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Preface to Version 0.4

A year has gone by since I wrote the last preface. The book has changed in a few important ways:
Chapters 3 and 4 do a better job of documenting some of the time saving features of Rstudio, Chapters
12 and 13 now make use of new functions in the lsr package for running chi-square tests and t tests, and
the discussion of correlations has been adapted to refer to the new functions in the lsr package. The soft
copy of 0.4 now has better internal referencing (i.e., actual hyperlinks between sections), though that
was introduced in 0.3.1. There’s a few tweaks here and there, and many typo corrections (thank you to
everyone who pointed out typos!), but overall 0.4 isn’t massively different from 0.3.

I wish I’d had more time over the last 12 months to add more content. The absence of any discussion
of repeated measures ANOVA and mixed models more generally really does annoy me. My excuse for
this lack of progress is that my second child was born at the start of 2013, and so I spent most of last
year just trying to keep my head above water. As a consequence, unpaid side projects like this book got
sidelined in favour of things that actually pay my salary! Things are a little calmer now, so with any luck
version 0.5 will be a bigger step forward.

One thing that has surprised me is the number of downloads the book gets. I finally got some basic
tracking information from the website a couple of months ago, and (after excluding obvious robots) the
book has been averaging about 90 downloads per day. That’s encouraging: there’s at least a few people
who find the book useful!

Dan Navarro
February 4, 2014
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Preface to Version 0.3

There’s a part of me that really doesn’t want to publish this book. It’s not finished.

And when I say that, I mean it. The referencing is spotty at best, the chapter summaries are just lists
of section titles, there’s no index, there are no exercises for the reader, the organisation is suboptimal,
and the coverage of topics is just not comprehensive enough for my liking. Additionally, there are sections
with content that I’m not happy with, figures that really need to be redrawn, and I’ve had almost no time
to hunt down inconsistencies, typos, or errors. In other words, this book is not finished. If I didn’t have
a looming teaching deadline and a baby due in a few weeks, I really wouldn’t be making this available at
all.

What this means is that if you are an academic looking for teaching materials, a Ph.D. student looking
to learn R, or just a member of the general public interested in statistics, I would advise you to be cautious.
What you’re looking at is a first draft, and it may not serve your purposes. If we were living in the days
when publishing was expensive and the internet wasn’t around, I would never consider releasing a book
in this form. The thought of someong shelling out $80 for this (which is what a commercial publisher told
me it would retail for when they offered to distribute it) makes me feel more than a little uncomfortable.
However, it’s the 21st century, so I can post the pdf on my website for free, and I can distribute hard
copies via a print-on-demand service for less than half what a textbook publisher would charge. And so
my guilt is assuaged, and I’m willing to share! With that in mind, you can obtain free soft copies and
cheap hard copies online, from the following webpages:

Soft copy: ua.edu.au/ccs/teaching/lsr

Hard copy: www.lulu.com/content/13570633

Even so, the warning still stands: what you are looking at is Version 0.3 of a work in progress. If and
when it hits Version 1.0, I would be willing to stand behind the work and say, yes, this is a textbook that
I would encourage other people to use. At that point, I’ll probably start shamelessly flogging the thing
on the internet and generally acting like a tool. But until that day comes, I’d like it to be made clear
that I’m really ambivalent about the work as it stands.

All of the above being said, there is one group of people that I can enthusiastically endorse this book
to: the psychology students taking our undergraduate research methods classes (DRIP and DRIP:A) in
2013. For you, this book is ideal, because it was written to accompany your stats lectures. If a problem
arises due to a shortcoming of these notes, I can and will adapt content on the fly to fix that problem.
Effectively, you’ve got a textbook written specifically for your classes, distributed for free (electronic
copy) or at near-cost prices (hard copy). Better yet, the notes have been tested: Version 0.1 of these
notes was used in the 2011 class, Version 0.2 was used in the 2012 class, and now you’re looking at the
new and improved Version 0.3. I’m not saying these notes are titanium plated awesomeness on a stick –
though if you wanted to say so on the student evaluation forms, then you’re totally welcome to – because
they’re not. But I am saying that they’ve been tried out in previous years and they seem to work okay.
Besides, there’s a group of us around to troubleshoot if any problems come up, and you can guarantee
that at least one of your lecturers has read the whole thing cover to cover!

Okay, with all that out of the way, I should say something about what the book aims to be. At its
core, it is an introductory statistics textbook pitched primarily at psychology students. As such, it covers
the standard topics that you’d expect of such a book: study design, descriptive statistics, the theory of
hypothesis testing, t-tests, χ2 tests, ANOVA and regression. However, there are also several chapters
devoted to the R statistical package, including a chapter on data manipulation and another one on scripts
and programming. Moreover, when you look at the content presented in the book, you’ll notice a lot of
topics that are traditionally swept under the carpet when teaching statistics to psychology students. The
Bayesian/frequentist divide is openly disussed in the probability chapter, and the disagreement between
Neyman and Fisher about hypothesis testing makes an appearance. The difference between probability
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and density is discussed. A detailed treatment of Type I, II and III sums of squares for unbalanced
factorial ANOVA is provided. And if you have a look in the Epilogue, it should be clear that my
intention is to add a lot more advanced content.

My reasons for pursuing this approach are pretty simple: the students can handle it, and they even
seem to enjoy it. Over the last few years I’ve been pleasantly surprised at just how little difficulty I’ve had
in getting undergraduate psych students to learn R. It’s certainly not easy for them, and I’ve found I need
to be a little charitable in setting marking standards, but they do eventually get there. Similarly, they
don’t seem to have a lot of problems tolerating ambiguity and complexity in presentation of statistical
ideas, as long as they are assured that the assessment standards will be set in a fashion that is appropriate
for them. So if the students can handle it, why not teach it? The potential gains are pretty enticing.
If they learn R, the students get access to CRAN, which is perhaps the largest and most comprehensive
library of statistical tools in existence. And if they learn about probability theory in detail, it’s easier for
them to switch from orthodox null hypothesis testing to Bayesian methods if they want to. Better yet,
they learn data analysis skills that they can take to an employer without being dependent on expensive
and proprietary software.

Sadly, this book isn’t the silver bullet that makes all this possible. It’s a work in progress, and maybe
when it is finished it will be a useful tool. One among many, I would think. There are a number of
other books that try to provide a basic introduction to statistics using R, and I’m not arrogant enough
to believe that mine is better. Still, I rather like the book, and maybe other people will find it useful,
incomplete though it is.

Dan Navarro
January 13, 2013
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1. Why do we learn statistics?

“Thou shalt not answer questionnaires
Or quizzes upon World Affairs,

Nor with compliance
Take any test. Thou shalt not sit
With statisticians nor commit

A social science”

– W.H. Auden

1.1

On the psychology of statistics

To the surprise of many students, statistics is a fairly significant part of a psychological education. To
the surprise of no-one, statistics is very rarely the favourite part of one’s psychological education. After
all, if you really loved the idea of doing statistics, you’d probably be enrolled in a statistics class right
now, not a psychology class. So, not surprisingly, there’s a pretty large proportion of the student base
that isn’t happy about the fact that psychology has so much statistics in it. In view of this, I thought
that the right place to start might be to answer some of the more common questions that people have
about stats. . .

A big part of this issue at hand relates to the very idea of statistics. What is it? What’s it there
for? And why are scientists so bloody obsessed with it? These are all good questions, when you think
about it. So let’s start with the last one. As a group, scientists seem to be bizarrely fixated on running
statistical tests on everything. In fact, we use statistics so often that we sometimes forget to explain to
people why we do. It’s a kind of article of faith among scientists – and especially social scientists – that
your findings can’t be trusted until you’ve done some stats. Undergraduate students might be forgiven
for thinking that we’re all completely mad, because no-one takes the time to answer one very simple
question:

Why do you do statistics? Why don’t scientists just use common sense?

It’s a naive question in some ways, but most good questions are. There’s a lot of good answers to it,1

but for my money, the best answer is a really simple one: we don’t trust ourselves enough. We worry
that we’re human, and susceptible to all of the biases, temptations and frailties that humans suffer from.

1Including the suggestion that common sense is in short supply among scientists.
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Much of statistics is basically a safeguard. Using “common sense” to evaluate evidence means trusting
gut instincts, relying on verbal arguments and on using the raw power of human reason to come up with
the right answer. Most scientists don’t think this approach is likely to work.

In fact, come to think of it, this sounds a lot like a psychological question to me, and since I do work
in a psychology department, it seems like a good idea to dig a little deeper here. Is it really plausible to
think that this “common sense” approach is very trustworthy? Verbal arguments have to be constructed
in language, and all languages have biases – some things are harder to say than others, and not necessarily
because they’re false (e.g., quantum electrodynamics is a good theory, but hard to explain in words).
The instincts of our “gut” aren’t designed to solve scientific problems, they’re designed to handle day to
day inferences – and given that biological evolution is slower than cultural change, we should say that
they’re designed to solve the day to day problems for a different world than the one we live in. Most
fundamentally, reasoning sensibly requires people to engage in “induction”, making wise guesses and
going beyond the immediate evidence of the senses to make generalisations about the world. If you think
that you can do that without being influenced by various distractors, well, I have a bridge in Brooklyn I’d
like to sell you. Heck, as the next section shows, we can’t even solve “deductive” problems (ones where
no guessing is required) without being influenced by our pre-existing biases.

1.1.1 The curse of belief bias

People are mostly pretty smart. We’re certainly smarter than the other species that we share the
planet with (though many people might disagree). Our minds are quite amazing things, and we seem
to be capable of the most incredible feats of thought and reason. That doesn’t make us perfect though.
And among the many things that psychologists have shown over the years is that we really do find it
hard to be neutral, to evaluate evidence impartially and without being swayed by pre-existing biases. A
good example of this is the belief bias effect in logical reasoning: if you ask people to decide whether a
particular argument is logically valid (i.e., conclusion would be true if the premises were true), we tend
to be influenced by the believability of the conclusion, even when we shouldn’t. For instance, here’s a
valid argument where the conclusion is believable:

No cigarettes are inexpensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And here’s a valid argument where the conclusion is not believable:

No addictive things are inexpensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

The logical structure of argument #2 is identical to the structure of argument #1, and they’re both valid.
However, in the second argument, there are good reasons to think that premise 1 is incorrect, and as a
result it’s probably the case that the conclusion is also incorrect. But that’s entirely irrelevant to the
topic at hand: an argument is deductively valid if the conclusion is a logical consequence of the premises.
That is, a valid argument doesn’t have to involve true statements.

On the other hand, here’s an invalid argument that has a believable conclusion:

No addictive things are inexpensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And finally, an invalid argument with an unbelievable conclusion:
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No cigarettes are inexpensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

Now, suppose that people really are perfectly able to set aside their pre-existing biases about what is
true and what isn’t, and purely evaluate an argument on its logical merits. We’d expect 100% of people
to say that the valid arguments are valid, and 0% of people to say that the invalid arguments are valid.
So if you ran an experiment looking at this, you’d expect to see data like this:

conclusion feels true conclusion feels false

argument is valid 100% say “valid” 100% say “valid”

argument is invalid 0% say “valid” 0% say “valid”

If the psychological data looked like this (or even a good approximation to this), we might feel safe in
just trusting our gut instincts. That is, it’d be perfectly okay just to let scientists evaluate data based on
their common sense, and not bother with all this murky statistics stuff. However, you guys have taken
psych classes, and by now you probably know where this is going . . .

In a classic study, Evans, Barston, and Pollard (1983) ran an experiment looking at exactly this.
What they found is that when pre-existing biases (i.e., beliefs) were in agreement with the structure of
the data, everything went the way you’d hope:

conclusion feels true conclusion feels false

argument is valid 92% say “valid”

argument is invalid 8% say “valid”

Not perfect, but that’s pretty good. But look what happens when our intuitive feelings about the truth
of the conclusion run against the logical structure of the argument:

conclusion feels true conclusion feels false

argument is valid 92% say “valid” 46% say “valid”

argument is invalid 92% say “valid” 8% say “valid”

Oh dear, that’s not as good. Apparently, when people are presented with a strong argument that
contradicts our pre-existing beliefs, we find it pretty hard to even perceive it to be a strong argument
(people only did so 46% of the time). Even worse, when people are presented with a weak argument that
agrees with our pre-existing biases, almost no-one can see that the argument is weak (people got that
one wrong 92% of the time!)2

If you think about it, it’s not as if these data are horribly damning. Overall, people did do better
than chance at compensating for their prior biases, since about 60% of people’s judgements were correct
(you’d expect 50% by chance). Even so, if you were a professional “evaluator of evidence”, and someone
came along and offered you a magic tool that improves your chances of making the right decision from
60% to (say) 95%, you’d probably jump at it, right? Of course you would. Thankfully, we actually do
have a tool that can do this. But it’s not magic, it’s statistics. So that’s reason #1 why scientists love
statistics. It’s just too easy for us to “believe what we want to believe”; so if we want to “believe in the
data” instead, we’re going to need a bit of help to keep our personal biases under control. That’s what
statistics does: it helps keep us honest.

2In my more cynical moments I feel like this fact alone explains 95% of what I read on the internet.
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1.2

The cautionary tale of Simpson’s paradox

The following is a true story. In 1973, the University of California, Berkeley got into some trouble over
its admissions of students into postgraduate courses. Specifically, the thing that caused the problem was
that the gender breakdown of their admissions looked like this. . .

Number of applicants Percent admitted
Males 8442 44%
Females 4321 35%

. . . and they got sued. Given that there were nearly 13,000 applicants, a difference of 9% in admission
rates between males and females is just way too big to be a coincidence. Pretty compelling data, right?
And if I were to say to you that these data actually reflect a weak bias in favour of females, you’d probably
think that I was either crazy or sexist.

Oddly, it’s actually sort of true . . . after Berkeley got sued, people started looking very carefully at
the admissions data (Bickel, Hammel, & O’Connell, 1975). And remarkably, when they looked at it on
a department by department basis, it turned out that most of the departments actually had a slightly
higher success rate for female applicants than for male applicants. The table below shows the admission
figures for the six largest departments (with the names of the departments removed for privacy reasons):

Males Females
Department Applicants Percent admitted Applicants Percent admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 272 6% 341 7%

Remarkably, most departments had a higher rate of admissions for females than for males! Yet the overall
rate of admission across the university for females was lower than for males. How can this be? How can
both of these statements be true at the same time?

Here’s what’s going on. Firstly, notice that the departments are not equal to one another in terms of
their admission percentages: some departments (e.g., engineering, chemistry) tended to admit a high per-
centage of the qualified applicants, whereas others (e.g., English) tended to reject most of the candidates,
even if they were high quality. So, among the six departments shown above, notice that department A
is the most generous, followed by B, C, D, E and F in that order. Next, notice that males and females
tended to apply to different departments. If we rank the departments in terms of the total number of
male applicants, we get AąBąDąCąFąE (the “easy” departments are in bold). On the whole, males
tended to apply to the departments that had high admission rates. Now compare this to how the female
applicants distributed themselves. Ranking the departments in terms of the total number of female ap-
plicants produces a quite different ordering CąEąDąFąAąB. In other words, what these data seem
to be suggesting is that the female applicants tended to apply to “harder” departments. And in fact, if
we look at all Figure 1.1 we see that this trend is systematic, and quite striking. This effect is known
as Simpson’s paradox. It’s not common, but it does happen in real life, and most people are very
surprised by it when they first encounter it, and many people refuse to even believe that it’s real. It is
very real. And while there are lots of very subtle statistical lessons buried in there, I want to use it to
make a much more important point . . . doing research is hard, and there are lots of subtle, counterintuitive
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Figure 1.1: The Berkeley 1973 college admissions data. This figure plots the admission rate for the 85
departments that had at least one female applicant, as a function of the percentage of applicants that
were female. The plot is a redrawing of Figure 1 from Bickel et al. (1975). Circles plot departments with
more than 40 applicants; the area of the circle is proportional to the total number of applicants. The
crosses plot department with fewer than 40 applicants.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

traps lying in wait for the unwary. That’s reason #2 why scientists love statistics, and why we teach
research methods. Because science is hard, and the truth is sometimes cunningly hidden in the nooks
and crannies of complicated data.

Before leaving this topic entirely, I want to point out something else really critical that is often over-
looked in a research methods class. Statistics only solves part of the problem. Remember that we started
all this with the concern that Berkeley’s admissions processes might be unfairly biased against female
applicants. When we looked at the “aggregated” data, it did seem like the university was discriminating
against women, but when we “disaggregate” and looked at the individual behaviour of all the depart-
ments, it turned out that the actual departments were, if anything, slightly biased in favour of women.
The gender bias in total admissions was caused by the fact that women tended to self-select for harder
departments. From a purely legal perspective, that puts the university in the clear. Postgraduate ad-
missions are determined at the level of the individual department (and there are very good reasons to do
that), and at the level of individual departments, the decisions are more or less unbiased (the weak bias
in favour of females at that level is small, and not consistent across departments). Since the university
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can’t dictate which departments people choose to apply to, and the decision making takes place at the
level of the department it can hardly be held accountable for any biases that those choices produce.

That was the basis for my somewhat glib remarks earlier, but that’s not exactly the whole story, is
it? After all, if we’re interested in this from a more sociological and psychological perspective, we might
want to ask why there are such strong gender differences in applications. Why do males tend to apply to
engineering more often than females, and why is this reversed for the English department? And why is
it it the case that the departments that tend to have a female-application bias tend to have lower overall
admission rates than those departments that have a male-application bias? Might this not still reflect a
gender bias, even though every single department is itself unbiased? It might. Suppose, hypothetically,
that males preferred to apply to “hard sciences” and females prefer “humanities”. And suppose further
that the reason for why the humanities departments have low admission rates is because the government
doesn’t want to fund the humanities (Ph.D. places, for instance, are often tied to government funded
research projects). Does that constitute a gender bias? Or just an unenlightened view of the value of the
humanities? What if someone at a high level in the government cut the humanities funds because they
felt that the humanities are “useless chick stuff”. That seems pretty blatantly gender biased. None of
this falls within the purview of statistics, but it matters to the research project. If you’re interested in the
overall structural effects of subtle gender biases, then you probably want to look at both the aggregated
and disaggregated data. If you’re interested in the decision making process at Berkeley itself then you’re
probably only interested in the disaggregated data.

In short there are a lot of critical questions that you can’t answer with statistics, but the answers to
those questions will have a huge impact on how you analyse and interpret data. And this is the reason
why you should always think of statistics as a tool to help you learn about your data, no more and no
less. It’s a powerful tool to that end, but there’s no substitute for careful thought.

1.3

Statistics in psychology

I hope that the discussion above helped explain why science in general is so focused on statistics. But I’m
guessing that you have a lot more questions about what role statistics plays in psychology, and specifically
why psychology classes always devote so many lectures to stats. So here’s my attempt to answer a few
of them...

• Why does psychology have so much statistics?

To be perfectly honest, there’s a few different reasons, some of which are better than others. The
most important reason is that psychology is a statistical science. What I mean by that is that the
“things” that we study are people. Real, complicated, gloriously messy, infuriatingly perverse people.
The “things” of physics include object like electrons, and while there are all sorts of complexities
that arise in physics, electrons don’t have minds of their own. They don’t have opinions, they
don’t differ from each other in weird and arbitrary ways, they don’t get bored in the middle of an
experiment, and they don’t get angry at the experimenter and then deliberately try to sabotage
the data set (not that I’ve ever done that . . . ). At a fundamental level psychology is harder than
physics.3

Basically, we teach statistics to you as psychologists because you need to be better at stats than
physicists. There’s actually a saying used sometimes in physics, to the effect that “if your experiment
needs statistics, you should have done a better experiment”. They have the luxury of being able
to say that because their objects of study are pathetically simple in comparison to the vast mess

3Which might explain why physics is just a teensy bit further advanced as a science than we are.
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that confronts social scientists. It’s not just psychology, really: most social sciences are desperately
reliant on statistics. Not because we’re bad experimenters, but because we’ve picked a harder
problem to solve. We teach you stats because you really, really need it.

• Can’t someone else do the statistics?

To some extent, but not completely. It’s true that you don’t need to become a fully trained
statistician just to do psychology, but you do need to reach a certain level of statistical competence.
In my view, there’s three reasons that every psychological researcher ought to be able to do basic
statistics:

– Firstly, there’s the fundamental reason: statistics is deeply intertwined with research design.
If you want to be good at designing psychological studies, you need to at least understand the
basics of stats.

– Secondly, if you want to be good at the psychological side of the research, then you need
to be able to understand the psychological literature, right? But almost every paper in the
psychological literature reports the results of statistical analyses. So if you really want to
understand the psychology, you need to be able to understand what other people did with
their data. And that means understanding a certain amount of statistics.

– Thirdly, there’s a big practical problem with being dependent on other people to do all your
statistics: statistical analysis is expensive. If you ever get bored and want to look up how
much the Australian government charges for university fees, you’ll notice something interesting:
statistics is designated as a “national priority” category, and so the fees are much, much lower
than for any other area of study. This is because there’s a massive shortage of statisticians out
there. So, from your perspective as a psychological researcher, the laws of supply and demand
aren’t exactly on your side here! As a result, in almost any real life situation where you want to
do psychological research, the cruel facts will be that you don’t have enough money to afford a
statistician. So the economics of the situation mean that you have to be pretty self-sufficient.

Note that a lot of these reasons generalise beyond researchers. If you want to be a practicing
psychologist and stay on top of the field, it helps to be able to read the scientific literature, which
relies pretty heavily on statistics.

• I don’t care about jobs, research, or clinical work. Do I need statistics?

Okay, now you’re just messing with me. Still, I think it should matter to you too. Statistics should
matter to you in the same way that statistics should matter to everyone: we live in the 21st century,
and data are everywhere. Frankly, given the world in which we live these days, a basic knowledge
of statistics is pretty damn close to a survival tool! Which is the topic of the next section...

1.4

Statistics in everyday life

“We are drowning in information,
but we are starved for knowledge”

– Various authors, original probably John Naisbitt

When I started writing up my lecture notes I took the 20 most recent news articles posted to the ABC
news website. Of those 20 articles, it turned out that 8 of them involved a discussion of something that
I would call a statistical topic; 6 of those made a mistake. The most common error, if you’re curious,
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was failing to report baseline data (e.g., the article mentions that 5% of people in situation X have some
characteristic Y, but doesn’t say how common the characteristic is for everyone else!) The point I’m
trying to make here isn’t that journalists are bad at statistics (though they almost always are), it’s that
a basic knowledge of statistics is very helpful for trying to figure out when someone else is either making
a mistake or even lying to you. In fact, one of the biggest things that a knowledge of statistics does to
you is cause you to get angry at the newspaper or the internet on a far more frequent basis: you can find
a good example of this in Section 5.1.5. In later versions of this book I’ll try to include more anecdotes
along those lines.

1.5

There’s more to research methods than statistics

So far, most of what I’ve talked about is statistics, and so you’d be forgiven for thinking that statistics
is all I care about in life. To be fair, you wouldn’t be far wrong, but research methodology is a broader
concept than statistics. So most research methods courses will cover a lot of topics that relate much more
to the pragmatics of research design, and in particular the issues that you encounter when trying to do
research with humans. However, about 99% of student fears relate to the statistics part of the course, so
I’ve focused on the stats in this discussion, and hopefully I’ve convinced you that statistics matters, and
more importantly, that it’s not to be feared. That being said, it’s pretty typical for introductory research
methods classes to be very stats-heavy. This is not (usually) because the lecturers are evil people. Quite
the contrary, in fact. Introductory classes focus a lot on the statistics because you almost always find
yourself needing statistics before you need the other research methods training. Why? Because almost
all of your assignments in other classes will rely on statistical training, to a much greater extent than
they rely on other methodological tools. It’s not common for undergraduate assignments to require you
to design your own study from the ground up (in which case you would need to know a lot about research
design), but it is common for assignments to ask you to analyse and interpret data that were collected in
a study that someone else designed (in which case you need statistics). In that sense, from the perspective
of allowing you to do well in all your other classes, the statistics is more urgent.

But note that “urgent” is different from “important” – they both matter. I really do want to stress
that research design is just as important as data analysis, and this book does spend a fair amount of
time on it. However, while statistics has a kind of universality, and provides a set of core tools that
are useful for most types of psychological research, the research methods side isn’t quite so universal.
There are some general principles that everyone should think about, but a lot of research design is very
idiosyncratic, and is specific to the area of research that you want to engage in. To the extent that it’s the
details that matter, those details don’t usually show up in an introductory stats and research methods
class.
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2. A brief introduction to research design

In this chapter, we’re going to start thinking about the basic ideas that go into designing a study, collecting
data, checking whether your data collection works, and so on. It won’t give you enough information to
allow you to design studies of your own, but it will give you a lot of the basic tools that you need to assess
the studies done by other people. However, since the focus of this book is much more on data analysis
than on data collection, I’m only giving a very brief overview. Note that this chapter is “special” in
two ways. Firstly, it’s much more psychology-specific than the later chapters. Secondly, it focuses much
more heavily on the scientific problem of research methodology, and much less on the statistical problem
of data analysis. Nevertheless, the two problems are related to one another, so it’s traditional for stats
textbooks to discuss the problem in a little detail. This chapter relies heavily on Campbell and Stanley
(1963) for the discussion of study design, and Stevens (1946) for the discussion of scales of measurement.
Later versions will attempt to be more precise in the citations.

2.1

Introduction to psychological measurement

The first thing to understand is data collection can be thought of as a kind of measurement. That is,
what we’re trying to do here is measure something about human behaviour or the human mind. What
do I mean by “measurement”?

2.1.1 Some thoughts about psychological measurement

Measurement itself is a subtle concept, but basically it comes down to finding some way of assigning
numbers, or labels, or some other kind of well-defined descriptions to “stuff”. So, any of the following
would count as a psychological measurement:

• My age is 33 years.

• I do not like anchovies.

• My chromosomal gender is male.

• My self-identified gender is male.

In the short list above, the bolded part is “the thing to be measured”, and the italicised part is “the
measurement itself”. In fact, we can expand on this a little bit, by thinking about the set of possible
measurements that could have arisen in each case:
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• My age (in years) could have been 0, 1, 2, 3 . . . , etc. The upper bound on what my age could
possibly be is a bit fuzzy, but in practice you’d be safe in saying that the largest possible age is
150, since no human has ever lived that long.

• When asked if I like anchovies, I might have said that I do, or I do not, or I have no opinion, or
I sometimes do.

• My chromosomal gender is almost certainly going to be male (XY) or female (XX), but there
are a few other possibilities. I could also have Klinfelter’s syndrome (XXY), which is more similar
to male than to female. And I imagine there are other possibilities too.

• My self-identified gender is also very likely to be male or female, but it doesn’t have to agree
with my chromosomal gender. I may also choose to identify with neither, or to explicitly call myself
transgender.

As you can see, for some things (like age) it seems fairly obvious what the set of possible measurements
should be, whereas for other things it gets a bit tricky. But I want to point out that even in the case of
someone’s age, it’s much more subtle than this. For instance, in the example above, I assumed that it
was okay to measure age in years. But if you’re a developmental psychologist, that’s way too crude, and
so you often measure age in years and months (if a child is 2 years and 11 months, this is usually written
as “2;11”). If you’re interested in newborns, you might want to measure age in days since birth, maybe
even hours since birth. In other words, the way in which you specify the allowable measurement values
is important.

Looking at this a bit more closely, you might also realise that the concept of “age” isn’t actually
all that precise. In general, when we say “age” we implicitly mean “the length of time since birth”.
But that’s not always the right way to do it. Suppose you’re interested in how newborn babies control
their eye movements. If you’re interested in kids that young, you might also start to worry that “birth”
is not the only meaningful point in time to care about. If Baby Alice is born 3 weeks premature and
Baby Bianca is born 1 week late, would it really make sense to say that they are the “same age” if we
encountered them “2 hours after birth”? In one sense, yes: by social convention, we use birth as our
reference point for talking about age in everyday life, since it defines the amount of time the person has
been operating as an independent entity in the world, but from a scientific perspective that’s not the
only thing we care about. When we think about the biology of human beings, it’s often useful to think of
ourselves as organisms that have been growing and maturing since conception, and from that perspective
Alice and Bianca aren’t the same age at all. So you might want to define the concept of “age” in two
different ways: the length of time since conception, and the length of time since birth. When dealing
with adults, it won’t make much difference, but when dealing with newborns it might.

Moving beyond these issues, there’s the question of methodology. What specific “measurement
method” are you going to use to find out someone’s age? As before, there are lots of different possi-
bilities:

• You could just ask people “how old are you?” The method of self-report is fast, cheap and easy,
but it only works with people old enough to understand the question, and some people lie about
their age.

• You could ask an authority (e.g., a parent) “how old is your child?” This method is fast, and when
dealing with kids it’s not all that hard since the parent is almost always around. It doesn’t work
as well if you want to know “age since conception”, since a lot of parents can’t say for sure when
conception took place. For that, you might need a different authority (e.g., an obstetrician).

• You could look up official records, like birth certificates. This is time consuming and annoying, but
it has its uses (e.g., if the person is now dead).
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2.1.2 Operationalisation: defining your measurement

All of the ideas discussed in the previous section all relate to the concept of operationalisation. To
be a bit more precise about the idea, operationalisation is the process by which we take a meaningful but
somewhat vague concept, and turn it into a precise measurement. The process of operationalisation can
involve several different things:

• Being precise about what you are trying to measure. For instance, does “age” mean “time since
birth” or “time since conception” in the context of your research?

• Determining what method you will use to measure it. Will you use self-report to measure age, ask
a parent, or look up an official record? If you’re using self-report, how will you phrase the question?

• Defining the set of the allowable values that the measurement can take. Note that these values
don’t always have to be numerical, though they often are. When measuring age, the values are
numerical, but we still need to think carefully about what numbers are allowed. Do we want age
in years, years and months, days, hours? Etc. For other types of measurements (e.g., gender), the
values aren’t numerical. But, just as before, we need to think about what values are allowed. If
we’re asking people to self-report their gender, what options to we allow them to choose between?
Is it enough to allow only “male” or “female”? Do you need an “other” option? Or should we not
give people any specific options, and let them answer in their own words? And if you open up the
set of possible values to include all verbal response, how will you interpret their answers?

Operationalisation is a tricky business, and there’s no “one, true way” to do it. The way in which you
choose to operationalise the informal concept of “age” or “gender” into a formal measurement depends on
what you need to use the measurement for. Often you’ll find that the community of scientists who work in
your area have some fairly well-established ideas for how to go about it. In other words, operationalisation
needs to be thought through on a case by case basis. Nevertheless, while there a lot of issues that are
specific to each individual research project, there are some aspects to it that are pretty general.

Before moving on, I want to take a moment to clear up our terminology, and in the process introduce
one more term. Here are four different things that are closely related to each other:

• A theoretical construct. This is the thing that you’re trying to take a measurement of, like
“age”, “gender” or an “opinion”. A theoretical construct can’t be directly observed, and often
they’re actually a bit vague.

• A measure. The measure refers to the method or the tool that you use to make your observations.
A question in a survey, a behavioural observation or a brain scan could all count as a measure.

• An operationalisation. The term “operationalisation” refers to the logical connection between
the measure and the theoretical construct, or to the process by which we try to derive a measure
from a theoretical construct.

• A variable. Finally, a new term. A variable is what we end up with when we apply our measure
to something in the world. That is, variables are the actual “data” that we end up with in our data
sets.

In practice, even scientists tend to blur the distinction between these things, but it’s very helpful to try
to understand the differences.
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2.2

Scales of measurement

As the previous section indicates, the outcome of a psychological measurement is called a variable. But
not all variables are of the same qualitative type, and it’s very useful to understand what types there are.
A very useful concept for distinguishing between different types of variables is what’s known as scales
of measurement.

2.2.1 Nominal scale

A nominal scale variable (also referred to as a categorical variable) is one in which there is no particular
relationship between the different possibilities: for these kinds of variables it doesn’t make any sense to
say that one of them is “bigger’ or “better” than any other one, and it absolutely doesn’t make any sense
to average them. The classic example for this is “eye colour”. Eyes can be blue, green and brown, among
other possibilities, but none of them is any “better” than any other one. As a result, it would feel really
weird to talk about an “average eye colour”. Similarly, gender is nominal too: male isn’t better or worse
than female, neither does it make sense to try to talk about an “average gender”. In short, nominal scale
variables are those for which the only thing you can say about the different possibilities is that they are
different. That’s it.

Let’s take a slightly closer look at this. Suppose I was doing research on how people commute to and
from work. One variable I would have to measure would be what kind of transportation people use to
get to work. This “transport type” variable could have quite a few possible values, including: “train”,
“bus”, “car”, “bicycle”, etc. For now, let’s suppose that these four are the only possibilities, and suppose
that when I ask 100 people how they got to work today, and I get this:

Transportation Number of people
(1) Train 12
(2) Bus 30
(3) Car 48
(4) Bicycle 10

So, what’s the average transportation type? Obviously, the answer here is that there isn’t one. It’s a
silly question to ask. You can say that travel by car is the most popular method, and travel by train is
the least popular method, but that’s about all. Similarly, notice that the order in which I list the options
isn’t very interesting. I could have chosen to display the data like this

Transportation Number of people
(3) Car 48
(1) Train 12
(4) Bicycle 10
(2) Bus 30

and nothing really changes.

2.2.2 Ordinal scale

Ordinal scale variables have a bit more structure than nominal scale variables, but not by a lot. An
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ordinal scale variable is one in which there is a natural, meaningful way to order the different possibilities,
but you can’t do anything else. The usual example given of an ordinal variable is “finishing position in
a race”. You can say that the person who finished first was faster than the person who finished second,
but you don’t know how much faster. As a consequence we know that 1st ą 2nd, and we know that 2nd
ą 3rd, but the difference between 1st and 2nd might be much larger than the difference between 2nd and
3rd.

Here’s an more psychologically interesting example. Suppose I’m interested in people’s attitudes to
climate change, and I ask them to pick one of these four statements that most closely matches their
beliefs:

(1) Temperatures are rising, because of human activity
(2) Temperatures are rising, but we don’t know why
(3) Temperatures are rising, but not because of humans
(4) Temperatures are not rising

Notice that these four statements actually do have a natural ordering, in terms of “the extent to which
they agree with the current science”. Statement 1 is a close match, statement 2 is a reasonable match,
statement 3 isn’t a very good match, and statement 4 is in strong opposition to the science. So, in terms
of the thing I’m interested in (the extent to which people endorse the science), I can order the items as
1 ą 2 ą 3 ą 4. Since this ordering exists, it would be very weird to list the options like this. . .

(3) Temperatures are rising, but not because of humans
(1) Temperatures are rising, because of human activity
(4) Temperatures are not rising
(2) Temperatures are rising, but we don’t know why

. . . because it seems to violate the natural “structure” to the question.

So, let’s suppose I asked 100 people these questions, and got the following answers:

Response Number
(1) Temperatures are rising, because of human activity 51
(2) Temperatures are rising, but we don’t know why 20
(3) Temperatures are rising, but not because of humans 10
(4) Temperatures are not rising 19

When analysing these data, it seems quite reasonable to try to group (1), (2) and (3) together, and say
that 81 of 100 people were willing to at least partially endorse the science. And it’s also quite reasonable
to group (2), (3) and (4) together and say that 49 of 100 people registered at least some disagreement
with the dominant scientific view. However, it would be entirely bizarre to try to group (1), (2) and (4)
together and say that 90 of 100 people said. . . what? There’s nothing sensible that allows you to group
those responses together at all.

That said, notice that while we can use the natural ordering of these items to construct sensible
groupings, what we can’t do is average them. For instance, in my simple example here, the “average”
response to the question is 1.97. If you can tell me what that means, I’d love to know. Because that
sounds like gibberish to me!

2.2.3 Interval scale

In contrast to nominal and ordinal scale variables, interval scale and ratio scale variables are vari-
ables for which the numerical value is genuinely meaningful. In the case of interval scale variables, the
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differences between the numbers are interpretable, but the variable doesn’t have a “natural” zero value.
A good example of an interval scale variable is measuring temperature in degrees celsius. For instance,
if it was 15˝ yesterday and 18˝ today, then the 3˝ difference between the two is genuinely meaningful.
Moreover, that 3˝ difference is exactly the same as the 3˝ difference between 7˝ and 10˝. In short, addition
and subtraction are meaningful for interval scale variables.

However, notice that the 0˝ does not mean “no temperature at all”: it actually means “the temperature
at which water freezes”, which is pretty arbitrary. As a consequence, it becomes pointless to try to
multiply and divide temperatures. It is wrong to say that 20˝ is twice as hot as 10˝, just as it is weird
and meaningless to try to claim that 20˝ is negative two times as hot as ´10˝.

Again, lets look at a more psychological example. Suppose I’m interested in looking at how the
attitudes of first-year university students have changed over time. Obviously, I’m going to want to record
the year in which each student started. This is an interval scale variable. A student who started in 2003
did arrive 5 years before a student who started in 2008. However, it would be completely insane for me
to divide 2008 by 2003 and say that the second student started “1.0024 times later” than the first one.
That doesn’t make any sense at all.

2.2.4 Ratio scale

The fourth and final type of variable to consider is a ratio scale variable, in which zero really means
zero, and it’s okay to multiply and divide. A good psychological example of a ratio scale variable is
response time (RT). In a lot of tasks it’s very common to record the amount of time somebody takes to
solve a problem or answer a question, because it’s an indicator of how difficult the task is. Suppose that
Alan takes 2.3 seconds to respond to a question, whereas Ben takes 3.1 seconds. As with an interval scale
variable, addition and subtraction are both meaningful here. Ben really did take 3.1´ 2.3 “ 0.8 seconds
longer than Alan did. However, notice that multiplication and division also make sense here too: Ben
took 3.1{2.3 “ 1.35 times as long as Alan did to answer the question. And the reason why you can do
this is that, for a ratio scale variable such as RT, “zero seconds” really does mean “no time at all”.

2.2.5 Continuous versus discrete variables

There’s a second kind of distinction that you need to be aware of, regarding what types of variables you
can run into. This is the distinction between continuous variables and discrete variables. The difference
between these is as follows:

• A continuous variable is one in which, for any two values that you can think of, it’s always
logically possible to have another value in between.

• A discrete variable is, in effect, a variable that isn’t continuous. For a discrete variable, it’s
sometimes the case that there’s nothing in the middle.

These definitions probably seem a bit abstract, but they’re pretty simple once you see some examples.
For instance, response time is continuous. If Alan takes 3.1 seconds and Ben takes 2.3 seconds to respond
to a question, then it’s possible for Cameron’s response time to lie in between, by taking 3.0 seconds.
And of course it would also be possible for David to take 3.031 seconds to respond, meaning that his RT
would lie in between Cameron’s and Alan’s. And while in practice it might be impossible to measure
RT that precisely, it’s certainly possible in principle. Because we can always find a new value for RT in
between any two other ones, we say that RT is continuous.

Discrete variables occur when this rule is violated. For example, nominal scale variables are always
discrete: there isn’t a type of transportation that falls “in between” trains and bicycles, not in the strict
mathematical way that 2.3 falls in between 2 and 3. So transportation type is discrete. Similarly, ordinal
scale variables are always discrete: although “2nd place” does fall between “1st place” and “3rd place”,
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Table 2.1: The relationship between the scales of measurement and the discrete/continuity distinction.
Cells with a tick mark correspond to things that are possible.

continuous discrete
nominal X

ordinal X

interval X X

ratio X X

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

there’s nothing that can logically fall in between “1st place” and “2nd place”. Interval scale and ratio
scale variables can go either way. As we saw above, response time (a ratio scale variable) is continuous.
Temperature in degrees celsius (an interval scale variable) is also continuous. However, the year you went
to school (an interval scale variable) is discrete. There’s no year in between 2002 and 2003. The number of
questions you get right on a true-or-false test (a ratio scale variable) is also discrete: since a true-or-false
question doesn’t allow you to be “partially correct”, there’s nothing in between 5/10 and 6/10. Table 2.1
summarises the relationship between the scales of measurement and the discrete/continuity distinction.
Cells with a tick mark correspond to things that are possible. I’m trying to hammer this point home,
because (a) some textbooks get this wrong, and (b) people very often say things like “discrete variable”
when they mean “nominal scale variable”. It’s very unfortunate.

2.2.6 Some complexities

Okay, I know you’re going to be shocked to hear this, but . . . the real world is much messier than
this little classification scheme suggests. Very few variables in real life actually fall into these nice neat
categories, so you need to be kind of careful not to treat the scales of measurement as if they were
hard and fast rules. It doesn’t work like that: they’re guidelines, intended to help you think about the
situations in which you should treat different variables differently. Nothing more.

So let’s take a classic example, maybe the classic example, of a psychological measurement tool: the
Likert scale. The humble Likert scale is the bread and butter tool of all survey design. You yourself
have filled out hundreds, maybe thousands of them, and odds are you’ve even used one yourself. Suppose
we have a survey question that looks like this:

Which of the following best describes your opinion of the statement that “all pirates are
freaking awesome” . . .

and then the options presented to the participant are these:

(1) Strongly disagree
(2) Disagree
(3) Neither agree nor disagree
(4) Agree
(5) Strongly agree

This set of items is an example of a 5-point Likert scale: people are asked to choose among one of
several (in this case 5) clearly ordered possibilities, generally with a verbal descriptor given in each case.
However, it’s not necessary that all items be explicitly described. This is a perfectly good example of a
5-point Likert scale too:
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(1) Strongly disagree
(2)
(3)
(4)
(5) Strongly agree

Likert scales are very handy, if somewhat limited, tools. The question is, what kind of variable are
they? They’re obviously discrete, since you can’t give a response of 2.5. They’re obviously not nominal
scale, since the items are ordered; and they’re not ratio scale either, since there’s no natural zero.

But are they ordinal scale or interval scale? One argument says that we can’t really prove that the
difference between “strongly agree” and “agree” is of the same size as the difference between “agree”
and “neither agree nor disagree”. In fact, in everyday life it’s pretty obvious that they’re not the same
at all. So this suggests that we ought to treat Likert scales as ordinal variables. On the other hand, in
practice most participants do seem to take the whole “on a scale from 1 to 5” part fairly seriously, and
they tend to act as if the differences between the five response options were fairly similar to one another.
As a consequence, a lot of researchers treat Likert scale data as if it were interval scale. It’s not interval
scale, but in practice it’s close enough that we usually think of it as being quasi-interval scale.

2.3

Assessing the reliability of a measurement

At this point we’ve thought a little bit about how to operationalise a theoretical construct and thereby
create a psychological measure; and we’ve seen that by applying psychological measures we end up with
variables, which can come in many different types. At this point, we should start discussing the obvious
question: is the measurement any good? We’ll do this in terms of two related ideas: reliability and
validity. Put simply, the reliability of a measure tells you how precisely you are measuring something,
whereas the validity of a measure tells you how accurate the measure is. In this section I’ll talk about
reliability; we’ll talk about validity in the next chapter.

Reliability is actually a very simple concept: it refers to the repeatability or consistency of your
measurement. The measurement of my weight by means of a “bathroom scale” is very reliable: if I step
on and off the scales over and over again, it’ll keep giving me the same answer. Measuring my intelligence
by means of “asking my mum” is very unreliable: some days she tells me I’m a bit thick, and other days
she tells me I’m a complete moron. Notice that this concept of reliability is different to the question of
whether the measurements are correct (the correctness of a measurement relates to it’s validity). If I’m
holding a sack of potatos when I step on and off of the bathroom scales, the measurement will still be
reliable: it will always give me the same answer. However, this highly reliable answer doesn’t match up to
my true weight at all, therefore it’s wrong. In technical terms, this is a reliable but invalid measurement.
Similarly, while my mum’s estimate of my intelligence is a bit unreliable, she might be right. Maybe I’m
just not too bright, and so while her estimate of my intelligence fluctuates pretty wildly from day to day,
it’s basically right. So that would be an unreliable but valid measure. Of course, to some extent, notice
that if my mum’s estimates are too unreliable, it’s going to be very hard to figure out which one of her
many claims about my intelligence is actually the right one. To some extent, then, a very unreliable
measure tends to end up being invalid for practical purposes; so much so that many people would say
that reliability is necessary (but not sufficient) to ensure validity.

Okay, now that we’re clear on the distinction between reliability and validity, let’s have a think about
the different ways in which we might measure reliability:

• Test-retest reliability. This relates to consistency over time: if we repeat the measurement at a
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later date, do we get a the same answer?

• Inter-rater reliability. This relates to consistency across people: if someone else repeats the
measurement (e.g., someone else rates my intelligence) will they produce the same answer?

• Parallel forms reliability. This relates to consistency across theoretically-equivalent measure-
ments: if I use a different set of bathroom scales to measure my weight, does it give the same
answer?

• Internal consistency reliability. If a measurement is constructed from lots of different parts
that perform similar functions (e.g., a personality questionnaire result is added up across several
questions) do the individual parts tend to give similar answers.

Not all measurements need to possess all forms of reliability. For instance, educational assessment can
be thought of as a form of measurement. One of the subjects that I teach, Computational Cognitive
Science, has an assessment structure that has a research component and an exam component (plus other
things). The exam component is intended to measure something different from the research component,
so the assessment as a whole has low internal consistency. However, within the exam there are several
questions that are intended to (approximately) measure the same things, and those tend to produce
similar outcomes; so the exam on its own has a fairly high internal consistency. Which is as it should be.
You should only demand reliability in those situations where you want to be measure the same thing!

2.4

The “role” of variables: predictors and outcomes

Okay, I’ve got one last piece of terminology that I need to explain to you before moving away from
variables. Normally, when we do some research we end up with lots of different variables. Then, when we
analyse our data we usually try to explain some of the variables in terms of some of the other variables.
It’s important to keep the two roles “thing doing the explaining” and “thing being explained” distinct.
So let’s be clear about this now. Firstly, we might as well get used to the idea of using mathematical
symbols to describe variables, since it’s going to happen over and over again. Let’s denote the “to be
explained” variable Y , and denote the variables “doing the explaining” as X1, X2, etc.

Now, when we doing an analysis, we have different names for X and Y , since they play different roles
in the analysis. The classical names for these roles are independent variable (IV) and dependent
variable (DV). The IV is the variable that you use to do the explaining (i.e., X) and the DV is the variable
being explained (i.e., Y ). The logic behind these names goes like this: if there really is a relationship
between X and Y then we can say that Y depends on X, and if we have designed our study “properly”
then X isn’t dependent on anything else. However, I personally find those names horrible: they’re hard to
remember and they’re highly misleading, because (a) the IV is never actually “independent of everything
else” and (b) if there’s no relationship, then the DV doesn’t actually depend on the IV. And in fact,
because I’m not the only person who thinks that IV and DV are just awful names, there are a number
of alternatives that I find more appealing. The terms that I’ll use in these notes are predictors and
outcomes. The idea here is that what you’re trying to do is use X (the predictors) to make guesses
about Y (the outcomes).1 This is summarised in Table 2.2.

1Annoyingly, though, there’s a lot of different names used out there. I won’t list all of them – there would be no point
in doing that – other than to note that R often uses “response variable” where I’ve used “outcome”, and a traditionalist
would use “dependent variable”. Sigh. This sort of terminological confusion is very common, I’m afraid.
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Table 2.2: The terminology used to distinguish between different roles that a variable can play when
analysing a data set. Note that this book will tend to avoid the classical terminology in favour of the
newer names.

role of the variable classical name modern name
“to be explained” dependent variable (DV) outcome
“to do the explaining” independent variable (IV) predictor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5

Experimental and non-experimental research

One of the big distinctions that you should be aware of is the distinction between “experimental research”
and “non-experimental research”. When we make this distinction, what we’re really talking about is the
degree of control that the researcher exercises over the people and events in the study.

2.5.1 Experimental research

The key features of experimental research is that the researcher controls all aspects of the study,
especially what participants experience during the study. In particular, the researcher manipulates or
varies the predictor variables (IVs), and then allows the outcome variable (DV) to vary naturally. The
idea here is to deliberately vary the predictors (IVs) to see if they have any causal effects on the outcomes.
Moreover, in order to ensure that there’s no chance that something other than the predictor variables
is causing the outcomes, everything else is kept constant or is in some other way “balanced” to ensure
that they have no effect on the results. In practice, it’s almost impossible to think of everything else that
might have an influence on the outcome of an experiment, much less keep it constant. The standard
solution to this is randomisation: that is, we randomly assign people to different groups, and then give
each group a different treatment (i.e., assign them different values of the predictor variables). We’ll talk
more about randomisation later in this course, but for now, it’s enough to say that what randomisation
does is minimise (but not eliminate) the chances that there are any systematic difference between groups.

Let’s consider a very simple, completely unrealistic and grossly unethical example. Suppose you
wanted to find out if smoking causes lung cancer. One way to do this would be to find people who smoke
and people who don’t smoke, and look to see if smokers have a higher rate of lung cancer. This is not
a proper experiment, since the researcher doesn’t have a lot of control over who is and isn’t a smoker.
And this really matters: for instance, it might be that people who choose to smoke cigarettes also tend
to have poor diets, or maybe they tend to work in asbestos mines, or whatever. The point here is that
the groups (smokers and non-smokers) actually differ on lots of things, not just smoking. So it might be
that the higher incidence of lung cancer among smokers is caused by something else, not by smoking per
se. In technical terms, these other things (e.g. diet) are called “confounds”, and we’ll talk about those
in just a moment.

In the meantime, let’s now consider what a proper experiment might look like. Recall that our concern
was that smokers and non-smokers might differ in lots of ways. The solution, as long as you have no
ethics, is to control who smokes and who doesn’t. Specifically, if we randomly divide participants into
two groups, and force half of them to become smokers, then it’s very unlikely that the groups will differ
in any respect other than the fact that half of them smoke. That way, if our smoking group gets cancer
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at a higher rate than the non-smoking group, then we can feel pretty confident that (a) smoking does
cause cancer and (b) we’re murderers.

2.5.2 Non-experimental research

Non-experimental research is a broad term that covers “any study in which the researcher doesn’t
have quite as much control as they do in an experiment”. Obviously, control is something that scientists
like to have, but as the previous example illustrates, there are lots of situations in which you can’t or
shouldn’t try to obtain that control. Since it’s grossly unethical (and almost certainly criminal) to force
people to smoke in order to find out if they get cancer, this is a good example of a situation in which
you really shouldn’t try to obtain experimental control. But there are other reasons too. Even leaving
aside the ethical issues, our “smoking experiment” does have a few other issues. For instance, when I
suggested that we “force” half of the people to become smokers, I must have been talking about starting
with a sample of non-smokers, and then forcing them to become smokers. While this sounds like the
kind of solid, evil experimental design that a mad scientist would love, it might not be a very sound
way of investigating the effect in the real world. For instance, suppose that smoking only causes lung
cancer when people have poor diets, and suppose also that people who normally smoke do tend to have
poor diets. However, since the “smokers” in our experiment aren’t “natural” smokers (i.e., we forced
non-smokers to become smokers; they didn’t take on all of the other normal, real life characteristics that
smokers might tend to possess) they probably have better diets. As such, in this silly example they
wouldn’t get lung cancer, and our experiment will fail, because it violates the structure of the “natural”
world (the technical name for this is an “artifactual” result; see later).

One distinction worth making between two types of non-experimental research is the difference be-
tween quasi-experimental research and case studies. The example I discussed earlier – in which we
wanted to examine incidence of lung cancer among smokers and non-smokers, without trying to control
who smokes and who doesn’t – is a quasi-experimental design. That is, it’s the same as an experiment,
but we don’t control the predictors (IVs). We can still use statistics to analyse the results, it’s just that
we have to be a lot more careful.

The alternative approach, case studies, aims to provide a very detailed description of one or a few
instances. In general, you can’t use statistics to analyse the results of case studies, and it’s usually very
hard to draw any general conclusions about “people in general” from a few isolated examples. However,
case studies are very useful in some situations. Firstly, there are situations where you don’t have any
alternative: neuropsychology has this issue a lot. Sometimes, you just can’t find a lot of people with
brain damage in a specific area, so the only thing you can do is describe those cases that you do have in
as much detail and with as much care as you can. However, there’s also some genuine advantages to case
studies: because you don’t have as many people to study, you have the ability to invest lots of time and
effort trying to understand the specific factors at play in each case. This is a very valuable thing to do.
As a consequence, case studies can complement the more statistically-oriented approaches that you see in
experimental and quasi-experimental designs. We won’t talk much about case studies in these lectures,
but they are nevertheless very valuable tools!

2.6

Assessing the validity of a study

More than any other thing, a scientist wants their research to be “valid”. The conceptual idea behind
validity is very simple: can you trust the results of your study? If not, the study is invalid. However,
while it’s easy to state, in practice it’s much harder to check validity than it is to check reliability. And
in all honesty, there’s no precise, clearly agreed upon notion of what validity actually is. In fact, there’s
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lots of different kinds of validity, each of which raises it’s own issues, and not all forms of validity are
relevant to all studies. I’m going to talk about five different types:

• Internal validity

• External validity

• Construct validity

• Face validity

• Ecological validity

To give you a quick guide as to what matters here. . . (1) Internal and external validity are the most
important, since they tie directly to the fundamental question of whether your study really works. (2)
Construct validity asks whether you’re measuring what you think you are. (3) Face validity isn’t terribly
important except insofar as you care about “appearances”. (4) Ecological validity is a special case of face
validity that corresponds to a kind of appearance that you might care about a lot.

2.6.1 Internal validity

Internal validity refers to the extent to which you are able draw the correct conclusions about the
causal relationships between variables. It’s called “internal” because it refers to the relationships between
things “inside” the study. Let’s illustrate the concept with a simple example. Suppose you’re interested
in finding out whether a university education makes you write better. To do so, you get a group of first
year students, ask them to write a 1000 word essay, and count the number of spelling and grammatical
errors they make. Then you find some third-year students, who obviously have had more of a university
education than the first-years, and repeat the exercise. And let’s suppose it turns out that the third-year
students produce fewer errors. And so you conclude that a university education improves writing skills.
Right? Except... the big problem that you have with this experiment is that the third-year students are
older, and they’ve had more experience with writing things. So it’s hard to know for sure what the causal
relationship is: Do older people write better? Or people who have had more writing experience? Or
people who have had more education? Which of the above is the true cause of the superior performance
of the third-years? Age? Experience? Education? You can’t tell. This is an example of a failure of
internal validity, because your study doesn’t properly tease apart the causal relationships between the
different variables.

2.6.2 External validity

External validity relates to the generalisability of your findings. That is, to what extent do you
expect to see the same pattern of results in “real life” as you saw in your study. To put it a bit more
precisely, any study that you do in psychology will involve a fairly specific set of questions or tasks, will
occur in a specific environment, and will involve participants that are drawn from a particular subgroup.
So, if it turns out that the results don’t actually generalise to people and situations beyond the ones that
you studied, then what you’ve got is a lack of external validity.

The classic example of this issue is the fact that a very large proportion of studies in psychology will
use undergraduate psychology students as the participants. Obviously, however, the researchers don’t
care only about psychology students; they care about people in general. Given that, a study that uses
only psych students as participants always carries a risk of lacking external validity. That is, if there’s
something “special” about psychology students that makes them different to the general populace in
some relevant respect, then we may start worrying about a lack of external validity.
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That said, it is absolutely critical to realise that a study that uses only psychology students does not
necessarily have a problem with external validity. I’ll talk about this again later, but it’s such a common
mistake that I’m going to mention it here. The external validity is threatened by the choice of population
if (a) the population from which you sample your participants is very narrow (e.g., psych students), and
(b) the narrow population that you sampled from is systematically different from the general population,
in some respect that is relevant to the psychological phenomenon that you intend to study. The italicised
part is the bit that lots of people forget: it is true that psychology undergraduates differ from the general
population in lots of ways, and so a study that uses only psych students may have problems with external
validity. However, if those differences aren’t very relevant to the phenomenon that you’re studying, then
there’s nothing to worry about. To make this a bit more concrete, here’s two extreme examples:

• You want to measure “attitudes of the general public towards psychotherapy”, but all of your
participants are psychology students. This study would almost certainly have a problem with
external validity.

• You want to measure the effectiveness of a visual illusion, and your participants are all psychology
students. This study is very unlikely to have a problem with external validity

Having just spent the last couple of paragraphs focusing on the choice of participants (since that’s the
big issue that everyone tends to worry most about), it’s worth remembering that external validity is a
broader concept. The following are also examples of things that might pose a threat to external validity,
depending on what kind of study you’re doing:

• People might answer a “psychology questionnaire” an a manner that doesn’t reflect what they
would do in real life.

• Your lab experiment on (say) “human learning” has a different structure to the learning problems
people face in real life.

2.6.3 Construct validity

Construct validity is basically a question of whether you’re measuring what you want to be mea-
suring. A measurement has good construct validity if it is actually measuring the correct theoretical
construct, and bad construct validity if it doesn’t. To give very simple (if ridiculous) example, suppose
I’m trying to investigate the rates with which university students cheat on their exams. And the way I
attempt to measure it is by asking the cheating students to stand up in the lecture theatre so that I can
count them. When I do this with a class of 300 students, 0 people claim to be cheaters. So I therefore
conclude that the proportion of cheaters in my class is 0%. Clearly this is a bit ridiculous. But the point
here is not that this is a very deep methodological example, but rather to explain what construct validity
is. The problem with my measure is that while I’m trying to measure “the proportion of people who
cheat” what I’m actually measuring is “the proportion of people stupid enough to own up to cheating, or
bloody minded enough to pretend that they do”. Obviously, these aren’t the same thing! So my study
has gone wrong, because my measurement has very poor construct validity.

2.6.4 Face validity

Face validity simply refers to whether or not a measure “looks like” it’s doing what it’s supposed to,
nothing more. If I design a test of intelligence, and people look at it and they say “no, that test doesn’t
measure intelligence”, then the measure lacks face validity. It’s as simple as that. Obviously, face validity
isn’t very important from a pure scientific perspective. After all, what we care about is whether or not
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the measure actually does what it’s supposed to do, not whether it looks like it does what it’s supposed
to do. As a consequence, we generally don’t care very much about face validity. That said, the concept
of face validity serves three useful pragmatic purposes:

• Sometimes, an experienced scientist will have a “hunch” that a particular measure won’t work.
While these sorts of hunches have no strict evidentiary value, it’s often worth paying attention to
them. Because often times people have knowledge that they can’t quite verbalise, so there might be
something to worry about even if you can’t quite say why. In other words, when someone you trust
criticises the face validity of your study, it’s worth taking the time to think more carefully about
your design to see if you can think of reasons why it might go awry. Mind you, if you don’t find
any reason for concern, then you should probably not worry: after all, face validity really doesn’t
matter much.

• Often (very often), completely uninformed people will also have a “hunch” that your research is
crap. And they’ll criticise it on the internet or something. On close inspection, you’ll often notice
that these criticisms are actually focused entirely on how the study “looks”, but not on anything
deeper. The concept of face validity is useful for gently explaining to people that they need to
substantiate their arguments further.

• Expanding on the last point, if the beliefs of untrained people are critical (e.g., this is often the
case for applied research where you actually want to convince policy makers of something or other)
then you have to care about face validity. Simply because – whether you like it or not – a lot of
people will use face validity as a proxy for real validity. If you want the government to change a
law on scientific, psychological grounds, then it won’t matter how good your studies “really” are. If
they lack face validity, you’ll find that politicians ignore you. Of course, it’s somewhat unfair that
policy often depends more on appearance than fact, but that’s how things go.

2.6.5 Ecological validity

Ecological validity is a different notion of validity, which is similar to external validity, but less
important. The idea is that, in order to be ecologically valid, the entire set up of the study should closely
approximate the real world scenario that is being investigated. In a sense, ecological validity is a kind
of face validity – it relates mostly to whether the study “looks” right, but with a bit more rigour to it.
To be ecologically valid, the study has to look right in a fairly specific way. The idea behind it is the
intuition that a study that is ecologically valid is more likely to be externally valid. It’s no guarantee,
of course. But the nice thing about ecological validity is that it’s much easier to check whether a study
is ecologically valid than it is to check whether a study is externally valid. An simple example would
be eyewitness identification studies. Most of these studies tend to be done in a university setting, often
with fairly simple array of faces to look at rather than a line up. The length of time between seeing the
“criminal” and being asked to identify the suspect in the “line up” is usually shorter. The “crime” isn’t
real, so there’s no chance that the witness being scared, and there’s no police officers present, so there’s
not as much chance of feeling pressured. These things all mean that the study definitely lacks ecological
validity. They might (but might not) mean that it also lacks external validity.

2.7

Confounds, artifacts and other threats to validity

If we look at the issue of validity in the most general fashion, the two biggest worries that we have are
confounds and artifact. These two terms are defined in the following way:
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• Confound: A confound is an additional, often unmeasured variable2 that turns out to be related
to both the predictors and the outcomes. The existence of confounds threatens the internal validity
of the study because you can’t tell whether the predictor causes the outcome, or if the confounding
variable causes it, etc.

• Artifact: A result is said to be “artifactual” if it only holds in the special situation that you
happened to test in your study. The possibility that your result is an artifact describes a threat to
your external validity, because it raises the possibility that you can’t generalise your results to the
actual population that you care about.

As a general rule confounds are a bigger concern for non-experimental studies, precisely because they’re
not proper experiments: by definition, you’re leaving lots of things uncontrolled, so there’s a lot of scope
for confounds working their way into your study. Experimental research tends to be much less vulnerable
to confounds: the more control you have over what happens during the study, the more you can prevent
confounds from appearing.

However, there’s always swings and roundabouts, and when we start thinking about artifacts rather
than confounds, the shoe is very firmly on the other foot. For the most part, artifactual results tend to
be a concern for experimental studies than for non-experimental studies. To see this, it helps to realise
that the reason that a lot of studies are non-experimental is precisely because what the researcher is
trying to do is examine human behaviour in a more naturalistic context. By working in a more real-world
context, you lose experimental control (making yourself vulnerable to confounds) but because you tend
to be studying human psychology “in the wild” you reduce the chances of getting an artifactual result.
Or, to put it another way, when you take psychology out of the wild and bring it into the lab (which we
usually have to do to gain our experimental control), you always run the risk of accidentally studying
something different than you wanted to study: which is more or less the definition of an artifact.

Be warned though: the above is a rough guide only. It’s absolutely possible to have confounds in an
experiment, and to get artifactual results with non-experimental studies. This can happen for all sorts
of reasons, not least of which is researcher error. In practice, it’s really hard to think everything through
ahead of time, and even very good researchers make mistakes. But other times it’s unavoidable, simply
because the researcher has ethics (e.g., see “differential attrition”).

Okay. There’s a sense in which almost any threat to validity can be characterised as a confound or
an artifact: they’re pretty vague concepts. So let’s have a look at some of the most common examples. . .

2.7.1 History effects

History effects refer to the possibility that specific events may occur during the study itself that
might influence the outcomes. For instance, something might happen in between a pre-test and a post-
test. Or, in between testing participant 23 and participant 24. Alternatively, it might be that you’re
looking at an older study, which was perfectly valid for its time, but the world has changed enough since
then that the conclusions are no longer trustworthy. Examples of things that would count as history
effects:

• You’re interested in how people think about risk and uncertainty. You started your data collection
in December 2010. But finding participants and collecting data takes time, so you’re still finding
new people in February 2011. Unfortunately for you (and even more unfortunately for others),
the Queensland floods occurred in January 2011, causing billions of dollars of damage and killing

2The reason why I say that it’s unmeasured is that if you have measured it, then you can use some fancy statistical tricks
to deal with the confound. Because of the existence of these statistical solutions to the problem of confounds, we often refer
to a confound that we have measured and dealt with as a covariate. Dealing with covariates is a topic for a more advanced
course, but I thought I’d mention it in passing, since it’s kind of comforting to at least know that this stuff exists.
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many people. Not surprisingly, the people tested in February 2011 express quite different beliefs
about handling risk than the people tested in December 2010. Which (if any) of these reflects the
“true” beliefs of participants? I think the answer is probably both: the Queensland floods genuinely
changed the beliefs of the Australian public, though possibly only temporarily. The key thing here
is that the “history” of the people tested in February is quite different to people tested in December.

• You’re testing the psychological effects of a new anti-anxiety drug. So what you do is measure
anxiety before administering the drug (e.g., by self-report, and taking physiological measures, let’s
say), then you administer the drug, and then you take the same measures afterwards. In the middle,
however, because your labs are in Los Angeles, there’s an earthquake, which increases the anxiety
of the participants.

2.7.2 Maturation effects

As with history effects, maturational effects are fundamentally about change over time. However,
maturation effects aren’t in response to specific events. Rather, they relate to how people change on their
own over time: we get older, we get tired, we get bored, etc. Some examples of maturation effects:

• When doing developmental psychology research, you need to be aware that children grow up quite
rapidly. So, suppose that you want to find out whether some educational trick helps with vocabulary
size among 3 year olds. One thing that you need to be aware of is that the vocabulary size of children
that age is growing at an incredible rate (multiple words per day), all on its own. If you design
your study without taking this maturational effect into account, then you won’t be able to tell if
your educational trick works.

• When running a very long experiment in the lab (say, something that goes for 3 hours), it’s very
likely that people will begin to get bored and tired, and that this maturational effect will cause
performance to decline, regardless of anything else going on in the experiment

2.7.3 Repeated testing effects

An important type of history effect is the effect of repeated testing. Suppose I want to take two
measurements of some psychological construct (e.g., anxiety). One thing I might be worried about is if
the first measurement has an effect on the second measurement. In other words, this is a history effect
in which the “event” that influences the second measurement is the first measurement itself! This is not
at all uncommon. Examples of this include:

• Learning and practice: e.g., “intelligence” at time 2 might appear to go up relative to time 1 because
participants learned the general rules of how to solve “intelligence-test-style” questions during the
first testing session.

• Familiarity with the testing situation: e.g., if people are nervous at time 1, this might make per-
formance go down; after sitting through the first testing situation, they might calm down a lot
precisely because they’ve seen what the testing looks like.

• Auxiliary changes caused by testing: e.g., if a questionnaire assessing mood is boring, then mood at
measurement at time 2 is more likely to become “bored”, precisely because of the boring measure-
ment made at time 1.
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2.7.4 Selection bias

Selection bias is a pretty broad term. Suppose that you’re running an experiment with two groups
of participants, where each group gets a different “treatment”, and you want to see if the different
treatments lead to different outcomes. However, suppose that, despite your best efforts, you’ve ended up
with a gender imbalance across groups (say, group A has 80% females and group B has 50% females).
It might sound like this could never happen, but trust me, it can. This is an example of a selection
bias, in which the people “selected into” the two groups have different characteristics. If any of those
characteristics turns out to be relevant (say, your treatment works better on females than males) then
you’re in a lot of trouble.

2.7.5 Differential attrition

One quite subtle danger to be aware of is called differential attrition, which is a kind of selection
bias that is caused by the study itself. Suppose that, for the first time ever in the history of psychology,
I manage to find the perfectly balanced and representative sample of people. I start running “Dan’s
incredibly long and tedious experiment” on my perfect sample, but then, because my study is incredibly
long and tedious, lots of people start dropping out. I can’t stop this: as we’ll discuss later in the chapter
on research ethics, participants absolutely have the right to stop doing any experiment, any time, for
whatever reason they feel like, and as researchers we are morally (and professionally) obliged to remind
people that they do have this right. So, suppose that “Dan’s incredibly long and tedious experiment”
has a very high drop out rate. What do you suppose the odds are that this drop out is random? Answer:
zero. Almost certainly, the people who remain are more conscientious, more tolerant of boredom etc than
those that leave. To the extent that (say) conscientiousness is relevant to the psychological phenomenon
that I care about, this attrition can decrease the validity of my results.

When thinking about the effects of differential attrition, it is sometimes helpful to distinguish between
two different types. The first is homogeneous attrition, in which the attrition effect is the same for
all groups, treatments or conditions. In the example I gave above, the differential attrition would be
homogeneous if (and only if) the easily bored participants are dropping out of all of the conditions in
my experiment at about the same rate. In general, the main effect of homogeneous attrition is likely to
be that it makes your sample unrepresentative. As such, the biggest worry that you’ll have is that the
generalisability of the results decreases: in other words, you lose external validity.

The second type of differential attrition is heterogeneous attrition, in which the attrition effect is
different for different groups. This is a much bigger problem: not only do you have to worry about your
external validity, you also have to worry about your internal validity too. To see why this is the case, let’s
consider a very dumb study in which I want to see if insulting people makes them act in a more obedient
way. Why anyone would actually want to study that I don’t know, but let’s suppose I really, deeply
cared about this. So, I design my experiment with two conditions. In the “treatment” condition, the
experimenter insults the participant and then gives them a questionnaire designed to measure obedience.
In the “control” condition, the experimenter engages in a bit of pointless chitchat and then gives them
the questionnaire. Leaving aside the questionable scientific merits and dubious ethics of such a study,
let’s have a think about what might go wrong here. As a general rule, when someone insults me to my
face, I tend to get much less co-operative. So, there’s a pretty good chance that a lot more people are
going to drop out of the treatment condition than the control condition. And this drop out isn’t going
to be random. The people most likely to drop out would probably be the people who don’t care all
that much about the importance of obediently sitting through the experiment. Since the most bloody
minded and disobedient people all left the treatment group but not the control group, we’ve introduced
a confound: the people who actually took the questionnaire in the treatment group were already more
likely to be dutiful and obedient than the people in the control group. In short, in this study insulting
people doesn’t make them more obedient: it makes the more disobedient people leave the experiment!
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The internal validity of this experiment is completely shot.

2.7.6 Non-response bias

Non-response bias is closely related to selection bias, and to differential attrition. The simplest
version of the problem goes like this. You mail out a survey to 1000 people, and only 300 of them reply.
The 300 people who replied are almost certainly not a random subsample. People who respond to surveys
are systematically different to people who don’t. This introduces a problem when trying to generalise
from those 300 people who replied, to the population at large; since you now have a very non-random
sample. The issue of non-response bias is more general than this, though. Among the (say) 300 people
that did respond to the survey, you might find that not everyone answers every question. If (say) 80
people chose not to answer one of your questions, does this introduce problems? As always, the answer
is maybe. If the question that wasn’t answered was on the last page of the questionnaire, and those 80
surveys were returned with the last page missing, there’s a good chance that the missing data isn’t a
big deal: probably the pages just fell off. However, if the question that 80 people didn’t answer was the
most confrontational or invasive personal question in the questionnaire, then almost certainly you’ve got
a problem. In essence, what you’re dealing with here is what’s called the problem of missing data. If
the data that is missing was “lost” randomly, then it’s not a big problem. If it’s missing systematically,
then it can be a big problem.

2.7.7 Regression to the mean

Regression to the mean is a curious variation on selection bias. It refers to any situation where
you select data based on an extreme value on some measure. Because the measure has natural variation,
it almost certainly means that when you take a subsequent measurement, that later measurement will be
less extreme than the first one, purely by chance.

Here’s an example. Suppose I’m interested in whether a psychology education has an adverse effect
on very smart kids. To do this, I find the 20 psych I students with the best high school grades and look
at how well they’re doing at university. It turns out that they’re doing a lot better than average, but
they’re not topping the class at university, even though they did top their classes at high school. What’s
going on? The natural first thought is that this must mean that the psychology classes must be having
an adverse effect on those students. However, while that might very well be the explanation, it’s more
likely that what you’re seeing is an example of “regression to the mean”. To see how it works, let’s take a
moment to think about what is required to get the best mark in a class, regardless of whether that class
be at high school or at university. When you’ve got a big class, there are going to be lots of very smart
people enrolled. To get the best mark you have to be very smart, work very hard, and be a bit lucky.
The exam has to ask just the right questions for your idiosyncratic skills, and you have to not make any
dumb mistakes (we all do that sometimes) when answering them. And that’s the thing: intelligence and
hard work are transferrable from one class to the next. Luck isn’t. The people who got lucky in high
school won’t be the same as the people who get lucky at university. That’s the very definition of “luck”.
The consequence of this is that, when you select people at the very extreme values of one measurement
(the top 20 students), you’re selecting for hard work, skill and luck. But because the luck doesn’t transfer
to the second measurement (only the skill and work), these people will all be expected to drop a little bit
when you measure them a second time (at university). So their scores fall back a little bit, back towards
everyone else. This is regression to the mean.

Regression to the mean is surprisingly common. For instance, if two very tall people have kids, their
children will tend to be taller than average, but not as tall as the parents. The reverse happens with very
short parents: two very short parents will tend to have short children, but nevertheless those kids will
tend to be taller than the parents. It can also be extremely subtle. Quite some time ago (sorry, haven’t
tracked down the references yet) there was some research done that suggested that people learn better
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from negative feedback than from positive feedback. However, the way that people tried to show this was
to give people positive reinforcement whenever they did good, and negative reinforcement when they did
bad. And what you see is that after the positive reinforcement, people tended to do worse; but after the
negative reinforcement they tended to do better. But! Notice that there’s a selection bias here: when
people do very well, you’re selecting for “high” values, and so you should expect (because of regression
to the mean) that performance on the next trial should be worse, regardless of whether reinforcement is
given. Similarly, after a bad trial, people will tend to improve all on their own.

2.7.8 Experimenter bias

Experimenter bias can come in multiple forms. The basic idea is that the experimenter, despite the
best of intentions, can accidentally end up influencing the results of the experiment by subtly communi-
cating the “right answer” or the “desired behaviour” to the participants. Typically, this occurs because
the experimenter has special knowledge that the participant does not – either the right answer to the
questions being asked, or knowledge of the expected pattern of performance for the condition that the
participant is in, and so on. The classic example of this happening is the case study of “Clever Hans”,
which dates back to 1907. Clever Hans was a horse that apparently was able to read and count, and
perform other human like feats of intelligence. After Clever Hans became famous, psychologists started
examining his behaviour more closely. It turned out that – not surprisingly – Hans didn’t know how to
do maths. Rather, Hans was responding to the human observers around him. Because they did know
how to count, and the horse had learned to change its behaviour when people changed theirs.

The general solution to the problem of experimenter bias is to engage in double blind studies, where
neither the experimenter nor the participant knows which condition the participant is in, or knows what
the desired behaviour is. This provides a very good solution to the problem, but it’s important to recognise
that it’s not quite ideal, and hard to pull off perfectly. For instance, the obvious way that I could try
to construct a double blind study is to have one of my Ph.D. students (one who doesn’t know anything
about the experiment) run the study. That feels like it should be enough. The only person (me) who
knows all the details (e.g., correct answers to the questions, assignments of participants to conditions)
has no interaction with the participants, and the person who does all the talking to people (the Ph.D.
student) doesn’t know anything. Except, that last part is very unlikely to be true. In order for the Ph.D.
student to run the study effectively, they need to have been briefed by me, the researcher. And, as it
happens, the Ph.D. student also knows me, and knows a bit about my general beliefs about people and
psychology (e.g., I tend to think humans are much smarter than psychologists give them credit for). As
a result of all this, it’s almost impossible for the experimenter to avoid knowing a little bit about what
expectations I have. And even a little bit of knowledge can have an effect: suppose the experimenter
accidentally conveys the fact that the participants are expected to do well in this task. Well, there’s a
thing called the “Pygmalion effect”: if you expect great things of people, they’ll rise to the occasion; but
if you expect them to fail, they’ll do that too. In other words, the expectations become a self-fulfilling
prophesy.

2.7.9 Demand effects and reactivity

When talking about experimenter bias, the worry is that the experimenter’s knowledge or desires for
the experiment are communicated to the participants, and that these effect people’s behaviour. However,
even if you manage to stop this from happening, it’s almost impossible to stop people from knowing that
they’re part of a psychological study. And the mere fact of knowing that someone is watching/studying
you can have a pretty big effect on behaviour. This is generally referred to as reactivity or demand
effects. The basic idea is captured by the Hawthorne effect: people alter their performance because
of the attention that the study focuses on them. The effect takes its name from a the “Hawthorne
Works” factory outside of Chicago. A study done in the 1920s looking at the effects of lighting on worker
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productivity at the factory turned out to be an effect of the fact that the workers knew they were being
studied, rather than the lighting.

To get a bit more specific about some of the ways in which the mere fact of being in a study can change
how people behave, it helps to think like a social psychologist and look at some of the roles that people
might adopt during an experiment, but might not adopt if the corresponding events were occurring in
the real world:

• The good participant tries to be too helpful to the researcher: he or she seeks to figure out the
experimenter’s hypotheses and confirm them.

• The negative participant does the exact opposite of the good participant: he or she seeks to break
or destroy the study or the hypothesis in some way.

• The faithful participant is unnaturally obedient: he or she seeks to follow instructions perfectly,
regardless of what might have happened in a more realistic setting.

• The apprehensive participant gets nervous about being tested or studied, so much so that his or her
behaviour becomes highly unnatural, or overly socially desirable.

2.7.10 Placebo effects

The placebo effect is a specific type of demand effect that we worry a lot about. It refers to the
situation where the mere fact of being treated causes an improvement in outcomes. The classic example
comes from clinical trials: if you give people a completely chemically inert drug and tell them that it’s
a cure for a disease, they will tend to get better faster than people who aren’t treated at all. In other
words, it is people’s belief that they are being treated that causes the improved outcomes, not the drug.

2.7.11 Situation, measurement and subpopulation effects

In some respects, these terms are a catch-all term for “all other threats to external validity”. They
refer to the fact that the choice of subpopulation from which you draw your participants, the location,
timing and manner in which you run your study (including who collects the data) and the tools that you
use to make your measurements might all be influencing the results. Specifically, the worry is that these
things might be influencing the results in such a way that the results won’t generalise to a wider array
of people, places and measures.

2.7.12 Fraud, deception and self-deception

One final thing that I feel like I should mention. While reading what the textbooks often have to
say about assessing the validity of the study, I couldn’t help but notice that they seem to make the
assumption that the researcher is honest. I find this hilarious. While the vast majority of scientists are
honest, in my experience at least, some are not.3 Not only that, as I mentioned earlier, scientists are
not immune to belief bias – it’s easy for a researcher to end up deceiving themselves into believing the
wrong thing, and this can lead them to conduct subtly flawed research, and then hide those flaws when
they write it up. So you need to consider not only the (probably unlikely) possibility of outright fraud,
but also the (probably quite common) possibility that the research is unintentionally “slanted”. Because

3Some people might argue that if you’re not honest then you’re not a real scientist. Which does have some truth to
it I guess, but that’s disingenuous (google the “No true Scotsman” fallacy). The fact is that there are lots of people who
are employed ostensibly as scientists, and whose work has all of the trappings of science, but who are outright fraudulent.
Pretending that they don’t exist by saying that they’re not scientists is just childish.
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I can’t find anything on this in the textbook, here’s my own attempt to list a few ways in which these
issues can arise are:

• Data fabrication. Sometimes, people just make up the data. This is occasionally done with
“good” intentions. For instance, the researcher believes that the fabricated data do reflect the
truth, and may actually reflect “slightly cleaned up” versions of actual data. On other occasions,
the fraud is deliberate and malicious. Some high-profile examples where data fabrication has been
alleged or shown include Cyril Burt (a psychologist who is thought to have fabricated some of
his data), Andrew Wakefield (who has been accused of fabricating his data connecting the MMR
vaccine to autism) and Hwang Woo-suk (who falsified a lot of his data on stem cell research).

• Hoaxes. Hoaxes share a lot of similarities with data fabrication, but they differ in the intended
purpose. A hoax is often a joke, and many of them are intended to be (eventually) discovered.
Often, the point of a hoax is to discredit someone or some field. There’s quite a few well known
scientific hoaxes that have occurred over the years (e.g., Piltdown man) some of were deliberate
attempts to discredit particular fields of research (e.g., the Sokal affair).

• Data misrepresentation. While fraud gets most of the headlines, it’s much more common in
my experience to see data being misrepresented. When I say this, I’m not referring to newspapers
getting it wrong (which they do, almost always). I’m referring to the fact that often, the data don’t
actually say what the researchers think they say. My guess is that, almost always, this isn’t the
result of deliberate dishonesty, it’s due to a lack of sophistication in the data analyses. For instance,
think back to the example of Simpson’s paradox that I discussed in the beginning of these notes.
It’s very common to see people present “aggregated” data of some kind; and sometimes, when you
dig deeper and find the raw data yourself, you find that the aggregated data tell a different story to
the disaggregated data. Alternatively, you might find that some aspect of the data is being hidden,
because it tells an inconvenient story (e.g., the researcher might choose not to refer to a particular
variable). There’s a lot of variants on this; many of which are very hard to detect.

• Study “misdesign”. Okay, this one is subtle. Basically, the issue here is that a researcher designs
a study that has built-in flaws, and those flaws are never reported in the paper. The data that are
reported are completely real, and are correctly analysed, but they are produced by a study that is
actually quite wrongly put together. The researcher really wants to find a particular effect, and so
the study is set up in such a way as to make it “easy” to (artifactually) observe that effect. One
sneaky way to do this – in case you’re feeling like dabbling in a bit of fraud yourself – is to design
an experiment in which it’s obvious to the participants what they’re “supposed” to be doing, and
then let reactivity work its magic for you. If you want, you can add all the trappings of double
blind experimentation etc. It won’t make a difference, since the study materials themselves are
subtly telling people what you want them to do. When you write up the results, the fraud won’t be
obvious to the reader: what’s obvious to the participant when they’re in the experimental context
isn’t always obvious to the person reading the paper. Of course, the way I’ve described this makes
it sound like it’s always fraud: probably there are cases where this is done deliberately, but in
my experience the bigger concern has been with unintentional misdesign. The researcher believes
. . . and so the study just happens to end up with a built in flaw, and that flaw then magically erases
itself when the study is written up for publication.

• Data mining & post hoc hypothesising. Another way in which the authors of a study can
more or less lie about what they found is by engaging in what’s referred to as “data mining”. As
we’ll discuss later in the class, if you keep trying to analyse your data in lots of different ways,
you’ll eventually find something that “looks” like a real effect but isn’t. This is referred to as “data
mining”. It used to be quite rare because data analysis used to take weeks, but now that everyone
has very powerful statistical software on their computers, it’s becoming very common. Data mining
per se isn’t “wrong”, but the more that you do it, the bigger the risk you’re taking. The thing that
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is wrong, and I suspect is very common, is unacknowledged data mining. That is, the researcher
run every possible analysis known to humanity, finds the one that works, and then pretends that
this was the only analysis that they ever conducted. Worse yet, they often “invent” a hypothesis
after looking at the data, to cover up the data mining. To be clear: it’s not wrong to change your
beliefs after looking at the data, and to reanalyse your data using your new “post hoc” hypotheses.
What is wrong (and, I suspect, common) is failing to acknowledge that you’ve done so. If you
acknowledge that you did it, then other researchers are able to take your behaviour into account.
If you don’t, then they can’t. And that makes your behaviour deceptive. Bad!

• Publication bias & self-censoring. Finally, a pervasive bias is “non-reporting” of negative
results. This is almost impossible to prevent. Journals don’t publish every article that is submitted
to them: they prefer to publish articles that find “something”. So, if 20 people run an experiment
looking at whether reading Finnegan’s Wake causes insanity in humans, and 19 of them find that
it doesn’t, which one do you think is going to get published? Obviously, it’s the one study that
did find that Finnegan’s Wake causes insanity4. This is an example of a publication bias: since
no-one ever published the 19 studies that didn’t find an effect, a naive reader would never know
that they existed. Worse yet, most researchers “internalise” this bias, and end up self-censoring
their research. Knowing that negative results aren’t going to be accepted for publication, they never
even try to report them. As a friend of mine says “for every experiment that you get published, you
also have 10 failures”. And she’s right. The catch is, while some (maybe most) of those studies are
failures for boring reasons (e.g. you stuffed something up) others might be genuine “null” results
that you ought to acknowledge when you write up the “good” experiment. And telling which is
which is often hard to do.

There’s probably a lot more issues like this to think about, but that’ll do to start with. What I really
want to point out is the blindingly obvious truth that real world science is conducted by actual humans,
and only the most gullible of people automatically assumes that everyone else is honest and impartial.
Actual scientists aren’t that naive, but for some reason the world likes to pretend that we are.

2.8

Summary

• Introduction to psychological measurement (Section 2.1)

• Scales of measurement and types of variables (Section 2.2)

• Reliability of a measurement (Section 2.3)

• Terminology: predictors and outcomes (Section 2.4)

• Experimental and non-experimental research designs (Section 2.5)

• Validity and its threats (Section 2.6)

4Clearly, the real effect is that only insane people would even try to read Finnegan’s Wake.
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Part II.

An introduction to R
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3. Getting started with R

Robots are nice to work with. They mind their own business, and they never have anything
to say.

–Roger Zelazny

In this chapter I’ll discuss how to get started in R. I’ll briefly talk about how to download and install
R, but most of the chapter will be focused on getting you started typing R commands. Our goal in this
chapter is not to learn any statistical concepts: we’re just trying to learn the basics of how R works and
get comfortable interacting with the system. To do this, we’ll spend a bit of time using R as a simple
calculator, since that’s the easiest thing to do with R. In doing so, you’ll get a bit of a feel for what it’s
like to work in R. From there I’ll introduce some very basic programming ideas: in particular, I’ll talk
about the idea of defining variables to store information, and a few things that you can do with these
variables.

However, before going into any of the specifics, it’s worth talking a little about why you might want
to use R at all. Given that you’re reading this, you’ve probably got your own reasons. However, if those
reasons are “because that’s what my stats class uses”, it might be worth explaining a little why your
lecturer has chosen to use R for the class. Of course, I don’t really know why other people choose R, so
I’m really talking about why I use it.

• It’s sort of obvious, but worth saying anyway: doing your statistics on a computer is faster, easier
and more powerful than doing statistics by hand. Computers excel at mindless repetitive tasks, and
a lot of statistical calculations are both mindless and repetitive. For most people, the only reason
to ever do statistical calculations with pencil and paper is for learning purposes. In my class I do
occasionally suggest doing some calculations that way, but the only real value to it is pedagogical.
It does help you to get a “feel” for statistics to do some calculations yourself, so it’s worth doing it
once. But only once!

• Doing statistics in a spreadsheet (e.g., Microsoft Excel) is generally a bad idea in the long run.
Although many people are likely feel more familiar with them, spreadsheets are very limited in
terms of what analyses they allow you do. If you get into the habit of trying to do your real life
data analysis using spreadsheets, then you’ve dug yourself into a very deep hole.

• Avoiding proprietary software is a very good idea. There are a lot of commercial packages out there
that you can buy, some of which I like and some of which I don’t. They’re usually very glossy in
their appearance, and generally very powerful (much more powerful than spreadsheets). However,
they’re also very expensive: usually, the company sells “student versions” (crippled versions of the
real thing) very cheaply; they sell full powered “educational versions” at a price that makes me
wince; and they sell commercial licences with a staggeringly high price tag. The business model here
is to suck you in during your student days, and then leave you dependent on their tools when you
go out into the real world. It’s hard to blame them for trying, but personally I’m not in favour of
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shelling out thousands of dollars if I can avoid it. And you can avoid it: if you make use of packages
like R that are open source and free, you never get trapped having to pay exorbitant licensing fees.

• Something that you might not appreciate now, but will love later on if you do anything involving
data analysis, is the fact that R is highly extensible. When you download and install R, you get
all the basic “packages”, and those are very powerful on their own. However, because R is so open
and so widely used, it’s become something of a standard tool in statistics, and so lots of people
write their own packages that extend the system. And these are freely available too. One of the
consequences of this, I’ve noticed, is that if you open up an advanced textbook (a recent one, that
is) rather than introductory textbooks, is that a lot of them use R. In other words, if you learn how
to do your basic statistics in R, then you’re a lot closer to being able to use the state of the art
methods than you would be if you’d started out with a “simpler” system: so if you want to become
a genuine expert in psychological data analysis, learning R is a very good use of your time.

• Related to the previous point: R is a real programming language. As you get better at using R for
data analysis, you’re also learning to program. To some people this might seem like a bad thing,
but in truth, programming is a core research skill across a lot of the social and behavioural sciences.
Think about how many surveys and experiments are done online, or presented on computers. Think
about all those online social environments (e.g., Facebook, World of Warcraft) which you might
be interested in studying; and maybe collecting data from in an automated fashion. Think about
artificial intelligence systems, computer vision and speech recognition. If any of these are things
that you think you might want to be involved in – as someone “doing research in psychology”, that
is – you’ll need to know a bit of programming. And if you don’t already know how to program,
then learning how to do statistics using R is a nice way to start.

Those are the main reasons I use R. It’s not without its flaws: it’s not easy to learn, and it has a few
very annoying quirks to it that we’re all pretty much stuck with, but on the whole I think the strengths
outweigh the weakness; more so than any other option I’ve encountered so far.

3.1

Installing R

Okay, enough with the sales pitch. Let’s get started. Just as with any piece of software, R needs to
be installed on a “computer”, which is a magical box that does cool things and delivers free ponies. Or
something along those lines: I may be confusing computers with the iPad marketing campaigns. Anyway,
R is freely distributed online, and you can download it from the R homepage, which is:

http://cran.r-project.org/

At the top of the page – under the heading “Download and Install R” – you’ll see separate links for
Windows users, Mac users, and Linux users. If you follow the relevant link, you’ll see that the online
instructions are pretty self-explanatory, but I’ll walk you through the installation anyway. As of this
writing, the current version of R is 3.0.2 (“Frisbee Sailing”), but they usually issue updates every six
months, so you’ll probably have a newer version.1

1Although R is updated frequently, it doesn’t usually make much of a difference for the sort of work we’ll do in this book.
In fact, during the writing of the book I upgraded several times, and didn’t have to change much except these sections
describing the downloading.
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3.1.1 Installing R on a Windows computer

The CRAN homepage changes from time to time, and it’s not particularly pretty, or all that well-
designed quite frankly. But it’s not difficult to find what you’re after. In general you’ll find a link at the
top of the page with the text “Download R for Windows”. If you click on that, it will take you to a page
that offers you a few options. Again, at the very top of the page you’ll be told to click on a link that says
to click here if you’re installing R for the first time. That’s probably what you want. This will take you
to a page that has a prominent link at the top called “Download R 3.0.2 for Windows”. That’s the one
you want. Click on that and your browser should start downloading a file called R-3.0.2-win.exe, or
whatever the equivalent version number is by the time you read this. The file for version 3.0.2 is about
54MB in size, so it may take some time depending on how fast your internet connection is. Once you’ve
downloaded the file, double click to install it. As with any software you download online, Windows will
ask you some questions about whether you trust the file and so on. After you click through those, it’ll ask
you where you want to install it, and what components you want to install. The default values should
be fine for most people, so again, just click through. Once all that is done, you should have R installed
on your system. You can access it from the Start menu, or from the desktop if you asked it to add a
shortcut there. You can now open up R in the usual way if you want to, but what I’m going to suggest
is that instead of doing that you should now install Rstudio.

3.1.2 Installing R on a Mac

When you click on the Mac OS X link, you should find yourself on a page with the title “R for Mac
OS X”. The vast majority of Mac users will have a fairly recent version of the operating system: as
long as you’re running Mac OS X 10.6 (Snow Leopard) or higher, then you’ll be fine.2 There’s a fairly
prominent link on the page called “R-3.0.2.pkg”, which is the one you want. Click on that link and you’ll
start downloading the installer file, which is (not surprisingly) called R-3.0.2.pkg. It’s about 61MB in
size, so the download can take a while on slower internet connections.

Once you’ve downloaded R-3.0.2.pkg, all you need to do is open it by double clicking on the package
file. The installation should go smoothly from there: just follow all the instructions just like you usually
do when you install something. Once it’s finished, you’ll find a file called R.app in the Applications folder.
You can now open up R in the usual way3 if you want to, but what I’m going to suggest is that instead
of doing that you should now install Rstudio.

3.1.3 Installing R on a Linux computer

If you’re successfully managing to run a Linux box, regardless of what distribution, then you should
find the instructions on the website easy enough. You can compile R from source yourself if you want, or
install it through your package management system, which will probably have R in it. Alternatively, the
CRAN site has precompiled binaries for Debian, Red Hat, Suse and Ubuntu and has separate instructions
for each. Once you’ve got R installed, you can run it from the command line just by typing R. However,

2If you’re running an older version of the Mac OS, then you need to follow the link to the “old” page (http://cran.r
-project.org/bin/macosx/old/). You should be able to find the installer file that you need at the bottom of the page.

3Tip for advanced Mac users. You can run R from the terminal if you want to. The command is just “R”. It behaves
like the normal desktop version, except that help documentation behaves like a “man” page instead of opening in a new
window.
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if you’re feeling envious of Windows and Mac users for their fancy GUIs, you can download Rstudio too.

3.1.4 Downloading and installing Rstudio

Okay, so regardless of what operating system you’re using, the last thing that I told you to do is to
download Rstudio. To understand why I’ve suggested this, you need to understand a little bit more about
R itself. The term R doesn’t really refer to a specific application on your computer. Rather, it refers to the
underlying statistical language. You can use this language through lots of different applications. When
you install R initially, it comes with one application that lets you do this: it’s the R.exe application
on a Windows machine, and the R.app application on a Mac. But that’s not the only way to do it.
There are lots of different applications that you can use that will let you interact with R. One of those is
called Rstudio, and it’s the one I’m going to suggest that you use. Rstudio provides a clean, professional
interface to R that I find much nicer to work with than either the Windows or Mac defaults. Like R

itself, Rstudio is free software: you can find all the details on their webpage. In the meantime, you can
download it here:

http://www.rstudio.org/

When you visit the Rstudio website, you’ll probably be struck by how much cleaner and simpler it is
than the CRAN website,4 and how obvious it is what you need to do: click the big green button that
says “Download”.

When you click on the download button on the homepage it will ask you to choose whether you
want the desktop version or the server version. You want the desktop version. After choosing the
desktop version it will take you to a page (http://www.rstudio.org/download/desktop) that shows
several possible downloads: there’s a different one for each operating system. However, the nice people
at Rstudio have designed the webpage so that it automatically recommends the download that is most
appropriate for your computer. Click on the appropriate link, and the Rstudio installer file will start
downloading.

Once it’s finished downloading, open the installer file in the usual way to install Rstudio. After it’s
finished installing, you can start R by opening Rstudio. You don’t need to open R.app or R.exe in order
to access R. Rstudio will take care of that for you. To illustrate what Rstudio looks like, Figure 3.1 shows
a screenshot of an R session in progress. In this screenshot, you can see that it’s running on a Mac, but it
looks almost identical no matter what operating system you have. The Windows version looks more like
a Windows application (e.g., the menus are attached to the application window and the colour scheme
is slightly different), but it’s more or less identical. There are a few minor differences in where things
are located in the menus (I’ll point them out as we go along) and in the shortcut keys, because Rstudio
is trying to “feel” like a proper Mac application or a proper Windows application, and this means that
it has to change its behaviour a little bit depending on what computer it’s running on. Even so, these
differences are very small: I started out using the Mac version of Rstudio and then started using the
Windows version as well in order to write these notes.

The only “shortcoming” I’ve found with Rstudio is that – as of this writing – it’s still a work in
progress. The current version as I type this is 0.98.501, which means that it’s in beta testing (the official
release is version 1.0). Even so, I think that the beta version of Rstudio provides a better user experience
than anything else I’ve tried: it really is the best option available in my opinion. The “problem” is that
they keep improving it. New features keep turning up the more recent releases, so there’s a good chance
that by the time you read this book there will be a version out that has some really neat things that

4This is probably no coincidence: the people who design and distribute the core R language itself are focused on technical
stuff. And sometimes they almost seem to forget that there’s an actual human user at the end. The people who design and
distribute Rstudio are focused on user interface. They want to make R as usable as possible. The two websites reflect that
difference.
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Figure 3.1: An R session in progress running through Rstudio. The picture shows Rstudio running on a
Mac, but the Windows interface is almost identical.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

weren’t in the version that I’m using now.

3.1.5 Starting up R

One way or another, regardless of what operating system you’re using and regardless of whether you’re
using Rstudio, or the default GUI, or even the command line, it’s time to open R and get started. When
you do that, the first thing you’ll see (assuming that you’re looking at the R console, that is) is a whole
lot of text that doesn’t make much sense. It should look something like this:

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"

Copyright (C) 2013 The R Foundation for Statistical Computing

Platform: x86_64-apple-darwin10.8.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale
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R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

>

Most of this text is pretty uninteresting, and when doing real data analysis you’ll never really pay much
attention to it. The important part of it is this...

>

... which has a flashing cursor next to it. That’s the command prompt. When you see this, it means
that R is waiting patiently for you to do something!

3.2

Typing commands at the R console

One of the easiest things you can do with R is use it as a simple calculator, so it’s a good place to start.
For instance, try typing 10 + 20, and hitting enter.5 When you do this, you’ve entered a command, and
R will “execute” that command. What you see on screen now will be this:

> 10 + 20

[1] 30

Not a lot of surprises in this extract. But there’s a few things worth talking about, even with such a
simple example. Firstly, it’s important that you understand how to read the extract. In this example,
what I typed was the 10 + 20 part. I didn’t type the > symbol: that’s just the R command prompt and
isn’t part of the actual command. And neither did I type the [1] 30 part. That’s what R printed out in
response to my command.

Secondly, it’s important to understand how the output is formatted. Obviously, the correct answer to
the sum 10 + 20 is 30, and not surprisingly R has printed that out as part of its response. But it’s also
printed out this [1] part, which probably doesn’t make a lot of sense to you right now. You’re going to
see that a lot. I’ll talk about what this means in a bit more detail later on, but for now you can think of
[1] 30 as if R were saying “the answer to the 1st question you asked is 30”. That’s not quite the truth,
but it’s close enough for now. And in any case it’s not really very interesting at the moment: we only
asked R to calculate one thing, so obviously there’s only one answer printed on the screen. Later on this
will change, and the [1] part will start to make a bit more sense. For now, I just don’t want you to get
confused or concerned by it.

5Seriously. If you’re in a position to do so, open up R and start typing. The simple act of typing it rather than “just
reading” makes a big difference. It makes the concepts more concrete, and it ties the abstract ideas (programming and
statistics) to the actual context in which you need to use them. Statistics is something you do, not just something you read
about in a textbook.
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3.2.1 Be very careful to avoid typos

Before we go on to talk about other types of calculations that we can do with R, there’s a few other
things I want to point out. The first thing is that, while R is good software, it’s still software. It’s pretty
stupid, and because it’s stupid it can’t handle typos. It takes it on faith that you meant to type exactly
what you did type. For example, suppose that you forgot to hit the shift key when trying to type +, and
as a result your command ended up being 10 = 20 rather than 10 + 20. Here’s what happens:

> 10 = 20

Error in 10 = 20 : invalid (do_set) left-hand side to assignment

What’s happened here is that R has attempted to interpret 10 = 20 as a command, and spits out an error
message because the command doesn’t make any sense to it. When a human looks at this, and then
looks down at his or her keyboard and sees that + and = are on the same key, it’s pretty obvious that the
command was a typo. But R doesn’t know this, so it gets upset. And, if you look at it from its perspective,
this makes sense. All that R “knows” is that 10 is a legitimate number, 20 is a legitimate number, and
= is a legitimate part of the language too. In other words, from its perspective this really does look like
the user meant to type 10 = 20, since all the individual parts of that statement are legitimate and it’s
too stupid to realise that this is probably a typo. Therefore, R takes it on faith that this is exactly what
you meant... it only “discovers” that the command is nonsense when it tries to follow your instructions,
typo and all. And then it whinges, and spits out an error.

Even more subtle is the fact that some typos won’t produce errors at all, because they happen to
correspond to “well-formed” R commands. For instance, suppose that not only did I forget to hit the
shift key when trying to type 10 + 20, I also managed to press the key next to one I meant do. The
resulting typo would produce the command 10 - 20. Clearly, R has no way of knowing that you meant
to add 20 to 10, not subtract 20 from 10, so what happens this time is this:

> 10 - 20

[1] -10

In this case, R produces the right answer, but to the the wrong question.

To some extent, I’m stating the obvious here, but it’s important. The people who wrote R are smart.
You, the user, are smart. But R itself is dumb. And because it’s dumb, it has to be mindlessly obedient.
It does exactly what you ask it to do. There is no equivalent to “autocorrect” in R, and for good reason.
When doing advanced stuff – and even the simplest of statistics is pretty advanced in a lot of ways – it’s
dangerous to let a mindless automaton like R try to overrule the human user. But because of this, it’s
your responsibility to be careful. Always make sure you type exactly what you mean. When dealing with
computers, it’s not enough to type “approximately” the right thing. In general, you absolutely must be
precise in what you say to R ... like all machines it is too stupid to be anything other than absurdly
literal in its interpretation.

3.2.2 R is (a bit) flexible with spacing

Of course, now that I’ve been so uptight about the importance of always being precise, I should point
out that there are some exceptions. Or, more accurately, there are some situations in which R does show
a bit more flexibility than my previous description suggests. The first thing R is smart enough to do is
ignore redundant spacing. What I mean by this is that, when I typed 10 + 20 before, I could equally
have done this

> 10 + 20

[1] 30

- 41 -



or this

> 10+20

[1] 30

and I would get exactly the same answer. However, that doesn’t mean that you can insert spaces in any
old place. When we looked at the startup documentation in Section 3.1.5 it suggested that you could
type citation() to get some information about how to cite R. If I do so...

> citation()

To cite R in publications use:

R Core Team (2013). R: A language and environment

for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. URL

http://www.R-project.org/.

BLAH BLAH BLAH

We have invested a lot of time and effort in creating

R, please cite it when using it for data analysis. See

also ?citation("pkgname")? for citing R packages.

... it tells me to cite the R manual (R Core Team, 2013). Obviously, the BLAH BLAH BLAH part isn’t actually
part of what R prints out: when you see that it means that I’ve chopped out some parts of the output
that I don’t think are very interesting or relevant. I’ll do that a lot. Anyway, getting back to my original
point, let’s see what happens when I try changing the spacing. If I insert spaces in between the word
and the parentheses, or inside the parentheses themselves, then all is well. That is, either of these two
commands

> citation ()

> citation( )

will produce exactly the same response. However, what I can’t do is insert spaces in the middle of the
word. If I try to do this, R gets upset:

> citat ion()

Error: unexpected symbol in "citat ion"

Throughout this book I’ll vary the way I use spacing a little bit, just to give you a feel for the different
ways in which spacing can be used. I’ll try not to do it too much though, since it’s generally considered
to be good practice to be consistent in how you format your commands.

3.2.3 R can sometimes tell that you’re not finished yet (but not often)

One more thing I should point out. If you hit enter in a situation where it’s “obvious” to R that you
haven’t actually finished typing the command, R is just smart enough to keep waiting. For example, if
you type 10 + and then press enter, even R is smart enough to realise that you probably wanted to type
in another number. So here’s what happens:

> 10+

+
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and there’s a blinking cursor next to the plus sign. What this means is that R is still waiting for you to
finish. It “thinks” you’re still typing your command, so it hasn’t tried to execute it yet. In other words,
this plus sign is actually another command prompt. It’s different from the usual one (i.e., the > symbol)
to remind you that R is going to “add” whatever you type now to what you typed last time. For example,
if I then go on to type 3 and hit enter, what I get is this:

> 10+

+ 20

[1] 30

And as far as R is concerned, this is exactly the same as if you had typed 10 + 20. Similarly, consider the
citation() command that we talked about in the previous section. Suppose you hit enter after typing
citation(. Once again, R is smart enough to realise that there must be more coming – since you need to
add the ) character – so it waits. I can even hit enter several times and it will keep waiting:

> citation(

+

+

+ )

I’ll make use of this a lot in this book. A lot of the commands that we’ll have to type are pretty long,
and they’re visually a bit easier to read if I break it up over several lines. If you start doing this yourself,
you’ll eventually get yourself in trouble (it happens to us all). Maybe you start typing a command, and
then you realise you’ve screwed up. For example,

> citblation(

+

+

You’d probably prefer R not to try running this command, right? If you want to get out of this situation,
just hit the ‘escape’ key.6 R will return you to the normal command prompt (i.e. >) without attempting
to execute the botched command.

That being said, it’s not often the case that R is smart enough to tell that there’s more coming. For
instance, in the same way that I can’t add a space in the middle of a word, I can’t hit enter in the middle
of a word either. If I hit enter after typing citat I get an error, because R thinks I’m interested in an
“object” called citat and can’t find it:

> citat

Error: object ’citat’ not found

What about if I typed citation and hit enter? In this case we get something very odd, something that
we definitely don’t want, at least at this stage. Here’s what happens:

> citation

function (package = "base", lib.loc = NULL, auto = NULL)

{

dir <- system.file(package = package, lib.loc = lib.loc)

if (dir == "")

stop(gettextf("package ’%s’ not found", package), domain = NA)

BLAH BLAH BLAH

6If you’re running R from the terminal rather than from Rstudio, escapt doesn’t work: use CTRL-C instead.
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Table 3.1: Basic arithmetic operations in R. These five operators are used very frequently throughout the
text, so it’s important to be familiar with them at the outset. There are others as well, which I’ll discuss
in Chapter 7.

operation operator example input example output
addition + 10 + 2 12

subtraction - 9 - 3 6

multiplication * 5 * 5 25

division / 10 / 3 3

power ^ 5 ^ 2 25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where the BLAH BLAH BLAH goes on for rather a long time, and you don’t know enough R yet to understand
what all this gibberish actually means. This incomprehensible output can be quite intimidating to novice
users, and unfortunately it’s very easy to forget to type the parentheses; so almost certainly you’ll do
this by accident. Do not panic when this happens. Simply ignore the gibberish. As you become more
experienced this gibberish will start to make sense, and you’ll find it quite handy to print this stuff out.7

But for now just try to remember to add the parentheses when typing your commands.

3.3

Doing simple calculations with R

Okay, now that we’ve discussed some of the tedious details associated with typing R commands, let’s
get back to learning how to use the most powerful piece of statistical software in the world as a $2
calculator. So far, all we know how to do is addition. Clearly, a calculator that only did addition would
be a bit stupid, so I should tell you about how to perform other simple calculations using R. But first,
some more terminology. Addition is an example of an “operation” that you can perform (specifically,
an arithmetic operation), and the operator that performs it is +. To people with a programming or
mathematics background, this terminology probably feels pretty natural, but to other people it might feel
like I’m trying to make something very simple (addition) sound more complicated than it is (by calling
it an arithmetic operation). To some extent, that’s true: if addition was the only operation that we were
interested in, it’d be a bit silly to introduce all this extra terminology. However, as we go along, we’ll
start using more and more different kinds of operations, so it’s probably a good idea to get the language
straight now, while we’re still talking about very familiar concepts like addition!

3.3.1 Adding, subtracting, multiplying and dividing

So, now that we have the terminology, let’s learn how to perform some arithmetic operations in R. To that
end, Table 3.1 lists the operators that correspond to the basic arithmetic we learned in primary school:
addition, subtraction, multiplication and division. As you can see, R uses fairly standard symbols to
denote each of the different operations you might want to perform: addition is done using the + operator,
subtraction is performed by the - operator, and so on. So if I wanted to find out what 57 times 61 is
(and who wouldn’t?), I can use R instead of a calculator, like so:

7For advanced users: yes, as you’ve probably guessed, R is printing out the source code for the function.
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> 57 * 61

[1] 3477

So that’s handy.

3.3.2 Taking powers

The first four operations listed in Table 3.1 are things we all learned in primary school, but they aren’t
the only arithmetic operations built into R. There are three other arithmetic operations that I should
probably mention: taking powers, doing integer division, and calculating a modulus. Of the three, the
only one that is of any real importance for the purposes of this book is taking powers, so I’ll discuss that
one here: the other two are discussed in Chapter 7.

For those of you who can still remember your high school maths, this should be familiar. But for some
people high school maths was a long time ago, and others of us didn’t listen very hard in high school.
It’s not complicated. As I’m sure everyone will probably remember the moment they read this, the act
of multiplying a number x by itself n times is called “raising x to the n-th power”. Mathematically, this
is written as xn. Some values of n have special names: in particular x2 is called x-squared, and x3 is
called x-cubed. So, the 4th power of 5 is calculated like this:

54 “ 5ˆ 5ˆ 5ˆ 5

One way that we could calculate 54 in R would be to type in the complete multiplication as it is shown
in the equation above. That is, we could do this

> 5 * 5 * 5 * 5

[1] 625

but it does seem a bit tedious. It would be very annoying indeed if you wanted to calculate 515, since the
command would end up being quite long. Therefore, to make our lives easier, we use the power operator
instead. When we do that, our command to calculate 54 goes like this:

> 5 ^ 4

[1] 625

Much easier.

3.3.3 Doing calculations in the right order

Okay. At this point, you know how to take one of the most powerful pieces of statistical software in
the world, and use it as a $2 calculator. And as a bonus, you’ve learned a few very basic programming
concepts. That’s not nothing (you could argue that you’ve just saved yourself $2) but on the other hand,
it’s not very much either. In order to use R more effectively, we need to introduce more programming
concepts.

In most situations where you would want to use a calculator, you might want to do multiple calcula-
tions. R lets you do this, just by typing in longer commands. In fact, we’ve already seen an example of
this earlier, when I typed in 5 * 5 * 5 * 5. However, let’s try a slightly different example:

> 1 + 2 * 4

[1] 9
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Clearly, this isn’t a problem for R either. However, it’s worth stopping for a second, and thinking about
what R just did. Clearly, since it gave us an answer of 9 it must have multiplied 2 * 4 (to get an interim
answer of 8) and then added 1 to that. But, suppose it had decided to just go from left to right: if R

had decided instead to add 1+2 (to get an interim answer of 3) and then multiplied by 4, it would have
come up with an answer of 12.

To answer this, you need to know the order of operations that R uses. If you remember back to
your high school maths classes, it’s actually the same order that you got taught when you were at school:
the “bedmas” order.8 That is, first calculate things inside Brackets (), then calculate Exponents ^, then
Division / and Multiplication *, then Addition + and Subtraction -. So, to continue the example above,
if we want to force R to calculate the 1+2 part before the multiplication, all we would have to do is enclose
it in brackets:

> (1 + 2) * 4

[1] 12

This is a fairly useful thing to be able to do. The only other thing I should point out about order of
operations is what to expect when you have two operations that have the same priority: that is, how
does R resolve ties? For instance, multiplication and division are actually the same priority, but what
should we expect when we give R a problem like 4 / 2 * 3 to solve? If it evaluates the multiplication
first and then the division, it would calculate a value of two-thirds. But if it evaluates the division first
it calculates a value of 6. The answer, in this case, is that R goes from left to right, so in this case the
division step would come first:

> 4 / 2 * 3

[1] 6

All of the above being said, it’s helpful to remember that brackets always come first. So, if you’re
ever unsure about what order R will do things in, an easy solution is to enclose the thing you want it to
do first in brackets. There’s nothing stopping you from typing (4 / 2) * 3. By enclosing the division in
brackets we make it clear which thing is supposed to happen first. In this instance you wouldn’t have
needed to, since R would have done the division first anyway, but when you’re first starting out it’s better
to make sure R does what you want!

3.4

Storing a number as a variable

One of the most important things to be able to do in R (or any programming language, for that matter) is
to store information in variables. Variables in R aren’t exactly the same thing as the variables we talked
about in the last chapter on research methods, but they are similar. At a conceptual level you can think
of a variable as label for a certain piece of information, or even several different pieces of information.
When doing statistical analysis in R all of your data (the variables you measured in your study) will be
stored as variables in R, but as well see later in the book you’ll find that you end up creating variables for
other things too. However, before we delve into all the messy details of data sets and statistical analysis,
let’s look at the very basics for how we create variables and work with them.

8For advanced users: if you want a table showing the complete order of operator precedence in R, type ?Syntax. I haven’t
included it in this book since there are quite a few different operators, and we don’t need that much detail. Besides,
in practice most people seem to figure it out from seeing examples: until writing this book I never looked at the formal
statement of operator precedence for any language I ever coded in, and never ran into any difficulties.
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3.4.1 Variable assignment using ❁✲ and ✲❃

Since we’ve been working with numbers so far, let’s start by creating variables to store our numbers.
And since most people like concrete examples, let’s invent one. Suppose I’m trying to calculate how
much money I’m going to make from this book. There’s several different numbers I might want to store.
Firstly, I need to figure out how many copies I’ll sell. This isn’t exactly Harry Potter, so let’s assume
I’m only going to sell one copy per student in my class. That’s 350 sales, so let’s create a variable called
sales. What I want to do is assign a value to my variable sales, and that value should be 350. We do
this by using the assignment operator, which is <-. Here’s how we do it:

> sales <- 350

When you hit enter, R doesn’t print out any output.9 It just gives you another command prompt.
However, behind the scenes R has created a variable called sales and given it a value of 350. You can
check that this has happened by asking R to print the variable on screen. And the simplest way to do
that is to type the name of the variable and hit enter10

> sales

[1] 350

So that’s nice to know. Anytime you can’t remember what R has got stored in a particular variable, you
can just type the name of the variable and hit enter.

Okay, so now we know how to assign variables. Actually, there’s a bit more you should know. Firstly,
one of the curious features of R is that there are several different ways of making assignments. In
addition to the <- operator, we can also use -> and =, and it’s pretty important to understand the
differences between them.11 Let’s start by considering ->, since that’s the easy one (we’ll discuss the use
of = in Section 3.5.1). As you might expect from just looking at the symbol, it’s almost identical to <-.
It’s just that the arrow (i.e., the assignment) goes from left to right. So if I wanted to define my sales

variable using ->, I would write it like this:

> 350 -> sales

This has the same effect: and it still means that I’m only going to sell 350 copies. Sigh. Apart from this
superficial difference, <- and -> are identical. In fact, as far as R is concerned, they’re actually the same
operator, just in a “left form” and a “right form”.12

3.4.2 Doing calculations using variables

Okay, let’s get back to my original story. In my quest to become rich, I’ve written this textbook.
To figure out how good a strategy is, I’ve started creating some variables in R. In addition to defining
a sales variable that counts the number of copies I’m going to sell, I can also create a variable called
royalty, indicating how much money I get per copy. Let’s say that my royalties are about $7 per book:

9If you are using Rstudio, and the “environment” panel (formerly known as the “workspace” panel) is visible when
you typed the command, then you probably saw something happening there. That’s to be expected, and is quite helpful.
However, there’s two things to note here (1) I haven’t yet explained what that panel does, so for now just ignore it, and (2)
this is one of the helpful things Rstudio does, not a part of R itself.

10As we’ll discuss later, by doing this we are implicitly using the print() function.
11Actually, in keeping with the R tradition of providing you with a billion different screwdrivers (even when you’re actually

looking for a hammer) these aren’t the only options. There’s also the assign() function, and the <<- and ->> operators.
However, we won’t be using these at all in this book.

12A quick reminder: when using operators like <- and -> that span multiple characters, you can’t insert spaces in the
middle. That is, if you type - > or < -, R will interpret your command the wrong way. And I will cry.
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> sales <- 350

> royalty <- 7

The nice thing about variables (in fact, the whole point of having variables) is that we can do anything
with a variable that we ought to be able to do with the information that it stores. That is, since R allows
me to multiply 350 by 7

> 350 * 7

[1] 2450

it also allows me to multiply sales by royalty

> sales * royalty

[1] 2450

As far as R is concerned, the sales * royalty command is the same as the 350 * 7 command. Not
surprisingly, I can assign the output of this calculation to a new variable, which I’ll call revenue. And
when we do this, the new variable revenue gets the value 2450. So let’s do that, and then get R to print
out the value of revenue so that we can verify that it’s done what we asked:

> revenue <- sales * royalty

> revenue

[1] 2450

That’s fairly straightforward. A slightly more subtle thing we can do is reassign the value of my variable,
based on its current value. For instance, suppose that one of my students (no doubt under the influence
of psychotropic drugs) loves the book so much that he or she donates me an extra $550. The simplest
way to capture this is by a command like this:

> revenue <- revenue + 550

> revenue

[1] 3000

In this calculation, R has taken the old value of revenue (i.e., 2450) and added 550 to that value, producing
a value of 3000. This new value is assigned to the revenue variable, overwriting its previous value. In any
case, we now know that I’m expecting to make $3000 off this. Pretty sweet, I thinks to myself. Or at
least, that’s what I thinks until I do a few more calculation and work out what the implied hourly wage
I’m making off this looks like.

3.4.3 Rules and conventions for naming variables

In the examples that we’ve seen so far, my variable names (sales and revenue) have just been English-
language words written using lowercase letters. However, R allows a lot more flexibility when it comes to
naming your variables, as the following list of rules13 illustrates:

• Variable names can only use the upper case alphabetic characters A-Z as well as the lower case
characters a-z. You can also include numeric characters 0-9 in the variable name, as well as the
period . or underscore _ character. In other words, you can use SaL.e_s as a variable name (though
I can’t think why you would want to), but you can’t use Sales?.

13Actually, you can override any of these rules if you want to, and quite easily. All you have to do is add quote marks or
backticks around your non-standard variable name. For instance ‘) my sales>‘ <- 350 would work just fine, but it’s almost
never a good idea to do this.
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• Variable names cannot include spaces: therefore my sales is not a valid name, but my.sales is.

• Variable names are case sensitive: that is, Sales and sales are different variable names.

• Variable names must start with a letter or a period. You can’t use something like _sales or 1sales
as a variable name. You can use .sales as a variable name if you want, but it’s not usually a good
idea. By convention, variables starting with a . are used for special purposes, so you should avoid
doing so.

• Variable names cannot be one of the reserved keywords. These are special names that R needs to
keep “safe” from us mere users, so you can’t use them as the names of variables. The keywords are:
if, else, repeat, while, function, for, in, next, break, TRUE, FALSE, NULL, Inf, NaN, NA, NA_integer_,
NA_real_, NA_complex_, and finally, NA_character_. Don’t feel especially obliged to memorise these:
if you make a mistake and try to use one of the keywords as a variable name, R will complain about
it like the whiny little automaton it is.

In addition to those rules that R enforces, there are some informal conventions that people tend to follow
when naming variables. One of them you’ve already seen: i.e., don’t use variables that start with a
period. But there are several others. You aren’t obliged to follow these conventions, and there are many
situations in which it’s advisable to ignore them, but it’s generally a good idea to follow them when you
can:

• Use informative variable names. As a general rule, using meaningful names like sales and revenue

is preferred over arbitrary ones like variable1 and variable2. Otherwise it’s very hard to remember
what the contents of different variables are, and it becomes hard to understand what your commands
actually do.

• Use short variable names. Typing is a pain and no-one likes doing it. So we much prefer to use a
name like sales over a name like sales.for.this.book.that.you.are.reading. Obviously there’s a
bit of a tension between using informative names (which tend to be long) and using short names
(which tend to be meaningless), so use a bit of common sense when trading off these two conventions.

• Use one of the conventional naming styles for multi-word variable names. Suppose I want to name a
variable that stores “my new salary”. Obviously I can’t include spaces in the variable name, so how
should I do this? There are three different conventions that you sometimes see R users employing.
Firstly, you can separate the words using periods, which would give you my.new.salary as the
variable name. Alternatively, you could separate words using underscores, as in my_new_salary.
Finally, you could use capital letters at the beginning of each word (except the first one), which
gives you myNewSalary as the variable name. I don’t think there’s any strong reason to prefer one
over the other,14 but it’s important to be consistent.

3.5

Using functions to do calculations

The symbols +, -, * and so on are examples of operators. As we’ve seen, you can do quite a lot of
calculations just by using these operators. However, in order to do more advanced calculations (and later

14For very advanced users: there is one exception to this. If you’re naming a function, don’t use . in the name unless
you are intending to make use of the S3 object oriented programming system in R. If you don’t know what S3 is, then you
definitely don’t want to be using it! For function naming, there’s been a trend among R users to prefer myFunctionName.
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on, to do actual statistics), you’re going to need to start using functions.15 I’ll talk in more detail about
functions and how they work in Section 8.4, but for now let’s just dive in and use a few. To get started,
suppose I wanted to take the square root of 225. The square root, in case your high school maths is a bit
rusty, is just the opposite of squaring a number. So, for instance, since “5 squared is 25” I can say that
“5 is the square root of 25”. The usual notation for this is

?
25 “ 5

though sometimes you’ll also see it written like this 250.5 “ 5. This second way of writing it is kind of
useful to “remind” you of the mathematical fact that “square root of x” is actually the same as “raising
x to the power of 0.5”. Personally, I’ve never found this to be terribly meaningful psychologically, though
I have to admit it’s quite convenient mathematically. Anyway, it’s not important. What is important is
that you remember what a square root is, since we’re going to need it later on.

To calculate the square root of 25, I can do it in my head pretty easily, since I memorised my
multiplication tables when I was a kid. It gets harder when the numbers get bigger, and pretty much
impossible if they’re not whole numbers. This is where something like R comes in very handy. Let’s say
I wanted to calculate

?
225, the square root of 225. There’s two ways I could do this using R. Firstly,

since the square root of 255 is the same thing as raising 225 to the power of 0.5, I could use the power
operator ^, just like we did earlier:

> 225 ^ 0.5

[1] 15

However, there’s a second way that we can do this, since R also provides a square root function,
sqrt(). To calculate the square root of 255 using this function, what I do is insert the number 225 in the
parentheses. That is, the command I type is this:

> sqrt( 225 )

[1] 15

and as you might expect from our previous discussion, the spaces in between the parentheses are purely
cosmetic. I could have typed sqrt(225) or sqrt( 225 ) and gotten the same result. When we use a
function to do something, we generally refer to this as calling the function, and the values that we type
into the function (there can be more than one) are referred to as the arguments of that function.

Obviously, the sqrt() function doesn’t really give us any new functionality, since we already knew
how to do square root calculations by using the power operator ^, though I do think it looks nicer when
we use sqrt(). However, there are lots of other functions in R: in fact, almost everything of interest
that I’ll talk about in this book is an R function of some kind. For example, one function that we will
need to use in this book is the absolute value function. Compared to the square root function, it’s
extremely simple: it just converts negative numbers to positive numbers, and leaves positive numbers
alone. Mathematically, the absolute value of x is written |x| or sometimes abspxq. Calculating absolute
values in R is pretty easy, since R provides the abs() function that you can use for this purpose. When
you feed it a positive number...

