
equal ERB values, e.g., node 16 represents 16 ERB. 

  
After learning from 1,000 pieces of data, the network 
is measured by applying 200 randomly chosen F1–F2 
combinations from the language to the network.  

Figure 9: Perceptual magnet effect for vowels. 
Each arrow points from an input vowel token to its 
reflection. 

  
Figure 9 shows how the network reflects these 200 
vowel tokens. Just as in the one-dimensional case, the 
network is seen to go through a stage of categorical 
behaviour: the arrows tend to point at only five 

centres of attraction. When training further, we find 
that the arrows get shorter and shorter, until the 
reflections become identical to the inputs. 

6. DISCUSSION 

The perceptual magnet effect [10] was modelled 
before with unidirectional neural maps by [5] and 
with bidirectional competitive neural networks by [1]. 
The present paper models it with a method borrowed 
from the field of machine learning, namely 
bidirectional deep (i.e. multi-level) restricted 
Boltzmann machines [12]. Both bidirectional 
implementations allow a connection to bidirectional 
multi-level theories of phonology and phonetics, but 
the present model does so in a computationally 
efficient way, because the activity of a level can be 
computed efficiently as there are no connections 
within levels (this is what the term restricted means); 
in this respect the model differs from the competitive 
network implementation [1], which requires 
inhibitory connections within levels. The latter model 
was also deemed “brittle” [1], whereas the present 
model may be more robust, in the sense that it works 
similarly when there are only two levels (i.e. it is a 
single restricted Boltzmann machine), or when there 
are more than three levels, in which case the settling 
scheme of repeating (1)–(3) or (9)–(11) must 
generalize to simultaneous activation spreading from 
all odd-numbered to all even-numbered levels, 
followed by simultaneous activation spreading from 
the even- to the odd-numbered levels, and this 
repeated several times [12]. 

The states of categorical behaviour that we found 
were only transient, with subsequent learning wiping 
the categories out. Whether this is a disadvantage 
remains to be seen: what for machine learning 
purposes might be a disadvantage, does not have to 
be so for purposes of cognitive modelling. One 
wonders, for instance, whether the emergence of even 
higher levels of representation, such as the lexicon, 
will be able to maintain the network’s categoricality. 

7. CONCLUSION 

We hope that future computer simulations with this 
type of networks can not only account for category 
emergence but also for the phenomena handled by 
earlier models with fixed categories such as [11, 3, 4]. 
If that succeeds, we will have taken crucial steps 
toward providing a comprehensive theory of 
language comprehension, production, acquisition and 
change. We are looking forward to including multiple 
segments in time and to seeing multiple phonological 
features emerge both bottom-up from the phonetics 
and top-down from alternations and the lexicon. 
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