> abs( 21 )

[1] 21

the absolute value function does nothing to it at all. But when you feed it a negative number, it spits
out the positive version of the same number, like this:

15A side note for students with a programming background. Technically speaking, operators are functions in R: the
addition operator + is actually a convenient way of calling the addition function ‘+‘(). Thus 10+20 is equivalent to the
function call ‘+‘(20, 30). Not surprisingly, no-one ever uses this version. Because that would be stupid.
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> abs( -13 )

[1] 13

In all honesty, there’s nothing that the absolute value function does that you couldn’t do just by looking
at the number and erasing the minus sign if there is one. However, there’s a few places later in the book
where we have to use absolute values, so I thought it might be a good idea to explain the meaning of the
term early on.

Before moving on, it’s worth noting that – in the same way that R allows us to put multiple operations
together into a longer command, like 1 + 2*4 for instance – it also lets us put functions together and
even combine functions with operators if we so desire. For example, the following is a perfectly legitimate
command:

> sqrt( 1 + abs(-8) )

[1] 3

When R executes this command, starts out by calculating the value of abs(-8), which produces an
intermediate value of 8. Having done so, the command simplifies to sqrt( 1 + 8 ). To solve the square
root16 it first needs to add 1 + 8 to get 9, at which point it evaluates sqrt(9), and so it finally outputs a
value of 3.

3.5.1 Function arguments, their names and their defaults

There’s two more fairly important things that you need to understand about how functions work in
R, and that’s the use of “named” arguments, and default values” for arguments. Not surprisingly, that’s
not to say that this is the last we’ll hear about how functions work, but they are the last things we
desperately need to discuss in order to get you started. To understand what these two concepts are all
about, I’ll introduce another function. The round() function can be used to round some value to the
nearest whole number. For example, I could type this:

> round( 3.1415 )

[1] 3

Pretty straightforward, really. However, suppose I only wanted to round it to two decimal places: that is,
I want to get 3.14 as the output. The round() function supports this, by allowing you to input a second
argument to the function that specifies the number of decimal places that you want to round the number
to. In other words, I could do this:

> round( 3.14165, 2 )

[1] 3.14

What’s happening here is that I’ve specified two arguments: the first argument is the number that needs
to be rounded (i.e., 3.1415), the second argument is the number of decimal places that it should be
rounded to (i.e., 2), and the two arguments are separated by a comma. In this simple example, it’s quite
easy to remember which one argument comes first and which one comes second, but for more complicated
functions this is not easy. Fortunately, most R functions make use of argument names. For the round()

function, for example the number that needs to be rounded is specified using the x argument, and the

16A note for the mathematically inclined: R does support complex numbers, but unless you explicitly specify that you
want them it assumes all calculations must be real valued. By default, the square root of a negative number is treated as
undefined: sqrt(-9) will produce NaN (not a number) as its output. To get complex numbers, you would type sqrt(-9+0i)

and R would now return 0+3i. However, since we won’t have any need for complex numbers in this book, I won’t refer to
them again.
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number of decimal points that you want it rounded to is specified using the digits argument. Because
we have these names available to us, we can specify the arguments to the function by name. We do so
like this:

> round( x = 3.1415, digits = 2 )

[1] 3.14

Notice that this is kind of similar in spirit to variable assignment (Section 3.4), except that I used = here,
rather than <-. In both cases we’re specifying specific values to be associated with a label. However,
there are some differences between what I was doing earlier on when creating variables, and what I’m
doing here when specifying arguments, and so as a consequence it’s important that you use = in this
context.

As you can see, specifying the arguments by name involves a lot more typing, but it’s also a lot easier
to read. Because of this, the commands in this book will usually specify arguments by name,17 since that
makes it clearer to you what I’m doing. However, one important thing to note is that when specifying
the arguments using their names, it doesn’t matter what order you type them in. But if you don’t use
the argument names, then you have to input the arguments in the correct order. In other words, these
three commands all produce the same output...

> round( 3.14165, 2 )

> round( x = 3.1415, digits = 2 )

> round( digits = 2, x = 3.1415 )

but this one does not...

> round( 2, 3.14165 )

How do you find out what the correct order is? There’s a few different ways, but the easiest one is to
look at the help documentation for the function (see Section 4.12). However, if you’re ever unsure, it’s
probably best to actually type in the argument name.

Okay, so that’s the first thing I said you’d need to know: argument names. The second thing you
need to know about is default values. Notice that the first time I called the round() function I didn’t
actually specify the digits argument at all, and yet R somehow knew that this meant it should round to
the nearest whole number. How did that happen? The answer is that the digits argument has a default
value of 0, meaning that if you decide not to specify a value for digits then R will act as if you had
typed digits = 0. This is quite handy: the vast majority of the time when you want to round a number
you want to round it to the nearest whole number, and it would be pretty annoying to have to specify
the digits argument every single time. On the other hand, sometimes you actually do want to round to
something other than the nearest whole number, and it would be even more annoying if R didn’t allow
this! Thus, by having digits = 0 as the default value, we get the best of both worlds.

3.6

Letting Rstudio help you with your commands

Time for a bit of a digression. At this stage you know how to type in basic commands, including how to
use R functions. And it’s probably beginning to dawn on you that there are a lot of R functions, all of

17The two functions discussed previously, sqrt() and abs(), both only have a single argument, x. So I could have typed
something like sqrt(x = 225) or abs(x = -13) earlier. The fact that all these functions use x as the name of the argument
that corresponds the “main” variable that you’re working with is no coincidence. That’s a fairly widely used convention.
Quite often, the writers of R functions will try to use conventional names like this to make your life easier. Or at least
that’s the theory. In practice it doesn’t always work as well as you’d hope.
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which have their own arguments. You’re probably also worried that you’re going to have to remember
all of them! Thankfully, it’s not that bad. In fact, very few data analysts bother to try to remember all
the commands. What they really do is use tricks to make their lives easier. The first (and arguably most
important one) is to use the internet. If you don’t know how a particular R function works, Google it.
Second, you can look up the R help documentation. I’ll talk more about these two tricks in Section 4.12.
But right now I want to call your attention to a couple of simple tricks that Rstudio makes available to
you.

3.6.1 Autocomplete using “tab”

The first thing I want to call your attention to is the autocomplete ability in Rstudio.18

Let’s stick to our example above and assume that what you want to do is to round a number. This
time around, start typing the name of the function that you want, and then hit the “tab” key. Rstudio
will then display a little window like the one shown in Figure 3.2. In this figure, I’ve typed the letters ro
at the command line, and then hit tab. The window has two panels. On the left, there’s a list of variables
and functions that start with the letters that I’ve typed shown in black text, and some grey text that
tells you where that variable/function is stored. Ignore the grey text for now: it won’t make much sense
to you until we’ve talked about packages in Section 4.2. In Figure 3.2 you can see that there’s quite a few
things that start with the letters ro: there’s something called rock, something called round, something
called round.Date and so on. The one we want is round, but if you’re typing this yourself you’ll notice
that when you hit the tab key the window pops up with the top entry (i.e., rock) highlighted. You can
use the up and down arrow keys to select the one that you want. Or, if none of the options look right to
you, you can hit the escape key (“esc”) or the left arrow key to make the window go away.

In our case, the thing we want is the round option, so we’ll select that. When you do this, you’ll see
that the panel on the right changes. Previously, it had been telling us something about the rock data set
(i.e., “Measurements on 48 rock samples...”) that is distributed as part of R. But when we select round,
it displays information about the round() function, exactly as it is shown in Figure 3.2. This display
is really handy. The very first thing it says is round(x, digits = 0): what this is telling you is that
the round() function has two arguments. The first argument is called x, and it doesn’t have a default
value. The second argument is digits, and it has a default value of 0. In a lot of situations, that’s all
the information you need. But Rstudio goes a bit further, and provides some additional information
about the function underneath. Sometimes that additional information is very helpful, sometimes it’s
not: Rstudio pulls that text from the R help documentation, and my experience is that the helpfulness of
that documentation varies wildly. Anyway, if you’ve decided that round() is the function that you want
to use, you can hit the right arrow or the enter key, and Rstudio will finish typing the rest of the function
name for you.

The Rstudio autocomplete tool works slightly differently if you’ve already got the name of the function
typed and you’re now trying to type the arguments. For instance, suppose I’ve typed round( into the
console, and then I hit tab. Rstudio is smart enough to recognise that I already know the name of the
function that I want, because I’ve already typed it! Instead, it figures that what I’m interested in is the
arguments to that function. So that’s what pops up in the little window. You can see this in Figure 3.3.
Again, the window has two panels, and you can interact with this window in exactly the same way that
you did with the window shown in Figure 3.2. On the left hand panel, you can see a list of the argument
names. On the right hand side, it displays some information about what the selected argument does.

18For advanced users: obviously, this isn’t just an Rstudio thing. If you’re running R in a terminal window, tab autocom-
plete still works, and does so in exactly the way you’d expect. It’s not as visually pretty as the Rstudio version, of course,
and lacks some of the cooler features that Rstudio provides. I don’t bother to document that here: my assumption is that
if you are running R in the terminal then you’re already familiar with using tab autocomplete.
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Figure 3.2: Start typing the name of a function or a variable, and hit the “tab” key. Rstudio brings up a
little dialog box like this one that lets you select the one you want, and even prints out a little information
about it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.3: If you’ve typed the name of a function already along with the left parenthesis and then hit
the “tab” key, Rstudio brings up a different window to the one shown in Figure 3.2. This one lists all the
arguments to the function on the left, and information about each argument on the right.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.6.2 Browsing your command history

One thing that R does automatically is keep track of your “command history”. That is, it remembers
all the commands that you’ve previously typed. You can access this history in a few different ways. The
simplest way is to use the up and down arrow keys. If you hit the up key, the R console will show you the
most recent command that you’ve typed. Hit it again, and it will show you the command before that.
If you want the text on the screen to go away, hit escape19 Using the up and down keys can be really
handy if you’ve typed a long command that had one typo in it. Rather than having to type it all again
from scratch, you can use the up key to bring up the command and fix it.

The second way to get access to your command history is to look at the history panel in Rstudio.
On the upper right hand side of the Rstudio window you’ll see a tab labelled “History”. Click on that,
and you’ll see a list of all your recent commands displayed in that panel: it should look something like
Figure 3.4. If you double click on one of the commands, it will be copied to the R console. (You can
achieve the same result by selecting the command you want with the mouse and then clicking the “To

19Incidentally, that always works: if you’ve started typing a command and you want to clear it and start again, hit escape.
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Figure 3.4: The history panel is located in the top right hand side of the Rstudio window. Click on the
word “History” and it displays this panel.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Console” button).20

3.7

Storing many numbers as a vector

At this point we’ve covered functions in enough detail to get us safely through the next couple of chapters
(with one small exception: see Section 4.11), so let’s return to our discussion of variables. When I
introduced variables in Section 3.4 I showed you how we can use variables to store a single number. In
this section, we’ll extend this idea and look at how to store multiple numbers within the one variable. In
R the name for a variable that can store multiple values is a vector. So let’s create one.

3.7.1 Creating a vector

Let’s stick to my silly “get rich quick by textbook writing” example. Suppose the textbook company (if I
actually had one, that is) sends me sales data on a monthly basis. Since my class start in late February,
we might expect most of the sales to occur towards the start of the year. Let’s suppose that I have 100
sales in February, 200 sales in March and 50 sales in April, and no other sales for the rest of the year.
What I would like to do is have a variable – let’s call it sales.by.month – that stores all this sales data.
The first number stored should be 0 since I had no sales in January, the second should be 100, and so
on. The simplest way to do this in R is to use the combine function, c(). To do so, all we have to do is
type all the numbers you want to store in a comma separated list, like this:21

20Another method is to start typing some text and then hit the Control key and the up arrow together (on Windows or
Linux) or the Command key and the up arrow together (on a Mac). This will bring up a window showing all your recent
commands that started with the same text as what you’ve currently typed. That can come in quite handy sometimes.

21Notice that I didn’t specify any argument names here. The c() function is one of those cases where we don’t use names.
We just type all the numbers, and R just dumps them all in a single variable.
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> sales.by.month <- c(0, 100, 200, 50, 0, 0, 0, 0, 0, 0, 0, 0)

> sales.by.month

[1] 0 100 200 50 0 0 0 0 0 0 0 0

To use the correct terminology here, we have a single variable here called sales.by.month: this variable
is a vector that consists of 12 elements.

3.7.2 A handy digression

Now that we’ve learned how to put information into a vector, the next thing to understand is how to
pull that information back out again. However, before I do so it’s worth taking a slight detour. If you’ve
been following along, typing all the commands into R yourself, it’s possible that the output that you saw
when we printed out the sales.by.month vector was slightly different to what I showed above. This would
have happened if the window (or the Rstudio panel) that contains the R console is really, really narrow.
If that were the case, you might have seen output that looks something like this:

> sales.by.month

[1] 0 100 200 50 0 0 0 0

[9] 0 0 0 0

Because there wasn’t much room on the screen, R has printed out the results over two lines. But that’s
not the important thing to notice. The important point is that the first line has a [1] in front of it,
whereas the second line starts with [9]. It’s pretty clear what’s happening here. For the first row, R has
printed out the 1st element through to the 8th element, so it starts that row with a [1]. For the second
row, R has printed out the 9th element of the vector through to the 12th one, and so it begins that row
with a [9] so that you can tell where it’s up to at a glance. It might seem a bit odd to you that R does
this, but in some ways it’s a kindness, especially when dealing with larger data sets!

3.7.3 Getting information out of vectors

To get back to the main story, let’s consider the problem of how to get information out of a vector.
At this point, you might have a sneaking suspicion that the answer has something to do with the [1] and
[9] things that R has been printing out. And of course you are correct. Suppose I want to pull out the
February sales data only. February is the second month of the year, so let’s try this:

> sales.by.month[2]

[1] 100

Yep, that’s the February sales all right. But there’s a subtle detail to be aware of here: notice that
R outputs [1] 100, not [2] 100. This is because R is being extremely literal. When we typed in
sales.by.month[2], we asked R to find exactly one thing, and that one thing happens to be the sec-
ond element of our sales.by.month vector. So, when it outputs [1] 100 what R is saying is that the first
number that we just asked for is 100. This behaviour makes more sense when you realise that we can use
this trick to create new variables. For example, I could create a february.sales variable like this:

> february.sales <- sales.by.month[2]

> february.sales

[1] 100

Obviously, the new variable february.sales should only have one element and so when I print it out this
new variable, the R output begins with a [1] because 100 is the value of the first (and only) element of
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february.sales. The fact that this also happens to be the value of the second element of sales.by.month
is irrelevant. We’ll pick this topic up again shortly (Section 3.10).

3.7.4 Altering the elements of a vector

Sometimes you’ll want to change the values stored in a vector. Imagine my surprise when the publisher
rings me up to tell me that the sales data for May are wrong. There were actually an additional 25 books
sold in May, but there was an error or something so they hadn’t told me about it. How can I fix my
sales.by.month variable? One possibility would be to assign the whole vector again from the beginning,
using c(). But that’s a lot of typing. Also, it’s a little wasteful: why should R have to redefine the sales
figures for all 12 months, when only the 5th one is wrong? Fortunately, we can tell R to change only the
5th element, using this trick:

> sales.by.month[5] <- 25

> sales.by.month

[1] 0 100 200 50 25 0 0 0 0 0 0 0

Another way to edit variables is to use the edit() or fix() functions. I won’t discuss them in detail
right now, but you can check them out on your own.

3.7.5 Useful things to know about vectors

Before moving on, I want to mention a couple of other things about vectors. Firstly, you often find
yourself wanting to know how many elements there are in a vector (usually because you’ve forgotten).
You can use the length() function to do this. It’s quite straightforward:

> length( x = sales.by.month )

[1] 12

Secondly, you often want to alter all of the elements of a vector at once. For instance, suppose I wanted
to figure out how much money I made in each month. Since I’m earning an exciting $7 per book (no
seriously, that’s actually pretty close to what authors get on the very expensive textbooks that you’re
expected to purchase), what I want to do is multiply each element in the sales.by.month vector by 7. R
makes this pretty easy, as the following example shows:

> sales.by.month * 7

[1] 0 700 1400 350 0 0 0 0 0 0 0 0

In other words, when you multiply a vector by a single number, all elements in the vector get multiplied.
The same is true for addition, subtraction, division and taking powers. So that’s neat. On the other
hand, suppose I wanted to know how much money I was making per day, rather than per month. Since
not every month has the same number of days, I need to do something slightly different. Firstly, I’ll
create two new vectors:

> days.per.month <- c(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

> profit <- sales.by.month * 7

Obviously, the profit variable is the same one we created earlier, and the days.per.month variable is pretty
straightforward. What I want to do is divide every element of profit by the corresponding element of
days.per.month. Again, R makes this pretty easy:

- 57 -



> profit / days.per.month

[1] 0.00000 25.00000 45.16129 11.66667 0.00000 0.00000 0.00000 0.00000 0.00000

[10] 0.00000 0.00000 0.00000

I still don’t like all those zeros, but that’s not what matters here. Notice that the second element of the
output is 25, because R has divided the second element of profit (i.e. 700) by the second element of
days.per.month (i.e. 28). Similarly, the third element of the output is equal to 1400 divided by 31, and
so on. We’ll talk more about calculations involving vectors later on (and in particular a thing called the
“recycling rule”; Section 7.12.2), but that’s enough detail for now.

3.8

Storing text data

A lot of the time your data will be numeric in nature, but not always. Sometimes your data really needs
to be described using text, not using numbers. To address this, we need to consider the situation where
our variables store text. To create a variable that stores the word “hello”, we can type this:

> greeting <- "hello"

> greeting

[1] "hello"

When interpreting this, it’s important to recognise that the quote marks here aren’t part of the string
itself. They’re just something that we use to make sure that R knows to treat the characters that they
enclose as a piece of text data, known as a character string. In other words, R treats "hello" as a
string containing the word “hello”; but if I had typed hello instead, R would go looking for a variable by
that name! You can also use ’hello’ to specify a character string.

Okay, so that’s how we store the text. Next, it’s important to recognise that when we do this, R stores
the entire word "hello" as a single element: our greeting variable is not a vector of five different letters.
Rather, it has only the one element, and that element corresponds to the entire character string "hello".
To illustrate this, if I actually ask R to find the first element of greeting, it prints the whole string:

> greeting[1]

[1] "hello"

Of course, there’s no reason why I can’t create a vector of character strings. For instance, if we were to
continue with the example of my attempts to look at the monthly sales data for my book, one variable I
might want would include the names of all 12 months.22 To do so, I could type in a command like this

> months <- c("January", "February", "March", "April", "May", "June",

+ "July", "August", "September", "October", "November", "December")

> months

[1] "January" "February" "March" "April" "May" "June"

[7] "July" "August" "September" "October" "November" "December"

This is a character vector containing 12 elements, each of which is the name of a month. So if I wanted
R to tell me the name of the fourth month, all I would do is this:

> months[4]

[1] "April"

22Though actually there’s no real need to do this, since R has an inbuilt variable called month.name that you can use for
this purpose.
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3.8.1 Working with text

Working with text data is somewhat more complicated than working with numeric data, and I discuss
some of the basic ideas in Section 7.8, but for purposes of the current chapter we only need this bare
bones sketch. The only other thing I want to do before moving on is show you an example of a function
that can be applied to text data. So far, most of the functions that we have seen (i.e., sqrt(), abs()
and round()) only make sense when applied to numeric data (e.g., you can’t calculate the square root
of “hello”), and we’ve seen one function that can be applied to pretty much any variable or vector (i.e.,
length()). So it might be nice to see an example of a function that can be applied to text.

The function I’m going to introduce you to is called nchar(), and what it does is count the number of
individual characters that make up a string. Recall earlier that when we tried to calculate the length() of
our greeting variable it returned a value of 1: the greeting variable contains only the one string, which
happens to be "hello". But what if I want to know how many letters there are in the word? Sure, I
could count them, but that’s boring, and more to the point it’s a terrible strategy if what I wanted to
know was the number of letters in War and Peace. That’s where the nchar() function is helpful:

> nchar( x = greeting )

[1] 5

That makes sense, since there are in fact 5 letters in the string "hello". Better yet, you can apply nchar()

to whole vectors. So, for instance, if I want R to tell me how many letters there are in the names of each
of the 12 months, I can do this:

> nchar( x = months )

[1] 7 8 5 5 3 4 4 6 9 7 8 8

So that’s nice to know. The nchar() function can do a bit more than this, and there’s a lot of other
functions that you can do to extract more information from text or do all sorts of fancy things. However,
the goal here is not to teach any of that! The goal right now is just to see an example of a function that
actually does work when applied to text.

3.9

Storing “true or false” data

Time to move onto a third kind of data. A key concept in that a lot of R relies on is the idea of a logical
value. A logical value is an assertion about whether something is true or false. This is implemented
in R in a pretty straightforward way. There are two logical values, namely TRUE and FALSE. Despite the
simplicity, a logical values are very useful things. Let’s see how they work.

3.9.1 Assessing mathematical truths

In George Orwell’s classic book 1984, one of the slogans used by the totalitarian Party was “two plus
two equals five”, the idea being that the political domination of human freedom becomes complete when
it is possible to subvert even the most basic of truths. It’s a terrifying thought, especially when the
protagonist Winston Smith finally breaks down under torture and agrees to the proposition. “Man is
infinitely malleable”, the book says. I’m pretty sure that this isn’t true of humans23 but it’s definitely

23I offer up my teenage attempts to be “cool” as evidence that some things just can’t be done.
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not true of R. R is not infinitely malleable. It has rather firm opinions on the topic of what is and isn’t
true, at least as regards basic mathematics. If I ask it to calculate 2 + 2, it always gives the same answer,
and it’s not bloody 5:

> 2 + 2

[1] 4

Of course, so far R is just doing the calculations. I haven’t asked it to explicitly assert that 2` 2 “ 4 is
a true statement. If I want R to make an explicit judgement, I can use a command like this:

> 2 + 2 == 4

[1] TRUE

What I’ve done here is use the equality operator, ==, to force R to make a “true or false” judgement.24

Okay, let’s see what R thinks of the Party slogan:

> 2+2 == 5

[1] FALSE

Booyah! Freedom and ponies for all! Or something like that. Anyway, it’s worth having a look at what
happens if I try to force R to believe that two plus two is five by making an assignment statement like 2

+ 2 = 5 or 2 + 2 <- 5. When I do this, here’s what happens:

> 2 + 2 = 5

Error in 2 + 2 = 5 : target of assignment expands to non-language object

R doesn’t like this very much. It recognises that 2 + 2 is not a variable (that’s what the “non-language
object” part is saying), and it won’t let you try to “reassign” it. While R is pretty flexible, and actually
does let you do some quite remarkable things to redefine parts of R itself, there are just some basic,
primitive truths that it refuses to give up. It won’t change the laws of addition, and it won’t change the
definition of the number 2.

That’s probably for the best.

3.9.2 Logical operations

So now we’ve seen logical operations at work, but so far we’ve only seen the simplest possible example.
You probably won’t be surprised to discover that we can combine logical operations with other operations
and functions in a more complicated way, like this:

> 3*3 + 4*4 == 5*5

[1] TRUE

or this

> sqrt( 25 ) == 5

[1] TRUE

24Note that this is a very different operator to the assignment operator = that I talked about in Section 3.4. A common
typo that people make when trying to write logical commands in R (or other languages, since the “= versus ==” distinction
is important in most programming languages) is to accidentally type = when you really mean ==. Be especially cautious
with this – I’ve been programming in various languages since I was a teenager, and I still screw this up a lot. Hm. I think
I see why I wasn’t cool as a teenager. And why I’m still not cool.

- 60 -



Table 3.2: Some logical operators. Technically I should be calling these “binary relational operators”,
but quite frankly I don’t want to. It’s my book so no-one can make me.

operation operator example input answer
less than < 2 < 3 TRUE

less than or equal to <= 2 <= 2 TRUE

greater than > 2 > 3 FALSE

greater than or equal to >= 2 >= 2 TRUE

equal to == 2 == 3 FALSE

not equal to != 2 != 3 TRUE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Not only that, but as Table 3.2 illustrates, there are several other logical operators that you can use,
corresponding to some basic mathematical concepts. Hopefully these are all pretty self-explanatory: for
example, the less than operator < checks to see if the number on the left is less than the number on the
right. If it’s less, then R returns an answer of TRUE:

> 99 < 100

[1] TRUE

but if the two numbers are equal, or if the one on the right is larger, then R returns an answer of FALSE,
as the following two examples illustrate:

> 100 < 100

[1] FALSE

> 100 < 99

[1] FALSE

In contrast, the less than or equal to operator <= will do exactly what it says. It returns a value of
TRUE if the number of the left hand side is less than or equal to the number on the right hand side. So if
we repeat the previous two examples using <=, here’s what we get:

> 100 <= 100

[1] TRUE

> 100 <= 99

[1] FALSE

And at this point I hope it’s pretty obvious what the greater than operator > and the greater than
or equal to operator >= do! Next on the list of logical operators is the not equal to operator != which
– as with all the others – does what it says it does. It returns a value of TRUE when things on either side
are not identical to each other. Therefore, since 2` 2 isn’t equal to 5, we get:

> 2 + 2 != 5

[1] TRUE

We’re not quite done yet. There are three more logical operations that are worth knowing about,
listed in Table 3.3. These are the not operator !, the and operator &, and the or operator |. Like the
other logical operators, their behaviour is more or less exactly what you’d expect given their names. For
instance, if I ask you to assess the claim that “either 2 ` 2 “ 4 or 2 ` 2 “ 5” you’d say that it’s true.
Since it’s an “either-or” statement, all we need is for one of the two parts to be true. That’s what the |

operator does:
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Table 3.3: Some more logical operators.

operation operator example input answer
not ! !(1==1) FALSE

or | (1==1) | (2==3) TRUE

and & (1==1) & (2==3) FALSE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (2+2 == 4) | (2+2 == 5)

[1] TRUE

On the other hand, if I ask you to assess the claim that “both 2 ` 2 “ 4 and 2 ` 2 “ 5” you’d say that
it’s false. Since this is an and statement we need both parts to be true. And that’s what the & operator
does:

> (2+2 == 4) & (2+2 == 5)

[1] FALSE

Finally, there’s the not operator, which is simple but annoying to describe in English. If I ask you to
assess my claim that “it is not true that 2 ` 2 “ 5” then you would say that my claim is true; because
my claim is that “2` 2 “ 5 is false”. And I’m right. If we write this as an R command we get this:

> ! (2+2 == 5)

[1] TRUE

In other words, since 2+2 == 5 is a FALSE statement, it must be the case that !(2+2 == 5) is a TRUE one.
Essentially, what we’ve really done is claim that “not false” is the same thing as “true”. Obviously, this
isn’t really quite right in real life. But R lives in a much more black or white world: for R everything is
either true or false. No shades of gray are allowed. We can actually see this much more explicitly, like
this:

> ! FALSE

[1] TRUE

Of course, in our 2 ` 2 “ 5 example, we didn’t really need to use “not” ! and “equals to” == as two
separate operators. We could have just used the “not equals to” operator != like this:

> 2+2 != 5

[1] TRUE

But there are many situations where you really do need to use the ! operator. We’ll see some later on.25

3.9.3 Storing and using logical data

Up to this point, I’ve introduced numeric data (in Sections 3.4 and 3.7) and character data (in
Section 3.8). So you might not be surprised to discover that these TRUE and FALSE values that R has been

25A note for those of you who have taken a computer science class: yes, R does have a function for exclusive-or, namely
xor(). Also worth noting is the fact that R makes the distinction between element-wise operators & and | and operators
that look only at the first element of the vector, namely && and ||. To see the distinction, compare the behaviour of a
command like c(FALSE,TRUE) & c(TRUE,TRUE) to the behaviour of something like c(FALSE,TRUE) && c(TRUE,TRUE). If this doesn’t
mean anything to you, ignore this footnote entirely. It’s not important for the content of this book.
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producing are actually a third kind of data, called logical data. That is, when I asked R if 2 + 2 == 5

and it said [1] FALSE in reply, it was actually producing information that we can store in variables. For
instance, I could create a variable called is.the.Party.correct, which would store R’s opinion:

> is.the.Party.correct <- 2 + 2 == 5

> is.the.Party.correct

[1] FALSE

Alternatively, you can assign the value directly, by typing TRUE or FALSE in your command. Like this:

> is.the.Party.correct <- FALSE

> is.the.Party.correct

[1] FALSE

Better yet, because it’s kind of tedious to type TRUE or FALSE over and over again, R provides you with a
shortcut: you can use T and F instead (but it’s case sensitive: t and f won’t work).26 So this works:

> is.the.Party.correct <- F

> is.the.Party.correct

[1] FALSE

but this doesn’t:

> is.the.Party.correct <- f

Error: object ’f’ not found

3.9.4 Vectors of logicals

The next thing to mention is that you can store vectors of logical values in exactly the same way that
you can store vectors of numbers (Section 3.7) and vectors of text data (Section 3.8). Again, we can
define them directly via the c() function, like this:

> x <- c(TRUE, TRUE, FALSE)

> x

[1] TRUE TRUE FALSE

or you can produce a vector of logicals by applying a logical operator to a vector. This might not make
a lot of sense to you, so let’s unpack it slowly. First, let’s suppose we have a vector of numbers (i.e.,
a “non-logical vector”). For instance, we could use the sales.by.month vector that we were using in
Section 3.7. Suppose I wanted R to tell me, for each month of the year, whether I actually sold a book
in that month. I can do that by typing this:

> sales.by.month > 0

[1] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

and again, I can store this in a vector if I want, as the example below illustrates:

> any.sales.this.month <- sales.by.month > 0

> any.sales.this.month

[1] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

26Warning! TRUE and FALSE are reserved keywords in R, so you can trust that they always mean what they say they do.
Unfortunately, the shortcut versions T and F do not have this property. It’s even possible to create variables that set up the
reverse meanings, by typing commands like T <- FALSE and F <- TRUE. This is kind of insane, and something that is generally
thought to be a design flaw in R. Anyway, the long and short of it is that it’s safer to use TRUE and FALSE.
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In other words, any.sales.this.month is a logical vector whose elements are TRUE only if the corresponding
element of sales.by.month is greater than zero. For instance, since I sold zero books in January, the first
element is FALSE.

3.9.5 Applying logical operation to text

In a moment (Section 3.10) I’ll show you why these logical operations and logical vectors are so handy,
but before I do so I want to very briefly point out that you can apply them to text as well as to logical
data. It’s just that we need to be a bit more careful in understanding how R interprets the different
operations. In this section I’ll talk about how the equal to operator == applies to text, since this is the
most important one. Obviously, the not equal to operator != gives the exact opposite answers to == so
I’m implicitly talking about that one too, but I won’t give specific commands showing the use of !=. As
for the other operators, I’ll defer a more detailed discussion of this topic to Section 7.8.5.

Okay, let’s see how it works. In one sense, it’s very simple. For instance, I can ask R if the word "cat"

is the same as the word "dog", like this:

> "cat" == "dog"

[1] FALSE

That’s pretty obvious, and it’s good to know that even R can figure that out. Similarly, R does recognise
that a "cat" is a "cat":

> "cat" == "cat"

[1] TRUE

Again, that’s exactly what we’d expect. However, what you need to keep in mind is that R is not at all
tolerant when it comes to grammar and spacing. If two strings differ in any way whatsoever, R will say
that they’re not equal to each other, as the following examples indicate:

> " cat" == "cat"

[1] FALSE

> "cat" == "CAT"

[1] FALSE

> "cat" == "c a t"

[1] FALSE

3.10

Indexing vectors

One last thing to add before finishing up this chapter. So far, whenever I’ve had to get information out
of a vector, all I’ve done is typed something like months[4]; and when I do this R prints out the fourth
element of the months vector. In this section, I’ll show you two additional tricks for getting information
out of the vector.

3.10.1 Extracting multiple elements

One very useful thing we can do is pull out more than one element at a time. In the previous example,
we only used a single number (i.e., 2) to indicate which element we wanted. Alternatively, we can use a
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vector. So, suppose I wanted the data for February, March and April. What I could do is use the vector
c(2,3,4) to indicate which elements I want R to pull out. That is, I’d type this:

> sales.by.month[ c(2,3,4) ]

[1] 100 200 50

Notice that the order matters here. If I asked for the data in the reverse order (i.e., April first, then
March, then February) by using the vector c(4,3,2), then R outputs the data in the reverse order:

> sales.by.month[ c(4,3,2) ]

[1] 50 200 100

A second thing to be aware of is that R provides you with handy shortcuts for very common situations.
For instance, suppose that I wanted to extract everything from the 2nd month through to the 8th month.
One way to do this is to do the same thing I did above, and use the vector c(2,3,4,5,6,7,8) to indicate
the elements that I want. That works just fine

> sales.by.month[ c(2,3,4,5,6,7,8) ]

[1] 100 200 50 0 0 0 0

but it’s kind of a lot of typing. To help make this easier, R lets you use 2:8 as shorthand for c(2,3,4,5,6,7,8),
which makes things a lot simpler. First, let’s just check that this is true:

> 2:8

[1] 2 3 4 5 6 7 8

Next, let’s check that we can use the 2:8 shorthand as a way to pull out the 2nd through 8th elements
of sales.by.months:

> sales.by.month[2:8]

[1] 100 200 50 0 0 0 0

So that’s kind of neat.

3.10.2 Logical indexing

At this point, I can introduce an extremely useful tool called logical indexing. In the last section,
I created a logical vector any.sales.this.month, whose elements are TRUE for any month in which I sold
at least one book, and FALSE for all the others. However, that big long list of TRUEs and FALSEs is a little
bit hard to read, so what I’d like to do is to have R select the names of the months for which I sold any
books. Earlier on, I created a vector months that contains the names of each of the months. This is where
logical indexing is handy. What I need to do is this:

> months[ sales.by.month > 0 ]

[1] "February" "March" "April" "May"

To understand what’s happening here, it’s helpful to notice that sales.by.month > 0 is the same logical
expression that we used to create the any.sales.this.month vector in the last section. In fact, I could
have just done this:

> months[ any.sales.this.month ]

[1] "February" "March" "April" "May"
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and gotten exactly the same result. In order to figure out which elements of months to include in the
output, what R does is look to see if the corresponding element in any.sales.this.month is TRUE. Thus,
since element 1 of any.sales.this.month is FALSE, R does not include "January" as part of the output;
but since element 2 of any.sales.this.month is TRUE, R does include "February" in the output. Note that
there’s no reason why I can’t use the same trick to find the actual sales numbers for those months. The
command to do that would just be this:

> sales.by.month [ sales.by.month > 0 ]

[1] 100 200 50 25

In fact, we can do the same thing with text. Here’s an example. Suppose that – to continue the saga of
the textbook sales – I later find out that the bookshop only had sufficient stocks for a few months of the
year. They tell me that early in the year they had "high" stocks, which then dropped to "low" levels, and
in fact for one month they were "out" of copies of the book for a while before they were able to replenish
them. Thus I might have a variable called stock.levels which looks like this:

> stock.levels

[1] "high" "high" "low" "out" "out" "high" "high" "high" "high" "high" "high"

[12] "high"

Thus, if I want to know the months for which the bookshop was out of my book, I could apply the logical
indexing trick, but with the character vector stock.levels, like this:

> months[stock.levels == "out"]

[1] "April" "May"

Alternatively, if I want to know when the bookshop was either low on copies or out of copies, I could do
this:

> months[stock.levels == "out" | stock.levels == "low"]

[1] "March" "April" "May"

or this

> months[stock.levels != "high" ]

[1] "March" "April" "May"

Either way, I get the answer I want.

At this point, I hope you can see why logical indexing is such a useful thing. It’s a very basic, yet very
powerful way to manipulate data. We’ll talk a lot more about how to manipulate data in Chapter 7, since
it’s a critical skill for real world research that is often overlooked in introductory research methods classes
(or at least, that’s been my experience). It does take a bit of practice to become completely comfortable
using logical indexing, so it’s a good idea to play around with these sorts of commands. Try creating a
few different variables of your own, and then ask yourself questions like “how do I get R to spit out all
the elements that are [blah]”. Practice makes perfect, and it’s only by practicing logical indexing that
you’ll perfect the art of yelling frustrated insults at your computer.27
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Figure 3.5: The dialog box that shows up when you try to close Rstudio.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.11

Quitting R

There’s one last thing I should cover in this chapter: how to quit R. When I say this, I’m not trying
to apply that R is some kind of pathological addition and that you need to call the R QuitLine or wear
patches to control the cravings (although you certainly might argue that there’s something seriously
pathological about being addicted to R). I just mean how to exit the program. Assuming you’re running
R in the usual way (i.e., through Rstudio or the default GUI on a Windows or Mac computer), then you
can just shut down the application in the normal way. However, R also has a function, called q() that
you can use to quit, which is pretty handy if you’re running R in a terminal window.

Regardless of what method you use to quit R, when you do so for the first time R will probably ask
you if you want to save the “workspace image”. We’ll talk a lot more about loading and saving data in
Section 4.5, but I figured we’d better quickly cover this now otherwise you’re going to get annoyed when
you close R at the end of the chapter. If you’re using Rstudio, you’ll see a dialog box that looks like the
one shown in Figure 3.5. If you’re using a text based interface you’ll see this:

> q()

Save workspace image? [y/n/c]:

The y/n/c part here is short for “yes / no / cancel”. Type y if you want to save, n if you don’t, and c if
you’ve changed your mind and you don’t want to quit after all.

What does this actually mean? What’s going on is that R wants to know if you want to save all those
variables that you’ve been creating, so that you can use them later. This sounds like a great idea, so it’s
really tempting to type y or click the “Save” button. To be honest though, I very rarely do this, and
it kind of annoys me a little bit... what R is really asking is if you want it to store these variables in a
“default” data file, which it will automatically reload for you next time you open R. And quite frankly, if
I’d wanted to save the variables, then I’d have already saved them before trying to quit. Not only that,
I’d have saved them to a location of my choice, so that I can find it again later. So I personally never
bother wit hthis.

In fact, every time I install R on a new machine one of the first things I do is change the settings
so that it never asks me again. You can do this in Rstudio really easily: use the menu system to find
the Rstudio option; the dialog box that comes up will give you an option to tell R never to whine about

27Well, I say that... but in my personal experience it wasn’t until I started learning “regular expressions” that my loathing
of computers reached its peak.
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Figure 3.6: The options window in Rstudio. On a Mac, you can open this window by going to the
“Rstudio” menu and selecting “Preferences”. On a Windows machine you go to the “Tools” menu and
select “Global Options”.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this again (see Figure 3.6). On a Mac, you can open this window by going to the “Rstudio” menu and
selecting “Preferences”. On a Windows machine you go to the “Tools” menu and select “Global Options”.
Under the “General” tab you’ll see an option that reads “Save workspace to .Rdata on exit”. By default
this is set to “ask”. If you want R to stop asking, change it to “never”.

3.12

Summary

• Getting started. We downloaded and installed R and Rstudio (Section 3.1).

• Basic commands. We talked a bit about the logic of how works and in particular how to type
commands into the R console (Section 3.2), and in doing so learned how to perform basic calculations
using the arithmetic operators +, -, *, / and ^. (Section 3.3)

• Introduction to functions. We saw several different functions, three that are used to perform numeric
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calculations (sqrt(), abs(), round(); Section 3.5), one that applies to text (nchar(); Section 3.8.1),
and one that works on any variable (length(); Section 3.7.5). In doing so, we talked a bit about
how argument names work, and learned about default values for arguments. (Section 3.5.1)

• Introduction to variables. We learned the basic idea behind variables, and how to assign values to
variables using the assignment operator <- (Section 3.4). We also learned how to create vectors
using the combine function c(). (Section 3.7)

• Data types. Learned the distinction between numeric, character and logical data; including the
basics of how to enter and use each of them. (Sections 3.4 to 3.9)

• Logical operations. Learned how to use the logical operators ==, !=, <, >, <=, =>, !, & and |.
(Section 3.9). And learned how to use logical indexing. (Section 3.10)
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4. Additional R concepts

In Chapter 3 our main goal was to get started in R. We covered a lot of the basics and started getting a
feel for how R works. As we go through the book we’ll run into a lot of new R concepts, which I’ll explain
alongside the relevant data analysis concepts. However, there’s still quite a few things that I need to talk
about now, otherwise we’ll run into problems when we start trying to work with data and do statistics.
So that’s the goal in this chapter: to build on the introductory content from the last chapter, to get you to
the point that we can start using R for statistics. Broadly speaking, the chapter comes in two parts. The
first half of the chapter is devoted to the “mechanics” of R: installing and loading packages, managing
the workspace, navigating the file system, and loading and saving data. In the second half, I’ll talk more
about what kinds of variables exist in R, and introduce three new kinds of variables: factors, data frames
and formulas. I’ll finish up by talking a little bit about the help documentation in R as well as some other
avenues for finding assistance. In general, I’m not trying to be comprehensive in this chapter, I’m trying
to make sure that you’ve got the basic foundations needed to tackle the content that comes later in the
book. However, a lot of the topics are revisited in more detail later, especially in Chapters 7 and 8.

4.1

Using comments

Before discussing any of the more complicated stuff, I want to introduce the comment character, #. It
has a simple meaning: it tells R to ignore everything else you’ve written on this line. You won’t have much
need of the # character immediately, but it’s very useful later on when writing scripts (see Chapter 8).
However, while you don’t need to use it, I want to be able to include comments in my R extracts. For
instance, if you read this:1

> seeker <- 3.1415 # create the first variable

> lover <- 2.7183 # create the second variable

> keeper <- seeker * lover # now multiply them to create a third one

> print( keeper ) # print out the value of ’keeper’

[1] 8.539539

it’s a lot easier to understand what I’m doing than if I just write this:

> seeker <- 3.1415

> lover <- 2.7183

> keeper <- seeker * lover

1Notice that I used print(keeper) rather than just typing keeper. Later on in the text I’ll sometimes use the print()

function to display things because I think it helps make clear what I’m doing, but in practice people rarely do this.
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> print( keeper )

[1] 8.539539

So, from now on, you’ll start seeing some # characters appearing in the extracts, with some human-
readable explanatory remarks next to them. These are still perfectly legitimate commands, since R

knows that it should ignore the # character and everything after it. But hopefully they’ll help make
things a little easier to understand.

4.2

Installing and loading packages

In this section I discuss R packages, since almost all of the functions you might want to use in R come
in packages. A package is basically just a big collection of functions, data sets and other R objects that
are all grouped together under a common name. Some packages are already installed when you put R on
your computer, but the vast majority of them of R packages are out there on the internet, waiting for
you to download, install and use them.

When I first started writing this book, Rstudio didn’t really exist as a viable option for using R, and
as a consequence I wrote a very lengthy section that explained how to do package management using
raw R commands. It’s not actually terribly hard to work with packages that way, but it’s clunky and
unpleasant. Fortunately, we don’t have to do things that way anymore. In this section, I’ll describe how
to work with packages using the Rstudio tools, because they’re so much simpler. Along the way, you’ll
see that whenever you get Rstudio to do something (e.g., install a package), you’ll actually see the R

commands that get created. I’ll explain them as we go, because I think that helps you understand what’s
going on.

However, before we get started, there’s a critical distinction that you need to understand, which is
the difference between having a package installed on your computer, and having a package loaded in
R. As of this writing, there are just over 5000 R packages freely available “out there” on the internet.2

When you install R on your computer, you don’t get all of them: only about 30 or so come bundled with
the basic R installation. So right now there are about 30 packages “installed” on your computer, and
another 5000 or so that are not installed. So that’s what installed means: it means “it’s on your computer
somewhere”. The critical thing to remember is that just because something is on your computer doesn’t
mean R can use it. In order for R to be able to use one of your 30 or so installed packages, that package
must also be “loaded”. Generally, when you open up R, only a few of these packages (about 7 or 8) are
actually loaded. Basically what it boils down to is this:

A package must be installed before it can be loaded.
A package must be loaded before it can be used.

This two step process might seem a little odd at first, but the designers of R had very good reasons to
do it this way,3 and you get the hang of it pretty quickly.

4.2.1 The package panel in Rstudio

Right, lets get started. The first thing you need to do is look in the lower right hand panel in

2More precisely, there are 5000 or so packages on CRAN, the Comprehensive R Archive Network.
3Basically, the reason is that there are 5000 packages, and probably about 4000 authors of packages, and no-one really

knows what all of them do. Keeping the installation separate from the loading minimizes the chances that two packages
will interact with each other in a nasty way.
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Figure 4.1: The packages panel.
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Rstudio. You’ll see a tab labelled “Packages”. Click on the tab, and you’ll see a list of packages that
looks something like Figure 4.1. Every row in the panel corresponds to a different package, and every
column is a useful piece of information about that package.4 Going from left to right, here’s what each
column is telling you:

• The check box on the far left column indicates whether or not the package is loaded.

• The one word of text immediately to the right of the check box is the name of the package.

• The short passage of text next to the name is a brief description of the package.

• The number next to the description tells you what version of the package you have installed.

• The little x-mark next to the version number is a button that you can push to uninstall the package
from your computer (you almost never need this).

4.2.2 Loading a package

That seems straightforward enough, so let’s try loading and unloading packades. For this example,
I’ll use the foreign package. The foreign package is a collection of tools that are very handy when R

needs to interact with files that are produced by other software packages (e.g., SPSS). It comes bundled
with R, so it’s one of the ones that you have installed already, but it won’t be one of the ones loaded.
Inside the foreign package is a function called read.spss(). It’s a handy little function that you can use

4If you’re using the command line, you can get the same information by typing library() at the command line.
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to import an SPSS data file into R, so let’s pretend we want to use it. Currently, the foreign package
isn’t loaded, so if I ask R to tell me if it knows about a function called read.spss() it tells me that there’s
no such thing...

> exists( "read.spss" )

[1] FALSE

Now let’s load the package. In Rstudio, the process is dead simple: go to the package tab, find the entry
for the foreign package, and check the box on the left hand side. The moment that you do this, you’ll
see a command like this appear in the R console:

> library("foreign", lib.loc="/Library/Frameworks/R.framework/Versions/3.0/Resources/library")

The lib.loc bit will look slightly different on Macs versus on Windows, because that part of the command
is just Rstudio telling R where to look to find the installed packages. What I’ve shown you above is the
Mac version. On a Windows machine, you’ll probably see something that looks like this:

> library("foreign", lib.loc="C:/Program Files/R/R-3.0.2/library")

But actually it doesn’t matter much. The lib.loc bit is almost always unnecessary. Unless you’ve taken
to installing packages in idiosyncratic places (which is something that you can do if you really want) R

already knows where to look. So in the vast majority of cases, the command to load the foreign package
is just this:

> library("foreign")

Throughout this book, you’ll often see me typing in library() commands. You don’t actually have to
type them in yourself: you can use the Rstudio package panel to do all your package loading for you.
The only reason I include the library() commands sometimes is as a reminder to you to make sure that
you have the relevant package loaded. Oh, and I suppose we should check to see if our attempt to load
the package actually worked. Let’s see if R now knows about the existence of the read.spss() function...

> exists( "read.spss" )

[1] TRUE

Yep. All good.

4.2.3 Unloading a package

Sometimes, especially after a long session of working with R, you find yourself wanting to get rid of
some of those packages that you’ve loaded. The Rstudio package panel makes this exactly as easy as
loading the package in the first place. Find the entry corresponding to the package you want to unload,
and uncheck the box. When you do that for the foreign package, you’ll see this command appear on
screen:

> detach("package:foreign", unload=TRUE)

And the package is unloaded. We can verify this by seeing if the read.spss() function still exists():

> exists( "read.spss" )

[1] FALSE

Nope. Definitely gone.
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4.2.4 A few extra comments

Sections 4.2.2 and 4.2.3 cover the main things you need to know about loading and unloading packages.
However, there’s a couple of other details that I want to draw your attention to. A concrete example is
the best way to illustrate. One of the other packages that you already have installed on your computer
is the Matrix package, so let’s load that one and see what happens:

> library( Matrix )

Loading required package: lattice

This is slightly more complex than the output that we got last time, but it’s not too complicated. The
Matrix package makes use of some of the tools in the lattice package, and R has kept track of this
dependency. So when you try to load the Matrix package, R recognises that you’re also going to need to
have the lattice package loaded too. As a consequence, both packages get loaded, and R prints out a
helpful little note on screen to tell you that it’s done so.

R is pretty aggressive about enforcing these dependencies. Suppose, for example, I try to unload the
lattice package while the Matrix package is still loaded. This is easy enough to try: all I have to do is
uncheck the box next to “lattice” in the packages panel. But if I try this, here’s what happens:

> detach("package:lattice", unload=TRUE)

Error: package ‘lattice’ is required by ‘Matrix’ so will not be detached

R refuses to do it. This can be quite useful, since it stops you from accidentally removing something that
you still need. So, if I want to remove both Matrix and lattice, I need to do it in the correct order

Something else you should be aware of. Sometimes you’ll attempt to load a package, and R will print
out a message on screen telling you that something or other has been “masked”. This will be confusing
to you if I don’t explain it now, and it actually ties very closely to the whole reason why R forces you
to load packages separately from installing them. Here’s an example. Two of the package that I’ll refer
to a lot in this book are called car and psych. The car package is short for “Companion to Applied
Regression” (which is a really great book, I’ll add), and it has a lot of tools that I’m quite fond of. The
car package was written by a guy called John Fox, who has written a lot of great statistical tools for social
science applications. The psych package was written by William Revelle, and it has a lot of functions that
are very useful for psychologists in particular, especially in regards to psychometric techniques. For the
most part, car and psych are quite unrelated to each other. They do different things, so not surprisingly
almost all of the function names are different. But... there’s one exception to that. The car package
and the psych package both contain a function called logit().5 This creates a naming conflict. If I load
both packages into R, an ambiguity is created. If the user types in logit(100), should R use the logit()

function in the car package, or the one in the psych package? The answer is: R uses whichever package
you loaded most recently, and it tells you this very explicitly. Here’s what happens when I load the car

package, and then afterwards load the psych package:

> library(car)

> library(psych)

Attaching package: ‘psych’

The following object is masked from ‘package:car’:

logit

5The logit function a simple mathematical function that happens not to have been included in the basic R distribution.
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The output here is telling you that the logit object (i.e., function) in the car package is no longer
accessible to you. It’s been hidden (or “masked”) from you by the one in the psych package.6

4.2.5 Downloading new packages

One of the main selling points for R is that there are thousands of packages that have been written
for it, and these are all available online. So whereabouts online are these packages to be found, and how
do we download and install them? There is a big repository of packages called the “Comprehensive R
Archive Network” (CRAN), and the easiest way of getting and installing a new package is from one of the
many CRAN mirror sites. Conveniently for us, R provides a function called install.packages() that you
can use to do this. Even more conveniently, the Rstudio team runs its own CRAN mirror and Rstudio has
a clean interface that lets you install packages without having to learn how to use the install.packages()

command7

Using the Rstudio tools is, again, dead simple. In the top left hand corner of the packages panel
(Figure 4.1) you’ll see a button called “Install Packages”. If you click on that, it will bring up a window
like the one shown in Figure 4.2a. There are a few different buttons and boxes you can play with. Ignore
most of them. Just go to the line that says “Packages” and start typing the name of the package that
you want. As you type, you’ll see a dropdown menu appear (Figure 4.2b), listing names of packages that
start with the letters that you’ve typed so far. You can select from this list, or just keep typing. Either
way, once you’ve got the package name that you want, click on the install button at the bottom of the
window. When you do, you’ll see the following command appear in the R console:

> install.packages("psych")

This is the R command that does all the work. R then goes off to the internet, has a conversation with
CRAN, downloads some stuff, and installs it on your computer. You probably don’t care about all the
details of R’s little adventure on the web, but the install.packages() function is rather chatty, so it
reports a bunch of gibberish that you really aren’t all that interested in:

trying URL ’http://cran.rstudio.com/bin/macosx/contrib/3.0/psych_1.4.1.tgz’

Content type ’application/x-gzip’ length 2737873 bytes (2.6 Mb)

opened URL

==================================================

downloaded 2.6 Mb

The downloaded binary packages are in

/var/folders/cl/thhsyrz53g73q0w1kb5z3l_80000gn/T//RtmpmQ9VT3/downloaded_packages

Despite the long and tedious response, all thar really means is “I’ve installed the psych package”. I find
it best to humour the talkative little automaton. I don’t actually read any of this garbage, I just politely
say “thanks” and go back to whatever I was doing.

4.2.6 Updating R and R packages

Every now and then the authors of packages release updated versions. The updated versions often add
new functionality, fix bugs, and so on. It’s generally a good idea to update your packages periodically.

6Tip for advanced users. You can get R to use the one from the car package by using car::logit() as your command
rather than logit(), since the car:: part tells R explicitly which package to use. See also ::: if you’re especially keen to
force R to use functions it otherwise wouldn’t, but take care, since ::: can be dangerous.

7It is not very difficult.
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(a) (b)

Figure 4.2: The package installation dialog box in Rstudio (panel a). When you start typing, you’ll see
a dropdown menu suggest a list of possible packages that you might want to install (panel b)
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There’s an update.packages() function that you can use to do this, but it’s probably easier to stick with
the Rstudio tool. In the packages panel, click on the “Update Packages” button. This will bring up a
window that looks like the one shown in Figure 4.3. In this window, each row refers to a package that
needs to be updated. You can to tell R which updates you want to install by checking the boxes on
the left. If you’re feeling lazy and just want to update everything, click the “Select All” button, and
then click the “Install Updates” button. R then prints out a lot of garbage on the screen, individually
downloading and installing all the new packages. This might take a while to complete depending on how
good your internet connection is. Go make a cup of coffee. Come back, and all will be well.

About every six months or so, a new version of R is released. You can’t update R from within Rstudio
(not to my knowledge, at least): to get the new version you can go to the CRAN website and download
the most recent version of R, and install it in the same way you did when you originally installed R on
your computer. This used to be a slightly frustrating event, because whenever you downloaded the new
version of R, you would lose all the packages that you’d downloaded and installed, and would have to
repeat the process of re-installing them. This was pretty annoying, and there were some neat tricks you
could use to get around this. However, newer versions of R don’t have this problem so I no longer bother
explaining the workarounds for that issue.

4.2.7 What packages does this book use?

There are several packages that I make use of in this book. The most prominent ones are:

• lsr. This is the Learning Statistics with R package that accompanies this book. It doesn’t have a
lot of interesting high-powered tools: it’s just a small collection of handy little things that I think
can be useful to novice users. As you get more comfortable with R this package should start to feel
pretty useless to you.

• psych. This package, written by William Revelle, includes a lot of tools that are of particular use to
psychologists. In particular, there’s several functions that are particularly convenient for producing
analyses or summaries that are very common in psych, but less common in other disciplines.

• car. This is the Companion to Applied Regression package, which accompanies the excellent book
of the same name by Fox and Weisberg (2011). It provides a lot of very powerful tools, only some
of which we’ll touch in this book.
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Figure 4.3: The Rstudio dialog box for updating packages.
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Besides these three, there are a number of packages that I use in a more limited fashion: gplots, sciplot,
foreign, effects, R.matlab, gdata, lmtest, and probably one or two others that I’ve missed. There are
also a number of packages that I refer to but don’t actually use in this book, such as reshape, compute.es,
HistData and multcomp among others. Finally, there are a number of packages that provide more advanced
tools that I hope to talk about in future versions of the book, such as sem, ez, nlme and lme4. In any case,
whenever I’m using a function that isn’t in the core packages, I’ll make sure to note this in the text.

4.3

Managing the workspace

Let’s suppose that you’re reading through this book, and what you’re doing is sitting down with it once
a week and working through a whole chapter in each sitting. Not only that, you’ve been following my
advice and typing in all these commands into R. So far during this chapter, you’d have typed quite a
few commands, although the only ones that actually involved creating variables were the ones you typed
during Section 4.1. As a result, you currently have three variables; seeker, lover, and keeper. These
three variables are the contents of your workspace, also referred to as the global environment. The
workspace is a key concept in R, so in this section we’ll talk a lot about what it is and how to manage
its contents.

4.3.1 Listing the contents of the workspace

The first thing that you need to know how to do is examine the contents of the workspace. If you’re
using Rstudio, you will probably find that the easiest way to do this is to use the “Environment” panel
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Figure 4.4: The Rstudio “Environment” panel shows you the contents of the workspace. The view shown
above is the “list” view. To switch to the grid view, click on the menu item on the top right that currently
reads “list”. Select “grid” from the dropdown menu, and then it will switch to a view like the one shown
in Figure 4.5.
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in the top right hand corner. Click on that, and you’ll see a list that looks very much like the one shown
in Figures 4.4 and 4.5. If you’re using the commmand line, then the objects() function may come in
handy:

> objects()

[1] "keeper" "lover" "seeker"

Of course, in the true R tradition, the objects() function has a lot of fancy capabilities that I’m glossing
over in this example. Moreover there are also several other functions that you can use, including ls()

which is pretty much identical to objects(), and ls.str() which you can use to get a fairly detailed
description of all the variables in the workspace. In fact, the lsr package actually includes its own
function that you can use for this purpose, called who(). The reason for using the who() function is
pretty straightforward: in my everyday work I find that the output produced by the objects() command
isn’t quite informative enough, because the only thing it prints out is the name of each variable; but the
ls.str() function is too informative, because it prints out a lot of additional information that I really
don’t like to look at. The who() function is a compromise between the two. First, now that we’ve got the
lsr package installed, we need to load it:

> library(lsr)

and now we can use the who() function:

> who()

-- Name -- -- Class -- -- Size --

keeper numeric 1

lover numeric 1

seeker numeric 1

As you can see, the who() function lists all the variables and provides some basic information about what
kind of variable each one is and how many elements it contains. Personally, I find this output much
easier more useful than the very compact output of the objects() function, but less overwhelming than
the extremely verbose ls.str() function. Throughout this book you’ll see me using the who() function
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Figure 4.5: The Rstudio “Environment” panel shows you the contents of the workspace. Compare this
“grid” view to the “list” view in Figure 4.4
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a lot. You don’t have to use it yourself: in fact, I suspect you’ll find it easier to look at the Rstudio
environment panel. But for the purposes of writing a textbook I found it handy to have a nice text based
description: otherwise there would be about another 100 or so screenshots added to the book.8

4.3.2 Removing variables from the workspace

Looking over that list of variables, it occurs to me that I really don’t need them any more. I created
them originally just to make a point, but they don’t serve any useful purpose anymore, and now I want
to get rid of them. I’ll show you how to do this, but first I want to warn you – there’s no “undo” option
for variable removal. Once a variable is removed, it’s gone forever unless you save it to disk. I’ll show
you how to do that in Section 4.5, but quite clearly we have no need for these variables at all, so we can
safely get rid of them.

In Rstudio, the easiest way to remove variables is to use the environment panel. Assuming that you’re
in grid view (i.e., Figure 4.5), check the boxes next to the variables that you want to delete, then click on
the “Clear” button at the top of the panel. When you do this, Rstudio will show a dialog box asking you
to confirm that you really do want to delete the variables. It’s always worth checking that you really do,
because as Rstudio is at pains to point out, you can’t undo this. Once a variable is deleted, it’s gone.9

In any case, if you click “yes”, that variable will disappear from the workspace: it will no longer appear
in the environment panel, and it won’t show up when you use the who() command.

Suppose you don’t access to Rstudio, and you still want to remove variables. This is where the remove
function rm() comes in handy. The simplest way to use rm() is just to type in a (comma separated) list
of all the variables you want to remove. Let’s say I want to get rid of seeker and lover, but I would like
to keep keeper. To do this, all I have to do is type:

> rm( seeker, lover )

There’s no visible output, but if I now inspect the workspace

8This would be especially annoying if you’re reading an electronic copy of the book because the text displayed by the
who() function is searchable, whereas text shown in a screen shot isn’t!

9Mind you, all that means is that it’s been removed from the workspace. If you’ve got the data saved to file somewhere,
then that file is perfectly safe.

- 80 -



> who()

-- Name -- -- Class -- -- Size --

keeper numeric 1

I see that there’s only the keeper variable left. As you can see, rm() can be very handy for keeping the
workspace tidy.

4.4

Navigating the file system

In this section I talk a little about how R interacts with the file system on your computer. It’s not a
terribly interesting topic, but it’s useful. As background to this discussion, I’ll talk a bit about how file
system locations work in Section 4.4.1. Once upon a time everyone who used computers could safely
be assumed to understand how the file system worked, because it was impossible to successfully use a
computer if you didn’t! However, modern operating systems are much more “user friendly”, and as a
consequence of this they go to great lengths to hide the file system from users. So these days it’s not at
all uncommon for people to have used computers most of their life and not be familiar with the way that
computers organise files. If you already know this stuff, skip straight to Section 4.4.2. Otherwise, read
on. I’ll try to give a brief introduction that will be useful for those of you who have never been forced to
learn how to navigate around a computer using a DOS or UNIX shell.

4.4.1 The file system itself

In this section I describe the basic idea behind file locations and file paths. Regardless of whether
you’re using Window, Mac OS or Linux, every file on the computer is assigned a (fairly) human readable
address, and every address has the same basic structure: it describes a path that starts from a root
location , through as series of folders (or if you’re an old-school computer user, directories), and finally
ends up at the file.

On a Windows computer the root is the physical drive10 on which the file is stored, and for most home
computers the name of the hard drive that stores all your files is C: and therefore most file names on
Windows begin with C:. After that comes the folders, and on Windows the folder names are separated
by a \ symbol. So, the complete path to this book on my Windows computer might be something like
this:

C:\Users\dan\Rbook\LSR.pdf

and what that means is that the book is called LSR.pdf, and it’s in a folder called Rbook which itself is
in a folder called dan which itself is ... well, you get the idea. On Linux, Unix and Mac OS systems, the
addresses look a little different, but they’re more or less identical in spirit. Instead of using the backslash,
folders are separated using a forward slash, and unlike Windows, they don’t treat the physical drive as
being the root of the file system. So, the path to this book on my Mac might be something like this:

/Users/dan/Rbook/LSR.pdf

So that’s what we mean by the “path” to a file. The next concept to grasp is the idea of a working
directory and how to change it. For those of you who have used command line interfaces previously,

10Well, the partition, technically.
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this should be obvious already. But if not, here’s what I mean. The working directory is just “whatever
folder I’m currently looking at”. Suppose that I’m currently looking for files in Explorer (if you’re using
Windows) or using Finder (on a Mac). The folder I currently have open is my user directory (i.e.,
C:\Users\dan or /Users/dan). That’s my current working directory.

The fact that we can imagine that the program is “in” a particular directory means that we can talk
about moving from our current location to a new one. What that means is that we might want to specify
a new location in relation to our current location. To do so, we need to introduce two new conventions.
Regardless of what operating system you’re using, we use . to refer to the current working directory,
and .. to refer to the directory above it. This allows us to specify a path to a new location in relation
to our current location, as the following examples illustrate. Let’s assume that I’m using my Windows
computer, and my working directory is C:\Users\dan\Rbook). The table below shows several addresses
in relation to my current one:

absolute path relative path
(i.e., from root) (i.e. from C:\Users\dan\Rbook)

C:\Users\dan ..

C:\Users ..\..

C:\Users\dan\Rbook\source .\source

C:\Users\dan\nerdstuff ..\nerdstuff

There’s one last thing I want to call attention to: the ~ directory. I normally wouldn’t bother, but
R makes reference to this concept sometimes. It’s quite common on computers that have multiple users
to define ~ to be the user’s home directory. On my Mac, for instance, the home directory ~ for the
“dan” user is \Users\dan\. And so, not surprisingly, it is possible to define other directories in terms of
their relationship to the home directory. For example, an alternative way to describe the location of the
LSR.pdf file on my Mac would be

~\Rbook\LSR.pdf

That’s about all you really need to know about file paths. And since this section already feels too
long, it’s time to look at how to navigate the file system in R.

4.4.2 Navigating the file system using the R console

In this section I’ll talk about how to navigate this file system from within R itself. It’s not particularly
user friendly, and so you’ll probably be happy to know that Rstudio provides you with an easier method,
and I will describe it in Section 4.4.4. So in practice, you won’t really need to use the commands that
I babble on about in this section, but I do think it helps to see them in operation at least once before
forgetting about them forever.

Okay, let’s get started. When you want to load or save a file in R it’s important to know what the
working directory is. You can find out by using the getwd() command. For the moment, let’s assume
that I’m using Mac OS or Linux, since there’s some subtleties to Windows. Here’s what happens:

> getwd()

[1] "/Users/dan"

We can change the working directory quite easily using setwd(). The setwd() function has only the one
argument, dir, is a character string specifying a path to a directory, or a path relative to the working
directory. Since I’m currently located at /Users/dan, the following two are equivalent:
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> setwd("/Users/dan/Rbook/data")

> setwd("./Rbook/data")

Now that we’re here, we can type list.files() command to get a listing of all the files in that directory.
Since this is the directory in which I store all of the data files that we’ll use in this book, here’s what we
get as the result:

> list.files()

[1] "afl24.Rdata" "aflsmall.Rdata" "aflsmall2.Rdata"

[4] "agpp.Rdata" "all.zip" "annoying.Rdata"

[7] "anscombesquartet.Rdata" "awesome.Rdata" "awesome2.Rdata"

[10] "booksales.csv" "booksales.Rdata" "booksales2.csv"

[13] "cakes.Rdata" "cards.Rdata" "chapek9.Rdata"

[16] "chico.Rdata" "clinicaltrial_old.Rdata" "clinicaltrial.Rdata"

[19] "coffee.Rdata" "drugs.wmc.rt.Rdata" "dwr_all.Rdata"

[22] "effort.Rdata" "happy.Rdata" "harpo.Rdata"

[25] "harpo2.Rdata" "likert.Rdata" "nightgarden.Rdata"

[28] "nightgarden2.Rdata" "parenthood.Rdata" "parenthood2.Rdata"

[31] "randomness.Rdata" "repeated.Rdata" "rtfm.Rdata"

[34] "salem.Rdata" "zeppo.Rdata"

Not terribly exciting, I’ll admit, but it’s useful to know about. In any case, there’s only one more thing
I want to make a note of, which is that R also makes use of the home directory. You can find out what
it is by using the path.expand() function, like this:

> path.expand("~")

[1] "/Users/dan"

You can change the user directory if you want, but we’re not going to make use of it very much so there’s
no reason to. The only reason I’m even bothering to mention it at all is that when you use Rstudio to
open a file, you’ll see output on screen that defines the path to the file relative to the ~ directory. I’d
prefer you not to be confused when you see it.11

4.4.3 Why do the Windows paths use the wrong slash?

Let’s suppose I’m on Windows. As before, I can find out what my current working directory is like
this:

> getwd()

[1] "C:/Users/dan/

This seems about right, but you might be wondering why R is displaying a Windows path using the
wrong type of slash. The answer is slightly complicated, and has to do with the fact that R treats the \

character as “special” (see Section 7.8.7). If you’re deeply wedded to the idea of specifying a path using
the Windows style slashes, then what you need to do is to type \\ whenever you mean \. In other words,
if you want to specify the working directory on a Windows computer, you need to use one of the following
commands:

> setwd( "C:/Users/dan" )

> setwd( "C:\\Users\\dan" )

11One additional thing worth calling your attention to is the file.choose() function. Suppose you want to load a file and
you don’t quite remember where it is, but would like to browse for it. Typing file.choose() at the command line will open
a window in which you can browse to find the file; when you click on the file you want, R will print out the full path to
that file. This is kind of handy.
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Figure 4.6: The “file panel” is the area shown in the lower right hand corner. It provides a very easy way
to browse and navigate your computer using R. See main text for details.
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It’s kind of annoying to have to do it this way, but as you’ll see later on in Section 7.8.7 it’s a necessary
evil. Fortunately, as we’ll see in the next section, Rstudio provides a much simpler way of changing
directories...

4.4.4 Navigating the file system using the Rstudio file panel

Although I think it’s important to understand how all this command line stuff works, in many (maybe
even most) situations there’s an easier way. For our purposes, the easiest way to navigate the file system
is to make use of Rstudio’s built in tools. The “file” panel – the lower right hand area in Figure 4.6 – is
actually a pretty decent file browser. Not only can you just point and click on the names to move around
the file system, you can also use it to set the working directory, and even load files.

Here’s what you need to do to change the working directory using the file panel. Let’s say I’m looking
at the actual screen shown in Figure 4.6. At the top of the file panel you see some text that says “Home
ą Rbook ą data”. What that means is that it’s displaying the files that are stored in the

/Users/dan/Rbook/data

directory on my computer. It does not mean that this is the R working directory. If you want to change
the R working directory, using the file panel, you need to click on the button that reads “More”. This
will bring up a little menu, and one of the options will be “Set as Working Directory”. If you select that
option, then R really will change the working directory. You can tell that it has done so because this
command appears in the console:

> setwd("~/Rbook/data")
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In other words, Rstudio sends a command to the R console, exactly as if you’d typed it yourself. The
file panel can be used to do other things too. If you want to move “up” to the parent folder (e.g., from
/Users/dan/Rbook/data to /Users/dan/Rbook) click on the “..” link in the file panel. To move to a
subfolder, click on the name of the folder that you want to open. You can open some types of file by
clicking on them. You can delete files from your computer using the “delete” button, rename them with
the “rename” button, and so on.

As you can tell, the file panel is a very handy little tool for navigating the file system. But it can do
more than just navigate. As we’ll see later, it can be used to open files. And if you look at the buttons
and menu options that it presents, you can even use it to rename, delete, copy or move files, and create
new folders. However, since most of that functionality isn’t critical to the basic goals of this book, I’ll let
you discover those on your own.

4.5

Loading and saving data

There are several different types of files that are likely to be relevant to us when doing data analysis.
There are three in particular that are especially important from the perspective of this book:

• Workspace files are those with a .Rdata file extension. This is the standard kind of file that R uses
to store data and variables. They’re called “workspace files” because you can use them to save your
whole workspace.

• Comma separated value (CSV) files are those with a .csv file extension. These are just regular old
text files, and they can be opened with almost any software. It’s quite typical for people to store
data in CSV files, precisely because they’re so simple.

• Script files are those with a .R file extension. These aren’t data files at all; rather, they’re used
to save a collection of commands that you want R to execute later. They’re just text files, but we
won’t make use of them until Chapter 8.

There are also several other types of file that R makes use of,12 but they’re not really all that central to
our interests. There are also several other kinds of data file that you might want to import into R. For
instance, you might want to open Microsoft Excel spreadsheets (.xls files), or data files that have been
saved in the native file formats for other statistics software, such as SPSS, SAS, Minitab, Stata or Systat.
Finally, you might have to handle databases. R tries hard to play nicely with other software, so it has
tools that let you open and work with any of these and many others. I’ll discuss some of these other
possibilities elsewhere in this book (Section 7.9), but for now I want to focus primarily on the two kinds
of data file that you’re most likely to need: .Rdata files and .csv files. In this section I’ll talk about
how to load a workspace file, how to import data from a CSV file, and how to save your workspace to a
workspace file. Throughout this section I’ll first describe the (sometimes awkward) R commands that do
all the work, and then I’ll show you the (much easier) way to do it using Rstudio.

4.5.1 Loading workspace files using R

When I used the list.files() command to list the contents of the /Users/dan/Rbook/data directory
(in Section 4.4.2), the output referred to a file called booksales.Rdata. Let’s say I want to load the data

12Notably those with .rda, .Rd, .Rhistory, .rdb and .rdx extensions
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from this file into my workspace. The way I do this is with the load() function. There are two arguments
to this function, but the only one we’re interested in is

• file. This should be a character string that specifies a path to the file that needs to be loaded.
You can use an absolute path or a relative path to do so.

Using the absolute file path, the command would look like this:

> load( file = "/Users/dan/Rbook/data/booksales.Rdata" )

but this is pretty lengthy. Given that the working directory (remember, we changed the directory at the
end of Section 4.4.4) is /Users/dan/Rbook/data, I could use a relative file path, like so:

> load( file = "../data/booksales.Rdata" )

However, my preference is usually to change the working directory first, and then load the file. What
that would look like is this:

> setwd( "../data" ) # move to the data directory

> load( "booksales.Rdata" ) # load the data

If I were then to type who() I’d see that there are several new variables in my workspace now. Throughout
this book, whenever you see me loading a file, I will assume that the file is actually stored in the working
directory, or that you’ve changed the working directory so that R is pointing at the directory that contains
the file. Obviously, you don’t need type that command yourself: you can use the Rstudio file panel to do
the work.

4.5.2 Loading workspace files using Rstudio

Okay, so how do we open an .Rdata file using the Rstudio file panel? It’s terribly simple. First, use
the file panel to find the folder that contains the file you want to load. If you look at Figure 4.6, you
can see that there are several .Rdata files listed. Let’s say I want to load the booksales.Rdata file. All
I have to do is click on the file name. Rstudio brings up a little dialog box asking me to confirm that I
do want to load this file. I click yes. The following command then turns up in the console,

> load("~/Rbook/data/booksales.Rdata")

and the new variables will appear in the workspace (you’ll see them in the Environment panel in Rstudio,
or if you type who()). So easy it barely warrants having its own section.

4.5.3 Importing data from CSV files using R

One quite commonly used data format is the humble “comma separated value” file, also called a CSV
file, and usually bearing the file extension .csv. CSV files are just plain old-fashioned text files, and
what they store is basically just a table of data. This is illustrated in Figure 4.7, which shows a file
called booksales.csv that I’ve created. As you can see, each row corresponds to a variable, and each
row represents the book sales data for one month. The first row doesn’t contain actual data though: it
has the names of the variables.

If Rstudio were not available to you, the easiest way to open this file would be to use the read.csv()

function.13 This function is pretty flexible, and I’ll talk a lot more about it’s capabilities in Section 7.9

13In a lot of books you’ll see the read.table() function used for this purpose instead of read.csv(). They’re more or less
identical functions, with the same arguments and everything. They differ only in the default values.
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Figure 4.7: The booksales.csv data file. On the left, I’ve opened the file in using a spreadsheet program
(OpenOffice), which shows that the file is basically a table. On the right, the same file is open in a standard
text editor (the TextEdit program on a Mac), which shows how the file is formatted. The entries in the
table are wrapped in quote marks and separated by commas.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for more details, but for now there’s only two arguments to the function that I’ll mention:

• file. This should be a character string that specifies a path to the file that needs to be loaded.
You can use an absolute path or a relative path to do so.

• header. This is a logical value indicating whether or not the first row of the file contains variable
names. The default value is TRUE.

Therefore, to import the CSV file, the command I need is:

> books <- read.csv( file = "booksales.csv" )

There are two very important points to notice here. Firstly, notice that I didn’t try to use the load()

function, because that function is only meant to be used for .Rdata files. If you try to use load() on
other types of data, you get an error. Secondly, notice that when I imported the CSV file I assigned the
result to a variable, which I imaginatively called books.14 Let’s have a look at what we’ve got:

> print( books )

Month Days Sales Stock.Levels

1 January 31 0 high

2 February 28 100 high

3 March 31 200 low

4 April 30 50 out

14Note that I didn’t to this in my earlier example when loading the .Rdata file. There’s a reason for this. The idea
behind an .Rdata file is that it stores a whole workspace. So, if you had the ability to look inside the file yourself you’d see
that the data file keeps track of all the variables and their names. So when you load() the file, R restores all those original
names. CSV files are treated differently: as far as R is concerned, the CSV only stores one variable, but that variable is big
table. So when you import that table into the workspace, R expects you to give it a name.
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Figure 4.8: A dialog box on a Mac asking you to select the CSV file R should try to import. Mac users
will recognise this immediately: it’s the usual way in which a Mac asks you to find a file. Windows users
won’t see this: they’ll see the usual explorer window that Windows always gives you when it wants you
to select a file.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 May 31 0 out

6 June 30 0 high

7 July 31 0 high

8 August 31 0 high

9 September 30 0 high

10 October 31 0 high

11 November 30 0 high

12 December 31 0 high

Clearly, it’s worked, but the format of this output is a bit unfamiliar. We haven’t seen anything like this
before. What you’re looking at is a data frame, which is a very important kind of variable in R, and one
I’ll discuss in Section 4.8. For now, let’s just be happy that we imported the data and that it looks about
right.

4.5.4 Importing data from CSV files using Rstudio

Yet again, it’s easier in Rstudio. In the environment panel in Rstudio you should see a button called
“Import Dataset”. Click on that, and it will give you a couple of options: select the “From Text File...”
option, and it will open up a very familiar dialog box asking you to select a file: if you’re on a Mac, it’ll
look like the usual Finder window that you use to choose a file; on Windows it looks like an Explorer
window. An example of what it looks like on a Mac is shown in Figure 4.8. I’m assuming that you’re
familiar with your own computer, so you should have no problem finding the CSV file that you want to
import! Find the one you want, then click on the “Open” button. When you do this, you’ll see a window
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Figure 4.9: The Rstudio window for importing a CSV file into R.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

that looks like the one in Figure 4.9.

The import data set window is relatively straightforward to understand. In the top left corner, you
need to type the name of the variable you R to create. By default, that will be the same as the file name:
our file is called booksales.csv, so Rstudio suggests the name booksales. If you’re happy with that,
leave it alone. If not, type something else. Immediately below this are a few things that you can tweak
to make sure that the data gets imported correctly:

• Heading. Does the first row of the file contain raw data, or does it contain headings for each
variable? The booksales.csv file has a header at the top, so I selected “yes”.

• Separator. What character is used to separate different entries? In most CSV files this will be a
comma (it is “comma separated” after all). But you can change this if your file is different.

• Decimal. What character is used to specify the decimal point? In English speaking countries, this
is almost always a period (i.e., .). That’s not universally true: many European countries use a
comma. So you can change that if you need to.

• Quote. What character is used to denote a block of text? That’s usually going to be a double quote
mark. It is for the booksales.csv file, so that’s what I selected.
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The nice thing about the Rstudio window is that it shows you the raw data file at the top of the window,
and it shows you a preview of the data at the bottom. If the data at the bottom doesn’t look right, try
changing some of the settings on the left hand side. Once you’re happy, click “Import”. When you do,
two commands appear in the R console:

> booksales <- read.csv("~/Rbook/data/booksales.csv")

> View(booksales)

The first of these commands is the one that loads the data. The second one will display a pretty table
showing the data in Rstudio.

4.5.5 Saving a workspace file using R

Not surprisingly, saving data is very similar to loading data. Although Rstudio provides a simple
way to save files (see below), it’s worth understanding the actual commands involved. There are two
commands you can use to do this, save() and save.image(). If you’re happy to save all of the variables
in your workspace into the data file, then you should use save.image(). And if you’re happy for R to save
the file into the current working directory, all you have to do is this:

> save.image( file = "myfile.Rdata" )

Since file is the first argument, you can shorten this to save.image("myfile.Rdata"); and if you want to
save to a different directory, then (as always) you need to be more explicit about specifying the path to
the file, just as we discussed in Section 4.4. Suppose, however, I have several variables in my workspace,
and I only want to save some of them. For instance, I might have this as my workspace:

> who()

-- Name -- -- Class -- -- Size --

data data.frame 3 x 2

handy character 1

junk numeric 1

I want to save data and handy, but not junk. But I don’t want to delete junk right now, because I want
to use it for something else later on. This is where the save() function is useful, since it lets me indicate
exactly which variables I want to save. Here is one way I can use the save function to solve my problem:

> save(data, handy, file = "myfile.Rdata")

Importantly, you must specify the name of the file argument. The reason is that if you don’t do so,
R will think that "myfile.Rdata" is actually a variable that you want to save, and you’ll get an error
message. Finally, I should mention a second way to specify which variables the save() function should
save, which is to use the list argument. You do so like this:

> save.me <- c("data", "handy") # the variables to be saved

> save( file = "booksales2.Rdata", list = save.me ) # the command to save them

4.5.6 Saving a workspace file using Rstudio

Rstudio allows you to save the workspace pretty easily. In the environment panel (Figures 4.4 and
4.5) you can see the “save” button. There’s no text, but it’s the same icon that gets used on every
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computer everywhere: it’s the one that looks like a floppy disk. You know, those things that haven’t
been used in about 20 years. Alternatively, go to the “Session” menu and click on the “Save Workspace
As...” option.15 This will bring up the standard “save” dialog box for your operating system (e.g., on a
Mac it’ll look a little bit like the loading dialog box in Figure 4.8). Type in the name of the file that you
want to save it to, and all the variables in your workspace will be saved to disk. You’ll see an R command
like this one

> save.image("~/Desktop/Untitled.RData")

Pretty straightforward, really.

4.5.7 Other things you might want to save

Until now, we’ve talked mostly about loading and saving data. Other things you might want to save
include:

• The output. Sometimes you might also want to keep a copy of all your interactions with R, including
everything that you typed in and everything that R did in response. There are some functions that
you can use to get R to write its output to a file rather than to print onscreen (e.g., sink()), but to
be honest, if you do want to save the R output, the easiest thing to do is to use the mouse to select
the relevant text in the R console, go to the “Edit” menu in Rstudio and select “Copy”. The output
has now been copied to the clipboard. Now open up your favourite text editor or word processing
software, and paste it. And you’re done. However, this will only save the contents of the console,
not the plots you’ve drawn (assuming you’ve drawn some). We’ll talk about saving images later on.

• A script. While it is possible – and sometimes handy – to save the R output as a method for keeping
a copy of your statistical analyses, another option that people use a lot (especially when you move
beyond simple “toy” analyses) is to write scripts. A script is a text file in which you write out all
the commands that you want R to run. You can write your script using whatever software you like.
In real world data analysis writing scripts is a key skill – and as you become familiar with R you’ll
probably find that most of what you do involves scripting rather than typing commands at the R

prompt. However, you won’t need to do much scripting initially, so we’ll leave that until Chapter 8.

4.6

Useful things to know about variables

In Chapter 3 I talked a lot about variables, how they’re assigned and some of the things you can do with
them, but there’s a lot of additional complexities. That’s not a surprise of course. However, some of
those issues are worth drawing your attention to now. So that’s the goal of this section; to cover a few
extra topics. As a consequence, this section is basically a bunch of things that I want to briefly mention,
but don’t really fit in anywhere else. In short, I’ll talk about several different issues in this section, which
are only loosely connected to one another.

15A word of warning: what you don’t want to do is use the “File” menu. If you look in the “File” menu you will see
“Save” and “Save As...” options, but they don’t save the workspace. Those options are used for dealing with scripts, and
so they’ll produce .R files. We won’t get to those until Chapter 8.
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4.6.1 Special values

The first thing I want to mention are some of the “special” values that you might see R produce. Most
likely you’ll see them in situations where you were expecting a number, but there are quite a few other
ways you can encounter them. These values are Inf, NaN, NA and NULL. These values can crop up in various
different places, and so it’s important to understand what they mean.

• Infinity (Inf). The easiest of the special values to explain is Inf, since it corresponds to a value
that is infinitely large. You can also have -Inf. The easiest way to get Inf is to divide a positive
number by 0:

> 1 / 0

[1] Inf

In most real world data analysis situations, if you’re ending up with infinite numbers in your data,
then something has gone awry. Hopefully you’ll never have to see them.

• Not a Number (NaN). The special value of NaN is short for “not a number”, and it’s basically a
reserved keyword that means “there isn’t a mathematically defined number for this”. If you can
remember your high school maths, remember that it is conventional to say that 0{0 doesn’t have a
proper answer: mathematicians would say that 0{0 is undefined. R says that it’s not a number:

> 0 / 0

[1] NaN

Nevertheless, it’s still treated as a “numeric” value. To oversimplify, NaN corresponds to cases where
you asked a proper numerical question that genuinely has no meaningful answer.

• Not available (NA). NA indicates that the value that is “supposed” to be stored here is missing.
To understand what this means, it helps to recognise that the NA value is something that you’re
most likely to see when analysing data from real world experiments. Sometimes you get equipment
failures, or you lose some of the data, or whatever. The point is that some of the information that
you were “expecting” to get from your study is just plain missing. Note the difference between
NA and NaN. For NaN, we really do know what’s supposed to be stored; it’s just that it happens to
correspond to something like 0{0 that doesn’t make any sense at all. In contrast, NA indicates that
we actually don’t know what was supposed to be there. The information is missing.

• No value (NULL). The NULL value takes this “absence” concept even further. It basically asserts that
the variable genuinely has no value whatsoever. This is quite different to both NaN and NA. For NaN

we actually know what the value is, because it’s something insane like 0{0. For NA, we believe that
there is supposed to be a value “out there”, but a dog ate our homework and so we don’t quite
know what it is. But for NULL we strongly believe that there is no value at all.

4.6.2 Assigning names to vector elements

One thing that is sometimes a little unsatisfying about the way that R prints out a vector is that the
elements come out unlabelled. Here’s what I mean. Suppose I’ve got data reporting the quarterly profits
for some company. If I just create a no-frills vector, I have to rely on memory to know which element
corresponds to which event. That is:

- 92 -



> profit <- c( 3.1, 0.1, -1.4, 1.1 )

> profit

[1] 3.1 0.1 -1.4 1.1

You can probably guess that the first element corresponds to the first quarter, the second element to the
second quarter, and so on, but that’s only because I’ve told you the back story and because this happens
to be a very simple example. In general, it can be quite difficult. This is where it can be helpful to assign
names to each of the elements. Here’s how you do it:

> names(profit) <- c("Q1","Q2","Q3","Q4")

> profit

Q1 Q2 Q3 Q4

3.1 0.1 -1.4 1.1

This is a slightly odd looking command, admittedly, but it’s not too difficult to follow. All we’re doing is
assigning a vector of labels (character strings) to names(profit). You can always delete the names again
by using the command names(profit) <- NULL. It’s also worth noting that you don’t have to do this as a
two stage process. You can get the same result with this command:

> profit <- c( "Q1" = 3.1, "Q2" = 0.1, "Q3" = -1.4, "Q4" = 1.1 )

> profit

Q1 Q2 Q3 Q4

3.1 0.1 -1.4 1.1

The important things to notice are that (a) this does make things much easier to read, but (b) the names
at the top aren’t the “real” data. The value of profit[1] is still 3.1; all I’ve done is added a name to
profit[1] as well. Nevertheless, names aren’t purely cosmetic, since R allows you to pull out particular
elements of the vector by referring to their names:

> profit["Q1"]

Q1

3.1

And if I ever need to pull out the names themselves, then I just type names(profit).

4.6.3 Variable classes

As we’ve seen, R allows you to store different kinds of data. In particular, the variables we’ve defined
so far have either been character data (text), numeric data, or logical data.16 It’s important that we
remember what kind of information each variable stores (and even more important that R remembers)
since different kinds of variables allow you to do different things to them. For instance, if your variables
have numerical information in them, then it’s okay to multiply them together:

> x <- 5 # x is numeric

> y <- 4 # y is numeric

> x * y

[1] 20

But if they contain character data, multiplication makes no sense whatsoever, and R will complain if you
try to do it:

16Or functions. But let’s ignore functions for the moment.
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> x <- "apples" # x is character

> y <- "oranges" # y is character

> x * y

Error in x * y : non-numeric argument to binary operator

Even R is smart enough to know you can’t multiply "apples" by "oranges". It knows this because the
quote marks are indicators that the variable is supposed to be treated as text, not as a number.

This is quite useful, but notice that it means that R makes a big distinction between 5 and "5".
Without quote marks, R treats 5 as the number five, and will allow you to do calculations with it. With
the quote marks, R treats "5" as the textual character five, and doesn’t recognise it as a number any more
than it recognises "p" or "five" as numbers. As a consequence, there’s a big difference between typing
x <- 5 and typing x <- "5". In the former, we’re storing the number 5; in the latter, we’re storing the
character "5". Thus, if we try to do multiplication with the character versions, R gets stroppy:

> x <- "5" # x is character

> y <- "4" # y is character

> x * y

Error in x * y : non-numeric argument to binary operator

Okay, let’s suppose that I’ve forgotten what kind of data I stored in the variable x (which happens
depressingly often). R provides a function that will let us find out. Or, more precisely, it provides three
functions: class(), mode() and typeof(). Why the heck does it provide three functions, you might be
wondering? Basically, because R actually keeps track of three different kinds of information about a
variable:

1. The class of a variable is a “high level” classification, and it captures psychologically (or statisti-
cally) meaningful distinctions. For instance "2011-09-12" and "my birthday" are both text strings,
but there’s an important difference between the two: one of them is a date. So it would be nice
if we could get R to recognise that "2011-09-12" is a date, and allow us to do things like add or
subtract from it. The class of a variable is what R uses to keep track of things like that. Because
the class of a variable is critical for determining what R can or can’t do with it, the class() function
is very handy.

2. The mode of a variable refers to the format of the information that the variable stores. It tells you
whether R has stored text data or numeric data, for instance, which is kind of useful, but it only
makes these “simple” distinctions. It can be useful to know about, but it’s not the main thing we
care about. So I’m not going to use the mode() function very much.17

3. The type of a variable is a very low level classification. We won’t use it in this book, but (for those
of you that care about these details) this is where you can see the distinction between integer data,
double precision numeric, etc. Almost none of you actually will care about this, so I’m not even
going to bother demonstrating the typeof() function.

For purposes, it’s the class() of the variable that we care most about. Later on, I’ll talk a bit about how
you can convince R to “coerce” a variable to change from one class to another (Section 7.10). That’s a
useful skill for real world data analysis, but it’s not something that we need right now. In the meantime,
the following examples illustrate the use of the class() function:

> x <- "hello world" # x is text

> class(x)

[1] "character"

17Actually, I don’t think I ever use this in practice. I don’t know why I bother to talk about it in the book anymore.
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> x <- TRUE # x is logical

> class(x)

[1] "logical"

> x <- 100 # x is a number

> class(x)

[1] "numeric"

Exciting, no?

4.7

Factors

Okay, it’s time to start introducing some of the data types that are somewhat more specific to statistics. If
you remember back to Chapter 2, when we assign numbers to possible outcomes, these numbers can mean
quite different things depending on what kind of variable we are attempting to measure. In particular,
we commonly make the distinction between nominal, ordinal, interval and ratio scale data. How do
we capture this distinction in R? Currently, we only seem to have a single numeric data type. That’s
probably not going to be enough, is it?

A little thought suggests that the numeric variable class in R is perfectly suited for capturing ratio
scale data. For instance, if I were to measure response time (RT) for five different events, I could store
the data in R like this:

> RT <- c(342, 401, 590, 391, 554)

where the data here are measured in milliseconds, as is conventional in the psychological literature. It’s
perfectly sensible to talk about “twice the response time”, 2ˆRT, or the “response time plus 1 second”,
RT` 1000, and so both of the following are perfectly reasonable things for R to do:

> 2 * RT

[1] 684 802 1180 782 1108

> RT + 1000

[1] 1342 1401 1590 1391 1554

And to a lesser extent, the “numeric” class is okay for interval scale data, as long as we remember that
multiplication and division aren’t terribly interesting for these sorts of variables. That is, if my IQ score
is 110 and yours is 120, it’s perfectly okay to say that you’re 10 IQ points smarter than me18, but it’s
not okay to say that I’m only 92% as smart as you are, because intelligence doesn’t have a natural
zero.19 We might even be willing to tolerate the use of numeric variables to represent ordinal scale
variables, such as those that you typically get when you ask people to rank order items (e.g., like we do
in Australian elections), though as we will see R actually has a built in tool for representing ordinal data
(see Section 7.11.2) However, when it comes to nominal scale data, it becomes completely unacceptable,
because almost all of the “usual” rules for what you’re allowed to do with numbers don’t apply to nominal
scale data. It is for this reason that R has factors.

18Taking all the usual caveats that attach to IQ measurement as a given, of course.
19Or, more precisely, we don’t know how to measure it. Arguably, a rock has zero intelligence. But it doesn’t make sense

to say that the IQ of a rock is 0 in the same way that we can say that the average human has an IQ of 100. And without
knowing what the IQ value is that corresponds to a literal absence of any capacity to think, reason or learn, then we really
can’t multiply or divide IQ scores and expect a meaningful answer.
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4.7.1 Introducing factors

Suppose, I was doing a study in which people could belong to one of three different treatment con-
ditions. Each group of people were asked to complete the same task, but each group received different
instructions. Not surprisingly, I might want to have a variable that keeps track of what group people
were in. So I could type in something like this

> group <- c(1,1,1,2,2,2,3,3,3)

so that group[i] contains the group membership of the i-th person in my study. Clearly, this is numeric
data, but equally obviously this is a nominal scale variable. There’s no sense in which “group 1” plus
“group 2” equals “group 3”, but nevertheless if I try to do that, R won’t stop me because it doesn’t know
any better:

> group + 2

[1] 3 3 3 4 4 4 5 5 5

Apparently R seems to think that it’s allowed to invent “group 4” and “group 5”, even though they didn’t
actually exist. Unfortunately, R is too stupid to know any better: it thinks that 3 is an ordinary number
in this context, so it sees no problem in calculating 3 + 2. But since we’re not that stupid, we’d like to
stop R from doing this. We can do so by instructing R to treat group as a factor. This is easy to do using
the as.factor() function.20

> group <- as.factor(group)

> group

[1] 1 1 1 2 2 2 3 3 3

Levels: 1 2 3

It looks more or less the same as before (though it’s not immediately obvious what all that Levels rubbish
is about), but if we ask R to tell us what the class of the group variable is now, it’s clear that it has done
what we asked:

> class(group)

[1] "factor"

Neat. Better yet, now that I’ve converted group to a factor, look what happens when I try to add 2 to it:

> group + 2

[1] NA NA NA NA NA NA NA NA NA

Warning message:

In Ops.factor(group, 2) : + not meaningful for factors

This time even R is smart enough to know that I’m being an idiot, so it tells me off and then produces a
vector of missing values.

4.7.2 Labelling the factor levels

I have a confession to make. My memory is not infinite in capacity; and it seems to be getting worse
as I get older. So it kind of annoys me when I get data sets where there’s a nominal scale variable called

20Once again, this is an example of coercing a variable from one class to another. I’ll talk about coercion in more detail
in Section 7.10.
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gender, with two levels corresponding to males and females. But when I go to print out the variable I get
something like this:

> gender

[1] 1 1 1 1 1 2 2 2 2

Levels: 1 2

Okaaaay. That’s not helpful at all, and it makes me very sad. Which number corresponds to the males
and which one corresponds to the females? Wouldn’t it be nice if R could actually keep track of this?
It’s way too hard to remember which number corresponds to which gender. And besides, the problem
that this causes is much more serious than a single sad nerd... because R has no way of knowing that
the 1s in the group variable are a very different kind of thing to the 1s in the gender variable. So if I try
to ask which elements of the group variable are equal to the corresponding elements in gender, R thinks
this is totally kosher, and gives me this:

> group == gender

[1] TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE

Well, that’s ... especially stupid.21 The problem here is that R is very literal minded. Even though you’ve
declared both group and gender to be factors, it still assumes that a 1 is a 1 no matter which variable it
appears in.

To fix both of these problems (my memory problem, and R’s infuriating literal interpretations), what
we need to do is assign meaningful labels to the different levels of each factor. We can do that like this:

> levels(group) <- c("group 1", "group 2", "group 3")

> print(group)

[1] group 1 group 1 group 1 group 2 group 2 group 2 group 3 group 3 group 3

Levels: group 1 group 2 group 3

>

> levels(gender) <- c("male", "female")

> print(gender)

[1] male male male male male female female female female

Levels: male female

That’s much easier on the eye, and better yet, R is smart enough to know that "female" is not equal
to "group 2", so now when I try to ask which group memberships are “equal to” the gender of the
corresponding person,

> group == gender

Error in Ops.factor(group, gender) : level sets of factors are different

R correctly tells me that I’m an idiot.

4.7.3 Moving on...

Factors are very useful things, and we’ll use them a lot in this book: they’re the main way to represent
a nominal scale variable. And there are lots of nominal scale variables out there. I’ll talk more about

21Some users might wonder why R even allows the == operator for factors. The reason is that sometimes you really do
have different factors that have the same levels. For instance, if I was analysing data associated with football games, I
might have a factor called home.team, and another factor called winning.team. In that situation I really should be able to ask
if home.team == winning.team.
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factors in 7.11.2, but for now you know enough to be able to get started.

4.8

Data frames

It’s now time to go back and deal with the somewhat confusing thing that happened in Section 4.5.3
when we tried to open up a CSV file. Apparently we succeeded in loading the data, but it came to us in
a very odd looking format. At the time, I told you that this was a data frame. Now I’d better explain
what that means.

4.8.1 Introducing data frames

In order to understand why R has created this funny thing called a data frame, it helps to try to see
what problem it solves. So let’s go back to the little scenario that I used when introducing factors in
Section 4.7. In that section I recorded the group and gender for all 9 participants in my study. Let’s also
suppose I recorded their ages and their score on “Dan’s Terribly Exciting Psychological Test”:

> age <- c(17, 19, 21, 37, 18, 19, 47, 18, 19)

> score <- c(12, 10, 11, 15, 16, 14, 25, 21, 29)

Assuming no other variables are in the workspace, if I type who() I get this:

> who()

-- Name -- -- Class -- -- Size --

age numeric 9

gender factor 9

group factor 9

score numeric 9

So there are four variables in the workspace, age, gender, group and score. And it just so happens that
all four of them are the same size (i.e., they’re all vectors with 9 elements). Aaaand it just so happens
that age[1] corresponds to the age of the first person, and gender[1] is the gender of that very same
person, etc. In other words, you and I both know that all four of these variables correspond to the same
data set, and all four of them are organised in exactly the same way.

However, R doesn’t know this! As far as it’s concerned, there’s no reason why the age variable has to
be the same length as the gender variable; and there’s no particular reason to think that age[1] has any
special relationship to gender[1] any more than it has a special relationship to gender[4]. In other words,
when we store everything in separate variables like this, R doesn’t know anything about the relationships
between things. It doesn’t even really know that these variables actually refer to a proper data set. The
data frame fixes this: if we store our variables inside a data frame, we’re telling R to treat these variables
as a single, fairly coherent data set.

To see how they do this, let’s create one. So how do we create a data frame? One way we’ve already
seen: if we import our data from a CSV file, R will store it as a data frame. A second way is to create it
directly from some existing variables using the data.frame() function. All you have to do is type a list
of variables that you want to include in the data frame. The output of a data.frame() command is, well,
a data frame. So, if I want to store all four variables from my experiment in a data frame called expt I
can do so like this:
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> expt <- data.frame ( age, gender, group, score )

> expt

age gender group score

1 17 male group 1 12

2 19 male group 1 10

3 21 male group 1 11

4 37 male group 2 15

5 18 male group 2 16

6 19 female group 2 14

7 47 female group 3 25

8 18 female group 3 21

9 19 female group 3 29

Note that expt is a completely self-contained variable. Once you’ve created it, it no longer depends on
the original variables from which it was constructed. That is, if we make changes to the original age
variable, it will not lead to any changes to the age data stored in expt.

4.8.2 Pulling out the contents of the data frame using ✩

At this point, our workspace contains only the one variable, a data frame called expt. But as we
can see when we told R to print the variable out, this data frame contains 4 variables, each of which
has 9 observations. So how do we get this information out again? After all, there’s no point in storing
information if you don’t use it, and there’s no way to use information if you can’t access it. So let’s talk
a bit about how to pull information out of a data frame.

The first thing we might want to do is pull out one of our stored variables, let’s say score. One thing
you might try to do is ignore the fact that score is locked up inside the expt data frame. For instance,
you might try to print it out like this:

> score

Error: object ’score’ not found

This doesn’t work, because R doesn’t go “peeking” inside the data frame unless you explicitly tell it to
do so. There’s actually a very good reason for this, which I’ll explain in a moment, but for now let’s just
assume R knows what it’s doing. How do we tell R to look inside the data frame? As is always the case
with R there are several ways. The simplest way is to use the $ operator to extract the variable you’re
interested in, like this:

> expt$score

[1] 12 10 11 15 16 14 25 21 29

4.8.3 Getting information about a data frame

One problem that sometimes comes up in practice is that you forget what you called all your variables.
Normally you might try to type objects() or who(), but neither of those commands will tell you what
the names are for those variables inside a data frame! One way is to ask R to tell you what the names of
all the variables stored in the data frame are, which you can do using the names() function:

> names(expt)

[1] "age" "gender" "group" "score"

- 99 -



An alternative method is to use the who() function, as long as you tell it to look at the variables inside
data frames. If you set expand = TRUE then it will not only list the variables in the workspace, but it will
“expand” any data frames that you’ve got in the workspace, so that you can see what they look like.
That is:

> who(expand = TRUE)

-- Name -- -- Class -- -- Size --

expt data.frame 9 x 4

$age numeric 9

$gender factor 9

$group factor 9

$score numeric 9

or, since expand is the first argument in the who() function you can just type who(TRUE). I’ll do that a lot
in this book.

4.8.4 Looking for more on data frames?

There’s a lot more that can be said about data frames: they’re fairly complicated beasts, and the
longer you use R the more important it is to make sure you really understand them. We’ll talk a lot more
about them in Chapter 7.

4.9

Lists

The next kind of data I want to mention are lists. Lists are an extremely fundamental data structure
in R, and as you start making the transition from a novice to a savvy R user you will use lists all the
time. I don’t use lists very often in this book – not directly – but most of the advanced data structures
in R are built from lists (e.g., data frames are actually a specific type of list). Because lists are so
important to how R stores things, it’s useful to have a basic understanding of them. Okay, so what is a
list, exactly? Like data frames, lists are just “collections of variables.” However, unlike data frames –
which are basically supposed to look like a nice “rectangular” table of data – there are no constraints on
what kinds of variables we include, and no requirement that the variables have any particular relationship
to one another. In order to understand what this actually means, the best thing to do is create a list,
which we can do using the list() function. If I type this as my command:

> Dan <- list( age = 34,

+ nerd = TRUE,

+ parents = c("Joe","Liz")

+ )

R creates a new list variable called Dan, which is a bundle of three different variables: age, nerd and
parents. Notice, that the parents variable is longer than the others. This is perfectly acceptable for a
list, but it wouldn’t be for a data frame. If we now print out the variable, you can see the way that R

stores the list:

> print( Dan )

$age

[1] 34
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$nerd

[1] TRUE

$parents

[1] "Joe" "Liz"

As you might have guessed from those $ symbols everywhere, the variables are stored in exactly the same
way that they are for a data frame (again, this is not surprising: data frames are a type of list). So you
will (I hope) be entirely unsurprised and probably quite bored when I tell you that you can extract the
variables from the list using the $ operator, like so:

> Dan$nerd

[1] TRUE

If you need to add new entries to the list, the easiest way to do so is to again use $, as the following
example illustrates. If I type a command like this

> Dan$children <- "Alex"

then R creates a new entry to the end of the list called children, and assigns it a value of "Alex". If I were
now to print() this list out, you’d see a new entry at the bottom of the printout. Finally, it’s actually
possible for lists to contain other lists, so it’s quite possible that I would end up using a command like
Dan$children$age to find out how old my son is. Or I could try to remember it myself I suppose.

4.10

Formulas

The last kind of variable that I want to introduce before finally being able to start talking about statistics
is the formula. Formulas were originally introduced into R as a convenient way to specify a particular
type of statistical model (see Chapter 15) but they’re such handy things that they’ve spread. Formulas
are now used in a lot of different contexts, so it makes sense to introduce them early.

Stated simply, a formula object is a variable, but it’s a special type of variable that specifies a
relationship between other variables. A formula is specified using the “tilde operator” ~. A very simple
example of a formula is shown below:22

> formula1 <- out ~ pred

> formula1

out ~ pred

The precise meaning of this formula depends on exactly what you want to do with it, but in broad terms
it means “the out (outcome) variable, analysed in terms of the pred (predictor) variable”. That said,
although the simplest and most common form of a formula uses the “one variable on the left, one variable
on the right” format, there are others. For instance, the following examples are all reasonably common

> formula2 <- out ~ pred1 + pred2 # more than one variable on the right

> formula3 <- out ~ pred1 * pred2 # different relationship between predictors

> formula4 <- ~ var1 + var2 # a ’one-sided’ formula

and there are many more variants besides. Formulas are pretty flexible things, and so different functions
will make use of different formats, depending on what the function is intended to do.

22Note that, when I write out the formula, R doesn’t check to see if the out and pred variables actually exist: it’s only
later on when you try to use the formula for something that this happens.
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4.11

Generic functions

There’s one really important thing that I omitted when I discussed functions earlier on in Section 3.5,
and that’s the concept of a generic function. The two most notable examples that you’ll see in the
next few chapters are summary() and plot(), although you’ve already seen an example of one working
behind the scenes, and that’s the print() function. The thing that makes generics different from the
other functions is that their behaviour changes, often quite dramatically, depending on the class() of
the input you give it. The easiest way to explain the concept is with an example. With that in mind,
lets take a closer look at what the print() function actually does. I’ll do this by creating a formula, and
printing it out in a few different ways. First, let’s stick with what we know:

> my.formula <- blah ~ blah.blah # create a variable of class "formula"

> print( my.formula ) # print it out using the generic print() function

blah ~ blah.blah

So far, there’s nothing very surprising here. But there’s actually a lot going on behind the scenes here.
When I type print( my.formula ), what actually happens is the print() function checks the class of the
my.formula variable. When the function discovers that the variable it’s been given is a formula, it goes
looking for a function called print.formula(), and then delegates the whole business of printing out the
variable to the print.formula() function.23 For what it’s worth, the name for a “dedicated” function
like print.formula() that exists only to be a special case of a generic function like print() is a method,
and the name for the process in which the generic function passes off all the hard work onto a method
is called method dispatch. You won’t need to understand the details at all for this book, but you do
need to know the gist of it; if only because a lot of the functions we’ll use are actually generics. Anyway,
to help expose a little more of the workings to you, let’s bypass the print() function entirely and call the
formula method directly:

> print.formula( my.formula ) # print it out using the print.formula() method

blah ~ blah.blah

There’s no difference in the output at all. But this shouldn’t surprise you because it was actually the
print.formula() method that was doing all the hard work in the first place. The print() function itself is
a lazy bastard that doesn’t do anything other than select which of the methods is going to do the actual
printing.

Okay, fair enough, but you might be wondering what would have happened if print.formula() didn’t
exist? That is, what happens if there isn’t a specific method defined for the class of variable that you’re
using? In that case, the generic function passes off the hard work to a “default” method, whose name in
this case would be print.default(). Let’s see what happens if we bypass the print() formula, and try
to print out my.formula using the print.default() function:

> print.default( my.formula ) # print it out using the print.default() method

blah ~ blah.blah

attr(,"class")

[1] "formula"

attr(,".Environment")

23For readers with a programming background: what I’m describing is the very basics of how S3 methods work. However,
you should be aware that R has two entirely distinct systems for doing object oriented programming, known as S3 and
S4. Of the two, S3 is simpler and more informal, whereas S4 supports all the stuff that you might expect of a fully object
oriented language. Most of the generics we’ll run into in this book use the S3 system, which is convenient for me because
I’m still trying to figure out S4.
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<environment: R_GlobalEnv>

<environment: R_GlobalEnv>

Hm. You can kind of see that it is trying to print out the same formula, but there’s a bunch of ugly
low-level details that have also turned up on screen. This is because the print.default() method doesn’t
know anything about formulas, and doesn’t know that it’s supposed to be hiding the obnoxious internal
gibberish that R produces sometimes.

At this stage, this is about as much as we need to know about generic functions and their methods.
In fact, you can get through the entire book without learning any more about them than this, so it’s
probably a good idea to end this discussion here.

4.12

Getting help

The very last topic I want to mention in this chapter is where to go to find help. Obviously, I’ve tried to
make this book as helpful as possible, but it’s not even close to being a comprehensive guide, and there’s
thousands of things it doesn’t cover. So where should you go for help?

4.12.1 How to read the help documentation

I have somewhat mixed feelings about the help documentation in R. On the plus side, there’s a lot of
it, and it’s very thorough. On the minus side, there’s a lot of it, and it’s very thorough. There’s so
much help documentation that it sometimes doesn’t help, and most of it is written with an advanced
user in mind. Often it feels like most of the help files work on the assumption that the reader already
understands everything about R except for the specific topic that it’s providing help for. What that
means is that, once you’ve been using R for a long time and are beginning to get a feel for how to use it,
the help documentation is awesome. These days, I find myself really liking the help files (most of them
anyway). But when I first started using R I found it very dense.

To some extent, there’s not much I can do to help you with this. You just have to work at it yourself;
once you’re moving away from being a pure beginner and are becoming a skilled user, you’ll start finding
the help documentation more and more helpful. In the meantime, I’ll help as much as I can by trying
to explain to you what you’re looking at when you open a help file. To that end, let’s look at the help
documentation for the load() function. To do so, I type either of the following:

> ?load

> help("load")

When I do that, R goes looking for the help file for the "load" topic. If it finds one, Rstudio takes it and
displays it in the help panel. Alternatively, you can try a fuzzy search for a help topic:

> ??load

> help.search("load")

This will bring up a list of possible topics that you might want to follow up in.

Regardless, at some point you’ll find yourself looking at an actual help file. And when you do, you’ll
see there’s a quite a lot of stuff written down there, and it comes in a pretty standardised format. So
let’s go through it slowly, using the "load" topic as our example. Firstly, at the very top we see this:
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load (base) R Documentation

The R Documentation part isn’t terribly interesting, but the load { base } part is telling you that
this is in reference to the load() function (obviously) and that this function is in the base package. Next,
we get the “title” information, and a short “description” of what the function does:

Reload Saved Datasets

Description

Reload datasets written with the function save.

Fairly straightforward. The next section describes how the function is used:

Usage

load(file, envir = parent.frame())

In this instance, the usage section is actually pretty readable. It’s telling you that there are two arguments
to the load() function: the first one is called file, and the second one is called envir. It’s also telling
you that there is a default value for the envir argument; so if the user doesn’t specify what the value
of envir should be, then R will assume that envir = parent.frame(). In contrast, the file argument
has no default value at all, so the user must specify a value for it. So in one sense, this section is very
straightforward.

The problem, of course, is that you don’t know what the parent.frame() function actually does, so
it’s hard for you to know what the envir = parent.frame() bit is all about. What you could do is then go
look up the help documents for the parent.frame() function (and sometimes that’s actually a good idea),
but often you’ll find that the help documents for those functions are just as dense (if not more dense)
than the help file that you’re currently reading. As an alternative, my general approach when faced with
something like this is to skim over it, see if I can make any sense of it. If so, great. If not, I find that the
best thing to do is ignore it. In fact, the first time I read the help file for the load() function, I had no
idea what any of the envir related stuff was about. But fortunately I didn’t have to: the default setting
here (i.e., envir = parent.frame()) is actually the thing you want in about 99% of cases, so it’s safe to
ignore it.

Basically, what I’m trying to say is: don’t let the scary, incomprehensible parts of the help file
intimidate you. Especially because there’s often some parts of the help file that will make sense. Of
course, I guarantee you that sometimes this strategy will lead you to make mistakes... often embarrassing
mistakes. But it’s still better than getting paralysed with fear.

So, let’s continue on. The next part of the help documentation discusses each of the arguments, and
what they’re supposed to do:

Arguments

file a (readable binary-mode) connection or a character string giving the name

of the file to load (when tilde expansion is done).

envir the environment where the data should be loaded.
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Okay, so what this is telling us is that the file argument needs to be a string (i.e., text data) which
tells R the name of the file to load. It also seems to be hinting that there’s other possibilities too (e.g.,
a “binary mode connection”), and you probably aren’t quite sure what “tilde expansion” means24. But
overall, the meaning is pretty clear.

Turning to the envir argument, it’s now a little clearer what the Usage section was babbling about.
The envir argument specifies the name of an environment (see Section 4.3 if you’ve forgotten what
environments are) into which R should place the variables when it loads the file. Almost always, this is
a no-brainer: you want R to load the data into the same damn environment in which you’re invoking
the load() command. That is, if you’re typing load() at the R prompt, then you want the data to be
loaded into your workspace (i.e., the global environment). But if you’re writing your own function that
needs to load some data, you want the data to be loaded inside that function’s private workspace. And
in fact, that’s exactly what the parent.frame() thing is all about. It’s telling the load() function to send
the data to the same place that the load() command itself was coming from. As it turns out, if we’d just
ignored the envir bit we would have been totally safe. Which is nice to know.

Moving on, next up we get a detailed description of what the function actually does:

Details

load can load R objects saved in the current or any earlier format. It can read a

compressed file (see save) directly from a file or from a suitable connection (including

a call to url).

A not-open connection will be opened in mode "rb" and closed after use. Any connection

other than a gzfile or gzcon connection will be wrapped in gzcon to allow compressed

saves to be handled: note that this leaves the connection in an altered state (in

particular, binary-only).

Only R objects saved in the current format (used since R 1.4.0) can be read from a

connection. If no input is available on a connection a warning will be given, but any input

not in the current format will result in a error.

Loading from an earlier version will give a warning about the ”magic number”: magic

numbers 1971:1977 are from R < 0.99.0, and RD[ABX]1 from R 0.99.0 to R 1.3.1. These

are all obsolete, and you are strongly recommended to re-save such files in a current

format.

Then it tells you what the output value of the function is:

Value

A character vector of the names of objects created, invisibly.

This is usually a bit more interesting, but since the load() function is mainly used to load variables into
the workspace rather than to return a value, it’s no surprise that this doesn’t do much or say much.
Moving on, we sometimes see a few additional sections in the help file, which can be different depending
on what the function is:

24It’s extremely simple, by the way. We discussed it in Section 4.4, though I didn’t call it by that name. Tilde expansion
is the thing where R recognises that, in the context of specifying a file location, the tilde symbol ~ corresponds to the user
home directory (e.g., /Users/dan/).
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Warning

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that

they are transferred without conversion of end of line markers. load tries to detect such

a conversion and gives an informative error message.

Yeah, yeah. Warning, warning, blah blah blah. Towards the bottom of the help file, we see something
like this, which suggests a bunch of related topics that you might want to look at. These can be quite
helpful:

See Also

save, download.file.

For other interfaces to the underlying serialization format, see unserialize and readRDS.

Finally, it gives you some examples of how to use the function(s) that the help file describes. These are
supposed to be proper R commands, meaning that you should be able to type them into the console
yourself and they’ll actually work. Sometimes it can be quite helpful to try the examples yourself.
Anyway, here they are for the "load" help file:

Examples

## save all data

xx <- pi # to ensure there is some data

save(list = ls(all=TRUE), file= "all.RData")

rm(xx)

## restore the saved values to the current environment

local({

load("all.RData")

ls()

})

## restore the saved values to the user’s workspace

load("all.RData", .GlobalEnv)

unlink("all.RData")

## Not run:

con <- url("http://some.where.net/R/data/example.rda")

## print the value to see what objects were created.

print(load(con))

close(con) # url() always opens the connection

## End(Not run)

As you can see, they’re pretty dense, and not at all obvious to the novice user. However, they do provide
good examples of the various different things that you can do with the load() function, so it’s not a bad
idea to have a look at them, and to try not to find them too intimidating.

4.12.2 Other resources

• The Rseek website (www.rseek.org). One thing that I really find annoying about the R help docu-
mentation is that it’s hard to search properly. When coupled with the fact that the documentation
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is dense and highly technical, it’s often a better idea to search or ask online for answers to your
questions. With that in mind, the Rseek website is great: it’s an R specific search engine. I find it
really useful, and it’s almost always my first port of call when I’m looking around.

• The R-help mailing list (see http://www.r-project.org/mail.html for details). This is the official
R help mailing list. It can be very helpful, but it’s very important that you do your homework before
posting a question. The list gets a lot of traffic. While the people on the list try as hard as they can to
answer questions, they do so for free, and you really don’t want to know how much money they could
charge on an hourly rate if they wanted to apply market rates. In short, they are doing you a favour,
so be polite. Don’t waste their time asking questions that can be easily answered by a quick search on
Rseek (it’s rude), make sure your question is clear, and all of the relevant information is included. In
short, read the posting guidelines carefully (http://www.r-project.org/posting-guide.html),
and make use of the help.request() function that R provides to check that you’re actually doing
what you’re expected.

4.13

Summary

• Installing, loading and updating packages (Section 4.2)

• Viewing the workspace and removing variables (Section 4.3)

• Getting around your computer (Section 4.4)

• Loading and saving data (Section 4.5)

• Useful things to know about variables: special values, element names and classes (Section 4.6)

• More complex types of variables: factors (Section 4.7), data frames (Section 4.8), lists (Section 4.9)
and formulas (Section 4.10).

• Generic functions (Section 4.11)

• Getting help (Section 4.12)
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Part III.

Working with data
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5. Descriptive statistics

Any time that you get a new data set to look at, one of the first tasks that you have to do is find ways of
summarising the data in a compact, easily understood fashion. This is what descriptive statistics (as
opposed to inferential statistics) is all about. In fact, to many people the term “statistics” is synonymous
with descriptive statistics. It is this topic that we’ll consider in this chapter, but before going into any
details, let’s take a moment to get a sense of why we need descriptive statistics. To do this, let’s load the
aflsmall.Rdata file, and use the who() function in the lsr package to see what variables are stored in
the file:

> load( "aflsmall.Rdata" )

> library(lsr)

> who()

-- Name -- -- Class -- -- Size --

afl.finalists factor 400

afl.margins numeric 176

There are two variables here, afl.finalists and afl.margins. We’ll focus a bit on these two variables
in this chapter, so I’d better tell you what they are. Unlike most of data sets in this book, these are
actually real data, relating to the Australian Football League (AFL) 1 The afl.margins variable contains
the winning margin (number of points) for all 176 home and away games played during the 2010 season.
The afl.finalists variable contains the names of all 400 teams that played in all 200 finals matches
played during the period 1987 to 2010. Let’s have a look at the afl.margins variable:

> print(afl.margins)

[1] 56 31 56 8 32 14 36 56 19 1 3 104 43 44 72 9 28

[18] 25 27 55 20 16 16 7 23 40 48 64 22 55 95 15 49 52

[35] 50 10 65 12 39 36 3 26 23 20 43 108 53 38 4 8 3

[52] 13 66 67 50 61 36 38 29 9 81 3 26 12 36 37 70 1

[69] 35 12 50 35 9 54 47 8 47 2 29 61 38 41 23 24 1

[86] 9 11 10 29 47 71 38 49 65 18 0 16 9 19 36 60 24

[103] 25 44 55 3 57 83 84 35 4 35 26 22 2 14 19 30 19

[120] 68 11 75 48 32 36 39 50 11 0 63 82 26 3 82 73 19

[137] 33 48 8 10 53 20 71 75 76 54 44 5 22 94 29 8 98

[154] 9 89 1 101 7 21 52 42 21 116 3 44 29 27 16 6 44

[171] 3 28 38 29 10 10

This output doesn’t make it easy to get a sense of what the data are actually saying. Just “looking at
the data” isn’t a terribly effective way of understanding data. In order to get some idea about what’s
going on, we need to calculate some descriptive statistics (this chapter) and draw some nice pictures

1Note for non-Australians: the AFL is an Australian rules football competition. You don’t need to know anything about
Australian rules in order to follow this section.
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Figure 5.1: A histogram of the AFL 2010 winning margin data (the afl.margins variable). As you might
expect, the larger the margin the less frequently you tend to see it.
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(Chapter 6). Since the descriptive statistics are the easier of the two topics, I’ll start with those, but
nevertheless I’ll show you a histogram of the afl.margins data, since it should help you get a sense of
what the data we’re trying to describe actually look like. But for what it’s worth, this histogram – which
is shown in Figure 5.1 – was generated using the hist() function. We’ll talk a lot more about how to
draw histograms in Section 6.3. For now, it’s enough to look at the histogram and note that it provides
a fairly interpretable representation of the afl.margins data.

5.1

Measures of central tendency

Drawing pictures of the data, as I did in Figure 5.1 is an excellent way to convey the “gist” of what
the data is trying to tell you, it’s often extremely useful to try to condense the data into a few simple
“summary” statistics. In most situations, the first thing that you’ll want to calculate is a measure of
central tendency. That is, you’d like to know something about the “average” or “middle” of your data
lies. The two most commonly used measures are the mean, median and mode; occasionally people will
also report a trimmed mean. I’ll explain each of these in turn, and then discuss when each of them is
useful.

5.1.1 The mean

The mean of a set of observations is just a normal, old-fashioned average: add all of the values up, and
then divide by the total number of values. The first five AFL margins were 56, 31, 56, 8 and 32, so the
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mean of these observations is just:

56` 31` 56` 8` 32

5
“ 183

5
“ 36.60

Of course, this definition of the mean isn’t news to anyone: averages (i.e., means) are used so often in
everyday life that this is pretty familiar stuff. However, since the concept of a mean is something that
everyone already understands, I’ll use this as an excuse to start introducing some of the mathematical
notation that statisticians use to describe this calculation, and talk about how the calculations would be
done in R.

The first piece of notation to introduce is N , which we’ll use to refer to the number of observations
that we’re averaging (in this case N “ 5). Next, we need to attach a label to the observations themselves.
It’s traditional to use X for this, and to use subscripts to indicate which observation we’re actually talking
about. That is, we’ll use X1 to refer to the first observation, X2 to refer to the second observation, and
so on, all the way up to XN for the last one. Or, to say the same thing in a slightly more abstract way,
we use Xi to refer to the i-th observation. Just to make sure we’re clear on the notation, the following
table lists the 5 observations in the afl.margins variable, along with the mathematical symbol used to
refer to it, and the actual value that the observation corresponds to:

the observation its symbol the observed value
winning margin, game 1 X1 56 points
winning margin, game 2 X2 31 points
winning margin, game 3 X3 56 points
winning margin, game 4 X4 8 points
winning margin, game 5 X5 32 points

Okay, now let’s try to write a formula for the mean. By tradition, we use X̄ as the notation for the mean.
So the calculation for the mean could be expressed using the following formula:

X̄ “ X1 `X2 ` . . .`XN´1 `XN

N

This formula is entirely correct, but it’s terribly long, so we make use of the summation symbol
ř

to shorten it.2 If I want to add up the first five observations, I could write out the sum the long way,
X1 `X2 `X3 `X4 `X5 or I could use the summation symbol to shorten it to this:

5
ÿ

i“1

Xi

Taken literally, this could be read as “the sum, taken over all i values from 1 to 5, of the value Xi”. But
basically, what it means is “add up the first five observations”. In any case, we can use this notation to
write out the formula for the mean, which looks like this:

X̄ “ 1

N

N
ÿ

i“1

Xi

In all honesty, I can’t imagine that all this mathematical notation helps clarify the concept of the
mean at all. In fact, it’s really just a fancy way of writing out the same thing I said in words: add all the

2The choice to use Σ to denote summation isn’t arbitrary: it’s the Greek upper case letter sigma, which is the analogue
of the letter S in that alphabet. Similarly, there’s an equivalent symbol used to denote the multiplication of lots of numbers:
because multiplications are also called “products”, we use the Π symbol for this; the Greek upper case pi, which is the
analogue of the letter P.
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values up, and then divide by the total number of items. However, that’s not really the reason I went into
all that detail. My goal was to try to make sure that everyone reading this book is clear on the notation
that we’ll be using throughout the book: X̄ for the mean,

ř

for the idea of summation, Xi for the ith
observation, and N for the total number of observations. We’re going to be re-using these symbols a fair
bit, so it’s important that you understand them well enough to be able to “read” the equations, and to
be able to see that it’s just saying “add up lots of things and then divide by another thing”.

5.1.2 Calculating the mean in R

Okay that’s the maths, how do we get the magic computing box to do the work for us? If you really
wanted to, you could do this calculation directly in R. For the first 5 AFL scores, do this just by typing
it in as if R were a calculator. . .

> (56 + 31 + 56 + 8 + 32) / 5

[1] 36.6

. . . in which case R outputs the answer 36.6, just as if it were a calculator. However, that’s not the only
way to do the calculations, and when the number of observations starts to become large, it’s easily the
most tedious. Besides, in almost every real world scenario, you’ve already got the actual numbers stored
in a variable of some kind, just like we have with the afl.margins variable. Under those circumstances,
what you want is a function that will just add up all the values stored in a numeric vector. That’s what
the sum() function does. If we want to add up all 176 winning margins in the data set, we can do so using
the following command:3

> sum( afl.margins )

[1] 6213

If we only want the sum of the first five observations, then we can use square brackets to pull out only
the first five elements of the vector. So the command would now be:

> sum( afl.margins[1:5] )

[1] 183

To calculate the mean, we now tell R to divide the output of this summation by five, so the command
that we need to type now becomes the following:

> sum( afl.margins[1:5] ) / 5

[1] 36.6

Although it’s pretty easy to calculate the mean using the sum() function, we can do it in an even
easier way, since R also provides us with the mean() function. To calculate the mean for all 176 games,
we would use the following command:

> mean( x = afl.margins )

[1] 35.30114

However, since x is the first argument to the function, I could have omitted the argument name. In any
case, just to show you that there’s nothing funny going on, here’s what we would do to calculate the
mean for the first five observations:

3Note that, just as we saw with the combine function c() and the remove function rm(), the sum() function has unnamed
arguments. I’ll talk about unnamed arguments later in Section 8.4.1, but for now let’s just ignore this detail.
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> mean( afl.margins[1:5] )

[1] 36.6

As you can see, this gives exactly the same answers as the previous calculations.

5.1.3 The median

The second measure of central tendency that people use a lot is the median, and it’s even easier to
describe than the mean. The median of a set of observations is just the middle value. As before let’s
imagine we were interested only in the first 5 AFL winning margins: 56, 31, 56, 8 and 32. To figure out
the median, we sort these numbers into ascending order:

8, 31,32, 56, 56

From inspection, it’s obvious that the median value of these 5 observations is 32, since that’s the middle
one in the sorted list (I’ve put it in bold to make it even more obvious). Easy stuff. But what should we
do if we were interested in the first 6 games rather than the first 5? Since the sixth game in the season
had a winning margin of 14 points, our sorted list is now

8, 14,31,32, 56, 56

and there are two middle numbers, 31 and 32. The median is defined as the average of those two numbers,
which is of course 31.5. As before, it’s very tedious to do this by hand when you’ve got lots of numbers.
To illustrate this, here’s what happens when you use R to sort all 176 winning margins. First, I’ll use the
sort() function (discussed in Chapter 7) to display the winning margins in increasing numerical order:

> sort( x = afl.margins )

[1] 0 0 1 1 1 1 2 2 3 3 3 3 3

[14] 3 3 3 4 4 5 6 7 7 8 8 8 8

[27] 8 9 9 9 9 9 9 10 10 10 10 10 11

[40] 11 11 12 12 12 13 14 14 15 16 16 16 16

[53] 18 19 19 19 19 19 20 20 20 21 21 22 22

[66] 22 23 23 23 24 24 25 25 26 26 26 26 27

[79] 27 28 28 29 29 29 29 29 29 ✸✵ ✸✶ 32 32

[92] 33 35 35 35 35 36 36 36 36 36 36 37 38

[105] 38 38 38 38 39 39 40 41 42 43 43 44 44

[118] 44 44 44 47 47 47 48 48 48 49 49 50 50

[131] 50 50 52 52 53 53 54 54 55 55 55 56 56

[144] 56 57 60 61 61 63 64 65 65 66 67 68 70

[157] 71 71 72 73 75 75 76 81 82 82 83 84 89

[170] 94 95 98 101 104 108 116

The middle values (which I’ve shown in bold) are 30 and 31, so the median winning margin for 2010 was
30.5 points. In real life, of course, no-one actually calculates the median by sorting the data and then
looking for the middle value. In real life, we use the median command:

> median( x = afl.margins )

[1] 30.5

which outputs the median value of 30.5.
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Figure 5.2: An illustration of the difference between how the mean and the median should be interpreted.
The mean is basically the “centre of gravity” of the data set: if you imagine that the histogram of the
data is a solid object, then the point on which you could balance it (as if on a see-saw) is the mean.
In contrast, the median is the middle observation. Half of the observations are smaller, and half of the
observations are larger.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.4 Mean or median? What’s the difference?

Knowing how to calculate means and medians is only a part of the story. You also need to understand
what each one is saying about the data, and what that implies for when you should use each one. This
is illustrated in Figure 5.2: the mean is kind of like the “centre of gravity” of the data set, whereas the
median is the “middle value” in the data. What this implies, as far as which one you should use, depends
a little on what type of data you’ve got and what you’re trying to achieve. As a rough guide:

• If your data are nominal scale, you probably shouldn’t be using either the mean or the median. Both
the mean and the median rely on the idea that the numbers assigned to values are meaningful. If
the numbering scheme is arbitrary, then it’s probably best to use the mode (Section 5.1.7) instead.

• If your data are ordinal scale, you’re more likely to want to use the median than the mean. The
median only makes use of the order information in your data (i.e., which numbers are bigger), but
doesn’t depend on the precise numbers involved. That’s exactly the situation that applies when
your data are ordinal scale. The mean, on the other hand, makes use of the precise numeric values
assigned to the observations, so it’s not really appropriate for ordinal data.

• For interval and ratio scale data, either one is generally acceptable. Which one you pick depends a
bit on what you’re trying to achieve. The mean has the advantage that it uses all the information
in the data (which is useful when you don’t have a lot of data), but it’s very sensitive to extreme
values, as we’ll see in Section 5.1.6.

Let’s expand on that last part a little. One consequence is that there’s systematic differences between
the mean and the median when the histogram is asymmetric (skewed; see Section 5.3). This is illustrated
in Figure 5.2: notice that the median (right hand side) is located closer to the “body” of the histogram,
whereas the mean (left hand side) gets dragged towards the “tail” (where the extreme values are). To give
a concrete example, suppose Bob (income $50,000), Kate (income $60,000) and Jane (income $65,000)
are sitting at a table: the average income at the table is $58,333 and the median income is $60,000. Then
Bill sits down with them (income $100,000,000). The average income has now jumped to $25,043,750 but
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the median rises only to $62,500. If you’re interested in looking at the overall income at the table, the
mean might be the right answer; but if you’re interested in what counts as a typical income at the table,
the median would be a better choice here.

5.1.5 A real life example

To try to get a sense of why you need to pay attention to the differences between the mean and the
median, let’s consider a real life example. Since I tend to mock journalists for their poor scientific and
statistical knowledge, I should give credit where credit is due. This is from an excellent article on the
ABC news website4 24 September, 2010:

Senior Commonwealth Bank executives have travelled the world in the past couple of weeks
with a presentation showing how Australian house prices, and the key price to income ratios,
compare favourably with similar countries. “Housing affordability has actually been going
sideways for the last five to six years,” said Craig James, the chief economist of the bank’s
trading arm, CommSec.

This probably comes as a huge surprise to anyone with a mortgage, or who wants a mortgage, or pays
rent, or isn’t completely oblivious to what’s been going on in the Australian housing market over the last
several years. Back to the article:

CBA has waged its war against what it believes are housing doomsayers with graphs, num-
bers and international comparisons. In its presentation, the bank rejects arguments that
Australia’s housing is relatively expensive compared to incomes. It says Australia’s house
price to household income ratio of 5.6 in the major cities, and 4.3 nationwide, is compara-
ble to many other developed nations. It says San Francisco and New York have ratios of 7,
Auckland’s is 6.7, and Vancouver comes in at 9.3.

More excellent news! Except, the article goes on to make the observation that...

Many analysts say that has led the bank to use misleading figures and comparisons. If you go
to page four of CBA’s presentation and read the source information at the bottom of the graph
and table, you would notice there is an additional source on the international comparison –
Demographia. However, if the Commonwealth Bank had also used Demographia’s analysis of
Australia’s house price to income ratio, it would have come up with a figure closer to 9 rather
than 5.6 or 4.3

That’s, um, a rather serious discrepancy. One group of people say 9, another says 4-5. Should we just
split the difference, and say the truth lies somewhere in between? Absolutely not: this is a situation
where there is a right answer and a wrong answer. Demographia are correct, and the Commonwealth
Bank is incorrect. As the article points out

[An] obvious problem with the Commonwealth Bank’s domestic price to income figures is
they compare average incomes with median house prices (unlike the Demographia figures
that compare median incomes to median prices). The median is the mid-point, effectively
cutting out the highs and lows, and that means the average is generally higher when it comes
to incomes and asset prices, because it includes the earnings of Australia’s wealthiest people.
To put it another way: the Commonwealth Bank’s figures count Ralph Norris’ multi-million
dollar pay packet on the income side, but not his (no doubt) very expensive house in the
property price figures, thus understating the house price to income ratio for middle-income
Australians.

4www.abc.net.au/news/stories/2010/09/24/3021480.htm
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Couldn’t have put it better myself. The way that Demographia calculated the ratio is the right thing
to do. The way that the Bank did it is incorrect. As for why an extremely quantitatively sophisticated
organisation such as a major bank made such an elementary mistake, well... I can’t say for sure, since
I have no special insight into their thinking, but the article itself does happen to mention the following
facts, which may or may not be relevant:

[As] Australia’s largest home lender, the Commonwealth Bank has one of the biggest vested
interests in house prices rising. It effectively owns a massive swathe of Australian housing as
security for its home loans as well as many small business loans.

My, my.

5.1.6 Trimmed mean

One of the fundamental rules of applied statistics is that the data are messy. Real life is never simple,
and so the data sets that you obtain are never as straightforward as the statistical theory says.5 This
can have awkward consequences. To illustrate, consider this rather strange looking data set:

´100, 2, 3, 4, 5, 6, 7, 8, 9, 10

If you were to observe this in a real life data set, you’d probably suspect that something funny was going
on with the ´100 value. It’s probably an outlier, a value that doesn’t really belong with the others.
You might consider removing it from the data set entirely, and in this particular case I’d probably agree
with that course of action. In real life, however, you don’t always get such cut-and-dried examples. For
instance, you might get this instead:

´15, 2, 3, 4, 5, 6, 7, 8, 9, 12

The ´15 looks a bit suspicious, but not anywhere near as much as that ´100 did. In this case, it’s a
little trickier. It might be a legitimate observation, it might not.

When faced with a situation where some of the most extreme-valued observations might not be quite
trustworthy, the mean is not necessarily a good measure of central tendency. It is highly sensitive to one
or two extreme values, and is thus not considered to be a robust measure. One remedy that we’ve seen
is to use the median. A more general solution is to use a “trimmed mean”. To calculate a trimmed mean,
what you do is “discard” the most extreme examples on both ends (i.e., the largest and the smallest), and
then take the mean of everything else. The goal is to preserve the best characteristics of the mean and the
median: just like a median, you aren’t highly influenced by extreme outliers, but like the mean, you “use”
more than one of the observations. Generally, we describe a trimmed mean in terms of the percentage
of observation on either side that are discarded. So, for instance, a 10% trimmed mean discards the
largest 10% of the observations and the smallest 10% of the observations, and then takes the mean of the
remaining 80% of the observations. Not surprisingly, the 0% trimmed mean is just the regular mean, and
the 50% trimmed mean is the median. In that sense, trimmed means provide a whole family of central
tendency measures that span the range from the mean to the median.

For our toy example above, we have 10 observations, and so a 10% trimmed mean is calculated by
ignoring the largest value (i.e., 12) and the smallest value (i.e., -15) and taking the mean of the remaining
values. First, let’s enter the data

> dataset <- c( -15,2,3,4,5,6,7,8,9,12 )

5Or at least, the basic statistical theory – these days there is a whole subfield of statistics called robust statistics that
tries to grapple with the messiness of real data and develop theory that can cope with it.
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Next, let’s calculate means and medians:

> mean( x = dataset )

[1] 4.1

> median( x = dataset )

[1] 5.5

That’s a fairly substantial difference, but I’m tempted to think that the mean is being influenced a bit
too much by the extreme values at either end of the data set, especially the ´15 one. So let’s just try
trimming the mean a bit. If I take a 10% trimmed mean, we’ll drop the extreme values on either side,
and take the mean of the rest:

> mean( x = dataset, trim = .1)

[1] 5.5

which in this case gives exactly the same answer as the median. Note that, to get a 10% trimmed mean
you write trim = .1, not trim = 10. In any case, let’s finish up by calculating the 5% trimmed mean for
the afl.margins data,

> mean( x = afl.margins, trim = .05)

[1] 33.75

5.1.7 Mode

The mode of a sample is very simple: it is the value that occurs most frequently. To illustrate the
mode using the AFL data, let’s examine a different aspect to the data set. Who has played in the most
finals? The afl.finalists variable is a factor that contains the name of every team that played in any
AFL final from 1987-2010, so let’s have a look at it:

> print( afl.finalists )

[1] Hawthorn Melbourne Carlton

[4] Melbourne Hawthorn Carlton

[7] Melbourne Carlton Hawthorn

[10] Melbourne Melbourne Hawthorn

BLAH BLAH BLAH

[391] St Kilda Hawthorn Western Bulldogs

[394] Carlton Fremantle Sydney

[397] Geelong Western Bulldogs St Kilda

[400] St Kilda

17 Levels: Adelaide Brisbane Carlton ... Western Bulldogs

What we could do is read through all 400 entries, and count the number of occasions on which each
team name appears in our list of finalists, thereby producing a frequency table. However, that would
be mindless and boring: exactly the sort of task that computers are great at. So let’s use the table()

function (discussed in more detail in Section 7.1) to do this task for us:

> table( afl.finalists )

afl.finalists

Adelaide Brisbane Carlton Collingwood

26 25 26 28
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Essendon Fitzroy Fremantle Geelong

32 0 6 39

Hawthorn Melbourne North Melbourne Port Adelaide

27 28 28 17

Richmond St Kilda Sydney West Coast

6 24 26 38

Western Bulldogs

24

Now that we have our frequency table, we can just look at it and see that, over the 24 years for which
we have data, Geelong has played in more finals than any other team. Thus, the mode of the finalists

data is "Geelong". The core packages in R don’t have a function for calculating the mode6. However, I’ve
included a function in the lsr package that does this. The function is called modeOf(), and here’s how
you use it:

> modeOf( x = afl.finalists )

[1] "Geelong"

There’s also a function called maxFreq() that tells you what the modal frequency is. If we apply this
function to our finalists data, we obtain the following:

> maxFreq( x = afl.finalists )

[1] 39

Taken together, we observe that Geelong (39 finals) played in more finals than any other team during
the 1987-2010 period.

One last point to make with respect to the mode. While it’s generally true that the mode is most
often calculated when you have nominal scale data (because means and medians are useless for those
sorts of variables), there are some situations in which you really do want to know the mode of an ordinal,
interval or ratio scale variable. For instance, let’s go back to thinking about our afl.margins variable.
This variable is clearly ratio scale (if it’s not clear to you, it may help to re-read Section 2.2), and so in
most situations the mean or the median is the measure of central tendency that you want. But consider
this scenario... a friend of yours is offering a bet. They pick a football game at random, and (without
knowing who is playing) you have to guess the exact margin. If you guess correctly, you win $50. If you
don’t, you lose $1. There are no consolation prizes for “almost” getting the right answer. You have to
guess exactly the right margin7 For this bet, the mean and the median are completely useless to you. It
is the mode that you should bet on. So, we calculate this modal value

> modeOf( x = afl.margins )

[1] 3

> maxFreq( x = afl.margins )

[1] 8

So the 2010 data suggest you should bet on a 3 point margin, and since this was observed in 8 of the 176
game (4.5% of games) the odds are firmly in your favour.

6As we saw earlier, it does have a function called mode(), but it does something completely different.
7This is called a “0-1 loss function”, meaning that you either win (1) or you lose (0), with no middle ground.
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5.2

Measures of variability

The statistics that we’ve discussed so far all relate to central tendency. That is, they all talk about which
values are “in the middle” or “popular” in the data. However, central tendency is not the only type of
summary statistic that we want to calculate. The second thing that we really want is a measure of the
variability of the data. That is, how “spread out” are the data? How “far” away from the mean or
median do the observed values tend to be? For now, let’s assume that the data are interval or ratio scale,
so we’ll continue to use the afl.margins data. We’ll use this data to discuss several different measures of
spread, each with different strengths and weaknesses.

5.2.1 Range

The range of a variable is very simple: it’s the biggest value minus the smallest value. For the AFL
winning margins data, the maximum value is 116, and the minimum value is 0. We can calculate these
values in R using the max() and min() functions:

> max( afl.margins )

> min( afl.margins )

where I’ve omitted the output because it’s not interesting. The other possibility is to use the range()

function; which outputs both the minimum value and the maximum value in a vector, like this:

> range( afl.margins )

[1] 0 116

Although the range is the simplest way to quantify the notion of “variability”, it’s one of the worst.
Recall from our discussion of the mean that we want our summary measure to be robust. If the data set
has one or two extremely bad values in it, we’d like our statistics not to be unduly influenced by these
cases. If we look once again at our toy example of a data set containing very extreme outliers...

´100, 2, 3, 4, 5, 6, 7, 8, 9, 10

... it is clear that the range is not robust, since this has a range of 110, but if the outlier were removed
we would have a range of only 8.

5.2.2 Interquartile range

The interquartile range (IQR) is like the range, but instead of calculating the difference between the
biggest and smallest value, it calculates the difference between the 25th quantile and the 75th quantile.
Probably you already know what a quantile is (they’re more commonly called percentiles), but if not:
the 10th percentile of a data set is the smallest number x such that 10% of the data is less than x. In fact,
we’ve already come across the idea: the median of a data set is its 50th quantile / percentile! R actually
provides you with a way of calculating quantiles, using the (surprise, surprise) quantile() function. Let’s
use it to calculate the median AFL winning margin:

> quantile( x = afl.margins, probs = .5)

50%

30.5
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And not surprisingly, this agrees with the answer that we saw earlier with the median() function. Now,
we can actually input lots of quantiles at once, by specifying a vector for the probs argument. So lets do
that, and get the 25th and 75th percentile:

> quantile( x = afl.margins, probs = c(.25,.75) )

25% 75%

12.75 50.50

And, by noting that 50.5 ´ 12.75 “ 37.75, we can see that the interquartile range for the 2010 AFL
winning margins data is 37.75. Of course, that seems like too much work to do all that typing, so R has
a built in function called IQR() that we can use:

> IQR( x = afl.margins )

[1] 37.75

While it’s obvious how to interpret the range, it’s a little less obvious how to interpret the IQR. The
simplest way to think about it is like this: the interquartile range is the range spanned by the “middle
half” of the data. That is, one quarter of the data falls below the 25th percentile, one quarter of the
data is above the 75th percentile, leaving the “middle half” of the data lying in between the two. And
the IQR is the range covered by that middle half.

5.2.3 Mean absolute deviation

The two measures we’ve looked at so far, the range and the interquartile range, both rely on the idea
that we can measure the spread of the data by looking at the quantiles of the data. However, this isn’t
the only way to think about the problem. A different approach is to select a meaningful reference point
(usually the mean or the median) and then report the “typical” deviations from that reference point.
What do we mean by “typical” deviation? Usually, the mean or median value of these deviations! In
practice, this leads to two different measures, the “mean absolute deviation (from the mean)” and the
“median absolute deviation (from the median)”. From what I’ve read, the measure based on the median
seems to be used in statistics, and does seem to be the better of the two, but to be honest I don’t think
I’ve seen it used much in psychology. The measure based on the mean does occasionally show up in
psychology though. In this section I’ll talk about the first one, and I’ll come back to talk about the
second one later.

Since the previous paragraph might sound a little abstract, let’s go through the mean absolute
deviation from the mean a little more slowly. One useful thing about this measure is that the name
actually tells you exactly how to calculate it. Let’s think about our AFL winning margins data, and once
again we’ll start by pretending that there’s only 5 games in total, with winning margins of 56, 31, 56, 8
and 32. Since our calculations rely on an examination of the deviation from some reference point (in this
case the mean), the first thing we need to calculate is the mean, X̄. For these five observations, our mean
is X̄ “ 36.6. The next step is to convert each of our observations Xi into a deviation score. We do this
by calculating the difference between the observation Xi and the mean X̄. That is, the deviation score
is defined to be Xi ´ X̄. For the first observation in our sample, this is equal to 56´ 36.6 “ 19.4. Okay,
that’s simple enough. The next step in the process is to convert these deviations to absolute deviations.
As we discussed earlier when talking about the abs() function in R (Section 3.5), we do this by converting
any negative values to positive ones. Mathematically, we would denote the absolute value of ´3 as | ´ 3|,
and so we say that | ´ 3| “ 3. We use the absolute value function here because we don’t really care
whether the value is higher than the mean or lower than the mean, we’re just interested in how close it is
to the mean. To help make this process as obvious as possible, the table below shows these calculations
for all five observations:
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English: which game value deviation from mean absolute deviation
notation: i Xi Xi ´ X̄ |Xi ´ X̄|

1 56 19.4 19.4
2 31 -5.6 5.6
3 56 19.4 19.4
4 8 -28.6 28.6
5 32 -4.6 4.6

Now that we have calculated the absolute deviation score for every observation in the data set, all that
we have to do to calculate the mean of these scores. Let’s do that:

19.4` 5.6` 19.4` 28.6` 4.6

5
“ 15.52

And we’re done. The mean absolute deviation for these five scores is 15.52.

However, while our calculations for this little example are at an end, we do have a couple of things left
to talk about. Firstly, we should really try to write down a proper mathematical formula. But in order
do to this I need some mathematical notation to refer to the mean absolute deviation. Irritatingly, “mean
absolute deviation” and “median absolute deviation” have the same acronym (MAD), which leads to a
certain amount of ambiguity, and since R tends to use MAD to refer to the median absolute deviation, I’d
better come up with something different for the mean absolute deviation. Sigh. What I’ll do is use AAD
instead, short for average absolute deviation. Now that we have some unambiguous notation, here’s the
formula that describes what we just calculated:

aadpXq “ 1

N

N
ÿ

i“1

|Xi ´ X̄|

The last thing we need to talk about is how to calculate AAD in R. One possibility would be to do
everything using low level commands, laboriously following the same steps that I used when describing
the calculations above. However, that’s pretty tedious. You’d end up with a series of commands that
might look like this:

> X <- c(56, 31,56,8,32) # enter the data

> X.bar <- mean( X ) # step 1. the mean of the data

> AD <- abs( X - X.bar ) # step 2. the absolute deviations from the mean

> AAD <- mean( AD ) # step 3. the mean absolute deviations

> print( AAD ) # print the results

[1] 15.52

Each of those commands is pretty simple, but there’s just too many of them. And because I find that to
be too much typing, the lsr package has a very simple function called aad() that does the calculations
for you. If we apply the aad() function to our data, we get this:

> aad( X )

[1] 15.52

No suprises there.

5.2.4 Variance

Although the mean absolute deviation measure has its uses, it’s not the best measure of variability to
use. From a purely mathematical perspective, there are some solid reasons to prefer squared deviations

- 123 -



rather than absolute deviations. If we do that, we obtain a measure is called the variance, which has a
lot of really nice statistical properties that I’m going to ignore,8 and one massive psychological flaw that
I’m going to make a big deal out of in a moment. The variance of a data set X is sometimes written
as VarpXq, but it’s more commonly denoted s2 (the reason for this will become clearer shortly). The
formula that we use to calculate the variance of a set of observations is as follows:

VarpXq “ 1

N

N
ÿ

i“1

`

Xi ´ X̄
˘2

As you can see, it’s basically the same formula that we used to calculate the mean absolute deviation,
except that instead of using “absolute deviations” we use “squared deviations”. It is for this reason that
the variance is sometimes referred to as the “mean square deviation”.

Now that we’ve got the basic idea, let’s have a look at a concrete example. Once again, let’s use the
first five AFL games as our data. If we follow the same approach that we took last time, we end up with
the following table:

English: which game value deviation from mean squared deviation
maths: i Xi Xi ´ X̄ pXi ´ X̄q2

1 56 19.4 376.36
2 31 -5.6 31.36
3 56 19.4 376.36
4 8 -28.6 817.96
5 32 -4.6 21.16

That last column contains all of our squared deviations, so all we have to do is average them. If we do
that by typing all the numbers into R by hand...

> ( 376.36 + 31.36 + 376.36 + 817.96 + 21.16 ) / 5

[1] 324.64

... we end up with a variance of 324.64. Exciting, isn’t it? For the moment, let’s ignore the burning
question that you’re all probably thinking (i.e., what the heck does a variance of 324.64 actually mean?)
and instead talk a bit more about how to do the calculations in R, because this will reveal something
very weird.

As always, we want to avoid having to type in a whole lot of numbers ourselves. And as it happens,
we have the vector X lying around, which we created in the previous section. With this in mind, we can
calculate the variance of X by using the following command,

> mean( (X - mean(X) )^2)

[1] 324.64

and as usual we get the same answer as the one that we got when we did everything by hand. However,
I still think that this is too much typing. Fortunately, R has a built in function called var() which does
calculate variances. So we could also do this...

> var(X)

[1] 405.8

8Well, I will very briefly mention the one that I think is coolest, for a very particular definition of “cool”, that is.
Variances are additive. Here’s what that means: suppose I have two variables X and Y , whose variances are VarpXq and
VarpY q respectively. Now imagine I want to define a new variable Z that is the sum of the two, Z “ X ` Y . As it turns
out, the variance of Z is equal to VarpXq ` VarpY q. This is a very useful property, but it’s not true of the other measures
that I talk about in this section.
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and you get the same... no, wait... you get a completely different answer. That’s just weird. Is R broken?
Is this a typo? Is Dan an idiot?

As it happens, the answer is no.9 It’s not a typo, and R is not making a mistake. To get a feel for
what’s happening, let’s stop using the tiny data set containing only 5 data points, and switch to the full
set of 176 games that we’ve got stored in our afl.margins vector. First, let’s calculate the variance by
using the formula that I described above:

> mean( (afl.margins - mean(afl.margins) )^2)

[1] 675.9718

Now let’s use the var() function:

> var( afl.margins )

[1] 679.8345

Hm. These two numbers are very similar this time. That seems like too much of a coincidence to be a
mistake. And of course it isn’t a mistake. In fact, it’s very simple to explain what R is doing here, but
slightly trickier to explain why R is doing it. So let’s start with the “what”. What R is doing is evaluating
a slightly different formula to the one I showed you above. Instead of averaging the squared deviations,
which requires you to divide by the number of data points N , R has chosen to divide by N ´ 1. In other
words, the formula that R is using is this one

1

N ´ 1

N
ÿ

i“1

`

Xi ´ X̄
˘2

It’s easy enough to verify that this is what’s happening, as the following command illustrates:

> sum( (X-mean(X))^2 ) / 4

[1] 405.8

This is the same answer that R gave us originally when we calculated var(X) originally. So that’s the what.
The real question is why R is dividing by N ´ 1 and not by N . After all, the variance is supposed to be
the mean squared deviation, right? So shouldn’t we be dividing by N , the actual number of observations
in the sample? Well, yes, we should. However, as we’ll discuss in Chapter 10, there’s a subtle distinction
between “describing a sample” and “making guesses about the population from which the sample came”.
Up to this point, it’s been a distinction without a difference. Regardless of whether you’re describing a
sample or drawing inferences about the population, the mean is calculated exactly the same way. Not
so for the variance, or the standard deviation, or for many other measures besides. What I outlined to
you initially (i.e., take the actual average, and thus divide by N) assumes that you literally intend to
calculate the variance of the sample. Most of the time, however, you’re not terribly interested in the
sample in and of itself. Rather, the sample exists to tell you something about the world. If so, you’re
actually starting to move away from calculating a “sample statistic”, and towards the idea of estimating
a “population parameter”. However, I’m getting ahead of myself. For now, let’s just take it on faith
that R knows what it’s doing, and we’ll revisit the question later on when we talk about estimation in
Chapter 10.

Okay, one last thing. This section so far has read a bit like a mystery novel. I’ve shown you how
to calculate the variance, described the weird “N ´ 1” thing that R does and hinted at the reason why
it’s there, but I haven’t mentioned the single most important thing... how do you interpret the variance?
Descriptive statistics are supposed to describe things, after all, and right now the variance is really just a
gibberish number. Unfortunately, the reason why I haven’t given you the human-friendly interpretation of

9With the possible exception of the third question.
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the variance is that there really isn’t one. This is the most serious problem with the variance. Although
it has some elegant mathematical properties that suggest that it really is a fundamental quantity for
expressing variation, it’s completely useless if you want to communicate with an actual human... variances
are completely uninterpretable in terms of the original variable! All the numbers have been squared, and
they don’t mean anything anymore. This is a huge issue. For instance, according to the table I presented
earlier, the margin in game 1 was “376.36 points-squared higher than the average margin”. This is exactly
as stupid as it sounds; and so when we calculate a variance of 324.64, we’re in the same situation. I’ve
watched a lot of footy games, and never has anyone referred to “points squared”. It’s not a real unit of
measurement, and since the variance is expressed in terms of this gibberish unit, it is totally meaningless
to a human.

5.2.5 Standard deviation

Okay, suppose that you like the idea of using the variance because of those nice mathematical prop-
erties that I haven’t talked about, but – since you’re a human and not a robot – you’d like to have a
measure that is expressed in the same units as the data itself (i.e., points, not points-squared). What
should you do? The solution to the problem is obvious: take the square root of the variance, known
as the standard deviation, also called the “root mean squared deviation”, or RMSD. This solves out
problem fairly neatly: while nobody has a clue what “a variance of 324.68 points-squared” really means,
it’s much easier to understand “a standard deviation of 18.01 points”, since it’s expressed in the original
units. It is traditional to refer to the standard deviation of a sample of data as s, though “sd” and “std
dev.” are also used at times. Because the standard deviation is equal to the square root of the variance,
you probably won’t be surprised to see that the formula is:

s “

g

f

f

e

1

N

N
ÿ

i“1

`

Xi ´ X̄
˘2

and the R function that we use to calculate it is sd(). However, as you might have guessed from our
discussion of the variance, what R actually calculates is slightly different to the formula given above. Just
like the we saw with the variance, what R calculates is a version that divides by N ´ 1 rather than N .
For reasons that will make sense when we return to this topic in Chapter 10 I’ll refer to this new quantity
as σ̂ (read as: “sigma hat”), and the formula for this is

σ̂ “

g

f

f

e

1

N ´ 1

N
ÿ

i“1

`

Xi ´ X̄
˘2

With that in mind, calculating standard deviations in R is simple:

> sd( afl.margins )

[1] 26.07364

Interpreting standard deviations is slightly more complex. Because the standard deviation is derived
from the variance, and the variance is a quantity that has little to no meaning that makes sense to us
humans, the standard deviation doesn’t have a simple interpretation. As a consequence, most of us just
rely on a simple rule of thumb: in general, you should expect 68% of the data to fall within 1 standard
deviation of the mean, 95% of the data to fall within 2 standard deviation of the mean, and 99.7% of
the data to fall within 3 standard deviations of the mean. This rule tends to work pretty well most
of the time, but it’s not exact: it’s actually calculated based on an assumption that the histogram is
symmetric and “bell shaped”.10 As you can tell from looking at the AFL winning margins histogram in

10Strictly, the assumption is that the data are normally distributed, which is an important concept that we’ll discuss
more in Chapter 9, and will turn up over and over again later in the book.
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Mean − SD Mean Mean + SD

Figure 5.3: An illustration of the standard deviation, applied to the AFL winning margins data. The
shaded bars in the histogram show how much of the data fall within one standard deviation of the
mean. In this case, 65.3% of the data set lies within this range, which is pretty consistent with the
“approximately 68% rule” discussed in the main text.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.1, this isn’t exactly true of our data! Even so, the rule is approximately correct. As it turns out,
65.3% of the AFL margins data fall within one standard deviation of the mean. This is shown visually
in Figure 5.3.

5.2.6 Median absolute deviation

The last measure of variability that I want to talk about is the median absolute deviation (MAD).
The basic idea behind MAD is very simple, and is pretty much identical to the idea behind the mean
absolute deviation (Section 5.2.3). The difference is that you use the median everywhere. If we were to
frame this idea as a pair of R commands, they would look like this:

> # mean absolute deviation from the mean:

> mean( abs(afl.margins - mean(afl.margins)) )

[1] 21.10124

> # *median* absolute deviation from the *median*:

> median( abs(afl.margins - median(afl.margins)) )

[1] 19.5

This has a straightforward interpretation: every observation in the data set lies some distance away from
the typical value (the median). So the MAD is an attempt to describe a typical deviation from a typical
value in the data set. It wouldn’t be unreasonable to interpret the MAD value of 19.5 for our AFL data
by saying something like this:

The median winning margin in 2010 was 30.5, indicating that a typical game involved a
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winning margin of about 30 points. However, there was a fair amount of variation from game
to game: the MAD value was 19.5, indicating that a typical winning margin would differ from
this median value by about 19-20 points.

As you’d expect, R has a built in function for calculating MAD, and you will be shocked no doubt to
hear that it’s called mad(). However, it’s a little bit more complicated than the functions that we’ve been
using previously. If you want to use it to calculate MAD in the exact same way that I have described it
above, the command that you need to use specifies two arguments: the data set itself x, and a constant

that I’ll explain in a moment. For our purposes, the constant is 1, so our command becomes

> mad( x = afl.margins, constant = 1 )

[1] 19.5

Apart from the weirdness of having to type that constant = 1 part, this is pretty straightforward.

Okay, so what exactly is this constant = 1 argument? I won’t go into all the details here, but here’s
the gist. Although the “raw” MAD value that I’ve described above is completely interpretable on its own
terms, that’s not actually how it’s used in a lot of real world contexts. Instead, what happens a lot is that
the researcher actually wants to calculate the standard deviation. However, in the same way that the
mean is very sensitive to extreme values, the standard deviation is vulnerable to the exact same issue. So,
in much the same way that people sometimes use the median as a “robust” way of calculating “something
that is like the mean”, it’s not uncommon to use MAD as a method for calculating “something that is
like the standard deviation”. Unfortunately, the raw MAD value doesn’t do this. Our raw MAD value
is 19.5, and our standard deviation was 26.07. However, what some clever person has shown is that,
under certain assumptions11, you can multiply the raw MAD value by 1.4826 and obtain a number that
is directly comparable to the standard deviation. As a consequence, the default value of constant is
1.4826, and so when you use the mad() command without manually setting a value, here’s what you get:

> mad( afl.margins )

[1] 28.9107

I should point out, though, that if you want to use this “corrected” MAD value as a robust version of the
standard deviation, you really are relying on the assumption that the data are (or at least, are “supposed
to be” in some sense) symmetric and basically shaped like a bell curve. That’s really not true for our
afl.margins data, so in this case I wouldn’t try to use the MAD value this way.

5.2.7 Which measure to use?

We’ve discussed quite a few measures of spread (range, IQR, MAD, variance and standard deviation),
and hinted at their strengths and weaknesses. Here’s a quick summary:

• Range. Gives you the full spread of the data. It’s very vulnerable to outliers, and as a consequence
it isn’t often used unless you have good reasons to care about the extremes in the data.

• Interquartile range. Tells you where the “middle half” of the data sits. It’s pretty robust, and
complements the median nicely. This is used a lot.

• Mean absolute deviation. Tells you how far “on average” the observations are from the mean. It’s
very interpretable, but has a few minor issues (not discussed here) that make it less attractive to
statisticians than the standard deviation. Used sometimes, but not often.

11The assumption again being that the data are normally-distributed!
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Negative Skew No Skew Positive Skew

Figure 5.4: An illustration of skewness. On the left we have a negatively skewed data set (skewness
“ ´.93), in the middle we have a data set with no skew (technically, skewness “ ´.006), and on the right
we have a positively skewed data set (skewness “ .93).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Variance. Tells you the average squared deviation from the mean. It’s mathematically elegant,
and is probably the “right” way to describe variation around the mean, but it’s completely un-
interpretable because it doesn’t use the same units as the data. Almost never used except as a
mathematical tool; but it’s buried “under the hood” of a very large number of statistical tools.

• Standard deviation. This is the square root of the variance. It’s fairly elegant mathematically, and
it’s expressed in the same units as the data so it can be interpreted pretty well. In situations where
the mean is the measure of central tendency, this is the default. This is by far the most popular
measure of variation.

• Median absolute deviation. The typical (i.e., median) deviation from the median value. In the raw
form it’s simple and interpretable; in the corrected form it’s a robust way to estimate the standard
deviation, for some kinds of data sets. Not used very often, but it does get reported sometimes.

In short, the IQR and the standard deviation are easily the two most common measures used to report
the variability of the data; but there are situations in which the others are used. I’ve described all of
them in this book because there’s a fair chance you’ll run into most of these somewhere.

5.3

Skew and kurtosis

There are two more descriptive statistics that you will sometimes see reported in the psychological
literature, known as skew and kurtosis. In practice, neither one is used anywhere near as frequently as
the measures of central tendency and variability that we’ve been talking about. Skew is pretty important,
so you do see it mentioned a fair bit; but I’ve actually never seen kurtosis reported in a scientific article
to date.

Since it’s the more interesting of the two, let’s start by talking about the skewness. Skewness is
basically a measure of asymmetry, and the easiest way to explain it is by drawing some pictures. As
Figure 5.4 illustrates, if the data tend to have a lot of extreme small values (i.e., the lower tail is “longer”
than the upper tail) and not so many extremely large values (left panel), then we say that the data are
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negatively skewed. On the other hand, if there are more extremely large values than extremely small ones
(right panel) we say that the data are positively skewed. That’s the qualitative idea behind skewness.
The actual formula for the skewness of a data set is as follows

skewnesspXq “ 1

Nσ̂3

N
ÿ

i“1

pXi ´ X̄q3

where N is the number of observations, X̄ is the sample mean, and σ̂ is the standard deviation (the
“divide by N ´1” version, that is). Perhaps more helpfully, it might be useful to point out that the psych

package contains a skew() function that you can use to calculate skewness. So if we wanted to use this
function to calculate the skewness of the afl.margins data, we’d first need to load the package

> library( psych )

which now makes it possible to use the following command:

> skew( x = afl.margins )

[1] 0.7671555

Not surprisingly, it turns out that the AFL winning margins data is fairly skewed.

The final measure that is sometimes referred to, though very rarely in practice, is the kurtosis of a
data set. Put simply, kurtosis is a measure of the “pointiness” of a data set, as illustrated in Figure 5.5.
By convention, we say that the “normal curve” (black lines) has zero kurtosis, so the pointiness of a data
set is assessed relative to this curve. In this Figure, the data on the left are not pointy enough, so the
kurtosis is negative and we call the data platykurtic. The data on the right are too pointy, so the kurtosis
is positive and we say that the data is leptokurtic. But the data in the middle are just pointy enough, so
we say that it is mesokurtic and has kurtosis zero. This is summarised in the table below:

informal term technical name kurtosis value
“too flat” platykurtic negative
“just pointy enough” mesokurtic zero
“too pointy” leptokurtic positive

The equation for kurtosis is pretty similar in spirit to the formulas we’ve seen already for the variance
and the skewness; except that where the variance involved squared deviations and the skewness involved
cubed deviations, the kurtosis involves raising the deviations to the fourth power:12

kurtosispXq “ 1

Nσ̂4

N
ÿ

i“1

`

Xi ´ X̄
˘4 ´ 3

I know, it’s not terribly interesting to me either. More to the point, the psych package has a function
called kurtosi() that you can use to calculate the kurtosis of your data. For instance, if we were to do
this for the AFL margins,

> kurtosi( x = afl.margins )

[1] 0.02962633

we discover that the AFL winning margins data are just pointy enough.

12The “´3” part is something that statisticians tack on to ensure that the normal curve has kurtosis zero. It looks a bit
stupid, just sticking a “-3” at the end of the formula, but there are good mathematical reasons for doing this.
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Figure 5.5: An illustration of kurtosis. On the left, we have a “platykurtic” data set (kurtosis = ´.95),
meaning that the data set is “too flat”. In the middle we have a “mesokurtic” data set (kurtosis is almost
exactly 0), which means that the pointiness of the data is just about right. Finally, on the right, we have
a “leptokurtic” data set (kurtosis “ 2.12) indicating that the data set is “too pointy”. Note that kurtosis
is measured with respect to a normal curve (black line).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4

Getting an overall summary of a variable

Up to this point in the chapter I’ve explained several different summary statistics that are commonly used
when analysing data, along with specific functions that you can use in R to calculate each one. However,
it’s kind of annoying to have to separately calculate means, medians, standard deviations, skews etc.
Wouldn’t it be nice if R had some helpful functions that would do all these tedious calculations at once?
Something like summary() or describe(), perhaps? Why yes, yes it would. So much so that both of these
functions exist. The summary() function is in the base package, so it comes with every installation of R.
The describe() function is part of the psych package, which we loaded earlier in the chapter.

5.4.1 “Summarising” a variable

The summary() function is an easy thing to use, but a tricky thing to understand in full, since it’s a
generic function (see Section 4.11). The basic idea behind the summary() function is that it prints out
some useful information about whatever object (i.e., variable, as far as we’re concerned) you specify as the
object argument. As a consequence, the behaviour of the summary() function differs quite dramatically
depending on the class of the object that you give it. Let’s start by giving it a numeric object:

> summary( object = afl.margins )

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 12.75 30.50 35.30 50.50 116.00

For numeric variables, we get a whole bunch of useful descriptive statistics. It gives us the minimum and
maximum values (i.e., the range), the first and third quartiles (25th and 75th percentiles; i.e., the IQR),
the mean and the median. In other words, it gives us a pretty good collection of descriptive statistics
related to the central tendency and the spread of the data.
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Okay, what about if we feed it a logical vector instead? Let’s say I want to know something about
how many “blowouts” there were in the 2010 AFL season. I operationalise the concept of a blowout (see
Chapter 2) as a game in which the winning margin exceeds 50 points. Let’s create a logical variable
blowouts in which the i-th element is TRUE if that game was a blowout according to my definition,

> blowouts <- afl.margins > 50

> blowouts

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

[11] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE

[21] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

BLAH BLAH BLAH

So that’s what the blowouts variable looks like. Now let’s ask R for a summary()

> summary( object = blowouts )

Mode FALSE TRUE NA’s

logical 132 44 0

In this context, the summary() function gives us a count of the number of TRUE values, the number of
FALSE values, and the number of missing values (i.e., the NAs). Pretty reasonable behaviour.

Next, let’s try to give it a factor. If you recall, I’ve defined the afl.finalists vector as a factor, so
let’s use that:

> summary( object = afl.finalists )

Adelaide Brisbane Carlton Collingwood

26 25 26 28

Essendon Fitzroy Fremantle Geelong

32 0 6 39

Hawthorn Melbourne North Melbourne Port Adelaide

27 28 28 17

Richmond St Kilda Sydney West Coast

6 24 26 38

Western Bulldogs

24

For factors, we get a frequency table, just like we got when we used the table() function. Interestingly,
however, if we convert this to a character vector using the as.character() function (see Section 7.10), we
don’t get the same results:

> f2 <- as.character( afl.finalists )

> summary( object = f2 )

Length Class Mode

400 character character

This is one of those situations I was referring to in Section 4.7, in which it is helpful to declare your
nominal scale variable as a factor rather than a character vector. Because I’ve defined afl.finalists as
a factor, R knows that it should treat it as a nominal scale variable, and so it gives you a much more
detailed (and helpful) summary than it would have if I’d left it as a character vector.

5.4.2 “Summarising” a data frame

Okay what about data frames? When you pass a data frame to the summary() function, it produces a
slightly condensed summary of each variable inside the data frame. To give you a sense of how this can
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be useful, let’s try this for a new data set, one that you’ve never seen before. The data is stored in the
clinicaltrial.Rdata file, and we’ll use it a lot in Chapter 14 (you can find a complete description of
the data at the start of that chapter). Let’s load it, and see what we’ve got:

> load( "clinicaltrial.Rdata" )

> who(TRUE)

-- Name -- -- Class -- -- Size --

clin.trial data.frame 18 x 3

$drug factor 18

$therapy factor 18

$mood.gain numeric 18

There’s a single data frame called clin.trial which contains three variables, drug, therapy and mood.gain.
Presumably then, this data is from a clinical trial of some kind, in which people were administered different
drugs; and the researchers looked to see what the drugs did to their mood. Let’s see if the summary()

function sheds a little more light on this situation:

> summary( clin.trial )

drug therapy mood.gain

placebo :6 no.therapy:9 Min. :0.1000

anxifree:6 CBT :9 1st Qu.:0.4250

joyzepam:6 Median :0.8500

Mean :0.8833

3rd Qu.:1.3000

Max. :1.8000

Evidently there were three drugs: a placebo, something called “anxifree” and something called “joyzepam”;
and there were 6 people administered each drug. There were 9 people treated using cognitive behavioural
therapy (CBT) and 9 people who received no psychological treatment. And we can see from looking at
the summary of the mood.gain variable that most people did show a mood gain (mean “ .88), though
without knowing what the scale is here it’s hard to say much more than that. Still, that’s not too bad.
Overall, I feel that I learned something from that.

5.4.3 “Describing” a data frame

The describe() function (in the psych package) is a little different, and it’s really only intended to be
useful when your data are interval or ratio scale. Unlike the summary() function, it calculates the same
descriptive statistics for any type of variable you give it. By default, these are:

• var. This is just an index: 1 for the first variable, 2 for the second variable, and so on.

• n. This is the sample size: more precisely, it’s the number of non-missing values.

• mean. This is the sample mean (Section 5.1.1).

• sd. This is the (bias corrected) standard deviation (Section 5.2.5).

• median. The median (Section 5.1.3).

• trimmed. This is trimmed mean. By default it’s the 10% trimmed mean (Section 5.1.6).

• mad. The median absolute deviation (Section 5.2.6).

• min. The minimum value.

• max. The maximum value.

• range. The range spanned by the data (Section 5.2.1).

• skew. The skewness (Section 5.3).

• kurtosis. The kurtosis (Section 5.3).

• se. The standard error of the mean (Chapter 10).
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Notice that these descriptive statistics generally only make sense for data that are interval or ratio scale
(usually encoded as numeric vectors). For nominal or ordinal variables (usually encoded as factors), most
of these descriptive statistics are not all that useful. What the describe() function does is convert factors
and logical variables to numeric vectors in order to do the calculations. These variables are marked with
* and most of the time, the descriptive statistics for those variables won’t make much sense. If you try
to feed it a data frame that includes a character vector as a variable, it produces an error.

With those caveats in mind, let’s use the describe() function to have a look at the clin.trial data
frame. Here’s what we get:

> describe( x = clin.trial )

var n mean sd median trimmed mad min max range skew kurtosis se

drug* 1 18 2.00 0.84 2.00 2.00 1.48 1.0 3.0 2.0 0.00 -1.66 0.20

therapy* 2 18 1.50 0.51 1.50 1.50 0.74 1.0 2.0 1.0 0.00 -2.11 0.12

mood.gain 3 18 0.88 0.53 0.85 0.88 0.67 0.1 1.8 1.7 0.13 -1.44 0.13

As you can see, the output for the asterisked variables is pretty meaningless, and should be ignored.
However, for the mood.gain variable, there’s a lot of useful information.

5.5

Descriptive statistics separately for each group

It is very commonly the case that you find yourself needing to look at descriptive statistics, broken down
by some grouping variable. This is pretty easy to do in R, and there are three functions in particular
that are worth knowing about: by(), describeBy() and aggregate(). Let’s start with the describeBy()

function, which is part of the psych package. The describeBy() function is very similar to the describe()

function, except that it has an additional argument called group which specifies a grouping variable.
For instance, let’s say, I want to look at the descriptive statistics for the clin.trial data, broken down
separately by therapy type. The command I would use here is:

> describeBy( x=clin.trial, group=clin.trial$therapy )

group: no.therapy

var n mean sd median trimmed mad min max range skew kurtosis se

drug* 1 9 2.00 0.87 2.0 2.00 1.48 1.0 3.0 2.0 0.00 -1.81 0.29

therapy* 2 9 1.00 0.00 1.0 1.00 0.00 1.0 1.0 0.0 NaN NaN 0.00

mood.gain 3 9 0.72 0.59 0.5 0.72 0.44 0.1 1.7 1.6 0.51 -1.59 0.20

------------------------------------------------------------------------------------------

group: CBT

var n mean sd median trimmed mad min max range skew kurtosis se

drug* 1 9 2.00 0.87 2.0 2.00 1.48 1.0 3.0 2.0 0.00 -1.81 0.29

therapy* 2 9 2.00 0.00 2.0 2.00 0.00 2.0 2.0 0.0 NaN NaN 0.00

mood.gain 3 9 1.04 0.45 1.1 1.04 0.44 0.3 1.8 1.5 -0.03 -1.12 0.15

As you can see, the output is essentially identical to the output that the describe() function produce,
except that the output now gives you means, standard deviations etc separately for the CBT group and
the no.therapy group. Notice that, as before, the output displays asterisks for factor variables, in order
to draw your attention to the fact that the descriptive statistics that it has calculated won’t be very
meaningful for those variables. Nevertheless, this command has given us some really useful descriptive
statistics mood.gain variable, broken down as a function of therapy.

A somewhat more general solution is offered by the by() function. There are three arguments that
you need to specify when using this function: the data argument specifies the data set, the INDICES
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argument specifies the grouping variable, and the FUN argument specifies the name of a function that you
want to apply separately to each group. To give a sense of how powerful this is, you can reproduce the
describeBy() function by using a command like this:

> by( data=clin.trial, INDICES=clin.trial$therapy, FUN=describe )

This will produce the exact same output as the command shown earlier. However, there’s nothing special
about the describe() function. You could just as easily use the by() function in conjunction with the
summary() function. For example:

> by( data=clin.trial, INDICES=clin.trial$therapy, FUN=summary )

clin.trial$therapy: no.therapy

drug therapy mood.gain

placebo :3 no.therapy:9 Min. :0.1000

anxifree:3 CBT :0 1st Qu.:0.3000

joyzepam:3 Median :0.5000

Mean :0.7222

3rd Qu.:1.3000

Max. :1.7000

----------------------------------------------------------------------------------

clin.trial$therapy: CBT

drug therapy mood.gain

placebo :3 no.therapy:0 Min. :0.300

anxifree:3 CBT :9 1st Qu.:0.800

joyzepam:3 Median :1.100

Mean :1.044

3rd Qu.:1.300

Max. :1.800

Again, this output is pretty easy to interpret. It’s the output of the summary() function, applied separately
to CBT group and the no.therapy group. For the two factors (drug and therapy) it prints out a frequency
table, whereas for the numeric variable (mood.gain) it prints out the range, interquartile range, mean and
median.

What if you have multiple grouping variables? Suppose, for example, you would like to look at the
average mood gain separately for all possible combinations of drug and therapy. It is actually possible
to do this using the by() and describeBy() functions, but I usually find it more convenient to use the
aggregate() function in this situation. There are again three arguments that you need to specify. The
formula argument is used to indicate which variable you want to analyse, and which variables are used to
specify the groups. For instance, if you want to look at mood.gain separately for each possible combination
of drug and therapy, the formula you want is mood.gain ~ drug + therapy. The data argument is used to
specify the data frame containing all the data, and the FUN argument is used to indicate what function
you want to calculate for each group (e.g., the mean). So, to obtain group means, use this command:

> aggregate( formula = mood.gain ~ drug + therapy, # mood.gain by drug/therapy combination

+ data = clin.trial, # data is in the clin.trial data frame

+ FUN = mean # print out group means

+ )

drug therapy mood.gain

1 placebo no.therapy 0.300000

2 anxifree no.therapy 0.400000

3 joyzepam no.therapy 1.466667

4 placebo CBT 0.600000

5 anxifree CBT 1.033333

6 joyzepam CBT 1.500000
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or, alternatively, if you want to calculate the standard deviations for each group, you would use the
following command (argument names omitted this time):

> aggregate( mood.gain ~ drug + therapy, clin.trial, sd )

drug therapy mood.gain

1 placebo no.therapy 0.2000000

2 anxifree no.therapy 0.2000000

3 joyzepam no.therapy 0.2081666

4 placebo CBT 0.3000000

5 anxifree CBT 0.2081666

6 joyzepam CBT 0.2645751

5.6

Standard scores

Suppose my friend is putting together a new questionnaire intended to measure “grumpiness”. The survey
has 50 questions, which you can answer in a grumpy way or not. Across a big sample (hypothetically, let’s
imagine a million people or so!) the data are fairly normally distributed, with the mean grumpiness score
being 17 out of 50 questions answered in a grumpy way, and the standard deviation is 5. In contrast,
when I take the questionnaire, I answer 35 out of 50 questions in a grumpy way. So, how grumpy am
I? One way to think about would be to say that I have grumpiness of 35/50, so you might say that I’m
70% grumpy. But that’s a bit weird, when you think about it. If my friend had phrased her questions a
bit differently, people might have answered them in a different way, so the overall distribution of answers
could easily move up or down depending on the precise way in which the questions were asked. So, I’m
only 70% grumpy with respect to this set of survey questions. Even if it’s a very good questionnaire, this
isn’t very a informative statement.

A simpler way around this is to describe my grumpiness by comparing me to other people. Shockingly,
out of my friend’s sample of 1,000,000 people, only 159 people were as grumpy as me (that’s not at all
unrealistic, frankly), suggesting that I’m in the top 0.016% of people for grumpiness. This makes much
more sense than trying to interpret the raw data. This idea – that we should describe my grumpiness in
terms of the overall distribution of the grumpiness of humans – is the qualitative idea that standardisation
attempts to get at. One way to do this is to do exactly what I just did, and describe everything in terms
of percentiles. However, the problem with doing this is that “it’s lonely at the top”. Suppose that my
friend had only collected a sample of 1000 people (still a pretty big sample for the purposes of testing a
new questionnaire, I’d like to add), and this time gotten a mean of 16 out of 50 with a standard deviation
of 5, let’s say. The problem is that almost certainly, not a single person in that sample would be as
grumpy as me.

However, all is not lost. A different approach is to convert my grumpiness score into a standard
score, also referred to as a z-score. The standard score is defined as the number of standard deviations
above the mean that my grumpiness score lies. To phrase it in “pseudo-maths” the standard score is
calculated like this:

standard score “ raw score´mean

standard deviation

In actual maths, the equation for the z-score is

zi “
Xi ´ X̄

σ̂

So, going back to the grumpiness data, we can now transform Dan’s raw grumpiness into a standardised
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grumpiness score.13 If the mean is 17 and the standard deviation is 5 then my standardised grumpiness
score would be14

z “ 35´ 17

5
“ 3.6

To interpret this value, recall the rough heuristic that I provided in Section 5.2.5, in which I noted
that 99.7% of values are expected to lie within 3 standard deviations of the mean. So the fact that my
grumpiness corresponds to a z score of 3.6 indicates that I’m very grumpy indeed. Later on, in Section 9.4,
I’ll introduce a function called pnorm() that allows us to be a bit more precise than this. Specifically, it
allows us to calculate a theoretical percentile rank for my grumpiness, as follows:

> pnorm( 3.6 )

[1] 0.9998409

At this stage, this command doesn’t make too much sense, but don’t worry too much about it. It’s not
important for now. But the output is fairly straightforward: it suggests that I’m grumpier than 99.98%
of people. Sounds about right.

In addition to allowing you to interpret a raw score in relation to a larger population (and thereby
allowing you to make sense of variables that lie on arbitrary scales), standard scores serve a second useful
function. Standard scores can be compared to one another in situations where the raw scores can’t.
Suppose, for instance, my friend also had another questionnaire that measured extraversion using a 24
items questionnaire. The overall mean for this measure turns out to be 13 with standard deviation 4;
and I scored a 2. As you can imagine, it doesn’t make a lot of sense to try to compare my raw score of 2
on the extraversion questionnaire to my raw score of 35 on the grumpiness questionnaire. The raw scores
for the two variables are “about” fundamentally different things, so this would be like comparing apples
to oranges.

What about the standard scores? Well, this is a little different. If we calculate the standard scores,
we get z “ p35 ´ 17q{5 “ 3.6 for grumpiness and z “ p2 ´ 13q{4 “ ´2.75 for extraversion. These two
numbers can be compared to each other.15 I’m much less extraverted than most people (z “ ´2.75) and
much grumpier than most people (z “ 3.6): but the extent of my unusualness is much more extreme
for grumpiness (since 3.6 is a bigger number than 2.75). Because each standardised score is a statement
about where an observation falls relative to its own population, it is possible to compare standardised
scores across completely different variables.

5.7

Correlations

Up to this point we have focused entirely on how to construct descriptive statistics for a single variable.
What we haven’t done is talked about how to describe the relationships between variables in the data.
To do that, we want to talk mostly about the correlation between variables. But first, we need some
data.

13I haven’t discussed how to compute z-scores, explicitly, but you can probably guess. For a variable X, the simplest way
is to use a command like (X - mean(X)) / sd(X). There’s also a fancier function called scale() that you can use, but it relies
on somewhat more complicated R concepts that I haven’t explained yet.

14Technically, because I’m calculating means and standard deviations from a sample of data, but want to talk about my
grumpiness relative to a population, what I’m actually doing is estimating a z score. However, since we haven’t talked
about estimation yet (see Chapter 10) I think it’s best to ignore this subtlety, especially as it makes very little difference to
our calculations.

15Though some caution is usually warranted. It’s not always the case that one standard deviation on variable A corre-
sponds to the same “kind” of thing as one standard deviation on variable B. Use common sense when trying to determine
whether or not the z scores of two variables can be meaningfully compared.
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Table 5.1: Descriptive statistics for the parenthood data.

variable min max mean median std. dev IQR
Dan’s grumpiness 41 91 63.71 62 10.05 14
Dan’s hours slept 4.84 9.00 6.97 7.03 1.02 1.45

Dan’s son’s hours slept 3.25 12.07 8.05 7.95 2.07 3.21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.7.1 The data

After spending so much time looking at the AFL data, I’m starting to get bored with sports. Instead,
let’s turn to a topic close to every parent’s heart: sleep. The following data set is fictitious, but based
on real events. Suppose I’m curious to find out how much my infant son’s sleeping habits affect my
mood. Let’s say that I can rate my grumpiness very precisely, on a scale from 0 (not at all grumpy)
to 100 (grumpy as a very, very grumpy old man). And, lets also assume that I’ve been measuring my
grumpiness, my sleeping patterns and my son’s sleeping patterns for quite some time now. Let’s say, for
100 days. And, being a nerd, I’ve saved the data as a file called parenthood.Rdata. If we load the data...

> load( "parenthood.Rdata" )

> who(TRUE)

-- Name -- -- Class -- -- Size --

parenthood data.frame 100 x 4

$dan.sleep numeric 100

$baby.sleep numeric 100

$dan.grump numeric 100

$day integer 100

... we see that the file contains a single data frame called parenthood, which contains four variables
dan.sleep, baby.sleep, dan.grump and day. If we print out the data, here’s what we get:

> parenthood

dan.sleep baby.sleep dan.grump day

1 7.59 10.18 56 1

2 7.91 11.66 60 2

3 5.14 7.92 82 3

4 7.71 9.61 55 4

BLAH BLAH BLAH

98 5.38 6.97 82 98

99 7.02 6.56 55 99

100 6.45 7.93 74 100

Next, I’ll calculate some basic descriptive statistics:

> describe( parenthood )

var n mean sd median trimmed mad min max

dan.sleep 1 100 6.97 1.02 7.03 7.00 1.09 4.84 9.00

baby.sleep 2 100 8.05 2.07 7.95 8.05 2.33 3.25 12.07

dan.grump 3 100 63.71 10.05 62.00 63.16 9.64 41.00 91.00

day 4 100 50.50 29.01 50.50 50.50 37.06 1.00 100.00
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Figure 5.6: Histograms for the three interesting variables in the parenthood data set.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

range skew kurtosis se

dan.sleep 4.16 -0.29 -0.65 0.10

baby.sleep 8.82 -0.02 -0.61 0.21

dan.grump 50.00 0.43 -0.04 1.00

day 99.00 0.00 -1.20 2.90

Finally, to give a graphical depiction of what each of the three interesting variables looks like, Figure 5.6
plots histograms. One thing to note: just because R can calculate dozens of different statistics doesn’t
mean you should report all of them. If I were writing this up for a report, I’d probably pick out those
statistics that are of most interest to me (and to my readership), and then put them into a nice, simple
table like the one in Table 5.1.16 Notice that when I put it into a table, I gave everything “human
readable” names. This is always good practice. Notice also that I’m not getting enough sleep. This isn’t
good practice, but other parents tell me that it’s standard practice.

5.7.2 The strength and direction of a relationship

We can draw scatterplots to give us a general sense of how closely related two variables are. Ideally though,
we might want to say a bit more about it than that. For instance, let’s compare the relationship between
dan.sleep and dan.grump (Figure 5.7, left) with that between baby.sleep and dan.grump (Figure 5.7, right).
When looking at these two plots side by side, it’s clear that the relationship is qualitatively the same in
both cases: more sleep equals less grump! However, it’s also pretty obvious that the relationship between
dan.sleep and dan.grump is stronger than the relationship between baby.sleep and dan.grump. The plot
on the left is “neater” than the one on the right. What it feels like is that if you want to predict what
my mood is, it’d help you a little bit to know how many hours my son slept, but it’d be more helpful to
know how many hours I slept.

In contrast, let’s consider the two scatterplots shown in Figure 5.8. If we compare the scatterplot
of “baby.sleep v dan.grump” (left) to the scatterplot of “‘baby.sleep v dan.sleep” (right), the overall
strength of the relationship is the same, but the direction is different. That is, if my son sleeps more,

16Actually, even that table is more than I’d bother with. In practice most people pick one measure of central tendency,
and one measure of variability only.
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Figure 5.7: Scatterplots showing the relationship between dan.sleep and dan.grump (left) and the rela-
tionship between baby.sleep and dan.grump (right).
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I get more sleep (positive relationship, right hand side), but if he sleeps more then I get less grumpy
(negative relationship, left hand side).

5.7.3 The correlation coefficient

We can make these ideas a bit more explicit by introducing the idea of a correlation coefficient (or,
more specifically, Pearson’s correlation coefficient), which is traditionally denoted by r. The correlation
coefficient between two variables X and Y (sometimes denoted rXY ), which we’ll define more precisely
in the next section, is a measure that varies from ´1 to 1. When r “ ´1 it means that we have a perfect
negative relationship, and when r “ 1 it means we have a perfect positive relationship. When r “ 0,
there’s no relationship at all. If you look at Figure 5.9, you can see several plots showing what different
correlations look like.

The formula for the Pearson’s correlation coefficient can be written in several different ways. I think
the simplest way to write down the formula is to break it into two steps. Firstly, let’s introduce the idea
of a covariance. The covariance between two variables X and Y is a generalisation of the notion of the
variance; it’s a mathematically simple way of describing the relationship between two variables that isn’t
terribly informative to humans:

CovpX,Y q “ 1

N ´ 1

N
ÿ

i“1

`

Xi ´ X̄
˘ `

Yi ´ Ȳ
˘

Because we’re multiplying (i.e., taking the “product” of) a quantity that depends on X by a quantity
that depends on Y and then averaging17, you can think of the formula for the covariance as an “average
cross product” between X and Y . The covariance has the nice property that, if X and Y are entirely
unrelated, then the covariance is exactly zero. If the relationship between them is positive (in the

17Just like we saw with the variance and the standard deviation, in practice we divide by N ´ 1 rather than N .
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Figure 5.8: Scatterplots showing the relationship between baby.sleep and dan.grump (left), as compared
to the relationship between baby.sleep and dan.sleep (right).
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sense shown in Figure 5.9) then the covariance is also positive; and if the relationship is negative then
the covariance is also negative. In other words, the covariance captures the basic qualitative idea of
correlation. Unfortunately, the raw magnitude of the covariance isn’t easy to interpret: it depends on
the units in which X and Y are expressed, and worse yet, the actual units that the covariance itself
is expressed in are really weird. For instance, if X refers to the dan.sleep variable (units: hours) and
Y refers to the dan.grump variable (units: grumps), then the units for their covariance are “hours ˆ
grumps”. And I have no freaking idea what that would even mean.

The Pearson correlation coefficient r fixes this interpretation problem by standardising the covariance,
in pretty much the exact same way that the z-score standardises a raw score: by dividing by the standard
deviation. However, because we have two variables that contribute to the covariance, the standardisation
only works if we divide by both standard deviations.18 In other words, the correlation between X and Y

can be written as follows:

rXY “
CovpX,Y q
σ̂X σ̂Y

By doing this standardisation, not only do we keep all of the nice properties of the covariance discussed
earlier, but the actual values of r are on a meaningful scale: r “ 1 implies a perfect positive relationship,
and r “ ´1 implies a perfect negative relationship. I’ll expand a little more on this point later, in
Section 5.7.5. But before I do, let’s look at how to calculate correlations in R.

5.7.4 Calculating correlations in R

Calculating correlations in R can be done using the cor() command. The simplest way to use the
command is to specify two input arguments x and y, each one corresponding to one of the variables. The

18This is an oversimplification, but it’ll do for our purposes.
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correlation example correlation example

0.0 0.0

0.33 ´0.33

0.66 ´0.66

1.0 ´1.0

Figure 5.9: Illustration of the effect of varying the strength and direction of a correlation. In the left
hand column, the correlations are 0, .33, .66 and 1. In the right hand column, the correlations are 0, -.33,
-.66 and -1.
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following extract illustrates the basic usage of the function:19

> cor( x = parenthood$dan.sleep, y = parenthood$dan.grump )

[1] -0.903384

However, the cor() function is a bit more powerful than this simple example suggests. For example, you
can also calculate a complete “correlation matrix”, between all pairs of variables in the data frame:20

> # correlate all pairs of variables in "parenthood":

> cor( x = parenthood )

dan.sleep baby.sleep dan.grump day

dan.sleep 1.00000000 0.62794934 -0.90338404 -0.09840768

baby.sleep 0.62794934 1.00000000 -0.56596373 -0.01043394

dan.grump -0.90338404 -0.56596373 1.00000000 0.07647926

day -0.09840768 -0.01043394 0.07647926 1.00000000

5.7.5 Interpreting a correlation

Naturally, in real life you don’t see many correlations of 1. So how should you interpret a correlation
of, say r “ .4? The honest answer is that it really depends on what you want to use the data for, and
on how strong the correlations in your field tend to be. A friend of mine in engineering once argued that
any correlation less than .95 is completely useless (I think he was exaggerating, even for engineering). On
the other hand there are real cases – even in psychology – where you should really expect correlations
that strong. For instance, one of the benchmark data sets used to test theories of how people judge
similarities is so clean that any theory that can’t achieve a correlation of at least .9 really isn’t deemed to
be successful. However, when looking for (say) elementary correlates of intelligence (e.g., inspection time,
response time), if you get a correlation above .3 you’re doing very very well. In short, the interpretation
of a correlation depends a lot on the context. That said, the rough guide in Table 5.2 is pretty typical.

However, something that can never be stressed enough is that you should always look at the scatterplot
before attaching any interpretation to the data. A correlation might not mean what you think it means.
The classic illustration of this is “Anscombe’s Quartet” (Anscombe, 1973), which is a collection of four
data sets. Each data set has two variables, an X and a Y . For all four data sets the mean value for X
is 9 and the mean for Y is 7.5. The, standard deviations for all X variables are almost identical, as are
those for the the Y variables. And in each case the correlation between X and Y is r “ 0.816. You can
verify this yourself, since I happen to have saved the in a file21 called anscombesquartet.Rdata. The
commands would be:

> load( "anscombesquartet.Rdata" )

> cor( X1, Y1 )

[1] 0.8164205

> cor( X2, Y2 )

[1] 0.8162365

and so on. You’d think that these four data setswould look pretty similar to one another. They do not.
If we draw scatterplots of X against Y for all four variables, as shown in Figure 5.10 we see that all four

19If you are reading this after having already completed Chapter 11 you might be wondering about hypothesis tests for
correlations. R has a function called cor.test() that runs a hypothesis test for a single correlation, and the psych package
contains a version called corr.test() that can run tests for every correlation in a correlation matrix; hypothesis tests for
correlations are discussed in more detail in Section 15.6.

20An alternative usage of cor() is to correlate one set of variables with another subset of variables. If X and Y are both
data frames with the same number of rows, then cor(x = X, y = Y) will produce a correlation matrix that correlates all
variables in X with all variables in Y.

21It’s also stored as a dataset that comes distributed with R. Just type anscombe at the command prompt.
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Table 5.2: A rough guide to interpreting correlations. Note that I say a rough guide. There aren’t hard
and fast rules for what counts as strong or weak relationships. It depends on the context.

Correlation Strength Direction
-1.0 to -0.9 Very strong Negative
-0.9 to -0.7 Strong Negative
-0.7 to -0.4 Moderate Negative
-0.4 to -0.2 Weak Negative
-0.2 to 0 Negligible Negative
0 to 0.2 Negligible Positive
0.2 to 0.4 Weak Positive
0.4 to 0.7 Moderate Positive
0.7 to 0.9 Strong Positive
0.9 to 1.0 Very strong Positive

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of these are spectacularly different to each other. The lesson here, which so very many people seem to
forget in real life is “always graph your raw data”. This will be the focus of Chapter 6.

5.7.6 Spearman’s rank correlations

The Pearson correlation coefficient is useful for a lot of things, but it does have shortcomings. One
issue in particular stands out: what it actually measures is the strength of the linear relationship between
two variables. In other words, what it gives you is a measure of the extent to which the data all tend to
fall on a single, perfectly straight line. Often, this is a pretty good approximation to what we mean when
we say “relationship”, and so the Pearson correlation is a good thing to calculation. Sometimes, it isn’t.

One very common situation where the Pearson correlation isn’t quite the right thing to use arises
when an increase in one variable X really is reflected in an increase in another variable Y , but the nature
of the relationship isn’t necessarily linear. An example of this might be the relationship between effort
and reward when studying for an exam. If you put in zero effort (X) into learning a subject, then you
should expect a grade of 0% (Y ). However, a little bit of effort will cause a massive improvement: just
turning up to lectures means that you learn a fair bit, and if you just turn up to classes, and scribble a
few things down so your grade might rise to 35%, all without a lot of effort. However, you just don’t get
the same effect at the other end of the scale. As everyone knows, it takes a lot more effort to get a grade
of 90% than it takes to get a grade of 55%. What this means is that, if I’ve got data looking at study
effort and grades, there’s a pretty good chance that Pearson correlations will be misleading.

To illustrate, consider the data plotted in Figure 5.11, showing the relationship between hours worked
and grade received for 10 students taking some class. The curious thing about this – highly fictitious –
data set is that increasing your effort always increases your grade. It might be by a lot or it might be by
a little, but increasing effort will never decrease your grade. The data are stored in effort.Rdata:

> load( "effort.Rdata" )

> who(TRUE)

-- Name -- -- Class -- -- Size --

effort data.frame 10 x 2

$hours numeric 10

$grade numeric 10

The raw data look like this:
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Figure 5.10: Anscombe’s quartet. All four of these data sets have a Pearson correlation of r “ .816, but
they are qualitatively different from one another.
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> effort

hours grade

1 2 13

2 76 91

3 40 79

4 6 14

5 16 21

6 28 74

7 27 47

8 59 85

9 46 84

10 68 88

If we run a standard Pearson correlation, it shows a strong relationship between hours worked and grade
received,
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Figure 5.11: The relationship between hours worked and grade received, for a toy data set consisting of
only 10 students (each circle corresponds to one student). The dashed line through the middle shows
the linear relationship between the two variables. This produces a strong Pearson correlation of r “ .91.
However, the interesting thing to note here is that there’s actually a perfect monotonic relationship
between the two variables: in this toy example at least, increasing the hours worked always increases
the grade received, as illustrated by the solid line. This is reflected in a Spearman correlation of ρ “ 1.
With such a small data set, however, it’s an open question as to which version better describes the actual
relationship involved.
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> cor( effort$hours, effort$grade )

[1] 0.909402

but this doesn’t actually capture the observation that increasing hours worked always increases the grade.
There’s a sense here in which we want to be able to say that the correlation is perfect but for a somewhat
different notion of what a “relationship” is. What we’re looking for is something that captures the fact
that there is a perfect ordinal relationship here. That is, if student 1 works more hours than student 2,
then we can guarantee that student 1 will get the better grade. That’s not what a correlation of r “ .91
says at all.

How should we address this? Actually, it’s really easy: if we’re looking for ordinal relationships, all
we have to do is treat the data as if it were ordinal scale! So, instead of measuring effort in terms of
“hours worked”, lets rank all 10 of our students in order of hours worked. That is, student 1 did the least
work out of anyone (2 hours) so they get the lowest rank (rank = 1). Student 4 was the next laziest,
putting in only 6 hours of work in over the whole semester, so they get the next lowest rank (rank = 2).
Notice that I’m using “rank =1” to mean “low rank”. Sometimes in everyday language we talk about
“rank = 1” to mean “top rank” rather than “bottom rank”. So be careful: you can rank “from smallest
value to largest value” (i.e., small equals rank 1) or you can rank “from largest value to smallest value”
(i.e., large equals rank 1). In this case, I’m ranking from smallest to largest, because that’s the default
way that R does it. But in real life, it’s really easy to forget which way you set things up, so you have to
put a bit of effort into remembering!
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Okay, so let’s have a look at our students when we rank them from worst to best in terms of effort
and reward:

rank (hours worked) rank (grade received)
student 1 1 1
student 2 10 10
student 3 6 6
student 4 2 2
student 5 3 3
student 6 5 5
student 7 4 4
student 8 8 8
student 9 7 7
student 10 9 9

Hm. These are identical. The student who put in the most effort got the best grade, the student with the
least effort got the worst grade, etc. We can get R to construct these rankings using the rank() function,
like this:

> hours.rank <- rank( effort$hours ) # rank students by hours worked

> grade.rank <- rank( effort$grade ) # rank students by grade received

As the table above shows, these two rankings are identical, so if we now correlate them we get a perfect
relationship:

> cor( hours.rank, grade.rank )

[1] 1

What we’ve just re-invented is Spearman’s rank order correlation, usually denoted ρ to distinguish
it from the Pearson correlation r. We can calculate Spearman’s ρ using R in two different ways. Firstly
we could do it the way I just showed, using the rank() function to construct the rankings, and then
calculate the Pearson correlation on these ranks. However, that’s way too much effort to do every time.
It’s much easier to just specify the method argument of the cor() function.

> cor( effort$hours, effort$grade, method = "spearman")

[1] 1

The default value of the method argument is "pearson", which is why we didn’t have to specify it earlier
on when we were doing Pearson correlations.

5.7.7 The ❝♦rr❡❧❛t❡✭✮ function

As we’ve seen, the cor() function works pretty well, and handles many of the situations that you
might be interested in. One thing that many beginners find frustrating, however, is the fact that it’s not
built to handle non-numeric variables. From a statistical perspective, this is perfectly sensible: Pearson
and Spearman correlations are only designed to work for numeric variables, so the cor() function spits
out an error.

Here’s what I mean. Suppose you were keeping track of how many hours you worked in any given
day, and counted how many tasks you completed. If you were doing the tasks for money, you might also
want to keep track of how much pay you got for each job. It would also be sensible to keep track of the

- 147 -



weekday on which you actually did the work: most of us don’t work as much on Saturdays or Sundays. If
you did this for 7 weeks, you might end up with a data set that looks like this one:

> load("work.Rdata")

> who(TRUE)

-- Name -- -- Class -- -- Size --

work data.frame 49 x 7

$hours numeric 49

$tasks numeric 49

$pay numeric 49

$day integer 49

$weekday factor 49

$week numeric 49

$day.type factor 49

> head(work)

hours tasks pay day weekday week day.type

1 7.2 14 41 1 Tuesday 1 weekday

2 7.4 11 39 2 Wednesday 1 weekday

3 6.6 14 13 3 Thursday 1 weekday

4 6.5 22 47 4 Friday 1 weekday

5 3.1 5 4 5 Saturday 1 weekend

6 3.0 7 12 6 Sunday 1 weekend

Obviously, I’d like to know something about how all these variables correlate with one another. I could
correlate hours with pay quite using cor(), like so:

> cor(work$hours,work$pay)

[1] 0.7604283

But what if I wanted a quick and easy way to calculate all pairwise correlations between the numeric
variables? I can’t just input the work data frame, because it contains two factor variables, weekday and
day.type. If I try this, I get an error:

> cor(work)

Error in cor(work) : ’x’ must be numeric

It order to get the correlations that I want using the cor() function, is create a new data frame that
doesn’t contain the factor variables, and then feed that new data frame into the cor() function. It’s not
actually very hard to do that, and I’ll talk about how to do it properly in Section 7.5. But it would be
nice to have some function that is smart enough to just ignore the factor variables. That’s where the
correlate() function in the lsr package can be handy. If you feed it a data frame that contains factors,
it knows to ignore them, and returns the pairwise correlations only between the numeric variables:

> correlate(work)

CORRELATIONS

============

- correlation type: pearson

- correlations shown only when both variables are numeric

hours tasks pay day weekday week day.type

hours . 0.800 0.760 -0.049 . 0.018 .

tasks 0.800 . 0.720 -0.072 . -0.013 .
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pay 0.760 0.720 . 0.137 . 0.196 .

day -0.049 -0.072 0.137 . . 0.990 .

weekday . . . . . . .

week 0.018 -0.013 0.196 0.990 . . .

day.type . . . . . . .

The output here shows a . whenever one of the variables is non-numeric. It also shows a . whenever a
variable is correlated with itself (it’s not a meaningful thing to do). The correlate() function can also
do Spearman correlations, by specifying the corr.method to use:

> correlate( work, corr.method="spearman" )

CORRELATIONS

============

- correlation type: spearman

- correlations shown only when both variables are numeric

hours tasks pay day weekday week day.type

hours . 0.805 0.745 -0.047 . 0.010 .

tasks 0.805 . 0.730 -0.068 . -0.008 .

pay 0.745 0.730 . 0.094 . 0.154 .

day -0.047 -0.068 0.094 . . 0.990 .

weekday . . . . . . .

week 0.010 -0.008 0.154 0.990 . . .

day.type . . . . . . .

Obviously, there’s no new functionality in the correlate() function, and any advanced R user would be
perfectly capable of using the cor() function to get these numbers out. But if you’re not yet comfortable
with extracting a subset of a data frame, the correlate() function is for you.

5.8

Handling missing values

There’s one last topic that I want to discuss briefly in this chapter, and that’s the issue of missing
data. Real data sets very frequently turn out to have missing values: perhaps someone forgot to fill in
a particular survey question, for instance. Missing data can be the source of a lot of tricky issues, most
of which I’m going to gloss over. However, at a minimum, you need to understand the basics of handling
missing data in R.

5.8.1 The single variable case

Let’s start with the simplest case, in which you’re trying to calculate descriptive statistics for a single
variable which has missing data. In R, this means that there will be NA values in your data vector. Let’s
create a variable like that:

> partial <- c(10, 20, NA, 30)

Let’s assume that you want to calculate the mean of this variable. By default, R assumes that you want
to calculate the mean using all four elements of this vector, which is probably the safest thing for a dumb
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automaton to do, but it’s rarely what you actually want. Why not? Well, remember that the basic
interpretation of NA is “I don’t know what this number is”. This means that 1 + NA = NA: if I add 1 to
some number that I don’t know (i.e., the NA) then the answer is also a number that I don’t know. As
a consequence, if you don’t explicitly tell R to ignore the NA values, and the data set does have missing
values, then the output will itself be a missing value. If I try to calculate the mean of the partial vector,
without doing anything about the missing value, here’s what happens:

> mean( x = partial )

[1] NA

Technically correct, but deeply unhelpful.

To fix this, all of the descriptive statistics functions that I’ve discussed in this chapter (with the
exception of cor() which is a special case I’ll discuss below) have an optional argument called na.rm,
which is shorthand for “remove NA values”. By default, na.rm = FALSE, so R does nothing about the
missing data problem. Let’s try setting na.rm = TRUE and see what happens:

When calculating sums and means when missing data are present (i.e., when there are NA values)
there’s actually an additional argument to the function that you should be aware of. This argument is
called na.rm, and is a logical value indicating whether R should ignore (or “remove”) the missing data for
the purposes of doing the calculations. By default, R assumes that you want to keep the missing values,
so unless you say otherwise it will set na.rm = FALSE. However, R assumes that 1 + NA = NA: if I add 1 to
some number that I don’t know (i.e., the NA) then the answer is also a number that I don’t know. As
a consequence, if you don’t explicitly tell R to ignore the NA values, and the data set does have missing
values, then the output will itself be a missing value. This is illustrated in the following extract:

> mean( x = partial, na.rm = TRUE )

[1] 20

Notice that the mean is 20 (i.e., 60 / 3) and not 15. When R ignores a NA value, it genuinely ignores it. In
effect, the calculation above is identical to what you’d get if you asked for the mean of the three-element
vector c(10, 20, 30).

As indicated above, this isn’t unique to the mean() function. Pretty much all of the other functions
that I’ve talked about in this chapter have an na.rm argument that indicates whether it should ignore
missing values. However, its behaviour is the same for all these functions, so I won’t waste everyone’s
time by demonstrating it separately for each one.

5.8.2 Missing values in pairwise calculations

I mentioned earlier that the cor() function is a special case. It doesn’t have an na.rm argument,
because the story becomes a lot more complicated when more than one variable is involved. What it
does have is an argument called use which does roughly the same thing, but you need to think little
more carefully about what you want this time. To illustrate the issues, let’s open up a data set that has
missing values, parenthood2.Rdata. This file contains the same data as the original parenthood data,
but with some values deleted. It contains a single data frame, parenthood2:

> load( "parenthood2.Rdata" )

> print( parenthood2 )

dan.sleep baby.sleep dan.grump day

1 7.59 NA 56 1

2 7.91 11.66 60 2

3 5.14 7.92 82 3

4 7.71 9.61 55 4
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5 6.68 9.75 NA 5

6 5.99 5.04 72 6

BLAH BLAH BLAH

If I calculate my descriptive statistics using the describe() function

> describe( parenthood2 )

var n mean sd median trimmed mad min max BLAH

dan.sleep 1 91 6.98 1.02 7.03 7.02 1.13 4.84 9.00 BLAH

baby.sleep 2 89 8.11 2.05 8.20 8.13 2.28 3.25 12.07 BLAH

dan.grump 3 92 63.15 9.85 61.00 62.66 10.38 41.00 89.00 BLAH

day 4 100 50.50 29.01 50.50 50.50 37.06 1.00 100.00 BLAH

we can see from the n column that there are 9 missing values for dan.sleep, 11 missing values for
baby.sleep and 8 missing values for dan.grump.22 Suppose what I would like is a correlation matrix. And
let’s also suppose that I don’t bother to tell R how to handle those missing values. Here’s what happens:

> cor( parenthood2 )

dan.sleep baby.sleep dan.grump day

dan.sleep 1 NA NA NA

baby.sleep NA 1 NA NA

dan.grump NA NA 1 NA

day NA NA NA 1

Annoying, but it kind of makes sense. If I don’t know what some of the values of dan.sleep and baby.sleep

actually are, then I can’t possibly know what the correlation between these two variables is either, since
the formula for the correlation coefficient makes use of every single observation in the data set. Once
again, it makes sense: it’s just not particularly helpful.

To make R behave more sensibly in this situation, you need to specify the use argument to the
cor() function. There are several different values that you can specify for this, but the two that we
care most about in practice tend to be "complete.obs" and "pairwise.complete.obs". If we specify use

= "complete.obs", R will completely ignore all cases (i.e., all rows in our parenthood2 data frame) that
have any missing values at all. So, for instance, if you look back at the extract earlier when I used the
head() function, notice that observation 1 (i.e., day 1) of the parenthood2 data set is missing the value for
baby.sleep, but is otherwise complete? Well, if you choose use = "complete.obs" R will ignore that row
completely: that is, even when it’s trying to calculate the correlation between dan.sleep and dan.grump,
observation 1 will be ignored, because the value of baby.sleep is missing for that observation. Here’s
what we get:

> cor(parenthood2, use = "complete.obs")

dan.sleep baby.sleep dan.grump day

dan.sleep 1.00000000 0.6394985 -0.89951468 0.06132891

baby.sleep 0.63949845 1.0000000 -0.58656066 0.14555814

dan.grump -0.89951468 -0.5865607 1.00000000 -0.06816586

day 0.06132891 0.1455581 -0.06816586 1.00000000

The other possibility that we care about, and the one that tends to get used more often in practice, is
to set use = "pairwise.complete.obs". When we do that, R only looks at the variables that it’s trying to
correlate when determining what to drop. So, for instance, since the only missing value for observation
1 of parenthood2 is for baby.sleep R will only drop observation 1 when baby.sleep is one of the variables
involved: and so R keeps observation 1 when trying to correlate dan.sleep and dan.grump. When we do
it this way, here’s what we get:

22It’s worth noting that, even though we have missing data for each of these variables, the output doesn’t contain any NA

values. This is because, while describe() also has an na.rm argument, the default value for this function is na.rm = TRUE.

- 151 -



> cor(parenthood2, use = "pairwise.complete.obs")

dan.sleep baby.sleep dan.grump day

dan.sleep 1.00000000 0.61472303 -0.903442442 -0.076796665

baby.sleep 0.61472303 1.00000000 -0.567802669 0.058309485

dan.grump -0.90344244 -0.56780267 1.000000000 0.005833399

day -0.07679667 0.05830949 0.005833399 1.000000000

Similar, but not quite the same. It’s also worth noting that the correlate() function (in the lsr package)
automatically uses the “pairwise complete” method:

> correlate(parenthood2)

CORRELATIONS

============

- correlation type: pearson

- correlations shown only when both variables are numeric

dan.sleep baby.sleep dan.grump day

dan.sleep . 0.615 -0.903 -0.077

baby.sleep 0.615 . -0.568 0.058

dan.grump -0.903 -0.568 . 0.006

day -0.077 0.058 0.006 .

The two approaches have different strengths and weaknesses. The “pairwise complete” approach has
the advantage that it keeps more observations, so you’re making use of more of your data and (as we’ll
discuss in tedious detail in Chapter 10) and it improves the reliability of your estimated correlation.
On the other hand, it means that every correlation in your correlation matrix is being computed from
a slightly different set of observations, which can be awkward when you want to compare the different
correlations that you’ve got.

So which method should you use? It depends a lot on why you think your values are missing, and
probably depends a little on how paranoid you are. For instance, if you think that the missing values
were “chosen” completely randomly23 then you’ll probably want to use the pairwise method. If you think
that missing data are a cue to thinking that the whole observation might be rubbish (e.g., someone just
selecting arbitrary responses in your questionnaire), but that there’s no pattern to which observations are
“rubbish” then it’s probably safer to keep only those observations that are complete. If you think there’s
something systematic going on, in that some observations are more likely to be missing than others, then
you have a much trickier problem to solve, and one that is beyond the scope of this book.

5.9

Summary

• Measures of central tendency: mean, median and mode. (Section 5.1)

• Measures of variability: range, standard deviation, interquartile reange (Section 5.2)

• Getting summaries of variables in R (Section 5.4 and 5.5)

• Standard scores (Section 5.6)

23The technical term here is “missing completely at random” (often written MCAR for short). Makes sense, I suppose,
but it does sound ungrammatical to me.
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• Correlations and rank order correlations (Section 5.7)

• Basics of handling missing data (Section 5.8)
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6. Drawing graphs

Visualising data is one of the most important tasks facing the data analyst. It’s important for two distinct
but closely related reasons. Firstly, there’s the matter of drawing “presentation graphics”: displaying
your data in a clean, visually appealing fashion makes it easier for your reader to understand what you’re
trying to tell them. Equally important, perhaps even more important, is the fact that drawing graphs
helps you to understand the data. To that end, it’s important to draw “exploratory graphics” that help
you learn about the data as you go about analysing it. These points might seem pretty obvious, but I
cannot count the number of times I’ve seen people forget them.

To give a sense of the importance of this chapter, I want to start with a classic illustration of just how
powerful a good graph can be. To that end, Figure 6.1 shows a redrawing of one of the most famous data
visualisations of all time: John Snow’s 1854 map of cholera deaths. The map is elegant in its simplicity.
In the background we have a street map, which helps orient the viewer. Over the top, we see a large
number of small dots, each one representing the location of a cholera case. The larger symbols show
the location of water pumps, labelled by name. Even the most casual inspection of the graph makes
it very clear that the source of the outbreak is almost certainly the Broad Street pump. Upon viewing
this graph, Dr Snow arranged to have the handle removed from the pump, ending the outbreak that had
killed over 500 people. Such is the power of a good data visualisation.

The goals in this chapter are twofold: firstly, to discuss several fairly standard graphs that we use
a lot when analysing and presenting data, and secondly, to show you how to create these graphs in R.
The graphs themselves tend to be pretty straightforward, so in that respect this chapter is pretty simple.
Where people usually struggle is learning how to produce graphs, and especially, learning how to produce
good graphs.1 Fortunately, learning how to draw graphs in R is reasonably simple, as long as you’re not
too picky about what your graph looks like. What I mean when I say this is that R has a lot of very
good graphing functions, and most of the time you can produce a clean, high-quality graphic without
having to learn very much about the low-level details of how R handles graphics. Unfortunately, on those
occasions when you do want to do something non-standard, or if you need to make highly specific changes
to the figure, you actually do need to learn a fair bit about the these details; and those details are both
complicated and boring. With that in mind, the structure of this chapter is as follows: I’ll start out by
giving you a very quick overview of how graphics work in R. I’ll then discuss several different kinds of
graph and how to draw them, as well as showing the basics of how to customise these plots. I’ll then
talk in more detail about R graphics, discussing some of those complicated and boring issues. In a future
version of this book, I intend to finish this chapter off by talking about what makes a good or a bad
graph, but I haven’t yet had the time to write that section.

1I should add that this isn’t unique to R. Like everything in R there’s a pretty steep learning curve to learning how to
draw graphs, and like always there’s a massive payoff at the end in terms of the quality of what you can produce. But to
be honest, I’ve seen the same problems show up regardless of what system people use. I suspect that the hardest thing to
do is to force yourself to take the time to think deeply about what your graphs are doing. I say that in full knowledge that
only about half of my graphs turn out as well as they ought to. Understanding what makes a good graph is easy: actually
designing a good graph is hard.
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Figure 6.1: A stylised redrawing of John Snow’s original cholera map. Each small dot represents the
location of a cholera case, and each large circle shows the location of a well. As the plot makes clear,
the cholera outbreak is centred very closely on the Broad St pump. This image uses the data from the
HistData package (Friendly, 2011), and was drawn using minor alterations to the commands provided in
the help files. Note that Snow’s original hand drawn map used different symbols and labels, but you get
the idea.
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6.1

An overview of R graphics

Reduced to its simplest form, you can think of an R graphic as being much like a painting. You start
out with an empty canvas. Every time you use a graphics function, it paints some new things onto
your canvas. Later on, you can paint more things over the top if you want; but just like painting, you
can’t “undo” your strokes. If you make a mistake, you have to throw away your painting and start over.
Fortunately, this is way more easy to do when using R than it is when painting a picture in real life: you
delete the plot and then type a new set of commands.2 This way of thinking about drawing graphs is
referred to as the painter’s model. So far, this probably doesn’t sound particularly complicated, and
for the vast majority of graphs you’ll want to draw it’s exactly as simple as it sounds. Much like painting
in real life, the headaches usually start when we dig into details. To see why, I’ll expand this “painting
metaphor” a bit further just to show you the basics of what’s going on under the hood, but before I do
I want to stress that you really don’t need to understand all these complexities in order to draw graphs.

2Or, since you can always use the up and down keys to scroll through your recent command history, you can just pull
up your most recent commands and edit them to fix your mistake. It becomes even easier once you start using scripts
(Section 8.1), since all you have to do is edit your script and then run it again.
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I’d been using R for years before I even realised that most of these issues existed! However, I don’t want
you to go through the same pain I went through every time I inadvertently discovered one of these things,
so here’s a quick overview.

Firstly, if you want to paint a picture, you need to paint it on something. In real life, you can paint
on lots of different things. Painting onto canvas isn’t the same as painting onto paper, and neither one
is the same as painting on a wall. In R, the thing that you paint your graphic onto is called a device.
For most applications that we’ll look at in this book, this “device” will be a window on your computer.
If you’re using Windows as your operating system, then the name for this device is windows; on a Mac
it’s called quartz because that’s the name of the software that the Mac OS uses to draw pretty pictures;
and on Linux/Unix, you’re probably using X11. On the other hand, if you’re using Rstudio (regardless of
which operating system you’re on), there’s a separate device called RStudioGD that forces R to paint inside
the “plots” panel in Rstudio. However, from the computers perspective there’s nothing terribly special
about drawing pictures on screen: and so R is quite happy to paint pictures directly into a file. R can
paint several different types of image files: jpeg, png, pdf, postscript, tiff and bmp files are all among the
options that you have available to you. For the most part, these different devices all behave the same way,
so you don’t really need to know much about the differences between them when learning how to draw
pictures. But, just like real life painting, sometimes the specifics do matter. Unless stated otherwise, you
can assume that I’m drawing a picture on screen, using the appropriate device (i.e., windows, quartz, X11
or RStudioGD). One the rare occasions where these behave differently from one another, I’ll try to point
it out in the text.

Secondly, when you paint a picture you need to paint it with something. Maybe you want to do an
oil painting, but maybe you want to use watercolour. And, generally speaking, you pretty much have
to pick one or the other. The analog to this in R is a “graphics system”. A graphics system defines a
collection of very low-level graphics commands about what to draw and where to draw it. Something
that surprises most new R users is the discovery that R actually has two completely independent graphics
systems, known as traditional graphics (in the graphics package) and grid graphics (in the grid

package).3 Not surprisingly, the traditional graphics system is the older of the two: in fact, it’s actually
older than R since it has it’s origins in S, the system from which R is descended. Grid graphics are newer,
and in some respects more powerful, so may of the more recent, fancier graphical tools in R make use
of grid graphics. However, grid graphics are somewhat more complicated beasts, so most people start
out by learning the traditional graphics system. Nevertheless, as long as you don’t want to use any
low-level commands yourself, then you don’t really need to care about whether you’re using traditional
graphics or grid graphics. However, the moment you do want to tweak your figure by using some low-level
commands you do need to care. Because these two different systems are pretty much incompatible with
each other, there’s a pretty big divide in R graphics universe. Unless stated otherwise, you can assume
that everything I’m saying pertains to traditional graphics.

Thirdly, a painting is usually done in a particular style. Maybe it’s a still life, maybe it’s an impres-
sionist piece, or maybe you’re trying to annoy me by pretending that cubism is a legitimate artistic style.
Regardless, each artistic style imposes some overarching aesthetic and perhaps even constraints on what
can (or should) be painted using that style. In the same vein, R has quite a number of different packages,
each of which provide a collection of high-level graphics commands. A single high-level command is
capable of drawing an entire graph, complete with a range of customisation options. Most but not all of
the high-level commands that I’ll talk about in this book come from the graphics package itself, and so
belong to the world of traditional graphics. These commands all tend to share a common visual style,
although there are a few graphics that I’ll use that come from other packages that differ in style some-
what. On the other side of the great divide, the grid universe relies heavily on two different packages –
lattice and ggplots2 – each of which provides a quite different visual style. As you’ve probably guessed,

3Of course, even that is a slightly misleading description, since some R graphics tools make use of external graphical
rendering systems like OpenGL (e.g., the rgl package). I absolutely will not be talking about OpenGL or the like in this
book, but as it happens there is one graph in this book that relies on them: Figure 15.4.
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Figure 6.2: Our first plot
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there’s a whole separate bunch of functions that you’d need to learn if you want to use lattice graphics
or make use of the ggplots2. However, for the purposes of this book I’ll restrict myself to talking about
the basic graphics tools.

At this point, I think we’ve covered more than enough background material. The point that I’m
trying to make by providing this discussion isn’t to scare you with all these horrible details, but rather to
try to convey to you the fact that R doesn’t really provide a single coherent graphics system. Instead, R
itself provides a platform, and different people have built different graphical tools using that platform. As
a consequence of this fact, there’s two different universes of graphics, and a great multitude of packages
that live in them. At this stage you don’t need to understand these complexities, but it’s useful to know
that they’re there. But for now, I think we can be happy with a simpler view of things: we’ll draw
pictures on screen using the traditional graphics system, and as much as possible we’ll stick to high level
commands only.

So let’s start painting.

6.2

An introduction to plotting

Before I discuss any specialised graphics, let’s start by drawing a few very simple graphs just to get a
feel for what it’s like to draw pictures using R. To that end, let’s create a small vector Fibonacci that
contains a few numbers we’d like R to draw for us. Then, we’ll ask R to plot() those numbers:

> Fibonacci <- c( 1,1,2,3,5,8,13 )

> plot( Fibonacci )
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The result is Figure 6.2. As you can see, what R has done is plot the values stored in the Fibonacci

variable on the vertical axis (y-axis) and the corresponding index on the horizontal axis (x-axis). In
other words, since the 4th element of the vector has a value of 3, we get a dot plotted at the location
(4,3). That’s pretty straightforward, and the image in Figure 6.2 is probably pretty close to what you
would have had in mind when I suggested that we plot the Fibonacci data. However, there’s quite a lot of
customisation options available to you, so we should probably spend a bit of time looking at some of those
options. So, be warned: this ends up being a fairly long section, because there’s so many possibilities
open to you. Don’t let it overwhelm you though... while all of the options discussed here are handy to
know about, you can get by just fine only knowing a few of them. The only reason I’ve included all this
stuff right at the beginning is that it ends up making the rest of the chapter a lot more readable!

6.2.1 A tedious digression

Before we go into any discussion of customising plots, we need a little more background. The im-
portant thing to note when using the plot() function, is that it’s another example of a generic function
(Section 4.11), much like print() and summary(), and so its behaviour changes depending on what kind of
input you give it. However, the plot() function is somewhat fancier than the other two, and its behaviour
depends on two arguments, x (the first input, which is required) and y (which is optional). This makes
it (a) extremely powerful once you get the hang of it, and (b) hilariously unpredictable, when you’re not
sure what you’re doing. As much as possible, I’ll try to make clear what type of inputs produce what
kinds of outputs. For now, however, it’s enough to note that I’m only doing very basic plotting, and as
a consequence all of the work is being done by the plot.default() function.

What kinds of customisations might we be interested in? If you look at the help documentation for
the default plotting method (i.e., type ?plot.default or help("plot.default")) you’ll see a very long list
of arguments that you can specify to customise your plot. I’ll talk about several of them in a moment,
but first I want to point out something that might seem quite wacky. When you look at all the different
options that the help file talks about, you’ll notice that some of the options that it refers to are “proper”
arguments to the plot.default() function, but it also goes on to mention a bunch of things that look
like they’re supposed to be arguments, but they’re not listed in the “Usage” section of the file, and the
documentation calls them graphical parameters instead. Even so, it’s usually possible to treat them
as if they were arguments of the plotting function. Very odd. In order to stop my readers trying to find
a brick and look up my home address, I’d better explain what’s going on; or at least give the basic gist
behind it.

What exactly is a graphical parameter? Basically, the idea is that there are some characteristics
of a plot which are pretty universal: for instance, regardless of what kind of graph you’re drawing, you
probably need to specify what colour to use for the plot, right? So you’d expect there to be something like
a col argument to every single graphics function in R? Well, sort of. In order to avoid having hundreds of
arguments for every single function, what R does is refer to a bunch of these “graphical parameters” which
are pretty general purpose. Graphical parameters can be changed directly by using the low-level par()
function, which I discuss briefly in Section 6.7.1 though not in a lot of detail. If you look at the help files
for graphical parameters (i.e., type ?par) you’ll see that there’s lots of them. Fortunately, (a) the default
settings are generally pretty good so you can ignore the majority of the parameters, and (b) as you’ll see
as we go through this chapter, you very rarely need to use par() directly, because you can “pretend” that
graphical parameters are just additional arguments to your high-level function (e.g. plot.default()). In
short... yes, R does have these wacky “graphical parameters” which can be quite confusing. But in most
basic uses of the plotting functions, you can act as if they were just undocumented additional arguments
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Figure 6.3: How to add your own title, subtitle, x-axis label and y-axis label to the plot. I’ve drawn this
figure a bit larger than the last one so that everything fits. Generally, you don’t want your titles and
subtitle to extend beyond the range of the actual plot. The results aren’t pretty when that happens.
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to your function.

6.2.2 Customising the title and the axis labels

One of the first things that you’ll find yourself wanting to do when customising your plot is to label
it better. You might want to specify more appropriate axis labels, add a title or add a subtitle. The
arguments that you need to specify to make this happen are:

• main. A character string containing the title.

• sub. A character string containing the subtitle.

• xlab. A character string containing the x-axis label.

• ylab. A character string containing the y-axis label.

These aren’t graphical parameters, they’re arguments to the high-level function. However, because the
high-level functions all rely on the same low-level function to do the drawing4 the names of these arguments
are identical for pretty much every high-level function I’ve come across. Let’s have a look at what happens
when we make use of all these arguments. Here’s the command...

4The low-level function that does this is called title() in case you ever need to know, and you can type ?title to find
out a bit more detail about what these arguments do.
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> plot( x = Fibonacci,

+ main = "You specify title using the ’main’ argument",

+ sub = "The subtitle appears here! (Use the ’sub’ argument for this)",

+ xlab = "The x-axis label is ’xlab’",

+ ylab = "The y-axis label is ’ylab’"

+ )

The picture that this draws is shown in Figure 6.3. It’s more or less as you’d expect. The plot itself is
identical to the one we drew in Figure 6.2, except for the fact that we’ve changed the axis labels, and
added a title and a subtitle. Even so, there’s a couple of interesting features worth calling your attention
to. Firstly, notice that the subtitle is drawn below the plot, which I personally find annoying; as a
consequence I almost never use subtitles. You may have a different opinion, of course, but the important
thing is that you remember where the subtitle actually goes. Secondly, notice that R has decided to
use boldface text and a larger font size for the title. This is one of my most hated default settings in R

graphics, since I feel that it draws too much attention to the title. Generally, while I do want my reader
to look at the title, I find that the R defaults are a bit overpowering, so I often like to change the settings.
To that end, there are a bunch of graphical parameters that you can use to customise the font style:

• Font styles: font.main, font.sub, font.lab, font.axis. These four parameters control the font style
used for the plot title (font.main), the subtitle (font.sub), the axis labels (font.lab: note that you
can’t specify separate styles for the x-axis and y-axis without using low level commands), and the
numbers next to the tick marks on the axis (font.axis). Somewhat irritatingly, these arguments
are numbers instead of meaningful names: a value of 1 corresponds to plain text, 2 means boldface,
3 means italic and 4 means bold italic.

• Font colours: col.main, col.sub, col.lab, col.axis. These parameters do pretty much what the
name says: each one specifies a colour in which to type each of the different bits of text. Conve-
niently, R has a very large number of named colours (type colours() to see a list of over 650 colour
names that R knows), so you can use the English language name of the colour to select it.5 Thus,
the parameter value here string like "red", "gray25" or "springgreen4" (yes, R really does recognise
four different shades of “spring green”).

• Font size: cex.main, cex.sub, cex.lab, cex.axis. Font size is handled in a slightly curious way in R.
The “cex” part here is short for “character expansion”, and it’s essentially a magnification value.
By default, all of these are set to a value of 1, except for the font title: cex.main has a default
magnification of 1.2, which is why the title font is 20% bigger than the others.

• Font family: family. This argument specifies a font family to use: the simplest way to use it is to
set it to "sans", "serif", or "mono", corresponding to a san serif font, a serif font, or a monospaced
font. If you want to, you can give the name of a specific font, but keep in mind that different
operating systems use different fonts, so it’s probably safest to keep it simple. Better yet, unless
you have some deep objections to the R defaults, just ignore this parameter entirely. That’s what
I usually do.

To give you a sense of how you can use these parameters to customise your titles, the following command
can be used to draw Figure 6.4:

> plot( x = Fibonacci, # the data to plot

+ main = "The first 7 Fibonacci numbers", # the title

+ xlab = "Position in the sequence", # x-axis label

+ ylab = "The Fibonacci number", # y-axis label

5On the off chance that this isn’t enough freedom for you, you can select a colour directly as a “red, green, blue”
specification using the rgb() function, or as a “hue, saturation, value” specification using the hsv() function.
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Figure 6.4: How to customise the appearance of the titles and labels.
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+ font.main = 1, # plain text for title

+ cex.main = 1, # normal size for title

+ font.axis = 2, # bold text for numbering

+ col.lab = "gray50" # grey colour for labels

+ )

Although this command is quite long, it’s not complicated: all it does is override a bunch of the default
parameter values. The only difficult aspect to this is that you have to remember what each of these
parameters is called, and what all the different values are. And in practice I never remember: I have to
look up the help documentation every time, or else look it up in this book.

6.2.3 Changing the plot type

Adding and customising the titles associated with the plot is one way in which you can play around
with what your picture looks like. Another thing that you’ll want to do is customise the appearance of
the actual plot! To start with, let’s look at the single most important options that the plot() function
(or, recalling that we’re dealing with a generic function, in this case the plot.default() function, since
that’s the one doing all the work) provides for you to use, which is the type argument. The type argument
specifies the visual style of the plot. The possible values for this are:

• type = "p". Draw the points only.

• type = "l". Draw a line through the points.

• type = "o". Draw the line over the top of the points.

• type = "b". Draw both points and lines, but don’t overplot.

• type = "h". Draw “histogram-like” vertical bars.
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Figure 6.5: Changing the type of the plot.
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• type = "s". Draw a staircase, going horizontally then vertically.

• type = "S". Draw a Staircase, going vertically then horizontally.

• type = "c". Draw only the connecting lines from the “b” version.

• type = "n". Draw nothing. (Apparently this is useful sometimes?)

The simplest way to illustrate what each of these really looks like is just to draw them. To that end,
Figure 6.5 shows the same Fibonacci data, drawn using six different types of plot. As you can see, by
altering the type argument you can get a qualitatively different appearance to your plot. In other words,
as far as R is concerned, the only difference between a scatterplot (like the ones we drew in Section 5.7)
and a line plot is that you draw a scatterplot by setting type = "p" and you draw a line plot by setting
type = "l". However, that doesn’t imply that you should think of them as begin equivalent to each other.
As you can see by looking at Figure 6.5, a line plot implies that there is some notion of continuity from
one point to the next, whereas a scatterplot does not.
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Figure 6.6: Changing the pch parameter (panel a) or the lty parameter (panel b).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2.4 Changing other features of the plot

In Section 6.2.2 we talked about a group of graphical parameters that are related to the formatting
of titles, axis labels etc. The second group of parameters I want to discuss are those related to the
formatting of the plot itself:

• Colour of the plot: col. As we saw with the previous colour-related parameters, the simplest way to
specify this parameter is using a character string: e.g., col = "blue". It’s a pretty straightforward
parameter to specify: the only real subtlety is that every high-level function tends to draw a
different “thing” as it’s output, and so this parameter gets interpreted a little differently by different
functions. However, for the plot.default() function it’s pretty simple: the col argument refers to
the colour of the points and/or lines that get drawn!

• Character used to plot points: pch. The plot character parameter is a number, usually between 1
and 25. What it does is tell R what symbol to use to draw the points that it plots. The simplest way
to illustrate what the different values do is with a picture. Figure 6.6a shows the first 25 plotting
characters. The default plotting character is a hollow circle (i.e., pch = 1).

• Plot size: cex. This parameter describes a character expansion factor (i.e., magnification) for the
plotted characters. By default cex=1, but if you want bigger symbols in your graph you should
specify a larger value.

• Line type: lty. The line type parameter describes the kind of line that R draws. It has seven values
which you can specify using a number between 0 and 7, or using a meaningful character string:
"blank", "solid", "dashed", "dotted", "dotdash", "longdash", or "twodash". Note that the “blank”
version (value 0) just means that R doesn’t draw the lines at all. The other six versions are shown
in Figure 6.6b.
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Figure 6.7: Customising various aspects to the plot itself.
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• Line width: lwd. The last graphical parameter in this category that I want to mention is the line
width parameter, which is just a number specifying the width of the line. The default value is 1.
Not surprisingly, larger values produce thicker lines and smaller values produce thinner lines. Try
playing around with different values of lwd to see what happens.

To illustrate what you can do by altering these parameters, let’s try the following command:

> plot( x = Fibonacci, # the data set

+ type = "b", # plot both points and lines

+ col = "blue", # change the plot colour to blue

+ pch = 19, # plotting character is a solid circle

+ cex = 5, # plot it at 5x the usual size

+ lty = 2, # change line type to dashed

+ lwd = 4 # change line width to 4x the usual

+ )

The output is shown in Figure 6.7.

6.2.5 Changing the appearance of the axes

There are several other possibilities worth discussing. Ignoring graphical parameters for the moment,
there’s a few other arguments to the plot.default() function that you might want to use. As before,
many of these are standard arguments that are used by a lot of high level graphics functions:

• Changing the axis scales: xlim, ylim. Generally R does a pretty good job of figuring out where
to set the edges of the plot. However, you can override its choices by setting the xlim and ylim
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arguments. For instance, if I decide I want the vertical scale of the plot to run from 0 to 100, then
I’d set ylim = c(0, 100).

• Suppress labelling: ann. This is a logical-valued argument that you can use if you don’t want R to
include any text for a title, subtitle or axis label. To do so, set ann = FALSE. This will stop R from
including any text that would normally appear in those places. Note that this will override any of
your manual titles. For example, if you try to add a title using the main argument, but you also
specify ann = FALSE, no title will appear.

• Suppress axis drawing: axes. Again, this is a logical valued argument. Suppose you don’t want R
to draw any axes at all. To suppress the axes, all you have to do is add axes = FALSE. This will
remove the axes and the numbering, but not the axis labels (i.e. the xlab and ylab text). Note
that you can get finer grain control over this by specifying the xaxt and yaxt graphical parameters
instead (see below).

• Include a framing box: frame.plot. Suppose you’ve removed the axes by setting axes = FALSE, but
you still want to have a simple box drawn around the plot; that is, you only wanted to get rid of
the numbering and the tick marks, but you want to keep the box. To do that, you set frame.plot

= TRUE.

Note that this list isn’t exhaustive. There are a few other arguments to the plot.default function that
you can play with if you want to, but those are the ones you are probably most likely to want to use.
As always, however, if these aren’t enough options for you, there’s also a number of other graphical
parameters that you might want to play with as well. That’s the focus of the next section. In the
meantime, here’s a command that makes use of all these different options:

> plot( x = Fibonacci, # the data

+ xlim = c(0, 15), # expand the x-scale

+ ylim = c(0, 15), # expand the y-scale

+ ann = FALSE, # delete all annotations

+ axes = FALSE, # delete the axes

+ frame.plot = TRUE # but include a framing box

+ )

The output is shown in Figure 6.8, and it’s pretty much exactly as you’d expect. The axis scales on both
the horizontal and vertical dimensions have been expanded, the axes have been suppressed as have the
annotations, but I’ve kept a box around the plot.

Before moving on, I should point out that there are several graphical parameters relating to the axes,
the box, and the general appearance of the plot which allow finer grain control over the appearance of
the axes and the annotations.

• Suppressing the axes individually: xaxt, yaxt. These graphical parameters are basically just fancier
versions of the axes argument we discussed earlier. If you want to stop R from drawing the vertical
axis but you’d like it to keep the horizontal axis, set yaxt = "n". I trust that you can figure out
how to keep the vertical axis and suppress the horizontal one!

• Box type: bty. In the same way that xaxt, yaxt are just fancy versions of axes, the box type
parameter is really just a fancier version of the frame.plot argument, allowing you to specify
exactly which out of the four borders you want to keep. The way we specify this parameter is a bit
stupid, in my opinion: the possible values are "o" (the default), "l", "7", "c", "u", or "]", each of
which will draw only those edges that the corresponding character suggests. That is, the letter "c"
has a top, a bottom and a left, but is blank on the right hand side, whereas "7" has a top and a
right, but is blank on the left and the bottom. Alternatively a value of "n" means that no box will
be drawn.
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Figure 6.8: Altering the scale and appearance of the plot axes.
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Figure 6.9: Other ways to customise the axes.
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• Orientation of the axis labels las. I presume that the name of this parameter is an acronym of
label style or something along those lines; but what it actually does is govern the orientation of the
text used to label the individual tick marks (i.e., the numbering, not the xlab and ylab axis labels).
There are four possible values for las: A value of 0 means that the labels of both axes are printed
parallel to the axis itself (the default). A value of 1 means that the text is always horizontal. A
value of 2 means that the labelling text is printed at right angles to the axis. Finally, a value of 3
means that the text is always vertical.

Again, these aren’t the only possibilities. There are a few other graphical parameters that I haven’t
mentioned that you could use to customise the appearance of the axes,6 but that’s probably enough (or
more than enough) for now. To give a sense of how you could use these parameters, let’s try the following
command:

> plot( x = Fibonacci, # the data

+ xaxt = "n", # don’t draw the x-axis

+ bty = "]", # keep bottom, right and top of box only

+ las = 1 # rotate the text

+ )

The output is shown in Figure 6.9. As you can see, this isn’t a very useful plot at all. However, it does
illustrate the graphical parameters we’re talking about, so I suppose it serves its purpose.

6.2.6 Don’t panic

At this point, a lot of readers will be probably be thinking something along the lines of, “if there’s
this much detail just for drawing a simple plot, how horrible is it going to get when we start looking at
more complicated things?” Perhaps, contrary to my earlier pleas for mercy, you’ve found a brick to hurl
and are right now leafing through an Adelaide phone book trying to find my address. Well, fear not! And
please, put the brick down. In a lot of ways, we’ve gone through the hardest part: we’ve already covered
vast majority of the plot customisations that you might want to do. As you’ll see, each of the other high
level plotting commands we’ll talk about will only have a smallish number of additional options. Better
yet, even though I’ve told you about a billion different ways of tweaking your plot, you don’t usually
need them. So in practice, now that you’ve read over it once to get the gist, the majority of the content
of this section is stuff you can safely forget: just remember to come back to this section later on when
you want to tweak your plot.

6.3

Histograms

Now that we’ve tamed (or possibly fled from) the beast that is R graphical parameters, let’s talk more
seriously about some real life graphics that you’ll want to draw. We begin with the humble histogram.
Histograms are one of the simplest and most useful ways of visualising data. They make most sense when
you have an interval or ratio scale (e.g., the afl.margins data from Chapter 5) and what you want to do
is get an overall impression of the data. Most of you probably know how histograms work, since they’re
so widely used, but for the sake of completeness I’ll describe them. All you do is divide up the possible
values into bins, and then count the number of observations that fall within each bin. This count is
referred to as the frequency of the bin, and is displayed as a bar: in the AFL winning margins data, there
are 33 games in which the winning margin was less than 10 points, and it is this fact that is represented

6Also, there’s a low level function called axis() that allows a lot more control over the appearance of the axes.
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by the height of the leftmost bar in Figure 6.10a. Drawing this histogram in R is pretty straightforward.
The function you need to use is called hist(), and it has pretty reasonable default settings. In fact,
Figure 6.10a is exactly what you get if you just type this:

> hist( afl.margins ) # panel a

Although this image would need a lot of cleaning up in order to make a good presentation graphic (i.e.,
one you’d include in a report), it nevertheless does a pretty good job of describing the data. In fact, the
big strength of a histogram is that (properly used) it does show the entire spread of the data, so you
can get a pretty good sense about what it looks like. The downside to histograms is that they aren’t
very compact: unlike some of the other plots I’ll talk about it’s hard to cram 20-30 histograms into a
single image without overwhelming the viewer. And of course, if your data are nominal scale (e.g., the
afl.finalists data) then histograms are useless.

The main subtlety that you need to be aware of when drawing histograms is determining where
the breaks that separate bins should be located, and (relatedly) how many breaks there should be. In
Figure 6.10a, you can see that R has made pretty sensible choices all by itself: the breaks are located at
0, 10, 20, . . . 120, which is exactly what I would have done had I been forced to make a choice myself.
On the other hand, consider the two histograms in Figure 6.10b and 6.10c, which I produced using the
following two commands:

> hist( x = afl.margins, breaks = 3 ) # panel b

> hist( x = afl.margins, breaks = 0:116 ) # panel c

In Figure 6.10c, the bins are only 1 point wide. As a result, although the plot is very informative (it
displays the entire data set with no loss of information at all!) the plot is very hard to interpret, and feels
quite cluttered. On the other hand, the plot in Figure 6.10b has a bin width of 50 points, and has the
opposite problem: it’s very easy to “read” this plot, but it doesn’t convey a lot of information. One gets
the sense that this histogram is hiding too much. In short, the way in which you specify the breaks has a
big effect on what the histogram looks like, so it’s important to make sure you choose the breaks sensibly.
In general R does a pretty good job of selecting the breaks on its own, since it makes use of some quite
clever tricks that statisticians have devised for automatically selecting the right bins for a histogram, but
nevertheless it’s usually a good idea to play around with the breaks a bit to see what happens.

There is one fairly important thing to add regarding how the breaks argument works. There are two
different ways you can specify the breaks. You can either specify how many breaks you want (which is
what I did for panel b when I typed breaks = 3) and let R figure out where they should go, or you can
provide a vector that tells R exactly where the breaks should be placed (which is what I did for panel c
when I typed breaks = 0:116). The behaviour of the hist() function is slightly different depending on
which version you use. If all you do is tell it how many breaks you want, R treats it as a “suggestion”
not as a demand. It assumes you want “approximately 3” breaks, but if it doesn’t think that this would
look very pretty on screen, it picks a different (but similar) number. It does this for a sensible reason –
it tries to make sure that the breaks are located at sensible values (like 10) rather than stupid ones (like
7.224414). And most of the time R is right: usually, when a human researcher says “give me 3 breaks”, he
or she really does mean “give me approximately 3 breaks, and don’t put them in stupid places”. However,
sometimes R is dead wrong. Sometimes you really do mean “exactly 3 breaks”, and you know precisely
where you want them to go. So you need to invoke “real person privilege”, and order R to do what it’s
bloody well told. In order to do that, you have to input the full vector that tells R exactly where you
want the breaks. If you do that, R will go back to behaving like the nice little obedient calculator that
it’s supposed to be.
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Figure 6.10: Four different histograms of the afl.margins variable: (a) the default histogram that R

produces, (b) a histogram with too few bins, (c) a histogram with too many bins, and (d) a “prettier”
histogram making use of various optional arguments to hist(). Overall I think that panel d makes a
pretty good picture, though if I were to start being picky I wouldn’t have the title in boldface text (the
eye is drawn to the title and not to the picture), and I’d try to make the labels above the bars a little
less prominent as well.
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6.3.1 Visual style of your histogram

Okay, so at this point we can draw a basic histogram, and we can alter the number and even the
location of the breaks. However, the visual style of the histograms shown in Figure 6.10a-c could stand
to be improved. We can fix this by making use of some of the other arguments to the hist() function.
Most of the things you might want to try doing have already been covered in Section 6.2, but there’s a
few new things:

• Shading lines: density, angle. You can add diagonal lines to shade the bars: the density value is
a number indicating how many lines per inch R should draw (the default value of NULL means no
lines), and the angle is a number indicating how many degrees from horizontal the lines should be
drawn at (default is angle = 45 degrees).

• Specifics regarding colours: col, border. You can also change the colours: in this instance the col

parameter sets the colour of the shading (either the shading lines if there are any, or else the colour
of the interior of the bars if there are not), and the border argument sets the colour of the edges of
the bars.

• Labelling the bars: labels. You can also attach labels to each of the bars using the labels argument.
The simplest way to do this is to set labels = TRUE, in which case R will add a number just above
each bar, that number being the exact number of observations in the bin. Alternatively, you
can choose the labels yourself, by inputting a vector of strings, e.g., labels = c("label 1","label

2","etc")

Not surprisingly, this doesn’t exhaust the possibilities. If you type help("hist") or ?hist and have a look
at the help documentation for histograms, you’ll see a few more options. A histogram that makes use
of the histogram-specific customisations as well as several of the options we discussed in Section 6.2 is
shown in Figure 6.10d. The R command that I used to draw it is this:

> hist( x = afl.margins,

+ main = "2010 AFL margins", # title of the plot

+ xlab = "Margin", # set the x-axis label

+ density = 10, # draw shading lines: 10 per inch

+ angle = 40, # set the angle of the shading lines is 40 degrees

+ border = "gray20", # set the colour of the borders of the bars

+ col = "gray80", # set the colour of the shading lines

+ labels = TRUE, # add frequency labels to each bar

+ ylim = c(0,40) # change the scale of the y-axis

+ )

Overall, this is a much nicer histogram than the default ones.

6.4

Stem and leaf plots

Histograms are one of the most widely used methods for displaying the observed values for a variable.
They’re simple, pretty, and very informative. However, they do take a little bit of effort to draw.
Sometimes it can be quite useful to make use of simpler, if less visually appealing, options. One such
alternative is the stem and leaf plot. To a first approximation you can think of a stem and leaf plot
as a kind of text-based histogram. Stem and leaf plots aren’t used as widely these days as they were 30
years ago, since it’s now just as easy to draw a histogram as it is to draw a stem and leaf plot. Not only
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that, they don’t work very well for larger data sets. As a consequence you probably won’t have as much
of a need to use them yourself, though you may run into them in older publications. These days, the
only real world situation where I use them is if I have a small data set with 20-30 data points and I don’t
have a computer handy, because it’s pretty easy to quickly sketch a stem and leaf plot by hand.

With all that as background, lets have a look at stem and leaf plots. The AFL margins data contains
176 observations, which is at the upper end for what you can realistically plot this way. The function in
R for drawing stem and leaf plots is called stem() and if we ask for a stem and leaf plot of the afl.margins

data, here’s what we get:

> stem( afl.margins )

The decimal point is 1 digit(s) to the right of the |

0 | 001111223333333344567788888999999

1 | 0000011122234456666899999

2 | 00011222333445566667788999999

3 | 01223555566666678888899

4 | 012334444477788899

5 | 00002233445556667

6 | 0113455678

7 | 01123556

8 | 122349

9 | 458

10 | 148

11 | 6

The values to the left of the | are called stems and the values to the right are called leaves. If you just
look at the shape that the leaves make, you can see something that looks a lot like a histogram made
out of numbers, just rotated by 90 degrees. But if you know how to read the plot, there’s quite a lot of
additional information here. In fact, it’s also giving you the actual values of all of the observations in
the data set. To illustrate, let’s have a look at the last line in the stem and leaf plot, namely 11 | 6.
Specifically, let’s compare this to the largest values of the afl.margins data set:

> max( afl.margins )

[1] 116

Hm... 11 | 6 versus 116. Obviously the stem and leaf plot is trying to tell us that the largest value in
the data set is 116. Similarly, when we look at the line that reads 10 | 148, the way we interpret it to
note that the stem and leaf plot is telling us that the data set contains observations with values 101, 104
and 108. Finally, when we see something like 5 | 00002233445556667 the four 0s in the the stem and leaf
plot are telling us that there are four observations with value 50.

I won’t talk about them in a lot of detail, but I should point out that some customisation options are
available for stem and leaf plots in R. The two arguments that you can use to do this are:

• scale. Changing the scale of the plot (default value is 1), which is analogous to changing the
number of breaks in a histogram. Reducing the scale causes R to reduce the number of stem values
(i.e., the number of breaks, if this were a histogram) that the plot uses.

• width. The second way that to can customise a stem and leaf plot is to alter the width (default
value is 80). Changing the width alters the maximum number of leaf values that can be displayed
for any given stem.

However, since stem and leaf plots aren’t as important as they used to be, I’ll leave it to the interested
reader to investigate these options. Try the following two commands to see what happens:
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Figure 6.11: A basic boxplot (panel a), plus the same plot with annotations added to explain what aspect
of the data set each part of the boxplot corresponds to (panel b).
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> stem( x = afl.margins, scale = .25 )

> stem( x = afl.margins, width = 20 )

The only other thing to note about stem and leaf plots is the line in which R tells you where the decimal
point is. If our data set had included only the numbers .11, .15, .23, .35 and .59 and we’d drawn a stem
and leaf plot of these data, then R would move the decimal point: the stem values would be 1,2,3,4 and
5, but R would tell you that the decimal point has moved to the left of the | symbol. If you want to see
this in action, try the following command:

> stem( x = afl.margins / 1000 )

The stem and leaf plot itself will look identical to the original one we drew, except for the fact that R

will tell you that the decimal point has moved.

6.5

Boxplots

Another alternative to histograms is a boxplot, sometimes called a “box and whiskers” plot. Like
histograms, they’re most suited to interval or ratio scale data. The idea behind a boxplot is to provide
a simple visual depiction of the median, the interquartile range, and the range of the data. And because
they do so in a fairly compact way, boxplots have become a very popular statistical graphic, especially
during the exploratory stage of data analysis when you’re trying to understand the data yourself. Let’s
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have a look at how they work, again using the afl.margins data as our example. Firstly, let’s actually
calculate these numbers ourselves using the summary() function:7

> summary( afl.margins )

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 12.75 30.50 35.30 50.50 116.00

So how does a boxplot capture these numbers? The easiest way to describe what a boxplot looks like
is just to draw one. The function for doing this in R is (surprise, surprise) boxplot(). As always there’s a
lot of optional arguments that you can specify if you want, but for the most part you can just let R choose
the defaults for you. That said, I’m going to override one of the defaults to start with by specifying the
range option, but for the most part you won’t want to do this (I’ll explain why in a minute). With that
as preamble, let’s try the following command:

> boxplot( x = afl.margins, range = 100 )

What R draws is shown in Figure 6.11a, the most basic boxplot possible. When you look at this plot, this
is how you should interpret it: the thick line in the middle of the box is the median; the box itself spans
the range from the 25th percentile to the 75th percentile; and the “whiskers” cover the full range from
the minimum value to the maximum value. This is summarised in the annotated plot in Figure 6.11b.

In practice, this isn’t quite how boxplots usually work. In most applications, the “whiskers” don’t
cover the full range from minimum to maximum. Instead, they actually go out to the most extreme data
point that doesn’t exceed a certain bound. By default, this value is 1.5 times the interquartile range,
corresponding to a range value of 1.5. Any observation whose value falls outside this range is plotted as a
circle instead of being covered by the whiskers, and is commonly referred to as an outlier. For our AFL
margins data, there is one observation (a game with a margin of 116 points) that falls outside this range.
As a consequence, the upper whisker is pulled back to the next largest observation (a value of 108), and
the observation at 116 is plotted as a circle. This is illustrated in Figure 6.12a. Since the default value
is range = 1.5 we can draw this plot using the simple command

> boxplot( afl.margins )

6.5.1 Visual style of your boxplot

I’ll talk a little more about the relationship between boxplots and outliers in the Section 6.5.2, but
before I do let’s take the time to clean this figure up. Boxplots in R are extremely customisable. In
addition to the usual range of graphical parameters that you can tweak to make the plot look nice,
you can also exercise nearly complete control over every element to the plot. Consider the boxplot in
Figure 6.12b: in this version of the plot, not only have I added labels (xlab, ylab) and removed the
stupid border (frame.plot), I’ve also dimmed all of the graphical elements of the boxplot except the
central bar that plots the median (border) so as to draw more attention to the median rather than the
rest of the boxplot. You’ve seen all these options in previous sections in this chapter, so hopefully those
customisations won’t need any further explanation. However, I’ve done two new things as well: I’ve
deleted the cross-bars at the top and bottom of the whiskers (known as the “staples” of the plot), and
converted the whiskers themselves to solid lines. The arguments that I used to do this are called by the
ridiculous names of staplewex and whisklty,8 and I’ll explain these in a moment. But first, here’s the
actual command I used to draw this figure:

7R being what it is, it’s no great surprise that there’s also a fivenum() function that does much the same thing.
8I realise there’s a kind of logic to the way R names are constructed, but they still sound dumb. When I typed this

sentence, all I could think was that it sounded like the name of a kids movie if it had been written by Lewis Carroll: “The
frabjous gambolles of Staplewex and Whisklty” or something along those lines.
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Figure 6.12: By default, R will only extent the whiskers a distance of 1.5 times the interquartile range,
and will plot any points that fall outside that range separately (panel a). As we’ve seen in earlier graphics,
the boxplot() function lets you customise the plot fairly extensively. This is illustrated in panel b, which
shows a much more minimalist boxplot, and attaches informative labels to the graphic.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> boxplot( x = afl.margins, # the data

+ xlab = "AFL games, 2010", # x-axis label

+ ylab = "Winning Margin", # y-axis label

+ border = "grey50", # dim the border of the box

+ frame.plot = FALSE, # don’t draw a frame

+ staplewex = 0, # don’t draw staples

+ whisklty = 1 # solid line for whisker

+ )

Overall, I think the resulting boxplot is a huge improvement in visual design over the default version. In
my opinion at least, there’s a fairly minimalist aesthetic that governs good statistical graphics. Ideally,
every visual element that you add to a plot should convey part of the message. If your plot includes things
that don’t actually help the reader learn anything new, you should consider removing them. Personally,
I can’t see the point of the cross-bars on a standard boxplot, so I’ve deleted them.

Okay, what commands can we use to customise the boxplot? If you type ?boxplot and flick through
the help documentation, you’ll notice that it does mention staplewex as an argument, but there’s no
mention of whisklty. The reason for this is that the function that handles the drawing is called bxp(), so
if you type ?bxp all the gory details appear. Here’s the short summary. In order to understand why these
arguments have such stupid names, you need to recognise that they’re put together from two components.
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The first part of the argument name specifies one part of the box plot: staple refers to the staples of
the plot (i.e., the cross-bars), and whisk refers to the whiskers. The second part of the name specifies a
graphical parameter: wex is a width parameter, and lty is a line type parameter. The parts of the plot
you can customise are:

• box. The box that covers the interquartile range.

• med. The line used to show the median.

• whisk. The vertical lines used to draw the whiskers.

• staple. The cross bars at the ends of the whiskers.

• out. The points used to show the outliers.

The actual graphical parameters that you might want to specify are slightly different for each visual
element, just because they’re different shapes from each other. As a consequence, the following options
are available:

• Width expansion: boxwex, staplewex, outwex. These are scaling factors that govern the width of
various parts of the plot. The default scaling factor is (usually) 0.8 for the box, and 0.5 for the
other two. Note that in the case of the outliers this parameter is meaningless unless you decide to
draw lines plotting the outliers rather than use points.

• Line type: boxlty, medlty, whisklty, staplelty, outlty. These govern the line type for the rele-
vant elements. The values for this are exactly the same as those used for the regular lty parameter,
with two exceptions. There’s an additional option where you can set medlty = "blank" to suppress
the median line completely (useful if you want to draw a point for the median rather than plot
a line). Similarly, by default the outlier line type is set to outlty = "blank", because the default
behaviour is to draw outliers as points instead of lines.

• Line width: boxlwd, medlwd, whisklwd, staplelwd, outlwd. These govern the line widths for the
relevant elements, and behave the same way as the regular lwd parameter. The only thing to note
is that the default value for medlwd value is three times the value of the others.

• Line colour: boxcol, medcol, whiskcol, staplecol, outcol. These govern the colour of the lines
used to draw the relevant elements. Specify a colour in the same way that you usually do.

• Fill colour: boxfill. What colour should we use to fill the box?

• Point character: medpch, outpch. These behave like the regular pch parameter used to select the
plot character. Note that you can set outpch = NA to stop R from plotting the outliers at all, and
you can also set medpch = NA to stop it from drawing a character for the median (this is the default!)

• Point expansion: medcex, outcex. Size parameters for the points used to plot medians and outliers.
These are only meaningful if the corresponding points are actually plotted. So for the default
boxplot, which includes outlier points but uses a line rather than a point to draw the median, only
the outcex parameter is meaningful.

• Background colours: medbg, outbg. Again, the background colours are only meaningful if the points
are actually plotted.

Taken as a group, these parameters allow you almost complete freedom to select the graphical style for
your boxplot that you feel is most appropriate to the data set you’re trying to describe. That said, when
you’re first starting out there’s no shame in using the default settings! But if you want to master the
art of designing beautiful figures, it helps to try playing around with these parameters to see what works
and what doesn’t. Finally, I should mention a few other arguments that you might want to make use of:

• horizontal. Set this to TRUE to display the plot horizontally rather than vertically.
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Figure 6.13: A boxplot showing one very suspicious outlier! I’ve drawn this plot in a similar, minimalist
style to the one in Figure 6.12b, but I’ve used the horizontal argument to draw it sideways in order to
save space.
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• varwidth. Set this to TRUE to get R to scale the width of each box so that the areas are proportional
to the number of observations that contribute to the boxplot. This is only useful if you’re drawing
multiple boxplots at once (see Section 6.5.3).

• show.names. Set this to TRUE to get R to attach labels to the boxplots.

• notch. If you set notch = TRUE, R will draw little notches in the sides of each box. If the notches
of two boxplots don’t overlap, then there is a “statistically significant” difference between the
corresponding medians. If you haven’t read Chapter 11, ignore this argument – we haven’t discussed
statistical significance, so this doesn’t mean much to you. I’m mentioning it only because you might
want to come back to the topic later on. (see also the notch.frac option when you type ?bxp).

6.5.2 Using box plots to detect outliers

Because the boxplot automatically (unless you change the range argument) separates out those ob-
servations that lie within a certain range, people often use them as an informal method for detecting
outliers: observations that are “suspiciously” distant from the rest of the data. Here’s an example.
Suppose that I’d drawn the boxplot for the AFL margins data, and it came up looking like Figure 6.13.
It’s pretty clear that something funny is going on with one of the observations. Apparently, there was one
game in which the margin was over 300 points! That doesn’t sound right to me. Now that I’ve become
suspicious, it’s time to look a bit more closely at the data. One function that can be handy for this is the
which() function; it takes as input a vector of logicals, and outputs the indices of the TRUE cases. This is
particularly useful in the current context because it lets me do this:

> suspicious.cases <- afl.margins > 300

> which( suspicious.cases )

[1] 137
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although in real life I probably wouldn’t bother creating the suspicious.cases variable: I’d just cut out
the middle man and use a command like which( afl.margins > 300 ). In any case, what this has done
is shown me that the outlier corresponds to game 137. Then, I find the recorded margin for that game:

> afl.margins[137]

[1] 333

Hm. That definitely doesn’t sound right. So then I go back to the original data source (the internet!)
and I discover that the actual margin of that game was 33 points. Now it’s pretty clear what happened.
Someone must have typed in the wrong number. Easily fixed, just by typing afl.margins[137] <- 33.
While this might seem like a silly example, I should stress that this kind of thing actually happens a lot.
Real world data sets are often riddled with stupid errors, especially when someone had to type something
into a computer at some point. In fact, there’s actually a name for this phase of data analysis, since in
practice it can waste a huge chunk of our time: data cleaning. It involves searching for typos, missing
data and all sorts of other obnoxious errors in raw data files.9

What about the real data? Does the value of 116 constitute a funny observation not? Possibly. As it
turns out the game in question was Fremantle v Hawthorn, and was played in round 21 (the second last
home and away round of the season). Fremantle had already qualified for the final series and for them
the outcome of the game was irrelevant; and the team decided to rest several of their star players. As a
consequence, Fremantle went into the game severely underpowered. In contrast, Hawthorn had started
the season very poorly but had ended on a massive winning streak, and for them a win could secure a
place in the finals. With the game played on Hawthorn’s home turf10 and with so many unusual factors
at play, it is perhaps no surprise that Hawthorn annihilated Fremantle by 116 points. Two weeks later,
however, the two teams met again in an elimination final on Fremantle’s home ground, and Fremantle
won comfortably by 30 points.11

So, should we exclude the game from subsequent analyses? If this were a psychology experiment
rather than an AFL season, I’d be quite tempted to exclude it because there’s pretty strong evidence
that Fremantle weren’t really trying very hard: and to the extent that my research question is based on
an assumption that participants are genuinely trying to do the task. On the other hand, in a lot of studies
we’re actually interested in seeing the full range of possible behaviour, and that includes situations where
people decide not to try very hard: so excluding that observation would be a bad idea. In the context
of the AFL data, a similar distinction applies. If I’d been trying to make tips about who would perform
well in the finals, I would have (and in fact did) disregard the Round 21 massacre, because it’s way too
misleading. On the other hand, if my interest is solely in the home and away season itself, I think it would
be a shame to throw away information pertaining to one of the most distinctive (if boring) games of the
year. In other words, the decision about whether to include outliers or exclude them depends heavily
on why you think the data look they way they do, and what you want to use the data for. Statistical
tools can provide an automatic method for suggesting candidates for deletion, but you really need to
exercise good judgment here. As I’ve said before, R is a mindless automaton. It doesn’t watch the footy,
so it lacks the broader context to make an informed decision. You are not a mindless automaton, so you
should exercise judgment: if the outlier looks legitimate to you, then keep it. In any case, I’ll return to

9Sometimes it’s convenient to have the boxplot automatically label the outliers for you. The original boxplot() function
doesn’t allow you to do this; however, the Boxplot() function in the car package does. The design of the Boxplot() function
is very similar to boxplot(). It just adds a few new arguments that allow you to tweak the labelling scheme. I’ll leave it to
the reader to check this out.

10Sort of. The game was played in Launceston, which is a de facto home away from home for Hawthorn.
11Contrast this situation with the next largest winning margin in the data set, which was Geelong’s 108 point demolition

of Richmond in round 6 at their home ground, Kardinia Park. Geelong have been one of the most dominant teams over
the last several years, a period during which they strung together an incredible 29-game winning streak at Kardinia Park.
Richmond have been useless for several years. This is in no meaningful sense an outlier. Geelong have been winning by
these margins (and Richmond losing by them) for quite some time. Frankly I’m surprised that the result wasn’t more
lopsided: as happened to Melbourne in 2011 when Geelong won by a modest 186 points.

- 178 -



the topic again in Section 15.9, so let’s return to our discussion of how to draw boxplots.

6.5.3 Drawing multiple boxplots

One last thing. What if you want to draw multiple boxplots at once? Suppose, for instance, I wanted
separate boxplots showing the AFL margins not just for 2010, but for every year between 1987 and 2010.
To do that, the first thing we’ll have to do is find the data. These are stored in the aflsmall2.Rdata

file. So let’s load it and take a quick peek at what’s inside:

> load( "aflsmall2.Rdata" )

> who( TRUE )

-- Name -- -- Class -- -- Size --

afl2 data.frame 4296 x 2

$margin numeric 4296

$year numeric 4296

Notice that afl2 data frame is pretty big. It contains 4296 games, which is far more than I want to see
printed out on my computer screen. To that end, R provides you with a few useful functions to print out
only a few of the row in the data frame. The first of these is head() which prints out the first 6 rows, of
the data frame, like this:

> head( afl2 )

margin year

1 33 1987

2 59 1987

3 45 1987

4 91 1987

5 39 1987

6 1 1987

You can also use the tail() function to print out the last 6 rows. The car package also provides a handy
little function called some() which prints out a random subset of the rows.

In any case, the important thing is that we have the afl2 data frame which contains the variables
that we’re interested in. What we want to do is have R draw boxplots for the margin variable, plotted
separately for each separate year. The way to do this using the boxplot() function is to input a formula

rather than a variable as the input. In this case, the formula we want is margin ~ year. So our boxplot
command now looks like this:

> boxplot( formula = margin ~ year,

+ data = afl2

+ )

The result is shown in Figure 6.14.12 Even this, the default version of the plot, gives a sense of why
it’s sometimes useful to choose boxplots instead of histograms. Even before taking the time to turn this
basic output into something more readable, it’s possible to get a good sense of what the data look like
from year to year without getting overwhelmed with too much detail. Now imagine what would have
happened if I’d tried to cram 24 histograms into this space: no chance at all that the reader is going to
learn anything useful.

12Actually, there’s other ways to do this. If the input argument x is a list object (see Section 4.9), the boxplot() function
will draw a separate boxplot for each variable in that list. Relatedly, since the plot() function – which we’ll discuss shortly
– is a generic (see Section 4.11), you might not be surprised to learn that one of its special cases is a boxplot: specifically,
if you use plot() where the first argument x is a factor and the second argument y is numeric, then the result will be a
boxplot, showing the values in y, with a separate boxplot for each level. For instance, something like plot(x = afl2$year, y

= afl2$margin) would work.

- 179 -



1987 1990 1993 1996 1999 2002 2005 2008

0
5

0
1

0
0

1
5

0

Figure 6.14: Boxplots showing the AFL winning margins for the 24 years from 1987 to 2010 inclusive.
This is the default plot created by R, with no annotations added and no changes to the visual design. It’s
pretty readable, though at a minimum you’d want to include some basic annotations labelling the axes.
Compare and contrast with Figure 6.15
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That being said, the default boxplot leaves a great deal to be desired in terms of visual clarity. The
outliers are too visually prominent, the dotted lines look messy, and the interesting content (i.e., the
behaviour of the median and the interquartile range across years) gets a little obscured. Fortunately,
this is easy to fix, since we’ve already covered a lot of tools you can use to customise your output. After
playing around with several different versions of the plot, the one I settled on is shown in Figure 6.15.
The command I used to produce it is long, but not complicated:

> boxplot( formula = margin ~ year, # the formula

+ data = afl2, # the data set

+ xlab = "AFL season", # x axis label

+ ylab = "Winning Margin", # y axis label

+ frame.plot = FALSE, # don’t draw a frame

+ staplewex = 0, # don’t draw staples

+ staplecol = "white", # (fixes a tiny display issue)

+ boxwex = .75, # narrow the boxes slightly

+ boxfill = "grey80", # lightly shade the boxes

+ whisklty = 1, # solid line for whiskers

+ whiskcol = "grey70", # dim the whiskers

+ boxcol = "grey70", # dim the box borders

+ outcol = "grey70", # dim the outliers
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Figure 6.15: A cleaned up version of Figure 6.14. Notice that I’ve used a very minimalist design for the
boxplots, so as to focus the eye on the medians. I’ve also converted the medians to solid dots, to convey a
sense that year to year variation in the median should be thought of as a single coherent plot (similar to
what we did when plotting the Fibonacci variable earlier). The size of outliers has been shrunk, because
they aren’t actually very interesting. In contrast, I’ve added a fill colour to the boxes, to make it easier
to look at the trend in the interquartile range across years.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ outpch = 20, # outliers as solid dots

+ outcex = .5, # shrink the outliers

+ medlty = "blank", # no line for the medians

+ medpch = 20, # instead, draw solid dots

+ medlwd = 1.5 # make them larger

+ )

Of course, given that the command is that long, you might have guessed that I didn’t spend ages typing
all that rubbish in over and over again. Instead, I wrote a script, which I kept tweaking until it produced
the figure that I wanted. We’ll talk about scripts later in Section 8.1, but given the length of the command
I thought I’d remind you that there’s an easier way of trying out different commands than typing them
all in over and over.
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Figure 6.16: Two different scatterplots: (a) the default scatterplot that R produces, (b) one that makes
use of several options for fancier display.
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6.6

Scatterplots

Scatterplots are a simple but effective tool for visualising data. We’ve already seen scatterplots in
this chapter, when using the plot() function to draw the Fibonacci variable as a collection of dots
(Section 6.2). However, for the purposes of this section I have a slightly different notion in mind. Instead
of just plotting one variable, what I want to do with my scatterplot is display the relationship between
two variables, like we saw with the figures in the section on correlation (Section 5.7). It’s this latter
application that we usually have in mind when we use the term “scatterplot”. In this kind of plot, each
observation corresponds to one dot: the horizontal location of the dot plots the value of the observation
on one variable, and the vertical location displays its value on the other variable. In many situations you
don’t really have a clear opinions about what the causal relationship is (e.g., does A cause B, or does B
cause A, or does some other variable C control both A and B). If that’s the case, it doesn’t really matter
which variable you plot on the x-axis and which one you plot on the y-axis. However, in many situations
you do have a pretty strong idea which variable you think is most likely to be causal, or at least you have
some suspicions in that direction. If so, then it’s conventional to plot the cause variable on the x-axis,
and the effect variable on the y-axis. With that in mind, let’s look at how to draw scatterplots in R,
using the same parenthood data set (i.e. parenthood.Rdata) that I used when introducing the idea of
correlations.

Suppose my goal is to draw a scatterplot displaying the relationship between the amount of sleep that
I get (dan.sleep) and how grumpy I am the next day (dan.grump). As you might expect given our earlier
use of plot() to display the Fibonacci data, the function that we use is the plot() function, but because
it’s a generic function all the hard work is still being done by the plot.default() function. In any case,
there are two different ways in which we can get the plot that we’re after. The first way is to specify the
name of the variable to be plotted on the x axis and the variable to be plotted on the y axis. When we
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do it this way, the command looks like this:

> plot( x = parenthood$dan.sleep, # data on the x-axis

+ y = parenthood$dan.grump # data on the y-axis

+ )

The second way do to it is to use a “formula and data frame” format, but I’m going to avoid using it.13

For now, let’s just stick with the x and y version. If we do this, the result is the very basic scatterplot
shown in Figure 6.16a. This serves fairly well, but there’s a few customisations that we probably want to
make in order to have this work properly. As usual, we want to add some labels, but there’s a few other
things we might want to do as well. Firstly, it’s sometimes useful to rescale the plots. In Figure 6.16a R

has selected the scales so that the data fall neatly in the middle. But, in this case, we happen to know
that the grumpiness measure falls on a scale from 0 to 100, and the hours slept falls on a natural scale
between 0 hours and about 12 or so hours (the longest I can sleep in real life). So the command I might
use to draw this is:

> plot( x = parenthood$dan.sleep, # data on the x-axis

+ y = parenthood$dan.grump, # data on the y-axis

+ xlab = "My sleep (hours)", # x-axis label

+ ylab = "My grumpiness (0-100)", # y-axis label

+ xlim = c(0,12), # scale the x-axis

+ ylim = c(0,100), # scale the y-axis

+ pch = 20, # change the plot type

+ col = "gray50", # dim the dots slightly

+ frame.plot = FALSE # don’t draw a box

+ )

This command produces the scatterplot in Figure 6.16b, or at least very nearly. What it doesn’t do is
draw the line through the middle of the points. Sometimes it can be very useful to do this, and I can do
so using lines(), which is a low level plotting function. Better yet, the arguments that I need to specify
are pretty much the exact same ones that I use when calling the plot() function. That is, suppose that
I want to draw a line that goes from the point (4,93) to the point (9.5,37). Then the x locations can be
specified by the vector c(4,9.5) and the y locations correspond to the vector c(93,37). In other words,
I use this command:

> lines( x = c(4,9.5), # the horizontal locations

+ y = c(93,37), # the vertical locations

+ lwd = 2 # line width

+ )

And when I do so, R plots the line over the top of the plot that I drew using the previous command.
In most realistic data analysis situations you absolutely don’t want to just guess where the line through
the points goes, since there’s about a billion different ways in which you can get R to do a better job.
However, it does at least illustrate the basic idea.

One possibility, if you do want to get R to draw nice clean lines through the data for you, is to use
the scatterplot() function in the car package. Before we can use scatterplot() we need to load the
package:

13The reason is that there’s an annoying design flaw in the way the plot() function handles this situation. The problem
is that the plot.formula() function uses different names to for the arguments than the plot() function expects. As a
consequence, you can’t specify the formula argument by name. If you just specify a formula as the first argument without
using the name it works fine, because the plot() function thinks the formula corresponds to the x argument, and the
plot.formula() function thinks it corresponds to the formula argument; and surprisingly, everything works nicely. But the
moment that you, the user, tries to be unambiguous about the name, one of those two functions is going to cry.
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Figure 6.17: A fancy scatterplot drawn using the scatterplot() function in the car package.
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> library( car )

Having done so, we can now use the function. The command we need is this one:

> scatterplot( dan.grump ~ dan.sleep,

+ data = parenthood,

+ smooth = FALSE

+ )

The first two arguments should be familiar: the first input is a formula (dan.grump ~ dan.sleep) telling
R what variables to plot,14 and the second specifies a data frame. The third argument smooth I’ve set
to FALSE to stop the scatterplot() function from drawing a fancy “smoothed” trendline (since it’s a bit
confusing to beginners). The scatterplot itself is shown in Figure 6.17. As you can see, it’s not only
drawn the scatterplot, but its also drawn boxplots for each of the two variables, as well as a simple line
of best fit showing the relationship between the two variables.

14You might be wondering why I haven’t specified the argument name for the formula. The reason is that there’s a bug
in how the scatterplot() function is written: under the hood there’s one function that expects the argument to be named
x and another one that expects it to be called formula. I don’t know why the function was written this way, but it’s not an
isolated problem: this particular kind of bug repeats itself in a couple of other functions (you’ll see it again in Chapter 13).
The solution in such cases is to omit the argument name: that way, one function “thinks” that you’ve specified x and the
other one “thinks” you’ve specified formula and everything works the way it’s supposed to. It’s not a great state of affairs,
I’ll admit, but it sort of works.
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6.6.1 More elaborate options

Often you find yourself wanting to look at the relationships between several variables at once. One
useful tool for doing so is to produce a scatterplot matrix, analogous to the correlation matrix.

> cor( x = parenthood ) # calculate correlation matrix

dan.sleep baby.sleep dan.grump day

dan.sleep 1.00000000 0.62794934 -0.90338404 -0.09840768

baby.sleep 0.62794934 1.00000000 -0.56596373 -0.01043394

dan.grump -0.90338404 -0.56596373 1.00000000 0.07647926

day -0.09840768 -0.01043394 0.07647926 1.00000000

We can get a the corresponding scatterplot matrix by using the pairs() function:15

> pairs( x = parenthood ) # draw corresponding scatterplot matrix

The output of the pairs() command is shown in Figure 6.18. An alternative way of calling the pairs()

function, which can be useful in some situations, is to specify the variables to include using a one-sided
formula. For instance, this

> pairs( formula = ~ dan.sleep + baby.sleep + dan.grump,

+ data = parenthood

+ )

would produce a 3 ˆ 3 scatterplot matrix that only compare dan.sleep, dan.grump and baby.sleep. Ob-
viously, the first version is much easier, but there are cases where you really only want to look at a few
of the variables, so it’s nice to use the formula interface.

6.7

Bar graphs

Another form of graph that you often want to plot is the bar graph. The main function that you can
use in R to draw them is the barplot() function.16 And to illustrate the use of the function, I’ll use
the finalists variable that I introduced in Section 5.1.7. What I want to do is draw a bar graph that
displays the number of finals that each team has played in over the time spanned by the afl data set.
So, let’s start by creating a vector that contains this information. I’ll use the tabulate() function to do
this (which will be discussed properly in Section 7.1), since it creates a simple numeric vector:

> freq <- tabulate( afl.finalists )

> print( freq )

[1] 26 25 26 28 32 0 6 39 27 28 28 17 6 24 26 39 24

This isn’t exactly the prettiest of frequency tables, of course. I’m only doing it this way so that you can
see the barplot() function in it’s “purest” form: when the input is just an ordinary numeric vector. That
being said, I’m obviously going to need the team names to create some labels, so let’s create a variable

15Yet again, we could have produced this output using the plot() function: when the x argument is a data frame containing
numeric variables only, then the output is a scatterplot matrix. So, once again, what I could have done is just type plot(

parenthood ).
16Once again, it’s worth noting the link to the generic plot() function. If the x argument to plot() is a factor (and no y

argument is given), the result is a bar graph. So you could use plot( afl.finalists ) and get the same output as barplot(

afl.finalists ).
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Figure 6.18: A matrix of scatterplots produced using pairs().
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Figure 6.19: Four bargraphs. Panel a shows the simplest version of a bargraph, containing the data but
no labels. In panel b we’ve added the labels, but because the text runs horizontally R only includes a few
of them. In panel c we’ve rotated the labels, but now the text is too long to fit. Finally, in panel d we
fix this by expanding the margin at the bottom, and add several other customisations to make the chart
a bit nicer.
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with those. I’ll do this using the levels() function, which outputs the names of all the levels of a factor
(see Section 4.7):

> teams <- levels( afl.finalists )

> print( teams )

[1] "Adelaide" "Brisbane" "Carlton" "Collingwood"

[5] "Essendon" "Fitzroy" "Fremantle" "Geelong"

[9] "Hawthorn" "Melbourne" "North Melbourne" "Port Adelaide"

[13] "Richmond" "St Kilda" "Sydney" "West Coast"

[17] "Western Bulldogs"

Okay, so now that we have the information we need, let’s draw our bar graph. The main argument
that you need to specify for a bar graph is the height of the bars, which in our case correspond to the
values stored in the freq variable:

> barplot( height = freq ) # specifying the argument name (panel a)

> barplot( freq ) # the lazier version (panel a)

Either of these two commands will produce the simple bar graph shown in Figure 6.19a. As you can see,
R has drawn a pretty minimal plot. It doesn’t have any labels, obviously, because we didn’t actually tell
the barplot() function what the labels are! To do this, we need to specify the names.arg argument. The
names.arg argument needs to be a vector of character strings containing the text that needs to be used
as the label for each of the items. In this case, the teams vector is exactly what we need, so the command
we’re looking for is:

> barplot( height = freq, names.arg = teams ) # panel b

This is an improvement, but not much of an improvement. R has only included a few of the labels,
because it can’t fit them in the plot. This is the same behaviour we saw earlier with the multiple-boxplot
graph in Figure 6.14. However, in Figure 6.14 it wasn’t an issue: it’s pretty obvious from inspection that
the two unlabelled plots in between 1987 and 1990 must correspond to the data from 1988 and 1989.
However, the fact that barplot() has omitted the names of every team in between Adelaide and Fitzroy
is a lot more problematic.

The simplest way to fix this is to rotate the labels, so that the text runs vertically not horizontally.
To do this, we need to alter set the las parameter, which I discussed briefly in Section 6.2. What I’ll do
is tell R to rotate the text so that it’s always perpendicular to the axes (i.e., I’ll set las = 2). When I do
that, as per the following command...

> barplot( height = freq, # the frequencies

+ names.arg = teams, # the labels

+ las = 2 # rotate the labels

+ ) # (see panel c)

... the result is the bar graph shown in Figure 6.19c. We’ve fixed the problem, but we’ve created a new
one: the axis labels don’t quite fit anymore. To fix this, we have to be a bit cleverer again. A simple
fix would be to use shorter names rather than the full name of all teams, and in many situations that’s
probably the right thing to do. However, at other times you really do need to create a bit more space to
add your labels, so I’ll show you how to do that.

6.7.1 Changing global settings using ♣❛r✭✮

Altering the margins to the plot is actually a somewhat more complicated exercise than you might
think. In principle it’s a very simple thing to do: the size of the margins is governed by a graphical
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parameter called mar, so all we need to do is alter this parameter. First, let’s look at what the mar

argument specifies. The mar argument is a vector containing four numbers: specifying the amount of
space at the bottom, the left, the top and then the right. The units are “number of ‘lines’”. The default
value for mar is c(5.1, 4.1, 4.1, 2.1), meaning that R leaves 5.1 “lines” empty at the bottom, 4.1 lines
on the left and the bottom, and only 2.1 lines on the right. In order to make more room at the bottom,
what I need to do is change the first of these numbers. A value of 10.1 should do the trick.

So far this doesn’t seem any different to the other graphical parameters that we’ve talked about.
However, because of the way that the traditional graphics system in R works, you need to specify what
the margins will be before calling your high-level plotting function. Unlike the other cases we’ve see, you
can’t treat mar as if it were just another argument in your plotting function. Instead, you have to use the
par() function to change the graphical parameters beforehand, and only then try to draw your figure. In
other words, the first thing I would do is this:

> par( mar = c( 10.1, 4.1, 4.1, 2.1) )

There’s no visible output here, but behind the scenes R has changed the graphical parameters associated
with the current device (remember, in R terminology all graphics are drawn onto a “device”). Now that
this is done, we could use the exact same command as before, but this time you’d see that the labels
all fit, because R now leaves twice as much room for the labels at the bottom. However, since I’ve now
figured out how to get the labels to display properly, I might as well play around with some of the other
options, all of which are things you’ve seen before:

> barplot( height = freq, # the data to plot

+ names.arg = teams, # label the plots

+ las = 2, # rotate the labels

+ ylab = "Number of Finals", # y axis label

+ main = "Finals Played, 1987-2010", # figure title

+ density = 10, # shade the bars

+ angle = 20 # shading lines angle

+ )

However, one thing to remember about the par() function is that it doesn’t just change the graphical
parameters for the current plot. Rather, the changes pertain to any subsequent plot that you draw onto
the same device. This might be exactly what you want, in which case there’s no problem. But if not,
you need to reset the graphical parameters to their original settings. To do this, you can either close the
device (e.g., close the window, or click the “Clear All” button in the Plots panel in Rstudio) or you can
reset the graphical parameters to their original values, using a command like this:

> par( mar = c(5.1, 4.1, 4.1, 2.1) )

6.8

Saving image files using R and Rstudio

Hold on, you might be thinking. What’s the good of being able to draw pretty pictures in R if I can’t
save them and send them to friends to brag about how awesome my data is? How do I save the picture?
This is another one of those situations where the easiest thing to do is to use the Rstudio tools.

If you’re running R through Rstudio, then the easiest way to save your image is to click on the
“Export” button in the Plot panel (i.e., the area in Rstudio where all the plots have been appearing).
When you do that you’ll see a menu that contains the options “Save Plot as PDF” and “Save Plot as
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Image”. Either version works. Both will bring up dialog boxes that give you a few options that you can
play with, but besides that it’s pretty simple.

This works pretty nicely for most situations. So, unless you’re filled with a burning desire to learn
the low level details, feel free to skip the rest of this section.

6.8.1 The ugly details

As I say, the menu-based options should be good enough for most people most of the time. However,
one day you might want to be a bit more sophisticated, and make use of R’s image writing capabilities
at a lower level. In this section I’ll give you a very basic introduction to this. In all honesty, this barely
scratches the surface, but it will help a little bit in getting you started if you want to learn the details.

Okay, as I hinted earlier, whenever you’re drawing pictures in R you’re deemed to be drawing to a
device of some kind. There are devices that correspond to a figure drawn on screen, and there are devices
that correspond to graphics files that R will produce for you. For the purposes of this section I’ll assume
that you’re using the default application in either Windows or Mac OS, not Rstudio. The reason for this
is that my experience with the graphical device provided by Rstudio has led me to suspect that it still
has a bunch on non-standard (or possibly just undocumented) features, and so I don’t quite trust that it
always does what I expect. I’ve no doubt they’ll smooth it out later, but I can honestly say that I don’t
quite get what’s going on with the RStudioGD device. In any case, we can ask R to list all of the graphics
devices that currently exist, simply by using the command dev.list(). If there are no figure windows
open, then you’ll see this:

> dev.list()

NULL

which just means that R doesn’t have any graphics devices open. However, suppose if you’ve just drawn
a histogram and you type the same command, R will now give you a different answer. For instance, if
you’re using Windows:

> hist( afl.margins )

> dev.list()

windows

2

What this means is that there is one graphics device (device 2) that is currently open, and it’s a figure
window. If you did the same thing on a Mac, you get basically the same answer, except that the name
of the device would be quartz rather than windows. If you had several graphics windows open (which,
incidentally, you can do by using the dev.new() command) then you’d see something like this:

> dev.list()

windows windows windows

2 3 4

Okay, so that’s the basic idea behind graphics devices. The key idea here is that graphics files (like JPEG
images etc) are also graphics devices as far as R is concerned. So what you want to do is to copy the
contents of one graphics device to another one. There’s a command called dev.copy() that does this, but
what I’ll explain to you is a simpler one called dev.print(). It’s pretty simple:

> dev.print( device = jpeg, # what are we printing to?

+ filename = "thisfile.jpg", # name of the image file

+ width = 480, # how many pixels wide should it be
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+ height = 300 # how many pixels high should it be

+ )

This takes the “active” figure window, copies it to a jpeg file (which R treats as a device) and then
closes that device. The filename = "thisfile.jpg" part tells R what to name the graphics file, and the
width = 480 and height = 300 arguments tell R to draw an image that is 300 pixels high and 480 pixels
wide. If you want a different kind of file, just change the device argument from jpeg to something else.
R has devices for png, tiff and bmp that all work in exactly the same way as the jpeg command, but
produce different kinds of files. Actually, for simple cartoonish graphics like this histogram, you’d be
better advised to use PNG or TIFF over JPEG. The JPEG format is very good for natural images, but
is wasteful for simple line drawings. The information above probably covers most things you might want
to. However, if you want more information about what kinds of options you can specify using R, have a
look at the help documentation by typing ?jpeg or ?tiff or whatever.

6.9

Summary

• Basic overview to R graphics (Section 6.1)

• An introduction to plotting (Section 6.2)

• Drawing histograms (Section 6.3)

• Producing stem and leaf plots (Section 6.4)

• Drawing boxplots (Section 6.5)

• Drawing scatterplots (Section 6.6)

• Drawing bar graphs (Section 6.7)

• Saving image files using R(Section 6.8)
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7. Pragmatic matters

The garden of life never seems to confine itself to the plots philosophers have laid out for its
convenience. Maybe a few more tractors would do the trick.

– Roger Zelazny

This is a somewhat strange chapter, even by my standards. My goal in this chapter is to talk a bit more
honestly about the realities of working with data than you’ll see anywhere else in the book. The problem
with real world data sets is that they are messy. Very often the data file that you start out with doesn’t
have the variables stored in the right format for the analysis you want to do. Sometimes might be a lot
of missing values in your data set. Sometimes you only want to analyse a subset of the data. Et cetera.
In other words, there’s a lot of data manipulation that you need to do, just to get all your data set
into the format that you need it. The purpose of this chapter is to provide a basic introduction to all
these pragmatic topics. Although the chapter is motivated by the kinds of practical issues that arise
when manipulating real data, I’ll stick with the practice that I’ve adopted through most of the book and
rely on very small, toy data sets that illustrate the underlying issue. Because this chapter is essentially
a collection of “tricks” and doesn’t tell a single coherent story, it may be useful to start with a list of
topics:

• Section 7.1. Tabulating data.

• Section 7.2. Transforming or recoding a variable.

• Section 7.3. Some useful mathematical functions.

• Section 7.4. Extracting a subset of a vector.

• Section 7.5. Extracting a subset of a data frame.

• Section 7.6. Sorting, flipping or merging data sets.

• Section 7.7. Reshaping a data frame.

• Section 7.8. Manipulating text.

• Section 7.9. Opening data from different file types.

• Section 7.10. Coercing data from one type to another.

• Section 7.11. Other important data types.

• Section 7.12. Miscellaneous topics.

As you can see, the list of topics that the chapter covers is pretty broad, and there’s a lot of content
there. Even though this is one of the longest and hardest chapters in the book, I’m really only scratching
the surface of several fairly different and important topics. My advice, as usual, is to read through the
chapter once and try to follow as much of it as you can. Don’t worry too much if you can’t grasp it all at
once, especially the later sections. The rest of the book is only lightly reliant on this chapter, so you can
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get away with just understanding the basics. However, what you’ll probably find is that later on you’ll
need to flick back to this chapter in order to understand some of the concepts that I refer to here.

7.1

Tabulating and cross-tabulating data

A very common task when analysing data is the construction of frequency tables, or cross-tabulation of
one variable against another. There are several functions that you can use in R for that purpose. In
this section I’ll illustrate the use of three functions – table(), xtabs() and tabulate() – though there are
other options (e.g., ftable()) available.

7.1.1 Creating tables from vectors

Let’s start with a simple example. As the father of a small child, I naturally spend a lot of time watching
TV shows like In the Night Garden. In the nightgarden.Rdata file, I’ve transcribed a short section of
the dialogue. The file contains two variables, speaker and utterance, and when we take a look at the
data,

> load( "nightgarden.Rdata" )

> who()

-- Name -- -- Class -- -- Size --

speaker character 10

utterance character 10

> print( speaker )

[1] "upsy-daisy" "upsy-daisy" "upsy-daisy" "upsy-daisy" "tombliboo"

[6] "tombliboo" "makka-pakka" "makka-pakka" "makka-pakka" "makka-pakka"

> print( utterance )

[1] "pip" "pip" "onk" "onk" "ee" "oo" "pip" "pip" "onk" "onk"

it becomes very clear what happened to my sanity. With these as my data, one task I might find myself
needing to do is construct a frequency count of the number of words each character speaks during the
show. The table() function provides a simple way do to this. The basic usage of the table() function is
as follows:

> table( speaker )

speaker

makka-pakka tombliboo upsy-daisy

4 2 4

The output here tells us on the first line that what we’re looking at is a tabulation of the speaker variable.
On the second line it lists all the different speakers that exist in the data, and on the third line it tells
you how many times that speaker appears in the data. In other words, it’s a frequency table1 Notice that
in the command above I didn’t name the argument, since table() is another function that makes use of

1As usual, you can assign this output to a variable. If you type speaker.freq <- table(speaker) at the command prompt
R will store the table as a variable. If you then type class(speaker.freq) you’ll see that the output is actually of class table.
The key thing to note about a table object is that it’s basically a matrix (see Section 7.11.1).
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unnamed arguments. You just type in a list of the variables that you want R to tabulate, and it tabulates
them. For instance, if I type in the name of two variables, what I get as the output is a cross-tabulation:

> table( speaker, utterance )

utterance

speaker ee onk oo pip

makka-pakka 0 2 0 2

tombliboo 1 0 1 0

upsy-daisy 0 2 0 2

When interpreting this table, remember that these are counts: so the fact that the first row and second
column corresponds to a value of 2 indicates that Makka-Pakka (row 1) says “onk” (column 2) twice
in this data set. As you’d expect, you can produce three way or higher order cross tabulations just by
adding more objects to the list of inputs. However, I won’t discuss that in this section.

7.1.2 Creating tables from data frames

Most of the time your data are stored in a data frame, not kept as separate variables in the workspace.
Let’s create one:

> itng <- data.frame( speaker, utterance )

> itng

speaker utterance

1 upsy-daisy pip

2 upsy-daisy pip

3 upsy-daisy onk

4 upsy-daisy onk

5 tombliboo ee

6 tombliboo oo

7 makka-pakka pip

8 makka-pakka pip

9 makka-pakka onk

10 makka-pakka onk

There’s a couple of options under these circumstances. Firstly, if you just want to cross-tabulate all of
the variables in the data frame, then it’s really easy:

> table( itng )

utterance

speaker ee onk oo pip

makka-pakka 0 2 0 2

tombliboo 1 0 1 0

upsy-daisy 0 2 0 2

However, it’s often the case that you want to select particular variables from the data frame to tabulate.
This is where the xtabs() function is useful. In this function, you input a one sided formula in order to
list all the variables you want to cross-tabulate, and the name of the data frame that stores the data:

> xtabs( formula = ~ speaker + utterance, data = itng )

utterance

speaker ee onk oo pip

makka-pakka 0 2 0 2

tombliboo 1 0 1 0

upsy-daisy 0 2 0 2
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Clearly, this is a totally unnecessary command in the context of the itng data frame, but in most situations
when you’re analysing real data this is actually extremely useful, since your data set will almost certainly
contain lots of variables and you’ll only want to tabulate a few of them at a time.

7.1.3 Converting a table of counts to a table of proportions

The tabulation commands discussed so far all construct a table of raw frequencies: that is, a count
of the total number of cases that satisfy certain conditions. However, often you want your data to be
organised in terms of proportions rather than counts. This is where the prop.table() function comes in
handy. It has two arguments:

• x. The frequency table that you want to convert.

• margin. Which “dimension” do you want to calculate proportions for. By default, R assumes you
want the proportion to be expressed as a fraction of all possible events. See examples for details.

To see how this works:

> itng.table <- table( itng ) # create the table, and assign it to a variable

> itng.table # display the table again, as a reminder

utterance

speaker ee onk oo pip

makka-pakka 0 2 0 2

tombliboo 1 0 1 0

upsy-daisy 0 2 0 2

> prop.table( x = itng.table ) # express as proportion:

utterance

speaker ee onk oo pip

makka-pakka 0.0 0.2 0.0 0.2

tombliboo 0.1 0.0 0.1 0.0

upsy-daisy 0.0 0.2 0.0 0.2

Notice that there were 10 observations in our original data set, so all that R has done here is divide all
our raw frequencies by 10. That’s a sensible default, but more often you actually want to calculate the
proportions separately by row (margin = 1) or by column (margin = 2). Again, this is most clearly seen
by looking at examples:

> prop.table( x = itng.table, margin = 1)

utterance

speaker ee onk oo pip

makka-pakka 0.0 0.5 0.0 0.5

tombliboo 0.5 0.0 0.5 0.0

upsy-daisy 0.0 0.5 0.0 0.5

Notice that each row now sums to 1, but that’s not true for each column. What we’re looking at here is
the proportions of utterances made by each character. In other words, 50% of Makka-Pakka’s utterances
are “pip”, and the other 50% are “onk”. Let’s contrast this with the following command:

> prop.table( x = itng.table, margin = 2)

utterance

speaker ee onk oo pip

makka-pakka 0.0 0.5 0.0 0.5

tombliboo 1.0 0.0 1.0 0.0

upsy-daisy 0.0 0.5 0.0 0.5
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Now the columns all sum to 1 but the rows don’t. In this version, what we’re seeing is the proportion
of characters associated with each utterance. For instance, whenever the utterance “ee” is made (in this
data set), 100% of the time it’s a Tombliboo saying it.

7.1.4 Low level tabulation

One final function I want to mention is the tabulate() function, since this is actually the low-level
function that does most of the hard work. It takes a numeric vector as input, and outputs frequencies as
outputs:

> some.data <- c(1,2,3,1,1,3,1,1,2,8,3,1,2,4,2,3,5,2)

> tabulate( some.data )

[1] 6 5 4 1 1 0 0 1

7.2

Transforming and recoding a variable

It’s not uncommon in real world data analysis to find that one of your variables isn’t quite equivalent to
the variable that you really want. For instance, it’s often convenient to take a continuous-valued variable
(e.g., age) and break it up into a smallish number of categories (e.g., younger, middle, older). At other
times, you may need to convert a numeric variable into a different numeric variable (e.g., you may want
to analyse at the absolute value of the original variable). In this section I’ll describe a few key tricks that
you can make use of to do this.

7.2.1 Creating a transformed variable

The first trick to discuss is the idea of transforming a variable. Taken literally, anything you do to a
variable is a transformation, but in practice what it usually means is that you apply a relatively simple
mathematical function to the original variable, in order to create new variable that either (a) provides a
better way of describing the thing you’re actually interested in or (b) is more closely in agreement with
the assumptions of the statistical tests you want to do. Since – at this stage – I haven’t talked about
statistical tests or their assumptions, I’ll show you an example based on the first case.

To keep the explanation simple, the variable we’ll try to transform (likert.raw) isn’t inside a data
frame, though in real life it almost certainly would be. However, I think it’s useful to start with an
example that doesn’t use data frames because it illustrates the fact that you already know how to do
variable transformations. To see this, let’s go through an example. Suppose I’ve run a short study in
which I ask 10 people a single question:

On a scale of 1 (strongly disagree) to 7 (strongly agree), to what extent do you agree with
the proposition that “Dinosaurs are awesome”?

Now let’s load and look at the data. The data file likert.Rdata contains a single variable that contains
the raw Likert-scale responses:

> load( "likert.Rdata" )

> likert.raw

[1] 1 7 3 4 4 4 2 6 5 5
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However, if you think about it, this isn’t the best way to represent these responses. Because of the fairly
symmetric way that we set up the response scale, there’s a sense in which the midpoint of the scale should
have been coded as 0 (no opinion), and the two endpoints should be `3 (strong agree) and ´3 (strong
disagree). By recoding the data in this way, it’s a bit more reflective of how we really think about the
responses. The recoding here is trivially easy: we just subtract 4 from the raw scores:

> likert.centred <- likert.raw - 4

> likert.centred

[1] -3 3 -1 0 0 0 -2 2 1 1

One reason why it might be useful to have the data in this format is that there are a lot of situations
where you might prefer to analyse the strength of the opinion separately from the direction of the opinion.
We can do two different transformations on this likert.centred variable in order to distinguish between
these two different concepts. Firstly, to compute an opinion.strength variable, we want to take the
absolute value of the centred data (using the abs() function that we’ve seen previously), like so:

> opinion.strength <- abs( likert.centred )

> opinion.strength

[1] 3 3 1 0 0 0 2 2 1 1

Secondly, to compute a variable that contains only the direction of the opinion and ignores the strength,
we can use the sign() function to do this. If you type ?sign you’ll see that this function is really simple:
all negative numbers are converted to ´1, all positive numbers are converted to 1 and zero stays as 0.
So, when we apply the sign() function we obtain the following:

> opinion.dir <- sign( likert.centred )

> opinion.dir

[1] -1 1 -1 0 0 0 -1 1 1 1

And we’re done. We now have three shiny new variables, all of which are useful transformations of the
original likert.raw data. All of this should seem pretty familiar to you. The tools that you use to do
regular calculations in R (e.g., Chapters 3 and 4) are very much the same ones that you use to transform
your variables! To that end, in Section 7.3 I’ll revisit the topic of doing calculations in R because there’s
a lot of other functions and operations that are worth knowing about.

Before moving on, you might be curious to see what these calculations look like if the data had
started out in a data frame. To that end, it may help to note that the following example does all of the
calculations using variables inside a data frame, and stores the variables created inside it:

> df <- data.frame( likert.raw ) # create data frame

> df$likert.centred <- df$likert.raw - 4 # create centred data

> df$opinion.strength <- abs( df$likert.centred ) # create strength variable

> df$opinion.dir <- sign( df$likert.centred ) # create direction variable

> df # print the final data frame:

likert.raw likert.centred opinion.strength opinion.dir

1 1 -3 3 -1

2 7 3 3 1

3 3 -1 1 -1

BLAH BLAH BLAH

In other words, the commands you use are basically ones as before: it’s just that every time you want to
read a variable from the data frame or write to the data frame, you use the $ operator. That’s the easiest
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way to do it, though I should make note of the fact that people sometimes make use of the within()

function to do the same thing. However, since (a) I don’t use the within() function anywhere else in this
book, and (b) the $ operator works just fine, I won’t discuss it any further.

7.2.2 Cutting a numeric variable into categories

One pragmatic task that arises more often than you’d think is the problem of cutting a numeric
variable up into discrete categories. For instance, suppose I’m interested in looking at the age distribution
of people at a social gathering:

> age <- c( 60,58,24,26,34,42,31,30,33,2,9 )

In some situations it can be quite helpful to group these into a smallish number of categories. For example,
we could group the data into three broad categories: young (0-20), adult (21-40) and older (41-60). This
is a quite coarse-grained classification, and the labels that I’ve attached only make sense in the context
of this data set (e.g., viewed more generally, a 42 year old wouldn’t consider themselves as “older”). We
can slice this variable up quite easily using the cut() function.2 To make things a little cleaner, I’ll start
by creating a variable that defines the boundaries for the categories:

> age.breaks <- seq( from = 0, to = 60, by = 20 )

> age.breaks

[1] 0 20 40 60

and another one for the labels:

> age.labels <- c( "young", "adult", "older" )

> age.labels

[1] "young" "adult" "older"

Note that there are four numbers in the age.breaks variable, but only three labels in the age.labels

variable; I’ve done this because the cut() function requires that you specify the edges of the categories
rather than the mid-points. In any case, now that we’ve done this, we can use the cut() function to assign
each observation to one of these three categories. There are several arguments to the cut() function, but
the three that we need to care about are:

• x. The variable that needs to be categorised.

• breaks. This is either a vector containing the locations of the breaks separating the categories, or
a number indicating how many categories you want.

• labels. The labels attached to the categories. This is optional: if you don’t specify this R will
attach a boring label showing the range associated with each category.

Since we’ve already created variables corresponding to the breaks and the labels, the command we need
is just:

> age.group <- cut( x = age, # the variable to be categorised

+ breaks = age.breaks, # the edges of the categories

+ labels = age.labels ) # the labels for the categories

2It’s worth noting that there’s also a more powerful function called recode() function in the car package that I won’t
discuss in this book but is worth looking into if you’re looking for a bit more flexibility.
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Note that the output variable here is a factor. In order to see what this command has actually done, we
could just print out the age.group variable, but I think it’s actually more helpful to create a data frame
that includes both the original variable and the categorised one, so that you can see the two side by side:

> data.frame( age, age.group )

age age.group

1 60 older

2 58 older

3 24 adult

BLAH BLAH BLAH

10 2 young

11 9 young

It can also be useful to tabulate the output, just to see if you’ve got a nice even division of the sample:

> table( age.group )

age.group

young adult older

2 6 3

In the example above, I made all the decisions myself. Much like the hist() function that we saw in
Chapter 6, if you want to you can delegate a lot of the choices to R. For instance, if you want you can
specify the number of categories you want, rather than giving explicit ranges for them, and you can allow
R to come up with some labels for the categories. To give you a sense of how this works, have a look at
the following example:

> age.group2 <- cut( x = age, breaks = 3 )

With this command, I’ve asked for three categories, but let R make the choices for where the boundaries
should be. I won’t bother to print out the age.group2 variable, because it’s not terribly pretty or very
interesting. Instead, all of the important information can be extracted by looking at the tabulated data:

> table( age.group2 )

age.group2

(1.94,21.3] (21.3,40.7] (40.7,60.1]

2 6 3

This output takes a little bit of interpretation, but it’s not complicated. What R has done is determined
that the lowest age category should run from 1.94 years up to 21.3 years, the second category should run
from 21.3 years to 40.7 years, and so on. The formatting on those labels might look a bit funny to those
of you who haven’t studied a lot of maths, but it’s pretty simple. When R describes the first category
as corresponding to the range p1.94, 21.3s what it’s saying is that the range consists of those numbers
that are larger than 1.94 but less than or equal to 21.3. In other words, the weird asymmetric brackets
is Rs way of telling you that if there happens to be a value that is exactly equal to 21.3, then it belongs
to the first category, not the second one. Obviously, this isn’t actually possible since I’ve only specified
the ages to the nearest whole number, but R doesn’t know this and so it’s trying to be precise just in
case. This notation is actually pretty standard, but I suspect not everyone reading the book will have
seen it before. In any case, those labels are pretty ugly, so it’s usually a good idea to specify your own,
meaningful labels to the categories.

Before moving on, I should take a moment to talk a little about the mechanics of the cut() function.
Notice that R has tried to divide the age variable into three roughly equal sized bins. Unless you specify
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the particular breaks you want, that’s what it will do. But suppose you want to divide the age variable
into three categories of different size, but with approximately identical numbers of people. How would
you do that? Well, if that’s the case, then what you want to do is have the breaks correspond to the
0th, 33rd, 66th and 100th percentiles of the data. One way to do this would be to calculate those values
using the quantiles() function and then use those quantiles as input to the cut() function. That’s pretty
easy to do, but it does take a couple of lines to type. So instead, the lsr package has a function called
quantileCut() that does exactly this:

> age.group3 <- quantileCut( x = age, n = 3 )

> table( age.group3 )

age.group3

(1.94,27.3] (27.3,33.7] (33.7,60.1]

4 3 4

Notice the difference in the boundaries that the quantileCut() function selects. The first and third
categories now span an age range of about 25 years each, whereas the middle category has shrunk to
a span of only 6 years. There are some situations where this is genuinely what you want (that’s why I
wrote the function!), but in general you should be careful. Usually the numeric variable that you’re trying
to cut into categories is already expressed in meaningful units (i.e., it’s interval scale), but if you cut it
into unequal bin sizes then it’s often very difficult to attach meaningful interpretations to the resulting
categories.

More generally, regardless of whether you’re using the original cut() function or the quantileCut()

version, it’s important to take the time to figure out whether or not the resulting categories make any
sense at all in terms of your research project. If they don’t make any sense to you as meaningful categories,
then any data analysis that uses those categories is likely to be just as meaningless. More generally, in
practice I’ve noticed that people have a very strong desire to carve their (continuous and messy) data
into a few (discrete and simple) categories; and then run analysis using the categorised data instead of
the original one.3 I wouldn’t go so far as to say that this is an inherently bad idea, but it does have some
fairly serious drawbacks at times, so I would advise some caution if you are thinking about doing it.

7.3

A few more mathematical functions and operations

In Section 7.2 I discussed the ideas behind variable transformations, and showed that a lot of the trans-
formations that you might want to apply to your data are based on fairly simple mathematical functions
and operations, of the kind that we discussed in Chapter 3. In this section I want to return to that
discussion, and mention several other mathematical functions and arithmetic operations that I didn’t
bother to mention when introducing you to R, but are actually quite useful for a lot of real world data
analysis. Table 7.1 gives a brief overview of the various mathematical functions I want to talk about (and
some that I already have talked about). Obviously this doesn’t even come close to cataloging the range
of possibilities available in R, but it does cover a very wide range of functions that are used in day to day
data analysis.

3If you’ve read further into the book, and are re-reading this section, then a good example of this would be someone
choosing to do an ANOVA using age.group3 as the grouping variable, instead of running a regression using age as a predictor.
There are sometimes good reasons for do this: for instance, if the relationship between age and your outcome variable is
highly non-linear, and you aren’t comfortable with trying to run non-linear regression! However, unless you really do have a
good rationale for doing this, it’s best not to. It tends to introduce all sorts of other problems (e.g., the data will probably
violate the normality assumption), and you can lose a lot of power.
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Table 7.1: Some of the mathematical functions available in R.

function example input (answer)
square root sqrt() sqrt(25) 5

absolute value abs() abs(-23) 23

logarithm (base 10) log10() log10(1000) 3

logarithm (base e) log() log(1000) 6.908

exponentiation exp() exp(6.908) 1000.245

rounding to nearest round() round(1.32) 1

rounding down floor() floor(1.32) 1

rounding up ceiling() ceiling(1.32) 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3.1 Rounding a number

One very simple transformation that crops up surprisingly often is the need to round a number to the
nearest whole number, or to a certain number of significant digits. To start with, let’s assume that we
want to round to a whole number. To that end, there are three useful functions in R you want to know
about: round(), floor() and ceiling(). The round() function just rounds to the nearest whole number.
So if you round the number 4.3, it “rounds down” to 4, like so:

> round( x = 4.3 )

[1] 4

In contrast, if we want to round the number 4.7, we would round upwards to 5. In everyday life, when
someone talks about “rounding”, they usually mean “round to nearest”, so this is the function we use
most of the time. However sometimes you have reasons to want to always round up or always round
down. If you want to always round down, use the floor() function instead; and if you want to force R to
round up, then use ceiling(). That’s the only difference between the three functions. What if you want
to round to a certain number of digits? Let’s suppose you want to round to a fixed number of decimal
places, say 2 decimal places. If so, what you need to do is specify the digits argument to the round()

function. That’s pretty straightforward:

> round( x = 0.0123, digits = 2 )

[1] 0.01

The only subtlety that you need to keep in mind is that sometimes what you want to do is round to 2
significant digits and not to two decimal places. The difference is that, when determining the number
of significant digits, zeros don’t count. To see this, let’s apply the signif() function instead of the round()
function:

> signif( x = 0.0123, digits = 2 )

[1] 0.012

This time around, we get an answer of 0.012 because the zeros don’t count as significant digits. Quite
often scientific journals will ask you to report numbers to two or three significant digits, so it’s useful to
remember the distinction.
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Table 7.2: Two more arithmetic operations that sometimes come in handy.

operation operator example input example output
integer division %/% 42 %/% 10 4

modulus %% 42 %% 10 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3.2 Modulus and integer division

Since we’re on the topic of simple calculations, there are two other arithmetic operations that I should
mention, since they can come in handy when working with real data. These operations are calculating a
modulus and doing integer division. They don’t come up anywhere else in this book, but they are worth
knowing about. First, let’s consider integer division. Suppose I have $42 in my wallet, and want to
buy some sandwiches, which are selling for $10 each. How many sandwiches can I afford4 to buy? The
answer is of course 4. Note that it’s not 4.2, since no shop will sell me one-fifth of a sandwich. That’s
integer division. In R we perform integer division by using the %/% operator:

> 42 %/% 10

[1] 4

Okay, that’s easy enough. What about the modulus? Basically, a modulus is the remainder after integer
division, and it’s calculated using the %% operator. For the sake of argument, let’s suppose I buy four
overpriced $10 sandwiches. If I started out with $42, how much money do I have left? The answer, as
both R and common sense tells us, is $2:

> 42 %% 10

[1] 2

So that’s also pretty easy. There is, however, one subtlety that I need to mention, and this relates to
how negative numbers are handled. Firstly, what would happen if I tried to do integer division with a
negative number? Let’s have a look:

> -42 %/% 10

[1] -5

This might strike you as counterintuitive: why does 42 %/% 10 produce an answer of 4, but -42 %/% 10

gives us an answer of -5? Intuitively you might think that the answer to the second one should be -4.
The way to think about it is like this. Suppose I owe the sandwich shop $42, but I don’t have any
money. How many sandwiches would I have to give them in order to stop them from calling security?
The answer5 here is 5, not 4. If I handed them 4 sandwiches, I’d still owe them $2, right? So I actually
have to give them 5 sandwiches. And since it’s me giving them the sandwiches, the answer to -42 %/% 10

is -5. As you might expect, the behaviour of the modulus operator has a similar pattern. If I’ve handed
5 sandwiches over to the shop in order to pay off my debt of $42, then they now owe me $8. So the
modulus is now:

> -42 %% 10

[1] 8

4The real answer is 0: $10 for a sandwich is a total ripoff so I should go next door and buy noodles.
5Again, I doubt that’s the right “real world” answer. I suspect that most sandwich shops won’t allow you to pay off

your debts to them in sandwiches. But you get the idea.
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7.3.3 Logarithms and exponentials

As I’ve mentioned earlier, R has an incredible range of mathematical functions built into it, and there
really wouldn’t be much point in trying to describe or even list all of them. For the most part, I’ve
focused only on those functions that are strictly necessary for this book. However I do want to make
an exception for logarithms and exponentials. Although they aren’t needed anywhere else in this book,
they are everywhere in statistics more broadly, and not only that, there are a lot of situations in which
it is convenient to analyse the logarithm of a variable (i.e., to take a “log-transform” of the variable). I
suspect that many (maybe most) readers of this book will have encountered logarithms and exponentials
before, but from past experience I know that there’s a substantial proportion of students who take a
social science statistics class who haven’t touched logarithms since high school, and would appreciate a
bit of a refresher.

In order to understand logarithms and exponentials, the easiest thing to do is to actually calculate
them and see how they relate to other simple calculations. There are three R functions in particular that
I want to talk about, namely log(), log10() and exp(). To start with, let’s consider log10(), which is
known as the “logarithm in base 10”. The trick to understanding a logarithm is to understand that it’s
basically the “opposite” of taking a power. Specifically, the logarithm in base 10 is closely related to the
powers of 10. So let’s start by noting that 10-cubed is 1000. Mathematically, we would write this:

103 “ 1000

and in R we’d calculate it by using the command 10^3. The trick to understanding a logarithm is to
recognise that the statement that “10 to the power of 3 is equal to 1000” is equivalent to the statement
that “the logarithm (in base 10) of 1000 is equal to 3”. Mathematically, we write this as follows,

log10p1000q “ 3

and if we wanted to do the calculation in R we would type this:

> log10( 1000 )

[1] 3

Obviously, since you already know that 103 “ 1000 there’s really no point in getting R to tell you that the
base-10 logarithm of 1000 is 3. However, most of the time you probably don’t know what right answer
is. For instance, I can honestly say that I didn’t know that 102.69897 “ 500, so it’s rather convenient for
me that I can use R to calculate the base-10 logarithm of 500:

> log10( 500 )

[1] 2.69897

Or at least it would be convenient if I had a pressing need to know the base-10 logarithm of 500.

Okay, since the log10() function is related to the powers of 10, you might expect that there are other
logarithms (in bases other than 10) that are related to other powers too. And of course that’s true:
there’s not really anything mathematically special about the number 10. You and I happen to find it
useful because decimal numbers are built around the number 10, but the big bad world of mathematics
scoffs at our decimal numbers. Sadly, the universe doesn’t actually care how we write down numbers.
Anyway, the consequence of this cosmic indifference is that there’s nothing particularly special about
calculating logarithms in base 10. You could, for instance, calculate your logarithms in base 2, and in
fact R does provide a function for doing that, which is (not surprisingly) called log2(). Since we know
that 23 “ 2ˆ 2ˆ 2 “ 8, it’s not surprise to see that

> log2( 8 )

[1] 3
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Alternatively, a third type of logarithm – and one we see a lot more of in statistics than either base 10 or
base 2 – is called the natural logarithm, and corresponds to the logarithm in base e. Since you might
one day run into it, I’d better explain what e is. The number e, known as Euler’s number, is one of
those annoying “irrational” numbers whose decimal expansion is infinitely long, and is considered one of
the most important numbers in mathematics. The first few digits of e are:

e “ 2.718282

There are quite a few situation in statistics that require us to calculate powers of e, though none of them
appear in this book. Raising e to the power x is called the exponential of x, and so it’s very common to
see ex written as exppxq. And so it’s no surprise that R has a function that calculate exponentials, called
exp(). For instance, suppose I wanted to calculate e3. I could try typing in the value of e manually, like
this:

> 2.718282 ^ 3

[1] 20.08554

but it’s much easier to do the same thing using the exp() function:

> exp( 3 )

[1] 20.08554

Anyway, because the number e crops up so often in statistics, the natural logarithm (i.e., logarithm in
base e) also tends to turn up. Mathematicians often write it as logepxq or lnpxq, or sometimes even just
logpxq. In fact, R works the same way: the log() function corresponds to the natural logarithm6 Anyway,
as a quick check, let’s calculate the natural logarithm of 20.08554 using R:

> log( 20.08554 )

[1] 3

And with that, I think we’ve had quite enough exponentials and logarithms for this book!

7.4

Extracting a subset of a vector

One very important kind of data handling is being able to extract a particular subset of the data. For
instance, you might be interested only in analysing the data from one experimental condition, or you
may want to look closely at the data from people over 50 years in age. To do this, the first step is getting
R to extract the subset of the data corresponding to the observations that you’re interested in. In this
section I’ll talk about subsetting as it applies to vectors, extending the discussion from Chapters 3 and
4. In Section 7.5 I’ll go on to talk about how this discussion extends to data frames.

7.4.1 Refresher

This section returns to the nightgarden.Rdata data set. If you’re reading this whole chapter in one sit-
ting, then you should already have this data set loaded. If not, don’t forget to use the load("nightgarden.Rdata")

6Actually, that’s a bit of a lie: the log() function is more flexible than that, and can be used to calculate logarithms in
any base. The log() function has a base argument that you can specify, which has a default value of e. Thus log10(1000) is
actually equivalent to log(x = 1000, base = 10).
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command. For this section, let’s ignore the itng data frame that we created earlier, and focus instead on
the two vectors speaker and utterance (see Section 7.1 if you’ve forgotten what those vectors look like).
Suppose that what I want to do is pull out only those utterances that were made by Makka-Pakka. To
that end, I could first use the equality operator to have R tell me which cases correspond to Makka-Pakka
speaking:

> is.MP.speaking <- speaker == "makka-pakka"

> is.MP.speaking

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

and then use logical indexing to get R to print out those elements of utterance for which is.MP.speaking

is true, like so:

> utterance[ is.MP.speaking ]

[1] "pip" "pip" "onk" "onk"

Or, since I’m lazy, I could collapse it to a single command like so:

> utterance[ speaker == "makka-pakka" ]

[1] "pip" "pip" "onk" "onk"

7.4.2 Using ✪✐♥✪ to match multiple cases

A second useful trick to be aware of is the %in% operator7. It’s actually very similar to the == operator,
except that you can supply a collection of acceptable values. For instance, suppose I wanted to keep only
those cases when the utterance is either “pip” or “oo”. One simple way do to this is:

> utterance %in% c("pip","oo")

[1] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE

What this does if return TRUE for those elements of utterance that are either "pip" or "oo" and returns
FALSE for all the others. What that means is that if I want a list of all those instances of characters
speaking either of these two words, I could do this:

> speaker[ utterance %in% c("pip","oo") ]

[1] "upsy-daisy" "upsy-daisy" "tombliboo" "makka-pakka" "makka-pakka"

7.4.3 Using negative indices to drop elements

Before moving onto data frames, there’s a couple of other tricks worth mentioning. The first of these
is to use negative values as indices. Recall from Section 3.10 that we can use a vector of numbers to
extract a set of elements that we would like to keep. For instance, suppose I want to keep only elements
2 and 3 from utterance. I could do so like this:

> utterance[2:3]

[1] "pip" "onk"

But suppose, on the other hand, that I have discovered that observations 2 and 3 are untrustworthy, and
I want to keep everything except those two elements. To that end, R lets you use negative numbers to
remove specific values, like so:

7It’s also worth checking out the match() function
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> utterance [ -(2:3) ]

[1] "pip" "onk" "ee" "oo" "pip" "pip" "onk" "onk"

The output here corresponds to element 1 of the original vector, followed by elements 4, 5, and so on.
When all you want to do is remove a few cases, this is a very handy convention.

7.4.4 Splitting a vector by group

One particular example of subsetting that is especially common is the problem of splitting one one
variable up into several different variables, one corresponding to each group. For instance, in our In
the Night Garden example, I might want to create subsets of the utterance variable for every character.
One way to do this would be to just repeat the exercise that I went through earlier separately for each
character, but that quickly gets annoying. A faster way do it is to use the split() function. The
arguments are:

• x. The variable that needs to be split into groups.

• f. The grouping variable.

What this function does is output a list (Section 4.9), containing one variable for each group. For instance,
I could split up the utterance variable by speaker using the following command:

> speech.by.char <- split( x = utterance, f = speaker )

> speech.by.char

$‘makka-pakka‘

[1] "pip" "pip" "onk" "onk"

$tombliboo

[1] "ee" "oo"

$‘upsy-daisy‘

[1] "pip" "pip" "onk" "onk"

Once you’re starting to become comfortable working with lists and data frames, this output is all you
need, since you can work with this list in much the same way that you would work with a data frame.
For instance, if you want the first utterance made by Makka-Pakka, all you need to do is type this:

> speech.by.char$‘makka-pakka‘[1]

[1] "pip"

Just remember that R does need you to add the quoting characters (i.e. ’). Otherwise, there’s nothing
particularly new or difficult here.

However, sometimes – especially when you’re just starting out – it can be convenient to pull these
variables out of the list, and into the workspace. This isn’t too difficult to do, though it can be a little
daunting to novices. To that end, I’ve included a function called importList() in the lsr package that
does this.8 First, here’s what you’d have if you had wiped the workspace before the start of this section:

> who()

-- Name -- -- Class -- -- Size --

8It also works on data frames if you ever feel the need to import all of your variables from the data frame into the
workspace. This can be useful at times, though it’s not a good idea if you have large data sets or if you’re working with
multiple data sets at once. In particular, if you do this, never forget that you now have two copies of all your variables, one
in the workspace and another in the data frame.
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speaker character 10

speech.by.char list 3

utterance character 10

Now we use the importList() function to copy all of the variables within the speech.by.char list:

> importList( speech.by.char )

Names of variables to be created:

[1] "makka.pakka" "tombliboo" "upsy.daisy"

Create these variables? [y/n]

Because the importList() function is attempting to create new variables based on the names of the
elements of the list, it pauses to check that you’re okay with the variable names. The reason it does this
is that, if one of the to-be-created variables has the same name as a variable that you already have in
your workspace, that variable will end up being overwritten, so it’s a good idea to check. Assuming that
you type y, it will go on to create the variables. Nothing appears to have happened, but if we look at our
workspace now:

> who()

-- Name -- -- Class -- -- Size --

makka.pakka character 4

speaker character 10

speech.by.char list 3

tombliboo character 2

upsy.daisy character 4

utterance character 10

we see that there are three new variables, called makka.pakka, tombliboo and upsy.daisy. Notice that the
importList() function has converted the original character strings into valid R variable names, so the
variable corresponding to "makka-pakka" is actually makka.pakka.9 Nevertheless, even though the names
can change, note that each of these variables contains the exact same information as the original elements
of the list did. For example:

> makka.pakka

[1] "pip" "pip" "onk" "onk"

7.5

Extracting a subset of a data frame

In this section we turn to the question of how to subset a data frame rather than a vector. To that end,
the first thing I should point out is that, if all you want to do is subset one of the variables inside the
data frame, then as usual the $ operator is your friend. For instance, suppose I’m working with the itng

data frame, and what I want to do is create the speech.by.char list. I can use the exact same tricks
that I used last time, since what I really want to do is split() the itng$utterance vector, using the
itng$speaker vector as the grouping variable. However, most of the time what you actually want to do
is select several different variables within the data frame (i.e., keep only some of the columns), or maybe
a subset of cases (i.e., keep only some of the rows). In order to understand how this works, we need to
talk more specifically about data frames and how to subset them.

9You can do this yourself using the make.names() function. In fact, this is itself a handy thing to know about. For
example, if you want to convert the names of the variables in the speech.by.char list into valid R variable names, you could
use a command like this: names(speech.by.char) <- make.names(names(speech.by.char)). However, I won’t go into details here.
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7.5.1 Using the s✉❜s❡t✭✮ function

There are several different ways to subset a data frame in R, some easier than others. I’ll start by discussing
the subset() function, which is probably the conceptually simplest way do it. For our purposes there are
three different arguments that you’ll be most interested in:

• x. The data frame that you want to subset.

• subset. A vector of logical values indicating which cases (rows) of the data frame you want to keep.
By default, all cases will be retained.

• select. This argument indicates which variables (columns) in the data frame you want to keep.
This can either be a list of variable names, or a logical vector indicating which ones to keep, or
even just a numeric vector containing the relevant column numbers. By default, all variables will
be retained.

Let’s start with an example in which I use all three of these arguments. Suppose that I want to subset
the itng data frame, keeping only the utterances made by Makka-Pakka. What that means is that I need
to use the select argument to pick out the utterance variable, and I also need to use the subset variable,
to pick out the cases when Makka-Pakka is speaking (i.e., speaker == "makka-pakka"). Therefore, the
command I need to use is this:

> df <- subset( x = itng, # data frame is itng

+ subset = speaker == "makka-pakka", # keep only Makka-Pakkas speech

+ select = utterance ) # keep only the utterance variable

> print( df )

utterance

7 pip

8 pip

9 onk

10 onk

The variable df here is still a data frame, but it only contains one variable (called utterance) and four
cases. Notice that the row numbers are actually the same ones from the original data frame. It’s worth
taking a moment to briefly explain this. The reason that this happens is that these “row numbers’ are
actually row names. When you create a new data frame from scratch R will assign each row a fairly
boring row name, which is identical to the row number. However, when you subset the data frame, each
row keeps its original row name. This can be quite useful, since – as in the current example – it provides
you a visual reminder of what each row in the new data frame corresponds to in the original data frame.
However, if it annoys you, you can change the row names using the rownames() function.10

In any case, let’s return to the subset() function, and look at what happens when we don’t use all
three of the arguments. Firstly, suppose that I didn’t bother to specify the select argument. Let’s see
what happens:

> subset( x = itng,

+ subset = speaker == "makka-pakka" )

speaker utterance

7 makka-pakka pip

8 makka-pakka pip

9 makka-pakka onk

10 makka-pakka onk

10Conveniently, if you type rownames(df) <- NULL R will renumber all the rows from scratch. For the df data frame, the
labels that currently run from 7 to 10 will be changed to go from 1 to 4.
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Not surprisingly, R has kept the same cases from the original data set (i.e., rows 7 through 10), but this
time it has kept all of the variables from the data frame. Equally unsurprisingly, if I don’t specify the
subset argument, what we find is that R keeps all of the cases:

> subset( x = itng,

+ select = utterance )

utterance

1 pip

2 pip

3 onk

BLAH BLAH BLAH

where the BLAH BLAH BLAH in this case shows all 10 cases from the original itng data frame. Again, it’s
important to note that this output is still a data frame: it’s just a data frame with only a single variable.

7.5.2 Using square brackets: I. Rows and columns

Throughout the book so far, whenever I’ve been subsetting a vector I’ve tended use the square brackets
[] to do so. But in the previous section when I started talking about subsetting a data frame I used the
subset() function. As a consequence, you might be wondering whether it is possible to use the square
brackets to subset a data frame. The answer, of course, is yes. Not only can you use square brackets for
this purpose, as you become more familiar with R you’ll find that this is actually much more convenient
than using subset(). Unfortunately, the use of square brackets for this purpose is somewhat complicated,
and can be very confusing to novices. So be warned: this section is more complicated than it feels like it
“should” be. With that warning in place, I’ll try to walk you through it slowly. For this section, I’ll use
a slightly different data set, namely the garden data frame that is stored in the "nightgarden2.Rdata"

file.

> load( "nightgarden2.Rdata" )

> garden

speaker utterance line

case.1 upsy-daisy pip 1

case.2 upsy-daisy pip 2

case.3 tombliboo ee 5

case.4 makka-pakka pip 7

case.5 makka-pakka onk 9

As you can see, the garden data frame contains 3 variables and 5 cases, and this time around I’ve used
the rownames() function to attach slightly verbose labels to each of the cases. Moreover, let’s assume
that what we want to do is to pick out rows 4 and 5 (the two cases when Makka-Pakka is speaking), and
columns 1 and 2 (variables speaker and utterance).

How shall we do this? As usual, there’s more than one way. The first way is based on the observation
that, since a data frame is basically a table, every element in the data frame has a row number and a
column number. So, if we want to pick out a single element, we have to specify the row number and a
column number within the square brackets. By convention, the row number comes first. So, for the data
frame above, which has 5 rows and 3 columns, the numerical indexing scheme looks like this:
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column
row 1 2 3
1 [1,1] [1,2] [1,3]

2 [2,1] [2,2] [2,3]

3 [3,1] [3,2] [3,3]

4 [4,1] [4,2] [4,3]

5 [5,1] [5,2] [5,3]

If I want the 3rd case of the 2nd variable, what I would type is garden[3,2], and R would print out
some output showing that, this element corresponds to the utterance "ee". However, let’s hold off from
actually doing that for a moment, because there’s something slightly counterintuitive about the specifics
of what R does under those circumstances (see Section 7.5.4). Instead, let’s aim to solve our original
problem, which is to pull out two rows (4 and 5) and two columns (1 and 2). This is fairly simple to do,
since R allows us to specify multiple rows and multiple columns. So let’s try that:

> garden[ 4:5, 1:2 ]

speaker utterance

case.4 makka-pakka pip

case.5 makka-pakka onk

Clearly, that’s exactly what we asked for: the output here is a data frame containing two variables and
two cases. Note that I could have gotten the same answer if I’d used the c() function to produce my
vectors rather than the : operator. That is, the following command is equivalent to the last one:

> garden[ c(4,5), c(1,2) ]

It’s just not as pretty. However, if the columns and rows that you want to keep don’t happen to be next
to each other in the original data frame, then you might find that you have to resort to using commands
like garden[ c(2,4,5), c(1,3) ] to extract them.

A second way to do the same thing is to use the names of the rows and columns. That is, instead of
using the row numbers and column numbers, you use the character strings that are used as the labels for
the rows and columns. To apply this idea to our garden data frame, we would use a command like this:

> garden[ c("case.4", "case.5"), c("speaker", "utterance") ]

Once again, this produces exactly the same output, so I haven’t bothered to show it. Note that, although
this version is more annoying to type than the previous version, it’s a bit easier to read, because it’s often
more meaningful to refer to the elements by their names rather than their numbers. Also note that you
don’t have to use the same convention for the rows and columns. For instance, I often find that the
variable names are meaningful and so I sometimes refer to them by name, whereas the row names are
pretty arbitrary so it’s easier to refer to them by number. In fact, that’s more or less exactly what’s
happening with the garden data frame, so it probably makes more sense to use this as the command:

> garden[ 4:5, c("speaker", "utterance") ]

Again, the output is identical.

Finally, both the rows and columns can be indexed using logicals vectors as well. For example,
although I claimed earlier that my goal was to extract cases 4 and 5, it’s pretty obvious that what I really
wanted to do was select the cases where Makka-Pakka is speaking. So what I could have done is create
a logical vector that indicates which cases correspond to Makka-Pakka speaking:

> is.MP.speaking <- garden$speaker == "makka-pakka"

> is.MP.speaking

[1] FALSE FALSE FALSE TRUE TRUE
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As you can see, the 4th and 5th elements of this vector are TRUE while the others are FALSE. Now that
I’ve constructed this “indicator” variable, what I can do is use this vector to select the rows that I want
to keep:

> garden[ is.MP.speaking, c("speaker", "utterance") ]

And of course the output is, yet again, the same.

7.5.3 Using square brackets: II. Some elaborations

There are two fairly useful elaborations on this “rows and columns” approach that I should point out.
Firstly, what if you want to keep all of the rows, or all of the columns? To do this, all we have to do
is leave the corresponding entry blank, but it is crucial to remember to keep the comma! For instance,
suppose I want to keep all the rows in the garden data, but I only want to retain the first two columns.
The easiest way do this is to use a command like this:

> garden[ , 1:2 ]

speaker utterance

case.1 upsy-daisy pip

case.2 upsy-daisy pip

case.3 tombliboo ee

case.4 makka-pakka pip

case.5 makka-pakka onk

Alternatively, if I want to keep all the columns but only want the last two rows, I use the same trick, but
this time I leave the second index blank. So my command becomes:

> garden[ 4:5, ]

speaker utterance line

case.4 makka-pakka pip 7

case.5 makka-pakka onk 9

The second elaboration I should note is that it’s still okay to use negative indexes as a way of telling
R to delete certain rows or columns. For instance, if I want to delete the 3rd column, then I use this
command:

> garden[ , -3 ]

speaker utterance

case.1 upsy-daisy pip

case.2 upsy-daisy pip

case.3 tombliboo ee

case.4 makka-pakka pip

case.5 makka-pakka onk

whereas if I want to delete the 3rd row, then I’d use this one:

> garden[ -3, ]

speaker utterance line

case.1 upsy-daisy pip 1

case.2 upsy-daisy pip 2

case.4 makka-pakka pip 7

case.5 makka-pakka onk 9

So that’s nice.
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7.5.4 Using square brackets: III. Understanding “dropping”

At this point some of you might be wondering why I’ve been so terribly careful to choose my examples
in such a way as to ensure that the output always has are multiple rows and multiple columns. The reason
for this is that I’ve been trying to hide the somewhat curious “dropping” behaviour that R produces when
the output only has a single column. I’ll start by showing you what happens, and then I’ll try to explain
it. Firstly, let’s have a look at what happens when the output contains only a single row:

> garden[ 5, ]

speaker utterance line

case.5 makka-pakka onk 9

This is exactly what you’d expect to see: a data frame containing three variables, and only one case
per variable. Okay, no problems so far. What happens when you ask for a single column? Suppose, for
instance, I try this as a command:

garden[ , 3 ]

Based on everything that I’ve shown you so far, you would be well within your rights to expect to see R

produce a data frame containing a single variable (i.e., line) and five cases. After all, that is what the
subset() command does in this situation, and it’s pretty consistent with everything else that I’ve shown
you so far about how square brackets work. In other words, you should expect to see this:

line

case.1 1

case.2 2

case.3 5

case.4 7

case.5 9

However, that is emphatically not what happens. What you actually get is this:

> garden[ , 3 ]

[1] 1 2 5 7 9

That output is not a data frame at all! That’s just an ordinary numeric vector containing 5 elements.
What’s going on here is that R has “noticed” that the output that we’ve asked for doesn’t really “need”
to be wrapped up in a data frame at all, because it only corresponds to a single variable. So what it
does is “drop” the output from a data frame containing a single variable, “down” to a simpler output
that corresponds to that variable. This behaviour is actually very convenient for day to day usage once
you’ve become familiar with it – and I suppose that’s the real reason why R does this – but there’s no
escaping the fact that it is deeply confusing to novices. It’s especially confusing because the behaviour
appears only for a very specific case: (a) it only works for columns and not for rows, because the columns
correspond to variables and the rows do not, and (b) it only applies to the “rows and columns” version
of the square brackets, and not to the subset() function,11 or to the “just columns” use of the square
brackets (next section). As I say, it’s very confusing when you’re just starting out. For what it’s worth,
you can suppress this behaviour if you want, by setting drop = FALSE when you construct your bracketed
expression. That is, you could do something like this:

> garden[ , 3, drop = FALSE ]

line

11Actually, you can make the subset() function behave this way by using the optional drop argument, but by default
subset() does not drop, which is probably more sensible and more intuitive to novice users.
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case.1 1

case.2 2

case.3 5

case.4 7

case.5 9

I suppose that helps a little bit, in that it gives you some control over the dropping behaviour, but I’m
not sure it helps to make things any easier to understand. Anyway, that’s the “dropping” special case.
Fun, isn’t it?

7.5.5 Using square brackets: IV. Columns only

As if the weird “dropping” behaviour wasn’t annoying enough, R actually provides a completely
different way of using square brackets to index a data frame. Specifically, if you only give a single index,
R will assume you want the corresponding columns, not the rows. Do not be fooled by the fact that this
second method also uses square brackets: it behaves differently to the “rows and columns” method that
I’ve discussed in the last few sections. Again, what I’ll do is show you what happens first, and then I’ll
try to explain why it happens afterwards. To that end, let’s start with the following command:

> garden[ 1:2 ]

speaker utterance

case.1 upsy-daisy pip

case.2 upsy-daisy pip

case.3 tombliboo ee

case.4 makka-pakka pip

case.5 makka-pakka onk

As you can see, the output gives me the first two columns, much as if I’d typed garden[,1:2]. It doesn’t
give me the first two rows, which is what I’d have gotten if I’d used a command like garden[1:2,]. Not
only that, if I ask for a single column, R does not drop the output:

> garden[3]

line

case.1 1

case.2 2

case.3 5

case.4 7

case.5 9

As I said earlier, the only case where dropping occurs by default is when you use the “row and columns”
version of the square brackets, and the output happens to correspond to a single column. However, if
you really want to force R to drop the output, you can do so using the “double brackets” notation:

> garden[[3]]

[1] 1 2 5 7 9

Note that R will only allow you to ask for one column at a time using the double brackets. If you try
to ask for multiple columns in this way, you get completely different behaviour,12 which may or may
not produce an error, but definitely won’t give you the output you’re expecting. The only reason I’m
mentioning it at all is that you might run into double brackets when doing further reading, and a lot

12Specifically, recursive indexing, a handy tool in some contexts but not something that I want to discuss here.
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of books don’t explicitly point out the difference between [ and [[. However, I promise that I won’t be
using [[ anywhere else in this book.

Okay, for those few readers that have persevered with this section long enough to get here without
having set fire to the book, I should explain why R has these two different systems for subsetting a data
frame (i.e., “row and column” versus “just columns”), and why they behave so differently to each other.
I’m not 100% sure about this since I’m still reading through some of the old references that describe
the early development of R, but I think the answer relates to the fact that data frames are actually a
very strange hybrid of two different kinds of thing. At a low level, a data frame is a list (Section 4.9).
I can demonstrate this to you by overriding the normal print() function13 and forcing R to print out
the garden data frame using the default print method rather than the special one that is defined only for
data frames. Here’s what we get:

> print.default( garden )

$speaker

[1] upsy-daisy upsy-daisy tombliboo makka-pakka makka-pakka

Levels: makka-pakka tombliboo upsy-daisy

$utterance

[1] pip pip ee pip onk

Levels: ee onk oo pip

$line

[1] 1 2 5 7 9

attr(,"class")

[1] "data.frame"

Apart from the weird part of the output right at the bottom, this is identical to the print out that you
get when you print out a list (see Section 4.9). In other words, a data frame is a list. View from this “list
based” perspective, it’s clear what garden[1] is: it’s the first variable stored in the list, namely speaker.
In other words, when you use the “just columns” way of indexing a data frame, using only a single index,
R assumes that you’re thinking about the data frame as if it were a list of variables. In fact, when you
use the $ operator you’re taking advantage of the fact that the data frame is secretly a list.

However, a data frame is more than just a list. It’s a very special kind of list where all the variables
are of the same length, and the first element in each variable happens to correspond to the first “case”
in the data set. That’s why no-one ever wants to see a data frame printed out in the default “list-like”
way that I’ve shown in the extract above. In terms of the deeper meaning behind what a data frame is
used for, a data frame really does have this rectangular shape to it:

> print( garden )

speaker utterance line

case.1 upsy-daisy pip 1

case.2 upsy-daisy pip 2

case.3 tombliboo ee 5

case.4 makka-pakka pip 7

case.5 makka-pakka onk 9

Because of the fact that a data frame is basically a table of data, R provides a second “row and column”
method for interacting with the data frame (see Section 7.11.1 for a related example). This method makes
much more sense in terms of the high-level table of data interpretation of what a data frame is, and so for
the most part it’s this method that people tend to prefer. In fact, throughout the rest of the book I will

13Remember, print() is generic: see Section 4.11.
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be sticking to the “row and column” approach (though I will use $ a lot), and never again referring to
the “just columns” approach. However, it does get used a lot in practice, so I think it’s important that
this book explain what’s going on.

And now let us never speak of this again.

7.6

Sorting, flipping and merging data

In this section I discuss a few useful operations that I feel are loosely related to one another: sorting
a vector, sorting a data frame, binding two or more vectors together into a data frame (or matrix),
and flipping a data frame (or matrix) on its side. They’re all fairly straightforward tasks, at least in
comparison to some of the more obnoxious data handling problems that turn up in real life.

7.6.1 Sorting a numeric or character vector

One thing that you often want to do is sort a variable. If it’s a numeric variable you might want to sort
in increasing or decreasing order. If it’s a character vector you might want to sort alphabetically, etc.
The sort() function provides this capability.

> numbers <- c(2,4,3)

> sort( x = numbers )

[1] 2 3 4

You can ask for R to sort in decreasing order rather than increasing:

> sort( x = numbers, decreasing = TRUE )

[1] 4 3 2

And you can ask it to sort text data in alphabetical order:

> text <- c("aardvark", "zebra", "swing")

> sort( text )

[1] "aardvark" "swing" "zebra"

That’s pretty straightforward. That being said, it’s important to note that I’m glossing over something
here. When you apply sort() to a character vector it doesn’t strictly sort into alphabetical order. R

actually has a slightly different notion of how characters are ordered (see Section 7.8.5 and Table 7.3),
which is more closely related to how computers store text data than to how letters are ordered in the
alphabet. However, that’s a topic we’ll discuss later. For now, the only thing I should note is that the
sort() function doesn’t alter the original variable. Rather, it creates a new, sorted variable as the output.
So if I inspect my original text variable:

> text

[1] "aardvark" "zebra" "swing"

I can see that it has remained unchanged.
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7.6.2 Sorting a factor

You can also sort factors, but the story here is slightly more subtle because there’s two different ways
you can sort a factor: alphabetically (by label) or by factor level. The sort() function uses the latter.
To illustrate, let’s look at the two different examples. First, let’s create a factor in the usual way:

> fac <- factor( text )

> fac

[1] aardvark zebra swing

Levels: aardvark swing zebra

Now let’s sort it:

> sort(fac)

[1] aardvark swing zebra

Levels: aardvark swing zebra

This looks like it’s sorted things into alphabetical order, but that’s only because the factor levels them-
selves happen to be alphabetically ordered. Suppose I deliberately define the factor levels in a non-
alphabetical order:

> fac <- factor( text, levels = c("zebra","swing","aardvark") )

> fac

[1] aardvark zebra swing

Levels: zebra swing aardvark

Now what happens when we try to sort fac this time? The answer:

> sort(fac)

[1] zebra swing aardvark

Levels: zebra swing aardvark

It sorts the data into the numerical order implied by the factor levels, not the alphabetical order implied
by the labels attached to those levels. Normally you never notice the distinction, because by default the
factor levels are assigned in alphabetical order, but it’s important to know the difference:

7.6.3 Sorting a data frame

The sort() function doesn’t work properly with data frames. If you want to sort a data frame
the standard advice that you’ll find online is to use the order() function (not described in this book) to
determine what order the rows should be sorted, and then use square brackets to do the shuffling. There’s
nothing inherently wrong with this advice, I just find it tedious. To that end, the lsr package includes
a function called sortFrame() that you can use to do the sorting. The first argument to the function is
named (x), and should correspond to the data frame that you want sorted. After that, all you do is type
a list of the names of the variables that you want to use to do the sorting. For instance, if I type this:

> sortFrame( garden, speaker, line)

speaker utterance line

case.4 makka-pakka pip 7

case.5 makka-pakka onk 9

case.3 tombliboo ee 5

case.1 upsy-daisy pip 1

case.2 upsy-daisy pip 2
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what R does is first sort by speaker (factor level order). Any ties (i.e., data from the same speaker) are
then sorted in order of line (increasing numerical order). You can use the minus sign to indicate that
numerical variables should be sorted in reverse order:

> sortFrame( garden, speaker, -line)

speaker utterance line

case.5 makka-pakka onk 9

case.4 makka-pakka pip 7

case.3 tombliboo ee 5

case.2 upsy-daisy pip 2

case.1 upsy-daisy pip 1

As of the current writing, the sortFrame() function is under development. I’ve started introducing
functionality to allow you to use the - sign to non-numeric variables or to make a distinction between
sorting factors alphabetically or by factor level. The idea is that you should be able to type in something
like this:

> sortFrame( garden, -speaker)

and have the output correspond to a sort of the garden data frame in reverse alphabetical order (or reverse
factor level order) of speaker. As things stand right now, this will actually work, and it will produce
sensible output:

> sortFrame( garden, -speaker)

speaker utterance line

case.1 upsy-daisy pip 1

case.2 upsy-daisy pip 2

case.3 tombliboo ee 5

case.4 makka-pakka pip 7

case.5 makka-pakka onk 9

However, I’m not completely convinced that I’ve set this up in the ideal fashion, so this may change a
little bit in the future.

7.6.4 Binding vectors together

A not-uncommon task that you might find yourself needing to undertake is to combine several vectors.
For instance, let’s suppose we have the following two numeric vectors:

> cake.1 <- c(100, 80, 0, 0, 0)

> cake.2 <- c(100, 100, 90, 30, 10)

The numbers here might represent the amount of each of the two cakes that are left at five different time
points. Apparently the first cake is tastier, since that one gets devoured faster. We’ve already seen one
method for combining these vectors: we could use the data.frame() function to convert them into a data
frame with two variables, like so:

> cake.df <- data.frame( cake.1, cake.2 )

> cake.df

cake.1 cake.2

1 100 100

2 80 100

3 0 90

4 0 30

5 0 10
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Two other methods that I want to briefly refer to are the rbind() and cbind() functions, which will
convert the vectors into a matrix. I’ll discuss matrices properly in Section 7.11.1 but the details don’t
matter too much for our current purposes. The cbind() function (“column bind”) produces a very similar
looking output to the data frame example:

> cake.mat1 <- cbind( cake.1, cake.2 )

> cake.mat1

cake.1 cake.2

[1,] 100 100

[2,] 80 100

[3,] 0 90

[4,] 0 30

[5,] 0 10

but nevertheless it’s important to keep in mind that cake.mat1 is a matrix rather than a data frame,
and so has a few differences from the cake.df variable. The rbind() function (“row bind”) produces a
somewhat different output: it binds the vectors together row-wise rather than column-wise, so the output
now looks like this:

> cake.mat2 <- rbind( cake.1, cake.2 )

> cake.mat2

[,1] [,2] [,3] [,4] [,5]

cake.1 100 80 0 0 0

cake.2 100 100 90 30 10

You can add names to a matrix by using the rownames() and colnames() functions, and I should also
point out that there’s a fancier function in R called merge() that supports more complicated “database
like” merging of vectors and data frames, but I won’t go into details here.

7.6.5 Binding multiple copies of the same vector together

It is sometimes very useful to bind together multiple copies of the same vector. You could do this
using the rbind and cbind functions, using comands like this one

> fibonacci <- c( 1,1,2,3,5,8 )

> rbind( fibonacci, fibonacci, fibonacci )

[,1] [,2] [,3] [,4] [,5] [,6]

fibonacci 1 1 2 3 5 8

fibonacci 1 1 2 3 5 8

fibonacci 1 1 2 3 5 8

but that can be pretty annoying, especially if you needs lots of copies. To make this a little easier, the
lsr package has two additional functions rowCopy and colCopy that do the same job, but all you have to
do is specify the number of copies that you want, instead of typing the name in over and over again. The
two arguments you need to specify are x, the vector to be copied, and times, indicating how many copies
should be created:14

> rowCopy( x = fibonacci, times = 3 )

[,1] [,2] [,3] [,4] [,5] [,6]

14Note for advanced users: both of these functions are just wrappers to the matrix() function, which is pretty flexible in
terms of the ability to convert vectors into matrices. Also, while I’m on this topic, I’ll briefly mention the fact that if you’re
a Matlab user and looking for an equivalent of Matlab’s repmat() function, I’d suggest checking out the matlab package
which contains R versions of a lot of handy Matlab functions.
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[1,] 1 1 2 3 5 8

[2,] 1 1 2 3 5 8

[3,] 1 1 2 3 5 8

Of course, in practice you don’t need to name the arguments all the time. For instance, here’s an example
using the colCopy() function with the argument names omitted:

> colCopy( fibonacci, 3 )

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 1 1

[3,] 2 2 2

[4,] 3 3 3

[5,] 5 5 5

[6,] 8 8 8

7.6.6 Transposing a matrix or data frame

One of the main reasons that I wanted to discuss the rbind() and cbind() functions in the same section
as the data.frame() function is that it immediately raises the question of how to “flip” or transpose
a matrix or data frame. Notice that in the last section I was able to produce two different matrices,
cake.mat1 and cake.mat2 that were basically mirror images of one another. A natural question to ask is
whether you can directly transform one into another. The transpose function t() allows us to do this
in a straightforward fashion. To start with, I’ll show you how to transpose a matrix, and then I’ll move
onto talk about data frames. Firstly, let’s load a matrix I prepared earlier, from the cakes.Rdata file:

> load( "cakes.Rdata" )

> cakes

cake.1 cake.2 cake.3 cake.4

time.1 100 100 100 100

time.2 80 100 20 100

time.3 0 90 20 100

time.4 0 30 20 100

time.5 0 10 20 100

And just to make sure you believe me that this is actually a matrix:

> class( cakes )

[1] "matrix"

Okay, now let’s transpose the matrix:

> cakes.flipped <- t( cakes )

> cakes.flipped

time.1 time.2 time.3 time.4 time.5

cake.1 100 80 0 0 0

cake.2 100 100 90 30 10

cake.3 100 20 20 20 20

cake.4 100 100 100 100 100

The output here is still a matrix:

> class( cakes.flipped )

[1] "matrix"
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At this point you should have two questions: (1) how do we do the same thing for data frames? and
(2) why should we care about this? Let’s start with the how question. First, I should note that you can
transpose a data frame just fine using the t() function, but that has the slightly awkward consequence
of converting the output from a data frame to a matrix, which isn’t usually what you want. It’s quite
easy to convert the output back again, of course,15 but I hate typing two commands when I can do it
with one. To that end, the lsr package has a simple “convenience” function called tFrame() which does
exactly the same thing as t() but converts the output to a data frame for you. To illustrate this, let’s
transpose the itng data frame that we used earlier. Here’s the original data frame:

> itng

speaker utterance

1 upsy-daisy pip

2 upsy-daisy pip

3 upsy-daisy onk

4 upsy-daisy onk

5 tombliboo ee

6 tombliboo oo

7 makka-pakka pip

8 makka-pakka pip

9 makka-pakka onk

10 makka-pakka onk

and here’s what happens when you transpose it using tFrame():

> tFrame( itng )

V1 V2 V3 V4 V5

speaker upsy-daisy upsy-daisy upsy-daisy upsy-daisy tombliboo

utterance pip pip onk onk ee

V6 V7 V8 V9 V10

speaker tombliboo makka-pakka makka-pakka makka-pakka makka-pakka

utterance oo pip pip onk onk

An important point to recognise is that transposing a data frame is not always a sensible thing to do: in
fact, I’d go so far as to argue that it’s usually not sensible. It depends a lot on whether the “cases” from
your original data frame would make sense as variables, and to think of each of your original “variables”
as cases. I think that’s emphatically not true for our itng data frame, so I wouldn’t advise doing it in
this situation.

That being said, sometimes it really is true. For instance, had we originally stored our cakes variable
as a data frame instead of a matrix, then it would absolutely be sensible to flip the data frame!16 There are
some situations where it is useful to flip your data frame, so it’s nice to know that you can do it. Indeed,
that’s the main reason why I have spent so much time talking about this topic. A lot of statistical tools
make the assumption that the rows of your data frame (or matrix) correspond to observations, and the
columns correspond to the variables. That’s not unreasonable, of course, since that is a pretty standard
convention. However, think about our cakes example here. This is a situation where you might want do
an analysis of the different cakes (i.e. cakes as variables, time points as cases), but equally you might
want to do an analysis where you think of the times as being the things of interest (i.e., times as variables,
cakes as cases). If so, then it’s useful to know how to flip a matrix or data frame around.

15The function you need for that is called as.data.frame().
16In truth, I suspect that most of the cases when you can sensibly flip a data frame occur when all of the original variables

are measurements of the same type (e.g., all variables are response times), and if so you could easily have chosen to encode
your data as a matrix instead of as a data frame. But since people do sometimes prefer to work with data frames, I’ve
written the tFrame() function for the sake of convenience. I don’t really think it’s something that is needed very often.
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7.7

Reshaping a data frame

One of the most annoying tasks that you need to undertake on a regular basis is that of reshaping a data
frame. Framed in the most general way, reshaping the data means taking the data in whatever format
it’s given to you, and converting it to the format you need it. Of course, if we’re going to characterise the
problem that broadly, then about half of this chapter can probably be thought of as a kind of reshaping.
So we’re going to have to narrow things down a little bit. To that end, I’ll talk about a few different
tools that you can use for a few different tasks. In particular, I’ll discuss a couple of easy to use (but
limited) functions that I’ve included in the lsr package. In future versions of the book I plan to expand
this discussion to include some of the more powerful tools that are available in R, but I haven’t had the
time to do so yet.

7.7.1 Long form and wide form data

The most common format in which you might obtain data is as a “case by variable” layout, commonly
known as the wide form of the data.

> load("repeated.Rdata")

> who()

-- Name -- -- Class -- -- Size --

choice data.frame 4 x 10

drugs data.frame 10 x 8

To get a sense of what I’m talking about, consider an experiment in which we are interested in the
different effects that alcohol and and caffeine have on people’s working memory capacity (WMC) and
reaction times (RT). We recruit 10 participants, and measure their WMC and RT under three different
conditions: a “no drug” condition, in which they are not under the influence of either caffeine or alcohol,
a “caffeine” condition, in which they are under the inflence of caffeine, and an “alcohol” condition, in
which... well, you can probably guess. Ideally, I suppose, there would be a fourth condition in which
both drugs are administered, but for the sake of simplicity let’s ignore that. The drugs data frame gives
you a sense of what kind of data you might observe in an experiment like this:

> drugs

id gender WMC_alcohol WMC_caffeine WMC_no.drug RT_alcohol RT_caffeine RT_no.drug

1 1 female 3.7 3.7 3.9 488 236 371

2 2 female 6.4 7.3 7.9 607 376 349

3 3 female 4.6 7.4 7.3 643 226 412

4 4 male 6.4 7.8 8.2 684 206 252

5 5 female 4.9 5.2 7.0 593 262 439

6 6 male 5.4 6.6 7.2 492 230 464

7 7 male 7.9 7.9 8.9 690 259 327

8 8 male 4.1 5.9 4.5 486 230 305

9 9 female 5.2 6.2 7.2 686 273 327

10 10 female 6.2 7.4 7.8 645 240 498

This is a data set in “wide form”, in which each participant corresponds to a single row. We have two
variables that are characteristics of the subject (i.e., their id number and their gender) and six variables
that refer to one of the two measured variables (WMC or RT) in one of the three testing conditions
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(alcohol, caffeine or no drug). Because all of the testing conditions (i.e., the three drug types) are applied
to all participants, drug type is an example of a within-subject factor.

7.7.2 Reshaping data using ✇✐❞❡❚♦▲♦♥❣✭✮

The “wide form” of this data set is useful for some situations: it is often very useful to have each
row correspond to a single subject. However, it is not the only way in which you might want to organise
this data. For instance, you might want to have a separate row for each “testing occasion”. That is,
“participant 1 under the influence of alcohol” would be one row, and “participant 1 under the influence
of caffeine” would be another row. This way of organising the data is generally referred to as the long
form of the data. It’s not too difficult to switch between wide and long form, and I’ll explain how it
works in a moment; for now, let’s just have a look at what the long form of this data set looks like:

> drugs.2 <- wideToLong( data = drugs, within = "drug" )

> drugs.2

id gender drug WMC RT

1 1 female alcohol 3.7 488

2 2 female alcohol 6.4 607

3 3 female alcohol 4.6 643

4 4 male alcohol 6.4 684

5 5 female alcohol 4.9 593

6 6 male alcohol 5.4 492

7 7 male alcohol 7.9 690

8 8 male alcohol 4.1 486

9 9 female alcohol 5.2 686

10 10 female alcohol 6.2 645

11 1 female caffeine 3.7 236

12 2 female caffeine 7.3 376

BLAH BLAH BLAH

The drugs.2 data frame that we just created has 30 rows: each of the 10 participants appears in three
separate rows, one corresponding to each of the three testing conditions. And instead of having a
variable like WMC_caffeine that indicates that we were measuring “WMC” in the “caffeine” condition, this
information is now recorded in two separate variables, one called drug and another called WMC. Obviously,
the long and wide forms of the data contain the same information, but they represent quite different ways
of organising that information. Sometimes you find yourself needing to analyse data in wide form, and
sometimes you find that you need long form. So it’s really useful to know how to switch between the two.

In the example I gave above, I used a function called wideToLong() to do the transformation. The
wideToLong() function is part of the lsr package. The key to understanding this function is that it relies
on the variable names to do all the work. Notice that the variable names in the drugs data frame follow
a very clear scheme. Whenever you have a variable with a name like WMC_caffeine you know that the
variable being measured is “WMC”, and that the specific condition in which it is being measured is the
“caffeine” condition. Similarly, you know that RT_no.drug refers to the “RT” variable measured in the
“no drug” condition. The measured variable comes first (e.g., WMC), followed by a separator character
(in this case the separator is an underscore, _), and then the name of the condition in which it is being
measured (e.g., caffeine). There are two different prefixes (i.e, the strings before the separator, WMC, RT)
which means that there are two separate variables being measured. There are three different suffixes (i.e.,
the strings after the separtator, caffeine, alcohol, no.drug) meaning that there are three different levels
of the within-subject factor. Finally, notice that the separator string (i.e., _) does not appear anywhere in
two of the variables (id, gender), indicating that these are between-subject variables, namely variables
that do not vary within participant (e.g., a person’s gender is the same regardless of whether they’re

- 223 -



under the influence of alcohol, caffeine etc).

Because of the fact that the variable naming scheme here is so informative, it’s quite possible to
reshape the data frame without any additional input from the user. For example, in this particular case,
you could just type the following:

> wideToLong( drugs )

id gender within WMC RT

1 1 female alcohol 3.7 488

2 2 female alcohol 6.4 607

3 3 female alcohol 4.6 643

4 4 male alcohol 6.4 684

BLAH BLAH BLAH

This is pretty good, actually. The only think it has gotten wrong here is that it doesn’t know what name
to assign to the within-subject factor, so instaed of calling it something sensible like drug, it has use
the unimaginative name within. If you want to ensure that the wideToLong() function applies a sensible
name, you have to specify the within argument, which is just a character string that specifies the name
of the within-subject factor. So when I used this command earlier,

> drugs.2 <- wideToLong( data = drugs, within = "drug" )

all I was doing was telling R to use drug as the name of the within subject factor.

Now, as I was hinting earlier, the wideToLong() function is very inflexible. It requires that the variable
names all follow this naming scheme that I outlined earlier. If you don’t follow this naming scheme it
won’t work.17 The only flexibility that I’ve included here is that you can change the separator character
by specifying the sep argument. For instance, if you were using variable names of the form WMC/caffeine,
for instance, you could specify that sep="/", using a command like this

> drugs.2 <- wideToLong( data = drugs, within = "drug", sep = "/" )

and it would still work.

7.7.3 Reshaping data using ❧♦♥❣❚♦❲✐❞❡✭✮

To convert data from long form to wide form, the lsr package also includes a function called
longToWide(). Recall from earlier that the long form of the data (i.e., the drugs.2 data frame) con-
tains variables named id, gender, drug, WMC and RT. In order to convert from long form to wide form, all
you need to do is indicate which of these variables are measured separately for each condition (i.e., WMC
and RT), and which variable is the within-subject factor that specifies the condition (i.e., drug). You do
this via a two-sided formula, in which the measured variables are on the left hand side, and the within-
subject factor is on the ritght hand side. In this case, the formula would be WMC + RT ~ drug. So the
command that we would use might look like this:

> longToWide( data=drugs.2, formula= WMC+RT ~ drug )

id gender WMC_alcohol RT_alcohol WMC_caffeine RT_caffeine WMC_no.drug RT_no.drug

1 1 female 3.7 488 3.7 236 3.9 371

2 2 female 6.4 607 7.3 376 7.9 349

17This limitation is deliberate, by the way: if you’re getting to the point where you want to do something more complicated,
you should probably start learning how to use reshape(), cast() and melt() or some of other the more advanced tools. The
wideToLong() and longToWide() functions are included only to help you out when you’re first starting to use R.
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3 3 female 4.6 643 7.4 226 7.3 412

4 4 male 6.4 684 7.8 206 8.2 252

5 5 female 4.9 593 5.2 262 7.0 439

6 6 male 5.4 492 6.6 230 7.2 464

7 7 male 7.9 690 7.9 259 8.9 327

8 8 male 4.1 486 5.9 230 4.5 305

9 9 female 5.2 686 6.2 273 7.2 327

10 10 female 6.2 645 7.4 240 7.8 498

or, if we chose to omit argument names, we could simplify it to this:

> longToWide( drugs.2, WMC+RT ~ drug )

Note that, just like the wideToLong() function, the longToWide() function allows you to override the
default separator character. For instance, if the command I used had been

> longToWide( drugs.2, WMC+RT ~ drug, sep="/" )

the output would contain variables with names like RT/alcohol instead of RT_alcohol.

7.7.4 Reshaping with multiple within-subject factors

As I mentioned above, the wideToLong() and longToWide() functions are quite limited in terms of what
they can do. However, they do handle a broader range of situations than the one outlined above. Consider
the following, fairly simple psychological experiment. I’m interested in the effects of practice on some
simple decision making problem. It doesn’t really matter what the problem is, other than to note that
I’m interested in two distinct outcome variables. Firstly, I care about people’s accuracy, measured by the
proportion of decisions that people make correctly, denoted PC. Secondly, I care about people’s speed,
measured by the mean response time taken to make those decisions, denoted MRT. That’s standard in
psychological experiments: the speed-accuracy trade-off is pretty ubiquitous, so we generally need to care
about both variables.

To look at the effects of practice over the long term, I test each participant on two days, day1 and
day2, where for the sake of argument I’ll assume that day1 and day2 are about a week apart. To look at
the effects of practice over the short term, the testing during each day is broken into two “blocks”, block1
and block2, which are about 20 minutes apart. This isn’t the world’s most complicated experiment, but
it’s still a fair bit more complicated than the last one. This time around we have two within-subject
factors (i.e., day and block) and we have two measured variables for each condition (i.e., PC and MRT). The
choice data frame shows what the wide form of this kind of data might look like:

> choice

id gender MRT/block1/day1 MRT/block1/day2 MRT/block2/day1 MRT/block2/day2

1 1 male 415 400 455 450

2 2 male 500 490 532 518

3 3 female 478 468 499 474

4 4 female 550 502 602 588

PC/block1/day1 PC/block1/day2 PC/block2/day1 PC/block2/day2

1 79 88 82 93

2 83 92 86 97

3 91 98 90 100

4 75 89 78 95
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Notice that this time around we have variable names of the form MRT/block1/day2. As before, the first
part of the name refers to the measured variable (response time), but there are now two suffixes, one
indicating that the testing took place in block 1, and the other indicating that it took place on day 2.
And just to complicate matters, it uses / as the separator character rather than _. Even so, reshaping
this data set is pretty easy. The command to do it is,

> choice.2 <- wideToLong( choice, within=c("block","day"), sep="/" )

which is pretty much the exact same command we used last time. The only difference here is that,
because there are two within-subject factors, the within argument is a vector that contains two names.
When we look at the long form data frame that this creates, we get this:

> choice.2

id gender MRT PC block day

1 1 male 415 79 block1 day1

2 2 male 500 83 block1 day1

3 3 female 478 91 block1 day1

4 4 female 550 75 block1 day1

5 1 male 400 88 block1 day2

6 2 male 490 92 block1 day2

BLAH BLAH BLAH

15 3 female 474 100 block2 day2

16 4 female 588 95 block2 day2

In this long form data frame we have two between-subject variables (id and gender), two variables that
define our within-subject manipulations (block and day), and two more contain the measurements we
took (MRT and PC).

To convert this back to wide form is equally straightforward. We use the longToWide() function, but
this time around we need to alter the formula in order to tell it that we have two within-subject factors.
The command is now

> longToWide( choice.2, MRT+PC ~ block+day, sep="/" )

and this produces a wide form data set containing the same variables as the original choice data frame.

7.7.5 What other options are there?

The advantage to the approach described in the previous section is that it solves a quite specific
problem (but a commonly encountered one) with a minimum of fuss. The disadvantage is that the tools
are quite limited in scope. They allow you to switch your data back and forth between two different
formats that are very common in everyday data analysis. However, there a number of other tools that
you can use if need be. Just within the core packages distributed with R there is the reshape() function,
as well as the stack() and unstack() functions, all of which can be useful under certain circumstances.
And there are of course thousands of packages on CRAN that you can use to help you with different
tasks. One popular package for this purpose is the reshape package, written by Hadley Wickham (see
Wickham, 2007, for details). There are two key functions in this package, called melt() and cast() that
are pretty useful for solving a lot of reshaping problems. In a future version of this book I intend to
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discuss melt() and cast() in a fair amount of detail.

7.8

Working with text

Sometimes your data set is quite text heavy. This can be for a lot of different reasons. Maybe the raw
data are actually taken from text sources (e.g., newspaper articles), or maybe your data set contains a
lot of free responses to survey questions, in which people can write whatever text they like in response to
some query. Or maybe you just need to rejig some of the text used to describe nominal scale variables.
Regardless of what the reason is, you’ll probably want to know a little bit about how to handle text in
R. Some things you already know how to do: I’ve discussed the use of nchar() to calculate the number of
characters in a string (Section 3.8.1), and a lot of the general purpose tools that I’ve discussed elsewhere
(e.g., the == operator) have been applied to text data as well as to numeric data. However, because text
data is quite rich, and generally not as well structured as numeric data, R provides a lot of additional
tools that are quite specific to text. In this section I discuss only those tools that come as part of the base
packages, but there are other possibilities out there: the stringr package provides a powerful alternative
that is a lot more coherent than the basic tools, and is well worth looking into.

7.8.1 Shortening a string

The first task I want to talk about is how to shorten a character string. For example, suppose that I
have a vector that contains the names of several different animals:

> animals <- c( "cat", "dog", "kangaroo", "whale" )

It might be useful in some contexts to extract the first three letters of each word. This is often useful
when annotating figures, or when creating variable labels: it’s often very inconvenient to use the full
name, so you want to shorten it to a short code for space reasons. The strtrim() function can be used for
this purpose. It has two arguments: x is a vector containing the text to be shortened and width specifies
the number of characters to keep. When applied to the animals data, here’s what we get:

> strtrim( x = animals, width = 3 )

[1] "cat" "dog" "kan" "wha"

Note that the only thing that strtrim() does is chop off excess characters at the end of a string. It
doesn’t insert any whitespace characters to fill them out if the original string is shorter than the width

argument. For example, if I trim the animals data to 4 characters, here’s what I get:

> strtrim( x = animals, width = 4 )

[1] "cat" "dog" "kang" "whal"

The "cat" and "dog" strings still only use 3 characters. Okay, but what if you don’t want to start from
the first letter? Suppose, for instance, I only wanted to keep the second and third letter of each word.
That doesn’t happen quite as often, but there are some situations where you need to do something like
that. If that does happen, then the function you need is substr(), in which you specify a start point
and a stop point instead of specifying the width. For instance, to keep only the 2nd and 3rd letters of
the various animals, I can do the following:

> substr( x = animals, start = 2, stop = 3 )

[1] "at" "og" "an" "ha"
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7.8.2 Pasting strings together

Much more commonly, you will need either to glue several character strings together or to pull them
apart. To glue several strings together, the paste() function is very useful. There are three arguments
to the paste() function:

• ... As usual, the dots “match” up against any number of inputs. In this case, the inputs should
be the various different strings you want to paste together.

• sep. This argument should be a string, indicating what characters R should use as separators, in
order to keep each of the original strings separate from each other in the pasted output. By default
the value is a single space, sep = " ". This is made a little clearer when we look at the examples.

• collapse. This is an argument indicating whether the paste() function should interpret vector
inputs as things to be collapsed, or whether a vector of inputs should be converted into a vector of
outputs. The default value is collapse = NULL which is interpreted as meaning that vectors should
not be collapsed. If you want to collapse vectors into as single string, then you should specify a
value for collapse. Specifically, the value of collapse should correspond to the separator character
that you want to use for the collapsed inputs. Again, see the examples below for more details.

That probably doesn’t make much sense yet, so let’s start with a simple example. First, let’s try to paste
two words together, like this:

> paste( "hello", "world" )

[1] "hello world"

Notice that R has inserted a space between the "hello" and "world". Suppose that’s not what I wanted.
Instead, I might want to use . as the separator character, or to use no separator at all. To do either of
those, I would need to specify sep = "." or sep = "".18 For instance:

> paste( "hello", "world", sep = "." )

[1] "hello.world"

Now let’s consider a slightly more complicated example. Suppose I have two vectors that I want to
paste() together. Let’s say something like this:

> hw <- c( "hello", "world" )

> ng <- c( "nasty", "government" )

And suppose I want to paste these together. However, if you think about it, this statement is kind
of ambiguous. It could mean that I want to do an “element wise” paste, in which all of the first
elements get pasted together ("hello nasty") and all the second elements get pasted together ("world
government"). Or, alternatively, I might intend to collapse everything into one big string ("hello nasty

world government"). By default, the paste() function assumes that you want to do an element-wise paste:

> paste( hw, ng )

[1] "hello nasty" "world government"

However, there’s nothing stopping you from overriding this default. All you have to do is specify a value
for the collapse argument, and R will chuck everything into one dirty big string. To give you a sense of
exactly how this works, what I’ll do in this next example is specify different values for sep and collapse:

18To be honest, it does bother me a little that the default value of sep is a space. Normally when I want to paste strings
together I don’t want any separator character, so I’d prefer it if the default were sep="". To that end, it’s worth noting that
there’s also a paste0() function, which is identical to paste() except that it always assumes that sep="". Type ?paste for
more information about this.
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> paste( hw, ng, sep = ".", collapse = ":::")

[1] "hello.nasty:::world.government"

7.8.3 Splitting strings

At other times you have the opposite problem to the one in the last section: you have a whole lot of
text bundled together into a single string that needs to be pulled apart and stored as several different
variables. For instance, the data set that you get sent might include a single variable containing someone’s
full name, and you need to separate it into first names and last names. To do this in R you can use the
strsplit() function, and for the sake of argument, let’s assume that the string you want to split up is
the following string:

> monkey <- "It was the best of times. It was the blurst of times."

To use the strsplit() function to break this apart, there are three arguments that you need to pay
particular attention to:

• x. A vector of character strings containing the data that you want to split.

• split. Depending on the value of the fixed argument, this is either a fixed string that specifies a
delimiter, or a regular expression that matches against one or more possible delimiters. If you don’t
know what regular expressions are (probably most readers of this book), don’t use this option. Just
specify a separator string, just like you would for the paste() function.

• fixed. Set fixed = TRUE if you want to use a fixed delimiter. As noted above, unless you understand
regular expressions this is definitely what you want. However, the default value is fixed = FALSE,
so you have to set it explicitly.

Let’s look at a simple example:

> monkey.1 <- strsplit( x = monkey, split = " ", fixed = TRUE )

> monkey.1

[[1]]

[1] "It" "was" "the" "best" "of" "times." "It" "was"

[9] "the" "blurst" "of" "times."

One thing to note in passing is that the output here is a list (you can tell from the [[1]] part of the
output), whose first and only element is a character vector. This is useful in a lot of ways, since it means
that you can input a character vector for x and then then have the strsplit() function split all of them,
but it’s kind of annoying when you only have a single input. To that end, it’s useful to know that you
can unlist() the output:

> unlist( monkey.1 )

[1] "It" "was" "the" "best" "of" "times." "It" "was"

[9] "the" "blurst" "of" "times."

To understand why it’s important to remember to use the fixed = TRUE argument, suppose we wanted
to split this into two separate sentences. That is, we want to use split = "." as our delimiter string. As
long as we tell R to remember to treat this as a fixed separator character, then we get the right answer:

> strsplit( x = monkey, split = ".", fixed = TRUE )

[[1]]

[1] "It was the best of times" " It was the blurst of times"
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However, if we don’t do this, then R will assume that when you typed split = "." you were trying to
construct a “regular expression”, and as it happens the character . has a special meaning within a regular
expression. As a consequence, if you forget to include the fixed = TRUE part, you won’t get the answers
you’re looking for.

7.8.4 Making simple conversions

A slightly different task that comes up quite often is making transformations to text. A simple example
of this would be converting text to lower case or upper case, which you can do using the toupper() and
tolower() functions. Both of these functions have a single argument x which contains the text that needs
to be converted. An example of this is shown below:

> text <- c( "lIfe", "Impact" )

> tolower( x = text )

[1] "life" "impact"

A slightly more powerful way of doing text transformations is to use the chartr() function, which allows
you to specify a “character by character” substitution. This function contains three arguments, old, new
and x. As usual x specifies the text that needs to be transformed. The old and new arguments are strings
of the same length, and they specify how x is to be converted. Every instance of the first character in old

is converted to the first character in new and so on. For instance, suppose I wanted to convert "albino"

to "libido". To do this, I need to convert all of the "a" characters (all 1 of them) in "albino" into "l"

characters (i.e., a Ñ l). Additionally, I need to make the substitutions l Ñ i and n Ñ d. To do so, I
would use the following command:

> old.text <- "albino"

> chartr( old = "aln", new = "lid", x = old.text )

[1] "libido"

7.8.5 Applying logical operations to text

In Section 3.9.5 we discussed a very basic text processing tool, namely the ability to use the equality
operator == to test to see if two strings are identical to each other. However, you can also use other
logical operators too. For instance R also allows you to use the < and > operators to determine which of
two strings comes first, alphabetically speaking. Sort of. Actually, it’s a bit more complicated than that,
but let’s start with a simple example:

> "cat" < "dog"

[1] TRUE

In this case, we see that "cat" does does come before "dog" alphabetically, so R judges the statement to
be true. However, if we ask R to tell us if "cat" comes before "anteater",

> "cat" < "anteater"

[1] FALSE

It tell us that the statement is false. So far, so good. But text data is a bit more complicated than the
dictionary suggests. What about "cat" and "CAT"? Which of these comes first? Let’s try it and find out:

> "CAT" < "cat"

[1] TRUE
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Table 7.3: The ordering of various text characters used by the < and > operators, as well as by the sort()

function. Not shown is the “space” character, which actually comes first on the list.

! " # $ % & ’ ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ‘

a b c d e f g h i j k l m n o p q r s t u v w x y z } | {

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In other words, R assumes that uppercase letters come before lowercase ones. Fair enough. No-one is
likely to be surprised by that. What you might find surprising is that R assumes that all uppercase
letters come before all lowercase ones. That is, while "anteater" < "zebra" is a true statement, and the
uppercase equivalent "ANTEATER" < "ZEBRA" is also true, it is not true to say that "anteater" < "ZEBRA",
as the following extract illustrates:

> "anteater" < "ZEBRA"

[1] FALSE

This may seem slightly counterintuitive. With that in mind, it may help to have a quick look Table 7.3,
which lists various text characters in the order that R uses.

7.8.6 Concatenating and printing with ❝❛t✭✮

One function that I want to make a point of talking about, even though it’s not quite on topic, is
the cat() function. The cat() function is a of mixture of paste() and print(). That is, what it does
is concatenate strings and then print them out. In your own work you can probably survive without it,
since print() and paste() will actually do what you need, but the cat() function is so widely used that I
think it’s a good idea to talk about it here. The basic idea behind cat() is straightforward. Like paste(),
it takes several arguments as inputs, which it converts to strings, collapses (using a separator character
specified using the sep argument), and prints on screen. If you want, you can use the file argument to
tell R to print the output into a file rather than on screen (I won’t do that here). However, it’s important
to note that the cat() function collapses vectors first, and then concatenates them. That is, notice that
when I use cat() to combine hw and ng, I get a different result than if I’d used paste()

> cat( hw, ng )

hello world nasty government

> paste( hw, ng, collapse = " " )

[1] "hello nasty world government"

Notice the difference in the ordering of words. There’s a few additional details that I need to mention
about cat(). Firstly, cat() really is a function for printing, and not for creating text strings to store for
later. You can’t assign the output to a variable, as the following example illustrates:

> x <- cat( hw, ng )

hello world nasty government

> x

NULL

Despite my attempt to store the output as a variable, cat() printed the results on screen anyway, and
it turns out that the variable I created doesn’t contain anything at all.19 Secondly, the cat() function

19Note that you can capture the output from cat() if you want to, but you have to be sneaky and use the capture.output()

function. For example, the command x <- capture.output(cat(hw,ng)) would work just fine.
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makes use of a number of “special” characters. I’ll talk more about these in the next section, but I’ll
illustrate the basic point now, using the example of "\n" which is interpreted as a “new line” character.
For instance, compare the behaviour of print() and cat() when asked to print the string hello\nworld":

> print( "hello\nworld" ) # print literally:

[1] "hello\nworld"

> cat( "hello\nworld" ) # interpret as newline

hello

world

In fact, this behaviour is important enough that it deserves a section of its very own...

7.8.7 Using escape characters in text

The previous section brings us quite naturally to a fairly fundamental issue when dealing with strings,
namely the issue of delimiters and escape characters. Reduced to its most basic form, the problem we
have is that R commands are written using text characters, and our strings also consist of text characters.
So, suppose I want to type in the word “hello”, and have R encode it as a string. If I were to just type
hello, R will think that I’m referring to a variable or a function called hello rather than interpret it as a
string. The solution that R adopts is to require you to enclose your string by delimiter characters, which
can be either double quotes or single quotes. So, when I type "hello" or ’hello’ then R knows that it
should treat the text in between the quote marks as a character string. However, this isn’t a complete
solution to the problem: after all, " and ’ are themselves perfectly legitimate text characters, and so we
might want to include those in our string as well. For instance, suppose I wanted to encode the name
“O’Rourke” as a string. It’s not legitimate for me to type ’O’rourke’ because R is too stupid to realise
that “O’Rourke” is a real word. So it will interpret the ’O’ part as a complete string, and then will get
confused when it reaches the Rourke’ part. As a consequence, what you get is an error message:

> ’O’Rourke’

Error: unexpected symbol in "’O’Rourke"

To some extent, R offers us a cheap fix to the problem because of the fact that it allows us to use either " or
’ as the delimiter character. Although ’O’rourke’ will make R cry, it is perfectly happy with "O’Rourke":

> "O’Rourke"

[1] "O’Rourke"

This is a real advantage to having two different delimiter characters. Unfortunately, anyone with even
the slightest bit of deviousness to them can see the problem with this. Suppose I’m reading a book that
contains the following passage,

P.J. O’Rourke says, “Yay, money!”. It’s a joke, but no-one laughs.

and I want to enter this as a string. Neither the ’ or " delimiters will solve the problem here, since this
string contains both a single quote character and a double quote character. To encode strings like this
one, we have to do something a little bit clever.

The solution to the problem is to designate an escape character, which in this case is \, the humble
backslash. The escape character is a bit of a sacrificial lamb: if you include a backslash character in your
string, R will not treat it as a literal character at all. It’s actually used as a way of inserting “special”
characters into your string. For instance, if you want to force R to insert actual quote marks into the
string, then what you actually type is \’ or \" (these are called escape sequences). So, in order to
encode the string discussed earlier, here’s a command I could use:
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Table 7.4: Standard escape characters that are evaluated by some text processing commands, including
cat(). This convention dates back to the development of the C programming language in the 1970s, and
as a consequence a lot of these characters make most sense if you pretend that R is actually a typewriter,
as explained in the main text. Type ?Quotes for the corresponding R help file.

Escape sequence Interpretation
\n Newline
\t Horizontal Tab
\v Vertical Tab
\b Backspace
\r Carriage Return

Escape sequence Interpretation
\f Form feed
\a Alert sound
\\ Backslash
\’ Single quote
\" Double quote

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> PJ <- "P.J. O\’Rourke says, \"Yay, money!\". It\’s a joke, but no-one laughs."

Notice that I’ve included the backslashes for both the single quotes and double quotes. That’s actually
overkill: since I’ve used " as my delimiter, I only needed to do this for the double quotes. Nevertheless,
the command has worked, since I didn’t get an error message. Now let’s see what happens when I print
it out:

> print( PJ )

[1] "P.J. O’Rourke says, \"Yay, money!\". It’s a joke, but no-one laughs."

Hm. Why has R printed out the string using \"? For the exact same reason that I needed to insert the
backslash in the first place. That is, when R prints out the PJ string, it has enclosed it with delimiter
characters, and it wants to unambiguously show us which of the double quotes are delimiters and which
ones are actually part of the string. Fortunately, if this bugs you, you can make it go away by using the
print.noquote() function, which will just print out the literal string that you encoded in the first place:

> print.noquote( PJ )

[1] P.J. O’Rourke says, "Yay, money!". It’s a joke, but no-one laughs.

Typing cat(PJ) will produce a similar output.

Introducing the escape character solves a lot of problems, since it provides a mechanism by which
we can insert all sorts of characters that aren’t on the keyboard. For instance, as far as a computer is
concerned, “new line” is actually a text character. It’s the character that is printed whenever you hit
the “return” key on your keyboard. If you want to insert a new line character into your string, you can
actually do this by including the escape sequence \n. Or, if you want to insert a backslash character,
then you can use \\. A list of the standard escape sequences recognised by R is shown in Table 7.4. A
lot of these actually date back to the days of the typewriter (e.g., carriage return), so they might seem
a bit counterintuitive to people who’ve never used one. In order to get a sense for what the various
escape sequences do, we’ll have to use the cat() function, because it’s the only function “dumb” enough
to literally print them out:

> cat( "xxxx\boo" ) # \b is a backspace, so it deletes the preceding x

xxxoo

> cat( "xxxx\too" ) # \t is a tab, so it inserts a tab space

xxxx oo

> cat( "xxxx\noo" ) # \n is a newline character

xxxx

oo
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> cat( "xxxx\roo" ) # \r returns you to the beginning of the line

ooxx

And that’s pretty much it. There are a few other escape sequence that R recognises, which you can use
to insert arbitrary ASCII or Unicode characters into your string (type ?Quotes for more details) but I
won’t go into details here.

7.8.8 Matching and substituting text

Another task that we often want to solve is find all strings that match a certain criterion, and possibly
even to make alterations to the text on that basis. There are several functions in R that allow you to
do this, three of which I’ll talk about briefly here: grep(), gsub() and sub(). Much like the substr()

function that I talked about earlier, all three of these functions are intended to be used in conjunction
with regular expressions (see Section 7.8.9) but you can also use them in a simpler fashion, since they
all allow you to set fixed = TRUE, which means we can ignore all this regular expression rubbish and just
use simple text matching.

So, how do these functions work? Let’s start with the grep() function. The purpose of this function
is to input a vector of character strings x, and to extract all those strings that fit a certain pattern. In
our examples, I’ll assume that the pattern in question is a literal sequence of characters that the string
must contain (that’s what fixed = TRUE does). To illustrate this, let’s start with a simple data set, a
vector that contains the names of three beers. Something like this:

> beers <- c( "little creatures", "sierra nevada", "coopers pale" )

Next, let’s use grep() to find out which of these strings contains the substring "er". That is, the pattern

that we need to match is the fixed string "er", so the command we need to use is:

> grep( pattern = "er", x = beers, fixed = TRUE )

[1] 2 3

What the output here is telling us is that the second and third elements of beers both contain the substring
"er". Alternatively, however, we might prefer it if grep() returned the actual strings themselves. We can
do this by specifying value = TRUE in our function call. That is, we’d use a command like this:

> grep( pattern = "er", x = beers, fixed = TRUE, value = TRUE )

[1] "sierra nevada" "coopers pale"

The other two functions that I wanted to mention in this section are gsub() and sub(). These are
both similar in spirit to grep() insofar as what they do is search through the input strings (x) and find
all of the strings that match a pattern. However, what these two functions do is replace the pattern with
a replacement string. The gsub() function will replace all instances of the pattern, whereas the sub()

function just replaces the first instance of it in each string. To illustrate how this works, suppose I want
to replace all instances of the letter "a" with the string "BLAH". I can do this to the beers data using the
gsub() function:

> gsub( pattern = "a", replacement = "BLAH", x = beers, fixed = TRUE )

[1] "little creBLAHtures" "sierrBLAH nevBLAHdBLAH"

[3] "coopers pBLAHle"

Notice that all three of the "a"s in "sierra nevada" have been replaced. In contrast, let’s see what
happens when we use the exact same command, but this time using the sub() function instead:
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> sub( pattern = "a", replacement = "BLAH", x = beers, fixed = TRUE )

[1] "little creBLAHtures" "sierrBLAH nevada" "coopers pBLAHle"

Only the first "a" is changed.

7.8.9 Regular expressions (not really)

There’s one last thing I want to talk about regarding text manipulation, and that’s the concept of
a regular expression. Throughout this section we’ve often needed to specify fixed = TRUE in order
to force R to treat some of our strings as actual strings, rather than as regular expressions. So, before
moving on, I want to very briefly explain what regular expressions are. I’m not going to talk at all about
how they work or how you specify them, because they’re genuinely complicated and not at all relevant to
this book. However, they are extremely powerful tools and they’re quite widely used by people who have
to work with lots of text data (e.g., people who work with natural language data), and so it’s handy to at
least have a vague idea about what they are. The basic idea is quite simple. Suppose I want to extract
all strings in my beers vector that contain a vowel followed immediately by the letter "s". That is, I
want to finds the beer names that contain either "as", "es", "is", "os" or "us". One possibility would be
to manually specify all of these possibilities and then match against these as fixed strings one at a time,
but that’s tedious. The alternative is to try to write out a single “regular” expression that matches all
of these. The regular expression that does this20 is "[aeiou]s", and you can kind of see what the syntax
is doing here. The bracketed expression means “any of the things in the middle”, so the expression as a
whole means “any of the things in the middle” (i.e. vowels) followed by the letter "s". When applied to
our beer names we get this:

> grep( pattern = "[aeiou]s", x = beers, value = TRUE )

[1] "little creatures"

So it turns out that only "little creatures" contains a vowel followed by the letter "s". But of course,
had the data contained a beer like "fosters", that would have matched as well because it contains the
string "os". However, I deliberately chose not to include it because Fosters is not – in my opinion –
a proper beer.21 As you can tell from this example, regular expressions are a neat tool for specifying
patterns in text: in this case, “vowel then s”. So they are definitely things worth knowing about if you
ever find yourself needing to work with a large body of text. However, since they are fairly complex and
not necessary for any of the applications discussed in this book, I won’t talk about them any further.

7.9

Reading unusual data files

In this section I’m going to switch topics (again!) and turn to the question of how you can load data from
a range of different sources. Throughout this book I’ve assumed that your data are stored as an .Rdata

file or as a “properly” formatted CSV file. And if so, then the basic tools that I discussed in Section 4.5
should be quite sufficient. However, in real life that’s not a terribly plausible assumption to make, so I’d
better talk about some of the other possibilities that you might run into.

20Sigh. For advanced users: R actually supports two different ways of specifying regular expressions. One is the POSIX
standard, the other is to use Perl-style regular expressions. The default is generally POSIX. If you understand regular
expressions, that probably made sense to you. If not, don’t worry. It’s not important.

21I thank Amy Perfors for this example.
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7.9.1 Loading data from text files

The first thing I should point out is that if your data are saved as a text file but aren’t quite in the
proper CSV format, then there’s still a pretty good chance that the read.csv() function (or equivalently,
read.table()) will be able to open it. You just need to specify a few more of the optional arguments to
the function. If you type ?read.csv you’ll see that the read.csv() function actually has several arguments
that you can specify. Obviously you need to specify the file that you want it to load, but the others all
have sensible default values. Nevertheless, you will sometimes need to change them. The ones that I’ve
often found myself needing to change are:

• header. A lot of the time when you’re storing data as a CSV file, the first row actually contains the
column names and not data. If that’s not true, you need to set header = FALSE.

• sep. As the name “comma separated value” indicates, the values in a row of a CSV file are usually
separated by commas. This isn’t universal, however. In Europe the decimal point is typically
written as , instead of . and as a consequence it would be somewhat awkward to use , as the
separator. Therefore it is not unusual to use ; over there. At other times, I’ve seen a TAB character
used. To handle these cases, we’d need to set sep = ";" or sep = "\t".

• quote. It’s conventional in CSV files to include a quoting character for textual data. As you can see
by looking at the booksales.csv file, this is usually a double quote character, ". But sometimes
there is no quoting character at all, or you might see a single quote mark ’ used instead. In those
cases you’d need to specify quote = "" or quote = "’".

• skip. It’s actually very common to receive CSV files in which the first few rows have nothing to
do with the actual data. Instead, they provide a human readable summary of where the data came
from, or maybe they include some technical info that doesn’t relate to the data. To tell R to ignore
the first (say) three lines, you’d need to set skip = 3

• na.strings. Often you’ll get given data with missing values. For one reason or another, some entries
in the table are missing. The data file needs to include a “special” string to indicate that the entry
is missing. By default R assumes that this string is NA, since that’s what it would do, but there’s no
universal agreement on what to use in this situation. If the file uses ??? instead, then you’ll need
to set na.strings = "???".

It’s kind of nice to be able to have all these options that you can tinker with. For instance, have a look at
the data file shown pictured in Figure 7.1. This file contains almost the same data as the last file (except
it doesn’t have a header), and it uses a bunch of wacky features that you don’t normally see in CSV files.
In fact, it just so happens that I’m going to have to change all five of those arguments listed above in
order to load this file. Here’s how I would do it:

> data <- read.csv( file = "booksales2.csv", # specify the name of the file

+ header = FALSE, # variable names in the file?

+ skip = 8, # ignore the first 8 lines

+ quote = "*", # what indicates text data?

+ sep = "\t", # what separates different entries?

+ na.strings = "NFI" ) # what is the code for missing data?

If I now have a look at the data I’ve loaded, I see that this is what I’ve got:

> head( data )

V1 V2 V3 V4

1 January 31 0 high
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Figure 7.1: The booksales2.csv data file. It contains more or less the same data as the original
booksales.csv data file, but has a lot of very quirky features.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 February 28 100 high

3 March 31 200 low

4 April 30 50 out

5 May 31 NA out

6 June 30 0 high

Because I told R to expect * to be used as the quoting character instead of "; to look for tabs (which we
write like this: \t) instead of commas, and to skip the first 8 lines of the file, it’s basically loaded the
right data. However, since booksales2.csv doesn’t contain the column names, R has made them up.
Showing the kind of imagination I expect from insentient software, R decided to call them V1, V2, V3 and
V4. Finally, because I told it that the file uses “NFI” to denote missing data, R correctly figures out that
the sales data for May are actually missing.

In real life you’ll rarely see data this stupidly formatted.22

7.9.2 Loading data from SPSS (and other statistics packages)

The commands listed above are the main ones we’ll need for data files in this book. But in real life
we have many more possibilities. For example, you might want to read data files in from other statistics
programs. Since SPSS is probably the most widely used statistics package in psychology, it’s worth

22If you’re lucky.
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briefly showing how to open SPSS data files (file extension .sav). It’s surprisingly easy. The extract
below should illustrate how to do so:

> library( foreign ) # load the package

> X <- read.spss( "datafile.sav" ) # create a list containing the data

> X <- as.data.frame( X ) # convert to data frame

If you wanted to import from an SPSS file to a data frame directly, instead of importing a list and then
converting the list to a data frame, you can do that too:

> X <- read.spss( file = "datafile.sav", to.data.frame = TRUE )

And that’s pretty much it, at least as far as SPSS goes. As far as other statistical software goes, the
foreign package provides a wealth of possibilities. To open SAS files, check out the read.ssd()and
read.xport() functions. To open data from Minitab, the read.mtp() function is what you’re looking for.
For Stata, the read.dta() function is what you want. For Systat, the read.systat() function is what
you’re after.

7.9.3 Loading Excel files

A different problem is posed by Excel files. Despite years of yelling at people for sending data to me
encoded in a proprietary data format, I get sent a lot of Excel files. In general R does a pretty good
job of opening them, but it’s bit finicky because Microsoft don’t seem to be terribly fond of people using
non-Microsoft products, and go to some lengths to make it tricky. If you get an Excel file, my suggestion
would be to open it up in Excel (or better yet, OpenOffice, since that’s free software) and then save the
spreadsheet as a CSV file. Once you’ve got the data in that format, you can open it using read.csv().
However, if for some reason you’re desperate to open the .xls or .xlsx file directly, then you can use
the read.xls() function in the gdata package:

> library( gdata ) # load the package

> X <- read.xls( "datafile.xlsx" ) # create a data frame

This usually works. And if it doesn’t, you’re probably justified in “suggesting” to the person that sent
you the file that they should send you a nice clean CSV file instead.

7.9.4 Loading Matlab (& Octave) files

A lot of scientific labs use Matlab as their default platform for scientific computing; or Octave as a free
alternative. Opening Matlab data files (file extension .mat) slightly more complicated, and if it wasn’t
for the fact that Matlab is so very widespread and is an extremely good platform, I wouldn’t mention
it. However, since Matlab is so widely used, I think it’s worth discussing briefly how to get Matlab and
R to play nicely together. The way to do this is to install the R.matlab package (don’t forget to install
the dependencies too). Once you’ve installed and loaded the package, you have access to the readMat()

function. As any Matlab user will know, the .mat files that Matlab produces are workspace files, very
much like the .Rdata files that R produces. So you can’t import a .mat file as a data frame. However,
you can import it as a list. So, when we do this:

> library( R.matlab ) # load the package

> data <- readMat( "matlabfile.mat" ) # read the data file to a list

The data object that gets created will be a list, containing one variable for every variable stored in the
Matlab file. It’s fairly straightforward, though there are some subtleties that I’m ignoring. In particular,
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note that if you don’t have the Rcompression package, you can’t open Matlab files above the version 6
format. So, if like me you’ve got a recent version of Matlab, and don’t have the Rcompression package,
you’ll need to save your files using the -v6 flag otherwise R can’t open them.

Oh, and Octave users? The foreign package contains a read.octave() command. Just this once, the
world makes life easier for you folks than it does for all those cashed-up swanky Matlab bastards.

7.9.5 Saving other kinds of data

Given that I talked extensively about how to load data from non-R files, it might be worth briefly
mentioning that R is also pretty good at writing data into other file formats besides it’s own native
ones. I won’t discuss them in this book, but the write.csv() function can write CSV files, and the
write.foreign() function (in the foreign package) can write SPSS, Stata and SAS files. There are also
a lot of low level commands that you can use to write very specific information to a file, so if you really,
really needed to you could create your own write.obscurefiletype() function, but that’s also a long way
beyond the scope of this book. For now, all that I want you to recognise is that this capability is there
if you need it.

7.9.6 Are we done yet?

Of course not. If I’ve learned nothing else about R it’s that you’re never bloody done. This listing
doesn’t even come close to exhausting the possibilities. Databases are supported by the RODBC, DBI, and
RMySQL packages among others. You can open webpages using the RCurl package. Reading and writing
JSON objects is supported through the rjson package. And so on. In a sense, the right question is not
so much “can R do this?” so much as “whereabouts in the wilds of CRAN is the damn package that does
it?”

7.10

Coercing data from one class to another

Sometimes you want to change the variable class. This can happen for all sorts of reasons. Sometimes
when you import data from files, it can come to you in the wrong format: numbers sometimes get
imported as text, dates usually get imported as text, and many other possibilities besides. Regardless of
how you’ve ended up in this situation, there’s a very good chance that sometimes you’ll want to convert
a variable from one class into another one. Or, to use the correct term, you want to coerce the variable
from one class into another. Coercion is a little tricky, and so I’ll only discuss the very basics here, using
a few simple examples.

Firstly, let’s suppose we have a variable x that is supposed to be representing a number, but the data
file that you’ve been given has encoded it as text. Let’s imagine that the variable is something like this:

> x <- "100" # the variable

> class(x) # what class is it?

[1] "character"

Obviously, if I want to do calculations using x in its current state, R is going to get very annoyed at
me. It thinks that x is text, so it’s not going to allow me to try to do mathematics using it! Obviously,
we need to coerce x from character to numeric. We can do that in a straightforward way by using the
as.numeric() function:
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> x <- as.numeric(x) # coerce the variable

> class(x) # what class is it?

[1] "numeric"

> x + 1 # hey, addition works!

[1] 101

Not surprisingly, we can also convert it back again if we need to. The function that we use to do this is
the as.character() function:

> x <- as.character(x) # coerce back to text

> class(x) # check the class:

[1] "character"

However, there’s some fairly obvious limitations: you can’t coerce the string "hello world" into a number
because, well, there’s isn’t a number that corresponds to it. Or, at least, you can’t do anything useful:

> as.numeric( "hello world" ) # this isn’t going to work.

[1] NA

Warning message:

NAs introduced by coercion

In this case R doesn’t give you an error message; it just gives you a warning, and then says that the data
is missing (see Section 4.6.1 for the interpretation of NA).

That gives you a feel for how to change between numeric and character data. What about logical data?
To cover this briefly, coercing text to logical data is pretty intuitive: you use the as.logical() function,
and the character strings "T", "TRUE", "True" and "true" all convert to the logical value of TRUE. Similarly
"F", "FALSE", "False", and "false" all become FALSE. All other strings convert to NA. When you go back
the other way using as.character(), TRUE converts to "TRUE" and FALSE converts to "FALSE". Converting
numbers to logicals – again using as.logical() – is straightforward. Following the convention in the
study of logic, the number 0 converts to FALSE. Everything else is TRUE. Going back using as.numeric(),
FALSE converts to 0 and TRUE converts to 1.

7.11

Other useful data structures

Up to this point we have encountered several different kinds of variables. At the simplest level, we’ve seen
numeric data, logical data and character data. However, we’ve also encountered some more complicated
kinds of variables, namely factors, formulas, data frames and lists. We’ll see a few more specialised data
structures later on in this book, but there’s a few more generic ones that I want to talk about in passing.
None of them are central to the rest of the book (and in fact, the only one we’ll even see anywhere else
is the matrix), but they do crop up a fair bit in real life.

7.11.1 Matrices (and arrays)

In various different places in this chapter I’ve made reference to an R data structure called a matrix,
and mentioned that I’d talk a bit more about matrices later on. That time has come. Much like a data
frame, a matrix is basically a big rectangular table of data, and in fact there are quite a few similarities
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between the two. However, there are also some key differences, so it’s important to talk about matrices
in a little detail. Let’s start by using rbind() to create a small matrix:23

> row.1 <- c( 2,3,1 ) # create data for row 1

> row.2 <- c( 5,6,7 ) # create data for row 2

> M <- rbind( row.1, row.2 ) # row bind them into a matrix

> print( M ) # and print it out...

[,1] [,2] [,3]

row.1 2 3 1

row.2 5 6 7

The variable M is a matrix, which we can confirm by using the class() function. Notice that, when we
bound the two vectors together, R retained the names of the original variables as row names. We could
delete these if we wanted by typing rownames(M)<-NULL, but I generally prefer having meaningful names
attached to my variables, so I’ll keep them. In fact, let’s also add some highly unimaginative column
names as well:

> colnames(M) <- c( "col.1", "col.2", "col.3" )

> print(M)

col.1 col.2 col.3

row.1 2 3 1

row.2 5 6 7

You can use square brackets to subset a matrix in much the same way that you can for data frames,
again specifying a row index and then a column index. For instance, M[2,3] pulls out the entry in the
2nd row and 3rd column of the matrix (i.e., 7), whereas M[2,] pulls out the entire 2nd row, and M[,3]

pulls out the entire 3rd column. However, it’s worth noting that when you pull out a column, R will print
the results horizontally, not vertically. The reason for this relates to how matrices (and arrays generally)
are implemented. The original matrix M is treated as a two-dimensional objects, containing 2 rows and 3
columns. However, whenever you pull out a single row or a single column, the result is considered to be
one-dimensional. As far as R is concerned there’s no real reason to distinguish between a one-dimensional
object printed vertically (a column) and a one-dimensional object printed horizontally (a row), and it
prints them all out horizontally.24 There is also a way of using only a single index, but due to the internal
structure to how R defines a matrix, it works very differently to what we saw previously with data frames.
The single-index approach is illustrated in Table 7.5 but I don’t really want to focus on it since we’ll
never really need it for this book, and matrices don’t play anywhere near as large a role in this book as
data frames do.

The critical difference between a data frame and a matrix is that, in a data frame, we have this
notion that each of the columns corresponds to a different variable: as a consequence, the columns in a
data frame can be of different data types. The first column could be numeric, and the second column
could contain character strings, and the third column could be logical data. In that sense, there is a
fundamental asymmetry build into a data frame, because of the fact that columns represent variables

23You can also use the matrix() command itself, but I think the “binding” approach is a little more intuitive.
24This has some interesting implications for how matrix algebra is implemented in R (which I’ll admit I initially found

odd), but that’s a little beyond the scope of this book. However, since there will be a small proportion of readers that do
care, I’ll quickly outline the basic thing you need to get used to: when multiplying a matrix by a vector (or one-dimensional
array) using the %*% operator R will attempt to interpret the vector (or 1D array) as either a row-vector or column-vector,
depending on whichever one makes the multiplication work. That is, suppose M is the 2 ˆ 3 matrix, and v is a 1 ˆ 3 row
vector. It is impossible to multiply Mv, since the dimensions don’t conform, but you can multiply by the corresponding
column vector, Mv1. So, if I set v <- M[2,] and then try to calculate M %*% v, which you’d think would fail, it actually works
because R treats the one dimensional array as if it were a column vector for the purposes of matrix multiplication. Note
that if both objects are one dimensional arrays/vectors, this leads to ambiguity since vv1 (inner product) and v1v (outer
product) yield different answers. In this situation, the %*% operator returns the inner product not the outer product. To
understand all the details, check out the help documentation.
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Table 7.5: An illustration of two different ways of indexing a 2 ˆ 3 matrix. On the left we see the row
and column version, which is identical to the corresponding indexing scheme for a data frame of the same
size. On the right we see the single-index version, which is quite different to what we would get with a
data frame. The reason for this is that, for both data frames and matrices, the “row and column” version
exists to allow the human user to interact with the object in the psychologically meaningful way: since
both data frames and matrices are basically just tables of data, it’s the same in each case. However,
the single-index version is really a method for you to interact with the object in terms of its internal
structure, and the internals for data frames and matrices are quite different.

column
row 1 2 3
1 [1,1] [1,2] [1,3]

2 [2,1] [2,2] [2,3]

column
row 1 2 3
1 [1] [3] [5]

2 [2] [4] [6]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(which can be qualitatively different to each other) and rows represent cases (which cannot). Matrices
are intended to be thought of in a different way. At a fundamental level, a matrix really is just one
variable: it just happens that this one variable is formatted into rows and columns. If you want a matrix
of numeric data, every single element in the matrix must be a number. If you want a matrix of character
strings, every single element in the matrix must be a character string. If you try to mix data of different
types together, then R will either spit out an error, or quietly coerce the underlying data into a list. If
you want to find out what class R secretly thinks the data within the matrix is, you need to do something
like this:

> class( M[1] )

[1] "numeric"

You can’t type class(M), because all that will happen is R will tell you that M is a matrix: we’re not
interested in the class of the matrix itself, we want to know what class the underlying data is assumed
to be. Anyway, to give you a sense of how R enforces this, let’s try to change one of the elements of our
numeric matrix into a character string:

> M[1,2] <- "text"

> M

col.1 col.2 col.3

row.1 "2" "text" "1"

row.2 "5" "6" "7"

It looks as if R has coerced all of the data in our matrix into character strings. And in fact, if we now
typed in class(M[1]) we’d see that this is exactly what has happened. If you alter the contents of one
element in a matrix, R will change the underlying data type as necessary.

There’s only one more thing I want to talk about regarding matrices. The concept behind a matrix
is very much a mathematical one, and in mathematics a matrix is a most definitely a two-dimensional
object. However, when doing data analysis, we often have reasons to want to use higher dimensional
tables (e.g., sometimes you need to cross-tabulate three variables against each other). You can’t do this
with matrices, but you can do it with arrays. An array is just like a matrix, except it can have more
than two dimensions if you need it to. In fact, as far as R is concerned a matrix is just a special kind of
array, in much the same way that a data frame is a special kind of list. I don’t want to talk about arrays
too much, but I will very briefly show you an example of what a 3D array looks like. To that end, let’s
cross tabulate the speaker and utterance variables from the nightgarden.Rdata data file, but we’ll add
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a third variable to the cross-tabs this time, a logical variable which indicates whether or not I was still
awake at this point in the show:

> dan.awake <- c( TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE )

Now that we’ve got all three variables in the workspace (assuming you loaded the nightgarden.Rdata

data earlier in the chapter) we can construct our three way cross-tabulation, using the table() function.

> xtab.3d <- table( speaker, utterance, dan.awake )

> xtab.3d

, , dan.awake = FALSE

utterance

speaker ee onk oo pip

makka-pakka 0 2 0 2

tombliboo 0 0 1 0

upsy-daisy 0 0 0 0

, , dan.awake = TRUE

utterance

speaker ee onk oo pip

makka-pakka 0 0 0 0

tombliboo 1 0 0 0

upsy-daisy 0 2 0 2

Hopefully this output is fairly straightforward: because R can’t print out text in three dimensions, what
it does is show a sequence of 2D slices through the 3D table. That is, the , , dan.awake = FALSE part
indicates that the 2D table that follows below shows the 2D cross-tabulation of speaker against utterance
only for the dan.awake = FALSE instances, and so on.25

7.11.2 Ordered factors

One topic that I neglected to mention when discussing factors previously (Section 4.7) is that there
are actually two different types of factor in R, unordered factors and ordered factors. An unordered factor
corresponds to a nominal scale variable, and all of the factors we’ve discussed so far in this book have
been unordered (as will all the factors used anywhere else except in this section). However, it’s often
very useful to explicitly tell R that your variable is ordinal scale, and if so you need to declare it to be
an ordered factor. For instance, earlier in this chapter we made use of a variable consisting of Likert
scale data, which we represented as the likert.raw variable:

> likert.raw

[1] 1 7 3 4 4 4 2 6 5 5

We can declare this to be an ordered factor in by using the factor() function, and setting ordered =

TRUE. To illustrate how this works, let’s create an ordered factor called likert.ordinal and have a look
at it:

25I should note that if you type class(xtab.3d) you’ll discover that this is a "table" object rather than an "array" object.
However, this labelling is only skin deep. The underlying data structure here is actually an array. Advanced users may
wish to check this using the command class(unclass(xtab.3d)), but it’s not important for our purposes. All I really want to
do in this section is show you what the output looks like when you encounter a 3D array.
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> likert.ordinal <- factor( x = likert.raw, # the raw data

+ levels = seq(7,1,-1), # strongest agreement is 1, weakest is 7

+ ordered = TRUE ) # and it’s ordered

> print( likert.ordinal )

[1] 1 7 3 4 4 4 2 6 5 5

Levels: 7 < 6 < 5 < 4 < 3 < 2 < 1

Notice that when we print out the ordered factor, R explicitly tells us what order the levels come in.
Because I wanted to order my levels in terms of increasing strength of agreement, and because a response
of 1 corresponded to the strongest agreement and 7 to the strongest disagreement, it was important that
I tell R to encode 7 as the lowest value and 1 as the largest. Always check this when creating an ordered
factor: it’s very easy to accidentally encode your data “upside down” if you’re not paying attention. In
any case, note that we can (and should) attach meaningful names to these factor levels by using the
levels() function, like this:

> levels( likert.ordinal ) <- c( "strong.disagree", "disagree", "weak.disagree",

+ "neutral", "weak.agree", "agree", "strong.agree" )

> print( likert.ordinal )

[1] strong.agree strong.disagree weak.agree neutral neutral neutral

[7] agree disagree weak.disagree weak.disagree

Levels: strong.disagree < disagree < weak.disagree < neutral < weak.agree < agree < strong.agree

One nice thing about using ordered factors is that there are a lot of analyses for which R automatically
treats ordered factors differently from unordered factors, and generally in a way that is more appropriate
for ordinal data. However, since I don’t discuss that in this book, I won’t go into details. Like so many
things in this chapter, my main goal here is to make you aware that R has this capability built into it;
so if you ever need to start thinking about interval scale variables in more detail, you have at least some
idea where to start looking!

7.11.3 Dates and times

Times and dates are very annoying types of data. To a first approximation we can say that there are
365 days in a year, 24 hours in a day, 60 minutes in an hour and 60 seconds in a minute, but that’s not
quite correct. The length of the solar day is not exactly 24 hours, and the length of solar year is not
exactly 365 days, so we have a complicated system of corrections that have to be made to keep the time
and date system working. On top of that, the measurement of time is usually taken relative to a local time
zone, and most (but not all) time zones have both a standard time and a daylight savings time, though
the date at which the switch occurs is not at all standardised. So, as a form of data, times and dates suck.
Unfortunately, they’re also important. Sometimes it’s possible to avoid having to use any complicated
system for dealing with times and dates. Often you just want to know what year something happened
in, so you can just use numeric data: in quite a lot of situations something as simple as this.year <-

2011 works just fine. If you can get away with that for your application, this is probably the best thing
to do. However, sometimes you really do need to know the actual date. Or, even worse, the actual time.
In this section, I’ll very briefly introduce you to the basics of how R deals with date and time data. As
with a lot of things in this chapter, I won’t go into details because I don’t use this kind of data anywhere
else in the book. The goal here is to show you the basics of what you need to do if you ever encounter
this kind of data in real life. And then we’ll all agree never to speak of it again.

To start with, let’s talk about the date. As it happens, modern operating systems are very good at
keeping track of the time and date, and can even handle all those annoying timezone issues and daylight
savings pretty well. So R takes the quite sensible view that it can just ask the operating system what the
date is. We can pull the date using the Sys.Date() function:
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> today <- Sys.Date() # ask the operating system for the date

> print(today) # display the date

[1] "2011-08-24"

Okay, that seems straightforward. But, it does rather look like today is just a character string, doesn’t
it? That would be a problem, because dates really do have a numeric character to them, and it would be
nice to be able to do basic addition and subtraction to them. Well, fear not. If you type in class(today),
R will tell you that the class of the today variable is "Date". What this means is that, hidden underneath
this text string that prints out an actual date, R actually has a numeric representation.26 What that
means is that you actually can add and subtract days. For instance, if we add 1 to today, R will print
out the date for tomorrow:

> today + 1

[1] "2011-08-25"

Let’s see what happens when we add 365 days:

> today + 365

[1] "2012-08-23"

It turns out that R handles this better than I would have, since I’d forgotten that 2012 is a leap year and so
I would have gotten the wrong answer had I done it myself. R provides a number of functions for working
with dates, but I don’t want to talk about them in any detail. I will, however, make passing mention
of the weekdays() function which will tell you what day of the week a particular date corresponded to,
which is extremely convenient in some situations:

> weekdays( today )

[1] "Wednesday"

I’ll also point out that you can use the as.Date() to convert various different kinds of data into dates. If
the data happen to be strings formatted exactly according to the international standard notation (i.e.,
yyyy-mm-dd) then the conversion is straightforward, because that’s the format that R expects to see by
default. You can convert dates from other formats too, but it’s slightly trickier, and beyond the scope of
this book.

What about times? Well, times are even more annoying, so much so that I don’t intend to talk about
them at all in this book, other than to point you in the direction of some vaguely useful things. R itself
does provide you with some tools for handling time data, and in fact there are two separate classes of data
that are used to represent times, known by the odd names POSIXct and POSIXlt. You can use these to
work with times if you want to, but for most applications you would probably be better off downloading
the chron package, which provides some much more user friendly tools for working with times and dates.

7.12

Miscellaneous topics

To finish this chapter, I have a few topics to discuss that don’t really fit in with any of the other things
in this chapter. They’re all kind of useful things to know about, but they are really just “odd topics”
that don’t fit with the other examples. Here goes:

26Date objects are coded as the number of days that have passed since January 1, 1970.
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7.12.1 The problems with floating point arithmetic

If I’ve learned nothing else about transfinite arithmetic (and I haven’t) it’s that infinity is a tedious and
inconvenient concept. Not only is it annoying and counterintuitive at times, but it has nasty practical
consequences. As we were all taught in high school, there are some numbers that cannot be represented
as a decimal number of finite length, nor can they be represented as any kind of fraction between two
whole numbers;

?
2, π and e, for instance. In everyday life we mostly don’t care about this. I’m perfectly

happy to approximate π as 3.14, quite frankly. Sure, this does produce some rounding errors from time
to time, and if I’d used a more detailed approximation like 3.1415926535 I’d be less likely to run into
those issues, but in all honesty I’ve never needed my calculations to be that precise. In other words,
although our pencil and paper calculations cannot represent the number π exactly as a decimal number,
we humans are smart enough to realise that we don’t care. Computers, unfortunately, are dumb ... and
you don’t have to dig too deep in order to run into some very weird issues that arise because they can’t
represent numbers perfectly. Here is my favourite example:

> (0.1 * 3) == 0.3

[1] FALSE

Obviously, R has made a mistake here, because this is definitely the wrong answer. Your first thought
might be that R is broken. But you can reproduce the same error in dozens of different programming
languages, so the issue isn’t specific to R. Your next thought might be that it’s something in the hardware,
but you can get the same mistake on any machine. It’s something deeper than that.

The fundamental issue at hand is floating point arithmetic, which is a fancy way of saying that
computers will always round a number to fixed number of significant digits. The exact number of
significant digits that the computer stores isn’t important to us:27 what matters is that whenever the
number that the computer is trying to store is very long, you get rounding errors. That’s actually what’s
happening with our example above. There are teeny tiny rounding errors that have appeared in the
computer’s storage of the numbers, and these rounding errors have in turn caused the internal storage of
0.1 * 3 to be a tiny bit different from the internal storage of 0.3. How big are these differences? Let’s
ask R:

> (0.1 * 3) - 0.3

[1] 5.551115e-17

Very tiny indeed. No sane person would care about differences that small. But R is not a sane person,
and the equality operator == is very literal minded. It returns a value of TRUE only when the two values
that it is given are absolutely identical to each other. And in this case they are not. However, this only
answers half of the question. The other half of the question is, why are we getting these rounding errors
when we’re only using nice simple numbers like 0.1 and 0.3? This seems a little counterintuitive. The
answer is that, like most programming languages, R doesn’t store numbers using their decimal expansion
(i.e., base 10: using digits 0, 1, 2 ..., 9). We humans like to write our numbers in base 10 because we have
10 fingers. But computers don’t have fingers, they have transistors; and transistors are built to store
2 numbers not 10. So you can see where this is going: the internal storage of a number in R is based
on its binary expansion (i.e., base 2: using digits 0 and 1). And unfortunately, here’s what the binary
expansion of 0.1 looks like:

.1(decimal) “ .00011001100110011 . . . (binary)

27For advanced users: type ?double for more information.

- 246 -



and the pattern continues forever. In other words, from the perspective of your computer, which likes to
encode numbers in binary,28 the number 0.1 is not at all simple. It’s actually an infinitely long binary
number! As a consequence, the computer can make minor errors when doing calculations here.

With any luck you now understand the problem, which ultimately comes down to the twin fact that
(1) we usually think in decimal numbers and computers usually compute with binary numbers, and (2)
computers are finite machines and can’t store infinitely long numbers. The only questions that remain
are when you should care and what you should do about it. Thankfully, you don’t have to care very often:
because the rounding errors are small, the only practical situation that I’ve seen this issue arise for is
when you want to test whether an arithmetic fact holds exactly numbers are identical (e.g., is someone’s
response time equal to exactly 2ˆ 0.33 seconds?) This is pretty rare in real world data analysis, but just
in case it does occur, it’s better to use a test that allows for a small tolerance. That is, if the difference
between the two numbers is below a certain threshold value, we deem them to be equal for all practical
purposes. For instance, you could do something like this, which asks whether the difference between the
two numbers is less than a tolerance of 10´10

> abs( 0.1*3 - 0.3 ) < 10^-10

[1] TRUE

To deal with this problem, there is a function called all.equal() that lets you test for equality but allows
a small tolerance for rounding errors:

> all.equal( 0.1*3, 0.3 )

[1] TRUE

7.12.2 The recycling rule

There’s one thing that I haven’t mentioned about how vector arithmetic works in R, and that’s the
recycling rule. The easiest way to explain it is to give a simple example. Suppose I have two vectors
of different length, x and y, and I want to add them together. It’s not obvious what that actually means,
so let’s have a look at what R does:

> x <- c( 1,1,1,1,1,1 ) # x is length 6

> y <- c( 0,1 ) # y is length 2

> x + y # now add them:

[1] 1 2 1 2 1 2

As you can see from looking at this output, what R has done is “recycle” the value of the shorter vector
(in this case y) several times. That is, the first element of x is added to the first element of y, and the
second element of x is added to the second element of y. However, when R reaches the third element of x
there isn’t any corresponding element in y, so it returns to the beginning: thus, the third element of x is
added to the first element of y. This process continues until R reaches the last element of x. And that’s
all there is to it really. The same recycling rule also applies for subtraction, multiplication and division.
The only other thing I should note is that, if the length of the longer vector isn’t an exact multiple of
the length of the shorter one, R still does it, but also gives you a warning message:

> x <- c( 1,1,1,1,1 ) # x is length 5

> y <- c( 0,1 ) # y is length 2

> x + y # now add them:

28Or at least, that’s the default. If all your numbers are integers (whole numbers), then you can explicitly tell R to store
them as integers by adding an L suffix at the end of the number. That is, an assignment like x <- 2L tells R to assign x a
value of 2, and to store it as an integer rather than as a binary expansion. Type ?integer for more details.
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Figure 7.2: The environment panel in Rstudio can actually show you the contents of any loaded package:
each package defines a separate environment, so you can select the one you want to look at in this panel.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1] 1 2 1 2 1

Warning message:

In x + y : longer object length is not a multiple of shorter object length

7.12.3 An introduction to environments

In this section I want to ask a slightly different question: what is the workspace exactly? This question
seems simple, but there’s a fair bit to it. This section can be skipped if you’re not really interested in the
technical details. In the description I gave earlier, I talked about the workspace as an abstract location in
which R variables are stored. That’s basically true, but it hides a couple of key details. For example, any
time you have R open, it has to store lots of things in the computer’s memory, not just your variables.
For example, the who() function that I wrote has to be stored in memory somewhere, right? If it weren’t I
wouldn’t be able to use it. That’s pretty obvious. But equally obviously it’s not in the workspace either,
otherwise you should have seen it! Here’s what’s happening. R needs to keep track of a lot of different
things, so what it does is organise them into environments, each of which can contain lots of different
variables and functions. Your workspace is one such environment. Every package that you have loaded
is another environment. And every time you call a function, R briefly creates a temporary environment
in which the function itself can work, which is then deleted after the calculations are complete. So, when
I type in search() at the command line

> search()

[1] ".GlobalEnv" "package:lsr" "tools:rstudio"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

what I’m actually looking at is a sequence of environments. The first one, ".GlobalEnv" is the technically-
correct name for your workspace. No-one really calls it that: it’s either called the workspace or the global
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environment. And so when you type in objects() or who() what you’re really doing is listing the contents
of ".GlobalEnv". But there’s no reason why we can’t look up the contents of these other environments
using the objects() function (currently who() doesn’t support this). You just have to be a bit more
explicit in your command. If I wanted to find out what is in the package:stats environment (i.e., the
environment into which the contents of the stats package have been loaded), here’s what I’d get

> objects("package:stats")

[1] "acf" "acf2AR" "add.scope"

[4] "add1" "addmargins" "aggregate"

[7] "aggregate.data.frame" "aggregate.default" "aggregate.ts"

[10] "AIC" "alias" "anova"

[13] "anova.glm" "anova.glmlist" "anova.lm"

BLAH BLAH BLAH

where this time I’ve hidden a lot of output in the BLAH BLAH BLAH because the stats package contains
about 500 functions. In fact, you can actually use the environment panel in Rstudio to browse any of
your loaded packages (just click on the text that says “Global Environment” and you’ll see a dropdown
menu like the one shown in Figure 7.2). The key thing to understand then, is that you can access any
of the R variables and functions that are stored in one of these environments, precisely because those are
the environments that you have loaded!29

7.12.4 Attaching a data frame

The last thing I want to mention in this section is the attach() function, which you often see referred
to in introductory R books. Whenever it is introduced, the author of the book usually mentions that the
attach() function can be used to “attach” the data frame to the search path, so you don’t have to use the
$ operator. That is, if I use the command attach(df) to attach my data frame, I no longer need to type
df$variable, and instead I can just type variable. This is true as far as it goes, but it’s very misleading
and novice users often get led astray by this description, because it hides a lot of critical details.

Here is the very abridged description: when you use the attach() function, what R does is create an
entirely new environment in the search path, just like when you load a package. Then, what it does is
copy all of the variables in your data frame into this new environment. When you do this, however, you
end up with two completely different versions of all your variables: one in the original data frame, and
one in the new environment. Whenever you make a statement like df$variable you’re working with the
variable inside the data frame; but when you just type variable you’re working with the copy in the new
environment. And here’s the part that really upsets new users: changes to one version are not reflected
in the other version. As a consequence, it’s really easy for R to end up with different value stored in the
two different locations, and you end up really confused as a result.

To be fair to the writers of the attach() function, the help documentation does actually state all this
quite explicitly, and they even give some examples of how this can cause confusion at the bottom of the
help page. And I can actually see how it can be very useful to create copies of your data in a separate
location (e.g., it lets you make all kinds of modifications and deletions to the data without having to
touch the original data frame). However, I don’t think it’s helpful for new users, since it means you
have to be very careful to keep track of which copy you’re talking about. As a consequence of all this,
for the purpose of this book I’ve decided not to use the attach() function. It’s something that you can

29For advanced users: that’s a little over simplistic in two respects. First, it’s a terribly imprecise way of talking about
scoping. Second, it might give you the impression that all the variables in question are actually loaded into memory. That’s
not quite true, since that would be very wasteful of memory. Instead R has a “lazy loading” mechanism, in which what R

actually does is create a “promise” to load those objects if they’re actually needed. For details, check out the delayedAssign()

function.
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investigate yourself once you’re feeling a little more confident with R, but I won’t do it here.

7.13

Summary

Useful references for extending this are: Spector (2008) and Teetor (2011).
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8. Basic programming

Machine dreams hold a special vertigo.
– William Gibson

Up to this point in the book I’ve tried hard to avoid using the word “programming” because – at least
in my experience – it’s a word that can cause a lot of fear. For one reason or another, programming (like
mathematics and statistics) is often perceived by people on the “outside” as a black art, a magical skill
that can be learned only by some kind of super-nerd. I think this is a shame. It’s certainly true that
advanced programming is a very specialised skill: several different skills actually, since there’s quite a lot
of different kinds of programming out there. However, the basics of programming aren’t all that hard,
and you can accomplish a lot of very impressive things just using those basics.

With that in mind, the goal of this chapter is to discuss a few basic programming concepts and how
to apply them in R. However, before I do, I want to make one further attempt to point out just how
non-magical programming really is, via one very simple observation: you already know how to do it.
Stripped to its essentials, programming is nothing more (and nothing less) than the process of writing
out a bunch of instructions that a computer can understand. To phrase this slightly differently, when
you write a computer program, you need to write it in a programming language that the computer
knows how to interpret. R is one such language. Although I’ve been having you type all your commands
at the command prompt, and all the commands in this book so far have been shown as if that’s what I
were doing, it’s also quite possible (and as you’ll see shortly, shockingly easy) to write a program using
these R commands. In other words, if this is the first time reading this book, then you’re only one short
chapter away from being able to legitimately claim that you can program in R, albeit at a beginner’s
level.

8.1

Scripts

Computer programs come in quite a few different forms: the kind of program that we’re mostly interested
in from the perspective of everyday data analysis using R is known as a script. The idea behind a script
is that, instead of typing your commands into the R console one at a time, instead you write them all in
a text file. Then, once you’ve finished writing them and saved the text file, you can get R to execute all
the commands in your file by using the source() function. In a moment I’ll show you exactly how this is
done, but first I’d better explain why you should care.
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8.1.1 Why use scripts?

Before discussing scripting and programming concepts in any more detail, it’s worth stopping to ask why
you should bother. After all, if you look at the R commands that I’ve used everywhere else this book,
you’ll notice that they’re all formatted as if I were typing them at the command line. Outside this chapter
you won’t actually see any scripts. Do not be fooled by this. The reason that I’ve done it that way is
purely for pedagogical reasons. My goal in this book is to teach statistics and to teach R. To that end,
what I’ve needed to do is chop everything up into tiny little slices: each section tends to focus on one
kind of statistical concept, and only a smallish number of R functions. As much as possible, I want you to
see what each function does in isolation, one command at a time. By forcing myself to write everything
as if it were being typed at the command line, it imposes a kind of discipline on me: it prevents me from
piecing together lots of commands into one big script. From a teaching (and learning) perspective I think
that’s the right thing to do... but from a data analysis perspective, it is not. When you start analysing
real world data sets, you will rapidly find yourself needing to write scripts.

To understand why scripts are so very useful, it may be helpful to consider the drawbacks to typing
commands directly at the command prompt. The approach that we’ve been adopting so far, in which
you type commands one at a time, and R sits there patiently in between commands, is referred to as
the interactive style. Doing your data analysis this way is rather like having a conversation ... a very
annoying conversation between you and your data set, in which you and the data aren’t directly speaking
to each other, and so you have to rely on R to pass messages back and forth. This approach makes a
lot of sense when you’re just trying out a few ideas: maybe you’re trying to figure out what analyses are
sensible for your data, or maybe just you’re trying to remember how the various R functions work, so
you’re just typing in a few commands until you get the one you want. In other words, the interactive
style is very useful as a tool for exploring your data. However, it has a number of drawbacks:

• It’s hard to save your work effectively. You can save the workspace, so that later on you can load
any variables you created. You can save your plots as images. And you can even save the history
or copy the contents of the R console to a file. Taken together, all these things let you create a
reasonably decent record of what you did. But it does leave a lot to be desired. It seems like you
ought to be able to save a single file that R could use (in conjunction with your raw data files) and
reproduce everything (or at least, everything interesting) that you did during your data analysis.

• It’s annoying to have to go back to the beginning when you make a mistake. Suppose you’ve just
spent the last two hours typing in commands. Over the course of this time you’ve created lots of
new variables and run lots of analyses. Then suddenly you realise that there was a nasty typo in
the first command you typed, so all of your later numbers are wrong. Now you have to fix that first
command, and then spend another hour or so combing through the R history to try and recreate
what you did.

• You can’t leave notes for yourself. Sure, you can scribble down some notes on a piece of paper,
or even save a Word document that summarises what you did. But what you really want to be
able to do is write down an English translation of your R commands, preferably right “next to” the
commands themselves. That way, you can look back at what you’ve done and actually remember
what you were doing. In the simple exercises we’ve engaged in so far, it hasn’t been all that hard
to remember what you were doing or why you were doing it, but only because everything we’ve
done could be done using only a few commands, and you’ve never been asked to reproduce your
analysis six months after you originally did it! When your data analysis starts involving hundreds
of variables, and requires quite complicated commands to work, then you really, really need to leave
yourself some notes to explain your analysis to, well, yourself.

• It’s nearly impossible to reuse your analyses later, or adapt them to similar problems. Suppose
that, sometime in January, you are handed a difficult data analysis problem. After working on it
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for ages, you figure out some really clever tricks that can be used to solve it. Then, in September,
you get handed a really similar problem. You can sort of remember what you did, but not very
well. You’d like to have a clean record of what you did last time, how you did it, and why you did
it the way you did. Something like that would really help you solve this new problem.

• It’s hard to do anything except the basics. There’s a nasty side effect of these problems. Typos
are inevitable. Even the best data analyst in the world makes a lot of mistakes. So the chance
that you’ll be able to string together dozens of correct R commands in a row are very small. So
unless you have some way around this problem, you’ll never really be able to do anything other
than simple analyses.

• It’s difficult to share your work other people. Because you don’t have this nice clean record of what
R commands were involved in your analysis, it’s not easy to share your work with other people.
Sure, you can send them all the data files you’ve saved, and your history and console logs, and
even the little notes you wrote to yourself, but odds are pretty good that no-one else will really
understand what’s going on (trust me on this: I’ve been handed lots of random bits of output from
people who’ve been analysing their data, and it makes very little sense unless you’ve got the original
person who did the work sitting right next to you explaining what you’re looking at)

Ideally, what you’d like to be able to do is something like this. . . Suppose you start out with a data
set myrawdata.csv. What you want is a single document – let’s call it mydataanalysis.R – that stores all
of the commands that you’ve used in order to do your data analysis. Kind of similar to the R history but
much more focused. It would only include the commands that you want to keep for later. Then, later
on, instead of typing in all those commands again, you’d just tell R to run all of the commands that are
stored in mydataanalysis.R. Also, in order to help you make sense of all those commands, what you’d want
is the ability to add some notes or comments within the file, so that anyone reading the document for
themselves would be able to understand what each of the commands actually does. But these comments
wouldn’t get in the way: when you try to get R to run mydataanalysis.R it would be smart enough would
recognise that these comments are for the benefit of humans, and so it would ignore them. Later on you
could tweak a few of the commands inside the file (maybe in a new file called mynewdatanalaysis.R) so
that you can adapt an old analysis to be able to handle a new problem. And you could email your friends
and colleagues a copy of this file so that they can reproduce your analysis themselves.

In other words, what you want is a script.

8.1.2 Our first script

Okay then. Since scripts are so terribly awesome, let’s write one. To do this, open up a simple text
editing program, like TextEdit (on a Mac) or Notebook (on Windows). Don’t use a fancy word processing
program like Microsoft Word or OpenOffice: use the simplest program you can find. Open a new text
document, and type some R commands, hitting enter after each command. Let’s try using x <- "hello

world" and print(x) as our commands. Then save the document as hello.R, and remember to save it
as a plain text file: don’t save it as a word document or a rich text file. Just a boring old plain text
file. Also, when it asks you where to save the file, save it to whatever folder you’re using as your working
directory in R. At this point, you should be looking at something like Figure 8.1. And if so, you have
now successfully written your first R program. Because I don’t want to take screenshots for every single
script, I’m going to present scripts using extracts formatted as follows:

hello.R

1 x <- "hello world"

2 print(x)
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Figure 8.1: A screenshot showing the hello.R script if you open in using the default text editor (TextEdit)
on a Mac. Using a simple text editor like TextEdit on a Mac or Notepad on Windows isn’t actually the
best way to write your scripts, but it is the simplest. More to the point, it highlights the fact that a
script really is just an ordinary text file.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The line at the top is the filename, and not part of the script itself. Below that, you can see the two R commands
that make up the script itself. Next to each command I’ve included the line numbers. You don’t actually type
these into your script, but a lot of text editors (including the one built into Rstudio that I’ll show you in a
moment) will show line numbers, since it’s a very useful convention that allows you to say things like “line 1 of
the script creates a new variable, and line 2 prints it out”.

So how do we run the script? Assuming that the hello.R file has been saved to your working directory, then
you can run the script using the following command:

> source( "hello.R" )

If the script file is saved in a different directory, then you need to specify the path to the file, in exactly the same
way that you would have to when loading a data file using load(). In any case, when you type this command,
R opens up the script file: it then reads each command in the file in the same order that they appear in the file,
and executes those commands in that order. The simple script that I’ve shown above contains two commands.
The first one creates a variable x and the second one prints it on screen. So, when we run the script, this is what
we see on screen:

> source( "hello.R" )

[1] "hello world"

If we inspect the workspace using a command like who() or objects(), we discover that R has created the new
variable x within the workspace, and not surprisingly x is a character string containing the text "hello world".
And just like that, you’ve written your first program R. It really is that simple.

8.1.3 Using Rstudio to write scripts

In the example above I assumed that you were writing your scripts using a simple text editor. However, it’s
usually more convenient to use a text editor that is specifically designed to help you write scripts. There’s a lot
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Figure 8.2: A screenshot showing the hello.R script open in Rstudio. Assuming that you’re looking at
this document in colour, you’ll notice that the “hello world” text is shown in green. This isn’t something
that you do yourself: that’s Rstudio being helpful. Because the text editor in Rstudio “knows” something
about how R commands work, it will highlight different parts of your script in different colours. This is
useful, but it’s not actually part of the script itself.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of these out there, and experienced programmers will all have their own personal favourites. For our purposes,
however, we can just use the one built into Rstudio. To create new script file in R studio, go to the “File ”
menu, select the “New” option, and then click on “R script”. This will open a new window within the “source”
panel. Then you can type the commands you want (or code as it is generally called when you’re typing the
commands into a script file) and save it when you’re done. The nice thing about using Rstudio to do this is that
it automatically changes the colour of the text to indicate which parts of the code are comments and which are
parts are actual R commands (these colours are called syntax highlighting, but they’re not actually part of the
file – it’s just Rstudio trying to be helpful. To see an example of this, let’s open up our hello.R script in Rstudio.
To do this, go to the “File” menu again, and select “Open...”. Once you’ve opened the file, you should be looking
at something like Figure 8.2. As you can see (if you’re looking at this book in colour) the character string “hello
world” is highlighted in green.

Using Rstudio for your text editor is convenient for other reasons too. Notice in the top right hand corner of
Figure 8.2 there’s a little button that reads “Source”? If you click on that, Rstudio will construct the relevant
source() command for you, and send it straight to the R console. So you don’t even have to type in the source()
command, which actually I think is a great thing, because it really bugs me having to type all those extra
keystrokes every time I want to run my script. Anyway, Rstudio provide several other convenient little tools to
help make scripting easier, but I won’t discuss them here.

8.1.4 Commenting your script

When writing up your data analysis as a script, one thing that is generally a good idea is to include a lot of
comments in the code. That way, if someone else tries to read it (or if you come back to it several days, weeks,
months or years later) they can figure out what’s going on. As a beginner, I think it’s especially useful to comment
thoroughly, partly because it gets you into the habit of commenting the code, and partly because the simple act
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of typing in an explanation of what the code does will help you keep it clear in your own mind what you’re trying
to achieve. To illustrate this idea, consider the following script:

itngscript.R

1 # A script to analyse nightgarden.Rdata

2 # author: Dan Navarro

3 # date: 22/11/2011

4

5 # Load the data, and tell the user that this is what we’re

6 # doing. Note that this assumes the nightgarden data file

7 # is in the working directory.

8 cat( "loading data from nightgarden.Rdata...\n" )

9 load( "nightgarden.Rdata" )

10

11 # Create a cross tabulation and print it out:

12 cat( "tabulating data...\n" )

13 itng.table <- table( speaker, utterance )

14 print( itng.table )

Firstly, as you can see from this extract I’ve done a tiny bit of syntax highlighting here, greying out the comments
a bit so that you can visually distinguish between the commands that R will execute and the comments which it
it will ignore. Secondly, notice that I’ve gone a bit overboard with my commenting: at the top of the script I’ve
explained the purpose of the script, who wrote it, and when it was written. Then, throughout the script file itself
I’ve added a lot of comments explaining what each section of the code actually does. In real life people don’t
tend to comment this thoroughly, but the basic idea is a very good one: you really do want your script to explain
itself. Nevertheless, as you’d expect R completely ignores all of the commented parts. When we run this script,
this is what we see on screen:

> source( "itngscript.R" )

loading data from nightgarden.Rdata...

tabulating data...

utterance

speaker ee onk oo pip

makka-pakka 0 2 0 2

tombliboo 1 0 1 0

upsy-daisy 0 2 0 2

Even here, notice that the script announces its behaviour. The first two lines of the output tell us a lot about
what the script is actually doing behind the scenes (the code do to this corresponds to the two cat() commands
on lines 8 and 12 of the script). It’s usually a pretty good idea to do this, since it helps ensure that the output
makes sense when the script is executed.

8.1.5 Differences between scripts and the command line

For the most part, commands that you insert into a script behave in exactly the same way as they would if
you typed the same thing in at the command line. The one major exception to this is that if you want a variable
to be printed on screen, you need to explicitly tell R to print it. You can’t just type the name of the variable.
For example, our original hello.R script produced visible output. The following script does not:

silenthello.R

1 x <- "hello world"

2 x

It does still create the variable x when you source() the script, but it won’t print anything on screen.
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However, apart from the fact that scripts don’t use “auto-printing” as it’s called, there aren’t a lot of differences
in the underlying mechanics. There are a few stylistic differences though. For instance, if you want to load a
package at the command line, you would generally use the library() function. If you want do to it from a
script, it’s conventional to use require() instead. The two commands are basically identical, the only difference
being that if the package doesn’t exist, require() produces a warning whereas library() gives you an error.
Stylistically, what this means is that if the require() command fails in your script, R will boldly continue on and
try to execute the rest of the script. Often that’s what you’d like to see happen, so it’s better to use require().
Clearly, however, you can get by just fine using the library() command for everyday usage.

8.1.6 Done!

At this point, you’ve learned the basics of scripting. You are now officially allowed to say that you can program
in R, though you probably shouldn’t say it too loudly. There’s a lot more to learn, but nevertheless, if you can
write scripts like these then what you are doing is in fact basic programming. The rest of this chapter is devoted
to introducing some of the key commands that you need in order to make your programs more powerful; and to
help you get used to thinking in terms of scripts, for the rest of this chapter I’ll write up most of my extracts as
scripts.

8.2

Loops

The description I gave earlier for how a script works was a tiny bit of a lie. Specifically, it’s not necessarily
the case that R starts at the top of the file and runs straight through to the end of the file. For all the scripts
that we’ve seen so far that’s exactly what happens, and unless you insert some commands to explicitly alter how
the script runs, that is what will always happen. However, you actually have quite a lot of flexibility in this
respect. Depending on how you write the script, you can have R repeat several commands, or skip over different
commands, and so on. This topic is referred to as flow control, and the first concept to discuss in this respect is
the idea of a loop. The basic idea is very simple: a loop is a block of code (i.e., a sequence of commands) that R
will execute over and over again until some termination criterion is met. Looping is a very powerful idea. There
are three different ways to construct a loop in R, based on the while, for and repeat functions. I’ll only discuss
the first two in this book.

8.2.1 The ✇❤✐❧❡ loop

A while loop is a simple thing. The basic format of the loop looks like this:

while ( CONDITION ) {

STATEMENT1

STATEMENT2

ETC

}

The code corresponding to condition needs to produce a logical value, either TRUE or FALSE. Whenever R

encounters a while statement, it checks to see if the condition is TRUE. If it is, then R goes on to execute all of
the commands inside the curly brackets, proceeding from top to bottom as usual. However, when it gets to the
bottom of those statements, it moves back up to the while statement. Then, like the mindless automaton it is,
it checks to see if the condition is TRUE. If it is, then R goes on to execute all ... well, you get the idea. This
continues endlessly until at some point the condition turns out to be FALSE. Once that happens, R jumps to the
bottom of the loop (i.e., to the } character), and then continues on with whatever commands appear next in the
script.
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To start with, let’s keep things simple, and use a while loop to calculate the smallest multiple of 17 that
is greater than or equal to 1000. This is a very silly example since you can actually calculate it using simple
arithmetic operations, but the point here isn’t to do something novel. The point is to show how to write a while

loop. Here’s the script:

whileexample.R

1 x <- 0

2 while ( x < 1000 ) {

3 x <- x + 17

4 }

5 print( x )

When we run this script, R starts at the top and creates a new variable called x and assigns it a value of 0. It
then moves down to the loop, and “notices” that the condition here is x < 1000. Since the current value of x is
zero, the condition is true, so it enters the body of the loop (inside the curly braces). There’s only one command
here1 which instructs R to increase the value of x by 17. R then returns to the top of the loop, and rechecks the
condition. The value of x is now 17, but that’s still less than 1000, so the loop continues. This cycle will continue
for a total of 59 iterations, until finally x reaches a value of 1003 (i.e., 59 ˆ 17 “ 1003). At this point, the loop
stops, and R finally reaches line 5 of the script, prints out the value of x on screen, and then halts. Let’s watch:

> source( "whileexample.R" )

[1] 1003

Truly fascinating stuff.

8.2.2 The ❢♦r loop

The for loop is also pretty simple, though not quite as simple as the while loop. The basic format of this
loop goes like this:

for ( VAR in VECTOR ) {

STATEMENT1

STATEMENT2

ETC

}

In a for loop, R runs a fixed number of iterations. We have a vector which has several elements, each one
corresponding to a possible value of the variable var. In the first iteration of the loop, var is given a value
corresponding to the first element of vector; in the second iteration of the loop var gets a value corresponding
to the second value in vector; and so on. Once we’ve exhausted all of the values in vector, the loop terminates
and the flow of the program continues down the script.

Once again, let’s use some very simple examples. Firstly, here is a program that just prints out the word
“hello” three times and then stops:

forexample.R

1 for ( i in 1:3 ) {

2 print( "hello" )

3 }

This is the simplest example of a for loop. The vector of possible values for the i variable just corresponds to the
numbers from 1 to 3. Not only that, the body of the loop doesn’t actually depend on i at all. Not surprisingly,
here’s what happens when we run it:

1As an aside: if there’s only a single command that you want to include inside your loop, then you don’t actually need
to bother including the curly braces at all. However, until you’re comfortable programming in R I’d advise always using
them, even when you don’t have to.
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> source( "forexample.R" )

[1] "hello"

[1] "hello"

[1] "hello"

However, there’s nothing that stops you from using something non-numeric as the vector of possible values, as
the following example illustrates. This time around, we’ll use a character vector to control our loop, which in this
case will be a vector of words. And what we’ll do in the loop is get R to convert the word to upper case letters,
calculate the length of the word, and print it out. Here’s the script:

forexample2.R

1 #the words

2 words <- c("it","was","the","dirty","end","of","winter")

3

4 #loop over the words

5 for ( w in words ) {

6

7 w.length <- nchar( w ) # calculate the number of letters

8 W <- toupper( w ) # convert the word to upper case letters

9 msg <- paste( W, "has", w.length, "letters" ) # a message to print

10 print( msg ) # print it

11

12 }

And here’s the output:

> source( "forexample2.R" )

[1] "IT has 2 letters"

[1] "WAS has 3 letters"

[1] "THE has 3 letters"

[1] "DIRTY has 5 letters"

[1] "END has 3 letters"

[1] "OF has 2 letters"

[1] "WINTER has 6 letters"

Again, pretty straightforward I hope.

8.2.3 A more realistic example of a loop

To give you a sense of how you can use a loop in a more complex situation, let’s write a simple script to
simulate the progression of a mortgage. Suppose we have a nice young couple who borrow $300000 from the bank,
at an annual interest rate of 5%. The mortgage is a 30 year loan, so they need to pay it off within 360 months
total. Our happy couple decide to set their monthly mortgage payment at $1600 per month. Will they pay off
the loan in time or not? Only time will tell.2 Or, alternatively, we could simulate the whole process and get R to
tell us. The script to run this is a fair bit more complicated.

mortgage.R

1 # set up

2 month <- 0 # count the number of months

3 balance <- 300000 # initial mortgage balance

2Okay, fine. This example is still a bit ridiculous, in three respects. Firstly, the bank absolutely will not let the couple
pay less than the amount required to terminate the loan in 30 years. Secondly, a constant interest rate of 30 years is
hilarious. Thirdly, you can solve this much more efficiently than through brute force simulation. However, we’re not exactly
in the business of being realistic or efficient here.
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4 payments <- 1600 # monthly payments

5 interest <- 0.05 # 5% interest rate per year

6 total.paid <- 0 # track what you’ve paid the bank

7

8 # convert annual interest to a monthly multiplier

9 monthly.multiplier <- (1+interest) ^ (1/12)

10

11 # keep looping until the loan is paid off...

12 while ( balance > 0 ) {

13

14 # do the calculations for this month

15 month <- month + 1 # one more month

16 balance <- balance * monthly.multiplier # add the interest

17 balance <- balance - payments # make the payments

18 total.paid <- total.paid + payments # track the total paid

19

20 # print the results on screen

21 cat( "month", month, ": balance", round(balance), "\n")

22

23 } # end of loop

24

25 # print the total payments at the end

26 cat("total payments made", total.paid, "\n" )

To explain what’s going on, let’s go through it carefully. In the first block of code (lines 2-6) all we’re doing
is specifying all the variables that define the problem. The loan starts with a balance of $300,000 owed to the
bank on month zero, and at that point in time the total.paid money is nothing. The couple is making monthly
payments of $1600, at an annual interest rate of 5%. Next, on line 9, we convert the annual percentage interest
into a monthly multiplier. That is, the number that you have to multiply the current balance by each month in
order to produce an annual interest rate of 5%. An annual interest rate of 5% implies that, if no payments were
made over 12 months the balance would end up being 1.05 times what it was originally, so the annual multiplier
is 1.05. To calculate the monthly multiplier, we need to calculate the 12th root of 1.05 (i.e., raise 1.05 to the
power of 1/12). We store this value in as the monthly.multiplier variable, which as it happens corresponds to
a value of about 1.004. All of which is a rather long winded way of saying that the annual interest rate of 5%
corresponds to a monthly interest rate of about 0.4%.

Anyway... all of that is really just setting the stage. It’s not the interesting part of the script. The interesting
part (such as it is) is the loop which unfolds over lines 12-23. The while statement on line 12 tells R that it needs
to keep looping until the balance reaches zero (or less, since it might be that the final payment of $1600 pushes
the balance below zero). Then, inside the body of the loop, we have two different blocks of code. In the first bit,
on lines 15-18, we do all the number crunching. Firstly we increase the value month by 1 (on line 15). Next, the
bank charges the interest (on line 16), so the balance goes up. Then, the couple makes their monthly payment
(on line 17) and the balance goes down. Finally, we keep track of the total amount of money that the couple
has paid so far, by adding the payments to the running tally (on line 18). After having done all this number
crunching, we tell R (on line 21) to issue the couple with a very terse monthly statement, which just indicates
how many months they’ve been paying the loan and how much money they still owe the bank. Which is rather
rude of us really. I’ve grown attached to this couple and I really feel they deserve better than that. But, that’s
banks for you.

In any case, the key thing here is the tension between the increase in balance on line 16 and the decrease
on line 17. As long as the decrease is bigger, then the balance will eventually drop to zero and the loop will
eventually terminate. If not, the loop will continue forever! This is actually very bad programming on my part:
I really should have included something to force R to stop if this goes on too long. However, I haven’t shown
you how to evaluate “if” statements yet, so we’ll just have to hope that the author of the book has rigged the
example so that the code actually runs. Hm. I wonder what the odds of that are? Anyway, assuming that the
loop does eventually terminate, there’s one last line of code (line 26) that prints out the total amount of money
that the couple handed over to the bank over the lifetime of the loan.
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Now that I’ve explained everything in the script in tedious detail, let’s run it and see what happens:

> source( "mortgage.R" )

month 1 : balance 299622

month 2 : balance 299243

month 3 : balance 298862

month 4 : balance 298480

month 5 : balance 298096

BLAH BLAH BLAH

month 352 : balance 4806

month 353 : balance 3226

month 354 : balance 1639

month 355 : balance 46

month 356 : balance -1554

total payments made 569600

So our nice young couple have paid off their $300,000 loan in just 4 months shy of the 30 year term of their loan,
at a bargain basement price of $568,046 (since 569600 - 1554 = 568046). A happy ending!

8.3

Conditional statements

A second kind of flow control that programming languages provide is the ability to evaluate conditional state-

ments. Unlike loops, which can repeat over and over again, a conditional statement only executes once, but it
can switch between different possible commands depending on a condition that is specified by the programmer.
The power of these commands is that they allow the program itself to make choices, and in particular, to make
different choices depending on the context in which the program is run. The most prominent of example of a
conditional statement is the if statement, and the accompanying else statement. The basic format of an if

statement in R is as follows:

if ( CONDITION ) {

STATEMENT1

STATEMENT2

ETC

}

And the execution of the statement is pretty straightforward. If the condition is true, then R will execute the
statements contained in the curly braces. If the condition is false, then it dose not. If you want to, you can
extend the if statement to include an else statement as well, leading to the following syntax:

if ( CONDITION ) {

STATEMENT1

STATEMENT2

ETC

} else {

STATEMENT3

STATEMENT4

ETC

}

As you’d expect, the interpretation of this version is similar. If the condition is true, then the contents of the
first block of code (i.e., statement1, statement2, etc) are executed; but if it is false, then the contents of the
second block of code (i.e., statement3, statement4, etc) are executed instead.
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To give you a feel for how you can use if and else to do something useful, the example that I’ll show you is a
script that prints out a different message depending on what day of the week you run it. We can do this making
use of some of the tools that we discussed in Section 7.11.3. Here’s the script:

ifelseexample.R

1 # find out what day it is...

2 today <- Sys.Date() # pull the date from the system clock

3 day <- weekdays( today ) # what day of the week it is

4

5 # now make a choice depending on the day...

6 if ( day == "Monday" ) {

7 print( "I don’t like Mondays" )

8 } else {

9 print( "I’m a happy little automaton" )

10 }

Since today happens to be a Tuesday, when I run the script here’s what happens:

> source( "ifelseexample.R" )

[1] "I’m a happy little automaton"

There are other ways of making conditional statements in R. In particular, the ifelse() function and the
switch() functions can be very useful in different contexts. However, my main aim in this chapter is to briefly
cover the very basics, so I’ll move on.

8.4

Writing functions

In this section I want to talk about functions again. Functions were introduced in Section 3.5, but you’ve learned
a lot about R since then, so we can talk about them in more detail. In particular, I want to show you how to
create your own. To stick with the same basic framework that I used to describe loops and conditionals, here’s
the syntax that you use to create a function:

FNAME <- function ( ARG1, ARG2, ETC ) {

STATEMENT1

STATEMENT2

ETC

return( VALUE )

}

What this does is create a function with the name fname, which has arguments arg1, arg2 and so forth.
Whenever the function is called, R executes the statements in the curly braces, and then outputs the contents of
value to the user. Note, however, that R does not execute the commands inside the function in the workspace.
Instead, what it does is create a temporary local environment: all the internal statements in the body of the
function are executed there, so they remain invisible to the user. Only the final results in the value are returned
to the workspace.

To give a simple example of this, let’s create a function called quadruple() which multiplies its inputs by
four. In keeping with the approach taken in the rest of the chapter, I’ll use a script to do this:

functionexample.R

1 quadruple <- function(x) {

2 y <- x*4
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3 return(y)

4 }

When we run this script, as follows

> source( "functionexample.R" )

nothing appears to have happened, but there is a new object created in the workspace called quadruple. Not
surprisingly, if we ask R to tell us what kind of object it is, it tells us that it is a function:

> class( quadruple )

[1] "function"

And now that we’ve created the quadruple() function, we can call it just like any other function And if I want
to store the output as a variable, I can do this:

> my.var <- quadruple(10)

> print(my.var)

[1] 40

An important thing to recognise here is that the two internal variables that the quadruple() function makes use
of, x and y, stay internal. That is, if we inspect the contents of the workspace,

> who()

--- Name --- --- Class ---

my.var numeric

quadruple function

we see only the quadruple() function itself, as well as the my.var variable that we just created.

Now that we know how to create our own functions in R, it’s probably a good idea to talk a little more about
some of the other properties of functions that I’ve been glossing over. To start with, let’s take this opportunity
to type the name of the function at the command line without the parentheses:

> quadruple

function(x) y <- x*4 return(y)

As you can see, when you type the name of a function at the command line, R prints out the underlying source
code that we used to define the function in the first place. In the case of the quadruple() function, this is quite
helpful to us – we can read this code and actually see what the function does. For other functions, this is less
helpful, as we saw back in Section 3.5 when we tried typing citation rather than citation().

8.4.1 Function arguments revisited

Okay, now that we are starting to get a sense for how functions are constructed, let’s have a look at two,
slightly more complicated functions that I’ve created. The source code for these functions is contained within the
functionexample2.R and functionexample3.R scripts. Let’s start by looking at the first one:

functionexample2.R

1 pow <- function( x, y = 1) {

2 out <- x^y # raise x to the power y

3 return( out )

4 }

and if we type source("functionexample2.R") to load the pow() function into our workspace, then we can make
use of it. As you can see from looking at the code for this function, it has two arguments x and y, and all it does
is raise x to the power of y. For instance, this command
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> pow( x=3, y=2 )

[1] 9

calculates the value of 32. The interesting thing about this function isn’t what it does, since R already has has
perfectly good mechanisms for calculating powers. Rather, notice that when I defined the function, I specified
y=1 when listing the arguments? That’s the default value for y. So if we enter a command without specifying a
value for y, then the function assumes that we want y=1:

> pow( x=3 )

[1] 3

However, since I didn’t specify any default value for x when I defined the pow() function, we always need to input
a value for x. If we don’t R will spit out an error message.

So now you know how to specify default values for an argument. The other thing I should point out while I’m
on this topic is the use of the ... argument. The ... argument is a special construct in R which is only used
within functions. It is used as a way of matching against multiple user inputs: in other words, ... is used as a
mechanism to allow the user to enter as many inputs as they like. I won’t talk at all about the low-level details
of how this works at all, but I will show you a simple example of a function that makes use of it. To that end,
consider the following script:

functionexample3.R

1 doubleMax <- function( ... ) {

2 max.val <- max( ... ) # find the largest value in ...

3 out <- 2 * max.val # double it

4 return( out )

5 }

When we type source("functionexample3.R"), R creates the doubleMax() function. You can type in as many
inputs as you like. The doubleMax() function identifies the largest value in the inputs, by passing all the user
inputs to the max() function, and then doubles it. For example:

> doubleMax( 1,2,5 )

[1] 10

8.4.2 There’s more to functions than this

There’s a lot of other details to functions that I’ve hidden in my description in this chapter. Experienced
programmers will wonder exactly how the “scoping rules” work in R,3 or want to know how to use a function to
create variables in other environments4, or if function objects can be assigned as elements of a list5 and probably
hundreds of other things besides. However, I don’t want to have this discussion get too cluttered with details, so
I think it’s best – at least for the purposes of the current book – to stop here.

8.5

Implicit loops

There’s one last topic I want to discuss in this chapter. In addition to providing the explicit looping structures
via while and for, R also provides a collection of functions for implicit loops. What I mean by this is that
these are functions that carry out operations very similar to those that you’d normally use a loop for. However,
instead of typing out the whole loop, the whole thing is done with a single command. The main reason why this

3Lexical scope.
4The assign() function.
5Yes.
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can be handy is that – due to the way that R is written – these implicit looping functions are usually about to
do the same calculations much faster than the corresponding explicit loops. In most applications that beginners
might want to undertake, this probably isn’t very important, since most beginners tend to start out working with
fairly small data sets and don’t usually need to undertake extremely time consuming number crunching. However,
because you often see these functions referred to in other contexts, it may be useful to very briefly discuss a few
of them.

The first and simplest of these functions is sapply(). The two most important arguments to this function
are X, which specifies a vector containing the data, and FUN, which specifies the name of a function that should
be applied to each element of the data vector. The following example illustrates the basics of how it works:

> words <- c("along", "the", "loom", "of", "the", "land")

> sapply( X = words, FUN = nchar )

along the loom of the land

5 3 4 2 3 4

Notice how similar this is to the second example of a for loop in Section 8.2.2. The sapply() function has
implicitly looped over the elements of words, and for each such element applied the nchar() function to calculate
the number of letters in the corresponding word.

The second of these functions is tapply(), which has three key arguments. As before X specifies the data, and
FUN specifies a function. However, there is also an INDEX argument which specifies a grouping variable.6 What
the tapply() function does is loop over all of the different values that appear in the INDEX variable. Each such
value defines a group: the tapply() function constructs the subset of X that corresponds to that group, and then
applies the function FUN to that subset of the data. This probably sounds a little abstract, so let’s consider a
specific example, using the nightgarden.Rdata file that we used in Chapter 7.

> gender <- c( "male","male","female","female","male" )

> age <- c( 10,12,9,11,13 )

> tapply( X = age, INDEX = gender, FUN = mean )

female male

10.00000 11.66667

In this extract, what we’re doing is using gender to define two different groups of people, and using their ages as
the data. We then calculate the mean() of the ages, separately for the males and the females. A closely related
function is by(). It actually does the same thing as tapply(), but the output is formatted a bit differently. This
time around the three arguments are called data, INDICES and FUN, but they’re pretty much the same thing. An
example of how to use the by() function is shown in the following extract:

> by( data = age, INDICES = gender, FUN = mean )

gender: female

[1] 10

-------------------------------------------------------------------------

gender: male

[1] 11.66667

The tapply() and by() functions are quite handy things to know about, and are pretty widely used. However,
although I do make passing reference to the tapply() later on, I don’t make much use of them in this book.

Before moving on, I should mention that there are several other functions that work along similar lines, and
have suspiciously similar names: lapply, mapply, apply, vapply, rapply and eapply. However, none of these
come up anywhere else in this book, so all I wanted to do here is draw your attention to the fact that they exist.

6Or a list of such variables.
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8.6

Summary

• Writing and using scripts (Section 8.1).

• Using loops (Section 8.2) and implicit loops (Section 8.5).

• Making conditional statements (Section 8.3)

• Writing your own functions (Section 8.4)
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Part IV.

Statistical theory
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9. Introduction to probability

[God] has afforded us only the twilight . . . of Probability.
– John Locke

Up to this point, we’ve discussed some of the key ideas in experimental design, and we’ve talked a little about how
you can summarise a data set. To a lot of people, this is all there is to statistics: it’s about calculating averages,
collecting all the numbers, drawing pictures, and putting them all in a report somewhere. Kind of like stamp
collecting, but with numbers. However, statistics covers much more than that. In fact, descriptive statistics is
one of the smallest parts of statistics, and one of the least powerful. The bigger and more useful part of statistics
is that it provides that let you make inferences about data.

Once you start thinking about statistics in these terms – that statistics is there to help us draw inferences
from data – you start seeing examples of it everywhere. For instance, here’s a tiny extract from a newspaper
article in the Sydney Morning Herald (30 Oct 2010):

“I have a tough job,” the Premier said in response to a poll which found her government is now the
most unpopular Labor administration in polling history, with a primary vote of just 23 per cent.

This kind of remark is entirely unremarkable in the papers or in everyday life, but let’s have a think
about what it entails. A polling company has conducted a survey, usually a pretty big one because they
can afford it. I’m too lazy to track down the original survey, so let’s just imagine that they called 1000
NSW voters at random, and 230 (23%) of those claimed that they intended to vote for the ALP. As of
the 2010 Federal election, the Australian Electoral Commission reports that NSW has 4,610,795 enrolled
voters; so the opinions of the remaining 4,609,795 voters (about 99.98% of voters) remain unknown to us.
Even assuming that no-one lied to the polling company (an entirely unreasonable assumption, I should
add) the only thing we can say with absolute 100% confidence is that the true ALP primary vote is
somewhere between 230/4610795 (about 0.005%) and 4610025/4610795 (about 99.83%). So, on what
basis is it legitimate for the polling company, the newspaper, and the readership to conclude that the
ALP primary vote is only about 23%?

The answer to the question is pretty obvious: if I call 1000 people at random, and 230 of them say
they intend to vote for the ALP, then it seems very unlikely that these are the only 230 people out of the
entire voting public who actually intend to do so. In other words, we assume that the data collected by
the polling company is pretty representative of the population at large. But how representative? Would
we be surprised to discover that the true ALP primary vote is actually 24%? 29%? 37%? At this point
everyday intuition starts to break down a bit. No-one would be surprised by 24%, and everybody would
be surprised by 37%, but it’s a bit hard to say whether 29% is plausible. We need some more powerful
tools than just looking at the numbers and guessing.

Inferential statistics provides the tools that we need to answer these sorts of questions, and since
these kinds of questions lie at the heart of the scientific enterprise, they take up the lions share of every
introductory course on statistics and research methods. However, the theory of statistical inference is
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built on top of probability theory. And it is to probability theory that we must now turn. This
discussion of probability theory is basically background: there’s not a lot of statistics per se in this
chapter, and you don’t need to understand this material in as much depth as the other chapters in this
part of the book. Nevertheless, because probability theory does underpin so much of statistics, it’s worth
covering some of the basics. In short, you can “get away” with a much more cursory reading of this
chapter than you can for most of the other chapters in the book, but you should still read it!

9.1

Probability theory v. statistical inference

Probability theory and inferential statistics are closely related to one another, but they’re not quite the
same. Statistics is fundamentally about data analysis, whereas probability theory is a bit more abstract:
it’s a branch of maths, really. We’re not going to discuss the mathematics in a lot of detail in this book,
but here’s some simple examples of the sorts of things that probability theory is concerned with:

• What are the chances of a fair coin coming up heads 10 times in a row?

• How likely is it that five cards drawn from a perfectly shuffled deck will all be hearts?

In contrast, here’s some questions that are more statistical in nature:

• If a coin comes up heads 10 times in a row, how likely is it that the coin is fair?

• If five cards off the top of the deck are all hearts, how likely is it that the deck was properly shuffled?

Notice the key difference between the two types of question. The probabilistic ones assume that we can
write down a “probability model” of some kind, and then calculate “the chances” of an event. In contrast,
the statistical questions tend to go the other way: they assume that we have observed some event, and
now we have to figure out what “probability model” generated the data. For instance, consider the “coin
flipping” example, the probabilistic question stated at the outset that the coin was fair. So we know that
the probability that any given coin comes up heads, which we could write P pHq, is fixed at 50%. Or, to
be a bit more precise, we’d write

P pHq “ 0.5

(as we’ll see later, in the same way that percentages go from 0% to 100%, probabilities go from 0 to 1).
This knowledge, this statement that P pHq “ 0.5, is a simple example of a model: that is, a precise,
mathematically-phrased theory about the data and how it was generated. Since we know what the
probability of a single head is, we can use probability theory to calculate the probability of 10 heads.

Now think about the statistical version of the problem. What we have actually observed is a data set,
a “sample” if you will, so we’ll again refer to that as X (i.e., X is the set of 10 heads that we observed).
What we suspect is that these data are being generated from a probabilistic model very similar to the
one discussed above, where there is some probability P pHq that the coin comes up heads, but we actually
don’t know if the coin is fair or not. In other words, we have an unknown parameter that needs to be
estimated. Let’s denote this parameter by θ (Greek letter theta), and so we can write

θ “ P pHq
From a statistics perspective, our goal is to use the data X to figure out what the true value of θ is.
Notice how this contrasts with the probabilistic question, in which we use θ to figure out how likely X

is. The two questions run in opposite directions to each other, though the probabilistic question is much
easier to solve than the statistical one. In the next chapter, I’ll talk about how to solve this estimation
problem, but I hope it’s obvious that whatever the answer to the estimation problem is, it’s obviously
going to rely on probability theory. So that’s where we need to begin.
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9.2

Basic probability theory

It might seem like the obvious place to start would be to try to define “probability”. However, as I’ll
discuss in the next section, this is a actually quite difficult, and is a source of real disagreement among
statisticians. So, instead, I’ll just start by giving a very trite definition... for now, let’s just agree that
the probability of an event is the “chance” that the event will happen. Obviously this is completely
tautological (defining probability in terms of chance), but since everyone already has an intuitive feeling
for what “chance” means, it’ll do for now. With that in mind, instead of trying to say what probability
is, I’ll spend this section talking about the rules that probabilities must obey, since everyone at least
agrees on those. And in order to do so, I’m going to have to talk about my pants.

9.2.1 Introducing probability distributions

One of the disturbing truths about my life is that I only own 5 pairs of pants: three pairs of jeans, the
bottom half of a suit, and a pair of tracksuit pants. Even sadder, I’ve given them names: I call them
X1, X2, X3, X4 and X5. I really do: that’s why they call me Mister Imaginative. Now, on any given
day, I pick out exactly one of pair of pants to wear. Not even I’m so stupid as to try to wear two pairs
of pants, and thanks to years of training I never go outside without wearing pants anymore. If I were to
describe this situation using the language of probability theory, I would refer to each pair of pants (i.e.,
each X) as an elementary event. The key characteristic of elementary events is that every time we
make an observation (e.g., every time I put on a pair of pants), then the outcome will be one and only
one of these events. Like I said, these days I always wear exactly one pair of pants, so my pants satisfy
this constraint. Similarly, the set of all possible events is called a sample space. Granted, some people
would call it a “wardrobe”, but that’s because they’re refusing to think about my pants in probabilistic
terms. Sad.

Okay, now that we have a sample space (a wardrobe), which is built from lots of possible elementary
events (pants), what we want to do is assign a probability of one of these elementary events. For an
event X, the probability of that event P pXq is a number that lies between 0 and 1. The bigger the value
of P pXq, the more likely the event is to occur. So, for example, if P pXq “ 0, it means the event X is
impossible (i.e., I never wear those pants). On the other hand, if P pXq “ 1 it means that event X is
certain to occur (i.e., I always wear those pants). For probability values in the middle, it means that I
sometimes wear those pants. For instance, if P pXq “ 0.5 it means that I wear those pants half of the
time.

At this point, we’re almost done. The last thing we need to recognise is that “something always
happens”. Every time I put on pants, I really do end up wearing pants (crazy, right?). What this
somewhat trite statement means, in probabilistic terms, is that the probabilities of the elementary events
all need to add up to 1: which is known as the law of total probability, not that any of us really care.
More importantly, if these requirements are satisfied, then what we have is a probability distribution.
For example, this is an example of a probability distribution

Which pants? Label Probability
Blue jeans X1 P pX1q “ .5
Grey jeans X2 P pX2q “ .3
Black jeans X3 P pX3q “ .1
Black suit X4 P pX4q “ 0
Blue tracksuit X5 P pX5q “ .1
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Figure 9.1: A visual depiction of the “pants” probability distribution. There are five “elementary events”,
corresponding to the five pairs of pants that I own. Each event has some probability of occurring: this
probability is a number between 0 to 1. The sum of these probabilities is 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each of the events has a probability that lies between 0 and 1, and if we add up the probability of all
events, they sum to 1. Awesome. We can even draw a nice bar graph (see Section 6.7) to visualise this
distribution, as shown in Figure 9.1. And at this point, we’ve all achieved something. You’ve learned
what a probability distribution is, and I’ve finally managed to find a way to create a graph that focuses
entirely on my pants. Everyone wins!

The only other thing that I need to point out is that probability theory allows you to talk about non
elementary events as well as elementary ones. The easiest way to illustrate the concept is with an
example. In the pants example, it’s perfectly legitimate to refer to the probability that I wear jeans. In
this scenario, the “Dan wears jeans” event said to have happened as long as the elementary event that
actually did occur is one of the appropriate ones; in this case “blue jeans”, “black jeans” or “grey jeans”.
In mathematical terms, we defined the “jeans” event E to correspond to the set of elementary events
pX1, X2, X3q. If any of these elementary events occurs, then E is also said to have occurred. Having
decided to write down the definition of the E this way, it’s pretty straightforward to state what the
probability P pEq is: we just add everything up. In this particular case

P pEq “ P pX1q ` P pX2q ` P pX3q

and, since the probabilities of blue, grey and black jeans respectively are .5, .3 and .1, the probability
that I wear jeans is equal to .9.

At this point you might be thinking that this is all terribly obvious and simple and in a lot of ways
that’s true. All we’ve really done is try to wrap some basic mathematics around a few everyday common
sense intuitions. However, from these very simple beginnings it’s possible to construct some extremely
powerful mathematical tools. I’m definitely not going to go into the details in this book, but what I will
do is list – in Table 9.1 – some of the other rules that probabilities satisfy. These rules can be derived
from the simple assumptions that I’ve outlined above, but since we don’t actually use these rules for
anything in this book, I won’t do so here.
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Table 9.1: Some basic rules that probabilities must satisfy. You don’t really need to know these rules in
order to understand the analyses that we’ll talk about later in the book, but they are important if you
want to understand probability theory a bit more deeply.

English Notation Formula
not A P p Aq “ 1´ P pAq
A or B P pAYBq “ P pAq ` P pBq ´ P pAXBq
A and B P pAXBq “ P pA|BqP pBq

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.3

The binomial distribution

As you might imagine, probability distributions vary enormously, and there’s an enormous range of
distributions out there. However, they aren’t all equally important. In fact, the vast majority of the
content in this book relies on one of five distributions: the binomial distribution, the normal distribution,
the t distribution, the χ2 (“chi-square”) distribution and the F distribution. Given this, what I’ll do over
the next few sections is provide a brief introduction to all five of these, paying special attention to the
binomial and the normal. I’ll start with the binomial distribution, since it’s the simplest of the five.

9.3.1 Introducing the binomial

The theory of probability originated in the attempt to describe how games of chance work, so it seems
fitting that our discussion of the binomial distribution should involve a discussion of rolling dice and
flipping coins. Let’s imagine a simple “experiment”: in my hot little hand I’m holding 20 identical six-
sided dice. On one face of each die there’s a picture of a skull; the other five faces are all blank. If I
proceed to roll all 20 dice, what’s the probability that I’ll get exactly 4 skulls? Assuming that the dice are
fair, we know that the chance of any one die coming up skulls is 1 in 6; to say this another way, the skull
probability for a single die is approximately .167. This is enough information to answer our question, so
let’s have a look at how it’s done.

As usual, we’ll want to introduce some names and some notation. We’ll let N denote the number of
dice rolls in our experiment; which is often referred to as the size parameter of our binomial distribution.
We’ll also use θ to refer to the the probability that a single die comes up skulls, a quantity that is usually
called the success probability of the binomial.1 Finally, we’ll use X to refer to the results of our
experiment, namely the number of skulls I get when I roll the dice. Since the actual value of X is due
to chance, we refer to it as a random variable. In any case, now that we have all this terminology
and notation, we can use it to state the problem a little more precisely. The quantity that we want to
calculate is the probability that X “ 4 given that we know that θ “ .167 and N “ 20. The general
“form” of the thing I’m interested in calculating could be written as

P pX | θ,Nq

and we’re interested in the special case where X “ 4, θ “ .167 and N “ 20. There’s only one more

1Note that the term “success” is pretty arbitrary, and doesn’t actually imply that the outcome is something to be desired.
If θ referred to the probability that any one passenger gets injured in a bus crash, I’d still call it the success probability,
but that doesn’t mean I want people to get hurt in bus crashes!
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Figure 9.2: The binomial distribution with size parameter ofN “ 20 and an underlying success probability
of θ “ 1{6. Each vertical bar depicts the probability of one specific outcome (i.e., one possible value of
X). Because this is a probability distribution, each of the probabilities must be a number between 0 and
1, and the heights of the bars must sum to 1 as well.
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piece of notation I want to refer to before moving on to discuss the solution to the problem. If I want to
say that X is generated randomly from a binomial distribution with parameters θ and N , the notation I
would use is as follows:

X „ Binomialpθ,Nq

Yeah, yeah. I know what you’re thinking: notation, notation, notation. Really, who cares? Very
few readers of this book are here for the notation, so I should probably move on and talk about how to
use the binomial distribution. I’ve included the formula for the binomial distribution in Table 9.2, since
some readers may want to play with it themselves, but since most people probably don’t care that much
and because we don’t need the formula in this book, I won’t talk about it in any detail. Instead, I just
want to show you what the binomial distribution looks like. To that end, Figure 9.2 plots the binomial
probabilities for all possible values of X for our dice rolling experiment, from X “ 0 (no skulls) all the
way up to X “ 20 (all skulls). Note that this is basically a bar chart, and is no different to the “pants
probability” plot I drew in Figure 9.1. On the horizontal axis we have all the possible events, and on the
vertical axis we can read off the probability of each of those events. So, the probability of rolling 4 skulls
out of 20 times is about 0.20 (the actual answer is 0.2022036, as we’ll see in a moment). In other words,
you’d expect that to happen about 20% of the times you repeated this experiment.

9.3.2 Working with the binomial distribution in R

Although some people find it handy to know the formulas in Table 9.2, most people just want to know
how to use the distributions without worrying too much about the maths. To that end, R has a function
called dbinom() that calculates binomial probabilities for us. The main arguments to the function are
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Table 9.2: Formulas for the binomial and normal distributions. We don’t really use these formulas for
anything in this book, but they’re pretty important for more advanced work, so I thought it might be
best to put them here in a table, where they can’t get in the way of the text. In the equation for the
binomial, X! is the factorial function (i.e., multiply all whole numbers from 1 to X), and for the normal
distribution “exp” refers to the exponential function, which we discussed in Chapter 7. If these equations
don’t make a lot of sense to you, don’t worry too much about them.

Binomial Normal

P pX | θ,Nq “ N !

X!pN ´Xq!θ
Xp1´ θqN´X ppX | µ, σq “ 1?

2πσ
exp

ˆ

´pX ´ µq2
2σ2

˙

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 9.3: The naming system for R probability distribution functions. Every probability distribution
implemented in R is actually associated with four separate functions, and there is a pretty standardised
way for naming these functions.

what it does prefix normal distribution binomial distribution
probability (density) of d dnorm() dbinom()

cumulative probability of p pnorm() pbinom()

generate random number from r rnorm() rbinom()

quantile of q qnorm() qbinom()

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• x. This is a number, or vector of numbers, specifying the outcomes whose probability you’re trying
to calculate.

• size. This is a number telling R the size of the experiment.

• prob. This is the success probability for any one trial in the experiment.

So, in order to calculate the probability of getting x = 4 skulls, from an experiment of size = 20 trials,
in which the probability of getting a skull on any one trial is prob = 1/6 ... well, the command I would
use is simply this:

> dbinom( x = 4, size = 20, prob = 1/6 )

[1] 0.2022036

To give you a feel for how the binomial distribution changes when we alter the values of θ and N ,
let’s suppose that instead of rolling dice, I’m actually flipping coins. This time around, my experiment
involves flipping a fair coin repeatedly, and the outcome that I’m interested in is the number of heads
that I observe. In this scenario, the success probability is now θ “ 1{2. Suppose I were to flip the coin
N “ 20 times. In this example, I’ve changed the success probability, but kept the size of the experiment
the same. What does this do to our binomial distribution? Well, as Figure 9.3a shows, the main effect of
this is to shift the whole distribution, as you’d expect. Okay, what if we flipped a coin N “ 100 times?
Well, in that case, we get Figure 9.3b. The distribution stays roughly in the middle, but there’s a bit
more variability in the possible outcomes.

At this point, I should probably explain the name of the dbinom() function. Obviously, the “binom”
part comes from the fact that we’re working with the binomial distribution, but the “d” prefix is probably
a bit of a mystery. In this section I’ll give a partial explanation: specifically, I’ll explain why there is a
prefix. As for why it’s a “d” specifically, you’ll have to wait until the next section. What’s going on here
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Figure 9.3: Two binomial distributions, involving a scenario in which I’m flipping a fair coin, so the
underlying success probability is θ “ 1{2. In panel (a), we assume I’m flipping the coin N “ 20 times.
In panel (b) we assume that the coin is flipped N “ 100 times.
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is that R actually provides four functions in relation to the binomial distribution. These four functions
are dbinom(), pbinom(), rbinom() and qbinom(), and each one calculates a different quantity of interest.
Not only that, R does the same thing for every probability distribution that it implements. No matter
what distribution you’re talking about, there’s a d function, a p function, a q function and a r function.
This is illustrated in Table 9.3, using the binomial distribution and the normal distribution as examples.

Let’s have a look at what all four functions do. Firstly, all four versions of the function require you
to specify the size and prob arguments: no matter what you’re trying to get R to calculate, it needs to
know what the parameters are. However, they differ in terms of what the other argument is, and what
the output is. So let’s look at them one at a time.

• The d form we’ve already seen: you specify a particular outcome x, and the output is the probability
of obtaining exactly that outcome. (the “d” is short for density, but ignore that for now).

• The p form calculates the cumulative probability. You specify a particular quantile q, and it
tells you the probability of obtaining an outcome smaller than or equal to q.

• The q form calculates the quantiles of the distribution. You specify a probability value p, and gives
you the corresponding percentile. That is, the value of the variable for which there’s a probability
p of obtaining an outcome lower than that value.

• The r form is a random number generator: specifically, it generates n random outcomes from
the distribution.

This probably seems a little abstract, so let’s look at some concrete examples. Again, we’ve already
covered dbinom() so let’s focus on the other three versions. We’ll start with pbinom(), and we’ll go back
to the skull-dice example. Again, I’m rolling 20 dice, and each die has a 1 in 6 chance of coming up
skulls. Suppose, however, that I want to know the probability of rolling 4 or fewer skulls. If I wanted to,
I could use the dbinom() function to calculate the exact probability of rolling 0 skulls, 1 skull, 2 skulls,
3 skulls and 4 skulls and then add these up, but there’s a faster way. Instead, I can calculate this using
the pbinom() function. Here’s the command:

> pbinom( q= 4, size = 20, prob = 1/6)

[1] 0.7687492

In other words, there is a 76.9% chance that I will roll 4 or fewer skulls. Or, to put it another way, R is
telling us that a value of 4 is actually the 76.9th percentile of this binomial distribution.

Next, let’s consider the qbinom() function. Let’s say I want to calculate the 75th percentile of the
binomial distribution. If we’re sticking with our skulls example, I would use the following command to
do this:

> qbinom( p = 0.75, size = 20, prob = 1/6 )

[1] 4

Hm. There’s something odd going on here. Let’s think this through. What the qbinom() function appears
to be telling us is that the 75th percentile of the binomial distribution is 4, even though we saw from
the pbinom() function that 4 is actually the 76.9th percentile. And it’s definitely the pbinom() function
that is correct. I promise. The weirdness here comes from the fact that our binomial distribution doesn’t
really have a 75th percentile. Not really. Why not? Well, there’s a 56.7% chance of rolling 3 or fewer
skulls (you can type pbinom(3, 20, 1/6) to confirm this if you want), and a 76.9% chance of rolling 4
or fewer skulls. So there’s a sense in which the 75th percentile should lie “in between” 3 and 4 skulls.
But that makes no sense at all! You can’t roll 20 dice and get 3.9 of them come up skulls. This issue
can be handled in different ways: you could report an in between value (or interpolated value, to use
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the technical name) like 3.9, you could round down (to 3) or you could round up (to 4). The qbinom()

function rounds upwards: if you ask for a percentile that doesn’t actually exist (like the 75th in this
example), R finds the smallest value for which the the percentile rank is at least what you asked for. In
this case, since the “true” 75th percentile (whatever that would mean) lies somewhere between 3 and 4
skulls, R rounds up and gives you an answer of 4. This subtlety is tedious, I admit, but thankfully it’s
only an issue for discrete distributions like the binomial (see Section 2.2.5 for a discussion of continuous
versus discrete). The other distributions that I’ll talk about (normal, t, χ2 and F ) are all continuous,
and so R can always return an exact quantile whenever you ask for it.

Finally, we have the random number generator. To use the rbinom() function, you specify how many
times R should “simulate” the experiment using the n argument, and it will generate random outcomes
from the binomial distribution. So, for instance, suppose I were to repeat my die rolling experiment 100
times. I could get R to simulate the results of these experiments by using the following command:

> rbinom( n = 100, size = 20, prob = 1/6 )

[1] 3 4 8 4 4 3 1 4 4 1 3 0 3 3 4 3 1 2 2 3 4 2

[23] 2 1 2 4 4 3 5 4 2 3 1 2 7 4 2 5 2 3 0 2 3 3

[45] 2 2 2 3 4 4 2 0 2 4 4 3 4 1 2 3 5 3 7 5 0 5

[67] 1 5 4 3 4 4 1 5 4 4 3 2 3 3 4 5 0 5 1 4 7 2

[89] 5 1 1 2 4 5 5 3 3 3 3 3

As you can see, these numbers are pretty much what you’d expect given the distribution shown in
Figure 9.2. Most of the time I roll somewhere between 1 to 5 skulls. There are a lot of subtleties
associated with random number generation using a computer,2 but for the purposes of this book we
don’t need to worry too much about them.

9.4

The normal distribution

While the binomial distribution is conceptually the simplest distribution to understand, it’s not the most
important one. That particular honour goes to the normal distribution, which is also referred to as
“the bell curve” or a “Gaussian distribution”. A normal distribution is described using two parameters,
the mean of the distribution µ and the standard deviation of the distribution σ. The notation that we
sometimes use to say that a variable X is normally distributed is as follows:

X „ Normalpµ, σq

Of course, that’s just notation. It doesn’t tell us anything interesting about the normal distribution itself.
As was the case with the binomial distribution, I have included the formula for the normal distribution
in this book, because I think it’s important enough that everyone who learns statistics should at least
look at it, but since this is an introductory text I don’t want to focus on it, so I’ve tucked it away
in Table 9.2. Similarly, the R functions for the normal distribution are dnorm(), pnorm(), qnorm() and
rnorm(). However, they behave in pretty much exactly the same way as the corresponding functions for
the binomial distribution, so there’s not a lot that you need to know. The only thing that I should point
out is that the argument names for the parameters are mean and sd. In pretty much every other respect,
there’s nothing else to add.

2Since computers are deterministic machines, they can’t actually produce truly random behaviour. Instead, what they
do is take advantage of various mathematical functions that share a lot of similarities with true randomness. What this
means is that any random numbers generated on a computer are pseudorandom, and the quality of those numbers depends
on the specific method used. By default R uses the “Mersenne twister” method. In any case, you can find out more by
typing ?Random, but as usual the R help files are fairly dense.
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Figure 9.4: The normal distribution with mean µ “ 0 and standard deviation σ “ 1. The x-axis cor-
responds to the value of some variable, and the y-axis tells us something about how likely we are to
observe that value. However, notice that the y-axis is labelled “Probability Density” and not “Probabil-
ity”. There is a subtle and somewhat frustrating characteristic of continuous distributions that makes
the y axis behave a bit oddly: the height of the curve here isn’t actually the probability of observing a
particular x value. On the other hand, it is true that the heights of the curve tells you which x values
are more likely (the higher ones!). (see Section 9.4.1 for all the annoying details)
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Instead of focusing on the maths, let’s try to get a sense for what it means for a variable to be
normally distributed. To that end, have a look at Figure 9.4, which plots a normal distribution with
mean µ “ 0 and standard deviation σ “ 1. You can see where the name “bell curve” comes from: it
looks a bit like a bell. Notice that, unlike the plots that I drew to illustrate the binomial distribution, the
picture of the normal distribution in Figure 9.4 shows a smooth curve instead of “histogram-like” bars.
This isn’t an arbitrary choice: the normal distribution is continuous, whereas the binomial is discrete.
For instance, in the die rolling example from the last section, it was possible to get 3 skulls or 4 skulls,
but impossible to get 3.9 skulls. The figures that I drew in the previous section reflected this fact: in
Figure 9.2, for instance, there’s a bar located at X “ 3 and another one at X “ 4, but there’s nothing
in between. Continuous quantities don’t have this constraint. For instance, suppose we’re talking about
the weather. The temperature on a pleasant Spring day could be 23 degrees, 24 degrees, 23.9 degrees, or
anything in between since temperature is a continuous variable, and so a normal distribution might be
quite appropriate for describing Spring temperatures.3

With this in mind, let’s see if we can’t get an intuition for how the normal distribution works. Firstly,
let’s have a look at what happens when we play around with the parameters of the distribution. To
that end, Figure 9.5 plots normal distributions that have different means, but have the same standard
deviation. As you might expect, all of these distributions have the same “width”. The only difference
between them is that they’ve been shifted to the left or to the right. In every other respect they’re

3In practice, the normal distribution is so handy that people tend to use it even when the variable isn’t actually
continuous. As long as there are enough categories (e.g., Likert scale responses to a questionnaire), it’s pretty standard
practice to use the normal distribution as an approximation. This works out much better in practice than you’d think.
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Figure 9.5: An illustration of what happens when you change the mean of a normal distribution. The solid
line depicts a normal distribution with a mean of µ “ 4. The dashed line shows a normal distribution with
a mean of µ “ 7. In both cases, the standard deviation is σ “ 1. Not surprisingly, the two distributions
have the same shape, but the dashed line is shifted to the right.
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identical. In contrast, if we increase the standard deviation while keeping the mean constant, the peak
of the distribution stays in the same place, but the distribution gets wider, as you can see in Figure 9.6.
Notice, though, that when we widen the distribution, the height of the peak shrinks. This has to happen:
in the same way that the heights of the bars that we used to draw a discrete binomial distribution have
to sum to 1, the total area under the curve for the normal distribution must equal 1. Before moving
on, I want to point out one important characteristic of the normal distribution. Irrespective of what
the actual mean and standard deviation are, 68.3% of the area falls within 1 standard deviation of the
mean. Similarly, 95.4% of the distribution falls within 2 standard deviations of the mean, and 99.7% of
the distribution is within 3 standard deviations. This idea is illustrated in Figure 9.7.

9.4.1 Probability density

There’s something I’ve been trying to hide throughout my discussion of the normal distribution,
something that some introductory textbooks omit completely. They might be right to do so: this “thing”
that I’m hiding is a bit weird and a little counterintuitive, even by the admittedly distorted standards
that apply in statistics. With that in mind, I should warn you that this section is a little hard to follow.
Fortunately, it’s not something that you need to understand at a deep level in order to do basic statistics:
rather, it’s something that starts to become important later on when you move beyond the basics. So, if
it doesn’t make complete sense, don’t worry: try to make sure that you follow the gist of it.

Throughout my discussion of the normal distribution, there’s been one or two things that don’t quite
make sense. Perhaps you noticed that the y-axis in these figures is labelled “Probability Density” rather
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Figure 9.6: An illustration of what happens when you change the the standard deviation of a normal
distribution. Both distributions plotted in this figure have a mean of µ “ 5, but they have different
standard deviations. The solid line plots a distribution with standard deviation σ “ 1, and the dashed
line shows a distribution with standard deviation σ “ 2. As a consequence, both distributions are
“centred” on the same spot, but the dashed line is wider than the solid one.
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than density. Maybe you noticed that I used ppXq instead of P pXq when giving the formula for the
normal distribution. Maybe you’re wondering why R uses the “d” prefix for functions like dnorm(). And
maybe, just maybe, you’ve been playing around with the dnorm() function, and you accidentally typed
in a command like this:

> dnorm( x = 1, mean = 1, sd = 0.1 )

[1] 3.989423

And if you’ve done the last part, you’re probably very confused. I’ve asked R to calculate the probability
that x = 1, for a normally distributed variable with mean = 1 and standard deviation sd = 0.1; and it
tells me that the probability is 3.99. But, as we discussed earlier, probabilities can’t be larger than 1. So
either I’ve made a mistake, or that’s not a probability.

As it turns out, the second answer is correct. What we’ve calculated here isn’t actually a probability:
it’s something else. To understand what that something is, you have to spend a little time thinking
about what it really means to say that X is a continuous variable. Let’s say we’re talking about the
temperature outside. The thermometer tells me it’s 23 degrees, but I know that’s not really true. It’s
not exactly 23 degrees. Maybe it’s 23.1 degrees, I think to myself. But I know that that’s not really true
either, because it might actually be 23.09 degrees. But, I know that... well, you get the idea. The tricky
thing with genuinely continuous quantities is that you never really know exactly what they are.

Now think about what this implies when we talk about probabilities. Suppose that tomorrow’s
maximum temperature is sampled from a normal distribution with mean 23 and standard deviation
1. What’s the probability that the temperature will be exactly 23 degrees? The answer is “zero”, or
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Figure 9.7: The area under the curve tells you the probability that an observation falls within a particular
range. The solid lines plot normal distributions with mean µ “ 0 and standard deviation σ “ 1. The
shaded areas illustrate “areas under the curve” for two important cases. In panel a, we can see that there
is a 68.3% chance that an observation will fall within one standard deviation of the mean. In panel b, we
see that there is a 95.4% chance that an observation will fall within two standard deviations of the mean.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 9.8: Two more examples of the “area under the curve idea”. There is a 15.9% chance that an
observation is one standard deviation below the mean or smaller (panel a), and a 34.1% chance that
the observation is greater than one standard deviation below the mean but still below the mean (panel
b). Notice that if you add these two numbers together you get 15.9% ` 34.1% “ 50%. For normally
distributed data, there is a 50% chance that an observation falls below the mean. And of course that
also implies that there is a 50% chance that it falls above the mean.
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possibly, “a number so close to zero that it might as well be zero”. Why is this? It’s like trying to throw
a dart at an infinitely small dart board: no matter how good your aim, you’ll never hit it. Similarly,
you’ll never get a value of exactly 23. It’ll always be something like 23.1 or 22.99998 or something. In
other words, it’s completely meaningless to talk about the probability that the temperature is exactly 23
degrees. However, in everyday language, if I told you that it was 23 degrees outside and it turned out
to be 22.9998 degrees, you probably wouldn’t call me a liar. Because in everyday language, “23 degrees”
really means something like “somewhere between 22.5 and 23.5 degrees”. And while it doesn’t feel very
meaningful to ask about the probability that the temperature is exactly 23 degrees, it does seem sensible
to ask about the probability that the temperature lies between 22.5 and 23.5, or between 20 and 30, or
any other range of temperatures.

The point of this discussion is to make clear that, when we’re talking about continuous distributions,
it’s not meaningful to talk about the probability of a specific value. However, what we can talk about
is the probability that the value lies within a particular range of values. To find out the probability
associated with a particular range, what you need to do is calculate the “area under the curve”. We’ve
seen this concept already: in Figure 9.7, the shaded areas shown depict genuine probabilities (e.g., in
Figure 9.7a it shows the probability of observing a value that falls within 1 standard deviation of the
mean).

Okay, so that explains part of the story. I’ve explained a little bit about how continuous probability
distributions should be interpreted (i.e., area under the curve is the key thing), but I haven’t actually
explained what the dnorm() function actually calculates. Equivalently, what does the formula for ppxq
that I described earlier actually mean? Obviously, ppxq doesn’t describe a probability, but what is
it? The name for this quantity ppxq is a probability density, and in terms of the plots we’ve been
drawing, it corresponds to the height of the curve. The densities themselves aren’t meaningful in and
of themselves: but they’re “rigged” to ensure that the area under the curve is always interpretable as
genuine probabilities. To be honest, that’s about as much as you really need to know for now.4

9.5

Other useful distributions

The normal distribution is the distribution that statistics makes most use of (for reasons to be discussed
shortly), and the binomial distribution is a very useful one for lots of purposes. But the world of statistics
is filled with probability distributions, some of which we’ll run into in passing. In particular, the three
that will appear in this book are the t distribution, the χ2 distribution and the F distribution. I won’t
give formulas for any of these, or talk about them in too much detail, but I will show you some pictures.

• The t distribution is a continuous distribution that looks very similar to a normal distribution,
but has heavier tails: see Figure 9.9. This distribution tends to arise in situations where you think
that the data actually follow a normal distribution, but you don’t know the mean or standard
deviation. As you might expect, the relevant R functions are dt(), pt(), qt() and rt(), and we’ll
run into this distribution again in Chapter 13.

• The χ2 distribution is another distribution that turns up in lots of different places. The situation
in which we’ll see it is when doing categorical data analysis (Chapter 12), but it’s one of those
things that actually pops up all over the place. When you dig into the maths (and who doesn’t love

4For those readers who know a little calculus, I’ll give a slightly more precise explanation. In the same way that
probabilities are non-negative numbers that must sum to 1, probability densities are non-negative numbers that must
integrate to 1 (where the integral is taken across all possible values of X). To calculate the probability that X falls between

a and b we calculate the definite integral of the density function over the corresponding range,
şb

a
ppxq dx. If you don’t

remember or never learned calculus, don’t worry about this. It’s not needed for this book.
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Figure 9.9: A t distribution with 3 degrees of freedom (solid line). It looks similar to a normal distribution,
but it’s not quite the same. For comparison purposes, I’ve plotted a standard normal distribution as the
dashed line. Note that the “tails” of the t distribution are “heavier” (i.e., extend further outwards) than
the tails of the normal distribution? That’s the important difference between the two.
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Figure 9.10: A χ2 distribution with 3 degrees of freedom. Notice that the observed values must always be
greater than zero, and that the distribution is pretty skewed. These are the key features of a chi-square
distribution.
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Figure 9.11: An F distribution with 3 and 5 degrees of freedom. Qualitatively speaking, it looks pretty
similar to a chi-square distribution, but they’re not quite the same in general.
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doing that?), it turns out that the main reason why the χ2 distribution turns up all over the place
is that, if you have a bunch of variables that are normally distributed, square their values and then
add them up (a procedure referred to as taking a “sum of squares”), this sum has a χ2 distribution.
You’d be amazed how often this fact turns out to be useful. Anyway, here’s what a χ2 distribution
looks like: Figure 9.10. Once again, the R commands for this one are pretty predictable: dchisq(),
pchisq(), qchisq(), rchisq().

• The F distribution looks a bit like a χ2 distribution, and it arises whenever you need to compare
two χ2 distributions to one another. Admittedly, this doesn’t exactly sound like something that
any sane person would want to do, but it turns out to be very important in real world data analysis.
Remember when I said that χ2 turns out to be the key distribution when we’re taking a “sum of
squares”? Well, what that means is if you want to compare two different “sums of squares”, you’re
probably talking about something that has an F distribution. Of course, as yet I still haven’t given
you an example of anything that involves a sum of squares, but I will... in Chapter 14. And that’s
where we’ll run into the F distribution. Oh, and here’s a picture: Figure 9.11. And of course we
can get R to do things with F distributions just by using the commands df(), pf(), qf() and rf().

Because these distributions are all tightly related to the normal distribution and to each other, and
because they are will turn out to be the important distributions when doing inferential statistics later in
this book, I think it’s useful to do a little demonstration using R, just to “convince ourselves” that these
distributions really are related to each other in the way that they’re supposed to be. First, we’ll use the
rnorm() function to generate 1000 normally-distributed observations:

> normal.a <- rnorm( n=1000, mean=0, sd=1 )

> print(normal.a)

[1] 0.2913131706 -0.4156161554 0.1482611948 0.8516858463 -0.6658081840

[6] 0.8827940964 1.3757851963 0.2497812249 -0.1926513775 0.2160192605
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Figure 9.12: Data sampled from different distributions. See the main text for details.
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[11] -0.7982884040 -1.4027212056 0.0281455244 -0.1266362460 0.8645205990

BLAH BLAH BLAH

So the normal.a variable contains 1000 numbers that are normally distributed, and have mean 0 and
standard deviation 1, and the actual print out of these numbers goes on for rather a long time. Note
that, because the default parameters of the rnorm() function are mean=0 and sd=1, I could have shortened
the command to rnorm( n=1000 ). In any case, what we can do is use the hist() function to draw a
histogram of the data, like so:

> hist( normal.a )

If you do this, you should see something similar to Figure 9.12a. Your plot won’t look quite as pretty as
the one in the figure, of course, because I’ve played around with all the formatting (see Chapter 6), and
I’ve also plotted the true distribution of the data as a solid black line (i.e., a normal distribution with
mean 0 and standard deviation 1) so that you can compare the data that we just generated to the true
distribution.

In the previous example all I did was generate lots of normally distributed observations using rnorm()

and then compared those to the true probability distribution in the figure (using dnorm() to generate the
black line in the figure, but I didn’t show the commmands for that). Now let’s try something trickier.
We’ll try to generate some observations that follow a chi-square distribution with 3 degrees of freedom,
but instead of using rchisq(), we’ll start with variables that are normally distributed, and see if we
can exploit the known relationships between normal and chi-square distributions to do the work. As I
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mentioned earlier, a chi-square distribution with k degrees of freedom is what you get when you take
k normally-distributed variables (with mean 0 and standard deviation 1), square them, and add them
up. Since we want a chi-square distribution with 3 degrees of freedom, we’ll need to supplement our
normal.a data with two more sets of normally-distributed observations, imaginatively named normal.b

and normal.c:

> normal.b <- rnorm( n=1000 ) # another set of normally distributed data

> normal.c <- rnorm( n=1000 ) # and another!

Now that we’ve done that, the theory says we should square these and add them together, like this

> chi.sq.3 <- (normal.a)^2 + (normal.b)^2 + (normal.c)^2

and the resulting chi.sq.3 variable should contain 1000 observations that follow a chi-square distribution
with 3 degrees of freedom. You can use the hist() function to have a look at these observations yourself,
using a command like this,

> hist( chi.sq.3 )

and you should obtain a result that looks pretty similar to the plot in Figure 9.12b. Once again, the plot
that I’ve drawn is a little fancier: in addition to the histogram of chi.sq.3, I’ve also plotted a chi-square
distribution with 3 degrees of freedom. It’s pretty clear that – even though I used rnorm() to do all the
work rather than rchisq() – the observations stored in the chi.sq.3 variable really do follow a chi-square
distribution. Admittedly, this probably doesn’t seem all that interesting right now, but later on when we
start encountering the chi-square distribution in Chapter 12, it will be useful to understand the fact that
these distributions are related to one another.

We can extend this demonstration to the t distribution and the F distribution. Earlier, I implied that
the t distribution is related to the normal distribution when the standard deviation is unknown. That’s
certainly true, and that’s the what we’ll see later on in Chapter 13, but there’s a somewhat more precise
relationship between the normal, chi-square and t distributions. Suppose we “scale” our chi-square data
by dividing it by the degrees of freedom, like so

> scaled.chi.sq.3 <- chi.sq.3 / 3

we then take a set of normally distributed variables and divide them by (the square root of) our scaled
chi-square variable which had df “ 3, and the result is a t distribution with 3 degrees of freedom:

> normal.d <- rnorm( n=1000 ) # yet another set of normally distributed data

> t.3 <- normal.d / sqrt( scaled.chi.sq.3 ) # divide by square root of scaled chi-square to get t

If we plot the histogram of t.3, we end up with something that looks very similar to Figure 9.12c.
Similarly, we can obtain an F distribution by taking the ratio between two scaled chi-square distributions.
Suppose, for instance, we wanted to generate data from an F distribution with 3 and 20 degrees of freedom.
We could do this using df(), but we could also do the same thing by generating two chi-square variables,
one with 3 degrees of freedom, and the other with 20 degrees of freedom. As the example with chi.sq.3

illustrates, we can actually do this using rnorm() if we really want to, but this time I’ll take a short cut:

> chi.sq.20 <- rchisq( 1000, 20) # generate chi square data with df = 20...

> scaled.chi.sq.20 <- chi.sq.20 / 20 # scale the chi square variable...

> F.3.20 <- scaled.chi.sq.3 / scaled.chi.sq.20 # take the ratio of the two chi squares...

> hist( F.3.20 ) # ... and draw a picture
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The resulting F.3.20 variable does in fact store variables that follow an F distribution with 3 and 20
degrees of freedom. This is illustrated in Figure 9.12d, which plots the histgram of the observations
stored in F.3.20 against the true F distribution with df1 “ 3 and df2 “ 20. Again, they match.

Okay, time to wrap this section up. We’ve seen three new distributions: χ2, t and F . They’re all
continuous distributions, and they’re all closely related to the normal distribution. I’ve talked a little
bit about the precise nature of this relationship, and shown you some R commands that illustrate this
relationship. The key thing for our purposes, however, is not that you have a deep understanding of all
these different distributions, nor that you remember the precise relationships between them. The main
thing is that you grasp the basic idea that these distributions are all deeply related to one another, and to
the normal distribution. Later on in this book, we’re going to run into data that are normally distributed,
or at least assumed to be normally distributed. What I want you to understand right now is that, if you
make the assumption that your data are normally distributed, you shouldn’t be surprised to see χ2, t
and F distributions popping up all over the place when you start trying to do your data analysis.

9.6

What does probability mean?

Now that we’ve discussed the a little bit of the mechanics and the mathematics of probability, let’s have
a go at trying to define probability. Specifically, what does “probability” correspond to in the real world?
This turns out to be surprisingly difficult. Even though everyone has some intuitive notion of “the chances
of an event”, and statisticians all agree about how chance should be mapped into the mathematics, they
don’t actually agree on how to map it onto the world. In other words, the philosophical, physical and
psychological meaning of the word “probability” is in serious dispute. Now, in one sense it doesn’t matter:
it’s the maths that does most of the real grunt work in statistics, and we all agree on the maths. However
that doesn’t make the semantics unimportant. In fact, it’s critical, because it influences the way you
interpret the statistics, and leads to subtle ideological differences about how you’re allowed to use the
mathematics.

So, what might we mean when we say that “the probability of X is 30%”? How shall we define this,
without our definition being circular, and without retreating completely into a mathematical definition
that bears no connection to the physical world? In this section, I give a brief (and not at all rigourous)
introduction the two main approaches that exist in the literature. These are by no means the only
approaches, but they’re the two big ones.

9.6.1 The frequentist view

The first of the two major approaches to probability, and the more dominant one in statistics, is
referred to as the frequentist view, and it defines probability as a long-run frequency. Suppose we
were to try flipping a fair coin, over and over again. By definition, this is a coin that has P pHq “ 0.5.
What might we observe? One possibility is that the first 20 flips might look like this:

T,H,H,H,H,T,T,H,H,H,H,T,H,H,T,T,T,T,T,H

As it happens, 11 of these 20 coin flips (55%) came up heads. Now suppose that I’d been keeping a
running tally of the number of heads (which I’ll call NH) that I’ve seen, across the first N flips, and
calculate the proportion of heads NH{N every time. Here’s what I’d get (I did literally flip coins to
produce this!):
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number of flips 1 2 3 4 5 6 7 8 9 10
number of heads 0 1 2 3 4 4 4 5 6 7
proportion .00 .50 .67 .75 .80 .67 .57 .63 .67 .70

number of flips 11 12 13 14 15 16 17 18 19 20
number of heads 8 8 9 10 10 10 10 10 10 11
proportion .73 .67 .69 .71 .67 .63 .59 .56 .53 .55

Notice that at the start of the sequence, the proportion of heads fluctuates wildly, starting at .00 and
rising as high as .80. Later on, one gets the impression that it dampens out a bit, with more and more
of the values actually being pretty close to the “right” answer of .50. This is the frequentist definition of
probability in a nutshell: flip a fair coin over and over again, and as N grows large (approaches infinity,
denoted N Ñ8), the proportion of heads will converge to 50%. There are some subtle technicalities that
the mathematicians care about, but qualitatively speaking, that’s how the frequentists define probability.
Unfortunately, I don’t have an infinite number of coins, or the infinite patience required to flip a coin
an infinite number of times. However, I do have a computer, and computers excel at mindless repetitive
tasks. So I asked my computer to simulate flipping a coin 1000 times, and then drew a picture of what
happens to the proportion NH{N as N increases. Actually, I did it four times, just to make sure it
wasn’t a fluke. The results are shown in Figure 9.13. As you can see, the proportion of observed heads
eventually stops fluctuating, and settles down; when it does, the number at which it finally settles is the
true probability of heads.

The frequentist definition of probability has some desirable characteristics. Firstly, it is objective: the
probability of an event is necessarily grounded in the world. The only way that probability statements
can make sense is if they refer to (a sequence of) events that occur in the physical universe.5 Secondly,
it is unambiguous: any two people watching the same sequence of events unfold, trying to calculate the
probability of an event, must inevitably come up with the same answer. However, it also has undesirable
characteristics. Firstly, infinite sequences don’t exist in the physical world. Suppose you picked up a coin
from your pocket and started to flip it. Every time it lands, it impacts on the ground. Each impact wears
the coin down a bit; eventually, the coin will be destroyed. So, one might ask whether it really makes
sense to pretend that an “infinite” sequence of coin flips is even a meaningful concept, or an objective one.
We can’t say that an “infinite sequence” of events is a real thing in the physical universe, because the
physical universe doesn’t allow infinite anything. More seriously, the frequentist definition has a narrow
scope. There are lots of things out there that human beings are happy to assign probability to in everyday
language, but cannot (even in theory) be mapped onto a hypothetical sequence of events. For instance,
when the meteorologist comes on TV and says, “the probability of rain in Adelaide tomorrow, 1 November
2010, is 60%” we humans are happy to accept this. But it’s not clear how to define this in frequentist
terms. There’s only one city of Adelaide, and only 1 November 2010. There’s no infinite sequence of
events here, just a once-off thing. Frequentist probability genuinely forbids us from making probability
statements about a single event. From the frequentist perspective, “it will either rain tomorrow, or
it will not; there is no probability”. Now, it should be said that there are some very clever tricks that
frequentists can use to get around this. One possibility is that what the meteorologist means is something
like this: “There is a category of days for which I predict a 60% chance of rain; if we look only across
those days for which I make this prediction, then on 60% of those days it will actually rain”. It’s very
weird and counterintuitive to think of it this way, but you do see frequentists do this sometimes. And it
will come up later in this book (see Section 10.5).

5This doesn’t mean that frequentists can’t make hypothetical statements, of course; it’s just that if you want to make a
true statement about probability, then it has to refer to a real world sequence of observations.
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Figure 9.13: An illustration of how frequentist probability works. If you flip a fair coin over and over again,
the proportion of heads that you’ve seen eventually settles down, and converges to the true probability
of 0.5. Each panel shows four different simulated experiments: in each case, we pretend we flipped a coin
1000 times, and kept track of the proportion of flips that were heads as we went along. Although none
of these sequences actually ended up with an exact value of .5, if we’d extended the experiment for an
infinite number of coin flips they would have.
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9.6.2 The Bayesian view

The Bayesian view of probability is often called the subjectivist view, and it is a minority view
among statisticians, but one that has been steadily gaining traction for the last several decades. There
are many flavours of Bayesianism, making hard to say exactly what “the” Bayesian view is. The most
common way of thinking about subjective probability is to define the probability of an event as the
degree of belief that an intelligent agent assigns to that truth of that event. From that perspective,
probabilities don’t exist in the world, but rather in the thoughts and assumptions of people. However, in
order for this approach to work, we need some way of operationalising “degree of belief”. One way that
you can do this is to formalise it in terms of “rational gambling”, though there are many other ways.
Suppose that I believe that there’s a 60% probability of rain tomorrow. If someone offers me a bet: if it
rains tomorrow, then I win $5, but if it doesn’t rain then I lose $5. Clearly, from my perspective, this is
a pretty good bet. On the other hand, if I think that the probability of rain is only 40%, then it’s a bad
bet to take. Thus, we can operationalise the notion of a “subjective probability” in terms of what bets
I’m willing to accept.

What are the advantages and disadvantages to the Bayesian approach? The main advantage is that
it allows you to assign probabilities to any event you want to. You don’t need to be limited to those
events that are repeatable. The main disadvantage (to many people) is that we can’t be purely objective
– specifying a probability requires us to specify an entity that has the relevant degree of belief. This
entity might be a human, an alien, a robot, or even a statistician, but there has to be an intelligent agent
out there that believes in things. To many people this is uncomfortable: it seems to make probability
arbitrary. While the Bayesian approach does require that the agent in question be rational (i.e., obey
the rules of probability), it does allow everyone to have their own beliefs; I can believe the coin is fair
and you don’t have to, even though we’re both rational. The frequentist view doesn’t allow any two
observers to assign different probabilities to the same event; the Bayesian view does. And while there are
some attempts out there to “fix” this none are quite convincing. In short, where the frequentist view is
sometimes considered to be too narrow (forbids lots of things that that we want to assign probabilities
to), the Bayesian view is often thought to be too broad (allows too many differences between observers).
I personally prefer the Bayesian view, but the majority of statistical analyses are based on the frequentist
view, so this book doesn’t go into the Bayesian view in any detail.

9.7

Summary

• Probability theory versus statistics (Section 9.1)

• Basics of probability theory (Section 9.2)

• Binomial distribution (Section 9.3), normal distribution (Section 9.4), and others (Section 9.5)

• Frequentist versus Bayesian views of probability (Section 9.6)
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10. Estimating population parameters from a sample

Probability theory is a powerful tool: and without probability theory it would be more or less impossible
to do inferential statistics. However, there’s more to statistical inference than just probability theory.
In this chapter we’ll move away from talking purely about probabilities, and instead start talking about
making statistical inferences. There are two big ideas in inferential statistics: estimation and hypothesis
testing. This chapter discusses estimation.

10.1

Samples, populations and sampling

In order to talk about “making inferences” at all, we need to be a bit more explicit about what it is
that we’re drawing inferences from (the sample) and what it is that we’re drawing inferences about (the
population).

In almost every situation of interest, what we have available to us as researchers is a sample of data.
We might have run experiment with some number of participants; a polling company might have phoned
some number of people to ask questions about voting intentions; etc. Regardless: the data set available
to us is finite, and incomplete. We can’t possibly get every person in the world to do our experiment; a
polling company doesn’t have the time or the money to ring up every voter in the country etc. In our
earlier discussion of descriptive statistics (Chapter 5), this sample was the only thing we were interested
in. Our only goal was to find ways of describing, summarising and graphing that sample. This is about
to change.

A sample is a concrete thing. You can open up a data file, and there’s the data from your sample. A
population, on the other hand, is a more abstract idea. It refers to the set of all possible people, or all
possible observations, that you want to draw conclusions about. Almost always, the population is much
bigger than the sample. For instance, in our “polling company” example previously, the population of
interest consists of all enrolled voters – millions of people. In contrast, the sample would probably only
consist of 1000 people or so. For a psychological experiment, the situation is more complex. Suppose I
run an experiment using 100 undergraduate students as my participants. My goal, as a cognitive scientist,
is to try to learn something about how the mind works. So, which of the following would count as “the
population”:

• All of the undergraduate psychology students at the University of Adelaide?

• Undergraduate psychology students in general, anywhere in the world?

• Australians currently living?

- 293 -



• Australians of similar ages to my sample?

• Anyone currently alive?

• Any human being, past, present or future?

• Any biological organism with a sufficient degree of intelligence operating in a terrestrial environ-
ment?

• Any intelligent being?

Ideally, the researcher would begin the study with a clear idea of what the population of interest is, since
the process of designing a study and testing hypotheses about the data that it produces does depend
on the population about which you want to make statements. However, that doesn’t always happen in
practice: usually the researcher has a fairly vague idea of what the population is and designs the study
as best he/she can on that basis. In practice this issue is often the source of very real headaches and very
serious methodological worries.

10.1.1 Most samples are not simple random samples

To see where the concern comes from, it’s important to recognise that – regardless of what the
population actually is – whenever we’re engaged in statistical inference, what we’re trying to do is
generalise from the sample to the population. In order to do so, we generally want to assume that the
sample is drawn from the population “at random”. That is, in an ideal world we’d be able to say that
every single member of the population is equally likely to end up being included in the sample. This
is often referred to as a simple random sample. As you can see from looking at the list of possible
populations that I showed above, it is almost impossible to obtain a simple random sample from most of
the populations of interest. When I run experiments, I’d consider it a minor miracle if my participants
turned out to be a random sampling of the undergraduate psychology students at Adelaide university,
even though this is by far the narrowest population that I might want to generalise to.

Clearly, this can pose real difficulties in terms of external validity, as we discussed in Chapter 2.
However, it’s not quite as bad as it sounds. In truth, we don’t need the sample to be randomly generated
in every respect: we only need it to be random with respect to the psychologically-relevant phenomenon
of interest. Suppose, for instance, I’m doing a study looking at working memory capacity. In study 1, I
actually have the ability to sample randomly from all human beings currently alive, with one exception: I
can only sample people born on a Monday. In study 2, I am able to sample randomly from the Australian
population. I want to generalise my results to the population of all living humans. Which study is better?
The answer, obviously, is study 1. Why? Because we have no reason to think that being “born on a
Monday” has any interesting relationship to working memory capacity. In contrast, I can think of several
reasons why “being Australian” might matter. Australia is a wealthy, industrialised country with a
very well-developed education system. People growing up in that system will have had life experiences
much more similar to the experiences of the people who designed the tests for working memory capacity.
This shared experience might easily translate into similar beliefs about how to “take a test”, a shared
assumption about how psychological experimentation works, and so on. These things might actually
matter. For instance, “test taking” style might have taught the Australian participants how to direct
their attention exclusively on fairly abstract test materials relative to people that haven’t grown up in a
similar environment; leading to a misleading picture of what working memory capacity is.

There are two points hidden in this discussion. Firstly, when designing your own studies, it’s important
to think about what population you care about, and try hard to sample in a way that is appropriate
to that population. In practice, you’re usually forced to put up with a “sample of convenience” (e.g.,
psychology lecturers sample psychology students because that’s the least expensive way to collect data,

- 294 -



60 80 100 120 140

0
.0

0
0

0
.0

1
0

0
.0

2
0

IQ Score

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

IQ Score

F
re

q
u

e
n

c
y

60 80 100 120 140
0

4
0

0
8

0
0

1
2

0
0

IQ Score

F
re

q
u

e
n

c
y

60 80 100 120 140

0
5

1
0

1
5

(a) (b) (c)

Figure 10.1: The population distribution of IQ scores (panel a) and two samples drawn randomly from it.
In panel b we have a sample of 10,000 observations, and in panel c we have a sample of 100 observations
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and our coffers aren’t exactly overflowing with gold), but if so you should at least spend some time
thinking about what the dangers of this practice might be.

Secondly, if you’re going to criticise someone else’s study because they’ve used a sample of convenience
rather than laboriously sampling randomly from the entire human population, at least have the courtesy
to offer a specific theory as to how this might have distorted the results. Remember, everyone in science
is aware of this issue, and does what they can to alleviate it. Merely pointing out that “the study only
included people from group BLAH” is entirely unhelpful, and borders on being insulting to the researchers,
who are of course aware of the issue, they just don’t happen to be in possession of the infinite supply of
time and money required to construct the perfectly representative sample. In short, if you want to offer
a responsible critique of the sampling process, then be helpful. Rehashing the blindingly obvious truisms
that I’ve been rambling on about in this section isn’t helpful.

10.1.2 Populations, samples and probability distributions

Okay. Setting aside the thorny methodological issues associated with obtaining a random sample
and my rather unfortunate tendency to rant about lazy methodological criticism, let’s consider a slightly
different issue. In much the same way that psychological researchers need to operationalise our abstract
theoretical ideas in terms of concrete measurements, statisticians need to operationalise the concept of a
“population” in terms of mathematical objects that they know how to work with. You’ve already come
across these objects: they’re called probability distributions.

The idea is quite simple, really. Let’s say we’re talking about IQ scores, for example. By convention,
the tests are designed so that, across the entire population, IQ scores follow a normal distribution that has
mean 100 and standard deviation 15. As a statistical abstraction then, the “population” we’re interested
in is operationalised in terms of the probability distribution depicted in Figure 10.1a. To put this in
formal mathematical language, this population distribution is normal, and described by two population
parameters, the population mean µ “ 100 and the population standard deviation σ “ 15.

Now let’s suppose we conducted a massive experiment, with a sample size of N “ 10, 000 people,
and measured their IQ. Let’s also assume that the sampling is perfectly random. We can mimic this by
using the rnorm() command, as discussed in the last chapter:
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> X <- rnorm( n = 10000, mean = 100, sd = 15 )

Not surprisingly, since we have such a huge mass of data, when I draw a histogram of this sample, it
looks very similar to the population distribution, as illustrated in Figure 10.1b. This data set can be
characterised in terms of two sample statistics, the sample mean X̄ “ 99.89 and the sample standard
deviation s “ 15.07. These are awfully close to the true values, although they’re not quite perfect.

Now let’s suppose that we collected a smaller sample, with only N “ 100 people this time. If we
draw the histogram for this sample (Figure 10.1c) it’s pretty clear that that the sample does resemble
the population, but it’s not anywhere near as exact as the big sample. When we calculate the sample
mean, we get a value of X̄ “ 98.45; for the sample standard deviation, we obtain s “ 15.86. We’re now
off by a bigger margin in both cases, though people are often surprised at just how close we get with a
sample of only 100.

10.2

Estimating population means and standard deviations

In the IQ example in the previous section, we actually knew the population parameters ahead of time.
As every undergraduate gets taught in their very first lecture on the measurement of intelligence, IQ
scores are defined to have mean 100 and standard deviation 15. However, this is a bit of a lie. How do
we know that IQ scores have a true population mean of 100? Well, we know this because the people who
designed the tests have administered them to very large samples, and have then “rigged” the scoring rules
so that their sample has mean 100. That’s not a bad thing of course: it’s an important part of designing
a psychological measurement. However, it’s important to keep in mind that this theoretical mean of 100
only attaches to the population that the test designers used to design the tests. Good test designers will
actually go to some lengths to provide “test norms” that can apply to lots of different populations (e.g.,
different age groups, nationalities etc).

This is very handy, but of course almost every research project of interest involves looking at a different
population of people to those used in the test norms. For instance, suppose you wanted to measure the
effect of low level lead poisoning on cognitive functioning in Port Pirie, a South Australian industrial
town with a lead smelter. Perhaps you decide that you want to compare IQ scores among people in
Port Pirie to a comparable sample in Whyalla, a South Australian industrial town with a steel refinery.1

Regardless of which town you’re thinking about, it doesn’t make a lot of sense simply to assume that
the true population mean IQ is 100. No-one has, to my knowledge, produced sensible norming data that
can automatically be applied to South Australian industrial towns. We’re going to have to estimate the
population means from a sample of data. So how do we do this?

For the sake of argument, suppose we go to Port Pirie, and 100 of the locals – sampled entirely at
random, somehow – are kind enough to sit through an IQ test. Across these 100 people, the mean IQ score
turned out to be X̄ “ 98.52, let’s say. So, what is the true mean IQ µ for the population of Port Pirie?

1Please note that if you were actually interested in this question, you would need to be a lot more careful than I’m being
here. You can’t just compare IQ scores in Whyalla to Port Pirie and assume that any differences are due to lead poisoning.
Even if it were true that the only differences between the two towns corresponded to the different refineries (and it isn’t,
not by a long shot), you need to account for the fact that people already believe that lead pollution causes cognitive deficits:
if you recall back to Chapter 2, this means that there are different demand effects for the Port Pirie sample than for the
Whyalla sample. In other words, you might end up with an illusory group difference in your data, caused by the fact that
people think that there is a real difference. I find it pretty implausible to think that the locals wouldn’t be well aware of
what you were trying to do if a bunch of researchers turned up in Port Pirie with lab coats and IQ tests, and even less
plausible to think that a lot of people would be pretty resentful of you for doing it. Those people won’t be as co-operative
in the tests. Other people in Port Pirie might be more motivated to do well because they don’t want their home town to
look bad. The motivational effects that would apply in Whyalla are likely to be weaker, because people don’t have any
concept of “iron ore poisoning” in the same way that they have a concept for “lead poisoning”. Psychology is hard.

- 296 -



The correct answer here is that we don’t actually know. Maybe it’s 97.23, maybe it’s 100.56. We can’t
say for sure. However, if I was forced at gunpoint to give a “best guess”, I’d have to say 98.52. I don’t
have to believe that my guess is true (and I don’t): all I believe here is that this is the best single number
that I can give. So that’s my estimate right there. It’s not terribly complicated, since my estimate of the
population mean is identical to the observed sample mean, but it’s conceptually important. Statisticians
often use the notation µ̂ to refer to “an estimate of µ”. So, if I observe a sample mean of X̄ “ 98.52,
then my estimate of the population mean is µ̂ “ 98.52. The distinction is subtle, but it’s important.
Just so that we’re clear on the notation:

Symbol What is it? Do we know what it is?

X̄ Sample mean Yes, calculated from the raw data
µ True population mean Almost never known for sure
µ̂ Estimate of the population mean Yes, identical to the sample mean

So far, estimation seems pretty simple. In the case of the mean, our estimate of the population
parameter (i.e. µ̂) turned out to identical to the corresponding sample statistic (i.e. X̄). However, that’s
not always true. To see this, let’s have a think about how to construct an estimate of the population
standard deviation, which we’ll denote σ̂. What shall we use as our estimate in this case? Your first
thought might be that we could do the same thing we did when estimating the mean, and just use the
sample statistic as our estimate. That’s almost the right thing to do, but not quite.

Here’s why. Suppose I have a sample that contains a single observation. For this example, it helps to
consider a sample where you have no intutions at all about what the true population values might be, so
let’s use something completely fictitious. Suppose the observation in question measures the cromulence
of my shoes. It turns out that my shoes have a cromulence of 20. So here’s my sample:

20

This is a perfectly legitimate sample, even if it does have a sample size of N “ 1. It has a sample mean
of 20, and – because every observation in this sample is equal to the sample mean (obviously!) – it has a
sample standard deviation of 0. Now, as a description of the sample, this seems quite right: the sample
contains a single observation and therefore there is no variation observed within the sample. A sample
standard deviation of s “ 0 is the right answer here. But as an estimate of the population standard
deviation, it feels completely insane, right? Admittedly, you and I don’t know anything at all about what
“cromulence” is, but we know something about data: the only reason that we don’t see any variability
in the sample is that the sample is too small to display any variation! So, if you have a sample size of
N “ 1, it feels like the right answer is just to say “no idea at all”.

Notice that you don’t have the same intuition when it comes to the sample mean and the population
mean. If forced to make a best guess about the population mean, it doesn’t feel completely insane to
guess that the population mean is 20. Sure, you probably wouldn’t feel very confident in that guess,
because you have only the one observation to work with, but it’s still the best guess you can make.

Let’s extend this example a little. Suppose I now make a second observation. My data set now has
N “ 2 observations of the cromulence of shoes, and the complete sample now looks like this:

20, 22

This time around, our sample is just large enough for us to be able to observe some variability: two
observation is the bare minimum number needed for any variability to be observed! For our new data
set, the sample mean is X̄ “ 21, and the sample standard deviation is s “ 1. What intuitions do we have
about the population? Again, as far as the population mean goes, the best guess we can possibly make
is the sample mean: if forced to guess, we’d probably guess that the population mean cromulence is 21.
What about the standard deviation? This is a little more complicated. The sample standard deviation
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is only based on two observations, and if you’re at all like me you probably have the intuition that, with
only two observations, we haven’t given the population “enough of a chance” to reveal its true variability
to us. It’s not just that we suspect that the estimate is wrong: after all, with only two observations we
expect it to be wrong to some degree. The worry is that the error is systematic. Specifically, we suspect
that the sample standard deviation is likely to be smaller than the population standard deviation.

This intuition feels right, but it would be nice to demonstrate this somehow. One way to do this
would be to mathematically prove that the sample variance is systematically biased as an estimator of
the population variance. That’s what statisticians did originally, but unless you have the mathematical
background it’s not all that helpful. Instead, what I’ll do is show you the results of some simulations done
using R. Let’s return to our IQ example. What I did was use the rnorm() function to generate 10,000
random data sets, each one consisting of a single observation (i.e., N “ 1) drawn from a population
that has a true mean of 100 and a true standard deviation of 15. I then did the same thing for data
sets with a sample size of N “ 2, and so on up to a sample size of N “ 10. For every simulated data
set, I calculated the sample mean and the sample standard deviation. Despite sounding like a pretty
complicated number crunching exercise, it only takes a few seconds to run on a laptop. The results of
this little exercise are shown in Figure 10.2. On the left hand side (panel a), I’ve plotted the average
of the 10,000 simulated sample means, for all values N from 1 to 10. On the right hand side (panel b),
I’ve plotted the average of the 10,000 standard deviations. The two plots are quite different: on average,
the sample mean is equal to the population mean. It is an unbiased estimator, which is essentially
the reason why your best estimate for the population mean is the sample mean.2 The plot on the right
is quite different: on average, the sample standard deviation s is smaller than the population standard
deviation σ. It is a biased estimator. In other words, if we want to make a “best guess” σ̂ about the
value of the population standard deviation σ, we should make sure our guess is a little bit larger than
the sample standard deviation s.

The fix to this systematic bias turns out to be very simple. Here’s how it works. Before tackling
the standard deviation, let’s look at the variance. If you recall from Section 5.2, the sample variance is
defined to be the average of the squared deviations from the sample mean. That is:

s2 “ 1

N

N
ÿ

i“1

pXi ´ X̄q2

The sample variance s2 is a biased estimator of the population variance σ2. But as it turns out, we only
need to make a tiny tweak to transform this into an unbiased estimator. All we have to do is divide by
N ´ 1 rather than by N . If we do that, we obtain the following formula:

σ̂2 “ 1

N ´ 1

N
ÿ

i“1

pXi ´ X̄q2

This is an unbiased estimator of the population variance σ. Moreover, this finally answers the question
we raised in Section 5.2. Why did R give us slightly different answers when we used the var() function?
Because the var() function calculates σ̂2 not s2, that’s why. A similar story applies for the standard
deviation. If we divide by N ´ 1 rather than N , our estimate of the population standard deviation
becomes:

σ̂ “

g

f

f

e

1

N ´ 1

N
ÿ

i“1

pXi ´ X̄q2

2I should note that I’m hiding something here. Unbiasedness is a desirable characteristic for an estimator, but there are
other things that matter besides bias. However, it’s beyond the scope of this book to discuss this in any detail. I just want
to draw your attention to the fact that there’s some hidden complexity here.
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Figure 10.2: An illustration of the fact that the sample mean is an unbiased estimator of the population
mean (panel a), but the sample standard deviation is a biased estimator of the population standard
deviation (panel b). To generate the figure, I generated 10,000 simulated data sets with 1 observation
each, 10,000 more with 2 observations, and so on up to a sample size of 10. Each data set consisted
of fake IQ data: that is, the data were normally distributed with a true population mean of 100 and
standard deviation 15. On average, the sample means turn out to be 100, regardless of sample size (panel
a). However, the sample standard deviations turn out to be systematically too small (panel b), especially
for small sample sizes.
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and when we use R’s built in standard deviation function sd(), what it’s doing is calculating σ̂, not s.3

One final point: in practice, a lot of people tend to refer to σ̂ (i.e., the formula where we divide by
N ´ 1) as the sample standard deviation. Technically, this is incorrect: the sample standard deviation
should be equal to s (i.e., the formula where we divide by N). These aren’t the same thing, either
conceptually or numerically. One is a property of the sample, the other is an estimated characteristic
of the population. However, in almost every real life application, what we actually care about is the
estimate of the population parameter, and so people always report σ̂ rather than s. This is the right
number to report, of course, it’s that people tend to get a little bit imprecise about terminology when
they write it up, because “sample standard deviation” is shorter than “estimated population standard
deviation”. It’s no big deal, and in practice I do the same thing everyone else does. Nevertheless, I think
it’s important to keep the two concepts separate: it’s never a good idea to confuse “known properties of
your sample” with “guesses about the population from which it came”. The moment you start thinking
that s and σ̂ are the same thing, you start doing exactly that.

3Okay, I’m hiding something else here. In a bizarre and counterintuitive twist, since σ̂2 is an unbiased estimator of σ2,
you’d assume that taking the square root would be fine, and σ̂ would be an unbiased estimator of σ. Right? Weirdly, it’s
not. There’s actually a subtle, tiny bias in σ̂. This is just bizarre: σ̂2 is and unbiased estimate of the population variance
σ2, but when you take the square root, it turns out that σ̂ is a biased estimator of the population standard deviation σ.
Weird, weird, weird, right? So, why is σ̂ biased? The technical answer is “because non-linear transformations (e.g., the
square root) don’t commute with expectation”, but that just sounds like gibberish to everyone who hasn’t taken a course
in mathematical statistics. Fortunately, it doesn’t matter for practical purposes. The bias is small, and in real life everyone
uses σ̂ and it works just fine. Sometimes mathematics is just annoying.
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To finish this section off, here’s another couple of tables to help keep things clear:

Symbol What is it? Do we know what it is?

s Sample standard deviation Yes, calculated from the raw data
σ Population standard deviation Almost never known for sure
σ̂ Estimate of the population Yes, but not the same as the

standard deviation sample standard deviation

Symbol What is it? Do we know what it is?

s2 Sample variance Yes, calculated from the raw data
σ2 Population variance Almost never known for sure
σ̂2 Estimate of the population Yes, but not the same as the

variance sample variance

10.3

Sampling distributions

When talking about probability distributions, we’ve made use of the idea that observations X are sampled
from some distribution. So, for instance, if X refers to a measurement of an IQ score, then we would say
that the distribution of X is normal, with mean µ “ 100 and standard deviation σ “ 15. If I repeated
it 10,000 times, and drew a histogram of all the individual X values that I measured, I’d end up with a
histogram that looks like the one in Figure 10.3a.

This idea can be extended, to talk about the distribution of a sample statistic. That is, suppose I
gave N “ 10 people an IQ test, and calculated the mean IQ for that sample X̄. It’s perfectly reasonable
to think about the sample mean itself X̄ as being a kind of measurement. If I repeated this procedure
100,000 times, and drew a histogram of all the sample means X̄ that I measured, what would I end
up with? If I use R to simulate what would happen, I end up with Figure 10.3c. Obviously, since we
can draw a histogram of these X̄ values, we should be able to talk about X̄ as having a distribution,
right? After all, by plotting the histogram, we can clearly see what the distribution is! The name for this
distribution over X̄ is the sampling distribution of the mean, and you can see from this plot that
there’s a relationship between the population distribution (i.e., the distribution of X) and the sampling
distribution of the mean (i.e., the distribution of X̄).

10.4

The central limit theorem

In the example above, the sampling distribution looks like it’s a normal distribution with the same
mean as our original population distribution (100), but a narrower standard deviation. This narrowing is
important, and it makes a lot of sense: we’re looking at the distribution of the sample mean X̄, and you’d
kind of expect a the sample mean to be closer the population mean, right? That’s why we collect lots of
data in the first place! What you’re looking at in this picture is exactly this intuition in action: the sample
means X̄ all tend to “cluster” around the true mean µ, much more tightly than a single observation X

would be expected to do. This phenomenon is an illustration of the law of large numbers. As the
sample size increases, it becomes more and more likely that your sample mean will be very close to the
true answer. Or to be precise, what the law of large numbers says is that, as the sample size approaches
infinity (written as N Ñ8) the sample mean approaches the population mean (X̄ Ñ µ).
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Figure 10.3: An illustration of the sampling distribution of the mean. In each panel, I generated 10,000
samples of IQ data, and calculated the mean IQ observed within each of these data sets. The histograms
in these plots show the distribution of these means (i.e., the sampling distribution of the mean). Each
individual IQ score was drawn from a normal distribution with mean 100 and standard deviation 15,
which is shown as the solid black line). In panel a, each data set contained only a single observation, so
the mean of each sample is just one person’s IQ score. As a consequence, the sampling distribution of the
mean is of course identical to the population distribution of IQ scores. However, when we raise the sample
size to 2, the mean of any one sample tends to be closer to the population mean than a one person’s
IQ score, and so the histogram (i.e., the sampling distribution) is a bit narrower than the population
distribution. By the time we raise the sample size to 10 (panel c), we can see that the distribution of
sample means tend to be fairly tightly clustered around the true population mean.
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The law of large numbers is a very powerful tool, but we can actually make a stronger statement than
this, using one of the most useful mathematical results in all of statistics: the central limit theorem.
Let’s suppose that the population distribution of X has a mean µ and standard deviation σ, but it’s not
a normal distribution. The central limit theorem says that, as the sample size increases, the sampling
distribution of the mean X̄ will become a normal distribution, with mean µ and standard deviation
σ{
?
N . By convention, the standard deviation of a sampling distribution is called the standard error

(SE). Therefore, the standard error of the mean X̄, can be described by the following equation,

sepX̄q “ σ?
N

Hm. While I’ll concede that the standard error of the mean is actually a very useful thing to be able to
calculate, I feel that this equation is overselling itself slightly.4

Be that as it may, we should probably get back to the stats... the central limit theorem is a pretty
important thing in statistics, so I’ll “prove” it to you in a moment, but before I do so, let’s just take
a moment to think about just how incredible a claim this is. There’s a lot of variables that you might
want to measure that could be thought of as being the average of lots of different things. What the
central limit theorem implies is that, whenever that is the case, you should expect your variable to follow
a normal distribution. And remarkably, this really happens. Over and over again in the real world you
find that variables you care about are approximately normally distributed. At a fundamental level, the

4Sure, I could have chosen “SEM” as the notation for the standard error of the mean. I didn’t do this for two reasons:
(1) later on we’ll want to talk about the standard errors for things other than the mean, so it’s better to be able to use
notation that will handle this nicely, and (2) it’s funnier this way.
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Figure 10.4: A demonstration of the central limit theorem. In panel a, we have a non-normal population
distribution; and panels b-d show the sampling distribution of the mean for samples of size 2,4 and 8,
for data drawn from the distribution in panel a. As you can see, even though the original population
distribution is non-normal, the sampling distribution of the mean becomes pretty close to normal by the
time you have a sample of even 4 observations.
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central limit theorem is the mathematical reason why.

Okay, time to demonstrate the central limit theorem in action. I’m not going to give a mathematical
proof, since very few people would want to read it. Instead, I’m going to do the same thing I’ve done
throughout this chapter: I’ll use R to simulate it. Let’s start out with a very non-normal population,
namely the “ramped” distribution shown in Figure 10.4a. This plot shows a histogram of 100,000 samples,
where I’ve plotted the appropriate normal distribution over the top to give you a sense of what to compare
it to. Next, let’s see what happens then if we generate 100,000 samples of size N “ 2, and then plot
the histogram of the means of these samples? This time, we get the triangular distribution shown in
Figure 10.4b. That’s not normal either, but it’s definitely closer. When, we increase the sample size to
N “ 3, the sampling distribution of the mean looks closer to normal, as illustrated in Figure 10.4c, and
by the time we’ve raised our sample size to a massive N “ 4, as shown in Figure 10.4, it’s pretty hard
to think that this is anything other than a normal distribution. In other words, while the central limit
theorem technically refers only to things getting normal as N approaches infinity, in this example all it
took was a sample size of 4. Which is a bit smaller than infinity, I must admit. The take home message
is that everything turns into a normal distribution, eventually.5

10.5

Estimating a confidence interval

The last thing I’m going to talk about in this chapter are confidence intervals. The estimates that we
talked about in the last section are all examples of “point” estimates. What I mean by that is that what
we’re doing is making a single “best guess” about what the value of a particular population parameter is.
Most of the time, we don’t just want a single best guess, we also want to be able to estimate a range of
values, in such a way that we can feel pretty confident that the range includes the true value. The name
for this is a confidence interval.

This is actually pretty easy, since all the hard work was done in the previous sections. To see how
this works, let’s suppose for the moment that we actually knew the true mean µ and the true standard
deviation σ. Then we would also be able to say that (as long as N is big enough) the sampling distribution
for the mean X̄ of a sample drawn from this population would be normal with mean µ. Not only that, we
also know that the standard error of the mean is calculated by dividing the population standard deviation
σ by the square root of the sample size

?
N . Now, remember from our previous discussion of the normal

distribution in Section 9.4 that 95% of the distribution lies within 2 standard deviations of the mean?
To be slightly more precise, we can use the qnorm() function to compute the 2.5th and 97.5th percentiles
of the normal distribution

> qnorm( p = c(.025, .975) )

[1] -1.959964 1.959964

and we see that in fact 95% of the distribution falls within 1.96 standard deviations either side of the
mean. What does that tell us about X̄? Well, it tells us that 95% of all data sets (of size N) that we
could sample from this population will have a sample mean X̄ that falls within 1.96 standard errors of
the mean! In other words, there is a 95% probability that:

µ´
ˆ

1.96ˆ σ?
N

˙

ď X̄ ď µ`
ˆ

1.96ˆ σ?
N

˙

5Well, sort of. The central limit theorem doesn’t cover every possible situation, but it is very very broad. Like most
introductory stats texts, I’ve discussed one situation where the central limit theorem holds: when you’re taking an average
across lots of independent events drawn from the same distribution. However, the central limit theorem is much broader
than this. There’s a whole class of things called “U -statistics” for instance, all of which satisfy the central limit theorem
and therefore become normally distributed for large sample sizes. The mean is one such statistic, but it’s not the only one.
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Okay, that’s all well and good, but in some ways it’s the opposite of what we’re interested in. The
equation above tells us what we should expect about the sample mean, given that we know what the
population parameters are. What we want is to have this work the other way around: we want to
know what we should believe about the population parameters, given that we have observed a particular
sample. However, it’s not too difficult to do this. Using a little high school algebra, a sneaky way to
rewrite our equation is like this:

X̄ ´
ˆ

1.96ˆ σ?
N

˙

ď µ ď X̄ `
ˆ

1.96ˆ σ?
N

˙

What this is telling is is that the range of values has a 95% probability of containing the population
mean µ. We refer to this range as a 95% confidence interval, denoted CI95. In short, as long as N is
sufficiently large – large enough for us to believe that the sampling distribution of the mean is normal –
then we can write this as our formula for the confidence interval:

CI95 “ X̄ ˘
ˆ

1.96ˆ σ?
N

˙

Of course, there’s nothing terribly special about the value 1.96, other than the fact it’s the number of
standard deviations away from the mean that you need to extend your interval to cover 95% of the
sampling distribution. If I’d wanted a 70% confidence interval, I could have used the qnorm() function to
calculate the 15th and 85th quantiles:

> qnorm( p = c(.15, .85) )

[1] -1.036433 1.036433

and so the formula for CI70 would be the same as the formula for CI95 except that we’d use 1.04 as our
magic number rather than 1.96.

Unfortunately, this formula assumes that we actually know the true population standard deviation
σ. In practice, we never really do know this, so we have to use an estimate of the standard deviation σ̂

instead. This is pretty straightforward to do, but (for reasons we’ll talk about in Chapter 13) this has the
consequence that we need to use the quantiles of the t-distribution rather than the normal distribution
to calculate our magic number; and the answer depends on the sample size. When N is very large, we
get pretty much the same value using qt() that we would if we used qnorm()...

> N <- 10000 # suppose our sample size is 10,000

> qt( p = .975, df = N-1) # calculate the 97.5th quantile of the t-dist

[1] 1.960201

But when N is small, we get a much bigger number when we use the t distribution:

> N <- 10 # suppose our sample size is 10

> qt( p = .975, df = N-1) # calculate the 97.5th quantile of the t-dist

[1] 2.262157

There’s nothing too mysterious about what’s happening here. Bigger values mean that the confidence
interval is wider, indicating that we’re more uncertain about what the true value of µ actually is. When
we use the t distribution instead of the normal distribution, we get bigger numbers, indicating that we
have more uncertainty. And why do we have that extra uncertainty? Well, because our estimate of the
population standard deviation σ̂ might be wrong! If it’s wrong, it implies that we’re a bit less sure about
what our sampling distribution of the mean actually looks like... and this uncertainty ends up getting
reflected in a wider confidence interval.
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10.5.1 Calculating confidence intervals in R

As far as I can tell, the core packages in R don’t include a simple function for calculating confidence
intervals for the mean. They do include a lot of complicated, extremely powerful functions that can
be used to calculate confidence intervals associated with lots of different things, such as the confint()

function that we’ll use in Chapter 15. But I figure that when you’re first learning statistics, it might
be useful to start with something simpler. As a consequence, the lsr package includes a function called
ciMean() which you can use to calculate your confidence intervals. There are two arguments that you
might want to specify:6

• x. This should be a numeric vector containing the data.

• conf. This should be a number, specifying the confidence level. By default, conf = .95, since 95%
confidence intervals are the de facto standard in psychology.

So, for example, if I load the afl24.Rdata file, calculate the confidence interval associated with the mean
attendance:

> ciMean( x = afl$attendance )

2.5% 97.5%

31597.32 32593.12

Hopefully that’s fairly clear.

10.5.2 Plotting confidence intervals in R

There’s several different ways you can draw graphs that show confidence intervals as error bars.
I’ll show three versions here, but this certainly doesn’t exhaust the possibilities. In doing so, what
I’m assuming is that you want to draw is a plot showing the means and confidence intervals for one
variable, broken down by different levels of a second variable. For instance, in our afl data that we
discussed earlier, we might be interested in plotting the average attendance by year. I’ll do this using
three different functions, bargraph.CI(), lineplot.CI() (both of which are in the sciplot package), and
plotmeans() (which is in the gplots) package. Assuming that you’ve installed these packages on your
system (see Section 4.2 if you’ve forgotten how to do this), you’ll need to load them. You’ll also need to
load the lsr package, because we’ll make use of the ciMean() function to actually calculate the confidence
intervals

> library( sciplot ) # bargraph.CI() and lineplot.CI() functions

> library( gplots ) # plotmeans() function

> library( lsr ) # ciMean() function

Here’s how to plot the means and confidence intervals drawn using bargraph.CI().

> bargraph.CI( x.factor = year, # grouping variable

+ response = attendance, # outcome variable

+ data = afl, # data frame with the variables

+ ci.fun= ciMean, # name of the function to calculate CIs

+ xlab = "Year", # x-axis label

+ ylab = "Average Attendance" # y-axis label

+ )

6As of the current writing, these are the only arguments to the function. However, I am planning to add a bit more
functionality to ciMean(). However, regardless of what those future changes might look like, the x and conf arguments will
remain the same, and the commands used in this book will still work.
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Figure 10.5: Means and 95% confidence intervals for AFL attendance, plotted separately for each year

from 1987 to 2010. This graph was drawn using the bargraph.CI() function.
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Figure 10.6: Means and 95% confidence intervals for AFL attendance, plotted separately for each year

from 1987 to 2010. This graph was drawn using the lineplot.CI() function.
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Figure 10.7: Means and 95% confidence intervals for AFL attendance, plotted separately for each year

from 1987 to 2010. This graph was drawn using the plotmeans() function.
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This produces the output shown in Figure 10.5. We can use the same arguments when calling the
lineplot.CI() function:

> lineplot.CI( x.factor = year, # grouping variable

+ response = attendance, # outcome variable

+ data = afl, # data frame with the variables

+ ci.fun= ciMean, # name of the function to calculate CIs

+ xlab = "Year", # x-axis label

+ ylab = "Average Attendance" # y-axis label

+ )

And the output for this command is shown in Figure 10.6. Finally, here’s how you would do it using
plotmeans():

> plotmeans( formula = attendance ~ year, # outcome ~ group

+ data = afl, # data frame with the variables

+ n.label = FALSE # don’t show the sample sizes

+ )

This is shown in Figure 10.7.

10.5.3 Interpreting a confidence interval

The most counterintuitive thing about confidence intervals is how they are supposed to be interpreted.
Whenever people first encounter confidence intervals, their first instinct is almost always to interpret it
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like this:

There is a 95% chance that the population mean falls within the 95% confidence interval.

This is the natural, intuitive and obvious way to think about the confidence interval. Strictly speaking,
however, you’re not allowed to do this. Remember how, back in Section 9.6, I said that there were two
warring theories of what the word “probability” means? And I said that it would turn out to matter
some time? Well, that time is now.

The basic problem with the statement that I made above is that you’re making a probabilistic state-
ment about the true population mean (i.e., you’re saying that there’s a 95% chance that the population
mean takes on a value that fall within some fixed range). However, confidence intervals are a tool invented
within the frequentist paradigm, and the frequentist definition of probability forbids this. Remember,
the frequentist definition of probability requires that replication is possible. Because, in order for a prob-
ability statement to be meaningful, you have to be able to imagine “repeating the procedure” over and
over again. This works really well for some things: for instance, I can say that “the probability of a coin
flip being heads is 0.5”, because I can imagine flipping a coin millions of times. And if I did flip a coin a
million times, I’d expect about half of those coin flips to land on heads. Cool.

Okay, now let’s try this on for size: “there is a 95% probability that the average global temperature
is between 15 and 20 degrees” (or whatever). According to the frequentist view, this is gibberish. I can’t
generate a million planet Earths and measure their temperature. Therefore, there’s no way to assign
a probability value to “global average temperatures”. In general, frequentists aren’t allowed to make
probability claims about population parameters. For frequentists, probabilities attach only to estimates,
not to parameters.

The solution that we adopt is to rewrite the statement so that we’re making a probability claim about
the interval itself, not the population mean. If we say something like this

95% of all confidence intervals constructed using this procedure will include the corresponding
population mean

we’re being clear about the fact that we’re only making probability statements about the confidence
interval, and not about the population mean. Stating things this way is kind of awkward, and in practice
no-one ever uses the explicitly frequentist statement. In fact, most people are quite happy to ignore the
whole issue. But there are some people who get a bit pedantic about how confidence intervals should be
interpreted, so as a rough guide it’s helpful to think of it like this:

• “There is a 95% chance that a 95% confidence interval will include the population mean.”
This statement seems to imply that the “95% chance” attaches to the confidence interval, so this
is okay.

• “There is a 95% chance that the population mean falls within the 95% CI.” This statement
seems to imply that the “95% chance” actually relates to the population mean. Occasionally people
will ask you to rephrase this.

Kind of silly, isn’t it?7

7As it happens, there’s a magic wand that we can wave over the confidence interval to make this idiotic problem go
away. It’s called “Bayesian probability”. All you have to do is be willing to say that probabilities are “in the mind” and
not “in the world”, and this whole problem vanishes. And in fact, Bayesians have a nearly identical tool called a credible

interval which behaves almost the same way as a confidence interval, except that you’re allowed to interpret it the natural
way.
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10.6

Summary

• Basic ideas about sampling (Section 10.1)

• Estimating means and standard deviations (Section 10.2)

• Sampling distributions for the mean and other statistics (Section 10.3)

• The central limit theorem (Section 10.4).

• Estimating a confidence interval (Section 10.5)

- 309 -



- 310 -



11. Hypothesis testing

NAPOLEON: M. Laplace, they tell me you have written this large book on the
system of the universe, and have never even mentioned its Creator.

LAPLACE: I had no need of that hypothesis.

In the last chapter, I discussed the ideas behind estimation, which is one of the two “big ideas” in
inferential statistics. It’s now time to turn out attention to the other big idea, which is hypothesis testing.
In its most abstract form, hypothesis testing really a very simple idea: the researcher has some theory
about the world, and wants to determine whether or not the data actually support that theory. However,
the details are messy, and most people find the theory of hypothesis testing to be the most frustrating
part of statistics. The structure of the chapter is as follows. Firstly, I’ll describe how hypothesis testing
works, in a fair amount of detail, using a simple running example to show you how a hypothesis test is
“built”. I’ll try to avoid being too dogmatic while doing so, and focus instead on the underlying logic of
the testing procedure.1 Afterwards, I’ll spend a bit of time talking about the various dogmas, rules and
heresies that surround the theory of hypothesis testing.

11.1

A menagerie of hypotheses

In Umberto Eco’s book Foucault’s Pendulum, one of the main characters expounds a theory of the world
in which all people can be classified as fools, morons, cretins and lunatics.2 The lunatic category is the
most awesome: I’m paraphrasing here because I’m to lazy to dig up the original...

You can tell him by his vaulting leaps of logic, that for him everything proves everything else,
and the fact that eventually it all comes down the Knights Templar

Personally I think we all succumb to lunacy eventually. For me, that day will arrive once I’m finally
promoted to full professor (the last promotion I could possibly achieve, since everything above that
counts as management; and I do not have managerial potential). Safely ensconced in my ivory tower,
happily protected by tenure, I will finally be able to take leave of my senses (so to speak), and indulge in

1A technical note. The description below differs subtly from the standard description given in a lot of introductory
texts. The orthodox theory of null hypothesis testing emerged from the work of Sir Ronald Fisher and Jerzy Neyman in
the early 20th century; but Fisher and Neyman actually had very different views about how it should work. The standard
treatment of hypothesis testing that most texts use is a hybrid of the two approaches. The treatment here is a little more
Neyman-style than the orthodox view, especially as regards the meaning of the p value.

2Feel free to indulge in speculation as to which one I am.
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that most thoroughly unproductive line of psychological research: the search for extrasensory perception
(ESP).3

Let’s suppose that this glorious day has come. My first study is a simple one, in which I seek to
test whether clairvoyance exists. Each participant sits down at a table, and is shown a card by an
experimenter. The card is black on one side and white on the other. The experimenter takes the card
away, and places it on a table in an adjacent room. The card is placed black side up or white side up
completely at random, with the randomisation occurring only after the experimenter has left the room
with the participant. A second experimenter comes in and asks the participant which side of the card is
now facing upwards. It’s purely a one-shot experiment. Each person sees only one card, and gives only
one answer; and at no stage is the participant actually in contact with someone who knows the right
answer. My data set, therefore, is very simple. I have asked the question of N people, and some number
X of these people have given the correct response. To make things concrete, let’s suppose that I have
tested N “ 100 people, and X “ 62 of these got the answer right... a surprisingly large number, sure,
but is it large enough for me to feel safe in claiming I’ve found evidence for ESP? This is the situation
where hypothesis testing comes in useful. However, before we talk about how to test hypotheses, we need
to be clear about what we mean by hypotheses.

11.1.1 Research hypotheses versus statistical hypotheses

The first distinction that you need to keep clear in your mind is between research hypotheses and
statistical hypotheses. In my ESP study, my overall scientific goal is to demonstrate that clairvoyance
exists. In this situation, I have a clear research goal: I am hoping to discover evidence for ESP. In
other situations I might actually be a lot more neutral than that, so I might say that my research goal
is to determine whether or not clairvoyance exists. Regardless of how I want to portray myself, the
basic point that I’m trying to convey here is that a research hypothesis involves making a substantive,
testable scientific claim... if you are a psychologist, then your research hypotheses are fundamentally
about psychological constructs. Any of the following would count as research hypotheses:

• Listening to music reduces your ability to pay attention to other things. This is a claim about the
causal relationship between two psychologically meaningful concepts (listening to music and paying
attention to things), so it’s a perfectly reasonable research hypothesis.

• Intelligence is related to personality. Like the last one, this is a relational claim about two psycho-
logical constructs (intelligence and personality), but the claim is weaker: correlational not causal.

• Intelligence is speed of information processing. This hypothesis has a quite different character: it’s
not actually a relational claim at all. It’s an ontological claim about the fundamental character of
intelligence (and I’m pretty sure it’s wrong). It’s worth expanding on this one actually: It’s usually
easier to think about how to construct experiments to test research hypotheses of the form “does X
affect Y?” than it is to address claims like “what is X?” And in practice, what usually happens is
that you find ways of testing relational claims that follow from your ontological ones. For instance,
if I believe that intelligence is speed of information processing in the brain, my experiments will
often involve looking for relationships between measures of intelligence and measures of speed. As
a consequence, most everyday research questions do tend to be relational in nature, but they’re
almost always motivated by deeper ontological questions about the state of nature.

3My apologies to anyone who actually believes in this stuff, but on my reading of the literature on ESP, I feel relatively
confident in concluding that ESP research is a litany of false positives (referred to as Type I errors). To be fair, though,
some of the studies are rigorously designed; so it’s actually an interesting area for thinking about psychological research
design. And of course it’s a free country, so you can spend your own time and effort proving me wrong if you like, but I
wouldn’t think that’s a terribly practical use of your intellect.
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Notice that in practice, my research hypotheses could overlap a lot. My ultimate goal in the ESP
experiment might be to test an ontological claim like “ESP exists”, but I might operationally restrict
myself to a narrower hypothesis like “Some people can ‘see’ objects in a clairvoyant fashion”. That said,
there are some things that really don’t count as proper research hypotheses in any meaningful sense:

• Love is a battlefield. This is too vague to be testable. While it’s sort of okay for a research hypothesis
to have a degree of vagueness to it, it has to be possible to operationalise your theoretical ideas.
Maybe I’m just not creative enough to see it, but I can’t see how this can be converted into any
concrete research design. And if that’s true, then this isn’t a scientific research hypothesis, it’s a
pop song. That doesn’t mean it’s not interesting – a lot of deep questions that humans have fall
into this category. Maybe one day science will be able to construct testable theories of love, or to
test to see if God exists, and so on; but right now we can’t, and I wouldn’t bet on ever seeing a
satisfying scientific approach to either.

• The first rule of tautology club is the first rule of tautology club. This is not a substantive claim of
any kind. It’s true by definition. No conceivable state of nature could possibly be inconsistent with
this claim. As such, we say that this is an unfalsifiable hypothesis, and as such it is outside the
domain of science. Whatever else you do in science, your claims must have the possibility of being
wrong.

• More people in my experiment will say “yes” than “no”. This one fails as a research hypothesis
because it’s a claim about the data set, not about the psychology (unless of course your actual
research question is whether people have some kind of “yes” bias!). As we’ll see shortly, this
hypothesis is starting to sound more like a statistical hypothesis than a research hypothesis.

As you can see, research hypotheses can be somewhat messy at times; and ultimately they are sci-
entific claims. Statistical hypotheses are neither of these two things. Statistical hypotheses must be
mathematically precise, and they must correspond to specific claims about the characteristics of the data
generating mechanism (i.e., the “population”). Even so, the intent is that statistical hypotheses bear a
clear relationship to the substantive research hypotheses that you care about! For instance, in my ESP
study my research hypothesis is that some people are able to see through walls or whatever. What I want
to do is to “map” this onto a statement about how the data were generated. So let’s think about what
that statement would be. The quantity that I’m interested in within the experiment is P p“correct”q,
the true-but-unknown probability with which the participants in my experiment answer the question
correctly. Let’s use the Greek letter θ (theta) to refer to this probability. If ESP doesn’t exist, and if
my experiment is well designed, then the true probability will be θ “ 0.5... if people are just guessing,
they’ll get it right half of the time. Alternatively, suppose ESP does exist and people can see the card: if
so, people will perform better than chance, so we would expect that θ ą 0.5. Or, as another alternative,
suppose ESP does exist, but the colours are all reversed and people don’t realise it (okay, that’s wacky,
but you never know...). If that’s how it works then you’d actually expect performance to be below chance.
This would correspond to a statistical hypothesis that θ ă 0.5. Finally, suppose ESP exists, but I have
no idea whether or not the colours are reversed. In that case, the only claim I could make about the data
would be that the probability of making the correct answer is not equal to 50%, which we would write
as θ ‰ 0.5. All of these are legitimate examples of a statistical hypothesis.

All of this is by way of saying that, when attempting to construct a statistical hypothesis test,
the researcher actually has two quite distinct hypotheses to consider. First, he or she has a research
hypothesis (a claim about psychology), and this corresponds to a statistical hypothesis (a claim about
the data generating population). In my ESP example, these might be

Dan’s research hypothesis: “ESP exists”
Dan’s statistical hypothesis: θ ‰ 0.5
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And the key thing to recognise is this: a statistical hypothesis test is a test of the statistical hypothesis, not
the research hypothesis. If your study is badly designed, then the link between your research hypothesis
and your statistical hypothesis is broken. To give a silly example, suppose that my ESP study was
conducted in a situation where the participant can actually see the card reflected in a window; if that
happens, I would be able to find very strong evidence that θ ‰ 0.5, but this would tell us nothing about
whether “ESP exists”.

11.1.2 Null hypotheses and alternative hypotheses

So far, so good. I have a research hypothesis that corresponds to what I want to believe about the
world, and I can map it onto a statistical hypothesis that corresponds to what I want to believe about how
the data were generated. It’s at this point that things get somewhat counterintuitive for a lot of people.
Because what I’m about to do is invent a new statistical hypothesis (the “null” hypothesis, H0) that
corresponds to the exact opposite of what I want to believe, and then focus exclusively on that, almost
to the neglect of the thing I’m actually interested in (which is now called the “alternative” hypothesis,
H1). In our ESP example, the null hypothesis is that θ “ 0.5, since that’s what we’d expect if ESP
didn’t exist. My hope, of course, is that ESP is totally real, and so the alternative to this null hypothesis
is θ ‰ 0.5. In essence, what we’re doing here is dividing up the possible values of θ into two groups:
those values that I really hope aren’t true (the null), and those values that I’d be happy with if they turn
out to be right (the alternative). Having done so, the important thing to recognise is that the goal of a
hypothesis test is not to show that the alternative hypothesis is (probably) true; the goal is to show that
the null hypothesis is (probably) false. Most people find this pretty weird.

The best way to think about it, in my experience, is to imagine that a hypothesis test is a criminal
trial4... the trial of the null hypothesis. The null hypothesis is the defendant, the researcher is the
prosecutor, and the statistical test itself is the judge. Just like a criminal trial, there is a presumption
of innocence: the null hypothesis is deemed to be true unless you, the researcher, can prove beyond a
reasonable doubt that it is false. You are free to design your experiment however you like (within reason,
obviously!), and your goal when doing so is to maximise the chance that the data will yield a conviction...
for the crime of being false. The catch is that the statistical test sets the rules of the trial, and those rules
are designed to protect the null hypothesis – specifically to ensure that if the null hypothesis is actually
true, the chances of a false conviction are guaranteed to be low. This is pretty important: after all, the
null hypothesis doesn’t get a lawyer. And given that the researcher is trying desperately to prove it to
be false, someone has to protect it.

11.2

Two types of errors

Before going into details about how a statistical test is constructed, it’s useful to understand the phi-
losophy behind it. I hinted at it when pointing out the similarity between a null hypothesis test and a
criminal trial, but I should now be explicit. Ideally, we would like to construct our test so that we never
make any errors. Unfortunately, since the world is messy, this is never possible. Sometimes you’re just
really unlucky: for instance, suppose you flip a coin 10 times in a row and it comes up heads all 10 times.
That feels like very strong evidence that the coin is biased (and it is!), but of course there’s a 1 in 1024
chance that this would happen even if the coin was totally fair. In other words, in real life we always
have to accept that there’s a chance that we did the wrong thing. As a consequence, the goal behind
statistical hypothesis testing is not to eliminate errors, but to minimise them.

4This analogy only works if you’re from an adversarial legal system like UK/US/Australia. As I understand these things,
the French inquisitorial system is quite different.
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At this point, we need to be a bit more precise about what we mean by “errors”. Firstly, let’s state
the obvious: it is either the case that the null hypothesis is true, or it is false; and our test will either
reject the null hypothesis or retain it.5 So, as the table below illustrates, after we run the test and make
our choice, one of four things might have happened:

retain H0 reject H0

H0 is true correct decision error (type I)
H0 is false error (type II) correct decision

As a consequence there are actually two different types of error here. If we reject a null hypothesis that
is actually true, then we have made a type I error. On the other hand, if we retain the null hypothesis
when it is in fact false, then we have made a type II error.

Remember how I said that statistical testing was kind of like a criminal trial? Well, I meant it. A
criminal trial requires that you establish “beyond a reasonable doubt” that the defendant did it. All
of the evidentiary rules are (in theory, at least) designed to ensure that there’s (almost) no chance of
wrongfully convicting an innocent defendant. The trial is designed to protect the rights of a defendant:
as the English jurist William Blackstone famously said, it is “better that ten guilty persons escape than
that one innocent suffer.” In other words, a criminal trial doesn’t treat the two types of error in the same
way . . . punishing the innocent is deemed to be much worse than letting the guilty go free. A statistical
test is pretty much the same: the single most important design principle of the test is to control the
probability of a type I error, to keep it below some fixed probability. This probability, which is denoted
α, is called the significance level of the test (or sometimes, the size of the test). And I’ll say it again,
because it is so central to the whole set-up . . . a hypothesis test is said to have significance level α if the
type I error rate is no larger than α.

So, what about the type II error rate? Well, we’d also like to keep those under control too, and we
denote this probability by β. However, it’s much more common to refer to the power of the test, which
is the probability with which we reject a null hypothesis when it really is false, which is 1 ´ β. To help
keep this straight, here’s the same table again, but with the relevant numbers added:

retain H0 reject H0

H0 is true 1´ α (probability of correct retention) α (type I error rate)
H0 is false β (type II error rate) 1´ β (power of the test)

A “powerful” hypothesis test is one that has a small value of β, while still keeping α fixed at some (small)
desired level. By convention, scientists make use of three different α levels: .05, .01 and .001. Notice
the asymmetry here . . . the tests are designed to ensure that the α level is kept small, but there’s no
corresponding guarantee regarding β. We’d certainly like the type II error rate to be small, and we try
to design tests that keep it small, but this is very much secondary to the overwhelming need to control
the type I error rate. As Blackstone might have said if he were a statistician, it is “better to retain 10
false null hypotheses than to reject a single true one”. To be honest, I don’t know that I agree with this
philosophy – there are situations where I think it makes sense, and situations where I think it doesn’t –
but that’s neither here nor there. It’s how the tests are built.

5An aside regarding the language you use to talk about hypothesis testing. Firstly, one thing you really want to avoid
is the word “prove”: a statistical test really doesn’t prove that a hypothesis is true or false. Proof implies certainty, and as
the saying goes, statistics means never having to say you’re certain. On that point almost everyone would agree. However,
beyond that there’s a fair amount of confusion. Some people argue that you’re only allowed to make statements like “rejected
the null”, “failed to reject the null”, or possibly “retained the null”. According to this line of thinking, you can’t say things
like “accept the alternative” or “accept the null”. Personally I think this is too strong: in my opinion, this conflates null
hypothesis testing with Karl Popper’s falsificationist view of the scientific process. While there are similarities between
falsificationism and null hypothesis testing, they aren’t equivalent. However, while I personally think it’s fine to talk about
accepting a hypothesis (on the proviso that “acceptance” doesn’t actually mean that it’s necessarily true, especially in the
case of the null hypothesis), many people will disagree. And more to the point, you should be aware that this particular
weirdness exists, so that you’re not caught unawares by it when writing up your own results.
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11.3

Test statistics and sampling distributions

At this point we need to start talking specifics about how a hypothesis test is constructed. To that end,
let’s return to the ESP example. Let’s ignore the actual data that we obtained, for the moment, and
think about the structure of the experiment. Regardless of what the actual numbers are, the form of the
data is that X out of N people correctly identified the colour of the hidden card. Moreover, let’s suppose
for the moment that the null hypothesis really is true: ESP doesn’t exist, and the true probability that
anyone picks the correct colour is exactly θ “ 0.5. What would we expect the data to look like? Well,
obviously, we’d expect the proportion of people who make the correct response to be pretty close to 50%.
Or, to phrase this in more mathematical terms, we’d say that X{N is approximately 0.5. Of course, we
wouldn’t expect this fraction to be exactly 0.5: if, for example we tested N “ 100 people, and X “ 53 of
them got the question right, we’d probably be forced to concede that the data are quite consistent with
the null hypothesis. On the other hand, if X “ 99 of our participants got the question right, then we’d
feel pretty confident that the null hypothesis is wrong. Similarly, if only X “ 3 people got the answer
right, we’d be similarly confident that the null was wrong. Let’s be a little more technical about this: we
have a quantity X that we can calculate by looking at our data; after looking at the value of X, we make
a decision about whether to believe that the null hypothesis is correct, or to reject the null hypothesis
in favour of the alternative. The name for this thing that we calculate to guide our choices is a test
statistic.

Having chosen a test statistic, the next step is to state precisely which values of the test statistic
would cause is to reject the null hypothesis, and which values would cause us to keep it. In order to
do so, we need to determine what the sampling distribution of the test statistic would be if the
null hypothesis were actually true (we talked about sampling distributions earlier in Section 10.3). Why
do we need this? Because this distribution tells us exactly what values of X our null hypothesis would
lead us to expect. And therefore, we can use this distribution as a tool for assessing how closely the null
hypothesis agrees with our data.

How do we actually determine the sampling distribution of the test statistic? For a lot of hypothesis
tests this step is actually quite complicated, and later on in the book you’ll see me being slightly evasive
about it for some of the tests (some of them I don’t even understand myself). However, sometimes it’s very
easy. And, fortunately for us, our ESP example provides us with one of the easiest cases. Our population
parameter θ is just the overall probability that people respond correctly when asked the question, and
our test statistic X is the count of the number of people who did so, out of a sample size of N . We’ve seen
a distribution like this before, in Section 9.3: that’s exactly what the binomial distribution describes!
So, to use the notation and terminology that I introduced in that section, we would say that the null
hypothesis predicts that X is binomially distributed, which is written

X „ Binomialpθ,Nq

Since the null hypothesis states that θ “ 0.5 and our experiment has N “ 100 people, we have the
sampling distribution we need. This sampling distribution is plotted in Figure 11.1. No surprises really:
the null hypothesis says that X “ 50 is the most likely outcome, and it says that we’re almost certain to
see somewhere between 40 and 60 correct responses.
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Figure 11.1: The sampling distribution for our test statistic X when the null hypothesis is true. For our
ESP scenario, this is a binomial distribution. Not surprisingly, since the null hypothesis says that the
probability of a correct response is θ “ .5, the sampling distribution says that the most likely value is 50
(our of 100) correct responses. Most of the probability mass lies between 40 and 60.
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11.4

Making decisions

Okay, we’re very close to being finished. We’ve constructed a test statistic (X), and we chose this test
statistic in such a way that we’re pretty confident that if X is close to N{2 then we should retain the
null, and if not we should reject it. The question that remains is this: exactly which values of the test
statistic should we associate with the null hypothesis, and which exactly values go with the alternative
hypothesis? In my ESP study, for example, I’ve observed a value of X “ 62. What decision should I
make? Should I choose to believe the null hypothesis, or the alternative hypothesis?

11.4.1 Critical regions and critical values

To answer this question, we need to introduce the concept of a critical region for the test statistic
X. The critical region of the test corresponds to those values of X that would lead us to reject null
hypothesis (which is why the critical region is also sometimes called the rejection region). How do we
find this critical region? Well, let’s consider what we know:

1. X should be very big or very small in order to reject the null hypothesis.

2. If the null hypothesis is true, the sampling distribution of X is Binomialp0.5, Nq.

3. If α “ .05, the critical region must cover 5% of this sampling distribution.
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Figure 11.2: The critical region associated with the hypothesis test for the ESP study, for a hypothesis
test with a significance level of α “ .05. The plot itself shows the sampling distribution of X under the
null hypothesis (i.e., same as Figure 11.1): the grey bars correspond to those values of X for which we
would retain the null hypothesis. The black bars show the critical region: those values of X for which
we would reject the null. Because the alternative hypothesis is two sided (i.e., allows both θ ă .5 and
θ ą .5), the critical region covers both tails of the distribution. To ensure an α level of .05, we need to
ensure that each of the two regions encompasses 2.5% of the sampling distribution.
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It’s important to make sure you understand this last point: the critical region corresponds to those values
of X for which we would reject the null hypothesis, and the sampling distribution in question describes
the probability that we would obtain a particular value of X if the null hypothesis were actually true.
Now, let’s suppose that we chose a critical region that covers 20% of the sampling distribution, and
suppose that the null hypothesis is actually true. What would be the probability of incorrectly rejecting
the null? The answer is of course 20%. And therefore, we would have built a test that had an α level
of 0.2. If we want α “ .05, the critical region is only allowed to cover 5% of the sampling distribution of
our test statistic.

As it turns out, those three things uniquely solve the problem: our critical region consists of the most
extreme values, known as the tails of the distribution. This is illustrated in Figure 11.2. As it turns out,
if we want α “ .05, then our critical regions correspond to X ď 40 and X ě 60.6 That is, if the number
of people saying “true” is between 41 and 59, then we should retain the null hypothesis. If the number
is between 0 to 40 or between 60 to 100, then we should reject the null hypothesis. The numbers 40 and
60 are often referred to as the critical values, since they define the edges of the critical region.

At this point, our hypothesis test is essentially complete: (1) we choose an α level (e.g., α “ .05, (2)
come up with some test statistic (e.g., X) that does a good job (in some meaningful sense) of comparing
H0 to H1, (3) figure out the sampling distribution of the test statistic on the assumption that the null
hypothesis is true (in this case, binomial) and then (4) calculate the critical region that produces an

6Strictly speaking, the test I just constructed has α “ .057, which is a bit too generous. However, if I’d chosen 39 and
61 to be the boundaries for the critical region, then the critical region only covers 3.5% of the distribution. I figured that
it makes more sense to use 40 and 60 as my critical values, and be willing to tolerate a 5.7% type I error rate, since that’s
as close as I can get to a value of α “ .05.
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appropriate α level (0-40 and 60-100). All that we have to do now is calculate the value of the test
statistic for the real data (e.g., X “ 62) and then compare it to the critical values to make our decision.
Since 62 is greater than the critical value of 60, we would reject the null hypothesis. Or, to phrase it
slightly differently, we say that the test has produced a significant result.

11.4.2 A note on statistical “significance”

Like other occult techniques of divination, the statistical method has a private jargon deliber-
ately contrived to obscure its methods from non-practitioners.

– G. O. Ashley

A very brief digression is in order at this point, regarding the word “significant”. The concept of statistical
significance is actually a very simple one, but has a very unfortunate name. If the data allow us to reject
the null hypothesis, we say that “the result is statistically significant”, which is often shortened to “the
result is significant”. This terminology is rather old, and dates back to a time when “significant” just
meant something like “indicated”, rather than its modern meaning, which is much closer to “important”.
As a result, a lot of modern readers get very confused when they start learning statistics, because they
think that a “significant result” must be an important one. It doesn’t mean that at all. All that
“statistically significant” means is that the data allowed us to reject a null hypothesis. Whether or not
the result is actually important in the real world is a very different question, and depends on all sorts of
other things.

11.4.3 The difference between one sided and two sided tests

There’s one more thing I want to point out about the hypothesis test that I’ve just constructed. If we
take a moment to think about the statistical hypotheses I’ve been using,

H0 : θ “ .5
H1 : θ ‰ .5

we notice that the alternative hypothesis covers both the possibility that θ ă .5 and the possibility that
θ ą .5. This makes sense if I really think that ESP could produce better-than-chance performance or
worse-than-chance performance (and there are some people who think that). In statistical language, this
is an example of a two-sided test. It’s called this because the alternative hypothesis covers the area on
both “sides” of the null hypothesis, and as a consequence the critical region of the test covers both tails
of the sampling distribution (2.5% on either side if α “ .05), as illustrated earlier in Figure 11.2.

However, that’s not the only possibility. It might be the case, for example, that I’m only willing to
believe in ESP if it produces better than chance performance. If so, then my alternative hypothesis would
only covers the possibility that θ ą .5, and as a consequence the null hypothesis now becomes θ ď .5:

H0 : θ ď .5
H1 : θ ą .5
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Figure 11.3: The critical region for a one sided test. In this case, the alternative hypothesis is that θ ą .05,
so we would only reject the null hypothesis for large values of X. As a consequence, the critical region
only covers the upper tail of the sampling distribution; specifically the upper 5% of the distribution.
Contrast this to the two-sided version in Figure 11.2.
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When this happens, we have what’s called a one-sided test, and when this happens the critical region
only covers one tail of the sampling distribution. This is illustrated in Figure 11.3.

11.5

The p value of a test

In one sense, our hypothesis test is complete; we’ve constructed a test statistic, figured out its sampling
distribution if the null hypothesis is true, and then constructed the critical region for the test. Never-
theless, I’ve actually omitted the most important number of all: the p value. It is to this topic that we
now turn. There are two somewhat different ways of interpreting a p value, one proposed by Sir Ronald
Fisher and the other by Jerzy Neyman. Both versions are legitimate, though they reflect very different
ways of thinking about hypothesis tests. Most introductory textbooks tend to give Fisher’s version only,
but I think that’s a bit of a shame. To my mind, Neyman’s version is cleaner, and actually better reflects
the logic of the null hypothesis test. You might disagree though, so I’ve included both. I’ll start with
Neyman’s version...

11.5.1 A softer view of decision making

One problem with the hypothesis testing procedure that I’ve described is that it makes no distinction
at all between a result this “barely significant” and those that are “highly significant”. For instance,
in my ESP study the data I obtained only just fell inside the critical region - so I did get a significant
effect, but was a pretty near thing. In contrast, suppose that I’d run a study in which X “ 97 out of
my N “ 100 participants got the answer right. This would obviously be significant too, but my a much
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larger margin; there’s really no ambiguity about this at all. The procedure that I described makes no
distinction between the two. If I adopt the standard convention of allowing α “ .05 as my acceptable
Type I error rate, then both of these are significant results.

This is where the p value comes in handy. To understand how it works, let’s suppose that we ran lots
of hypothesis tests on the same data set: but with a different value of α in each case. When we do that
for my original ESP data, what we’d get is something like this

Value of α 0.05 0.04 0.03 0.02 0.01
Reject the null? Yes Yes Yes No No

When we test ESP data (X “ 62 successes out of N “ 100 observations) using α levels of .03 and above,
we’d always find ourselves rejecting the null hypothesis. For α levels of .02 and below, we always end up
retaining the null hypothesis. Therefore, somewhere between .02 and .03 there must be a smallest value
of α that would allow us to reject the null hypothesis for this data. This is the p value; as it turns out
the ESP data has p “ .021. In short:

p is defined to be the smallest Type I error rate (α) that you have to be willing to tolerate if
you want to reject the null hypothesis.

If it turns out that p describes an error rate that you find intolerable, then you must retain the null. If
you’re comfortable with an error rate equal to p, then it’s okay to reject the null hypothesis in favour of
your preferred alternative.

In effect, p is a summary of all the possible hypothesis tests that you could have run, taken across all
possible α values. And as a consequence it has the effect of “softening” our decision process. For those
tests in which p ď α you would have rejected the null hypothesis, whereas for those tests in which p ą α

you would have retained the null. In my ESP study I obtained X “ 62, and as a consequence I’ve ended
up with p “ .021. So the error rate I have to tolerate is 2.1%. In contrast, suppose my experiment had
yielded X “ 97. What happens to my p value now? This time it’s shrunk to p “ 1.36ˆ 10´25, which is
a tiny, tiny7 Type I error rate. For this second case I would be able to reject the null hypothesis with a
lot more confidence, because I only have to be “willing” to tolerate a type I error rate of about 1 in 10
trillion trillion in order to justify my decision to reject.

11.5.2 The probability of extreme data

The second definition of the p-value comes from Sir Ronald Fisher, and it’s actually this one that you
tend to see in most introductory statistics textbooks. Notice how, when I constructed the critical region,
it corresponded to the tails (i.e., extreme values) of the sampling distribution? That’s not a coincidence:
almost all “good” tests have this characteristic (good in the sense of minimising our type II error rate,
β). The reason for that is that a good critical region almost always corresponds to those values of the
test statistic that are least likely to be observed if the null hypothesis is true. If this rule is true, then we
can define the p-value as the probability that we would have observed a test statistic that is at least as
extreme as the one we actually did get. In other words, if the data are extremely implausible according

7That’s p “ .000000000000000000000000136 for folks that don’t like scientific notation!
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to the null hypothesis, then the null hypothesis is probably wrong.8

11.5.3 A common mistake

Okay, so you can see that there are two rather different but legitimate ways to interpret the p value,
one based on Neyman’s approach to hypothesis testing and the other based on Fisher’s. Unfortunately,
there is a third explanation that people sometimes give, especially when they’re first learning statistics,
and it is absolutely and completely wrong. This mistaken approach is to refer to the p value as “the
probability that the null hypothesis is true”. It’s an intuitively appealing way to think, but it’s wrong
in two key respects: (1) null hypothesis testing is a frequentist tool, and the frequentist approach to
probability does not allow you to assign probabilities to the null hypothesis... according to this view of
probability, the null hypothesis is either true or it is not; it cannot have a “5% chance” of being true.
(2) even within the Bayesian approach, which does let you assign probabilities to hypotheses, the p value
would not correspond to the probability that the null is true; this interpretation is entirely inconsistent
with the mathematics of how the p value is calculated. Put bluntly, despite the intuitive appeal of
thinking this way, there is no justification for interpreting a p value this way. Never do it.

11.6

Reporting the results of a hypothesis test

When writing up the results of a hypothesis test, there’s usually several pieces of information that you
need to report, but it varies a fair bit from test to test. Throughout the rest of the book I’ll spend a
little time talking about how to report the results of different tests (see Section 12.1.9 for a particularly
detailed example), so that you can get a feel for how it’s usually done. However, regardless of what test
you’re doing, the one thing that you always have to do is say something about the p value, and whether
or not the outcome was significant.

The fact that you have to do this is unsurprising; it’s the whole point of doing the test. What
might be surprising is the fact that there is some contention over exactly how you’re supposed to do
it. Leaving aside those people who completely disagree with the entire framework underpinning null
hypothesis testing, there’s a certain amount of tension that exists regarding whether or not to report the
exact p value that you obtained, or if you should state only that p ă α for a significance level that you
chose in advance (e.g., p ă .05).

11.6.1 The issue

To see why this is an issue, the key thing to recognise is that p values are terribly convenient. In
practice, the fact that we can compute a p value means that we don’t actually have to specify any α level
at all in order to run the test. Instead, what you can do is calculate your p value and interpret it directly:
if you get p “ .062, then it means that you’d have to be willing to tolerate a Type I error rate of 6.2% to
justify rejecting the null. If you personally find 6.2% intolerable, then you retain the null. Therefore, the
argument goes, why don’t we just report the actual p value and let the reader make up their own minds
about what an acceptable Type I error rate is? This approach has the big advantage of “softening” the
decision making process – in fact, if you accept the Neyman definition of the p value, that’s the whole
point of the p value. We no longer have a fixed significance level of α “ .05 as a bright line separating

8You might wonder why I don’t like Fisher’s version as much as Neyman’s. Basically, it’s because Fisher’s definition
only works for 99.99% of the null hypothesis tests that I can think of, while Neyman’s version works for 100% of cases.
There are a few pathological ways of choosing your null hypothesis and alternative hypothesis in such a way that Fisher’s
definition breaks. I won’t go into them here, other than to say that it is possible.
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“accept” from “reject” decisions; and this removes the rather pathological problem of being forced to
treat p “ .051 in a fundamentally different way to p “ .049.

This flexibility is both the advantage and the disadvantage to the p value. The reason why a lot of
people don’t like the idea of reporting an exact p value is that it gives the researcher a bit too much
freedom. In particular, it lets you change your mind about what error tolerance you’re willing to put up
with after you look at the data. For instance, consider my ESP experiment. Suppose I ran my test, and
ended up with a p value of .09. Should I accept or reject? Now, to be honest, I haven’t yet bothered to
think about what level of Type I error I’m “really” willing to accept. I don’t have an opinion on that
topic. But I do have an opinion about whether or not ESP exists, and I definitely have an opinion about
whether my research should be published in a reputable scientific journal. And amazingly, now that I’ve
looked at the data I’m starting to think that a 9% error rate isn’t so bad, especially when compared to
how annoying it would be to have to admit to the world that my experiment has failed. So, to avoid
looking like I just made it up after the fact, I now say that my α is .1: a 10% type I error rate isn’t too
bad, and at that level my test is significant! I win.

In other words, the worry here is that I might have the best of intentions, and be the most honest
of people, but the temptation to just “shade” things a little bit here and there is really, really strong.
As anyone who has ever run an experiment can attest, it’s a long and difficult process, and you often
get very attached to your hypotheses. It’s hard to let go and admit the experiment didn’t find what you
wanted it to find. And that’s the danger here. If we use the “raw” p-value, people will start interpreting
the data in terms of what they want to believe, not what the data are actually saying... and if we allow
that, well, why are we bothering to do science at all? Why not let everyone believe whatever they like
about anything, regardless of what the facts are? Okay, that’s a bit extreme, but that’s where the worry
comes from. According to this view, you really must specify your α value in advance, and then only
report whether the test was significant or not. It’s the only way to keep ourselves honest.

11.6.2 Two proposed solutions

In practice, it’s pretty rare for a researcher to specify a single α level ahead of time. Instead, the
convention is that scientists rely on three standard significance levels: .05, .01 and .001. When reporting
your results, you indicate which (if any) of these significance levels allow you to reject the null hypothesis.
This is summarised in Table 11.1. This allows us to soften the decision rule a little bit, since p ă .01
implies that the data meet a stronger evidentiary standard than p ă .05 would. Nevertheless, since these
levels are fixed in advance by convention, it does prevent people choosing their α level after looking at
the data.

Nevertheless, quite a lot of people still prefer to report exact p values. To many people, the advan-
tage of allowing the reader to make up their own mind about how to interpret p “ .06 outweighs any
disadvantages. In practice, however, even among those researchers who prefer exact p values it is quite
common to just write p ă .001 instead of reporting an exact value for small p. This is in part because a
lot of software doesn’t actually print out the p value when it’s that small (e.g., SPSS just writes p “ .000
whenever p ă .001), and in part because a very small p value can be kind of misleading. The human mind
sees a number like .0000000001 and it’s hard to suppress the gut feeling that the evidence in favour of the
alternative hypothesis is a near certainty. In practice however, this is usually wrong. Life is a big, messy,
complicated thing: and every statistical test ever invented relies on simplifications, approximations and
assumptions. As a consequence, it’s probably not reasonable to walk away from any statistical analysis
with a feeling of confidence stronger than p ă .001 implies. In other words, p ă .001 is really code for
“as far as this test is concerned, the evidence is overwhelming.”

In light of all this, you might be wondering exactly what you should do. There’s a fair bit of con-
tradictory advice on the topic, with some people arguing that you should report the exact p value, and
other people arguing that you should use the tiered approach illustrated in Table 11.1. As a result, the
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Table 11.1: A commonly adopted convention for reporting p values: in many places it is conventional to
report one of four different things (e.g., p ă .05) as shown below. I’ve included the “significance stars”
notation (i.e., a * indicates p ă .05) because you sometimes see this notation produced by statistical
software. It’s also worth noting that some people will write n.s. (not significant) rather than p ą .05.

Usual notation Signif. stars English translation The null is...

p ą .05 The test wasn’t significant Retained

p ă .05 * The test was significant at α “ .05 Rejected
but not at α “ .01 or α “ .001.

p ă .01 ** The test was significant at α “ .05 Rejected
and α “ .01 but not at α “ .001.

p ă .001 *** The test was significant at all levels Rejected

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

best advice I can give is to suggest that you look at papers/reports written in your field and see what the
convention seems to be. If there doesn’t seem to be any consistent pattern, then use whichever method
you prefer.

11.7

Running the hypothesis test in practice

At this point some of you might be wondering if this is a “real” hypothesis test, or just a toy example
that I made up. It’s real. In the previous discussion I built the test from first principles, thinking that it
was the simplest possible problem that you might ever encounter in real life. However, this test already
exists: it’s called the binomial test, and it’s implemented by an R function called binom.test(). To test
the null hypothesis that the response probability is one-half p = .5,9 using data in which x = 62 of n =

100 people made the correct response, here’s how to do it in R:

> binom.test( x=62, n=100, p=.5 )

Exact binomial test

data: 62 and 100

number of successes = 62, number of trials = 100,

p-value = 0.02098

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.5174607 0.7152325

sample estimates:

probability of success

0.62

Right now, this output looks pretty unfamiliar to you, but you can see that it’s telling you more or less
the right things. Specifically, the p-value of 0.02 is less than the usual choice of α “ .05, so you can reject

9Note that the p here has nothing to do with a p value. The p argument in the binom.test() function corresponds to the
probability of making a correct response, according to the null hypothesis. In other words, it’s the θ value.
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Figure 11.4: Sampling distribution under the alternative hypothesis, for a population parameter value of
θ “ 0.55. A reasonable proportion of the distribution lies in the rejection region.
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the null. We’ll talk a lot more about how to read this sort of output as we go along; and after a while
you’ll hopefully find it quite easy to read and understand. For now, however, I just wanted to make the
point that R contains a whole lot of functions corresponding to different kinds of hypothesis test. And
while I’ll usually spend quite a lot of time explaining the logic behind how the tests are built, every time
I discuss a hypothesis test the discussion will end with me showing you a fairly simple R command that
you can use to run the test in practice.

11.8

Effect size, sample size and power

In previous sections I’ve emphasised the fact that the major design principle behind statistical hypothesis
testing is that we try to control our Type I error rate. When we fix α “ .05 we are attempting to ensure
that only 5% of true null hypotheses are incorrectly rejected. However, this doesn’t mean that we don’t
care about Type II errors. In fact, from the researcher’s perspective, the error of failing to reject the
null when it is actually false is an extremely annoying one. With that in mind, a secondary goal of
hypothesis testing is to try to minimise β, the Type II error rate, although we don’t usually talk in terms
of minimising Type II errors. Instead, we talk about maximising the power of the test. Since power is
defined as 1´ β, this is the same thing.

11.8.1 The power function

Let’s take a moment to think about what a Type II error actually is. A Type II error occurs when the
alternative hypothesis is true, but we are nevertheless unable to reject the null hypothesis. Ideally, we’d
be able to calculate a single number β that tells us the Type II error rate, in the same way that we can
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Figure 11.5: Sampling distribution under the alternative hypothesis, for a population parameter value of
θ “ 0.70. Almost all of the distribution lies in the rejection region.
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set α “ .05 for the Type I error rate. Unfortunately, this is a lot trickier to do. To see this, notice that in
my ESP study the alternative hypothesis actually corresponds to lots of possible values of θ. In fact, the
alternative hypothesis corresponds to every value of θ except 0.5. Let’s suppose that the true probability
of someone choosing the correct response is 55% (i.e., θ “ .55). If so, then the true sampling distribution
for X is not the same one that the null hypothesis predicts: the most likely value for X is now 55 out
of 100. Not only that, the whole sampling distribution has now shifted, as shown in Figure 11.4. The
critical regions, of course, do not change: by definition, the critical regions are based on what the null
hypothesis predicts. What we’re seeing in this figure is the fact that when the null hypothesis is wrong,
a much larger proportion of the sampling distribution distribution falls in the critical region. And of
course that’s what should happen: the probability of rejecting the null hypothesis is larger when the null
hypothesis is actually false! However θ “ .55 is not the only possibility consistent with the alternative
hypothesis. Let’s instead suppose that the true value of θ is actually 0.7. What happens to the sampling
distribution when this occurs? The answer, shown in Figure 11.5, is that almost the entirety of the
sampling distribution has now moved into the critical region. Therefore, if θ “ 0.7 the probability of us
correctly rejecting the null hypothesis (i.e., the power of the test) is much larger than if θ “ 0.55. In
short, while θ “ .55 and θ “ .70 are both part of the alternative hypothesis, the Type II error rate is
different.

What all this means is that the power of a test (i.e., 1 ´ β) depends on the true value of θ. To
illustrate this, I’ve calculated the expected probability of rejecting the null hypothesis for all values of
θ, and plotted it in Figure 11.6. This plot describes what is usually called the power function of the
test. It’s a nice summary of how good the test is, because it actually tells you the power (1´ β) for all
possible values of θ. As you can see, when the true value of θ is very close to 0.5, the power of the test
drops very sharply, but when it is further away, the power is large.
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Figure 11.6: The probability that we will reject the null hypothesis, plotted as a function of the true
value of θ. Obviously, the test is more powerful (greater chance of correct rejection) if the true value
of θ is very different from the value that the null hypothesis specifies (i.e., θ “ .5). Notice that when
θ actually is equal to .05 (plotted as a black dot), the null hypothesis is in fact true: rejecting the null
hypothesis in this instance would be a Type I error.
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11.8.2 Effect size

It is inappropriate to be concerned with mice when there are tigers abroad
– George Box

The plot shown in Figure 11.6 captures a fairly basic point about hypothesis testing. If the true state
of the world is very different from what the null hypothesis predicts, then your power will be very high;
but if the true state of the world is similar to the null (but not identical) then the power of the test is
going to be very low. Therefore, it’s useful to be able to have some way of quantifying how “similar” the
true state of the world is to the null hypothesis. A statistic that does this is called a measure of effect
size (e.g., Cohen, 1988; Ellis, 2010). Effect size is defined slightly differently in different contexts,10 (and
so this section just talks in general terms) but the qualitative idea that it tries to capture is always the
same: how big is the difference between the true population parameters, and the parameter values that
are assumed by the null hypothesis? In our ESP example, if we let θ0 “ 0.5 denote the value assumed
by the null hypothesis, and let θ denote the true value, then a simple measure of effect size could be
something like the difference between the true value and null (i.e., θ´ θ0), or possibly just the magnitude
of this difference, abspθ ´ θ0q.

Why calculate effect size? Let’s assume that you’ve run your experiment, collected the data, and
gotten a significant effect when you ran your hypothesis test. Isn’t it enough just to say that you’ve
gotten a significant effect? Surely that’s the point of hypothesis testing? Well, sort of. Yes, the point of
doing a hypothesis test is to try to demonstrate that the null hypothesis is wrong, but that’s hardly the

10There’s an R package called compute.es that can be used for calculating a very broad range of effect size measures; but
for the purposes of the current book we won’t need it: all of the effect size measures that I’ll talk about here have functions
in the lsr package
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Table 11.2: A crude guide to understanding the relationship between statistical significance and effect
sizes. Basically, if you don’t have a significant result, then the effect size is pretty meaningless; because
you don’t have any evidence that it’s even real. On the other hand, if you do have a significant effect but
your effect size is small, then there’s a pretty good chance that your result (although real) isn’t all that
interesting. However, this guide is very crude: it depends a lot on what exactly you’re studying. Small
effects can be of massive practical importance in some situations. So don’t take this table too seriously.
It’s a rough guide at best.

big effect size small effect size
significant result difference is real, and difference is real, but

of practical importance might not be interesting

non-significant result no effect observed no effect observed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

only thing we’re interested in. If the null hypothesis claimed that θ “ .5, and we show that it’s wrong,
we’ve only really told half of the story. Rejecting the null hypothesis implies that we believe that θ ‰ .5,
but there’s a big difference between θ “ .51 and θ “ .8. If we find that θ “ .8, then not only have
we found that the null hypothesis is wrong, it appears to be very wrong. On the other hand, suppose
we’ve successfully rejected the null hypothesis, but it looks like the true value of θ is only .51 (this would
only be possible with a large study). Sure, the null hypothesis is wrong, but it’s not at all clear that we
actually care, because the effect size is so small. In the context of my ESP study we might still care,
since any demonstration of real psychic powers would actually be pretty cool11, but in other contexts a
1% difference isn’t very interesting, even if it is a real difference. For instance, suppose we’re looking at
differences in high school exam scores between males and females, and it turns out that the female scores
are 1% higher on average than the males. If I’ve got data from thousands of students, then this difference
will almost certainly be statistically significant, but regardless of how small the p value is it’s just not
very interesting. You’d hardly want to go around proclaiming a crisis in boys education on the basis
of such a tiny difference would you? It’s for this reason that it is becoming more standard (slowly, but
surely) to report some kind of standard measure of effect size along with the the results of the hypothesis
test. The hypothesis test itself tells you whether you should believe that the effect you have observed is
real (i.e., not just due to chance); the effect size tells you whether or not you should care.

11.8.3 Increasing the power of your study

Not surprisingly, scientists are fairly obsessed with maximising the power of their experiments. We
want our experiments to work, and so we want to maximise the chance of rejecting the null hypothesis
if it is false (and of course we usually want to believe that it is false!) As we’ve seen, one factor that
influences power is the effect size. So the first thing you can do to increase your power is to increase the
effect size. In practice, what this means is that you want to design your study in such a way that the
effect size gets magnified. For instance, in my ESP study I might believe that psychic powers work best
in a quiet, darkened room; with fewer distractions to cloud the mind. Therefore I would try to conduct
my experiments in just such an environment: if I can strengthen people’s ESP abilities somehow, then

11Although in practice a very small effect size is worrying, because even very minor methodological flaws might be
responsible for the effect; and in practice no experiment is perfect, so there are always methodological issues to worry
about.
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Figure 11.7: The power of our test, plotted as a function of the sample size N . In this case, the true
value of θ is 0.7, but the null hypothesis is that θ “ 0.5. Overall, larger N means greater power. (The
small zig-zags in this function occur because of some odd interactions between θ, α and the fact that the
binomial distribution is discrete; it doesn’t matter for any serious purpose)
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the true value of θ will go up12 and therefore my effect size will be larger. In short, clever experimental
design is one way to boost power; because it can alter the effect size.

Unfortunately, it’s often the case that even with the best of experimental designs you may have
only a small effect. Perhaps, for example, ESP really does exist, but even under the best of conditions
it’s very very weak. Under those circumstances, your best bet for increasing power is to increase the
sample size. In general, the more observations that you have available, the more likely it is that you can
discriminate between two hypotheses. If I ran my ESP experiment with 10 participants, and 7 of them
correctly guessed the colour of the hidden card, you wouldn’t be terribly impressed. But if I ran it with
10,000 participants and 7,000 of them got the answer right, you would be much more likely to think I
had discovered something. In other words, power increases with the sample size. This is illustrated in
Figure 11.7, which shows the power of the test for a true parameter of θ “ 0.7, for all sample sizes N

from 1 to 100, where I’m assuming that the null hypothesis predicts that θ0 “ 0.5.

Because power is important, whenever you’re contemplating running an experiment it would be pretty
useful to know how much power you’re likely to have. It’s never possible to know for sure, since you
can’t possibly know what your effect size is. However, it’s often (well, sometimes) possible to guess how
big it should be. If so, you can guess what sample size you need! This idea is called power analysis,
and if it’s feasible to do it, then it’s very helpful, since it can tell you something about whether you
have enough time or money to be able to run the experiment successfully. It’s increasingly common to
see people arguing that power analysis should be a required part of experimental design, so it’s worth
knowing about. I don’t discuss power analysis in this book, however. This is partly for a boring reason

12Notice that the true population parameter θ doesn’t necessarily correspond to an immutable fact of nature. In this
context θ is just the true probability that people would correctly guess the colour of the card in the other room. As such
the population parameter can be influenced by all sorts of things. Of course, this is all on the assumption that ESP actually
exists!
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and partly for a substantive one. The boring reason is that I haven’t had time to write about power
analysis yet. The substantive one is that I’m still a little suspicious of power analysis. Speaking as a
researcher, I have very rarely found myself in a position to be able to do one – it’s either the case that (a)
my experiment is a bit non-standard and I don’t know how to define effect size properly, (b) I literally
have so little idea about what the effect size will be that I wouldn’t know how to interpret the answers.
Not only that, after extensive conversations with someone who does stats consulting for a living (my
wife, as it happens), I can’t help but notice that in practice the only time anyone ever asks her for a
power analysis is when she’s helping someone write a grant application. In other words, the only time
any scientist ever seems to want a power analysis in real life is when they’re being forced to do it by
bureaucratic process. It’s not part of anyone’s day to day work. In short, I’ve always been of the view
that while power is an important concept, power analysis is not as useful as people make it sound, except
in the rare cases where (a) someone has figured out how to calculate power for your actual experimental
design and (b) you have a pretty good idea what the effect size is likely to be. Maybe other people have
had better experiences than me, but I’ve personally never been in a situation where both (a) and (b)
were true. Maybe I’ll be convinced otherwise in the future, and probably a future version of this book
would include a more detailed discussion of power analysis, but for now this is about as much as I’m
comfortable saying about the topic.

11.9

Some issues to consider

What I’ve described to you in this chapter is the orthodox framework for null hypothesis significance
testing (NHST). Understanding how NHST works is an absolute necessity, since it has been the dominant
approach to inferential statistics ever since it came to prominence in the early 20th century. It’s what
the vast majority of working scientists rely on for their data analysis, so even if you hate it you need to
know it. However, the approach is not without problems. There are a number of quirks in the framework,
historical oddities in how it came to be, theoretical disputes over whether or not the framework is right,
and a lot of practical traps for the unwary. I’m not going to go into a lot of detail on this topic, but I
think it’s worth briefly discussing a few of these issues.

11.9.1 Neyman versus Fisher

The first thing you should be aware of is that orthodox NHST is actually a mash-up of two rather
different approaches to hypothesis testing, one proposed by Sir Ronald Fisher and the other proposed
by Jerzy Neyman. Here’s a quick summary of what I take these two approaches to be. First, let’s talk
about Fisher’s approach. As far as I can tell, Fisher assumed that you only had the one hypothesis (the
null), and what you want to do is find out if the null hypothesis is inconsistent with the data. From
his perspective, what you should do is check to see if the data are “sufficiently unlikely” according to
the null. In fact, if you remember back to our earlier discussion, that’s how Fisher defines the p-value.
According to Fisher, if the null hypothesis provided a very poor account of the data, you could safely
reject it. But, since you don’t have any other hypotheses to compare it to, there’s no way of “accepting
the alternative” because you don’t necessarily have an explicitly stated alternative. That’s more or less
all that there was to it.

In contrast, Neyman thought that the point of hypothesis testing was as a guide to action, and his
approach was somewhat more formal than Fisher’s. His view was that there are multiple things that you
could do (accept the null or accept the alternative) and the point of the test was to tell you which one
the data support. From this perspective, it is critical to specify your alternative hypothesis properly. If
you don’t know what the alternative hypothesis is, then you don’t know how powerful the test is, or even
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which action makes sense. His framework genuinely requires a competition between different hypotheses.
For Neyman, the p value didn’t directly measure the probability of the data (or data more extreme)
under the null, it was more of an abstract description about which “possible tests” were telling you to
accept the null, and which “possible tests” were telling you to accept the alternative.

As you can see, what we have today is an odd mishmash of the two. We talk about having both a
null hypothesis and an alternative (Neyman), but usually13 define the p value in terms of exreme data
(Fisher), but we still have α values (Neyman). Some of the statistical tests have explicitly specified
alternatives (Neyman) but others are quite vague about it (Fisher). And, according to some people at
least, we’re not allowed to talk about accepting the alternative (Fisher). It’s a mess: but I hope this at
least explains why it’s a mess.

11.9.2 Bayesians versus frequentists

Earlier on in this chapter I was quite emphatic about the fact that you cannot interpret the p value as
the probability that the null hypothesis is true. NHST is fundamentally a frequentist tool (see Chapter 9)
and as such it does not allow you to assign probabilities to hypotheses: the null hypothesis is either true
or it is not. The Bayesian approach to statistics interprets probability as a degree of belief, so it’s totally
okay to say that there is a 10% chance that the null hypothesis is true: that’s just a reflection of the
degree of confidence that you have in this hypothesis. In modern times, the Bayesian view is an entirely
respectable way to do statistics, but it never used to be. Advocates of the Bayesian view tend to point out
that there are a lot of undesirable behaviours in the NHST framework; detractors point to undesirable
flaws in the Bayesian framework. While I personally tend to side with the Bayesians, I’m not going to
launch into a full discussion of the dispute. Right now, all I want to do is point out that this disagreement
exists, and to give you a brief flavour of how the Bayesian approach works. If you are interested in this
topic, a good place to start is the book by Kruschke (2011).

The Bayesian approach starts from the basic rule of probability theory that states that the joint
probability of A happening and B happening, P pA,Bq, is equal to the probability of one event happening
P pAq multiplied by the conditional probability of the other event happening P pB|Aq given that we know
that the first one has happened (or will happen - the timing of events is actually irrelevant to the maths,
so long as we have the relevant knowledge).14 From this basic rule, we can derive a slightly different way
of thinking about this, known as Bayes’ theorem:

P pA|Bq “ P pB|AqP pAq
P pBq

When we talk about it in terms of abstract events A and B, everyone agrees that it is a completely valid
rule of probability theory. However, if we let “event B” refer to “we observe the data X” and let “event
A” refer to the event that “the null hypothesis H0 is true”, it sparks a lot of disagreement. Why? Because
it means we have to assign probabilities to the event that “the null hypothesis is true”. Remember, if
you’re a frequentist, a probability can only be defined in terms of what happens after a large number of
independent replications (i.e., a long run frequency). If this is your interpretation of probability, talking
about the “probability” that the null hypothesis is true is complete gibberish: a null hypothesis is either
true or it is false. There’s no way you can talk about a long run frequency for this statement. To talk

13Although this book describes both Neyman’s and Fisher’s definition of the p value, most don’t. Most introductory
textbooks will only give you the Fisher version.

14Back in Chapter 9 I used the notation P pA X Bq to refer to the probability that both A and B occur, whereas in this
chapter I’ve used P pA,Bq. This is intentional. In probability theory it’s traditional to use P pA X Bq, but in statistics it’s
more common to shorten it to P pA,Bq. So the chapter on probability theory uses the standard notation from probability
theory, whereas the chapters on statistics tend to use the statistical notation. In an ideal world the notation would be the
same, but I think it’s pretty clear that we don’t live in an ideal world.
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about “the probability of the null hypothesis” is as meaningless as “the colour of freedom”. It doesn’t
have one!

For now, let’s suppose that you’re a Bayesian and that you are willing to interpret probability as a
subjective thing: a degree of belief. Then we have no problems at all. I believe in some theories more
strongly than others, so I’m perfectly entitled to assign probabilities to the event of “H0 is true”. So,
as long as you think that probabilities are “in the mind” rather than “in the world”, you can base all
of your statistical inference on Bayes’ theorem. Everything flows from this one simple equation. When
we apply Bayes rule to the problem of hypothesis testing, the probability that the null hypothesis is true
can be written like this:

P pH0 is true | data Xq “ P pdata X | H0 is trueq P pH0 is trueq
P pdata Xq

The probability P pH0 is trueq is the prior probability of the null hypothesis: that is, the degree of confi-
dence that you would have placed in the null hypothesis before observing your data. Then, once the data
X are observed this prior probability is updated to a the posterior probability P pH0 is true|data Xq, the
degree of belief you assign to the null hypothesis now that you’ve looked at the data. The P pdata X|H0 is trueq
term is called the likelihood, and it refers to the probability that you would have observed the data if
the null hypothesis were true. The term P pdata Xq describes the probability of the data set itself, and
is actually pretty hard to calculate, though it’s not usually necessary to do so. Inference within the
Bayesian framework involves a competition between different hypotheses. If we have two hypotheses to
consider (H0 and H1), we would calculate posterior odds ratio that describes the relative plausibility of
these two hypotheses:

P pH1 is true | data Xq
P pH0 is true | data Xq

If the posterior odds ratio is large, then we should prefer the alternative hypothesis to the null hypothesis;
but if it is small, then we should prefer the null hypothesis. Obviously, I’m glossing over a lot of important
details,15 but that’s the gist of the approach.

11.9.3 Traps

As you can see, the theory behind hypothesis testing is a mess, and even now there are arguments
in statistics about how it “should” work. However, disagreements among statisticians are not our real
concern here. Our real concern is practical data analysis. And while the “orthodox” approach to null
hypothesis significance testing has many drawbacks, even an unrepentant Bayesian like myself would
agree that they can be useful if used responsibly. Most of the time they give sensible answers, and you
can use them to learn interesting things. Setting aside the various ideologies and historical confusions
that we’ve discussed, the fact remains that the biggest danger in all of statistics is thoughtlessness. I
don’t mean stupidity, here: I literally mean thoughtlessness. The rush to interpret a result without
spending time thinking through what each test actually says about the data, and checking whether that’s
consistent with how you’ve interpreted it. That’s where the biggest trap lies.

To give an example of this, consider the following example (see Gelman & Stern, 2006). Suppose I’m
running my ESP study, and I’ve decided to analyse the data separately for the male participants and the
female participants. Of the male participants, 33 out of 50 guessed the colour of the card correctly. This
is a significant effect (p “ .03). Of the female participants, 29 out of 50 guessed correctly. This is not a
significant effect (p “ .32). Upon observing this, it is extremely tempting for people to start wondering
why there is a difference between males and females in terms of their psychic abilities. However, this is
wrong. If you think about it, we haven’t actually run a test that explicitly compares males to females. All

15Not least of which is the fact that, if you specify silly hypotheses, Bayesian inference won’t be any more useful to you
than orthodox analyses.
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we have done is compare males to chance (binomial test was significant) and compared females to chance
(binomial test was non significant). If we want to argue that there is a real difference between the males
and the females, we should probably run a test of the null hypothesis that there is no difference! We can
do that using a different hypothesis test,16 but when we do that it turns out that we have no evidence
that males and females are significantly different (p “ .54). Now do you think that there’s anything
fundamentally different between the two groups? Of course not. What’s happened here is that the data
from both groups (male and female) are pretty borderline: by pure chance, one of them happened to end
up on the magic side of the α “ .05 line, and the other one didn’t. That doesn’t actually imply that
males and females are different. This mistake is so common that you should always be wary of it: the
difference between significant and not-significant is not evidence of a real difference – if you want to say
that there’s a difference between two groups, then you have to test for that difference!

The example above is just that: an example. I’ve singled it out because it’s such a common one, but
the bigger picture is that data analysis can be tricky to get right. Think about what it is you want to
test, why you want to test it, and whether or not the answers that your test gives could possibly make
any sense in the real world.

11.10

Summary

• Research hypotheses and statistical hypotheses. Null and alternative hypotheses. (Section 11.1).

• Type 1 and Type 2 errors (Section 11.2)

• Test statistics and sampling distributions (Section 11.3)

• Hypothesis testing as a decision making process (Section 11.4)

• p-values as “soft” decisions (Section 11.5)

• Writing up the results of a hypothesis test (Section 11.6)

• Effect size and power (Section 11.8)

• A few issues to consider regarding hypothesis testing (Section 11.9)

16In this case, the Pearson chi-square test of independence (Chapter 12; chisq.test() in R) is what we use; see also the
prop.test() function.
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Part V.

Statistical tools
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12. Categorical data analysis

Now that we’ve got the basic theory behind hypothesis testing, it’s time to start looking at specific tests
that are commonly used in psychology. So where should we start? Not every textbook agrees on where
to start, but I’m going to start with “χ2 tests” (this chapter) and “t-tests” (Chapter 13). Both of these
tools are very frequently used in scientific practice, and while they’re not as powerful as “analysis of
variance” (Chapter 14) and “regression” (Chapter 15) they’re much easier to understand.

The term “categorical data” is just another name for “nominal scale data”. It’s nothing that we
haven’t already discussed, it’s just that in the context of data analysis people tend to use the term
“categorical data” rather than “nominal scale data”. I don’t know why. In any case, categorical data
analysis refers to a collection of tools that you can use when your data are nominal scale. However, there
are a lot of different tools that can be used for categorical data analysis, and this chapter only covers a
few of the more common ones.

12.1

The χ2 goodness-of-fit test

The χ2 goodness-of-fit test is one of the oldest hypothesis tests around: it was invented by Karl Pearson
around the turn of the century (Pearson, 1900), with some corrections made later by Sir Ronald Fisher
(Fisher, 1922). To introduce the statistical problem that it addresses, let’s start with some psychology...

12.1.1 The cards data

Over the years, there have been a lot of studies showing that humans have a lot of difficulties in simulating
randomness. Try as we might to “act” random, we think in terms of patterns and structure, and so
when asked to “do something at random”, what people actually do is anything but random. As a
consequence, the study of human randomness (or non-randomness, as the case may be) opens up a lot
of deep psychological questions about how we think about the world. With this in mind, let’s consider a
very simple study. Suppose I asked people to imagine a shuffled deck of cards, and mentally pick one card
from this imaginary deck “at random”. After they’ve chosen one card, I ask them to mentally select a
second one. For both choices, what we’re going to look at is the suit (hearts, clubs, spades or diamonds)
that people chose. After asking, say, N “ 200 people to do this, I’d like to look at the data and figure
out whether or not the cards that people pretended to select were really random. The data are contained
in the randomness.Rdata file, which contains a single data frame called cards. Let’s take a look:
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> library( lsr )

> load( "randomness.Rdata" )

> who( TRUE )

-- Name -- -- Class -- -- Size --

cards data.frame 200 x 3

$id factor 200

$choice_1 factor 200

$choice_2 factor 200

As you can see, the cards data frame contains three variables, an id variable that assigns a unique
identifier to each participant, and the two variables choice_1 and choice_2 that indicate the card suits
that people chose. Here’s the first few entries in the data frame:

> head( cards )

id choice_1 choice_2

1 subj1 spades clubs

2 subj2 diamonds clubs

3 subj3 hearts clubs

4 subj4 spades clubs

5 subj5 hearts spades

6 subj6 clubs hearts

For the moment, let’s just focus on the first choice that people made. We’ll use the table() function to
count the number of times that we observed people choosing each suit. I’ll save the table to a variable
called observed, for reasons that will become clear very soon:

> observed <- table( cards$choice_1 )

> observed

clubs diamonds hearts spades

35 51 64 50

That little frequency table is quite helpful. Looking at it, there’s a bit of a hint that people might be
more likely to select hearts than clubs, but it’s not completely obvious just from looking at it whether
that’s really true, or if this is just due to chance. So we’ll probably have to do some kind of statistical
analysis to find out, which is what I’m going to talk about in the next section.

Excellent. From this point on, we’ll treat this table as the data that we’re looking to analyse. However,
since I’m going to have to talk about this data in mathematical terms (sorry!) it might be a good idea
to be clear about what the notation is. In R, if I wanted to pull out the number of people that selected
diamonds, I could do it by name by typing observed["diamonds"] but, since "diamonds" is second element
of the observed vector, it’s equally effective to refer to it as observed[2]. The mathematical notation for
this is pretty similar, except that we shorten the human-readable word “observed” to the letter O, and
we use subscripts rather than brackets: so the second observation in our table is written as observed[2]

in R, and is written as O2 in maths. The relationship between the English descriptions, the R commands,
and the mathematical symbols are illustrated below:

label index, i math. symbol R command the value
clubs, ♣ 1 O1 observed[1] 35

diamonds, ♦ 2 O2 observed[2] 51
hearts, ♥ 3 O3 observed[3] 64
spades, ♠ 4 O4 observed[4] 50

Hopefully that’s pretty clear. It’s also worth nothing that mathematicians prefer to talk about things
in general rather than specific things, so you’ll also see the notation Oi, which refers to the number of

- 338 -



observations that fall within the i-th category (where i could be 1, 2, 3 or 4). Finally, if we want to refer
to the set of all observed frequencies, statisticians group all of observed values into a vector, which I’ll
refer to as O.

O “ pO1, O2, O3, O4q
Again, there’s nothing new or interesting here: it’s just notation. If I say that O “ p35, 51, 64, 50q all
I’m doing is describing the table of observed frequencies (i.e., observed), but I’m referring to it using
mathematical notation, rather than by referring to an R variable.

12.1.2 The null hypothesis and the alternative hypothesis

As the last section indicated, our research hypothesis is that “people don’t choose cards randomly”.
What we’re going to want to do now is translate this into some statistical hypotheses, and construct a
statistical test of those hypotheses. The test that I’m going to describe to you is Pearson’s χ2 goodness
of fit test, and as is so often the case, we have to begin by carefully constructing our null hypothesis.
In this case, it’s pretty easy. First, let’s state the null hypothesis in words:

H0: All four suits are chosen with equal probability

Now, because this is statistics, we have to be able to say the same thing in a mathematical way. To do
this, let’s use the notation Pj to refer to the true probability that the j-th suit is chosen. If the null
hypothesis is true, then each of the four suits has a 25% chance of being selected: in other words, our
null hypothesis claims that P1 “ .25, P2 “ .25, P3 “ .25 and finally that P4 “ .25. However, in the same
way that we can group our observed frequencies into a vector O that summarises the entire data set,
we can use P to refer to the probabilities that correspond to our null hypothesis. So if I let the vector
P “ pP1, P2, P3, P4q refer to the collection of probabilities that describe our null hypothesis, then we have

H0: P “ p.25, .25, .25, .25q

In this particular instance, our null hypothesis corresponds to a vector of probabilities P in which all
of the probabilities are equal to one another. But this doesn’t have to be the case. For instance, if the
experimental task was for people to imagine they were drawing from a deck that had twice as many clubs
as any other suit, then the null hypothesis would correspond to something like P “ p.4, .2, .2, .2q. As
long as the probabilities are all positive numbers, and they all sum to 1, them it’s a perfectly legitimate
choice for the null hypothesis. However, the most common use of the goodness of fit test is to test a null
hypothesis that all of the categories are equally likely, so we’ll stick to that for our example.

What about our alternative hypothesis, H1? All we’re really interested in is demonstrating that the
probabilities involved aren’t all identical (that is, people’s choices weren’t completely random). As a
consequence, the “human friendly” versions of our hypotheses look like this:

H0: All four suits are chosen with equal probability
H1: At least one of the suit-choice probabilities isn’t .25

and the “mathematician friendly” version is

H0: P “ p.25, .25, .25, .25q
H1: P ‰ p.25, .25, .25, .25q

Conveniently, the mathematical version of the hypotheses looks quite similar to an R command defining
a vector. So maybe what I should do is store the P vector in R as well, since we’re almost certainly going
to need it later. And because I’m Mister Imaginative, I’ll call this R vector probabilities,

> probabilities <- c(clubs = .25, diamonds = .25, hearts = .25, spades = .25)

> probabilities
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clubs diamonds hearts spades

0.25 0.25 0.25 0.25

12.1.3 The “goodness of fit” test statistic

At this point, we have our observed frequenciesO and a collection of probabilities P corresponding the
null hypothesis that we want to test. We’ve stored these in R as the corresponding variables observed and
probabilities. What we now want to do is construct a test of the null hypothesis. As always, if we want
to test H0 against H1, we’re going to need a test statistic. The basic trick that a goodness of fit test uses
is to construct a test statistic that measures how “close” the data are to the null hypothesis. If the data
don’t resemble what you’d “expect” to see if the null hypothesis were true, then it probably isn’t true.
Okay, if the null hypothesis were true, what would we expect to see? Or, to use the correct terminology,
what are the expected frequencies. There are N “ 200 observations, and (if the null is true) the
probability of any one of them choosing a heart is P3 “ .25, so I guess we’re expecting 200 ˆ .25 “ 50
hearts, right? Or, more specifically, if we let Ei refer to “the number of category i responses that we’re
expecting if the null is true”, then

Ei “ N ˆ Pi

This is pretty easy to calculate in R:

> N <- 200 # sample size

> expected <- N * probabilities # expected frequencies

> expected

clubs diamonds hearts spades

50 50 50 50

None of which is very surprising: if there are 200 observation that can fall into four categories, and we
think that all four categories are equally likely, then on average we’d expect to see 50 observations in
each category, right?

Now, how do we translate this into a test statistic? Clearly, what we want to do is compare the
expected number of observations in each category (Ei) with the observed number of observations in that
category (Oi). And on the basis of this comparison, we ought to be able to come up with a good test
statistic. To start with, let’s calculate the difference between what the null hypothesis expected us to
find and what we actually did find. That is, we calculate the “observed minus expected” difference score,
Oi ´ Ei. This is illustrated in the following table.

♣ ♦ ♥ ♠
expected frequency Ei 50 50 50 50
observed frequency Oi 35 51 64 50

difference score Oi ´ Ei -15 1 14 0

The same calculations can be done in R, using our expected and observed variables:

> observed - expected

clubs diamonds hearts spades

-15 1 14 0

Regardless of whether we do the calculations by hand or whether we do them in R, it’s clear that people
chose more hearts and fewer clubs than the null hypothesis predicted. However, a moment’s thought
suggests that these raw differences aren’t quite what we’re looking for. Intuitively, it feels like it’s just
as bad when the null hypothesis predicts too few observations (which is what happened with hearts) as
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it is when it predicts too many (which is what happened with clubs). So it’s a bit weird that we have
a negative number for hearts and a positive number for clubs. One easy way to fix this is to square
everything, so that we now calculate the squared differences, pEi ´Oiq2. As before, we could do this by
hand, but it’s easier to do it in R...

> (observed - expected)^2

clubs diamonds hearts spades

225 1 196 0

Now we’re making progress. What we’ve got now is a collection of numbers that are big whenever the
null hypothesis makes a bad prediction (clubs and hearts), but are small whenever it makes a good one
(diamonds and spades). Next, for some technical reasons that I’ll explain in a moment, let’s also divide

all these numbers by the expected frequency Ei, so we’re actually calculating pEi´Oiq2

Ei

. Since Ei “ 50
for all categories in our example, it’s not a very interesting calculation, but let’s do it anyway. The R

command becomes:

> (observed - expected)^2 / expected

clubs diamonds hearts spades

4.50 0.02 3.92 0.00

In effect, what we’ve got here are four different “error” scores, each one telling us how big a “mistake”
the null hypothesis made when we tried to use it to predict our observed frequencies. So, in order to
convert this into a useful test statistic, one thing we could do is just add these numbers up. The result
is called the goodness of fit statistic, conventionally referred to either as X2 or GOF. We can calculate
it using this command in R

> sum( (observed - expected)^2 / expected )

[1] 8.44

The formula for this statistic looks remarkably similar to the R command. If we let k refer to the total
number of categories (i.e., k “ 4 for our cards data), then the X2 statistic is given by:

X2 “
k

ÿ

i“1

pOi ´ Eiq2
Ei

Intuitively, it’s clear that if X2 is small, then the observed data Oi are very close to what the null
hypothesis predicted Ei, so we’re going to need a large X2 statistic in order to reject the null. As we’ve
seen from our calculations, in our cards data set we’ve got a value of X2 “ 8.44. So now the question
becomes, is this a big enough value to reject the null?

12.1.4 The sampling distribution of the GOF statistic

To determine whether or not a particular value of X2 is large enough to justify rejecting the null
hypothesis, we’re going to need to figure out what the sampling distribution for X2 would be if the null
hypothesis were true. So that’s what I’m going to do in this section. I’ll show you in a fair amount of
detail how this sampling distribution is constructed, and then – in the next section – use it to build up
a hypothesis test. If you want to cut to the chase and are willing to take it on faith that the sampling
distribution is a chi-squared (χ2) distribution with k´ 1 degrees of freedom, you can skip the rest of
this section. However, if you want to understand why the goodness of fit test works the way it does, read
on...
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Okay, let’s suppose that the null hypothesis is actually true. If so, then the true probability that
an observation falls in the i-th category is Pi – after all, that’s pretty much the definition of our null
hypothesis. Let’s think about what this actually means. If you think about it, this is kind of like saying
that “nature” makes the decision about whether or not the observation ends up in category i by flipping a
weighted coin (i.e., one where the probability of getting a head is Pj). And therefore, we can think of our
observed frequency Oi by imagining that nature flipped N of these coins (one for each observation in the
data set)... and exactly Oi of them came up heads. Obviously, this is a pretty weird way to think about
the experiment. But what it does (I hope) is remind you that we’ve actually seen this scenario before.
It’s exactly the same set up that gave rise to the binomial distribution in Section 9.3. In other words,
if the null hypothesis is true, then it follows that our observed frequencies were generated by sampling
from a binomial distribution:

Oi „ BinomialpPi, Nq
Now, if you remember from our discussion of the central limit theorem (Section 10.4), the binomial
distribution starts to look pretty much identical to the normal distribution, especially when N is large
and when Pi isn’t too close to 0 or 1. In other words as long as N ˆ Pi is large enough – or, to put
it another way, when the expected frequency Ei is large enough – the theoretical distribution of Oi is
approximately normal. Better yet, if Oi is normally distributed, then so is pOi ´ Eiq{

?
Ei ... since Ei is

a fixed value, subtracting off Ei and dividing by
?
Ei changes the mean and standard deviation of the

normal distribution; but that’s all it does. Okay, so now let’s have a look at what our goodness of fit
statistic actually is. What we’re doing is taking a bunch of things that are normally-distributed, squaring
them, and adding them up. Wait. We’ve seen that before too! As we discussed in Section 9.5, when you
take a bunch of things that have a standard normal distribution (i.e., mean 0 and standard deviation 1),
square them, then add them up, then the resulting quantity has a chi-square distribution. So now we
know that the null hypothesis predicts that the sampling distribution of the goodness of fit statistic is a
chi-square distribution. Cool.

There’s one last detail to talk about, namely the degrees of freedom. If you remember back to
Section 9.5, I said that if the number of things you’re adding up is k, then the degrees of freedom for
the resulting chi-square distribution is k. Yet, what I said at the start of this section is that the actual
degrees of freedom for the chi-square goodness of fit test is k ´ 1. What’s up with that? The answer
here is that what we’re supposed to be looking at is the number of genuinely independent things that are
getting added together. And, as I’ll go on to talk about in the next section, even though there’s k things
that we’re adding, only k ´ 1 of them are truly independent; and so the degrees of freedom is actually
only k ´ 1. That’s the topic of the next section.1

12.1.5 Degrees of freedom

When I introduced the chi-square distribution in Section 9.5, I was a bit vague about what “degrees
of freedom” actually means. Obviously, it matters: looking Figure 12.1 you can see that if we change the
degrees of freedom, then the chi-square distribution changes shape quite substantially. But what exactly
is it? Again, when I introduced the distribution and explained its relationship to the normal distribution,
I did offer an answer... it’s the number of “normally distributed variables” that I’m squaring and adding
together. But, for most people, that’s kind of abstract, and not entirely helpful. What we really need to
do is try to understand degrees of freedom in terms of our data. So here goes.

1I should point out that this issue does complicate the story somewhat: I’m not going to cover it in this book, but there’s
a sneaky trick that you can do to rewrite the equation for the goodness of fit statistic as a sum over k ´ 1 independent
things. When we do so we get the “proper” sampling distribution, which is chi-square with k ´ 1 degrees of freedom. In
fact, in order to get the maths to work out properly, you actually have to rewrite things that way. But it’s beyond the scope
of an introductory book to show the maths in that much detail: all I wanted to do is give you a sense of why the goodness
of fit statistic is associated with the chi-squared distribution.
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Figure 12.1: Chi-square distributions with different values for the “degrees of freedom”.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The basic idea behind degrees of freedom is quite simple: you calculate it by counting up the number of
distinct “quantities” that are used to describe your data; and then subtracting off all of the “constraints”
that those data must satisfy.2 This is a bit vague, so let’s use our cards data as a concrete example.
We describe out data using four numbers, O1, O2, O3 and O4 corresponding to the observed frequencies
of the four different categories (hearts, clubs, diamonds, spades). These four numbers are the random
outcomes of our experiment. But, my experiment actually has a fixed constraint built into it: the sample
size N .3 That is, if we know how many people chose hearts, how many chose diamonds and how many
chose clubs; then we’d be able to figure out exactly how many chose spades. In other words, although our
data are described using four numbers, they only actually correspond to 4´ 1 “ 3 degrees of freedom. A
slightly different way of thinking about it is to notice that there are four probabilities that we’re interested
in (again, corresponding to the four different categories), but these probabilities must sum to one, which
imposes a constraint. Therefore, the degrees of freedom is 4 ´ 1 “ 3. Regardless of whether you want
to think about it in terms of the observed frequencies or in terms of the probabilities, the answer is the
same. In general, when running the chi-square goodness of fit test for an experiment involving k groups,
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Value of the GOF Statistic

The critical value is 7.81

The observed GOF value is 8.44

Figure 12.2: Illustration of how the hypothesis testing works for the chi-square goodness of fit test.
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then the degrees of freedom will be k ´ 1.

12.1.6 Testing the null hypothesis

The final step in the process of constructing our hypothesis test is to figure out what the rejection
region is. That is, what values of X2 would lead is to reject the null hypothesis. As we saw earlier,
large values of X2 imply that the null hypothesis has done a poor job of predicting the data from our
experiment, whereas small values of X2 imply that it’s actually done pretty well. Therefore, a pretty
sensible strategy would be to say there is some critical value, such that if X2 is bigger than the critical
value we reject the null; but if X2 is smaller than this value we retain the null. In other words, to use the
language we introduced in Chapter 11 the chi-squared goodness of fit test is always a one-sided test.
Right, so all we have to do is figure out what this critical value is. And it’s pretty straightforward. If we
want our test to have significance level of α “ .05 (that is, we are willing to tolerate a Type I error rate
of 5%), then we have to choose our critical value so that there is only a 5% chance that X2 could get
to be that big if the null hypothesis is true. That is to say, we want the 95th percentile of the sampling
distribution. This is illustrated in Figure 12.2.

2I feel obliged to point out that this is an over-simplification. It works nicely for quite a few situations; but every now
and then we’ll come across degrees of freedom values that aren’t whole numbers. Don’t let this worry you too much – when
you come across this, just remind yourself that “degrees of freedom” is actually a bit of a messy concept, and that the nice
simple story that I’m telling you here isn’t the whole story. For an introductory class, it’s usually best to stick to the simple
story: but I figure it’s best to warn you to expect this simple story to fall apart. If I didn’t give you this warning, you
might start getting confused when you see df “ 3.4 or something; and (incorrectly) thinking that you had misunderstood
something that I’ve taught you, rather than (correctly) realising that there’s something that I haven’t told you.

3In practice, the sample size isn’t always fixed... e.g., we might run the experiment over a fixed period of time, and the
number of people participating depends on how many people show up. That doesn’t matter for the current purposes.
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Ah, but – I hear you ask – how do I calculate the 95th percentile of a chi-squared distribution with
k´1 degrees of freedom? If only R had some function, called... oh, I don’t know, qchisq() ... that would
let you calculate this percentile (see Chapter 9 if you’ve forgotten). Like this...

> qchisq( p = .95, df = 3 )

[1] 7.814728

So if our X2 statistic is bigger than 7.81 or so, then we can reject the null hypothesis. Since we actually
calculated that before (i.e., X2 “ 8.44) we can reject the null. If we want an exact p-value, we can
calculate it using the pchisq() function:

> pchisq( q = 8.44, df = 3, lower.tail = FALSE )

[1] 0.03774185

This is hopefully pretty straightforward, as long as you recall that the “p” form of the probability
distribution functions in R always calculates the probability of getting a value of less than the value you
entered (in this case 8.44). We want the opposite: the probability of getting a value of 8.44 or more.
That’s why I told R to use the upper tail, not the lower tail. That said, it’s usually easier to calculate
the p-value this way:

> 1-pchisq( q = 8.44, df = 3 )

[1] 0.03774185

So, in this case we would reject the null hypothesis, since p ă .05. And that’s it, basically. You now
know “Pearson’s χ2 test for the goodness of fit”. Lucky you.

12.1.7 Doing the test in R

Gosh darn it. Although we did manage to do everything in R as we were going through that little
example, it does rather feel as if we’re typing too many things into the magic computing box. And I
hate typing. Not surprisingly, R provides a function that will do all of these calculations for you. In fact,
there are several different ways of doing it. The one that most people use is the chisq.test() function,
which comes with every installation of R. I’ll show you how to use the chisq.test() function later on
(in Section 12.6), but to start out with I’m going to show you the goodnessOfFitTest() function in the
lsr package, because it produces output that I think is easier for beginners to understand. It’s pretty
straightforward: our raw data are stored in the variable cards$choice_1, right? If you want to test the
null hypothesis that all four suits are equally likely, then (assuming you have the lsr package loaded) all
you have to do is type this:

> goodnessOfFitTest( cards$choice_1 )

R then runs the test, and prints several lines of text. I’ll go through the output line by line, so that you
can make sure that you understand what you’re looking at. The first two lines are just telling you things
you already know:

Chi-square test against specified probabilities

Data variable: cards$choice_1

The first line tells us what kind of hypothesis test we ran, and the second line tells us the name of the
variable that we ran it on. After that comes a statement of what the null and alternative hypotheses are:
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Hypotheses:

null: true probabilities are as specified

alternative: true probabilities differ from those specified

For a beginner, it’s kind of handy to have this as part of the output: it’s a nice reminder of what your null
and alternative hypotheses are. Don’t get used to seeing this though. The vast majority of hypothesis
tests in R aren’t so kind to novices. Most R functions are written on the assumption that you already
understand the statistical tool that you’re using, so they don’t bother to include an explicit statement
of the null and alternative hypothesis. The only reason that goodnessOfFitTest() actually does give you
this is that I wrote it with novices in mind.

The next part of the output shows you the comparison between the observed frequencies and the
expected frequencies:

Descriptives:

observed freq. expected freq. specified prob.

clubs 35 50 0.25

diamonds 51 50 0.25

hearts 64 50 0.25

spades 50 50 0.25

The first column shows what the observed frequencies were, the second column shows the expected
frequencies according to the null hypothesis, and the third column shows you what the probabilities
actually were according to the null. For novice users, I think this is helpful: you can look at this part of
the output and check that it makes sense: if it doesn’t you might have typed something incorrecrtly.

The last part of the output is the “important” stuff: it’s the result of the hypothesis test itself. There
are three key numbers that need to be reported: the value of the X2 statistic, the degrees of freedom,
and the p-value:

Test results:

X-squared statistic: 8.44

degrees of freedom: 3

p-value: 0.038

Notice that these are the same numbers that we came up with when doing the calculations the long way.

12.1.8 Specifying a different null hypothesis

At this point you might be wondering what to do if you want to run a goodness of fit test, but your
null hypothesis is not that all categories are equally likely. For instance, let’s suppose that someone had
made the theoretical prediction that people should choose red cards 60% of the time, and black cards
40% of the time (I’ve no idea why you’d predict that), but had no other preferences. If that were the
case, the null hypothesis would be to expect 30% of the choices to be hearts, 30% to be diamonds, 20%
to be spades and 20% to be clubs. This seems like a silly theory to me, and it’s pretty easy to test it
using our data. All we need to do is specify the probabilities associated with the null hypothesis. We
create a vector like this:

> nullProbs <- c(clubs = .2, diamonds = .3, hearts = .3, spades = .2)

> nullProbs

clubs diamonds hearts spades

0.2 0.3 0.3 0.2
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Now that we have an explicitly specified null hypothesis, we include it in our command. This time
round I’ll use the argument names properly. The data variable corresponds to the argument x, and the
probabilities according to the null hypothesis correspond to the argument p. So our command is:

> goodnessOfFitTest( x = cards$choice_1, p = nullProbs )

and our output is:

Chi-square test against specified probabilities

Data variable: cards$choice_1

Hypotheses:

null: true probabilities are as specified

alternative: true probabilities differ from those specified

Descriptives:

observed freq. expected freq. specified prob.

clubs 35 40 0.2

diamonds 51 60 0.3

hearts 64 60 0.3

spades 50 40 0.2

Test results:

X-squared statistic: 4.742

degrees of freedom: 3

p-value: 0.192

As you can see the null hypothesis and the expected frequencies are different to what they were last
time. As a consequence our X2 test statistic is different, and our p-value is different too. Annoyingly,
the p-value is .192, so we can’t reject the null hypothesis. Sadly, despite the fact that the null hypothesis
corresponds to a very silly theory, these data don’t provide enough evidence against it.

12.1.9 How to report the results of the test

So now you know how the test works, and you know how to do the test using a wonderful magic
computing box. The next thing you need to know is how to write up the results. After all, there’s no
point in designing and running an experiment and then analysing the data if you don’t tell anyone about
it! So let’s now talk about what you need to do when reporting your analysis. Let’s stick with our
card-suits example. If I wanted to write this result up for a paper or something, the conventional way to
report this would be to write something like this:

Of the 200 participants in the experiment, 64 selected hearts for their first choice, 51 selected
diamonds, 50 selected spades, and 35 selected clubs. A chi-square goodness of fit test was
conducted to test whether the choice probabilities were identical for all four suits. The results
were significant (χ2p3q “ 8.44, p ă .05), suggesting that people did not select suits purely at
random.

This is pretty straightforward, and hopefully it seems pretty unremarkable. That said, there’s a few
things that you should note about this description:

• The statistical test is preceded by the descriptive statistics. That is, I told the reader something
about what the data look like before going on to do the test. In general, this is good practice:
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always remember that your reader doesn’t know your data anywhere near as well as you do. So
unless you describe it to them properly, the statistical tests won’t make any sense to them, and
they’ll get frustrated and cry.

• The description tells you what the null hypothesis being tested is. To be honest, writers don’t always
do this, but it’s often a good idea in those situations where some ambiguity exists; or when you
can’t rely on your readership being intimately familiar with the statistical tools that you’re using.
Quite often the reader might not know (or remember) all the details of the test that your using, so
it’s a kind of politeness to “remind” them! As far as the goodness of fit test goes, you can usually
rely on a scientific audience knowing how it works (since it’s covered in most intro stats classes).
However, it’s still a good idea to be explicit about stating the null hypothesis (briefly!) because
the null hypothesis can be different depending on what you’re using the test for. For instance, in
the cards example my null hypothesis was that all the four suit probabilities were identical (i.e.,
P1 “ P2 “ P3 “ P4 “ 0.25), but there’s nothing special about that hypothesis. I could just as
easily have tested the null hypothesis that P1 “ 0.7 and P2 “ P3 “ P4 “ 0.1 using a goodness of fit
test. So it’s helpful to the reader if you explain to them what your null hypothesis was. Also, notice
that I described the null hypothesis in words, not in maths. That’s perfectly acceptable. You can
describe it in maths if you like, but since most readers find words easier to read than symbols, most
writers tend to describe the null using words if they can.

• A “stat block” is included. When reporting the results of the test itself, I didn’t just say that the
result was significant, I included a “stat block” (i.e., the dense mathematical-looking part in the
parentheses), which reports all the “raw” statistical data. For the chi-square goodness of fit test,
the information that gets reported is the test statistic (that the goodness of fit statistic was 8.44),
the information about the distribution used in the test (χ2 with 3 degrees of freedom, which is
usually shortened to χ2p3q), and then the information about whether the result was significant (in
this case p ă .05). The particular information that needs to go into the stat block is different for
every test, and so each time I introduce a new test I’ll show you what the stat block should look
like.4 However the general principle is that you should always provide enough information so that
the reader could check the test results themselves if they really wanted to.

• The results are interpreted. In addition to indicating that the result was significant, I provided an
interpretation of the result (i.e., that people didn’t choose randomly). This is also a kindness to
the reader, because it tells them something about what they should believe about what’s going on
in your data. If you don’t include something like this, it’s really hard for your reader to understand
what’s going on.5

As with everything else, your overriding concern should be that you explain things to your reader. Always
remember that the point of reporting your results is to communicate to another human being. I cannot
tell you just how many times I’ve seen the results section of a report or a thesis or even a scientific
article that is just gibberish, because the writer has focused solely on making sure they’ve included all
the numbers, and forgotten to actually communicate with the human reader.

4Well, sort of. The conventions for how statistics should be reported tend to differ somewhat from discipline to discipline;
I’ve tended to stick with how things are done in psychology, since that’s what I do. But the general principle of providing
enough information to the reader to allow them to check your results is pretty universal, I think.

5To some people, this advice might sound odd, or at least in conflict with the “usual” advice on how to write a technical
report. Very typically, students are told that the “results” section of a report is for describing the data and reporting
statistical analysis; and the “discussion” section is for providing interpretation. That’s true as far as it goes, but I think
people often interpret it way too literally. The way I usually approach it is to provide a quick and simple interpretation of
the data in the results section, so that my reader understands what the data are telling us. Then, in the discussion, I try to
tell a bigger story; about how my results fit with the rest of the scientific literature. In short; don’t let the “interpretation
goes in the discussion” advice turn your results section into incomprehensible garbage. Being understood by your reader is
much more important.
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12.1.10 A comment on statistical notation

Satan delights equally in statistics and in quoting scripture
– H.G. Wells

If you’ve been reading very closely, and are as much of a mathematical pedant as I am, there is one thing
about the way I wrote up the chi-square test in the last section that might be bugging you a little bit.
There’s something that feels a bit wrong with writing “χ2p3q “ 8.44”, you might be thinking. After all,
it’s the goodness of fit statistic that is equal to 8.44, so shouldn’t I have written X2 “ 8.44 or maybe
GOF“ 8.44? This seems to be conflating the sampling distribution (i.e., χ2 with df “ 3) with the test
statistic (i.e., X2). Odds are you figured it was a typo, since χ and X look pretty similar. Oddly, it’s
not. Writing χ2p3q “ 8.44 is essentially a highly condensed way of writing “the sampling distribution of
the test statistic is χ2p3q, and the value of the test statistic is 8.44”.

In one sense, this is kind of stupid. There are lots of different test statistics out there that turn out
to have a chi-square sampling distribution: the X2 statistic that we’ve used for our goodness of fit test is
only one of many (albeit one of the most commonly encountered ones). In a sensible, perfectly organised
world, we’d always have a separate name for the test statistic and the sampling distribution: that way,
the stat block itself would tell you exactly what it was that the researcher had calculated. Sometimes this
happens. For instance, the test statistic used in the Pearson goodness of fit test is written X2; but there’s
a closely related test known as the G-test6 (Sokal & Rohlf, 1994), in which the test statistic is written
as G. As it happens, the Pearson goodness of fit test and the G-test both test the same null hypothesis;
and the sampling distribution is exactly the same (i.e., chi-square with k ´ 1 degrees of freedom). If I’d
done a G-test for the cards data rather than a goodness of fit test, then I’d have ended up with a test
statistic of G “ 8.65, which is slightly different from the X2 “ 8.44 value that I got earlier; and produces
a slightly smaller p-value of p “ .034. Suppose that the convention was to report the test statistic,
then the sampling distribution, and then the p-value. If that were true, then these two situations would
produce different stat blocks: my original result would be written X2 “ 8.44, χ2p3q, p “ .038, whereas
the new version using the G-test would be written as G “ 8.65, χ2p3q, p “ .034. However, using the
condensed reporting standard, the original result is written χ2p3q “ 8.44, p “ .038, and the new one is
written χ2p3q “ 8.65, p “ .034, and so it’s actually unclear which test I actually ran.

So why don’t we live in a world in which the contents of the stat block uniquely specifies what
tests were ran? The deep reason is that life is messy. We (as users of statistical tools) want it to
be nice and neat and organised... we want it to be designed, as if it were a product. But that’s not
how life works: statistics is an intellectual discipline just as much as any other one, and as such it’s a
massively distributed, partly-collaborative and partly-competitive project that no-one really understands
completely. The things that you and I use as data analysis tools weren’t created by an Act of the Gods
of Statistics; they were invented by lots of different people, published as papers in academic journals,
implemented, corrected and modified by lots of other people, and then explained to students in textbooks
by someone else. As a consequence, there’s a lot of test statistics that don’t even have names; and as
a consequence they’re just given the same name as the corresponding sampling distribution. As we’ll
see later, any test statistic that follows a χ2 distribution is commonly called a “chi-square statistic”;
anything that follows a t-distribution is called a “t-statistic” and so on. But, as the X2 versus G example
illustrates, two different things with the same sampling distribution are still, well, different.

As a consequence, it’s sometimes a good idea to be clear about what the actual test was that you
ran, especially if you’re doing something unusual. If you just say “chi-square test”, it’s not actually clear
what test you’re talking about. Although, since the two most common chi-square tests are the goodness
of fit test and the independence test (Section 12.2), most readers with stats training can probably guess.
Nevertheless, it’s something to be aware of.

6Complicating matters, the G-test is a special case of a whole class of tests that are known as likelihood ratio tests. I
don’t cover LRTs in this book, but they are quite handy things to know about.
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12.2

The χ2 test of independence (or association)

GUARDBOT 1: Halt!
GUARDBOT 2: Be you robot or human?
LEELA: Robot...we be.
FRY: Uh, yup! Just two robots out roboting it up! Eh?
GUARDBOT 1: Administer the test.
GUARDBOT 2: Which of the following would you most prefer?

A: A puppy, B: A pretty flower from your sweetie,
or C: A large properly-formatted data file?

GUARDBOT 1: Choose!
– Futurama, “Fear of a Bot Planet”

The other day I was watching an animated documentary examining the quaint customs of the natives of
the planet Chapek 9. Apparently, in order to gain access to their capital city, a visitor must prove that
they’re a robot, not a human. In order to determine whether or not visitor is human, they ask whether
the visitor prefers puppies, flowers or large, properly formatted data files. “Pretty clever,” I thought to
myself “but what if humans and robots have the same preferences? That probably wouldn’t be a very
good test then, would it?” As it happens, I got my hands on the testing data that the civil authorities
of Chapek 9 used to check this. It turns out that what they did was very simple... they found a bunch
of robots and a bunch of humans and asked them what they preferred. I saved their data in a file called
chapek9.Rdata, which I can now load and have a quick look at:

> load( "chapek9.Rdata" )

> who(TRUE)

-- Name -- -- Class -- -- Size --

chapek9 data.frame 180 x 2

$species factor 180

$choice factor 180

Okay, so we have a single data frame called chapek9, which contains two factors, species and choice. As
always, it’s nice to have a quick look at the data,

> head(chapek9)

species choice

1 robot flower

2 human data

3 human data

4 human data

5 robot data

6 human flower

and then take a summary(),

> summary(chapek9)

species choice

robot:87 puppy : 28

human:93 flower: 43

data :109
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In total there are 180 entries in the data frame, one for each person (counting both robots and humans
as “people”) who was asked to make a choice. Specifically, there’s 93 humans and 87 robots; and
overwhelmingly the preferred choice is the data file. However, these summaries don’t address the question
we’re interested in. To do that, we need a more detailed description of the data. What we want to do is
look at the choices broken down by species. That is, we need to cross-tabulate the data (see Section 7.1).
There’s quite a few ways to do this, as we’ve seen, but since our data are stored in a data frame, it’s
convenient to use the xtabs() function.

> chapekFrequencies <- xtabs( ~ choice + species, data = chapek9)

> chapekFrequencies

species

choice robot human

puppy 13 15

flower 30 13

data 44 65

That’s more or less what we’re after. So, if we add the row and column totals (which is convenient for
the purposes of explaining the statistical tests), we would have a table like this,

Robot Human Total
Puppy 13 15 28
Flower 30 13 43
Data file 44 65 109
Total 87 93 180

which actually would be a nice way to report the descriptive statistics for this data set. In any case, it’s
quite clear that the vast majority of the humans chose the data file, whereas the robots tended to be a
lot more even in their preferences. Leaving aside the question of why the humans might be more likely to
choose the data file for the moment (which does seem quite odd, admittedly), our first order of business
is to determine if the discrepancy between human choices and robot choices in the data set is statistically
significant.

12.2.1 Constructing our hypothesis test

How do we analyse this data? Specifically, since my research hypothesis is that “humans and robots
answer the question in different ways”, how can I construct a test of the null hypothesis that “humans
and robots answer the question the same way”? As before, we begin by establishing some notation to
describe the data:

Robot Human Total
Puppy O11 O12 R1

Flower O21 O22 R2

Data file O31 O32 R3

Total C1 C2 N

In this notation we say that Oij is a count (observed frequency) of the number of respondents that are
of species j (robots or human) who gave answer i (puppy, flower or data) when asked to make a choice.
The total number of observations is written N , as usual. Finally, I’ve used Ri to denote the row totals
(e.g., R1 is the total number of people who chose the flower), and Cj to denote the column totals (e.g.,
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C1 is the total number of robots).7

So now let’s think about what the null hypothesis says. If robots and humans are responding in the
same way to the question, it means that the probability that “a robot says puppy” is the same as the
probability that “a human says puppy”, and so on for the other two possibilities. So, if we use Pij to
denote “the probability that a member of species j gives response i” then our null hypothesis is that:

H0: All of the following are true:
P11 “ P12 (same probability of saying “puppy”),
P21 “ P22 (same probability of saying “flower”), and
P31 “ P32 (same probability of saying “data”).

And actually, since the null hypothesis is claiming that the true choice probabilities don’t depend on
the species of the person making the choice, we can let Pi refer to this probability: e.g., P1 is the true
probability of choosing the puppy.

Next, in much the same way that we did with the goodness of fit test, what we need to do is calculate
the expected frequencies. That is, for each of the observed counts Oij , we need to figure out what the
null hypothesis would tell us to expect. Let’s denote this expected frequency by Eij . This time, it’s a
little bit trickier. If there are a total of Cj people that belong to species j, and the true probability of
anyone (regardless of species) choosing option i is Pi, then the expected frequency is just:

Eij “ Cj ˆ Pi

Now, this is all very well and good, but we have a problem. Unlike the situation we had with the goodness
of fit test, the null hypothesis doesn’t actually specify a particular value for Pi. It’s something we have
to estimate (Chapter 10) from the data! Fortunately, this is pretty easy to do. If 28 out of 180 people
selected the flowers, then a natural estimate for the probability of choosing flowers is 28{180, which is
approximately .16. If we phrase this in mathematical terms, what we’re saying is that our estimate for
the probability of choosing option i is just the row total divided by the total sample size:

P̂i “
Ri

N

Therefore, our expected frequency can be written as the product (i.e. multiplication) of the row total
and the column total, divided by the total number of observations:8

Eij “
Ri ˆ Cj

N

Now that we’ve figured out how to calculate the expected frequencies, it’s straightforward to define a test
statistic; following the exact same strategy that we used in the goodness of fit test. In fact, it’s pretty
much the same statistic. For a contingency table with r rows and c columns, the equation that defines
our X2 statistic is

X2 “
r

ÿ

i“1

c
ÿ

j“1

pEij ´Oijq2
Eij

The only difference is that I have to include two summation sign (i.e.,
ř

) to indicate that we’re summing
over both rows and columns. As before, large values of X2 indicate that the null hypothesis provides a

7A technical note. The way I’ve described the test pretends that the column totals are fixed (i.e., the researcher intended
to survey 87 robots and 93 humans) and the row totals are random (i.e., it just turned out that 28 people chose the puppy).
To use the terminology from my mathematical statistics textbook (Hogg, McKean, & Craig, 2005) I should technically refer
to this situation as a chi-square test of homogeneity; and reserve the term chi-square test of independence for the situation
where both the row and column totals are random outcomes of the experiment. In the initial drafts of this book that’s
exactly what I did. However, it turns out that these two tests are identical; and so I’ve collapsed them together.

8Technically, Eij here is an estimate, so I should probably write it Êij . But since no-one else does, I won’t either.
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poor description of the data, whereas small values of X2 suggest that it does a good job of accounting
for the data. Therefore, just like last time, we want to reject the null hypothesis if X2 is too large.

Not surprisingly, this statistic is χ2 distributed. All we need to do is figure out how many degrees
of freedom are involved, which actually isn’t too hard. As I mentioned before, you can (usually) think
of the degrees of freedom as being equal to the number of data points that you’re analysing, minus the
number of constraints. A contingency table with r rows and c columns contains a total of rˆ c observed
frequencies, so that’s the total number of observations. What about the constraints? Here, it’s slightly
trickier. The answer is always the same

df “ pr ´ 1qpc´ 1q

but the explanation for why the degrees of freedom takes this value is different depending on the experi-
mental design. For the sake of argument, let’s suppose that we had honestly intended to survey exactly
87 robots and 93 humans (column totals fixed by the experimenter), but left the row totals free to vary
(row totals are random variables). Let’s think about the constraints that apply here. Well, since we
deliberately fixed the column totals by Act of Experimenter, we have c constraints right there. But,
there’s actually more to it than that. Remember how our null hypothesis had some free parameters (i.e.,
we had to estimate the Pi values)? Those matter too. I won’t explain why in this book, but every free
parameter in the null hypothesis is rather like an additional constraint. So, how many of those are there?
Well, since these probabilities have to sum to 1, there’s only r´1 of these. So our total degrees of freedom
is:

df “ (number of observations)´ (number of constraints)
“ prcq ´ pc` pr ´ 1qq
“ rc´ c´ r ` 1
“ pr ´ 1qpc´ 1q

Alternatively, suppose that the only thing that the experimenter fixed was the total sample size N . That
is, we quizzed the first 180 people that we saw, and it just turned out that 87 were robots and 93 were
humans. This time around our reasoning would be slightly different, but would still lead is to the same
answer. Our null hypothesis still has r´ 1 free parameters corresponding to the choice probabilities, but
it now also has c ´ 1 free parameters corresponding to the species probabilities, because we’d also have
to estimate the probability that a randomly sampled person turns out to be a robot.9 Finally, since we
did actually fix the total number of observations N , that’s one more constraint. So now we have, rc
observations, and pc´ 1q ` pr ´ 1q ` 1 constraints. What does that give?

df “ (number of observations)´ (number of constraints)
“ rc´ ppc´ 1q ` pr ´ 1q ` 1q
“ rc´ c´ r ` 1
“ pr ´ 1qpc´ 1q

Amazing.

12.2.2 Doing the test in R

Okay, now that we know how the test works, let’s have a look at how it’s done in R. As tempting as
it is to lead you through the tedious calculations so that you’re forced to learn it the long way, I figure
there’s no point. I already showed you how to do it the long way for the goodness of fit test in the last
section, and since the test of independence isn’t conceptually any different, you won’t learn anything new
by doing it the long way. So instead, I’ll go straight to showing you the easy way. As always, R lets you
do it multiple ways. There’s the chisq.test() function, which I’ll talk about in Section 12.6, but first I

9A problem many of us worry about in real life.
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want to use the associationTest() function in the lsr package, which I think is easier on beginners. It
works in the exact same way as the xtabs() function. Recall that, in order to produce the contingency
table, we used this command:

> xtabs( formula = ~choice+species, data = chapek9 )

species

choice robot human

puppy 13 15

flower 30 13

data 44 65

The associationTest() function has exactly the same structure: it needs a formula that specifies which
variables you’re cross-tabulating, and the name of a data frame that contains those variables. So the
command is just this:

> associationTest( formula = ~choice+species, data = chapek9 )

Just like we did with the goodness of fit test, I’ll go through it line by line. The first two lines are, once
again, just reminding you what kind of test you ran and what variables were used:

Chi-square test of categorical association

Variables: choice, species

Next, it tells you what the null and alternative hypotheses are (and again, I want to remind you not to
get used to seeing these hypotheses written out so explicitly):

Hypotheses:

null: variables are independent of one another

alternative: some contingency exists between variables

Next, it shows you the observed contingency table that is being tested:

Observed contingency table:

species

choice robot human

puppy 13 15

flower 30 13

data 44 65

and it also shows you what the expected frequencies would be if the null hypothesis were true:

Expected contingency table under the null hypothesis:

species

choice robot human

puppy 13.5 14.5

flower 20.8 22.2

data 52.7 56.3

The next part describes the results of the hypothesis test itself:

Test results:

X-squared statistic: 10.722

degrees of freedom: 2

p-value: 0.005
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And finally, it reports a measure of effect size:

Other information:

estimated effect size (Cramer’s v): 0.244

You can ignore this bit for now. I’ll talk about it in just a moment.

This output gives us enough information to write up the result:

Pearson’s χ2 revealed a significant association between species and choice (χ2p2q “ 10.7, p ă
.01): robots appeared to be more likely to say that they prefer flowers, but the humans were
more likely to say they prefer data.

Notice that, once again, I provided a little bit of interpretation to help the human reader understand
what’s going on with the data. Later on in my discussion section, I’d provide a bit more context. To
illustrate the difference, here’s what I’d probably say later on:

The fact that humans appeared to have a stronger preference for raw data files than robots is
somewhat counterintuitive. However, in context it makes some sense: the civil authority on
Chapek 9 has an unfortunate tendency to kill and dissect humans when they are identified.
As such it seems most likely that the human participants did not respond honestly to the
question, so as to avoid potentially undesirable consequences. This should be considered to
be a substantial methodological weakness.

This could be classified as a rather extreme example of a reactivity effect, I suppose. Obviously, in this
case the problem is severe enough that the study is more or less worthless as a tool for understanding the
difference preferences among humans and robots. However, I hope this illustrates the difference between
getting a statistically significant result (our null hypothesis is rejected in favour of the alternative), and
finding something of scientific value (the data tell us nothing of interest about our research hypothesis
due to a big methodological flaw).

12.2.3 Postscript

I later found out the data were made up, and I’d been watching cartoons instead of doing work.

12.3

The continuity correction

Okay, time for a little bit of a digression. I’ve been lying to you a little bit so far. There’s a tiny change
that you need to make to your calculations whenever you only have 1 degree of freedom. It’s called the
“continuity correction”, or sometimes the Yates correction. Remember what I pointed out earlier: the
χ2 test is based on an approximation, specifically on the assumption that binomial distribution starts to
look like a normal distribution for large N . One problem with this is that it often doesn’t quite work,
especially when you’ve only got 1 degree of freedom (e.g., when you’re doing a test of independence on
a 2 ˆ 2 contingency table). The main reason for this is that the true sampling distribution for the X2

statistic is actually discrete (because you’re dealing with categorical data!) but the χ2 distribution is
continuous. This can introduce systematic problems. Specifically, when N is small and when df “ 1, the
goodness of fit statistic tends to be “too big”, meaning that you actually have a bigger α value than you
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think (or, equivalently, the p values are a bit too small). Yates (1934) suggested a simple fix, in which
you redefine the goodness of fit statistic as:

X2 “
ÿ

i

p|Ei ´Oi| ´ 0.5q2
Ei

(12.1)

Basically, he just subtracts off 0.5 everywhere. As far as I can tell from reading Yates’ paper, the correction
is basically a hack. It’s not derived from any principled theory: rather, it’s based on an examination of
the behaviour of the test, and observing that the corrected version seems to work better. I feel obliged
to explain this because you will sometimes see R (or any other software for that matter) introduce this
correction, so it’s kind of useful to know what they’re about. You’ll know when it happens, because the
R output will explicitly say that it has used a “continuity correction” or “Yates’ correction”.

12.4

Effect size

As we discussed earlier (Section 11.8), it’s becoming commonplace to ask researchers to report some
measure of effect size. So, let’s suppose that you’ve run your chi-square test, which turns out to be
significant. So you now know that there is some association between your variables (independence test)
or some deviation from the specified probabilities (goodness of fit test). Now you want to report a measure
of effect size. That is, given that there is an association/deviation, how strong is it?

There are several different measures that you can choose to report, and several different tools that
you can use to calculate them. I won’t discuss all of them,10 but will instead focus on the most commonly
reported measures of effect size.

By default, the two measures that people tend to report most frequently are the φ statistic and the
somewhat superior version, known as Cramér’s V . Mathematically, they’re very simple. To calculate the
φ statistic, you just divide your X2 value by the sample size, and take the square root:

φ “
c

X2

N

The idea here is that the φ statistic is supposed to range between 0 (no at all association) and 1 (perfect
association), but it doesn’t always do this when your contingency table is bigger than 2 ˆ 2, which is a
total pain. For bigger tables it’s actually possible to obtain φ ą 1, which is pretty unsatisfactory. So,
to correct for this, people usually prefer to report the V statistic proposed by Cramér (1946). It’s a
pretty simple adjustment to φ. If you’ve got a contingency table with r rows and c columns, then define
k “ minpr, cq to be the smaller of the two values. If so, then Cramér’s V statistic is

V “
d

X2

Npk ´ 1q

And you’re done. This seems to be a fairly popular measure, presumably because it’s easy to calculate,
and it gives answers that aren’t completely silly: you know that V really does range from 0 (no at all
association) to 1 (perfect association).

10Though I do feel that it’s worth mentioning the assocstats() function in the vcd package. If you install and load the vcd

package, then a command like assocstats( chapekFrequencies ) will run the χ2 test as well as the likelihood ratio test (not
discussed here); and then report three different measures of effect size: φ2, Cramér’s V , and the contingency coefficient (not
discussed here)

- 356 -



Calculating V or φ is obviously pretty straightforward. So much so that the core packages in R don’t
seem to have functions to do it, though other packages do. To save you the time and effort of finding
one, I’ve included one in the lsr package, called cramersV(). It takes a contingency table as input, and
prints out the measure of effect size:

> cramersV( chapekFrequencies )

[1] 0.244058

However, if you’re using the associationTest() function to do your analysis, then you won’t actually
need to use this at all, because it reports the Cramér’s V statistic as part of the output.

12.5

Assumptions of the test(s)

All statistical tests make assumptions, and it’s usually a good idea to check that those assumptions are
met. For the chi-square tests discussed so far in this chapter, the assumptions are:

• Expected frequencies are sufficiently large. Remember how in the previous section we saw that the
χ2 sampling distribution emerges because the binomial distribution is pretty similar to a normal
distribution? Well, like we discussed in Chapter 9 this is only true when the number of observations
is sufficiently large. What that means in practice is that all of the expected frequencies need to be
reasonably big. How big is reasonably big? Opinions differ, but the default assumption seems to be
that you generally would like to see all your expected frequencies larger than about 5, though for
larger tables you would probably be okay if at least 80% of the the expected frequencies are above 5
and none of them are below 1. However, from what I’ve been able to discover (e.g., Cochran, 1954),
these seem to have been proposed as rough guidelines, not hard and fast rules; and they seem to
be somewhat conservative (Larntz, 1978).

• Data are independent of one another. One somewhat hidden assumption of the chi-square test is
that you have to genuinely believe that the observations are independent. Here’s what I mean.
Suppose I’m interested in proportion of babies born at a particular hospital that are boys. I walk
around the maternity wards, and observe 20 girls and only 10 boys. Seems like a pretty convincing
difference, right? But later on, it turns out that I’d actually walked into the same ward 10 times,
and in fact I’d only seen 2 girls and 1 boy. Not as convincing, is it? My original 30 observations
were massively non-independent... and were only in fact equivalent to 3 independent observations.
Obviously this is an extreme (and extremely silly) example, but it illustrates the basic issue. Non-
independence “stuffs things up”. Sometimes it causes you to falsely reject the null, as the silly
hospital example illustrats, but it can go the other way too. To give a slightly less stupid example,
let’s consider what would happen if I’d done the cards experiment slightly differently: instead of
asking 200 people to try to imagine sampling one card at random, suppose I asked 50 people to
select 4 cards. One possibility would be that everyone selects one heart, one club, one diamond and
one spade (in keeping with the “representativeness heuristic”; Tversky & Kahneman 1974). This is
highly non-random behaviour from people, but in this case, I would get an observed frequency of 50
four all four suits. For this example, the fact that the observations are non-independent (because
the four cards that you pick will be related to each other) actually leads to the opposite effect...
falsely retaining the null.

If you happen to find yourself in a situation where independence is violated, it may be possible to use the
McNemar test (which we’ll discuss) or the Cochran test (which we won’t). Similarly, if your expected
cell counts are too small, check out the Fisher exact test. It is to these topics that we now turn.
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12.6

The most typical way to do chi-square tests in R

When discussing how to do a chi-square goodness of fit test (Section 12.1.7) and the chi-square test
of independence (Section 12.2.2), I introduced you to two separate functions in the lsr package. We
ran our goodness of fit tests using the goodnessOfFitTest() function, and our tests of independence
(or association) using the associationTest() function. And both of those functions produced quite
detailed output, showing you the relevant descriptive statistics, printing out explicit reminders of what
the hypotheses are, and so on. When you’re first starting out, it can be very handy to be given this sort
of guidance. However, once you start becoming a bit more proficient in statistics and in R it can start to
get very tiresome. A real statistician hardly needs to be told what the null and alternative hypotheses
for a chi-square test are, and if an advanced R user wants the descriptive statistics to be printed out,
they know how to produce them!

For this reason, the basic chisq.test() function in R is a lot more terse in its output, and because the
mathematics that underpin the goodness of fit test and the test of independence is basically the same in
each case, it can run either test depending on what kind of input it is given. First, here’s the goodness
of fit test. Suppose you have the frequency table observed that we used earlier,

> observed

clubs diamonds hearts spades

35 51 64 50

If you want to run the goodness of fit test against the hypothesis that all four suits are equally likely to
appear, then all you need to do is input this frequenct table to the chisq.test() function:

> chisq.test( x = observed )

Chi-squared test for given probabilities

data: observed

X-squared = 8.44, df = 3, p-value = 0.03774

Notice that the output is very compressed in comparison to the goodnessOfFitTest() function. It doesn’t
bother to give you any descriptive statistics, it doesn’t tell you what null hypothesis is being tested, and so
on. And as long as you already understand the test, that’s not a problem. Once you start getting familiar
with R and with statistics, you’ll probably find that you prefer this simple output rather than the rather
lengthy output that goodnessOfFitTest() produces. Anyway, if you want to change the null hypothesis,
it’s exactly the same as before, just specify the probabilities using the p argument. For instance:

> chisq.test( x = observed, p = c(.2, .3, .3, .2) )

Chi-squared test for given probabilities

data: observed

X-squared = 4.7417, df = 3, p-value = 0.1917

Again, these are the same numbers that the goodnessOfFitTest() function reports at the end of the
output. It just hasn’t included any of the other details.

What about a test of independence? As it turns out, the chisq.test() function is pretty clever.11 If
you input a cross-tabulation rather than a simple frequency table, it realises that you’re asking for a test

11Not really.
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of independence and not a goodness of fit test. Recall that we already have this cross-tabulation stored
as the chapekFrequencies variable:

> chapekFrequencies

species

choice robot human

puppy 13 15

flower 30 13

data 44 65

To get the test of independence, all we have to do is feed this frequency table into the chisq.test()

function like so:

> chisq.test( chapekFrequencies )

Pearson’s Chi-squared test

data: chapekFrequencies

X-squared = 10.7216, df = 2, p-value = 0.004697

Again, the numbers are the same as last time, it’s just that the output is very terse and doesn’t really
explain what’s going on in the rather tedious way that associationTest() does. As before, my intuition
is that when you’re just getting started it’s easier to use something like associationTest() because it
shows you more detail about what’s going on, but later on you’ll probably find that chisq.test() is more
convenient.

12.7

The Fisher exact test

What should you do if your cell counts are too small, but you’d still like to test the null hypothesis that
the two variables are independent? One answer would be “collect more data”, but that’s far too glib:
there are a lot of situations in which it would be either infeasible or unethical do that. If so, statisticians
have a kind of moral obligation to provide scientists with better tests. In this instance, Fisher (1922)
kindly provided the right answer to the question. To illustrate the basic idea, let’s suppose that we’re
analysing data from a field experiment, looking at the emotional status of people who have been accused
of witchcraft; some of whom are currently being burned at the stake.12 Unfortunately for the scientist
(but rather fortunately for the general populace), it’s actually quite hard to find people in the process of
being set on fire, so the cell counts are awfully small in some cases. The salem.Rdata file illustrates the
point:

> load("salem.Rdata")

> who(TRUE)

-- Name -- -- Class -- -- Size --

trial data.frame 16 x 2

$happy logical 16

$on.fire logical 16

> salem.tabs <- table( trial )

12This example is based on a joke article published in the Journal of Irreproducible Results.
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> print( salem.tabs )

on.fire

happy FALSE TRUE

FALSE 3 3

TRUE 10 0

Looking at this data, you’d be hard pressed not to suspect that people not on fire are more likely to be
happy than people on fire. However, the chi-square test makes this very hard to test because of the small
sample size. If I try to do so, R gives me a warning message:

> chisq.test( salem.tabs )

Pearson’s Chi-squared test with Yates’ continuity correction

data: salem.tabs

X-squared = 3.3094, df = 1, p-value = 0.06888

Warning message:

In chisq.test(salem.tabs) : Chi-squared approximation may be incorrect

Speaking as someone who doesn’t want to be set on fire, I’d really like to be able to get a better answer
than this. This is where Fisher’s exact test (Fisher, 1922) comes in very handy.

The Fisher exact test works somewhat differently to the chi-square test (or in fact any of the other
hypothesis tests that I talk about in this book) insofar as it doesn’t have a test statistic; it calculates the
p-value “directly”. I’ll explain the basics of how the test works for a 2ˆ 2 contingency table, though the
test works fine for larger tables. As before, let’s have some notation:

Happy Sad Total
Set on fire O11 O12 R1

Not set on fire O21 O22 R2

Total C1 C2 N

In order to construct the test Fisher treats both the row and column totals (R1, R2, C1 and C2) are
known, fixed quantities; and then calculates the probability that we would have obtained the observed
frequencies that we did (O11, O12, O21 and O22) given those totals. In the notation that we developed
in Chapter 9 this is written:

P pO11, O12, O21, O22 | R1, R2, C1, C2q
and as you might imagine, it’s a slightly tricky exercise to figure out what this probability is, but it turns
out that this probability is described by a distribution known as the hypergeometric distribution 13. Now
that we know this, what we have to do to calculate our p-value is calculate the probability of observing
this particular table or a table that is “more extreme”.14 Back in the 1920s, computing this sum was
daunting even in the simplest of situations, but these days it’s pretty easy as long as the tables aren’t
too big and the sample size isn’t too large. The conceptually tricky issue is to figure out what it means
to say that one contingency table is more “extreme” than another. The easiest solution is to say that the
table with the lowest probability is the most extreme. This then gives us the p-value.

The implementation of the test in R is via the fisher.test() function. Here’s how it is used:

> fisher.test( salem.tabs )

13The R functions for this distribution are dhyper(), phyper(), qhyper() and rhyper(), though you don’t need them for this
book, and I haven’t given you enough information to use these to perform the Fisher exact test the long way.

14Not surprisingly, the Fisher exact test is motivated by Fisher’s interpretation of a p-value, not Neyman’s!
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Fisher’s Exact Test for Count Data

data: salem.tabs

p-value = 0.03571

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.000000 1.202913

sample estimates:

odds ratio

0

This is a bit more output than we got from some of our earlier tests. The main thing we’re interested in
here is the p-value, which in this case is small enough (p “ .036) to justify rejecting the null hypothesis
that people on fire are just as happy as people not on fire.

12.8

The McNemar test

Suppose you’ve been hired to work for the Australian Generic Political Party (AGPP), and part of your
job is to find out how effective the AGPP political advertisements are. So, what you do, is you put
together a sample of N “ 100 people, and ask them to watch the AGPP ads. Before they see anything,
you ask them if they intend to vote for the AGPP; and then after showing the ads, you ask them again,
to see if anyone has changed their minds. Obviously, if you’re any good at your job, you’d also do a whole
lot of other things too, but let’s consider just this one simple experiment. One way to describe your data
is via the following contingency table:

Before After Total
Yes 30 10 40
No 70 90 160
Total 100 100 200

At first pass, you might think that this situation lends itself to the Pearson χ2 test of independence
(as per Section 12.2). However, a little bit of thought reveals that we’ve got a problem: we have 100
participants, but 200 observations. This is because each person has provided us with an answer in both
the before column and the after column. What this means is that the 200 observations aren’t independent
of each other: if voter A says “yes” the first time and voter B says “no”, then you’d expect that voter
A is more likely to say “yes” the second time than voter B! The consequence of this is that the usual χ2

test won’t give trustworthy answers due to the violation of the independence assumption. Now, if this
were a really uncommon situation, I wouldn’t be bothering to waste your time talking about it. But it’s
not uncommon at all: this is a standard repeated measures design, and none of the tests we’ve considered
so far can handle it. Eek.

The solution to the problem was published by McNemar (1947). The trick is to start by tabulating
your data in a slightly different way:

Before: Yes Before: No Total
After: Yes 5 5 10
After: No 25 65 90
Total 30 70 100
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This is exactly the same data, but it’s been rewritten so that each of our 100 participants appears in
only one cell. Because we’ve written our data this way, the independence assumption is now satisfied,
and this is a contingency table that we can use to construct an X2 goodness of fit statistic. However, as
we’ll see, we need to do it in a slightly nonstandard way. To see what’s going on, it helps to label the
entries in our table a little differently:

Before: Yes Before: No Total
After: Yes a b a` b

After: No c d c` d

Total a` c b` d n

Next, let’s think about what our null hypothesis is: it’s that the “before” test and the “after” test have
the same proportion of people saying “Yes, I will vote for AGPP”. Because of the way that we have
rewritten the data, it means that we’re now testing the hypothesis that the row totals and column totals
come from the same distribution. Thus, the null hypothesis in McNemar’s test is that we have “marginal
homogeneity”. That is, the row totals and column totals have the same distribution: Pa`Pb “ Pa`Pc,
and similarly that Pc`Pd “ Pb`Pd. Notice that this means that the null hypothesis actually simplifies to
Pb “ Pc. In other words, as far as the McNemar test is concerned, it’s only the off-diagonal entries in this
table (i.e., b and c) that matter! After noticing this, the McNemar test of marginal homogeneity
is no different to a usual χ2 test. After applying the Yates correction, our test statistic becomes:

X2 “ p|b´ c| ´ 0.5q2
b` c

or, to revert to the notation that we used earlier in this chapter:

X2 “ p|O12 ´O21| ´ 0.5q2
O12 `O21

and this statistic has an (approximately) χ2 distribution with df “ 1. However, remember that – just
like the other χ2 tests – it’s only an approximation, so you need to have reasonably large expected cell
counts for it to work.

12.8.1 Doing the McNemar test in R

Now that you know what the McNemar test is all about, lets actually run one. The agpp.Rdata file
contains the raw data that I discussed previously, so let’s have a look at it:

> load("agpp.Rdata")

> who(TRUE)

-- Name -- -- Class -- -- Size --

agpp data.frame 100 x 3

$id factor 100

$response_before factor 100

$response_after factor 100

The agpp data frame contains three variables, an id variable that labels each participant in the data set
(we’ll see why that’s useful in a moment), a response_before variable that records the person’s answer
when they were asked the question the first time, and a response_after variable that shows the answer
that they gave when asked the same question a second time. As usual, here’s the first 6 entries:

> head(agpp)

id response_before response_after
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1 subj.1 no yes

2 subj.2 yes no

3 subj.3 yes no

4 subj.4 yes no

5 subj.5 no no

6 subj.6 no no

and here’s a summary:

> summary(agpp)

id response_before response_after

subj.1 : 1 no :70 no :90

subj.10 : 1 yes:30 yes:10

subj.100: 1

subj.11 : 1

subj.12 : 1

subj.13 : 1

(Other) :94

Notice that each participant appears only once in this data frame. When we tabulate this data frame
using xtabs(), we get the appropriate table:

> right.table <- xtabs( ~ response_before + response_after, data = agpp)

> print( right.table )

response_after

response_before no yes

no 65 5

yes 25 5

and from there, we can run the McNemar test by using the mcnemar.test() function:

> mcnemar.test( right.table )

McNemar’s Chi-squared test with continuity correction

data: right.table

McNemar’s chi-squared = 12.0333, df = 1, p-value = 0.0005226

And we’re done. We’ve just run a McNemar’s test to determine if people were just as likely to vote AGPP
after the ads as they were before hand. The test was significant (χ2p1q “ 12.04, p ă .001), suggesting
that they were not. And in fact, it looks like the ads had a negative effect: people were less likely to
vote AGPP after seeing the ads. Which makes a lot of sense when you consider the quality of a typical
political advertisement.

12.9

What’s the difference between McNemar and independence?

Let’s go all the way back to the beginning of the chapter, and look at the cards data set again. If you
recall, the actual experimental design that I described involved people making two choices. Because we
have information about the first choice and the second choice that everyone made, we can construct the
following contingency table that cross-tabulates the first choice against the second choice.
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> cardChoices <- xtabs( ~ choice_1 + choice_2, data = cards )

> cardChoices

choice_2

choice_1 clubs diamonds hearts spades

clubs 10 9 10 6

diamonds 20 4 13 14

hearts 20 18 3 23

spades 18 13 15 4

Suppose I wanted to know whether the choice you make the second time is dependent on the choice you
made the first time. This is where a test of independence is useful, and what we’re trying to do is see if
there’s some relationship between the rows and columns of this table. Here’s the result:

> chisq.test( cardChoices )

Pearson’s Chi-squared test

data: cardChoices

X-squared = 29.2373, df = 9, p-value = 0.0005909

Alternatively, suppose I wanted to know if on average, the frequencies of suit choices were different
the second time than the first time. In that situation, what I’m really trying to see if the row totals in
cardChoices (i.e., the frequencies for choice_1) are different from the column totals (i.e., the frequencies
for choice_2). That’s when you use the McNemar test:

> mcnemar.test( cardChoices )

McNemar’s Chi-squared test

data: cardChoices

McNemar’s chi-squared = 16.0334, df = 6, p-value = 0.01358

Notice that the results are different! These aren’t the same test.

12.10

Summary

12.10.1 Key concepts

• The chi-square goodness of fit test is used when you have a table of observed frequencies of different
categories; and the null hypothesis gives you a set of “known” probabilities to compare them to.
You can either use the goodnessOfFitTest() function in the lsr package to run this test, or the
chisq.test() function.

• The chi-square test of independence is used when you have a contingency table (cross-tabulation) of
two categorical variables. The null hypothesis is that there is no relationship/association between
the variables. You can either use the associationTest() function in the lsr package, or you can
use chisq.test().

• Effect size for a contingency table can be measured in several ways. In particular we noted the
Cramér’s V statistic, which can be calculated using cramersV(). This is also part of the output
produced by associationTest().

- 364 -



• Both versions of the Pearson test rely on two assumptions: that the expected frequencies are
sufficiently large, and that the observations are independent. The Fisher exact test can be used
when the expected frequencies are small, fisher.test(x = contingency.table). The McNemar test
can be used for the some kinds of violations of independence, mcnemar.test(x = contingency.table).

12.10.2 Where to next

If you’re interested in learning more about categorical data analysis, a good first choice would be
Agresti (1996) which, as the title suggests, provides an Introduction to Categorical Data Analysis. If the
introductory book isn’t enough for you (or can’t solve the problem you’re working on) you could consider
Agresti (2002), Categorical Data Analysis. The latter is a more advanced text, so it’s probably not wise
to jump straight from this book to that one.
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13. Comparing two means

In the previous chapter we covered the situation when your outcome variable is nominal scale and your
predictor variable1 is also nominal scale. Lots of real world situations have that character, and so you’ll
find that chi-square tests in particular are quite widely used. However, you’re much more likely to find
yourself in a situation where your outcome variable is interval scale or higher, and what you’re interested
in is whether the average value of the outcome variable is higher in one group or another. For instance, a
psychologist might want to know if anxiety levels are higher among parents than non-parents, or if working
memory capacity is reduced by listening to music (relative to not listening to music). In a medical context,
we might want to know if a new drug increases or decreases blood pressure. An agricultural scientist
might want to know whether adding phosphorus to Australian native plants will kill them.2 In all these
situations, our outcome variable is a fairly continuous, interval or ratio scale variable; and our predictor
is a binary “grouping” variable. In other words, we want to compare the means of the two groups.

The standard answer to the problem of comparing means is to use a t-test, of which there are several
varieties depending on exactly what question you want to solve. As a consequence, the majority of this
chapter focuses on different types of t-test: one sample t-tests are discussed in Section 13.2, independent
samples t-tests are discussed in Sections 13.3 and 13.4, and paired samples t-tests are discussed in Sec-
tion 13.5. After that, we’ll talk a bit about Cohen’s d, which is the standard measure of effect size for
a t-test (Section 13.8). The later sections of the chapter focus on the assumptions of the t-tests, and
possible remedies if they are violated. However, before discussing any of these useful things, we’ll start
with a discussion of the z-test.

13.1

The one-sample z-test

In this section I’ll describe one of the most useless tests in all of statistics: the z-test. Seriously – this
test is almost never used in real life. Its only real purpose is that, when teaching statistics, it’s a very
convenient stepping stone along the way towards the t-test, which is probably the most (over)used tool
in all statistics.

1We won’t cover multiple predictors until Chapter 15
2Informal experimentation in my garden suggests that yes, it does. Australian natives are adapted to low phosphorus

levels relative to everywhere else on Earth, apparently, so if you’ve bought a house with a bunch of exotics and you want to
plant natives, don’t follow my example: keep them separate. Nutrients to European plants are poison to Australian ones.
There’s probably a joke in that, but I can’t figure out what it is.
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13.1.1 The inference problem that the test addresses

To introduce the idea behind the z-test, let’s use a simple example. A friend of mine, Dr Zeppo, grades
his introductory statistics class on a curve. Let’s suppose that the average grade in his class is 67.5, and
the standard deviation is 9.5. Of his many hundreds of students, it turns out that 20 of them also take
psychology classes. Out of curiosity, I find myself wondering: do the psychology students tend to get the
same grades as everyone else (i.e., mean 67.5) or do they tend to score higher or lower? He emails me
the zeppo.Rdata file, which I use to pull up the grades of those students,

> load( "zeppo.Rdata" )

> print( grades )

[1] 50 60 60 64 66 66 67 69 70 74 76 76 77 79 79 79 81 82 82 89

and calculate the mean:

> mean( grades )

[1] 72.3

Hm. It might be that the psychology students are scoring a bit higher than normal: that sample mean of
X̄ “ 72.3 is a fair bit higher than the hypothesised population mean of µ “ 67.5, but on the other hand,
a sample size of N “ 20 isn’t all that big. Maybe it’s pure chance.

To answer the question, it helps to be able to write down what it is that I think I know. Firstly, I
know that the sample mean is X̄ “ 72.3. If I’m willing to assume that the psychology students have the
same standard deviation as the rest of the class then I can say that the population standard deviation is
σ “ 9.5. I’ll also assume that since Dr Zeppo is grading to a curve, the psychology student grades are
normally distributed.

Next, it helps to be clear about what I want to learn from the data. In this case, my research hypothesis
relates to the population mean µ for the psychology student grades, which is unknown. Specifically, I
want to know if µ “ 67.5 or not. Given that this is what I know, can we devise a hypothesis test to solve
our problem? The data, along with the hypothesised distribution from which they are thought to arise,
are shown in Figure 13.1. Not entirely obvious what the right answer is, is it? For this, we are going to
need some statistics.

13.1.2 Constructing the hypothesis test

The first step in constructing a hypothesis test is to be clear about what the null and alternative
hypotheses are. This isn’t too hard to do. Our null hypothesis, H0, is that the true population mean µ

for psychology student grades is 67.5%; and our alternative hypothesis is that the population mean isn’t
67.5%. If we write this in mathematical notation, these hypotheses become,

H0 : µ “ 67.5
H1 : µ ‰ 67.5

though to be honest this notation doesn’t add much to our understanding of the problem, it’s just a
compact way of writing down what we’re trying to learn from the data. The null hypotheses H0 and the
alternative hypothesis H1 for our test are both illustrated in Figure 13.2. In addition to providing us with
these hypotheses, the scenario outlined above provides us with a fair amount of background knowledge
that might be useful. Specifically, there are two special pieces of information that we can add:

1. The psychology grades are normally distributed.

- 368 -



Grades

40 50 60 70 80 90

Figure 13.1: The theoretical distribution (solid line) from which the psychology student grades (grey
bars) are supposed to have been generated.
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2. The true standard deviation of these scores σ is known to be 9.5.

For the moment, we’ll act as if these are absolutely trustworthy facts. In real life, this kind of absolutely
trustworthy background knowledge doesn’t exist, and so if we want to rely on these facts we’ll just have
make the assumption that these things are true. However, since these assumptions may or may not be
warranted, we might need to check them. For now though, we’ll keep things simple.

The next step is to figure out what we would be a good choice for a diagnostic test statistic; something
that would help us discriminate between H0 and H1. Given that the hypotheses all refer to the population
mean µ, you’d feel pretty confident that the sample mean X̄ would be a pretty useful place to start. What
we could do, is look at the difference between the sample mean X̄ and the value that the null hypothesis
predicts for the population mean. In our example, that would mean we calculate X̄´67.5. More generally,
if we let µ0 refer to the value that the null hypothesis claims is our population mean, then we’d want to
calculate

X̄ ´ µ0

If this quantity equals or is very close to 0, things are looking good for the null hypothesis. If this quantity
is a long way away from 0, then it’s looking less likely that the null hypothesis is worth retaining. But
how far away from zero should it be for us to reject H0?

To figure that out, we need to be a bit more sneaky, and we’ll need to rely on those two pieces of
background knowledge that I wrote down previously, namely that the raw data are normally distributed,
and we know the value of the population standard deviation σ. If the null hypothesis is actually true, and
the true mean is µ0, then these facts together mean that we know the complete population distribution
of the data: a normal distribution with mean µ0 and standard deviation σ. Adopting the notation from
Section 9.4, a statistician might write this as:

X „ Normalpµ0, σ
2q
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µ = µ0

σ = σ0

null hypothesis

value of X

µ ≠ µ0

σ = σ0

alternative hypothesis

value of X

Figure 13.2: Graphical illustration of the null and alternative hypotheses assumed by the one sample z-
test (the two sided version, that is). The null and alternative hypotheses both assume that the population
distribution is normal, and additionally assumes that the population standard deviation is known (fixed
at some value σ0). The null hypothesis (left) is that the population mean µ is equal to some specified
value µ0. The alternative hypothesis is that the population mean differs from this value, µ ‰ µ0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Okay, if that’s true, then what can we say about the distribution of X̄? Well, as we discussed earlier (see
Section 10.4), the sampling distribution of the mean X̄ is also normal, and has mean µ. But the standard
deviation of this sampling distribution sepX̄q, which is called the standard error of the mean, is

sepX̄q “ σ?
N

In other words, if the null hypothesis is true then the sampling distribution of the mean can be written
as follows:

X̄ „ Normalpµ0, sepX̄qq
Now comes the trick. What we can do is convert the sample mean X̄ into a standard score (Section 5.6).
This is conventionally written as z, but for now I’m going to refer to it as zX̄ . (The reason for using this
expanded notation is to help you remember that we’re calculating standardised version of a sample mean,
not a standardised version of a single observation, which is what a z-score usually refers to). When we
do so, the z-score for our sample mean is

zX̄ “
X̄ ´ µ0

sepX̄q

or, equivalently

zX̄ “
X̄ ´ µ0

σ{
?
N

This z-score is our test statistic. The nice thing about using this as our test statistic is that like all
z-scores, it has a standard normal distribution:

zX̄ „ Normalp0, 1q

(again, see Section 5.6 if you’ve forgotten why this is true). In other words, regardless of what scale the
original data are on, the z-statistic iteself always has the same interpretation: it’s equal to the number
of standard errors that separate the observed sample mean X̄ from the population mean µ0 predicted by
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Figure 13.3: Rejection regions for the two-sided z-test (panel a) and the one-sided z-test (panel b).
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the null hypothesis. Better yet, regardless of what the population parameters for the raw scores actually
are, the 5% critical regions for z-test are always the same, as illustrated in Figure 13.3. And what this
meant, way back in the days where people did all their statistics by hand, is that someone could publish
a table like this:

critical z value
desired α level two-sided test one-sided test

.1 1.644854 1.281552
.05 1.959964 1.644854
.01 2.575829 2.326348
.001 3.290527 3.090232

which in turn meant that researchers could calculate their z-statistic by hand, and then look up the
critical value in a text book. That was an incredibly handy thing to be able to do back then, but it’s
kind of unnecessary these days, since it’s trivially easy to do it with software like R.

13.1.3 A worked example using R

Now, as I mentioned earlier, the z-test is almost never used in practice. It’s so rarely used in real life
that the basic installation of R doesn’t have a built in function for it. However, the test is so incredibly
simple that it’s really easy to do one manually. Let’s go back to the data from Dr Zeppo’s class. Having
loaded the grades data, the first thing I need to do is calculate the sample mean:

> sample.mean <- mean( grades )

> print( sample.mean )

[1] 72.3

Then, I create variables corresponding to known population standard deviation (σ “ 9.5), and the value
of the population mean that the null hypothesis specifies (µ0 “ 67.5):

> mu.null <- 67.5

> sd.true <- 9.5
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Let’s also create a variable for the sample size. We could count up the number of observations ourselves,
and type N <- 20 at the command prompt, but counting is tedious and repetitive. Let’s get R to do the
tedious repetitive bit by using the length() function, which tells us how many elements there are in a
vector:

> N <- length( grades )

> print( N )

[1] 20

Next, let’s calculate the (true) standard error of the mean:

> sem.true <- sd.true / sqrt(N)

> print(sem.true)

[1] 2.124265

And finally, we calculate our z-score:

> z.score <- (sample.mean - mu.null) / sem.true

> print( z.score )

[1] 2.259606

At this point, we would traditionally look up the value 2.26 in our table of critical values. Our original
hypothesis was two-sided (we didn’t really have any theory about whether psych students would be better
or worse at statistics than other students) so our hypothesis test is two-sided (or two-tailed) also. Looking
at the little table that I showed earlier, we can see that 2.26 is bigger than the critical value of 1.96 that
would be required to be significant at α “ .05, but smaller than the value of 2.58 that would be required
to be significant at a level of α “ .01. Therefore, we can conclude that we have a significant effect, which
we might write up by saying something like this:

With a mean grade of 73.2 in the sample of psychology students, and assuming a true popula-
tion standard deviation of 9.5, we can conclude that the psychology students have significantly
different statistics scores to the class average (z “ 2.26, N “ 20, p ă .05).

However, what if want an exact p-value? Well, back in the day, the tables of critical values were huge,
and so you could look up your actual z-value, and find the smallest value of α for which your data would
be significant (which, as discussed earlier, is the very definition of a p-value). However, looking things up
in books is tedious, and typing things into computers is awesome. So let’s do it using R instead. Now,
notice that the α level of a z-test (or any other test, for that matter) defines the total area “under the
curve” for the critical region, right? That is, if we set α “ .05 for a two-sided test, then the critical region
is set up such that the area under the curve for the critical region is .05. And, for the z-test, the critical
value of 1.96 is chosen that way because the area in the lower tail (i.e., below ´1.96) is exactly .025 and
the area under the upper tail (i.e., above 1.96) is exactly .025. So, since our observed z-statistic is 2.26,
why not calculate the area under the curve below ´2.26 or above 2.26? In R we can calculate this using
the pnorm() function. For the upper tail:

> upper.area <- pnorm( q = z.score, lower.tail = FALSE )

> print( upper.area )

[1] 0.01192287

The lower.tail = FALSE is me telling R to calculate the area under the curve from 2.26 and upwards. If
I’d told it that lower.tail = TRUE, then R would calculate the area from 2.26 and below, and it would
give me an answer 0.9880771. Alternatively, to calculate the area from ´2.26 and below, we get

- 372 -



> lower.area <- pnorm( q = -z.score, lower.tail = TRUE )

> print( lower.area )

[1] 0.01192287

Thus we get our p-value:

> p.value <- lower.area + upper.area

> print( p.value )

[1] 0.02384574

13.1.4 Assumptions of the z-test

As I’ve said before, all statistical tests make assumptions. Some tests make reasonable assumptions,
while other tests do not. The test I’ve just described – the one sample z-test – makes three basic
assumptions. These are:

• Normality. As usually described, the z-test assumes that the true population distribution is normal.3

is often pretty reasonable, and not only that, it’s an assumption that we can check if we feel worried
about it (see Section 13.9).

• Independence. The second assumption of the test is that the observations in your data set are
not correlated with each other, or related to each other in some funny way. This isn’t as easy to
check statistically: it relies a bit on good experimetal design. An obvious (and stupid) example of
something that violates this assumption is a data set where you “copy” the same observation over
and over again in your data file: so you end up with a massive “sample size”, consisting of only one
genuine observation. More realistically, you have to ask yourself if it’s really plausible to imagine
that each observation is a completely random sample from the population that you’re interested in.
In practice, this assumption is never met; but we try our best to design studies that minimise the
problems of correlated data.

• Known standard deviation. The third assumption of the z-test is that the true standard deviation
of the population is known to the researcher. This is just stupid. In no real world data analysis
problem do you know the standard deviation σ of some population, but are completely ignorant
about the mean µ. In other words, this assumption is always wrong.

In view of the stupidity of assuming that σ is known, let’s see if we can live without it. This takes us out
of the dreary domain of the z-test, and into the magical kingdom of the t-test, with unicorns and fairies
and leprechauns, and um. . .

13.2

The one-sample t-test

After some thought, I decided that it might not be safe to assume that the psychology student grades
necessarily have the same standard deviation as the other students in Dr Zeppo’s class. After all, if I’m

3Actually this is too strong. Strictly speaking the z test only requires that the sampling distribution of the mean be
normally distributed; if the population is normal then it necessarily follows that the sampling distribution of the mean is
also normal. However, as we saw when talking about the central limit theorem, it’s quite possible (even commonplace) for
the sampling distribution to be normal even if the population distribution itself is non-normal. However, in light of the
sheer ridiculousness of the assumption that the true standard deviation is known, there really isn’t much point in going into
details on this front!
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Figure 13.4: Graphical illustration of the null and alternative hypotheses assumed by the (two sided) one
sample t-test. Note the similarity to the z-test (Figure 13.2). The null hypothesis is that the population
mean µ is equal to some specified value µ0, and the alternative hypothesis is that it is not. Like the z-test,
we assume that the data are normally distributed; but we do not assume that the population standard
deviation σ is known in advance.
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entertaining the hypothesis that they don’t have the same mean, then why should I believe that they
absolutely have the same standard deviation? In view of this, I should really stop assuming that I know
the true value of σ. This violates the assumptions of my z-test, so in one sense I’m back to square one.
However, it’s not like I’m completely bereft of options. After all, I’ve still got my raw data, and those
raw data give me an estimate of the population standard deviation:

> sd( grades )

[1] 9.520615

In other words, while I can’t say that I know that σ “ 9.5, I can say that σ̂ “ 9.52.

Okay, cool. The obvious thing that you might think to do is run a z-test, but using the estimated
standard deviation of 9.52 instead of relying on my assumption that the true standard deviation is 9.5. So,
we could just type this new number into R and out would come the answer. And you probably wouldn’t
be surprised to hear that this would still give us a significant result. This approach is close, but it’s not
quite correct. Because we are now relying on an estimate of the population standard deviation, we need
to make some adjustment for the fact that we have some uncertainty about what the true population
standard deviation actually is. Maybe our data are just a fluke . . .maybe the true population standard
deviation is 11, for instance. But if that were actually true, and we ran the z-test assuming σ “ 11,
then the result would end up being non-significant. That’s a problem, and it’s one we’re going to have
to address.

13.2.1 Introducing the t-test

This ambiguity is annoying, and it was resolved in 1908 by a guy called William Sealy Gosset (Student,
1908), who was working as a chemist for the Guinness brewery at the time (see Box, 1987). Because
Guinness took a dim view of its employees publishing statistical analysis (apparently they felt it was a
trade secret), he published the work under the pseudonym “A Student”, and to this day, the full name
of the t-test is actually Student’s t-test. The key thing that Gosset figured out is how we should
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Figure 13.5: The t distribution with 2 degrees of freedom (left) and 10 degrees of freedom (right), with a
standard normal distribution (i.e., mean 0 and std dev 1) plotted as dotted lines for comparison purposes.
Notice that the t distribution has heavier tails (higher kurtosis) than the normal distribution; this effect
is quite exaggerated when the degrees of freedom are very small, but negligible for larger values. In other
words, for large df the t distribution is essentially identical to a normal distribution.
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accommodate the fact that we aren’t completely sure what the true standard deviation is.4 The answer
is that it subtly changes the sampling distribution. In the t-test, our test statistic (now called a t-statistic)
is calculated in exactly the same way I mentioned above. If our null hypothesis is that the true mean is
µ, but our sample has mean X̄ and our estimate of the population standard deviation is σ̂, then our t

statistic is:

t “ X̄ ´ µ

σ̂{
?
N

The only thing that has changed in the equation is that instead of using the known true value σ, we
use the estimate σ̂. And if this estimate has been constructed from N observations, then the sampling
distribution turns into a t-distribution with N ´ 1 degrees of freedom (df). The t distribution is
very similar to the normal distribution, but has “heavier” tails, as discussed earlier in Section 9.5 and
illustrated in Figure 13.5. Notice, though, that as df gets larger, the t-distribution starts to look identical
to the standard normal distribution. This is as it should be: if you have a sample size of N “ 70, 000, 000
then your “estimate” of the standard deviation would be pretty much perfect, right? So, you should
expect that for large N , the t-test would behave exactly the same way as a z-test. And that’s exactly
what happens!

13.2.2 Doing the test in R

As you might expect, the mechanics of the t-test are almost identical to the mechanics of the z-test.
So there’s not much point in going through the tedious exercise of showing you how to do the calculations
using low level commands: it’s pretty much identical to the calculations that we did earlier, except that
we use the estimated standard deviation (i.e., something like se.est <- sd(grades)), and then we test
our hypothesis using the t distribution rather than the normal distribution (i.e. we use pt() rather than

4Well, sort of. As I understand the history, Gosset only provided a partial solution: the general solution to the problem
was provided by Sir Ronald Fisher.
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pnorm(). And so instead of going through the calculations in tedious detail for a second time, I’ll jump
straight to showing you how t-tests are actually done in practice.

The situation with t-tests is very similar to the one we encountered with chi-squared tests in Chap-
ter 12. R comes with one function called t.test() that is very flexible (it can run lots of different kinds
of t-tests) and is somewhat terse (the output is quite compressed). Later on in the chapter I’ll show you
how to use the t.test() function (Section 13.7), but to start out with I’m going to rely on some simpler
functions in the lsr package. Just like last time, what I’ve done is written a few simpler functions, each of
which does only one thing. So, if you want to run a one-sample t-test, use the oneSampleTTest() function!
It’s pretty straightforward to use: all you need to do is specify x, the variable containing the data, and
mu, the true population mean according to the null hypothesis. Assuming that you’ve already loaded the
lsr package, all you need to type is this:

> oneSampleTTest( x=grades, mu=67.5 )

Easy enough. Now lets go through the output. Just like we saw in the last chapter, I’ve written the
functions so that the output is pretty verbose. It tries to describe in a lot of detail what its actually done:

One sample t-test

Data variable: grades

Descriptive statistics:

grades

mean 72.300

std dev. 9.521

Hypotheses:

null: population mean equals 67.5

alternative: population mean not equal to 67.5

Test results:

t-statistic: 2.255

degrees of freedom: 19

p-value: 0.036

Other information:

two-sided 95% confidence interval: [67.844, 76.756]

estimated effect size (Cohen’s d): 0.504

Reading this output from top to bottom, you can see it’s trying to lead you through the data analysis
process. The first two lines tell you what kind of test was run and what data were used. It then gives
you some basic information about the sample: specifically, the sample mean and standard deviation of
the data. It then moves towards the inferential statistics part. It starts by telling you what the null
and alternative hypotheses were, and then it reports the results of the test: the t-statistic, the degrees
of freedom, and the p-value. Finally, it reports two other things you might care about: the confidence
interval for the mean, and a measure of effect size (we’ll talk more about effect sizes later).

So that seems straightforward enough. Now what do we do with this output? Well, since we’re
pretending that we actually care about my toy example, we’re overjoyed to discover that the result is
statistically significant (i.e. p value below .05). We could report the result by saying something like this:

With a mean grade of 72.3, the psychology students scored slightly higher than the average
grade of 67.5 (tp19q “ 2.25, p ă .05); the 95% confidence interval is [67.8, 76.8].

where tp19q is shorthand notation for a t-statistic that has 19 degrees of freedom. That said, it’s often
the case that people don’t report the confidence interval, or do so using a much more compressed form
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than I’ve done here. For instance, it’s not uncommon to see the confidence interval included as part of
the stat block, like this:

tp19q “ 2.25, p ă .05, CI95 “ r67.8, 76.8s

With that much jargon crammed into half a line, you know it must be really smart.5

13.2.3 Assumptions of the one sample t-test

Okay, so what assumptions does the one-sample t-test make? Well, since the t-test is basically a
z-test with the assumption of known standard deviation removed, you shouldn’t be surprised to see that
it makes the same assumptions as the z-test, minus the one about the known standard deviation. That
is

• Normality. We’re still assuming that the the population distribution is normal6, and as noted earlier,
there are standard tools that you can use to check to see if this assumption is met (Section 13.9),
and other tests you can do in it’s place if this assumption is violated (Section 13.10).

• Independence. Once again, we have to assume that the observations in our sample are generated in-
dependently of one another. See the earlier discussion about the z-test for specifics (Section 13.1.4).

Overall, these two assumptions aren’t terribly unreasonable, and as a consequence the one-sample t-test
is pretty widely used in practice as a way of comparing a sample mean against a hypothesised population
mean.

13.3

The independent samples t-test (Student test)

Although the one sample t-test has its uses, it’s not the most typical example of a t-test7. A much
more common situation arises when you’ve got two different groups of observations. In psychology, this
tends to correspond to two different groups of participants, where each group corresponds to a different
condition in your study. For each person in the study, you measure some outcome variable of interest,
and the research question that you’re asking is whether or not the two groups have the same population
mean. This is the situation that the independent samples t-test is designed for.

5More seriously, I tend to think the reverse is true: I get very suspicious of technical reports that fill their results sections
with nothing except the numbers. It might just be that I’m an arrogant jerk, but I often feel like an author that makes no
attempt to explain and interpret their analysis to the reader either doesn’t understand it themselves, or is being a bit lazy.
Your readers are smart, but not infinitely patient. Don’t annoy them if you can help it.

6A technical comment... in the same way that we can weaken the assumptions of the z-test so that we’re only talking
about the sampling distribution, we can weaken the t test assumptions so that we don’t have to assume normality of the
population. However, for the t-test, it’s trickier to do this. As before, we can replace the assumption of population normality
with an assumption that the sampling distribution of X̄ is normal. However, remember that we’re also relying on a sample
estimate of the standard deviation; and so we also require the sampling distribution of σ̂ to be chi-square. That makes
things nastier, and this version is rarely used in practice: fortunately, if the population is normal, then both of these two
assumptions are met.

7Although it is the simplest, which is why I started with it.
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13.3.1 The data

Suppose we have 33 students taking Dr Harpo’s statistics lectures, and Dr Harpo doesn’t grade to a curve.
Actually, Dr Harpo’s grading is a bit of a mystery, so we don’t really know anything about what the
average grade is for the class as a whole. There are two tutors for the class, Anastasia and Bernadette.
There are N1 “ 15 students in Anastasia’s tutorials, and N2 “ 18 in Bernadette’s tutorials. The research
question I’m interested in is whether Anastasia or Bernadette is a better tutor, or if it doesn’t make much
of a difference. Dr Harpo emails me the course grades, in the harpo.Rdata file. As usual, I’ll load the
file and have a look at what variables it contains:

> load( "harpo.Rdata" )

> who(TRUE)

-- Name -- -- Class -- -- Size --

harpo data.frame 33 x 2

$grade numeric 33

$tutor factor 33

As we can see, there’s a single data frame with two variables, grade and tutor. The grade variable is a
numeric vector, containing the grades for all N “ 33 students taking Dr Harpo’s class; the tutor variable
is a factor that indicates who each student’s tutor was. The first six observations in this data set are
shown below:

> head( harpo )

grade tutor

1 65 Anastasia

2 72 Bernadette

3 66 Bernadette

4 74 Anastasia

5 73 Anastasia

6 71 Bernadette

We can calculate means and standard deviations, using the mean() and sd() functions. Rather than show
the R output, here’s a nice little summary table:

mean std dev N
Anastasia’s students 74.53 9.00 15
Bernadette’s students 69.06 5.77 18

To give you a more detailed sense of what’s going on here, I’ve plotted histograms showing the distribution
of grades for both tutors (Figure 13.6), as well as a simpler plot showing the means and corresponding
confidence intervals for both groups of students (Figure 13.7).

13.3.2 Introducing the test

The independent samples t-test comes in two different forms, Student’s and Welch’s. The original
Student t-test – which is the one I’ll describe in this section – is the simpler of the two, but relies on
much more restrictive assumptions than the Welch t-test. Assuming for the moment that you want to
run a two-sided test, the goal is to determine whether two “independent samples” of data are drawn from
populations with the same mean (the null hypothesis) or different means (the alternative hypothesis).
When we say “independent” samples, what we really mean here is that there’s no special relationship
between observations in the two samples. This probably doesn’t make a lot of sense right now, but it
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Figure 13.6: Histograms showing the overall distribution of grades for students in Anastasia’s class
(panel a) and in Bernadette’s class (panel b). Inspection of these histograms suggests that the students
in Anastasia’s class may be getting slightly better grades on average, though they also seem a little more
variable.
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will be clearer when we come to talk about the paired samples t-test later on. For now, let’s just point
out that if we have an experimental design where participants are randomly allocated to one of two
groups, and we want to compare the two groups’ mean performance on some outcome measure, then an
independent samples t-test (rather than a paired samples t-test) is what we’re after.

Okay, so let’s let µ1 denote the true population mean for group 1 (e.g., Anastasia’s students), and
µ2 will be the true population mean for group 2 (e.g., Bernadette’s students),8 and as usual we’ll let X̄1

and X̄2 denote the observed sample means for both of these groups. Our null hypothesis states that the
two population means are identical (µ1 “ µ2) and the alternative to this is that they are not (µ1 ‰ µ2).
Written in mathematical-ese, this is...

H0 : µ1 “ µ2

H1 : µ1 ‰ µ2

To construct a hypothesis test that handles this scenario, we start by noting that if the null hypothesis
is true, then the difference between the population means is exactly zero, µ1 ´ µ2 “ 0 As a consequence,
a diagnostic test statistic will be based on the difference between the two sample means. Because if the
null hypothesis is true, then we’d expect X̄1 ´ X̄2 to be pretty close to zero. However, just like we saw
with our one-sample tests (i.e., the one-sample z-test and the one-sample t-test) we have to be precise

8A funny question almost always pops up at this point: what the heck is the population being referred to in this case?
Is it the set of students actually taking Dr Harpo’s class (all 33 of them)? The set of people who might take the class (an
unknown number) of them? Or something else? Does it matter which of these we pick? It’s traditional in an introductory
behavioural stats class to mumble a lot at this point, but since I get asked this question every year by my students, I’ll
give a brief answer. Technically yes, it does matter: if you change your definition of what the “real world” population
actually is, then the sampling distribution of your observed mean X̄ changes too. The t-test relies on an assumption that
the observations are sampled at random from an infinitely large population; and to the extent that real life isn’t like that,
then the t-test can be wrong. In practice, however, this isn’t usually a big deal: even though the assumption is almost
always wrong, it doesn’t lead to a lot of pathological behaviour from the test, so we tend to just ignore it.
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Figure 13.7: Plots showing the mean grade for the students in Anastasia’s and Bernadette’s tutorials.
Error bars depict 95% confidence intervals around the mean. On the basis of visual inspection, it does
look like there’s a real difference between the groups, though it’s hard to say for sure.
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about exactly how close to zero this difference should be. And the solution to the problem is more or
less the same one: we calculate a standard error estimate (SE), just like last time, and then divide the
difference between means by this estimate. So our t-statistic will be of the form

t “ X̄1 ´ X̄2

SE

We just need to figure out what this standard error estimate actually is. This is a bit trickier than was
the case for either of the two tests we’ve looked at so far, so we need to go through it a lot more carefully
to understand how it works.

13.3.3 A “pooled estimate” of the standard deviation

In the original “Student t-test”, we make the assumption that the two groups have the same population
standard deviation: that is, regardless of whether the population means are the same, we assume that
the population standard deviations are identical, σ1 “ σ2. Since we’re assuming that the two standard
deviations are the same, we drop the subscripts and refer to both of them as σ. How should we estimate
this? How should we construct a single estimate of a standard deviation when we have two samples? The
answer is, basically, we average them. Well, sort of. Actually, what we do is take a weighed average of
the variance estimates, which we use as our pooled estimate of the variance. The weight assigned
to each sample is equal to the number of observations in that sample, minus 1. Mathematically, we can
write this as

w1 “ N1 ´ 1
w2 “ N2 ´ 1
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Figure 13.8: Graphical illustration of the null and alternative hypotheses assumed by the Student t-test.
The null hypothesis assumes that both groups have the same mean µ, whereas the alternative assumes
that they have different means µ1 and µ2. Notice that it is assumed that the population distributions
are normal, and that, although the alternative hypothesis allows the group to have different means, it
assumes they have the same standard deviation.
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Now that we’ve assigned weights to each sample, we calculate the pooled estimate of the variance by
taking the weighted average of the two variance estimates, σ̂2

1 and σ̂2
2

σ̂2

p “
w1σ̂

2
1 ` w2σ̂

2
2

w1 ` w2

Finally, we convert the pooled variance estimate to a pooled standard deviation estimate, by taking the
square root. This gives us the following formula for σ̂p,

σ̂p “
d

w1σ̂
2
1
` w2σ̂

2
2

w1 ` w2

And if you mentally substitute w1 “ N1 ´ 1 and w2 “ N2 ´ 1 into this equation you get a very ugly
looking formula; a very ugly formula that actually seems to be the “standard” way of describing the pooled
standard deviation estimate. It’s not my favourite way of thinking about pooled standard deviations,
however.9

13.3.4 The same pooled estimate, described differently

I prefer to think about it like this. Our data set actually corresponds to a set of N observations,
which are sorted into two groups. So let’s use the notation Xik to refer to the grade received by the i-th
student in the k-th tutorial group: that is, X11 is the grade received by the first student in Anastasia’s
class, X21 is her second student, and so on. And we have two separate group means X̄1 and X̄2, which
we could “generically” refer to using the notation X̄k, i.e., the mean grade for the k-th tutorial group. So
far, so good. Now, since every single student falls into one of the two tutorials, and so we can describe
their deviation from the group mean as the difference

Xik ´ X̄k

9Yes, I have a “favourite” way of thinking about pooled standard deviation estimates. So what?
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So why not just use these deviations (i.e., the extent to which each student’s grade differs from the mean
grade in their tutorial?) Remember, a variance is just the average of a bunch of squared deviations, so
let’s do that. Mathematically, we could write it like this:

ř

ik

`

Xik ´ X̄k

˘2

N

where the notation “
ř

ik” is a lazy way of saying “calculate a sum by looking at all students in all
tutorials”, since each “ik” corresponds to one student.10 But, as we saw in Chapter 10, calculating the
variance by dividing by N produces a biased estimate of the population variance. And previously, we
needed to divide by N ´ 1 to fix this. However, as I mentioned at the time, the reason why this bias
exists is because the variance estimate relies on the sample mean; and to the extent that the sample
mean isn’t equal to the population mean, it can systematically bias our estimate of the variance. But
this time we’re relying on two sample means! Does this mean that we’ve got more bias? Yes, yes it does.
And does this mean we now need to divide by N ´ 2 instead of N ´ 1, in order to calculate our pooled
variance estimate? Why, yes...

σ̂2

p “
ř

ik

`

Xik ´ X̄k

˘2

N ´ 2

Oh, and if you take the square root of this then you get σ̂p, the pooled standard deviation estimate. In
other words, the pooled standard deviation calculation is nothing special: it’s not terribly different to
the regular standard deviation calculation.

13.3.5 Completing the test

Regardless of which way you want to think about it, we now have our pooled estimate of the standard
deviation. From now on, I’ll drop the silly p subscript, and just refer to this estimate as σ̂. Great. Let’s
now go back to thinking about the bloody hypothesis test, shall we? Our whole reason for calculating this
pooled estimate was that we knew it would be helpful when calculating our standard error estimate. But,
standard error of what? In the one-sample t-test, it was the standard error of the sample mean, sepX̄q,
and since sepX̄q “ σ{

?
N that’s what the denominator of our t-statistic looked like. This time around,

however, we have two sample means. And what we’re interested in, specifically, is the the difference
between the two X̄1 ´ X̄2. As a consequence, the standard error that we need to divide by is in fact
the standard error of the difference between means. As long as the two variables really do have the
same standard deviation, then our estimate for the standard error is

sepX̄1 ´ X̄2q “
σ̂

b

1

N1

` 1

N2

and our t-statistic is therefore

t “ X̄1 ´ X̄2

sepX̄1 ´ X̄2q
Just as we saw with our one-sample test, the sampling distribution of this t-statistic is a t-distribution
(shocking, isn’t it?) as long as the null hypothesis is true, and all of the assumptions of the test are met.
The degrees of freedom, however, is slightly different. As usual, we can think of the degrees of freedom
to be equal to the number of data points minus the number of constraints. In this case, we have N

observations (N1 in sample 1, and N2 in sample 2), and 2 constraints (the sample means). So the total

10A more correct notation will be introduced in Chapter 14.
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degrees of freedom for this test are N ´ 2.

13.3.6 Doing the test in R

Not surprisingly, you can run an independent samples t-test using the t.test() function (Section 13.7),
but once again I’m going to start with a somewhat simpler function in the lsr package. That function is
unimaginatively called independentSamplesTTest(). First, recall that our data look like this:

> head( harpo )

grade tutor

1 65 Anastasia

2 72 Bernadette

3 66 Bernadette

4 74 Anastasia

5 73 Anastasia

6 71 Bernadette

The outcome variable for our test is the student grade, and the groups are defined in terms of the tutor

for each class. So you probably won’t be too surprised to see that we’re going to describe the test that
we want in terms of an R formula that reads like this grade ~ tutor. The specific command that we need
is:

> independentSamplesTTest(

formula = grade ~ tutor, # formula specifying outcome and group variables

data = harpo, # data frame that contains the variables

var.equal = TRUE # assume that the two groups have the same variance

)

The first two arguments should be familiar to you. The first one is the formula that tells R what variables
to use and the second one tells R the name of the data frame that stores those variables. The third
argument is not so obvious. By saying var.equal = TRUE, what we’re really doing is telling R to use the
Student independent samples t-test. More on this later. For now, lets ignore that bit and look at the
output:

Student’s independent samples t-test

Outcome variable: grade

Grouping variable: tutor

Descriptive statistics:

Anastasia Bernadette

mean 74.533 69.056

std dev. 8.999 5.775

Hypotheses:

null: population means equal for both groups

alternative: different population means in each group

Test results:

t-statistic: 2.115

degrees of freedom: 31

p-value: 0.043

Other information:

two-sided 95% confidence interval: [0.197, 10.759]

estimated effect size (Cohen’s d): 0.74
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The output has a very familiar form. First, it tells you what test was run, and it tells you the names
of the variables that you used. The second part of the output reports the sample means and standard
deviations for both groups (i.e., both tutorial groups). The third section of the output states the null
hypothesis and the alternative hypothesis in a fairly explicit form. It then reports the test results: just
like last time, the test results consist of a t-statistic, the degrees of freedom, and the p-value. The final
section reports two things: it gives you a confidence interval, and an effect size. I’ll talk about effect sizes
later. The confidence interval, however, I should talk about now.

It’s pretty important to be clear on what this confidence interval actually refers to: it is a confidence
interval for the difference between the group means. In our example, Anastasia’s students had an average
grade of 74.5, and Bernadette’s students had an average grade of 69.1, so the difference between the two
sample means is 5.4. But of course the difference between population means might be bigger or smaller
than this. The confidence interval reported by the independentSamplesTTest() function tells you that
there’s a 95% chance that the true difference between means lies between 0.2 and 10.8.

In any case, the difference between the two groups is significant (just barely), so we might write up
the result using text like this:

The mean grade in Anastasia’s class was 74.5% (std dev = 9.0), whereas the mean in
Bernadette’s class was 69.1% (std dev = 5.8). A Student’s independent samples t-test showed
that this 5.4% difference was significant (tp31q “ 2.1, p ă .05, CI95 “ r0.2, 10.8s, d “ .74),
suggesting that a genuine difference in learning outcomes has occurred.

Notice that I’ve included the confidence interval and the effect size in the stat block. People don’t always
do this. At a bare minimum, you’d expect to see the t-statistic, the degrees of freedom and the p value.
So you should include something like this at a minimum: tp31q “ 2.1, p ă .05. If statisticians had their
way, everyone would also report the confidence interval and probably the effect size measure too, because
they are useful things to know. But real life doesn’t always work the way statisticians want it to: you
should make a judgment based on whether you think it will help your readers, and (if you’re writing a
scientific paper) the editorial standard for the journal in question. Some journals expect you to report
effect sizes, others don’t. Within some scientific communities it is standard practice to report confidence
intervals, in other it is not. You’ll need to figure out what your audience expects. But, just for the sake
of clarity, if you’re taking my class: my default position is that it’s usually worth includng the effect
size, but don’t worry about the confidence interval unless the assignment asks you to or implies that you
should.

13.3.7 Positive and negative t values

Before moving on to talk about the assumptions of the t-test, there’s one additional point I want
to make about the use of t-tests in practice. The first one relates to the sign of the t-statistic (that is,
whether it is a positive number or a negative one). One very common worry that students have when
they start running their first t-test is that they often end up with negative values for the t-statistic, and
don’t know how to interpret it. In fact, it’s not at all uncommon for two people working independently
to end up with R outputs that are almost identical, except that one person has a negative t values and
the other one has a positive t value. Assuming that you’re running a two-sided test, then the p-values
will be identical. On closer inspection, the students will notice that the confidence intervals also have the
opposite signs. This is perfectly okay: whenever this happens, what you’ll find is that the two versions
of the R output arise from slightly different ways of running the t-test. What’s happening here is very
simple. The t-statistic that R is calculating here is always of the form

t “ (mean 1)´ (mean 2)

(SE)
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If “mean 1” is larger than “mean 2” the t statistic will be positive, whereas if “mean 2” is larger then
the t statistic will be negative. Similarly, the confidence interval that R reports is the confidence interval
for the difference “(mean 1) minus (mean 2)”, which will be the reverse of what you’d get if you were
calculating the confidence interval for the difference “(mean 2) minus (mean 1)”.

Okay, that’s pretty straightforward when you think about it, but now consider our t-test comparing
Anastasia’s class to Bernadette’s class. Which one should we call “mean 1” and which one should we
call “mean 2”. It’s arbitrary. However, you really do need to designate one of them as “mean 1” and the
other one as “mean 2”. Not surprisingly, the way that R handles this is also pretty arbitrary. In earlier
versions of the book I used to try to explain it, but after a while I gave up, because it’s not really all that
important, and to be honest I can never remember myself. Whenever I get a significant t-test result, and
I want to figure out which mean is the larger one, I don’t try to figure it out by looking at the t-statistic.
Why would I bother doing that? It’s foolish. It’s easier just look at the actual group means, since the R

output actually shows them!

Here’s the important thing. Because it really doesn’t matter what R printed out, I usually try to
report the t-statistic in such a way that the numbers match up with the text. Here’s what I mean...
suppose that what I want to write in my report is “Anastasia’s class had higher grades than Bernadette’s
class”. The phrasing here implies that Anastasia’s group comes first, so it makes sense to report the
t-statistic as if Anastasia’s class corresponded to group 1. If so, I would write

Anastasia’s class had higher grades than Bernadette’s class (tp31q “ 2.1, p “ .04).

(I wouldn’t actually underline the word “higher” in real life, I’m just doing it to emphasise the point that
“higher” corresponds to positive t values). On the other hand, suppose the phrasing I wanted to use has
Bernadette’s class listed first. If so, it makes more sense to treat her class as group 1, and if so, the write
up looks like this:

Bernadette’s class had lower grades than Anastasia’s class (tp31q “ ´2.1, p “ .04).

Because I’m talking about one group having “lower” scores this time around, it is more sensible to use
the negative form of the t-statistic. It just makes it read more cleanly.

One last thing: please note that you can’t do this for other types of test statistics. It works for t-tests,
but it wouldn’t be meaningful for chi-square testsm F -tests or indeed for most of the tests I talk about
in this book. So don’t overgeneralise this advice! I’m really just talking about t-tests here and nothing
else!

13.3.8 Assumptions of the test

As always, our hypothesis test relies on some assumptions. So what are they? For the Student t-test
there are three assumptions, some of which we saw previously in the context of the one sample t-test (see
Section 13.2.3):

• Normality. Like the one-sample t-test, it is assumed that the data are normally distributed. Specif-
ically, we assume that both groups are normally distributed. In Section 13.9 we’ll discuss how to
test for normality, and in Section 13.10 we’ll discuss possible solutions.

• Independence. Once again, it is assumed that the observations are independently sampled. In the
context of the Student test this has two aspects to it. Firstly, we assume that the observations
within each sample are independent of one another (exactly the same as for the one-sample test).
However, we also assume that there are no cross-sample dependencies. If, for instance, it turns
out that you included some participants in both experimental conditions of your study (e.g., by
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accidentally allowing the same person to sign up to different conditions), then there are some cross
sample dependencies that you’d need to take into account.

• Homogeneity of variance (also called “homoscedasticity”). The third assumption is that the pop-
ulation standard deviation is the same in both groups. You can test this assumption using the
Levene test, which I’ll talk about later on in the book (Section 14.7). However, there’s a very
simple remedy for this assumption, which I’ll talk about in the next section.

13.4

The independent samples t-test (Welch test)

The biggest problem with using the Student test in practice is the third assumption listed in the previous
section: it assumes that both groups have the same standard deviation. This is rarely true in real life: if
two samples don’t have the same means, why should we expect them to have the same standard deviation?
There’s really no reason to expect this assumption to be true. We’ll talk a little bit about how you can
check this assumption later on because it does crop up in a few different places, not just the t-test. But
right now I’ll talk about a different form of the t-test (Welch, 1947) that does not rely on this assumption.
A graphical illustration of what the Welch t test assumes about the data is shown in Figure 13.9, to
provide a contrast with the Student test version in Figure 13.8. I’ll admit it’s a bit odd to talk about
the cure before talking about the diagnosis, but as it happens the Welch test is the default t-test in R,
so this is probably the best place to discuss it.

The Welch test is very similar to the Student test. For example, the t-statistic that we use in the
Welch test is calculated in much the same way as it is for the Student test. That is, we take the difference
between the sample means, and then divide it by some estimate of the standard error of that difference:

t “ X̄1 ´ X̄2

sepX̄1 ´ X̄2q

The main difference is that the standard error calculations are different. If the two populations have
different standard deviations, then it’s a complete nonsense to try to calculate a pooled standard deviation
estimate, because you’re averaging apples and oranges.11 But you can still estimate the standard error
of the difference between sample means; it just ends up looking different:

sepX̄1 ´ X̄2q “
d

σ̂2
1

N1

` σ̂2
2

N2

The reason why it’s calculated this way is beyond the scope of this book. What matters for our purposes
is that the t-statistic that comes out of the Welch test is actually somewhat different to the one that
comes from the Student test.

The second difference between Welch and Student is that the degrees of freedom are calculated in
a very different way. In the Welch test, the “degrees of freedom ” doesn’t have to be a whole number
any more, and it doesn’t correspond all that closely to the “number of data points minus the number of
constraints” heuristic that I’ve been using up to this point. The degrees of freedom are, in fact...

df “ pσ̂2
1{N1 ` σ̂2

2{N2q2
pσ̂2

1
{N1q2{pN1 ´ 1q ` pσ̂2

2
{N2q2{pN2 ´ 1q

11Well, I guess you can average apples and oranges, and what you end up with is a delicious fruit smoothie. But no one
really thinks that a fruit smoothie is a very good way to describe the original fruits, do they?
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Figure 13.9: Graphical illustration of the null and alternative hypotheses assumed by the Welch t-test.
Like the Student test (Figure 13.8) we assume that both samples are drawn from a normal population;
but the alternative hypothesis no longer requires the two populations to have equal variance.
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... which is all pretty straightforward and obvious, right? Well, perhaps not. It doesn’t really matter for
out purposes. What matters is that you’ll see that the “df” value that pops out of a Welch test tends to
be a little bit smaller than the one used for the Student test, and it doesn’t have to be a whole number.

13.4.1 Doing the test in R

To run a Welch test in R is pretty easy. All you have to do is not bother telling R to assume equal
variances. That is, you take the command we used to run a Student’s t-test and drop the var.equal =

TRUE bit. So the command for a Welch test becomes:

> independentSamplesTTest(

formula = grade ~ tutor, # formula specifying outcome and group variables

data = harpo # data frame that contains the variables

)

Not too difficult, right? Not surprisingly, the output has exactly the same format as it did last time too:

Welch’s independent samples t-test

Outcome variable: grade

Grouping variable: tutor

Descriptive statistics:

Anastasia Bernadette

mean 74.533 69.056

std dev. 8.999 5.775

Hypotheses:

null: population means equal for both groups

alternative: different population means in each group

Test results:

t-statistic: 2.034
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degrees of freedom: 23.025

p-value: 0.054

Other information:

two-sided 95% confidence interval: [-0.092, 11.048]

estimated effect size (Cohen’s d): 0.724

The very first line is different, because it’s telling you that its run a Welch test rather than a Student
test, and of course all the numbers are a bit different. But I hope that the interpretation of this output
should be fairly obvious. You read the output in the same way that you would for the Student test.
You’ve got your descriptive statistics, the hypotheses, the test results and some other information. So
that’s all pretty easy.

Except, except... our result isn’t significant anymore. When we ran the Student test, we did get a
significant effect; but the Welch test on the same data set is not (tp23.03q “ 2.03, p “ .054). What does
this mean? Should we panic? Is the sky burning? Probably not. The fact that one test is significant
and the other isn’t doesn’t itself mean very much, especially since I kind of rigged the data so that this
would happen. As a general rule, it’s not a good idea to go out of your way to try to interpret or explain
the difference between a p-value of .049 and a p-value of .051. If this sort of thing happens in real life,
the difference in these p-values is almost certainly due to chance. What does matter is that you take a
little bit of care in thinking about what test you use. The Student test and the Welch test have different
strengths and weaknesses. If the two populations really do have equal variances, then the Student test
is slightly more powerful (lower Type II error rate) than the Welch test. However, if they don’t have the
same variances, then the assumptions of the Student test are violated and you may not be able to trust
it: you might end up with a higher Type I error rate. So it’s a trade off. However, in real life, I tend to
prefer the Welch test; because almost no-one actually believes that the population variances are identical.

13.4.2 Assumptions of the test

The assumptions of the Welch test are very similar to those made by the Student t-test (see Sec-
tion 13.3.8), except that the Welch test does not assume homogeneity of variance. This leaves only the
assumption of normality, and the assumption of independence. The specifics of these assumptions are
the same for the Welch test as for the Student test.

13.5

The paired-samples t-test

Regardless of whether we’re talking about the Student test or the Welch test, an independent samples
t-test is intended to be used in a situation where you have two samples that are, well, independent
of one another. This situation arises naturally when participants are assigned randomly to one of two
experimental conditions, but it provides a very poor approximation to other sorts of research designs.
In particular, a repeated measures design – in which each participant is measured (with respect to the
same outcome variable) in both experimental conditions – is not suited for analysis using independent
samples t-tests. For example, we might be interested in whether listening to music reduces people’s
working memory capacity. To that end, we could measure each person’s working memory capacity in two
conditions: with music, and without music. In an experimental design such as this one,12 each participant

12This design is very similar to the one in Section 12.8 that motivated the McNemar test. This should be no surprise.
Both are standard repeated measures designs involving two measurements. The only difference is that this time our outcome
variable is interval scale (working memory capacity) rather than a binary, nominal scale variable (a yes-or-no question).
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appears in both groups. This requires us to approach the problem in a different way; by using the paired
samples t-test.

13.5.1 The data

The data set that we’ll use this time comes from Dr Chico’s class.13 In her class, students take two major
tests, one early in the semester and one later in the semester. To hear her tell it, she runs a very hard
class, one that most students find very challenging; but she argues that by setting hard assessments,
students are encouraged to work harder. Her theory is that the first test is a bit of a “wake up call” for
students: when they realise how hard her class really is, they’ll work harder for the second test and get
a better mark. Is she right? To test this, let’s have a look at the chico.Rdata file:

> load( "chico.Rdata" )

> who(TRUE)

-- Name -- -- Class -- -- Size --

chico data.frame 20 x 3

$id factor 20

$grade_test1 numeric 20

$grade_test2 numeric 20

The data frame chico contains three variables: an id variable that identifies each student in the class,
the grade_test1 variable that records the student grade for the first test, and the grade_test2 variable
that has the grades for the second test. Here’s the first six students:

> head( chico )

id grade_test1 grade_test2

1 student1 42.9 44.6

2 student2 51.8 54.0

3 student3 71.7 72.3

4 student4 51.6 53.4

5 student5 63.5 63.8

6 student6 58.0 59.3

At a glance, it does seem like the class is a hard one (most grades are between 50% and 60%), but it
does look like there’s an improvement from the first test to the second one. If we take a quick look at
the descriptive statistics

> library( psych )

> describe( chico )

var n mean sd median trimmed mad min max range skew kurtosis se

id* 1 20 10.50 5.92 10.5 10.50 7.41 1.0 20.0 19.0 0.00 -1.20 1.32

grade_test1 2 20 56.98 6.62 57.7 56.92 7.71 42.9 71.7 28.8 0.05 0.28 1.48

grade_test2 3 20 58.38 6.41 59.7 58.35 6.45 44.6 72.3 27.7 -0.05 0.23 1.43

we see that this impression seems to be supported. Across all 20 students14 the mean grade for the
first test is 57%, but this rises to 58% for the second test. Although, given that the standard deviations
are 6.6% and 6.4% respectively, it’s starting to feel like maybe the improvement is just illusory; maybe
just random variation. This impression is reinforced when you see the means and confidence intervals
plotted in Figure 13.10a. If we were to rely on this plot alone, we’d come to the same conclusion that

13At this point we have Drs Harpo, Chico and Zeppo. No prizes for guessing who Dr Groucho is.
14This is obviously a class being taught at a very small or very expensive university, or else is a postgraduate class. I’ve

never taught an intro stats class with less than 350 students.
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Figure 13.10: Mean grade for test 1 and test 2, with associated 95% confidence intervals (panel a). Scat-
terplot showing the individual grades for test 1 and test 2 (panel b). Histogram showing the improvement
made by each student in Dr Chico’s class (panel c). In panel c, notice that almost the entire distribution
is above zero: the vast majority of students did improve their performance from the first test to the
second one
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we got from looking at the descriptive statistics that the describe() function produced. Looking at how
wide those confidence intervals are, we’d be tempted to think that the apparent improvement in student
performance is pure chance.

Nevertheless, this impression is wrong. To see why, take a look at the scatterplot of the grades for
test 1 against the grades for test 2. shown in Figure 13.10b. In this plot, each dot corresponds to the
two grades for a given student: if their grade for test 1 (x co-ordinate) equals their grade for test 2 (y
co-ordinate), then the dot falls on the line. Points falling above the line are the students that performed
better on the second test. Critically, almost all of the data points fall above the diagonal line: almost all
of the students do seem to have improved their grade, if only by a small amount. This suggests that we
should be looking at the improvement made by each student from one test to the next, and treating that
as our raw data. To do this, we’ll need to create a new variable for the improvement that each student
makes, and add it to the chico data frame. The easiest way to do this is as follows:

> chico$improvement <- chico$grade_test2 - chico$grade_test1

Notice that I assigned the output to a variable called chico$improvement. That has the effect of creating
a new variable called improvement inside the chico data frame. So now when I look at the chico data
frame, I get an output that looks like this:

> head( chico )

id grade_test1 grade_test2 improvement

1 student1 42.9 44.6 1.7

2 student2 51.8 54.0 2.2

3 student3 71.7 72.3 0.6

4 student4 51.6 53.4 1.8

5 student5 63.5 63.8 0.3

6 student6 58.0 59.3 1.3

Now that we’ve created and stored this improvement variable, we can draw a histogram showing the
distribution of these improvement scores (using the hist() function), shown in Figure 13.10c. When we
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look at histogram, it’s very clear that there is a real improvement here. The vast majority of the students
scored higher on the test 2 than on test 1, reflected in the fact that almost the entire histogram is above
zero. In fact, if we use ciMean() to compute a confidence interval for the population mean of this new
variable,

> ciMean( x = chico$improvement )

2.5% 97.5%

0.9508686 1.8591314

we see that it is 95% certain that the true (population-wide) average improvement would lie between
0.95% and 1.86%. So you can see, qualitatively, what’s going on: there is a real “within student”
improvement (everyone improves by about 1%), but it is very small when set against the quite large
“between student” differences (student grades vary by about 20% or so).

13.5.2 What is the paired samples t-test?

In light of the previous exploration, let’s think about how to construct an appropriate t test. One
possibility would be to try to run an independent samples t-test using grade_test1 and grade_test2 as
the variables of interest. However, this is clearly the wrong thing to do: the independent samples t-test
assumes that there is no particular relationship between the two samples. Yet clearly that’s not true in
this case, because of the repeated measures structure to the data. To use the language that I introduced in
the last section, if we were to try to do an independent samples t-test, we would be conflating the within
subject differences (which is what we’re interested in testing) with the between subject variability
(which we are not).

The solution to the problem is obvious, I hope, since we already did all the hard work in the previous
section. Instead of running an independent samples t-test on grade_test1 and grade_test2, we run a
one-sample t-test on the within-subject difference variable, improvement. To formalise this slightly, if Xi1

is the score that the i-th participant obtained on the first variable, and Xi2 is the score that the same
person obtained on the second one, then the difference score is:

Di “ Xi1 ´Xi2

Notice that the difference scores is variable 1 minus variable 2 and not the other way around, so if we want
improvement to correspond to a positive valued difference, we actually want “test 2” to be our “variable
1”. Equally, we would say that µD “ µ1 ´ µ2 is the population mean for this difference variable. So, to
convert this to a hypothesis test, our null hypothesis is that this mean difference is zero; the alternative
hypothesis is that it is not:

H0 : µD “ 0
H1 : µD ‰ 0

(this is assuming we’re talking about a two-sided test here). This is more or less identical to the way we
described the hypotheses for the one-sample t-test: the only difference is that the specific value that the
null hypothesis predicts is 0. And so our t-statistic is defined in more or less the same way too. If we let
D̄ denote the mean of the difference scores, then

t “ D̄

sepD̄q

which is

t “ D̄

σ̂D{
?
N
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where σ̂D is the standard deviation of the difference scores. Since this is just an ordinary, one-sample
t-test, with nothing special about it, the degrees of freedom are still N ´ 1. And that’s it: the paired
samples t-test really isn’t a new test at all: it’s a one-sample t-test, but applied to the difference between
two variables. It’s actually very simple; the only reason it merits a discussion as long as the one we’ve
just gone through is that you need to be able to recognise when a paired samples test is appropriate, and
to understand why it’s better than an independent samples t test.

13.5.3 Doing the test in R, part 1

How do you do a paired samples t-test in R. One possibility is to follow the process I outlined above:
create a “difference” variable and then run a one sample t-test on that. Since we’ve already created a
variable called chico$improvement, let’s do that:

> oneSampleTTest( chico$improvement, mu=0 )

One sample t-test

Data variable: chico$improvement

Descriptive statistics:

improvement

mean 1.405

std dev. 0.970

Hypotheses:

null: population mean equals 0

alternative: population mean not equal to 0

Test results:

t-statistic: 6.475

degrees of freedom: 19

p-value: <.001

Other information:

two-sided 95% confidence interval: [0.951, 1.859]

estimated effect size (Cohen’s d): 1.448

The output here is (obviously) formatted exactly the same was as it was the last time we used the
oneSampleTTest() function (Section 13.2), and it confirms our intuition. There’s an average improvement
of 1.4% from test 1 to test 2, and this is significantly different from 0 (tp19q “ 6.48, p ă .001).

However, suppose you’re lazy and you don’t want to go to all the effort of creating a new variable. Or
perhaps you just want to keep the difference between one-sample and paired-samples tests clear in your
head. If so, you can use the pairedSamplesTTest() function, also in the lsr package. Let’s assume that
your data organised like they are in the chico data frame, where there are two separate variables, one
for each measurement. The way to run the test is to input a one-sided formula, just like you did when
running a test of association using the associationTest() function in Chapter 12. For the chico data
frame, the formula that you need would be ~ grade_time2 + grade_time1. As usual, you’ll also need to
input the name of the data frame too. So the command just looks like this:

> pairedSamplesTTest(

formula = ~ grade_test2 + grade_test1, # one-sided formula listing the two variables

data = chico # data frame containing the two variables

)
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The output is is shown below. The numbers are identical to those that come from the one sample test,
which of course they have to be given that the paired samples t-test is just a one sample test under the
hood. However, the output is a bit more detailed:

Paired samples t-test

Variables: grade_test2 , grade_test1

Descriptive statistics:

grade_test2 grade_test1 difference

mean 58.385 56.980 1.405

std dev. 6.406 6.616 0.970

Hypotheses:

null: population means equal for both measurements

alternative: different population means for each measurement

Test results:

t-statistic: 6.475

degrees of freedom: 19

p-value: <.001

Other information:

two-sided 95% confidence interval: [0.951, 1.859]

estimated effect size (Cohen’s d): 1.448

This time around the descriptive statistics block shows you the means and standard deviations for the
original variables, as well as for the difference variable (notice that it always defines the difference as the
first listed variable mines the second listed one). The null hypothesis and the alternative hypothesis are
now framed in terms of the original variables rather than the difference score, but you should keep in
mind that in a paired samples test it’s still the difference score being tested. The statistical information
at the bottom about the test result is of course the same as before.

13.5.4 Doing the test in R, part 2

The paired samples t-test is a little different from the other t-tests, because it is used in repeated
measures designs. For the chico data, every student is “measured” twice, once for the first test, and
again for the second test. Back in Section 7.7 I talked about the fact that repeated measures data can
be expressed in two standard ways, known as wide form and long form. The chico data frame is in wide
form: every row corresponds to a unique person. I’ve shown you the data in that form first because that’s
the form that you’re most used to seeing, and it’s also the format that you’re most likely to receive data
in. However, the majority of tools in R for dealing with repeated measures data expect to receive data
in long form. The paired samples t-test is a bit of an exception that way.

As you make the transition from a novice user to an advanced one, you’re going to have to get
comfortable with long form data, and switching between the two forms. To that end, I want to show
you how to apply the pairedSamplesTTest() function to long form data. First, let’s use the wideToLong()

function to create a long form version of the chico data frame. If you’ve forgotten how the wideToLong()

function works, it might be worth your while quickly re-reading Section 7.7. Assuming that you’ve done
so, or that you’re already comfortable with data reshaping, I’ll use it to create a new data frame called
chico2:

> chico2 <- wideToLong( chico, within="time" )

> head( chico2 )
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id time grade

1 student1 test1 42.9

2 student2 test1 51.8

3 student3 test1 71.7

4 student4 test1 51.6

5 student5 test1 63.5

6 student6 test1 58.0

As you can see, this has created a new data frame containing three variables: an id variable indicating
which person provided the data, a time variable indicating which test the data refers to (i.e., test 1 or
test 2), and a grade variable that records what score the person got on that test. Notice that this data
frame is in long form: every row corresponds to a unique measurement. Because every person provides
two observations (test 1 and test 2), there are two rows for every person. To see this a little more clearly,
I’ll use the sortFrame() function to sort the rows of chico2 by id variable (see Section 7.6.3).

> chico2 <- sortFrame( chico2, id )

> head( chico2 )

id time grade

1 student1 test1 42.9

21 student1 test2 44.6

10 student10 test1 61.9

30 student10 test2 63.2

11 student11 test1 50.4

31 student11 test2 51.8

As you can see, there are two rows for “student1”: one showing their grade on the first test, the other
showing their grade on the second test.15

Okay, suppose that we were given the chico2 data frame to analyse. How would we run our paired
samples t-test now? One possibility would be to use the longToWide() function (Section 7.7) to force the
data back into wide form, and do the same thing that we did previously. But that’s sort of defeating the
point, and besides, there’s an easier way. Let’s think about what how the chico2 data frame is structured:
there are three variables here, and they all matter. The outcome measure is stored as the grade, and we
effectively have two “groups” of measurements (test 1 and test 2) that are defined by the time points at
which a test is given. Finally, because we want to keep track of which measurements should be paired
together, we need to know which student obtained each grade, which is what the id variable gives us. So,
when your data are presented to you in long form, we would want specify a two-sided formula and a data
frame, in the same way that we do for an independent samples t-test: the formula specifies the outcome
variable and the groups, so in this case it would be grade ~ time, and the data frame is chico2. However,
we also need to tell it the id variable, which in this case is boringly called id. So our command is:

> pairedSamplesTTest(

formula = grade ~ time, # two sided formula: outcome ~ group

data = chico2, # data frame

id = "id" # name of the id variable

)

Note that the name of the id variable is "id" and not id. Note that the id variable must be a factor.
As of the current writing, you do need to include the quote marks, because the pairedSamplesTTest()

function is expecting a character string that specifies the name of a variable. If I ever find the time I’ll
try to relax this constraint. Anyway, here’s the output that you get:

15The sortFrame() function sorts factor variables like id in alphabetical order, which is why it jumps from “student1” to
“student10”
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Paired samples t-test

Outcome variable: grade

Grouping variable: time

ID variable: id

Descriptive statistics:

test1 test2

mean 56.980 58.385

std dev. 6.616 6.406

Hypotheses:

null: population means equal for both measurements

alternative: different population means for each measurement

Test results:

t-statistic: -6.475

degrees of freedom: 19

p-value: <.001

Other information:

two-sided 95% confidence interval: [-1.859, -0.951]

estimated effect size (Cohen’s d): 1.448

As you can see, it’s a bit more detailed than the output from oneSampleTTest(). It gives you the descriptive
statistics for the original variables, states the null hypothesis in a fashion that is a bit more appropriate
for a repeated measures design, and then reports all the nuts and bolts from the hypothesis test itself.
Not surprisingly the numbers the same as the ones that we saw last time.

One final comment about the pairedSamplesTTest() function. One of the reasons I designed it to be
able handle long form and wide form data is that I want you to be get comfortable thinking about repeated
measures data in both formats, and also to become familiar with the different ways in which R functions
tend to specify models and tests for repeated measures data. With that last point in mind, I want to
highlight a slightly different way of thinking about what the paired samples t-test is doing. There’s a
sense in which what you’re really trying to do is look at how the outcome variable (grade) is related to
the grouping variable (time), after taking account of the fact that there are individual differences between
people (id). So there’s a sense in which id is actually a second predictor: you’re trying to predict the
grade on the basis of the time and the id. With that in mind, the pairedSamplesTTest() function lets you
specify a formula like this one

grade ~ time + (id)

This formula tells R everything it needs to know: the variable on the left (grade) is the outcome variable,
the bracketed term on the right (id) is the id variable, and the other term on the right is the grouping
variable (time). If you specify your formula that way, then you only need to specify the formula and the
data frame, and so you can get away with using a command as simple as this one:

> pairedSamplesTTest(

formula = grade ~ time + (id),

data = chico2

)

or you can drop the argument names and just do this:

> pairedSamplesTTest( grade ~ time + (id), chico2 )
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These commands will produce the same output as the last one, I personally find this format a lot more
elegant. That being said, the main reason for allowing you to write your formulas that way is that they’re
quite similar to the way that mixed models (fancy pants repeated measures analyses) are specified in the
lme4 package. This book doesn’t talk about mixed models (yet!), but if you go on to learn more statistics
you’ll find them pretty hard to avoid, so I’ve tried to lay a little bit of the groundwork here.

13.6

One sided tests

When introducing the theory of null hypothesis tests, I mentioned that there are some situations when it’s
appropriate to specify a one-sided test (see Section 11.4.3). So far, all of the t-tests have been two-sided
tests. For instance, when we specified a one sample t-test for the grades in Dr Zeppo’s class, the null
hypothesis was that the true mean was 67.5%. The alternative hypothesis was that the true mean was
greater than or less than 67.5%. Suppose we were only interested in finding out if the true mean is greater
than 67.5%, and have no interest whatsoever in testing to find out if the true mean is lower than 67.5%.
If so, our null hypothesis would be that the true mean is 67.5% or less, and the alternative hypothesis
would be that the true mean is greater than 67.5%. The oneSampleTTest() function lets you do this, by
specifying the one.sided argument. If you set one.sided="greater", it means that you’re testing to see if
the true mean is larger than mu. If you set one.sided="less", then you’re testing to see if the true mean
is smaller than mu. Here’s how it would work for Dr Zeppo’s class:

> oneSampleTTest( x=grades, mu=67.5, one.sided="greater" )

One sample t-test

Data variable: grades

Descriptive statistics:

grades

mean 72.300

std dev. 9.521

Hypotheses:

null: population mean less than or equal to 67.5

alternative: population mean greater than 67.5

Test results:

t-statistic: 2.255

degrees of freedom: 19

p-value: 0.018

Other information:

one-sided 95% confidence interval: [68.619, Inf]

estimated effect size (Cohen’s d): 0.504

Notice that there are a few changes from the output that we saw last time. Most important is the fact
that the null and alternative hypotheses have changed, to reflect the different test. The second thing to
note is that, although the t-statistic and degrees of freedom have not changed, the p-value has. This is
because the one-sided test has a different rejection region from the two-sided test. If you’ve forgotten
why this is and what it means, you may find it helpful to read back over Chapter 11, and Section 11.4.3
in particular. The third thing to note is that the confidence interval is different too: it now reports a
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“one-sided” confidence interval rather than a two-sided one. In a two-sided confidence interval, we’re
trying to find numbers a and b such that we’re 95% confident that the true mean lies between a and b.
In a one-sided confidence interval, we’re trying to find a single number a such that we’re 95% confident
that the true mean is greater than a (or less than a if you set one.sided="less").

So that’s how to do a one-sided one sample t-test. However, all versions of the t-test can be one-sided.
For an independent samples t test, you could have a one-sided test if you’re only interestd in testing to
see if group A has higher scores than group B, but have no interest in finding out if group B has higher
scores than group A. Let’s suppose that, for Dr Harpo’s class, you wanted to see if Anastasia’s students
had higher grades than Bernadette’s. The independentSamplesTTest() function lets you do this, again by
specifying the one.sided argument. However, this time around you need to specify the name of the group
that you’re expecting to have the higher score. In our case, we’d write one.sided = "Anastasia". So the
command would be:

> independentSamplesTTest(

formula = grade ~ tutor,

data = harpo,

one.sided = "Anastasia"

)

Welch’s independent samples t-test

Outcome variable: grade

Grouping variable: tutor

Descriptive statistics:

Anastasia Bernadette

mean 74.533 69.056

std dev. 8.999 5.775

Hypotheses:

null: population means are equal, or smaller for group ’Anastasia’

alternative: population mean is larger for group ’Anastasia’

Test results:

t-statistic: 2.034

degrees of freedom: 23.025

p-value: 0.027

Other information:

one-sided 95% confidence interval: [0.863, Inf]

estimated effect size (Cohen’s d): 0.724

Again, the output changes in a predictable way. The definition of the null and alternative hypotheses
has changed, the p-value has changed, and it now reports a one-sided confidence interval rather than a
two-sided one.

What about the paired samples t-test? Suppose we wanted to test the hypothesis that grades go up
from test 1 to test 2 in Dr Zeppo’s class, and are not prepared to consider the idea that the grades go
down. Again, we can use the one.sided argument to specify the one-sided test, and it works the same
way it does for the independent samples t-test. You need to specify the name of the group whose scores
are expected to be larger under the alternative hypothesis. If your data are in wide form, as they are in
the chico data frame, you’d use this command:

> pairedSamplesTTest(

formula = ~ grade_test2 + grade_test1,
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data = chico,

one.sided = "grade_test2"

)

Paired samples t-test

Variables: grade_test2 , grade_test1

Descriptive statistics:

grade_test2 grade_test1 difference

mean 58.385 56.980 1.405

std dev. 6.406 6.616 0.970

Hypotheses:

null: population means are equal, or smaller for measurement ’grade_test2’

alternative: population mean is larger for measurement ’grade_test2’

Test results:

t-statistic: 6.475

degrees of freedom: 19

p-value: <.001

Other information:

one-sided 95% confidence interval: [1.03, Inf]

estimated effect size (Cohen’s d): 1.448

Yet again, the output changes in a predictable way. The hypotheses have changed, the p-value has
changed, and the confidence interval is now one-sided. If your data are in long form, as they are in the
chico2 data frame, it still works the same way. Either of the following commands would work,

> pairedSamplesTTest(

formula = grade ~ time,

data = chico2,

id = "id",

one.sided = "test2"

)

> pairedSamplesTTest(

formula = grade ~ time + (id),

data = chico2,

one.sided = "test2"

)

and would produce the same answer as the output shown above.

13.7

Using the t.test() function

In this chapter, we’ve talked about three different kinds of t-test: the one sample test, the indepen-
dent samples test (Student’s and Welch’s), and the paired samples test. In order to run these differ-
ent tests, I’ve shown you three different functions: oneSampleTTest(), independentSamplesTTest() and
pairedSamplesTTest(). I wrote these as three different functions for two reasons. Firstly, I thought it
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made sense to have separate functions for each test, in order to help make it clear to beginners that there
are different tests. Secondly, I wanted to show you some functions that produced “verbose” output, to
help you see what hypotheses are being tested and so on.

However, once you’ve started to become familiar with t-tests and with using R, you might find it
easier to use the t.test() function. It’s one function, but it can run all four of the different t-tests that
we’ve talked about. Here’s how it works. Firstly, suppose you want to run a one sample t-test. To run
the test on the grades data from Dr Zeppo’s class (Section 13.2), we’d use a command like this:

> t.test( x = grades, mu = 67.5 )

The input is the same as for the oneSampleTTest(): we specify the sample data using the argument x, and
the value against which it is to be tested using the argument mu. The output is a lot more compressed:

One Sample t-test

data: grades

t = 2.2547, df = 19, p-value = 0.03615

alternative hypothesis: true mean is not equal to 67.5

95 percent confidence interval:

67.84422 76.75578

sample estimates:

mean of x

72.3

As you can see, it still has all the information you need. It tells you what type of test it ran and the
data it tested it on. It gives you the t-statistic, the degrees of freedom and the p-value. And so on.
There’s nothing wrong with this output, but in my experience it can be a little confusing when you’re
just starting to learn statistics, because it’s a little disorganised. Once you know what you’re looking at
though, it’s pretty easy to read off the relevant information.

What about independent samples t-tests? As it happens, the t.test() function can be used in much
the same way as the independentSamplesTTest() function, by specifying a formula, a data frame, and
using var.equal to indicate whether you want a Student test or a Welch test. If you want to run the
Welch test from Section 13.4, then you’d use this command:

> t.test( formula = grade ~ tutor, data = harpo )

The output looks like this:

Welch Two Sample t-test

data: grade by tutor

t = 2.0342, df = 23.025, p-value = 0.05361

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.09249349 11.04804904

sample estimates:

mean in group Anastasia mean in group Bernadette

74.53333 69.05556

If you want to do the Student test, it’s exactly the same except that you need to add an additional argu-
ment indicating that var.equal = TRUE. This is no different to how it worked in the independentSamplesTTest()
function.

Finally, we come to the paired samples t-test. Somewhat surprisingly, given that most R functions for
dealing with repeated measures data require data to be in long form, the t.test() function isn’t really
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set up to handle data in long form. Instead it expects to be given two separate variables, x and y, and
you need to specify paired=TRUE. And on top of that, you’d better make sure that the first element of
x and the first element of y actually correspond to the same person! Because it doesn’t ask for an “id”
variable. I don’t know why. So, in order to run the paired samples t test on the data from Dr Chico’s
class, we’d use this command:

> t.test( x = chico$grade_test2, # variable 1 is the "test2" scores

+ y = chico$grade_test1, # variable 2 is the "test1" scores

+ paired = TRUE # paired test

+ )

and the output is

Paired t-test

data: chico$grade_test2 and chico$grade_test1

t = 6.4754, df = 19, p-value = 3.321e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.9508686 1.8591314

sample estimates:

mean of the differences

1.405

Yet again, these are the same numbers that we saw in Section 13.5. Feel free to check.

13.8

Effect size

The most commonly used measure of effect size for a t-test is Cohen’s d (Cohen, 1988). It’s a very
simple measure in principle, with quite a few wrinkles when you start digging into the details. Cohen
himself defined it primarily in the context of an independent samples t-test, specifically the Student test.
In that context, a natural way of defining the effect size is to divide the difference between the means
by an estimate of the standard deviation. In other words, we’re looking to calculate something along the
lines of this:

d “ (mean 1)´ (mean 2)

std dev

and he suggested a rough guide for interpreting d in Table 13.1. You’d think that this would be pretty
unambiguous, but it’s not; largely because Cohen wasn’t too specific on what he thought should be used
as the measure of the standard deviation (in his defence, he was trying to make a broader point in his
book, not nitpick about tiny details). As discussed by McGrath and Meyer (2006), there are several
different version in common usage, and each author tends to adopt slightly different notation. For the
sake of simplicity (as opposed to accuracy) I’ll use d to refer to any statistic that you calculate from the
sample, and use δ to refer to a theoretical population effect. Obviously, that does mean that there are
several different things all called d. The cohensD() function in the lsr package uses the method argument
to distinguish between them, so that’s what I’ll do in the text.

My suspicion is that the only time that you would want Cohen’s d is when you’re running a t-test,
and if you’re using the oneSampleTTest, independentSamplesTTest and pairedSamplesTTest() functions to
run your t-tests, then you don’t need to learn any new commands, because they automatically produce
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Table 13.1: A (very) rough guide to interpreting Cohen’s d. My personal recommendation is to not use
these blindly. The d statistic has a natural interpretation in and of itself: it redescribes the different in
means as the number of standard deviations that separates those means. So it’s generally a good idea
to think about what that means in practical terms. In some contexts a “small” effect could be of big
practical importance. In other situations a “large” effect may not be all that interesting.

d-value rough interpretation
about 0.2 “small” effect
about 0.5 “moderate” effect
about 0.8 “large” effect

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an estimate of Cohen’s d as part of the output. However, if you’re using t.test() then you’ll need to use
the cohensD() function (also in the lsr package) to do the calculations.

13.8.1 Cohen’s d from one sample

The simplest situation to consider is the one corresponding to a one-sample t-test. In this case, the
one sample mean X̄ and one (hypothesised) population mean µo to compare it to. Not only that, there’s
really only one sensible way to estimate the population standard deviation: we just use our usual estimate
σ̂. Therefore, we end up with the following as the only way to calculate d,

d “ X̄ ´ µ0

σ̂

When writing the cohensD() function, I’ve made some attempt to make it work in a similar way to
t.test(). As a consequence, cohensD() can calculate your effect size regardless of which type of t-test
you performed. If what you want is a measure of Cohen’s d to accompany a one-sample t-test, there’s
only two arguments that you need to care about. These are:

• x. A numeric vector containing the sample data.

• mu. The mean against which the mean of x is compared (default value is mu = 0).

We don’t need to specify what method to use, because there’s only one version of d that makes sense in
this context. So, in order to compute an effect size for the data from Dr Zeppo’s class (Section 13.2),
we’d type something like this:

> cohensD( x = grades, # data are stored in the grades vector

+ mu = 67.5 # compare students to a mean of 67.5

+ )

[1] 0.5041691

and, just so that you can see that there’s nothing fancy going on, the command below shows you how to
calculate it if there weren’t no fancypants cohensD() function available:

> ( mean(grades) - 67.5 ) / sd(grades)

[1] 0.5041691

Yep, same number. Overall, then, the psychology students in Dr Zeppo’s class are achieving grades
(mean = 72.3%) that are about .5 standard deviations higher than the level that you’d expect (67.5%)
if they were performing at the same level as other students. Judged against Cohen’s rough guide, this is
a moderate effect size.
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13.8.2 Cohen’s d from a Student t test

The majority of discussions of Cohen’s d focus on a situation that is analogous to Student’s inde-
pendent samples t test, and it’s in this context that the story becomes messier, since there are several
different versions of d that you might want to use in this situation, and you can use the method argument
to the cohensD() function to pick the one you want. To understand why there are multiple versions of d,
it helps to take the time to write down a formula that corresponds to the true population effect size δ.
It’s pretty straightforward,

δ “ µ1 ´ µ2

σ

where, as usual, µ1 and µ2 are the population means corresponding to group 1 and group 2 respectively,
and σ is the standard deviation (the same for both populations). The obvious way to estimate δ is to
do exactly the same thing that we did in the t-test itself: use the sample means as the top line, and a
pooled standard deviation estimate for the bottom line:

d “ X̄1 ´ X̄2

σ̂p

where σ̂p is the exact same pooled standard deviation measure that appears in the t-test. This is the most
commonly used version of Cohen’s d when applied to the outcome of a Student t-test ,and is sometimes
referred to as Hedges’ g statistic (Hedges, 1981). It corresponds to method = "pooled" in the cohensD()

function, and it’s the default.

However, there are other possibilities, which I’ll briefly describe. Firstly, you may have reason to
want to use only one of the two groups as the basis for calculating the standard deviation. This approach
(often called Glass’ ∆) only makes most sense when you have good reason to treat one of the two groups
as a purer reflection of “natural variation” than the other. This can happen if, for instance, one of the
two groups is a control group. If that’s what you want, then use method = "x.sd" or method = "y.sd"

when using cohensD(). Secondly, recall that in the usual calculation of the pooled standard deviation we
divide by N ´ 2 to correct for the bias in the sample variance; in one version of Cohen’s d this correction
is omitted. Instead, we divide by N . This version (method = "raw") makes sense primarily when you’re
trying to calculate the effect size in the sample; rather than estimating an effect size in the population.
Finally, there is a version based on Hedges and Olkin (1985), who point out there is a small bias in the
usual (pooled) estimation for Cohen’s d. Thus they introduce a small correction (method = "corrected"),
by multiplying the usual value of d by pN ´ 3q{pN ´ 2.25q.

In any case, ignoring all those variations that you could make use of if you wanted, let’s have a look
at how to calculate the default version. In particular, suppose we look at the data from Dr Harpo’s
class (the harpo data frame). The command that we want to use is very similar to the relevant t.test()
command, but also specifies a method

> cohensD( formula = grade ~ tutor, # outcome ~ group

+ data = harpo, # data frame

+ method = "pooled" # which version to calculate?

+ )

[1] 0.7395614

This is the version of Cohen’s d that gets reported by the independentSamplesTTest() function whenever
it runs a Student t-test.

13.8.3 Cohen’s d from a Welch test

Suppose the situation you’re in is more like the Welch test: you still have two independent samples,
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but you no longer believe that the corresponding populations have equal variances. When this happens,
we have to redefine what we mean by the population effect size. I’ll refer to this new measure as δ1, so
as to keep it distinct from the measure δ which we defined previously. What Cohen (1988) suggests is
that we could define our new population effect size by averaging the two population variances. What this
means is that we get:

δ1 “ µ1 ´ µ2

σ1

where

σ1 “
c

σ1
2 ` σ2

2

2

This seems quite reasonable, but notice that none of the measures that we’ve discussed so far are at-
tempting to estimate this new quantity. It might just be my own ignorance of the topic, but I’m only
aware of one version of Cohen’s d that actually estimates the unequal-variance effect size δ1 rather than
the equal-variance effect size δ. All we do to calculate d for this version (method = "unequal") is substitute
the sample means X̄1 and X̄2 and the corrected sample standard deviations σ̂1 and σ̂2 into the equation
for δ1. This gives us the following equation for d,

d “ X̄1 ´ X̄2
c

σ̂2
1 ` σ̂2

2

2

as our estimate of the effect size. There’s nothing particularly difficult about calculating this version in
R, since all we have to do is change the method argument:

> cohensD( formula = grade ~ tutor,

+ data = harpo,

+ method = "unequal"

+ )

[1] 0.7244995

his is the version of Cohen’s d that gets reported by the independentSamplesTTest() function whenever
it runs a Welch t-test.

13.8.4 Cohen’s d from a paired-samples test

Finally, what should we do for a paired samples t-test? In this case, the answer depends on what it
is you’re trying to do. If you want to measure your effect sizes relative to the distribution of difference
scores, the measure of d that you calculate is just (method = "paired")

d “ D̄

σ̂D

where σ̂D is the estimate of the standard deviation of the differences. The calculation here is pretty
straightforward

> cohensD( x = chico$grade_test2,

+ y = chico$grade_test1,

+ method = "paired"

+ )

[1] 1.447952

This is the version of Cohen’s d that gets reported by the pairedSamplesTTest() function. The only
wrinkle is figuring out whether this is the measure you want or not. To the extent that you care about
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the practical consequences of your research, you often want to measure the effect size relative to the
original variables, not the difference scores (e.g., the 1% improvement in Dr Chico’s class is pretty small
when measured against the amount of between-student variation in grades), in which case you use the
same versions of Cohen’s d that you would use for a Student or Welch test. For instance, when we do
that for Dr Chico’s class,

> cohensD( x = chico$grade_test2,

+ y = chico$grade_test1,

+ method = "pooled"

+ )

[1] 0.2157646

what we see is that the overall effect size is quite small, when assessed on the scale of the original variables.

13.9

Checking the normality of a sample

All of the tests that we have discussed so far in this chapter have assumed that the data are normally
distributed. This assumption is often quite reasonable, because the central limit theorem (Section 10.4)
does tend to ensure that many real world quantities are normally distributed: any time that you suspect
that your variable is actually an average of lots of different things, there’s a pretty good chance that it
will be normally distributed; or at least close enough to normal that you can get away with using t-tests.
However, life doesn’t come with guarantees; and besides, there are lots of ways in which you can end
up with variables that are highly non-normal. For example, any time you think that your variable is
actually the minimum of lots of different things, there’s a very good chance it will end up quite skewed. In
psychology, response time (RT) data is a good example of this. If you suppose that there are lots of things
that could trigger a response from a human participant, then the actual response will occur the first time
one of these trigger events occurs.16 This means that RT data are systematically non-normal. Okay, so
if normality is assumed by all the tests, and is mostly but not always satisfied (at least approximately)
by real world data, how can we check the normality of a sample? In this section I discuss two methods:
QQ plots, and the Shapiro-Wilk test.

13.9.1 QQ plots

One way to check whether a sample violates the normality assumption is to draw a “quantile-quantile”
plot (QQ plot). This allows you to visually check whether you’re seeing any systematic violations. In a
QQ plot, each observation is plotted as a single dot. The x co-ordinate is the theoretical quantile that
the observation should fall in, if the data were normally distributed (with mean and variance estimated
from the sample) and on the y co-ordinate is the actual quantile of the data within the sample. If the
data are normal, the dots should form a straight line. For instance, lets see what happens if we generate
data by sampling from a normal distribution, and then drawing a QQ plot using the R function qqnorm().
The qqnorm() function has a few arguments, but the only one we really need to care about here is y, a
vector specifying the data whose normality we’re interested in checking. Here’s the R commands:

> normal.data <- rnorm( n = 100 ) # generate N = 100 normally distributed numbers

> hist( x = normal.data ) # draw a histogram of these numbers

> qqnorm( y = normal.data ) # draw the QQ plot

16This is a massive oversimplification.
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Normally Distributed Data
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Figure 13.11: Histogram (panel a) and normal QQ plot (panel b) of normal.data, a normally distributed
sample with 100 observations. The Shapiro-Wilk statistic associated with these data is W “ .99, indi-
cating that no significant departures from normality were detected (p “ .73).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

And the results are shown in Figure 13.11. As you can see, these data form a pretty straight line; which
is no surprise given that we sampled them from a normal distribution! In contrast, have a look at the
two data sets shown in Figure 13.12. The top panels show the histogram and a QQ plot for a data set
that is highly skewed: the QQ plot curves upwards. The lower panels show the same plots for a heavy
tailed (i.e., high kurtosis) data set: in this case, the QQ plot flattens in the middle and curves sharply at
either end.

13.9.2 Shapiro-Wilk tests

Although QQ plots provide a nice way to informally check the normality of your data, sometimes
you’ll want to do something a bit more formal. And when that moment comes, the Shapiro-Wilk test
(Shapiro & Wilk, 1965) is probably what you’re looking for.17 As you’d expect, the null hypothesis being
tested is that a set of N observations is normally distributed. The test statistic that it calculates is
conventionally denoted as W , and it’s calculated as follows. First, we sort the observations in order of
increasing size, and let X1 be the smallest value in the sample, X2 be the second smallest and so on.
Then the value of W is given by

W “

´

řN

i“1
aiXi

¯2

řN

i“1
pXi ´ X̄q2

where X̄ is the mean of the observations, and the ai values are ... mumble, mumble ... something
complicated that is a bit beyond the scope of an introductory text.

17Either that, or the Kolmogorov-Smirnov test, which is probably more traditional than the Shapiro-Wilk, though most
things I’ve read seem to suggest Shapiro-Wilk is the better test of normality; although Kolomogorov-Smirnov is a general
purpose test of distributional equivalence, so it can be adapted to handle other kinds of distribution tests; in R it’s
implemented via the ks.test() function.
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Skewed Data
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Heavy−Tailed Data
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Figure 13.12: In the top row, a histogram (panel a) and normal QQ plot (panel b) of the 100 observations
in a skewed.data set. The skewness of the data here is 1.94, and is reflected in a QQ plot that curves
upwards. As a consequence, the Shapiro-Wilk statistic is W “ .80, reflecting a significant departure from
normality (p ă .001). The bottom row shows the same plots for a heavy tailed data set, again consisting
of 100 observations. In this case, the heavy tails in the data produce a high kurtosis (2.80), and cause
the QQ plot to flatten in the middle, and curve away sharply on either side. The resulting Shapiro-Wilk
statistic is W “ .93, again reflecting significant non-normality (p ă .001).
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Figure 13.13: Sampling distribution of the Shapiro-Wilk W statistic, under the null hypothesis that the
data are normally distributed, for samples of size 10, 20 and 50. Note that small values of W indicate
departure from normality.
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Because it’s a little hard to explain the maths behind the W statistic, a better idea is to give a broad
brush description of how it behaves. Unlike most of the test statistics that we’ll encounter in this book,
it’s actually small values of W that indicated departure from normality. The W statistic has a maximum
value of 1, which arises when the data look “perfectly normal”. The smaller the value of W , the less
normal the data are. However, the sampling distribution for W – which is not one of the standard ones
that I discussed in Chapter 9 and is in fact a complete pain in the arse to work with – does depend on
the sample size N . To give you a feel for what these sampling distributions look like, I’ve plotted three
of them in Figure 13.13. Notice that, as the sample size starts to get large, the sampling distribution
becomes very tightly clumped up near W “ 1, and as a consequence, for larger samples W doesn’t have
to be very much smaller than 1 in order for the test to be significant.

To run the test in R, we use the shapiro.test() function. It has only a single argument x, which is
a numeric vector containing the data whose normality needs to be tested. For example, when we apply
this function to our normal.data, we get the following:

> shapiro.test( x = normal.data )

Shapiro-Wilk normality test

data: normal.data

W = 0.9903, p-value = 0.6862

So, not surprisingly, we have no evidence that these data depart from normality. When reporting the
results for a Shapiro-Wilk test, you should (as usual) make sure to include the test statistic W and the
p value, though given that the sampling distribution depends so heavily on N it would probably be a
politeness to include N as well.
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13.10

Testing non-normal data with Wilcoxon tests

Okay, suppose your data turn out to be pretty substantially non-normal, but you still want to run
something like a t-test? This situation occurs a lot in real life: for the AFL winning margins data, for
instance, the Shapiro-Wilk test made it very clear that the normality assumption is violated. This is the
situation where you want to use Wilcoxon tests.

Like the t-test, the Wilcoxon test comes in two forms, one-sample and two-sample, and they’re used
in more or less the exact same situations as the corresponding t-tests. Unlike the t-test, the Wilcoxon
test doesn’t assume normality, which is nice. In fact, they don’t make any assumptions about what kind
of distribution is involved: in statistical jargon, this makes them nonparametric tests. While avoiding
the normality assumption is nice, there’s a drawback: the Wilcoxon test is usually less powerful than the
t-test (i.e., higher Type II error rate). I won’t discuss the Wilcoxon tests in as much detail as the t-tests,
but I’ll give you a brief overview.

13.10.1 Two sample Wilcoxon test

I’ll start by describing the two sample Wilcoxon test (also known as the Mann-Whitney test), since
it’s actually simpler than the one sample version. Suppose we’re looking at the scores of 10 people on
some test. Since my imagination has now failed me completely, let’s pretend it’s a “test of awesomeness”,
and there are two groups of people, “A” and “B”. I’m curious to know which group is more awesome. The
data are included in the file awesome.Rdata, and like many of the data sets I’ve been using, it contains
only a single data frame, in this case called awesome. Here’s the data:

> load("awesome.Rdata")

> print( awesome )

scores group

1 6.4 A

2 10.7 A

3 11.9 A

4 7.3 A

5 10.0 A

6 14.5 B

7 10.4 B

8 12.9 B

9 11.7 B

10 13.0 B

As long as there are no ties (i.e., people with the exact same awesomeness score), then the test that we
want to do is surprisingly simple. All we have to do is construct a table that compares every observation
in group A against every observation in group B. Whenever the group A datum is larger, we place a
check mark in the table:

group B
14.5 10.4 12.4 11.7 13.0

6.4 . . . . .
10.7 . X . . .

group A 11.9 . X . X .
7.3 . . . . .
10.0 . . . . .
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We then count up the number of checkmarks. This is our test statistic, W .18 The actual sampling
distribution for W is somewhat complicated, and I’ll skip the details. For our purposes, it’s sufficient to
note that the interpretation of W is qualitatively the same as the interpretation of t or z. That is, if we
want a two-sided test, then we reject the null hypothesis when W is very large or very small; but if we
have a directional (i.e., one-sided) hypothesis, then we only use one or the other.

The structure of the wilcox.test() function should feel very familiar to you by now. When you have
your data organised in terms of an outcome variable and a grouping variable, then you use the formula

and data arguments, so your command looks like this:

> wilcox.test( formula = scores ~ group, data = awesome)

Wilcoxon rank sum test

data: scores by group

W = 3, p-value = 0.05556

alternative hypothesis: true location shift is not equal to 0

Just like we saw with the t.test() function, there is an alternative argument that you can use to switch
between two-sided tests and one-sided tests, plus a few other arguments that we don’t need to worry too
much about at an introductory level. Similarly, the wilcox.test() function allows you to use the x and y

arguments when you have your data stored separately for each group. For instance, suppose we use the
data from the awesome2.Rdata file:

> load( "awesome2.Rdata" )

> score.A

[1] 6.4 10.7 11.9 7.3 10.0

> score.B

[1] 14.5 10.4 12.9 11.7 13.0

When your data are organised like this, then you would use a command like this:

> wilcox.test( x = score.A, y = score.B )

The output that R produces is pretty much the same as last time.

13.10.2 One sample Wilcoxon test

What about the one sample Wilcoxon test (or equivalently, the paired samples Wilcoxon test)?
Suppose I’m interested in finding out whether taking a statistics class has any effect on the happiness of
students. Here’s my data:

> load( "happy.Rdata" )

> print( happiness )

before after change

1 30 6 -24

2 43 29 -14

3 21 11 -10

4 24 31 7

5 23 17 -6

6 40 2 -38

18Actually, there are two different versions of the test statistic; they differ from each other by a constant value. The
version that I’ve described is the one that R calculates.
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7 29 31 2

8 56 21 -35

9 38 8 -30

10 16 21 5

What I’ve measured here is the happiness of each student before taking the class and after taking the
class; the change score is the difference between the two. Just like we saw with the t-test, there’s no
fundamental difference between doing a paired-samples test using before and after, versus doing a one-
sample test using the change scores. As before, the simplest way to think about the test is to construct
a tabulation. The way to do it this time is to take those change scores that are positive valued, and
tabulate them against all the complete sample. What you end up with is a table that looks like this:

all differences
-24 -14 -10 7 -6 -38 2 -35 -30 5

7 . . . X X . X . . X

positive differences 2 . . . . . . X . . .
5 . . . . . . X . . X

Counting up the tick marks this time, we get a test statistic of V “ 7. As before, if our test is two sided,
then we reject the null hypothesis when V is very large or very small. As far of running it in R goes, it’s
pretty much what you’d expect. For the one-sample version, the command you would use is

> wilcox.test( x = happiness$change,

+ mu = 0

+ )

and the output that you get is

Wilcoxon signed rank test

data: happiness$change

V = 7, p-value = 0.03711

alternative hypothesis: true location is not equal to 0

As this shows, we have a significant effect. Evidently, taking a statistics class does have an effect on your
happiness. Switching to a paired samples version of the test won’t give us different answers, of course;
but here’s the command to do it:

> wilcox.test( x = happiness$after,

+ y = happiness$before,

+ paired = TRUE

+ )

13.11

Summary

13.11.1 Key concepts

• A one sample t-test is used to compare a single sample mean against a hypothesised value for the
population mean. (Section 13.2)
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• An independent samples t-test is used to compare the means of two groups, and tests the null
hypothesis that they have the same mean. It comes in two forms: the Student test (Section 13.3)
assumes that the groups have the same standard deviation, the Welch test (Section 13.4) does not.

• A paired samples t-test is used when you have two scores from each person, and you want to test
the null hypothesis that the two scores have the same mean. It is equivalent to taking the difference
between the two scores for each person, and then running a one sample t-test on the difference
scores. (Section 13.5)

• Effect size calculations for the difference between means can be calculated via the Cohen’s d statistic.
(Section 13.8).

• You can check the normality of a sample using QQ plots and the Shapiro-Wilk test. (Section 13.9)

• If your data are non-normal, you can use Wilcoxon tests instead of t-tests. (Section 13.10)
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14. Comparing several means (one-way ANOVA)

This chapter introduces one of the most widely used tools in statistics, known as “the analysis of variance”,
which is usually referred to as ANOVA. The basic technique was developed by Sir Ronald Fisher in the
early 20th century, and it is to him that we owe the rather unfortunate terminology. The term ANOVA
is a little misleading, in two respects. Firstly, although the name of the technique refers to variances,
ANOVA is concerned with investigating differences in means. Secondly, there are several different things
out there that are all referred to as ANOVAs, some of which have only a very tenuous connection to one
another. Later on in the book we’ll encounter a range of different ANOVA methods that apply in quite
different situations, but for the purposes of this chapter we’ll only consider the simplest form of ANOVA,
in which we have several different groups of observations, and we’re interested in finding out whether
those groups differ in terms of some outcome variable of interest. This is the question that is addressed
by a one-way ANOVA. As with all of the chapters in this book, there are quite a few different sources
that I’ve relied upon, but the one stand-out text that I’ve been most heavily influenced by is Sahai and
Ageel (2000). It’s not a good book for beginners, but it’s an excellent book for more advanced readers
who are interested in understanding the mathematics behind ANOVA.

The structure of this chapter is as follows: In Section 14.1 I’ll introduce a fictitious data set that we’ll
use as a running example throughout the chapter. After introducing the data, I’ll describe the mechanics
of how a one-way ANOVA actually works (Section 14.2) and then focus on how you can run one in R

(Section 14.3). These two sections are the core of the chapter. The remainder of the chapter discusses
a range of important topics that inevitably arise when running an ANOVA, namely how to calculate
effect sizes (Section 14.4), post hoc tests and corrections for multiple comparisons (Section 14.5) and
the assumptions that ANOVA relies upon (Section 14.6). We’ll also talk about how to check those
assumptions and some of the things you can do if the assumptions are violated (Sections 14.7 to 14.10).
At the end of the chapter we’ll talk a little about the relationship between ANOVA and other statistical
tools (Section 14.11).

14.1

An illustrative data set

Suppose you’ve become involved in a clinical trial in which you are testing a new antidepressant drug
called Joyzepam. In order to construct a fair test of the drug’s effectiveness, the study involves three
separate drugs to be administered. One is a placebo, and the other is an existing antidepressant /
anti-anxiety drug called Anxifree. A collection of 18 participants with moderate to severe depression
are recruited for your initial testing. Because the drugs are sometimes administered in conjunction with
psychological therapy, your study includes 9 people undergoing cognitive behavioural therapy (CBT)
and 9 who are not. Participants are randomly assigned (doubly blinded, of course) a treatment, such
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that there are 3 CBT people and 3 no-therapy people assigned to each of the 3 drugs. A psychologist
assesses the mood of each person after a 3 month run with each drug: and the overall improvement in
each person’s mood is assessed on a scale ranging from ´5 to `5.

With that as the study design, let’s now look at what we’ve got in the data file:

> load( "clinicaltrial.Rdata" ) # load data

> who( expand = TRUE ) # inspect the workspace

-- Name -- -- Class -- -- Size --

clin.trial data.frame 18 x 3

$drug factor 18

$therapy factor 18

$mood.gain numeric 18

So we have a single data frame called clin.trial, containing three variables; drug, therapy and mood.gain.
Next, let’s print the data frame to get a sense of what the data actually look like.

> print( clin.trial )

drug therapy mood.gain

1 placebo no.therapy 0.5

2 placebo no.therapy 0.3

3 placebo no.therapy 0.1

4 anxifree no.therapy 0.6

5 anxifree no.therapy 0.4

6 anxifree no.therapy 0.2

7 joyzepam no.therapy 1.4

8 joyzepam no.therapy 1.7

9 joyzepam no.therapy 1.3

10 placebo CBT 0.6

11 placebo CBT 0.9

12 placebo CBT 0.3

13 anxifree CBT 1.1

14 anxifree CBT 0.8

15 anxifree CBT 1.2

16 joyzepam CBT 1.8

17 joyzepam CBT 1.3

18 joyzepam CBT 1.4

For the purposes of this chapter, what we’re really interested in is the effect of drug on mood.gain.
The first thing to do is calculate some descriptive statistics and draw some graphs. In Chapter 5 we
discussed a variety of different functions that can be used for this purpose. For instance, we can use the
xtabs() function to see how many people we have in each group:

> xtabs( ~drug, clin.trial )

drug

placebo anxifree joyzepam

6 6 6

Similarly, we can use the aggregate() function to calculate means and standard deviations for the
mood.gain variable broken down by which drug was administered:

> aggregate( mood.gain ~ drug, clin.trial, mean )

drug mood.gain

1 placebo 0.4500000

2 anxifree 0.7166667
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Figure 14.1: Average mood gain as a function of drug administered. Error bars depict 95% confidence
intervals associated with each of the group means.
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3 joyzepam 1.4833333

> aggregate( mood.gain ~ drug, clin.trial, sd )

drug mood.gain

1 placebo 0.2810694

2 anxifree 0.3920034

3 joyzepam 0.2136976

Finally, we can use plotmeans() from the gplots package to produce a pretty picture.

> library(gplots)

> plotmeans( formula = mood.gain ~ drug, # plot mood.gain by drug

+ data = clin.trial, # the data frame

+ xlab = "Drug Administered", # x-axis label

+ ylab = "Mood Gain", # y-axis label

+ n.label = FALSE # don’t display sample size

+ )

The results are shown in Figure 14.1, which plots the average mood gain for all three conditions; error
bars show 95% confidence intervals. As the plot makes clear, there is a larger improvement in mood
for participants in the Joyzepam group than for either the Anxifree group or the placebo group. The
Anxifree group shows a larger mood gain than the control group, but the difference isn’t as large.

The question that we want to answer is: are these difference “real”, or are they just due to chance?
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14.2

How ANOVA works

In order to answer the question posed by our clinical trial data, we’re going to run a one-way ANOVA.
As usual, I’m going to start by showing you how to do it the hard way, building the statistical tool from
the ground up and showing you how you could do it in R if you didn’t have access to any of the cool
built-in ANOVA functions. And, as always, I hope you’ll read it carefully, try to do it the long way once
or twice to make sure you really understand how ANOVA works, and then – once you’ve grasped the
concept – never ever do it this way again.

The experimental design that I described in the previous section strongly suggests that we’re interested
in comparing the average mood change for the three different drugs. In that sense, we’re talking about an
analysis similar to the t-test (Chapter 13), but involving more than two groups. If we let µP denote the
population mean for the mood change induced by the placebo, and let µA and µJ denote the corresponding
means for our two drugs, Anxifree and Joyzepam, then the (somewhat pessimistic) null hypothesis that
we want to test is that all three population means are identical: that is, neither of the two drugs is any
more effective than a placebo. Mathematically, we write this null hypothesis like this:

H0 : it is true that µP “ µA “ µJ

As a consequence, our alternative hypothesis is that at least one of the three different treatments is
different from the others. It’s a little trickier to write this mathematically, because (as we’ll discuss)
there are quite a few different ways in which the null hypothesis can be false. So for now we’ll just write
the alternative hypothesis like this:

H1 : it is not true that µP “ µA “ µJ

This null hypothesis is a lot trickier to test than any of the ones we’ve seen previously. How shall we
do it? A sensible guess would be to “do an ANOVA”, since that’s the title of the chapter, but it’s not
particularly clear why an “analysis of variances” will help us learn anything useful about the means. In
fact, this is one of the biggest conceptual difficulties that people have when first encountering ANOVA.
To see how this works, I find it most helpful to start by talking about variances. In fact, what I’m going
to do is start by playing some mathematical games with the formula that describes the variance. That
is, we’ll start out by playing around with variances, and it will turn out that this gives us a useful tool
for investigating means.

14.2.1 Two formulas for the variance of Y

Firstly, let’s start by introducing some notation. We’ll use G to refer to the total number of groups.
For our data set, there are three drugs, so there are G “ 3 groups. Next, we’ll use N to refer to the
total sample size: there are a total of N “ 18 people in our data set. Similarly, let’s use Nk to denote
the number of people in the k-th group. In our fake clinical trial, the sample size is Nk “ 6 for all three
groups.1 Finally, we’ll use Y to denote the outcome variable: in our case, Y refers to mood change.
Specifically, we’ll use Yik to refer to the mood change experienced by the i-th member of the k-th group.
Similarly, we’ll use Ȳ to be the average mood change, taken across all 18 people in the experiment, and
Ȳk to refer to the average mood change experienced by the 6 people in group k.

1When all groups have the same number of observations, the experimental design is said to be “balanced”. Balance isn’t
such a big deal for one-way ANOVA, which is the topic of this chapter. It becomes more important when you start doing
more complicated ANOVAs.
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Excellent. Now that we’ve got our notation sorted out, we can start writing down formulas. To start
with, let’s recall the formula for the variance that we used in Section 5.2, way back in those kinder days
when we were just doing descriptive statistics. The sample variance of Y is defined as follows:

VarpY q “ 1

N

G
ÿ

k“1

Nk
ÿ

i“1

`

Yik ´ Ȳ
˘2

This formula looks pretty much identical to the formula for the variance in Section 5.2. The only difference
is that this time around I’ve got two summations here: I’m summing over groups (i.e., values for k) and
over the people within the groups (i.e., values for i). This is purely a cosmetic detail: if I’d instead used
the notation Yp to refer to the value of the outcome variable for person p in the sample, then I’d only
have a single summation. The only reason that we have a double summation here is that I’ve classified
people into groups, and then assigned numbers to people within groups.

A concrete example might be useful here. Let’s consider this table, in which we have a total of N “ 5
people sorted into G “ 2 groups. Arbitrarily, let’s say that the “cool” people are group 1, and the
“uncool” people are group 2, and it turns out that we have three cool people (N1 “ 3) and two uncool
people (N2 “ 2).

name person group group num. index in group grumpiness
p k i Yik or Yp

Ann 1 cool 1 1 20
Ben 2 cool 1 2 55
Cat 3 cool 1 3 21
Dan 4 uncool 2 1 91
Egg 5 uncool 2 2 22

Notice that I’ve constructed two different labelling schemes here. We have a “person” variable p, so it
would be perfectly sensible to refer to Yp as the grumpiness of the p-th person in the sample. For instance,
the table shows that Dan is the four so we’d say p “ 4. So, when talking about the grumpiness Y of this
“Dan” person, whoever he might be, we could refer to his grumpiness by saying that Yp “ 91, for person
p “ 4 that is. However, that’s not the only way we could refer to Dan. As an alternative we could we
could note that Dan belongs to the “uncool” group (k “ 2), and is in fact the first person listed in the
uncool group (i “ 1). So it’s equally valid to refer to Dan’s grumpiness by saying that Yik “ 91, where
k “ 2 and i “ 1. In other words, each person p corresponds to a unique ik combination, and so the
formula that I gave above is actually identical to our original formula for the variance, which would be

VarpY q “ 1

N

N
ÿ

p“1

`

Yp ´ Ȳ
˘2

In both formulas, all we’re doing is summing over all of the observations in the sample. Most of the
time we would just use the simpler Yp notation: the equation using Yp is clearly the simpler of the two.
However, when doing an ANOVA it’s important to keep track of which participants belong in which
groups, and we need to use the Yik notation to do this.

14.2.2 From variances to sums of squares

Okay, now that we’ve got a good grasp on how the variance is calculated, let’s define something called
the total sum of squares, which is denoted SStot. This is very simple: instead of averaging the squared
deviations, which is what we do when calculating the variance, we just add them up. So the formula for
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the total sum of squares is almost identical to the formula for the variance:

SStot “
G
ÿ

k“1

Nk
ÿ

i“1

`

Yik ´ Ȳ
˘2

When we talk about analysing variances in the context of ANOVA, what we’re really doing is working
with the total sums of squares rather than the actual variance. One very nice thing about the total sum
of squares is that we can break it up into two different kinds of variation. Firstly, we can talk about the
within-group sum of squares, in which we look to see how different each individual person is from
their own group mean:

SSw “
G
ÿ

k“1

Nk
ÿ

i“1

`

Yik ´ Ȳk

˘2

where Ȳk is a group mean. In our example, Ȳk would be the average mood change experienced by those
people given the k-th drug. So, instead of comparing individuals to the average of all people in the
experiment, we’re only comparing them to those people in the the same group. As a consequence, you’d
expect the value of SSw to be smaller than the total sum of squares, because it’s completely ignoring any
group differences – that is, the fact that the drugs (if they work) will have different effects on people’s
moods.

Next, we can define a third notion of variation which captures only the differences between groups.
We do this by looking at the differences between the group means Ȳk and grand mean Ȳ . In order to
quantify the extent of this variation, what we do is calculate the between-group sum of squares:

SSb “
G
ÿ

k“1

Nk
ÿ

i“1

`

Ȳk ´ Ȳ
˘2

“
G
ÿ

k“1

Nk

`

Ȳk ´ Ȳ
˘2

It’s not too difficult to show that the total variation among people in the experiment SStot is actually
the sum of the differences between the groups SSb and the variation inside the groups SSw. That is:

SSw ` SSb “ SStot

Yay.

Okay, so what have we found out? We’ve discovered that the total variability associated with the
outcome variable (SStot) can be mathematically carved up into the sum of “the variation due to the
differences in the sample means for the different groups” (SSb) plus “all the rest of the variation” (SSw).
How does that help me find out whether the groups have different population means? Um. Wait. Hold
on a second... now that I think about it, this is exactly what we were looking for. If the null hypothesis
is true, then you’d expect all the sample means to be pretty similar to each other, right? And that would
imply that you’d expect SSb to be really small, or at least you’d expect it to be a lot smaller than the
“the variation associated with everything else”, SSw. Hm. I detect a hypothesis test coming on...

14.2.3 From sums of squares to the F -test

As we saw in the last section, the qualitative idea behind ANOVA is to compare the two sums of
squares values SSb and SSw to each other: if the between-group variation is SSb is large relative to the
within-group variation SSw then we have reason to suspect that the population means for the different
groups aren’t identical to each other. In order to convert this into a workable hypothesis test, there’s
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Between−group variation

(i.e., differences among group means)
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Within−group variation

(i.e., deviations from group means)

(a) (b)

Figure 14.2: Graphical illustration of “between groups” variation (panel a) and “within groups” variation
(panel b). On the left, the arrows show the differences in the group means; on the right, the arrows
highlight the variability within each group.
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a little bit of “fiddling around” needed. What I’ll do is first show you what we do to calculate our test
statistic – which is called an F ratio – and then try to give you a feel for why we do it this way.

In order to convert our SS values into an F -ratio, the first thing we need to calculate is the degrees
of freedom associated with the SSb and SSw values. As usual, the degrees of freedom corresponds to
the number of unique “data points” that contribute to a particular calculation, minus the number of
“constraints” that they need to satisfy. For the within-groups variability, what we’re calculating is the
variation of the individual observations (N data points) around the group means (G constraints). In
contrast, for the between groups variability, we’re interested in the variation of the group means (G data
points) around the grand mean (1 constraint). Therefore, the degrees of freedom here are:

dfb “ G´ 1
dfw “ N ´G

Okay, that seems simple enough. What we do next is convert our summed squares value into a “mean
squares” value, which we do by dividing by the degrees of freedom:

MSb “ SSb
dfb

MSw “ SSw
dfw

Finally, we calculate the F -ratio by dividing the between-groups MS by the within-groups MS:

F “ MSb
MSw

At a very general level, the intuition behind the F statistic is straightforward: bigger values of F means
that the between-groups variation is large, relative to the within-groups variation. As a consequence,
the larger the value of F , the more evidence we have against the null hypothesis. But how large does
F have to be in order to actually reject H0? In order to understand this, you need a slightly deeper
understanding of what ANOVA is and what the mean squares values actually are.

The next section discusses that in a bit of detail, but for readers that aren’t interested in the details
of what the test is actually measuring, I’ll cut to the chase. In order to complete our hypothesis test, we
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Table 14.1: All of the key quantities involved in an ANOVA, organised into a “standard” ANOVA
table. The formulas for all quantities (except the p-value, which has a very ugly formula and would be
nightmarishly hard to calculate without a computer) are shown.

df sum of squares mean squares F -statistic p-value

between groups dfb “ G ´ 1 SSb “
G
ÿ

k“1

NkpȲk ´ Ȳ q2 MSb “
SSb

dfb
F “

MSb

MSw

[complicated]

within groups dfw “ N ´ G SSw “
G
ÿ

k“1

Nk
ÿ

i“1

pYik ´ Ȳkq2 MSw “
SSw

dfw
- -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

need to know the sampling distribution for F if the null hypothesis is true. Not surprisingly, the sampling
distribution for the F statistic under the null hypothesis is an F distribution. If you recall back to our
discussion of the F distribution in Chapter 9, the F distribution has two parameters, corresponding to
the two degrees of freedom involved: the first one df1 is the between groups degrees of freedom dfb, and
the second one df2 is the within groups degrees of freedom dfw.

A summary of all the key quantities involved in a one-way ANOVA, including the formulas showing
how they are calculated, is shown in Table 14.1.

14.2.4 The model for the data and the meaning of F

At a fundamental level, ANOVA is a competition between two different statistical models, H0 and
H1. When I described the null and alternative hypotheses at the start of the section, I was a little
imprecise about what these models actually are. I’ll remedy that now, though you probably won’t like
me for doing so. If you recall, our null hypothesis was that all of the group means are identical to one
another. If so, then a natural way to think about the outcome variable Yik is to describe individual scores
in terms of a single population mean µ, plus the deviation from that population mean. This deviation is
usually denoted ǫik and is traditionally called the error or residual associated with that observation. Be
careful though: just like we saw with the word “significant”, the word “error” has a technical meaning
in statistics that isn’t quite the same as its everyday English definition. In everyday language, “error”
implies a mistake of some kind; in statistics, it doesn’t (or at least, not necessarily). With that in mind,
the word “residual” is a better term than the word “error”. In statistics, both words mean “leftover
variability”: that is, “stuff” that the model can’t explain. In any case, here’s what the null hypothesis
looks like when we write it as a statistical model:

Yik “ µ` ǫik

where we make the assumption (discussed later) that the residual values ǫik are normally distributed,
with mean 0 and a standard deviation σ that is the same for all groups. To use the notation that we
introduced in Chapter 9 we would write this assumption like this:

ǫik „ Normalp0, σ2q

What about the alternative hypothesis, H1? The only difference between the null hypothesis and
the alternative hypothesis is that we allow each group to have a different population mean. So, if we
let µk denote the population mean for the k-th group in our experiment, then the statistical model
corresponding to H1 is:

Yik “ µk ` ǫik
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where, once again, we assume that the error terms are normally distributed with mean 0 and standard
deviation σ. That is, the alternative hypothesis also assumes that ǫ „ Normalp0, σ2q

Okay, now that we’ve described the statistical models underpinning H0 and H1 in more detail, it’s
now pretty straightforward to say what the mean square values are measuring, and what this means for
the interpretation of F . I won’t bore you with the proof of this, but it turns out that the within-groups
mean square, MSw, can be viewed as an estimator (in the technical sense: Chapter 10) of the error
variance σ2. The between-groups mean square MSb is also an estimator; but what it estimates is the
error variance plus a quantity that depends on the true differences among the group means. If we call
this quantity Q, then we can see that the F -statistic is basically2

F “ Q̂` σ̂2

σ̂2

where the true value Q “ 0 if the null hypothesis is true, and Q ą 0 if the alternative hypothesis is true
(e.g. Hays, 1994, ch. 10). Therefore, at a bare minimum the F value must be larger than 1 to have any
chance of rejecting the null hypothesis. Note that this doesn’t mean that it’s impossible to get an F -value
less than 1. What it means is that, if the null hypothesis is true the sampling distribution of the F ratio
has a mean of 1,3 and so we need to see F -values larger than 1 in order to safely reject the null.

To be a bit more precise about the sampling distribution, notice that if the null hypothesis is true,
both MSb and MSw are estimators of the variance of the residuals ǫik. If those residuals are normally
distributed, then you might suspect that the estimate of the variance of ǫik is chi-square distributed...
because (as discussed in Section 9.5) that’s what a chi-square distribution is: it’s what you get when you
square a bunch of normally-distributed things and add them up. And since the F distribution is (again,
by definition) what you get when you take the ratio between two things that are χ2 distributed... we
have our sampling distribution. Obviously, I’m glossing over a whole lot of stuff when I say this, but in
broad terms, this really is where our sampling distribution comes from.

14.2.5 A worked example

{TODO} recheck all the numbers here

The previous discussion was fairly abstract, and a little on the technical side, so I think that at this
point it might be useful to see a worked example. For that, let’s go back to the clinical trial data that
I introduced at the start of the chapter. The descriptive statistics that we calculated at the beginning
tell us our group means: an average mood gain of 0.45 for the placebo, 0.72 for Anxifree, and 1.48
for Joyzepam. With that in mind, let’s party like it’s 1899 4 and start doing some pencil and paper
calculations. I’ll only do this for the first 5 observations, because it’s not bloody 1899 and I’m very lazy.
Let’s start by calculating SSw, the within-group sums of squares. First, let’s draw up a nice table to help

2In a later versions I’m intending to expand on this. But because I’m writing in a rush, and am already over my
deadlines, I’ll just briefly note that if you read ahead to Chapter 16 and look at how the “treatment effect” at level k of a
factor is defined in terms of the αk values (see Section 16.2), it turns out that Q refers to a weighted mean of the squared

treatment effects, Q “ p
řG

k“1
Nkα

2

k
q{pG ´ 1q.

3Or, if we want to be sticklers for accuracy, 1 ` 2

df2´2
.

4Or, to be precise, party like “it’s 1899 and we’ve got no friends and nothing better to do with our time than do some
calculations that wouldn’t have made any sense in 1899 because ANOVA didn’t exist until about the 1920s”.
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us with our calculations...

group outcome
k Yik

placebo 0.5
placebo 0.3
placebo 0.1
anxifree 0.6
anxifree 0.4

At this stage, the only thing I’ve included in the table is the raw data itself: that is, the grouping variable
(i.e., drug) and outcome variable (i.e. mood.gain) for each person. Note that the outcome variable here
corresponds to the Yik value in our equation previously. The next step in the calculation is to write
down, for each person in the study, the corresponding group mean; that is, Ȳk. This is slightly repetitive,
but not particularly difficult since we already calculated those group means when doing our descriptive
statistics:

group outcome group mean

k Yik Ȳk

placebo 0.5 0.45

placebo 0.3 0.45

placebo 0.1 0.45

anxifree 0.6 0.72

anxifree 0.4 0.72

Now that we’ve written those down, we need to calculate – again for every person – the deviation from
the corresponding group mean. That is, we want to subtract Yik ´ Ȳk. After we’ve done that, we need
to square everything. When we do that, here’s what we get: .

group outcome group mean dev. from group mean squared deviation

k Yik Ȳk Yik ´ Ȳk pYik ´ Ȳkq2

placebo 0.5 0.45 0.05 0.0025

placebo 0.3 0.45 -0.15 0.0225

placebo 0.1 0.45 -0.35 0.1225

anxifree 0.6 0.72 -0.12 0.0136

anxifree 0.4 0.72 -0.32 0.1003

The last step is equally straightforward. In order to calculate the within-group sum of squares, we just
add up the squared deviations across all observations:

SSw “ 0.0025` 0.0225` 0.1225` 0.0136` 0.1003
“ 0.2614

Of course, if we actually wanted to get the right answer, we’d need to do this for all 18 observations in the
data set, not just the first five. We could continue with the pencil and paper calculations if we wanted
to, but it’s pretty tedious. Alternatively, it’s not too hard to get R to do it. Here’s how:

> outcome <- clin.trial$mood.gain

> group <- clin.trial$drug

> gp.means <- tapply(outcome,group,mean)

> gp.means <- gp.means[group]

> dev.from.gp.means <- outcome - gp.means

> squared.devs <- dev.from.gp.means ^2

It might not be obvious from inspection what these commands are doing: as a general rule, the human
brain seems to just shut down when faced with a big block of programming. However, I strongly suggest
that – if you’re like me and tend to find that the mere sight of this code makes you want to look away
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and see if there’s any beer left in the fridge or a game of footy on the telly – you take a moment and look
closely at these commands one at a time. Every single one of these commands is something you’ve seen
before somewhere else in the book. There’s nothing novel about them (though I’ll have to admit that
the tapply() function takes a while to get a handle on), so if you’re not quite sure how these commands
work, this might be a good time to try playing around with them yourself, to try to get a sense of what’s
happening. On the other hand, if this does seem to make sense, then you won’t be all that surprised at
what happens when I wrap these variables in a data frame, and print it out...

> Y <- data.frame( group, outcome, gp.means,

+ dev.from.gp.means, squared.devs )

> print(Y, digits = 2)

group outcome gp.means dev.from.gp.means squared.devs

1 placebo 0.5 0.45 0.050 0.0025

2 placebo 0.3 0.45 -0.150 0.0225

3 placebo 0.1 0.45 -0.350 0.1225

4 anxifree 0.6 0.72 -0.117 0.0136

5 anxifree 0.4 0.72 -0.317 0.1003

BLAH BLAH BLAH

16 joyzepam 1.8 1.48 0.317 0.1003

17 joyzepam 1.3 1.48 -0.183 0.0336

18 joyzepam 1.4 1.48 -0.083 0.0069

If you compare this output to the contents of the table I’ve been constructing by hand, you can see that
R has done exactly the same calculations that I was doing, and much faster too. So, if we want to finish
the calculations of the within-group sum of squares in R, we just ask for the sum() of the squared.devs

variable:

> SSw <- sum( squared.devs )

> print( SSw )

[1] 1.39

Obviously, this isn’t the same as what I calculated, because R used all 18 observations. But if I’d typed
sum( squared.devs[1:5] ) instead, it would have given the same answer that I got earlier.

Okay. Now that we’ve calculated the within groups variation, SSw, it’s time to turn our attention
to the between-group sum of squares, SSb. The calculations for this case are very similar. The main
difference is that, instead of calculating the differences between an observation Yik and a group mean Ȳk

for all of the observations, we calculate the differences between the group means Ȳk and the grand mean
Ȳ (in this case 0.88) for all of the groups...

group group mean grand mean deviation squared deviations
k Ȳk Ȳ Ȳk ´ Ȳ pȲk ´ Ȳ q2

placebo 0.45 0.88 -0.43 0.18
anxifree 0.72 0.88 -0.16 0.03
joyzepam 1.48 0.88 0.60 0.36

However, for the between group calculations we need to multiply each of these squared deviations by
Nk, the number of observations in the group. We do this because every observation in the group (all Nk

of them) is associated with a between group difference. So if there are six people in the placebo group,
and the placebo group mean differs from the grand mean by 0.19, then the total between group variation
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associated with these six people is 6ˆ 0.16 “ 1.14. So we have to extend our little table of calculations...

group ... squared deviations sample size weighted squared dev
k ... pȲk ´ Ȳ q2 Nk NkpȲk ´ Ȳ q2

placebo ... 0.18 6 1.11
anxifree ... 0.03 6 0.16
joyzepam ... 0.36 6 2.18

And so now our between group sum of squares is obtained by summing these “weighted squared devia-
tions” over all three groups in the study:

SSb “ 1.11` 0.16` 2.18
“ 3.45

As you can see, the between group calculations are a lot shorter, so you probably wouldn’t usually want
to bother using R as your calculator. However, if you did decide to do so, here’s one way you could do it:

> gp.means <- tapply(outcome,group,mean)

> grand.mean <- mean(outcome)

> dev.from.grand.mean <- gp.means - grand.mean

> squared.devs <- dev.from.grand.mean ^2

> gp.sizes <- tapply(outcome,group,length)

> wt.squared.devs <- gp.sizes * squared.devs

Again, I won’t actually try to explain this code line by line, but – just like last time – there’s nothing in
there that we haven’t seen in several places elsewhere in the book, so I’ll leave it as an exercise for you
to make sure you understand it. Once again, we can dump all our variables into a data frame so that we
can print it out as a nice table:

> Y <- data.frame( gp.means, grand.mean, dev.from.grand.mean,

+ squared.devs, gp.sizes, wt.squared.devs )

> print(Y, digits = 2)

gp.means grand.mean dev.from.grand.mean squared.devs gp.sizes wt.squared.devs

placebo 0.45 0.88 -0.43 0.188 6 1.13

anxifree 0.72 0.88 -0.17 0.028 6 0.17

joyzepam 1.48 0.88 0.60 0.360 6 2.16

Clearly, these are basically the same numbers that we got before. There are a few tiny differences, but
that’s only because the hand-calculated versions have some small errors caused by the fact that I rounded
all my numbers to 2 decimal places at each step in the calculations, whereas R only does it at the end
(obviously, Rs version is more accurate). Anyway, here’s the R command showing the final step:

> SSb <- sum( wt.squared.devs )

> print( SSb )

[1] 3.453333

which is (ignoring the slight differences due to rounding error) the same answer that I got when doing
things by hand.

Now that we’ve calculated our sums of squares values, SSb and SSw, the rest of the ANOVA is pretty
painless. The next step is to calculate the degrees of freedom. Since we have G “ 3 groups and N “ 18
observations in total, our degrees of freedom can be calculated by simple subtraction:

dfb “ G´ 1 “ 2
dfw “ N ´G “ 15
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Next, since we’ve now calculated the values for the sums of squares and the degrees of freedom, for both
the within-groups variability and the between-groups variability, we can obtain the mean square values
by dividing one by the other:

MSb “ SSb
dfb

“ 3.45

2
“ 1.73

MSw “ SSw
dfw

“ 1.39

15
“ 0.09

We’re almost done. The mean square values can be used to calculate the F -value, which is the test
statistic that we’re interested in. We do this by dividing the between-groups MS value by the and
within-groups MS value.

F “ MSb
MSw

“ 1.73

0.09
“ 18.6

Woohooo! This is terribly exciting, yes? Now that we have our test statistic, the last step is to find out
whether the test itself gives us a significant result. As discussed in Chapter 11, what we really ought to do
is choose an α level (i.e., acceptable Type I error rate) ahead of time, construct our rejection region, etc
etc. But in practice it’s just easier to directly calculate the p-value. Back in the “old days”, what we’d
do is open up a statistics textbook or something and flick to the back section which would actually have
a huge lookup table... that’s how we’d “compute” our p-value, because it’s too much effort to do it any
other way. However, since we have access to R, I’ll use the pf() function to do it instead. Now, remember
that I explained earlier that the F -test is always one sided? And that we only reject the null hypothesis
for very large F -values? That means we’re only interested in the upper tail of the F -distribution. The
command that you’d use here would be this...

> pf( 18.6, df1 = 2, df2 = 15, lower.tail = FALSE)

[1] 8.6727e-05

Therefore, our p-value comes to 0.0000867, or 8.67 ˆ 10´5 in scientific notation. So, unless we’re being
extremely conservative about our Type I error rate, we’re pretty much guaranteed to reject the null
hypothesis.

At this point, we’re basically done. Having completed our calculations, it’s traditional to organise all
these numbers into an ANOVA table like the one in Table 14.1. For our clinical trial data, the ANOVA
table would look like this:

df sum of squares mean squares F -statistic p-value

between groups 2 3.45 1.73 18.6 8.67ˆ 10´5

within groups 15 1.39 0.09 - -

These days, you’ll probably never have much reason to want to construct one of these tables yourself, but
you will find that almost all statistical software (R included) tends to organise the output of an ANOVA
into a table like this, so it’s a good idea to get used to reading them. However, although the software
will output a full ANOVA table, there’s almost never a good reason to include the whole table in your
write up. A pretty standard way of reporting this result would be to write something like this:

One-way ANOVA showed a significant effect of drug on mood gain (F p2, 15q “ 18.6, p ă .001).

Sigh. So much work for one short sentence.
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14.3

Running an ANOVA in R

I’m pretty sure I know what you’re thinking after reading the last section, especially if you followed my
advice and tried typing all the commands in yourself.... doing the ANOVA calculations yourself sucks.
There’s quite a lot of calculations that we needed to do along the way, and it would be tedious to have
to do this over and over again every time you wanted to do an ANOVA. One possible solution to the
problem would be to take all these calculations and turn them into some R functions yourself. You’d still
have to do a lot of typing, but at least you’d only have to do it the one time: once you’ve created the
functions, you can reuse them over and over again. However, writing your own functions is a lot of work,
so this is kind of a last resort. Besides, it’s much better if someone else does all the work for you...

14.3.1 Using the ❛♦✈✭✮ function to specify your ANOVA

To make life easier for you, R provides a function called aov(), which – obviously – is an acronym of
“Analysis Of Variance”.5 If you type ?aov and have a look at the help documentation, you’ll see that
there are several arguments to the aov() function, but the only two that we’re interested in are formula

and data. As we’ve seen in a few places previously, the formula argument is what you use to specify the
outcome variable and the grouping variable, and the data argument is what you use to specify the data
frame that stores these variables. In other words, to do the same ANOVA that I laboriously calculated
in the previous section, I’d use a command like this:

> aov( formula = mood.gain ~ drug, data = clin.trial )

Actually, that’s not quite the whole story, as you’ll see as soon as you look at the output from this
command, which I’ve hidden for the moment in order to avoid confusing you. Before we go into specifics,
I should point out that either of these commands will do the same thing:

> aov( clin.trial$mood.gain ~ clin.trial$drug )

> aov( mood.gain ~ drug, clin.trial )

In the first command, I didn’t specify a data set, and instead relied on the $ operator to tell R how to
find the variables. In the second command, I dropped the argument names, which is okay in this case
because formula is the first argument to the aov() function, and data is the second one. Regardless of how
I specify the ANOVA, I can assign the output of the aov() function to a variable, like this for example:

> my.anova <- aov( mood.gain ~ drug, clin.trial )

This is almost always a good thing to do, because there’s lots of useful things that we can do with the
my.anova variable. So let’s assume that it’s this last command that I used to specify the ANOVA that
I’m trying to run, and as a consequence I have this my.anova variable sitting in my workspace, waiting
for me to do something with it...

14.3.2 Understanding what the ❛♦✈✭✮ function produces

Now that we’ve seen how to use the aov() function to create my.anova we’d better have a look at what
this variable actually is. The first thing to do is to check to see what class of variable we’ve created, since

5Actually, it also provides a function called anova(), but that works a bit differently, so let’s just ignore it for now.
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it’s kind of interesting in this case. When we do that...

> class( my.anova )

[1] "aov" "lm"

... we discover that my.anova actually has two classes! The first class tells us that it’s an aov (analysis
of variance) object, but the second tells us that it’s also an lm (linear model) object. Later on, we’ll see
that this reflects a pretty deep statistical relationship between ANOVA and regression (Chapter 15) and
it means that any function that exists in R for dealing with regressions can also be applied to aov objects,
which is neat; but I’m getting ahead of myself. For now, I want to note that what we’ve created is an
aov object, and to also make the point that aov objects are actually rather complicated beasts. I won’t
be trying to explain everything about them, since it’s way beyond the scope of an introductory statistics
subject, but to give you a tiny hint of some of the stuff that R stores inside an aov object, let’s ask it to
print out the names() of all the stored quantities...

> names( my.anova )

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "contrasts"

[10] "xlevels" "call" "terms"

[13] "model"

As we go through the rest of the book, I hope that a few of these will become a little more obvious to
you, but right now that’s going to look pretty damned opaque. That’s okay. You don’t need to know any
of the details about it right now, and most of it you don’t need at all... what you do need to understand
is that the aov() function does a lot of calculations for you, not just the basic ones that I outlined in the
previous sections. What this means is that it’s generally a good idea to create a variable like my.anova

that stores the output of the aov() function... because later on, you can use my.anova as an input to lots
of other functions: those other functions can pull out bits and pieces from the aov object, and calculate
various other things that you might need.

Right then. The simplest thing you can do with an aov object is to print() it out. When we do that,
it shows us a few of the key quantities of interest:

> print( my.anova )

Call:

aov(formula = mood.gain ~ drug, data = clin.trial)

Terms:

drug Residuals

Sum of Squares 3.4533 1.3917

Deg. of Freedom 2 15

Residual standard error: 0.30459

Estimated effects may be unbalanced

Specificially, it prints out a reminder of the command that you used when you called aov() in the first
place, shows you the sums of squares values, the degrees of freedom, and a couple of other quantities that
we’re not really interested in right now. Notice, however, that R doesn’t use the names “between-group”
and “within-group”. Instead, it tries to assign more meaningful names: in our particular example, the
between groups variance corresponds to the effect that the drug has on the outcome variable; and the
within groups variance is corresponds to the “leftover” variability, so it calls that the residuals. If we
compare these numbers to the numbers that I calculated by hand in Section 14.2.5, you can see that
they’re identical... the between groups sums of squares is SSb “ 3.45, the within groups sums of squares
is SSw “ 1.39, and the degrees of freedom are 2 and 15 repectively.
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14.3.3 Running the hypothesis tests for the ANOVA

Okay, so we’ve verified that my.anova seems to be storing a bunch of the numbers that we’re looking
for, but the print() function didn’t quite give us the output that we really wanted. Where’s the F -value?
The p-value? These are the most important numbers in our hypothesis test, but the print() function
doesn’t provide them. To get those numbers, we need to use a different function. Instead of asking R to
print() out the aov object, we should have asked for a summary() of it.6 When we do that...

> summary( my.anova )

Df Sum Sq Mean Sq F value Pr(>F)

drug 2 3.45 1.727 18.6 8.6e-05 ***

Residuals 15 1.39 0.093

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

... we get all of the key numbers that we calculated earlier. We get the sums of squares, the degrees of
freedom, the mean squares, the F -statistic, and the p-value itself. These are all identical to the numbers
that we calculated ourselves when doing it the long and tedious way, and it’s even organised into the same
kind of ANOVA table that I showed in Table 14.1, and then filled out by hand in Section 14.2.5. The
only things that are even slightly different is that some of the row and column names are a bit different.

14.4

Effect size

There’s a few different ways you could measure the effect size in an ANOVA, but the most commonly
used measures are η2 (eta squared) and partial η2. For a one way analysis of variance they’re identical
to each other, so for the moment I’ll just explain η2. The definition of η2 is actually really simple:

η2 “ SSb
SStot

That’s all it is. So when I look at the ANOVA table above, I see that SSb “ 3.45 and SStot “ 3.45`1.39 “
4.84. Thus we get an η2 value of

η2 “ 3.45

4.84
“ 0.71

The interpretation of η2 is equally straightforward: it refers to the proportion of the variability in the
outcome variable (mood.gain) that can be explained in terms of the predictor (drug). A value of η2 “ 0
means that there is no relationship at all between the two, whereas a value of η2 “ 1 means that the
relationship is perfect. Better yet, the η2 value is very closely related to a squared correlation (i.e., r2).
So, if you’re trying to figure out whether a particular value of η2 is big or small, it’s sometimes useful to
remember that

η “
c

SSb
SStot

can be interpreted as if it referred to the magnitude of a Pearson correlation. So in our drugs example,
the η2 value of .71 corresponds to an η value of

?
.71 “ .84. If we think about this as being equivalent to

a correlation of about .84, we’d conclude that the relationship between drug and mood.gain is strong.

The core packages in R don’t include any functions for calculating η2. However, it’s pretty straight-
forward to calculate it directly from the numbers in the ANOVA table. In fact, since I’ve already got the
SSw and SSb variables lying around from my earlier calculations, I can do this:

6It’s worth noting that you can get the same result by using the command anova( my.anova ).
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> SStot <- SSb + SSw # total sums of squares

> eta.squared <- SSb / SStot # eta-squared value

> print( eta.squared )

[1] 0.71276

However, since it can be tedious to do this the long way (especially when we start running more compli-
cated ANOVAs, such as those in Chapter 16) I’ve included an etaSquared() function in the lsr package
which will do it for you. For now, the only argument you need to care about is x, which should be the
aov object corresponding to your ANOVA. When we do this, what we get as output is this:

> etaSquared( x = my.anova )

eta.sq eta.sq.part

drug 0.7127623 0.7127623

The output here shows two different numbers. The first one corresponds to the η2 statistic, precisely as
described above. The second one refers to “partial η2”, which is a somewhat different measure of effect
size that I’ll describe later. For the simple ANOVA that we’ve just run, they’re the same number. But
this won’t always be true once we start running more complicated ANOVAs.

14.5

Multiple comparisons and post hoc tests

Any time you run an ANOVA with more than two groups, and you end up with a significant effect,
the first thing you’ll probably want to ask is which groups are actually different from one another. In
our drugs example, our null hypothesis was that all three drugs (placebo, Anxifree and Joyzepam) have
the exact same effect on mood. But if you think about it, the null hypothesis is actually claiming three
different things all at once here. Specifically, it claims that:

• Your competitor’s drug (Anxifree) is no better than a placebo (i.e., µA “ µP )

• Your drug (Joyzepam) is no better than a placebo (i.e., µJ “ µP )

• Anxifree and Joyzepam are equally effective (i.e., µJ “ µA)

If any one of those three claims is false, then the null hypothesis is also false. So, now that we’ve rejected
our null hypothesis, we’re thinking that at least one of those things isn’t true. But which ones? All three
of these propositions are of interest: you certainly want to know if your new drug Joyzepam is better than
a placebo, and it would be nice to know how well it stacks up against an existing commercial alternative
(i.e., Anxifree). It would even be useful to check the performance of Anxifree against the placebo: even
if Anxifree has already been extensively tested against placebos by other researchers, it can still be very
useful to check that your study is producing similar results to earlier work.

When we characterise the null hypothesis in terms of these three distinct propositions, it becomes
clear that there are eight possible “states of the world” that we need to distinguish between:
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possibility: is µP “ µA? is µP “ µJ? is µA “ µJ? which hypothesis?
1 X X X null
2 X X alternative
3 X X alternative
4 X alternative
5 X X alternative
6 X alternative
7 X alternative
8 alternative

By rejecting the null hypothesis, we’ve decided that we don’t believe that #1 is the true state of the
world. The next question to ask is, which of the other seven possibilities do we think is right? When
faced with this situation, its usually helps to look at the data. For instance, if we look at the plots in
Figure 14.1, it’s tempting to conclude that Joyzepam is better than the placebo and better than Anxifree,
but there’s no real difference between Anxifree and the placebo. However, if we want to get a clearer
answer about this, it might help to run some tests.

14.5.1 Running “pairwise” t-tests

How might we go about solving our problem? Given that we’ve got three separate pairs of means
(placebo versus Anxifree, placebo versus Joyzepam, and Anxifree versus Joyzepam) to compare, what we
could do is run three separate t-tests and see what happens. There’s a couple of ways that we could do
this. One method would be to construct new variables corresponding the groups you want to compare
(e.g., anxifree, placebo and joyzepam), and then run a t-test on these new variables:

> t.test( anxifree, placebo, var.equal = TRUE ) # Student t-test

or, you could use the subset argument in the t.test() function to select only those observations corre-
sponding to one of the two groups we’re interested in:

> t.test( formula = mood.gain ~ drug,

+ data = clin.trial,

+ subset = drug %in% c("placebo","anxifree"),

+ var.equal = TRUE

+ )

See Chapter 7 if you’ve forgotten how the %in% operator works. Regardless of which version we do, R will
print out the results of the t-test, though I haven’t included that output here. If we go on to do this for
all possible pairs of variables, we can look to see which (if any) pairs of groups are significantly different
to each other. This “lots of t-tests idea” isn’t a bad strategy, though as we’ll see later on there are some
problems with it. However, for the moment our bigger problem is that it’s a pain to have to type in such
a long command over and over again: for instance, if your experiment has 10 groups, then you have to
run 45 t-tests. That’s way too much typing.

To help keep the typing to a minimum, R provides a function called pairwise.t.test() that automat-
ically runs all of the t-tests for you. There are three arguments that you need to specify, the outcome
variable x, the group variable g, and the p.adjust.method argument, which “adjusts” the p-value in one
way or another. I’ll explain p-value adjustment in a moment, but for now we can just set p.adjust.method
= "none" since we’re not doing any adjustments. For our example, here’s what we do:

> pairwise.t.test( x = clin.trial$mood.gain, # outcome variable

+ g = clin.trial$drug, # grouping variable
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+ p.adjust.method = "none" # which correction to use?

+ )

Pairwise comparisons using t tests with pooled SD

data: clin.trial$mood.gain and clin.trial$drug

placebo anxifree

anxifree 0.15021 -

joyzepam 3e-05 0.00056

P value adjustment method: none

One thing that bugs me slightly about the pairwise.t.test() function is that you can’t just give it an aov

object, and have it produce this output. After all, I went to all that trouble earlier of getting R to create
the my.anova variable and – as we saw in Section 14.3.2 – R has actually stored enough information inside
it that I should just be able to get it to run all the pairwise tests using my.anova as an input. To that end,
I’ve included a posthocPairwiseT() function in the lsr package that lets you do this. The idea behind
this function is that you can just input the aov object itself,7 and then get the pairwise tests as an output.
As of the current writing, posthocPairwiseT() is actually just a simple way of calling pairwise.t.test()

function, but you should be aware that I intend to make some changes to it later on. Here’s an example:

> posthocPairwiseT( x = my.anova, p.adjust.method = "none" )

Pairwise comparisons using t tests with pooled SD

data: mood.gain and drug

placebo anxifree

anxifree 0.15021 -

joyzepam 3e-05 0.00056

P value adjustment method: none

In later versions, I plan to add more functionality (e.g., adjusted confidence intervals), but for now I think
it’s at least kind of useful. To see why, let’s suppose you’ve run your ANOVA and stored the results in
my.anova, and you’re happy using the Holm correction (the default method in pairwise.t.test(), which
I’ll explain this in a moment). In that case, all you have to do is type this:

> posthocPairwiseT( my.anova )

and R will output the test results. Much more convenient, I think.

14.5.2 Corrections for multiple testing

In the previous section I hinted that there’s a problem with just running lots and lots of t-tests. The
concern is that when running these analyses, what we’re doing is going on a “fishing expedition”: we’re
running lots and lots of tests without much theoretical guidance, in the hope that some of them come

7I should point out that there are other functions in R for running multiple comparisons, and at least one of them works
this way: the TukeyHSD() function takes an aov object as its input, and outputs Tukey’s “honestly significant difference”
tests. I talk about Tukey’s HSD in Chapter 16.

- 431 -



up significant. This kind of theory-free search for group differences is referred to as post hoc analysis
(“post hoc” being Latin for “after this”).8

It’s okay to run post hoc analyses, but a lot of care is required. For instance, the analysis that I ran
in the previous section is actually pretty dangerous: each individual t-test is designed to have a 5% Type
I error rate (i.e., α “ .05), and I ran three of these tests. Imagine what would have happened if my
ANOVA involved 10 different groups, and I had decided to run 45 “post hoc” t-tests to try to find out
which ones were significantly different from each other, you’d expect 2 or 3 of them to come up significant
by chance alone. As we saw in Chapter 11, the central organising principle behind null hypothesis testing
is that we seek to control our Type I error rate, but now that I’m running lots of t-tests at once, in order
to determine the source of my ANOVA results, my actual Type I error rate across this whole family of
tests has gotten completely out of control.

The usual solution to this problem is to introduce an adjustment to the p-value, which aims to control
the total error rate across the family of tests (see Shaffer, 1995). An adjustment of this form, which
is usually (but not always) applied because one is doing post hoc analysis, is often referred to as a
correction for multiple comparisons, though it is sometimes referred to as “simultaneous inference”.
In any case, there are quite a few different ways of doing this adjustment. I’ll discuss a few of them in
this section and in Section 16.8, but you should be aware that there are many other methods out there
(see, e.g., Hsu, 1996).

14.5.3 Bonferroni corrections

The simplest of these adjustments is called the Bonferroni correction (Dunn, 1961), and it’s very
very simple indeed. Suppose that my post hoc analysis consists of m separate tests, and I want to ensure
that the total probability of making any Type I errors at all is at most α.9 If so, then the Bonferroni
correction just says “multiply all your raw p-values by m”. If we let p denote the original p-value, and
let p1

j be the corrected value, then the Bonferroni correction tells that:

p1 “ mˆ p

And therefore, if you’re using the Bonferroni correction, you would reject the null hypothesis if p1 ă α.
The logic behind this correction is very straightforward. We’re doing m different tests; so if we arrange
it so that each test has a Type I error rate of at most α{m, then the total Type I error rate across these
tests cannot be larger than α. That’s pretty simple, so much so that in the original paper, the author
writes:

The method given here is so simple and so general that I am sure it must have been used
before this. I do not find it, however, so can only conclude that perhaps its very simplicity
has kept statisticians from realizing that it is a very good method in some situations (Dunn,
1961, pp 52-53)

To use the Bonferroni correction in R, you can use the pairwise.t.test() function,10 making sure that
you set p.adjust.method = "bonferroni". Alternatively, since the whole reason why we’re doing these
pairwise tests in the first place is because we have an ANOVA that we’re trying to understand, it’s

8If you do have some theoretical basis for wanting to investigate some comparisons but not others, it’s a different story.
In those circumstances you’re not really running “post hoc” analyses at all: you’re making “planned comparisons”. I do
talk about this situation later in the book (Section 16.9), but for now I want to keep things simple.

9It’s worth noting in passing that not all adjustment methods try to do this. What I’ve described here is an approach
for controlling “family wise Type I error rate”. However, there are other post hoc tests seek to control the “false discovery
rate”, which is a somewhat different thing.

10There’s also a function called p.adjust() in which you can input a vector of raw p-values, and it will output a vector of
adjusted p-values. This can be handy sometimes. I should also note that more advanced users may wish to consider using
some of the tools provided by the multcomp package.
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probably more convenient to use the posthocPairwiseT() function in the lsr package, since we can use
my.anova as the input:

> posthocPairwiseT( my.anova, p.adjust.method = "bonferroni")

Pairwise comparisons using t tests with pooled SD

data: mood.gain and drug

placebo anxifree

anxifree 0.4506 -

joyzepam 9.1e-05 0.0017

P value adjustment method: bonferroni

If we compare these three p-values to those that we saw in the previous section when we made no
adjustment at all, it is clear that the only thing that R has done is multiply them by 3.

14.5.4 Holm corrections

Although the Bonferroni correction is the simplest adjustment out there, it’s not usually the best one
to use. One method that is often used instead is the Holm correction (Holm, 1979). The idea behind
the Holm correction is to pretend that you’re doing the tests sequentially; starting with the smallest
(raw) p-value and moving onto the largest one. For the j-th largest of the p-values, the adjustment is
either

p1
j “ j ˆ pj

(i.e., the biggest p-value remains unchanged, the second biggest p-value is doubled, the third biggest
p-value is tripled, and so on), or

p1
j “ p1

j`1

whichever one is larger. This might sound a little confusing, so let’s go through it a little more slowly.
Here’s what the Holm correction does. First, you sort all of your p-values in order, from smallest to
largest. For the smallest p-value all you do is multiply it by m, and you’re done. However, for all the
other ones it’s a two-stage process. For instance, when you move to the second smallest p value, you
first multiply it by m ´ 1. If this produces a number that is bigger than the adjusted p-value that you
got last time, then you keep it. But if it’s smaller than the last one, then you copy the last p-value. To
illustrate how this works, consider the table below, which shows the calculations of a Holm correction for
a collection of five p-values:

raw p rank j pˆ j Holm p

.001 5 .005 .005

.005 4 .020 .020

.019 3 .057 .057

.022 2 .044 .057

.103 1 .103 .103

Hopefully that makes things clear.

Although it’s a little harder to calculate, the Holm correction has some very nice properties: it’s
more powerful than Bonferroni (i.e., it has a lower Type II error rate), but – counterintuitive as it might
seem – it has the same Type I error rate. As a consequence, in practice there’s never any reason to
use the simpler Bonferroni correction, since it is always outperformed by the slightly more elaborate
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Holm correction. Because of this, the Holm correction is the default one used by pairwise.t.test() and
posthocPairwiseT(). To run the Holm correction in R, you could specify p.adjust.method = "Holm" if you
wanted to, but since it’s the default you can just to do this:

> posthocPairwiseT( my.anova )

Pairwise comparisons using t tests with pooled SD

data: mood.gain and drug

placebo anxifree

anxifree 0.1502 -

joyzepam 9.1e-05 0.0011

P value adjustment method: holm

As you can see, the biggest p-value (corresponding to the comparison between Anxifree and the placebo)
is unaltered: at a value of .15, it is exactly the same as the value we got originally when we applied
no correction at all. In contrast, the smallest p-value (Joyzepam versus placebo) has been multiplied by
three.

14.5.5 Writing up the post hoc test

Finally, having run the post hoc analysis to determine which groups are significantly different to one
another, you might write up the result like this:

Post hoc tests (using the Holm correction to adjust p) indicated that Joyzepam produced
a significantly larger mood change than both Anxifree (p “ .001) and the placebo (p “
9.1ˆ10´5). We found no evidence that Anxifree performed better than the placebo (p “ .15).

Or, if you don’t like the idea of reporting exact p-values, then you’d change those numbers to p ă .01,
p ă .001 and p ą .05 respectively. Either way, the key thing is that you indicate that you used Holm’s
correction to adjust the p-values. And of course, I’m assuming that elsewhere in the write up you’ve
included the relevant descriptive statistics (i.e., the group means and standard deviations), since these
p-values on their own aren’t terribly informative.

14.6

Assumptions of one-way ANOVA

Like any statistical test, analysis of variance relies on some assumptions about the data. There are three
key assumptions that you need to be aware of: normality, homogeneity of variance and independence. If
you remember back to Section 14.2.4 – which I hope you at least skimmed even if you didn’t read the
whole thing – I described the statistical models underpinning ANOVA, which I wrote down like this:

H0 : Yik “ µ` ǫik
H1 : Yik “ µk ` ǫik

In these equations µ refers to a single, grand population mean which is the same for all groups, and µk

is the population mean for the k-th group. Up to this point we’ve been mostly interested in whether our
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data are best described in terms of a single grand mean (the null hypothesis) or in terms of different group-
specific means (the alternative hypothesis). This makes sense, of course: that’s actually the important
research question! However, all of our testing procedures have – implicitly – relied on a specific assumption
about the residuals, ǫik, namely that

ǫik „ Normalp0, σ2q
None of the maths works properly without this bit. Or, to be precise, you can still do all the calculations,
and you’ll end up with an F -statistic, but you have no guarantee that this F -statistic actually measures
what you think it’s measuring, and so any conclusions that you might draw on the basis of the F test
might be wrong.

So, how do we check whether this assumption about the residuals is accurate? Well, as I indicated
above, there are three distinct claims buried in this one statement, and we’ll consider them separately.

• Normality. The residuals are assumed to be normally distributed. As we saw in Section 13.9, we
can assess this by looking at QQ plots or running a Shapiro-Wilk test. I’ll talk about this in an
ANOVA context in Section 14.9.

• Homogeneity of variance. Notice that we’ve only got the one value for the population standard
deviation (i.e., σ), rather than allowing each group to have it’s own value (i.e., σk). This is referred to
as the homogeneity of variance (sometimes called homoscedasticity) assumption. ANOVA assumes
that the population standard deviation is the same for all groups. We’ll talk about this extensively
in Section 14.7.

• Independence. The independence assumption is a little trickier. What it basically means is
that, knowing one residual tells you nothing about any other residual. All of the ǫik values are
assumed to have been generated without any “regard for” or “relationship to” any of the other
ones. There’s not an obvious or simple way to test for this, but there are some situations that are
clear violations of this: for instance, if you have a repeated-measures design, where each participant
in your study appears in more than one condition, then independence doesn’t hold; there’s a special
relationship between some observations... namely those that correspond to the same person! When
that happens, you need to use something like repeated measures ANOVA. I don’t currently talk
about repeated measures ANOVA in this book, but it will be included in later versions.

14.6.1 How robust is ANOVA?

One question that people often want to know the answer to is the extent to which you can trust the
results of an ANOVA if the assumptions are violated. Or, to use the technical language, how robust is
ANOVA to violations of the assumptions. Due to deadline constraints I don’t have the time to discuss
this topic. This is a topic I’ll cover in some detail in a later version of the book.

14.7

Checking the homogeneity of variance assumption

There’s more than one way to skin a cat, as the saying goes, and more than one way to test the homo-
geneity of variance assumption, too (though for some reason no-one made a saying out of that). The
most commonly used test for this that I’ve seen in the literature is the Levene test (Levene, 1960),
and the closely related Brown-Forsythe test (Brown & Forsythe, 1974), both of which I’ll describe
here. Alternatively, you could use the Bartlett test, which is implemented in R via the bartlett.test()

function, but I’ll leave it as an exercise for the reader to go check that one out if you’re interested.
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Levene’s test is shockingly simple. Suppose we have our outcome variable Yik. All we do is define a
new variable, which I’ll call Zik, corresponding to the absolute deviation from the group mean:

Zik “
ˇ

ˇYik ´ Ȳk

ˇ

ˇ

Okay, what good does this do us? Well, let’s take a moment to think about what Zik actually is, and
what we’re trying to test. The value of Zik is a measure of how the i-th observation in the k-th group
deviates from its group mean. And our null hypothesis is that all groups have the same variance; that
is, the same overall deviations from the group means! So, the null hypothesis in a Levene’s test is that
the population means of Z are identical for all groups. Hm. So what we need now is a statistical test of
the null hypothesis that all group means are identical. Where have we seen that before? Oh right, that’s
what ANOVA is... and so all that the Levene’s test does is run an ANOVA on the new variable Zik.

What about the Brown-Forsythe test? Does that do anything particularly different? Nope. The only
change from the Levene’s test is that it constructs the transformed variable Z in a slightly different way,
using deviations from the group medians rather than deviations from the group means. That is, for the
Brown-Forsythe test,

Zik “ |Yik ´mediankpY q|
where mediankpY q is the median for group k. Regardless of whether you’re doing the standard Levene
test or the Brown-Forsythe test, the test statistic – which is sometimes denoted F , but sometimes written
as W – is calculated in exactly the same way that the F -statistic for the regular ANOVA is calculated,
just using a Zik rather than Yik. With that in mind, let’s just move on and look at how to run the test
in R.

14.7.1 Running the Levene’s test in R

Okay, so how do we run the Levene test? Obviously, since the Levene test is just an ANOVA, it would
be easy enough to manually create the transformed variable Zik and then use the aov() function to run
an ANOVA on that. However, that’s the tedious way to do it. A better way to do run your Levene’s test
is to use the leveneTest() function, which is in the car package. As usual, we first load the package

> library( car )

and now that we have, we can run our Levene test. The main argument that you need to specify is y, but
you can do this in lots of different ways. Probably the simplest way to do it is actually input the original
aov object. Since I’ve got the my.anova variable stored from my original ANOVA, I can just do this:

> leveneTest( my.anova )

Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 2 1.47 0.26

15

If we look at the output, we see that the test is non-significant pF2,15 “ 1.47, p “ .26q, so it looks like
the homogeneity of variance assumption is fine. Remember, although R reports the test statistic as an
F -value, it could equally be called W , in which case you’d just write W2,15 “ 1.47. Also, note the part
of the output that says center = median. That’s telling you that, by default, the leveneTest() function
actually does the Brown-Forsythe test. If you want to use the mean instead, then you need to explicitly
set the center argument, like this:

> leveneTest( y = my.anova, center = mean )

Levene’s Test for Homogeneity of Variance (center = mean)
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Df F value Pr(>F)

group 2 1.45 0.27

15

That being said, in most cases it’s probably best to stick to the default value, since the Brown-Forsythe
test is a bit more robust than the original Levene test.

14.7.2 Additional comments

Two more quick comments before I move onto a different topic. Firstly, as mentioned above, there
are other ways of calling the leveneTest() function. Although the vast majority of situations that call
for a Levene test involve checking the assumptions of an ANOVA (in which case you probably have a
variable like my.anova lying around), sometimes you might find yourself wanting to specify the variables
directly. Two different ways that you can do this are shown below:

> leveneTest(y = mood.gain ~ drug, data = clin.trial) # y is a formula in this case

> leveneTest(y = clin.trial$mood.gain, group = clin.trial$drug) # y is the outcome

Secondly, I did mention that it’s possible to run a Levene test just using the aov() function. I don’t want
to waste a lot of space on this, but just in case some readers are interested in seeing how this is done,
here’s the code that creates the new variables and runs an ANOVA. If you are interested, feel free to run
this to verify that it produces the same answers as the Levene test (i.e., with center = mean):

> Y <- clin.trial $ mood.gain # the original outcome variable, Y

> G <- clin.trial $ drug # the grouping variable, G

> gp.mean <- tapply(Y, G, mean) # calculate group means

> Ybar <- gp.mean[G] # group mean associated with each obs

> Z <- abs(Y - Ybar) # the transformed variable, Z

> summary( aov(Z ~ G) ) # run the ANOVA

That said, I don’t imagine that many people will care about this. Nevertheless, it’s nice to know that you
could do it this way if you wanted to. And for those of you who do try it, I think it helps to demystify
the test a little bit when you can see – with your own eyes – the way in which Levene’s test relates to
ANOVA.

14.8

Removing the homogeneity of variance assumption

In our example, the homogeneity of variance assumption turned out to be a pretty safe one: the Levene
test came back non-significant, so we probably don’t need to worry. However, in real life we aren’t always
that lucky. How do we save our ANOVA when the homogeneity of variance assumption is violated? If
you recall from our discussion of t-tests, we’ve seen this problem before. The Student t-test assumes
equal variances, so the solution was to use the Welch t-test, which does not. In fact, Welch (1951) also
showed how we can solve this problem for ANOVA too (the Welch one-way test). It’s implemented in
R using the oneway.test() function. The arguments that we’ll need for our example are:

• formula. This is the model formula, which (as usual) needs to specify the outcome variable on the
left hand side and the grouping variable on the right hand side: i.e., something like outcome ~ group.

• data. Specifies the data frame containing the variables.
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• var.equal. If this is FALSE (the default) a Welch one-way test is run. If it is TRUE then it just runs
a regular ANOVA.

The function also has a subset argument that lets you analyse only some of the observations and a
na.action argument that tells it how to handle missing data, but these aren’t necessary for our purposes.
So, to run the Welch one-way ANOVA for our example, we would do this:

> oneway.test(mood.gain ~ drug, data = clin.trial)

One-way analysis of means (not assuming equal variances)

data: mood.gain and drug

F = 26.322, num df = 2.000, denom df = 9.493, p-value = 0.000134

To understand what’s happening here, let’s compare these numbers to what we got earlier in Section 14.3
when we ran our original ANOVA. To save you the trouble of flicking back, here are those numbers again,
this time calculated by setting var.equal = TRUE for the oneway.test() function:

> oneway.test(mood.gain ~ drug, data = clin.trial, var.equal = TRUE)

One-way analysis of means

data: mood.gain and drug

F = 18.611, num df = 2, denom df = 15, p-value = 8.646e-05

Okay, so originally our ANOVA gave us the result F p2, 15q “ 18.6, whereas the Welch one-way test gave
us F p2, 9.49q “ 26.32. In other words, the Welch test has reduced the within-groups degrees of freedom
from 15 to 9.49, and the F -value has increased from 18.6 to 26.32.

14.9

Checking the normality assumption

Testing the normality assumption is relatively straightforward. We covered most of what you need to
know in Section 13.9. The only thing we really need to know how to do is pull out the residuals (i.e.,
the ǫik values) so that we can draw our QQ plot and run our Shapiro-Wilk test. First, let’s extract the
residuals. R provides a function called residuals() that will do this for us. If we pass our my.anova to
this function, it will return the residuals. So let’s do that:

> my.anova.residuals <- residuals( object = my.anova ) # extract the residuals

We can print them out too, though it’s not exactly an edifying experience. In fact, given that I’m on the
verge of putting myself to sleep just typing this, it might be a good idea to skip that step. Instead, let’s
draw some pictures and run ourselves a hypothesis test:

> hist( x = my.anova.residuals ) # plot a histogram (similar to Figure 14.3a)

> qqnorm( y = my.anova.residuals ) # draw a QQ plot (similar to Figure 14.3b)

> shapiro.test( x = my.anova.residuals ) # run Shapiro-Wilk test

Shapiro-Wilk normality test

data: my.anova.residuals

W = 0.9602, p-value = 0.6053
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Figure 14.3: Histogram (panel a) and QQ plot (panel b) for the residuals of our ANOVA: both of these
are in agreement with the Shapiro-Wilk test, and suggest that the residuals are normally distributed
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The histogram and QQ plot are both shown in Figure 14.3, and both look pretty normal to me.11 This
is supported by the results of our Shapiro-Wilk test (W “ .96, p “ .61) which finds no indication that
normality is violated.

14.10

Removing the normality assumption

Now that we’ve seen how to check for normality, we are led naturally to ask what we can do to address
violations of normality. In the context of a one-way ANOVA, the easiest solution is probably to switch
to a non-parametric test (i.e., one that doesn’t rely on any particular assumption about the kind of
distribution involved). We’ve seen non-parametric tests before, in Chapter 13: when you only have two
groups, the Wilcoxon test provides the non-parametric alternative that you need. When you’ve got three
or more groups, you can use the Kruskal-Wallis rank sum test (Kruskal & Wallis, 1952). So that’s
the test we’ll talk about next.

14.10.1 The logic behind the Kruskal-Wallis test

The Kruskal-Wallis test is surprisingly similar to ANOVA, in some ways. In ANOVA, we started with
Yik, the value of the outcome variable for the ith person in the kth group. For the Kruskal-Wallis test,
what we’ll do is rank order all of these Yik values, and conduct our analysis on the ranked data. So
let’s let Rik refer to the ranking given to the ith member of the kth group. Now, let’s calculate R̄k, the

11Note that neither of these figures has been tidied up at all: if you want to create nicer looking graphs it’s always a good
idea to use the tools from Chapter 6 to help you draw cleaner looking images.
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average rank given to observations in the kth group:

R̄k “
1

NK

ÿ

i

Rik

and let’s also calculate R̄, the grand mean rank:

R̄ “ 1

N

ÿ

i

ÿ

k

Rik

Now that we’ve done this, we can calculate the squared deviations from the grand mean rank R̄. When
we do this for the individual scores – i.e., if we calculate pRik´ R̄q2 – what we have is a “nonparametric”
measure of how far the ik-th observation deviates from the grand mean rank. When we calculate the
squared deviation of the group means from the grand means – i.e., if we calculate pR̄k´ R̄q2 – then what
we have is a nonparametric measure of how much the group deviates from the grand mean rank. With
this in mind, let’s follow the same logic that we did with ANOVA, and define our ranked sums of squares
measures in much the same way that we did earlier. First, we have our “total ranked sums of squares”:

RSStot “
ÿ

k

ÿ

i

pRik ´ R̄q2

and we can define the “between groups ranked sums of squares” like this:

RSSb “ ř

k

ř

ipR̄k ´ R̄q2
“ ř

k NkpR̄k ´ R̄q2

So, if the null hypothesis is true and there are no true group differences at all, you’d expect the between
group rank sums RSSb to be very small, much smaller than the total rank sums RSStot. Qualitatively
this is very much the same as what we found when we went about constructing the ANOVA F -statistic;
but for technical reasons the Kruskal-Wallis test statistic, usually denoted K, is constructed in a slightly
different way:

K “ pN ´ 1q ˆ RSSb
RSStot

and, if the null hypothesis is true, then the sampling distribution of K is approximately chi-square with
G´1 degrees of freedom (where G is the number of groups). The larger the value of K, the less consistent
the data are with null hypothesis, so this is a one-sided test: we reject H0 when K is sufficiently large.

14.10.2 Additional details

The description in the previous section illustrates the logic behind the Kruskal-Wallis test. At a conceptual
level, this is the right way to think about how the test works. However, from a purely mathematical
perspective it’s needlessly complicated. I won’t show you the derivation, but you can use a bit of algebraic
jiggery-pokery12 to show that the equation for K can be rewritten as

K “ 12

NpN ´ 1q
ÿ

k

NkR̄
2

k ´ 3pN ` 1q

It’s this last equation that you sometimes see given for K. This is way easier to calculate than the version
I described in the previous section, it’s just that it’s totally meaningless to actual humans. It’s probably
best to think of K the way I described it earlier... as an analogue of ANOVA based on ranks. But keep

12A technical term.
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in mind that the test statistic that gets calculated ends up with a rather different look to it than the one
we used for our original ANOVA.

But wait, there’s more! Dear lord, why is there always more? The story I’ve told so far is only actually
true when there are no ties in the raw data. That is, if there are no two observations that have exactly
the same value. If there are ties, then we have to introduce a correction factor to these calculations. At
this point I’m assuming that even the most diligent reader has stopped caring (or at least formed the
opinion that the tie-correction factor is something that doesn’t require their immediate attention). So
I’ll very quickly tell you how it’s calculated, and omit the tedious details about why it’s done this way.
Suppose we construct a frequency table for the raw data, and let fj be the number of observations that
have the j-th unique value. This might sound a bit abstract, so here’s the R code showing a concrete
example:

> f <- table( clin.trial$mood.gain ) # frequency table for mood gain

> print(f) # we have some ties ...

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.1 1.2 1.3 1.4 1.7 1.8

1 1 2 1 1 2 1 1 1 1 2 2 1 1

Looking at this table, notice that the third entry in the frequency table has a value of 2. Since this
corresponds to a mood.gain of 0.3, this table is telling us that two people’s mood increased by 0.3. More
to the point, note that we can say that f[3] has a value of 2. Or, in the mathematical notation I
introduced above, this is telling us that f3 “ 2. Yay. So, now that we know this, the tie correction factor
(TCF) is:

TCF “ 1´
ř

j fj
3 ´ fj

N3 ´N

The tie-corrected value of the Kruskal-Wallis statistic obtained by dividing the value ofK by this quantity:
it is this tie-corrected version that R calculates. And at long last, we’re actually finished with the theory of
the Kruskal-Bloody-Wallis test. I’m sure you’re all terribly relieved that I’ve cured you of the existential
anxiety that naturally arises when you realise that you don’t know how to calculate the tie-correction
factor for the Kruskal-Wallis test. Right?

14.10.3 How to run the Kruskal-Wallis test in R

Despite the horror that we’ve gone through in trying to understand what the Kruskal-Wallis test actu-
ally does, it turns out that running the test is pretty painless, since R has a function called kruskal.test().
The function is pretty flexible, and allows you to input your data in a few different ways. Most of the
time you’ll have data like the clin.trial data set, in which you have your outcome variable mood.gain,
and a grouping variable drug. If so, you can call the kruskal.test() function by specifying a formula,
and a data frame:

> kruskal.test(mood.gain ~ drug, data = clin.trial)

Kruskal-Wallis rank sum test

data: mood.gain by drug

Kruskal-Wallis chi-squared = 12.076, df = 2, p-value = 0.002386

A second way of using the kruskal.test() function, which you probably won’t have much reason to use,
is to directly specify the outcome variable and the grouping variable as separate input arguments, x and
g:
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> kruskal.test(x = clin.trial$mood.gain, g = clin.trial$drug)

This isn’t very interesting, since it’s just plain easier to specify a formula. However, sometimes it can
be useful to specify x as a list. What I mean is this. Suppose you actually had data as three separate
variables, placebo, anxifree and joyzepam. If that’s the format that your data are in, then it’s convenient
to know that you can bundle all three together as a list:

> mood.gain <- list( placebo, joyzepam, anxifree )

> kruskal.test( x = mood.gain )

And again, this would give you exactly the same results as the command we tried originally.

14.11

On the relationship between ANOVA and the Student t test

There’s one last thing I want to point out before finishing. It’s something that a lot of people find kind of
surprising, but it’s worth knowing about: an ANOVA with two groups is identical to the Student t-test.
No, really. It’s not just that they are similar, but they are actually equivalent in every meaningful way. I
won’t try to prove that this is always true, but I will show you a single concrete demonstration. Suppose
that, instead of running an ANOVA on our mood.gain ~ drug model, let’s instead do it using therapy as
the predictor. If we run this ANOVA, here’s what we get:

> summary( aov( mood.gain ~ therapy, data = clin.trial ))

Df Sum Sq Mean Sq F value Pr(>F)

therapy 1 0.47 0.467 1.71 0.21

Residuals 16 4.38 0.274

Overall, it looks like there’s no significant effect here at all but, as we’ll see in Chapter 16 this is actually a
misleading answer! In any case, it’s irrelevant to our current goals: our interest here is in the F -statistic,
which is F p1, 16q “ 1.71, and the p-value, which is .21. Since we only have two groups, I didn’t actually
need to resort to an ANOVA, I could have just decided to run a Student t-test. So let’s see what happens
when I do that:

> t.test( mood.gain ~ therapy, data = clin.trial, var.equal = TRUE )

Two Sample t-test

data: mood.gain by therapy

t = -1.3068, df = 16, p-value = 0.2098

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.84495 0.20051

sample estimates:

mean in group none mean in group CBT

0.72222 1.04444

Curiously, the p-values are identical: once again we obtain a value of p “ .21. But what about the
test statistic? Having run a t-test instead of an ANOVA, we get a somewhat different answer, namely
tp16q “ ´1.3068. However, there is a fairly straightforward relationship here. If we square the t-statistic

> 1.3068 ^ 2

[1] 1.7077
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we get the F -statistic from before.

14.12

Summary

There’s a fair bit covered in this chapter, but there’s still a lot missing. Most obviously, I haven’t yet
discussed any analog of the paired samples t-test for more than two groups. There is a way of doing this,
known as repeated measures ANOVA, which will appear in a later version of this book. I also haven’t
discussed how to run an ANOVA when you are interested in more than one grouping variable, but that
will be discussed in a lot of detail in Chapter 16. In terms of what we have discussed, the key topics
were:

• The basic logic behind how ANOVA works (Section 14.2) and how to run one in R(Section 14.3).

• How to compute an effect size for an ANOVA (Section 14.4)

• Post hoc analysis and corrections for multiple testing (Section 14.5).

• The assumptions made by ANOVA (Section 14.6).

• How to check the homogeneity of variance assumption (Section 14.7) and what to do if it is violated
(Section 14.8).

• How to check the normality assumption (Section 14.9) and what to do if it is violated (Section 14.10).
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15. Linear regression

The goal in this chapter is to introduce linear regression, the standard tool that statisticians rely on
when analysing the relationship between interval scale predictors and interval scale outcomes. Stripped
to its bare essentials, linear regression models are basically a slightly fancier version of the Pearson
correlation (Section 5.7) though as we’ll see, regression models are much more powerful tools.

15.1

What is a linear regression model?

Since the basic ideas in regression are closely tied to correlation, we’ll return to the parenthood.Rdata

file that we were using to illustrate how correlations work. Recall that, in this data set, we were trying
to find out why Dan is so very grumpy all the time, and our working hypothesis was that I’m not getting
enough sleep. We drew some scatterplots to help us examine the relationship between the amount of
sleep I get, and my grumpiness the following day. The actual scatterplot that we draw is the one shown
in Figure 15.1, and as we saw previously this corresponds to a correlation of r “ ´.90, but what we
find ourselves secretly imagining is something that looks closer to Figure 15.2a. That is, we mentally
draw a straight line through the middle of the data. In statistics, this line that we’re drawing is called
a regression line. Notice that – since we’re not idiots – the regression line goes through the middle of
the data. We don’t find ourselves imagining anything like the rather silly plot shown in Figure 15.2b.

This is not highly surprising: the line that I’ve drawn in Figure 15.2b doesn’t “fit” the data very well,
so it doesn’t make a lot of sense to propose it as a way of summarising the data, right? This is a very
simple observation to make, but it turns out to be very powerful when we start trying to wrap just a little
bit of maths around it. To do so, let’s start with a refresher of some high school maths. The formula for
a straight line is usually written like this:

y “ mx` c

Or, at least, that’s what it was when I went to high school all those years ago. The two variables are
x and y, and we have two coefficients, m and c. The coefficient m represents the slope of the line, and
the coefficient c represents the y-intercept of the line. Digging further back into our decaying memories
of high school (sorry, for some of us high school was a long time ago), we remember that the intercept
is interpreted as “the value of y that you get when x “ 0”. Similarly, a slope of m means that if you
increase the x-value by 1 unit, then the y-value goes up by m units; a negative slope means that the
y-value would go down rather than up. Ah yes, it’s all coming back to me now.

Now that we’ve remembered that, it should come as no surprise to discover that we use the exact
same formula to describe a regression line. If Y is the outcome variable (the DV) and X is the predictor
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Figure 15.1: Scatterplot showing grumpiness as a function of hours slept.
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variable (the IV), then the formula that describes our regression is written like this:

Ŷi “ b1Xi ` b0

Hm. Looks like the same formula, but there’s some extra frilly bits in this version. Let’s make sure we
understand them. Firstly, notice that I’ve written Xi and Yi rather than just plain old X and Y . This
is because we want to remember that we’re dealing with actual data. In this equation, Xi is the value of
predictor variable for the ith observation (i.e., the number of hours of sleep that I got on day i of my little
study), and Yi is the corresponding value of the outcome variable (i.e., my grumpiness on that day). And
although I haven’t said so explicitly in the equation, what we’re assuming is that this formula works for
all observations in the data set (i.e., for all i). Secondly, notice that I wrote Ŷi and not Yi. This is because
we want to make the distinction between the actual data Yi, and the estimate Ŷi (i.e., the prediction that
our regression line is making). Thirdly, I changed the letters used to describe the coefficients from m and
c to b1 and b0. That’s just the way that statisticians like to refer to the coefficients in a regression model.
I’ve no idea why they chose b, but that’s what they did. In any case b0 always refers to the intercept
term, and b1 refers to the slope.

Excellent, excellent. Next, I can’t help but notice that – regardless of whether we’re talking about
the good regression line or the bad one – the data don’t fall perfectly on the line. Or, to say it another
way, the data Yi are not identical to the predictions of the regression model Ŷi. Since statisticians love to
attach letters, names and numbers to everything, let’s refer to the difference between the model prediction
and that actual data point as a residual, and we’ll refer to it as ǫi.

1 Written using mathematics, the
residuals are defined as:

ǫi “ Yi ´ Ŷi

which in turn means that we can write down the complete linear regression model as:

Yi “ b1Xi ` b0 ` ǫi

1The ǫ symbol is the Greek letter epsilon. It’s traditional to use ǫi or ei to denote a residual.
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Figure 15.2: Panel a shows the sleep-grumpiness scatterplot from Figure 15.1 with the best fitting regres-
sion line drawn over the top. Not surprisingly, the line goes through the middle of the data. In contrast,
panel b shows the same data, but with a very poor choice of regression line drawn over the top.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15.2

Estimating a linear regression model

Okay, now let’s redraw our pictures, but this time I’ll add some lines to show the size of the residual for
all observations. When the regression line is good, our residuals (the lengths of the solid black lines) all
look pretty small, as shown in Figure 15.3a, but when the regression line is a bad one, the residuals are
a lot larger, as you can see from looking at Figure 15.3b. Hm. Maybe what we “want” in a regression
model is small residuals. Yes, that does seem to make sense. In fact, I think I’ll go so far as to say
that the “best fitting” regression line is the one that has the smallest residuals. Or, better yet, since
statisticians seem to like to take squares of everything why not say that ...

The estimated regression coefficients, b̂0 and b̂1 are those that minimise the sum of the squared
residuals, which we could either write as

ř

ipYi ´ Ŷiq2 or as
ř

i ǫi
2.

Yes, yes that sounds even better. And since I’ve indented it like that, it probably means that this is the
right answer. And since this is the right answer, it’s probably worth making a note of the fact that our
regression coefficients are estimates (we’re trying to guess the parameters that describe a population!),

which is why I’ve added the little hats, so that we get b̂0 and b̂1 rather than b0 and b1. Finally, I should
also note that – since there’s actually more than one way to estimate a regression model – the more
technical name for this estimation process is ordinary least squares (OLS) regression.

At this point, we now have a concrete definition for what counts as our “best” choice of regression
coefficients, b̂0 and b̂1. The natural question to ask next is, if our optimal regression coefficients are those
that minimise the sum squared residuals, how do we find these wonderful numbers? The actual answer
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Figure 15.3: A depiction of the residuals associated with the best fitting regression line (panel a), and the
residuals associated with a poor regression line (panel b). The residuals are much smaller for the good
regression line. Again, this is no surprise given that the good line is the one that goes right through the
middle of the data.
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to this question is complicated, and it doesn’t help you understand the logic of regression.2 As a result,
this time I’m going to let you off the hook. Instead of showing you how to do it the long and tedious
way first, and then “revealing” the wonderful shortcut that R provides you with, let’s cut straight to the
chase... and use the lm() function (short for “linear model”) to do all the heavy lifting.

15.2.1 Using the ❧♠✭✮ function

The lm() function is a fairly complicated one: if you type ?lm, the help files will reveal that there are
a lot of arguments that you can specify, and most of them won’t make a lot of sense to you. At this
stage however, there’s really only two of them that you care about, and as it turns out you’ve seen them
before:

• formula. A formula that specifies the regression model. For the simple linear regression models
that we’ve talked about so far, in which you have a single predictor variable as well as an intercept
term, this formula is of the form outcome ~ predictor. However, more complicated formulas are
allowed, and we’ll discuss them later.

2Or at least, I’m assuming that it doesn’t help most people. But on the off chance that someone reading this is a proper
kung fu master of linear algebra (and to be fair, I always have a few of these people in my intro stats class), it will help you

to know that the solution to the estimation problem turns out to be b̂ “ pX1
Xq´1

X
1y, where b̂ is a vector containing the

estimated regression coefficients, X is the “design matrix” that contains the predictor variables (plus an additional column
containing all ones; strictly X is a matrix of the regressors, but I haven’t discussed the distinction yet), and y is a vector
containing the outcome variable. For everyone else, this isn’t exactly helpful, and can be downright scary. However, since
quite a few things in linear regression can be written in linear algebra terms, you’ll see a bunch of footnotes like this one in
this chapter. If you can follow the maths in them, great. If not, ignore it.
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• data. The data frame containing the variables.

As we saw with aov() in Chapter 14, the output of the lm() function is a fairly complicated object, with
quite a lot of technical information buried under the hood. Because this technical information is used by
other functions, it’s generally a good idea to create a variable that stores the results of your regression.
With this in mind, to run my linear regression, the command I want to use is this:

> regression.1 <- lm( formula = dan.grump ~ dan.sleep,

+ data = parenthood )

Note that I used dan.grump ~ dan.sleep as the formula: in the model that I’m trying to estimate,
dan.grump is the outcome variable, and dan.sleep is the predictor variable. It’s always a good idea
to remember which one is which! Anyway, what this does is create an “lm object” (i.e., a variable whose
class is "lm") called regression.1. Let’s have a look at what happens when we print() it out:

> print( regression.1 )

Call:

lm(formula = dan.grump ~ dan.sleep, data = parenthood)

Coefficients:

(Intercept) dan.sleep

125.956 -8.937

This looks promising. There’s two separate pieces of information here. Firstly, R is politely reminding
us what the command was that we used to specify the model in the first place, which can be helpful.
More importantly from our perspective, however, is the second part, in which R gives us the intercept
b̂0 “ 125.96 and the slope b̂1 “ ´8.94. In other words, the best-fitting regression line that I plotted in
Figure 15.2 has this formula:

Ŷi “ ´8.94 Xi ` 125.96

15.2.2 Interpreting the estimated model

The most important thing to be able to understand is how to interpret these coefficients. Let’s start
with b̂1, the slope. If we remember the definition of the slope, a regression coefficient of b̂1 “ ´8.94 means
that if I increase Xi by 1, then I’m decreasing Yi by 8.94. That is, each additional hour of sleep that I gain
will improve my mood, reducing my grumpiness by 8.94 grumpiness points. What about the intercept?
Well, since b̂0 corresponds to “the expected value of Yi when Xi equals 0”, it’s pretty straightforward. It
implies that if I get zero hours of sleep (Xi “ 0) then my grumpiness will go off the scale, to an insane
value of (Yi “ 125.96). Best to be avoided, I think.

15.3

Multiple linear regression

The simple linear regression model that we’ve discussed up to this point assumes that there’s a single
predictor variable that you’re interested in, in this case dan.sleep. In fact, up to this point, every
statistical tool that we’ve talked about has assumed that your analysis uses one predictor variable and
one outcome variable. However, in many (perhaps most) research projects you actually have multiple
predictors that you want to examine. If so, it would be nice to be able to extend the linear regression
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framework to be able to include multiple predictors. Perhaps some kind of multiple regression model
would be in order?

Multiple regression is conceptually very simple. All we do is add more terms to our regression equation.
Let’s suppose that we’ve got two variables that we’re interested in; perhaps we want to use both dan.sleep

and baby.sleep to predict the dan.grump variable. As before, we let Yi refer to my grumpiness on the
i-th day. But now we have two X variables: the first corresponding to the amount of sleep I got and the
second corresponding to the amount of sleep my son got. So we’ll let Xi1 refer to the hours I slept on
the i-th day, and Xi2 refers to the hours that the baby slept on that day. If so, then we can write our
regression model like this:

Yi “ b2Xi2 ` b1Xi1 ` b0 ` ǫi

As before, ǫi is the residual associated with the i-th observation, ǫi “ Yi ´ Ŷi. In this model, we now
have three coefficients that need to be estimated: b0 is the intercept, b1 is the coefficient associated
with my sleep, and b2 is the coefficient associated with my son’s sleep. However, although the number
of coefficients that need to be estimated has changed, the basic idea of how the estimation works is
unchanged: our estimated coefficients b̂0, b̂1 and b̂2 are those that minimise the sum squared residuals.

15.3.1 Doing it in R

Multiple regression in R is no different to simple regression: all we have to do is specify a more
complicated formula when using the lm() function. For example, if we want to use both dan.sleep and
baby.sleep as predictors in our attempt to explain why I’m so grumpy, then the formula we need is this:

dan.grump ~ dan.sleep + baby.sleep

Notice that, just like last time, I haven’t explicitly included any reference to the intercept term in this
formula; only the two predictor variables and the outcome. By default, the lm() function assumes that
the model should include an intercept (though you can get rid of it if you want). In any case, I can create
a new regression model – which I’ll call regression.2 – using the following command:

> regression.2 <- lm( formula = dan.grump ~ dan.sleep + baby.sleep,

+ data = parenthood )

And just like last time, if we print() out this regression model we can see what the estimated regression
coefficients are:

> print( regression.2 )

Call:

lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood)

Coefficients:

(Intercept) dan.sleep baby.sleep

125.96557 -8.95025 0.01052

The coefficient associated with dan.sleep is quite large, suggesting that every hour of sleep I lose makes
me a lot grumpier. However, the coefficient for baby.sleep is very small, suggesting that it doesn’t really
matter how much sleep my son gets; not really. What matters as far as my grumpiness goes is how much
sleep I get. To get a sense of what this multiple regression model looks like, Figure 15.4 shows a 3D plot
that plots all three variables, along with the regression model itself.
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Figure 15.4: A 3D visualisation of a multiple regression model. There are two predictors in the model,
dan.sleep and baby.sleep; the outcome variable is dan.grump. Together, these three variables form a 3D
space: each observation (blue dots) is a point in this space. In much the same way that a simple linear
regression model forms a line in 2D space, this multiple regression model forms a plane in 3D space.
When we estimate the regression coefficients, what we’re trying to do is find a plane that is as close to
all the blue dots as possible. (This plot was drawn using the scatter3d() function in the car package,
and it looked much nicer before it got butchered by the image conversion process that I used to get it
into the book pdf)
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15.3.2 Formula for the general case

The equation that I gave above shows you what a multiple regression model looks like when you
include two predictors. Not surprisingly, then, if you want more than two predictors all you have to do
is add more X terms and more b coefficients. In other words, if you have K predictor variables in the
model then the regression equation looks like this:

Yi “
˜

K
ÿ

k“1

bkXik

¸

` b0 ` ǫi

15.4

Quantifying the fit of the regression model

So we now know how to estimate the coefficients of a linear regression model. The problem is, we don’t
yet know if this regression model is any good. For example, the regression.1 model claims that every
hour of sleep will improve my mood by quite a lot, but it might just be rubbish. Remember, the regression
model only produces a prediction Ŷi about what my mood is like: my actual mood is Yi. If these two are
very close, then the regression model has done a good job. If they are very different, then it has done a
bad job.

15.4.1 The R2 value

Once again, let’s wrap a little bit of mathematics around this. Firstly, we’ve got the sum of the squared
residuals:

SSres “
ÿ

i

pYi ´ Ŷiq2

which we would hope to be pretty small. Specifically, what we’d like is for it to be very small in comparison
to the total variability in the outcome variable,

SStot “
ÿ

i

pYi ´ Ȳ q2

While we’re here, let’s calculate these values in R. Firstly, in order to make my R commands look a bit
more similar to the mathematical equations, I’ll create variables X and Y:

> X <- parenthood$dan.sleep # the predictor

> Y <- parenthood$dan.grump # the outcome

Now that we’ve done this, let’s calculate the Ŷ values and store them in a variable called Y.pred. For the
simple model that uses only a single predictor, regression.1, we would do the following:

> Y.pred <- -8.94 * X + 125.97

Okay, now that we’ve got a variable which stores the regression model predictions for how grumpy I will
be on any given day, let’s calculate our sum of squared residuals. We would do that using the following
command:

> SS.resid <- sum( (Y - Y.pred)^2 )

> print( SS.resid )

[1] 1838.722
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Wonderful. A big number that doesn’t mean very much. Still, let’s forge boldly onwards anyway, and
calculate the total sum of squares as well. That’s also pretty simple:

> SS.tot <- sum( (Y - mean(Y))^2 )

> print( SS.tot )

[1] 9998.59

Hm. Well, it’s a much bigger number than the last one, so this does suggest that our regression model
was making good predictions. But it’s not very interpretable.

Perhaps we can fix this. What we’d like to do is to convert these two fairly meaningless numbers
into one number. A nice, interpretable number, which for no particular reason we’ll call R2. What we
would like is for the value of R2 to be equal to 1 if the regression model makes no errors in predicting
the data. In other words, if it turns out that the residual errors are zero – that is, if SSres “ 0 – then we
expect R2 “ 1. Similarly, if the model is completely useless, we would like R2 to be equal to 0. What
do I mean by “useless”? Tempting as it is demand that the regression model move out of the house, cut
its hair and get a real job, I’m probably going to have to pick a more practical definition: in this case,
all I mean is that the residual sum of squares is no smaller than the total sum of squares, SSres “ SStot.
Wait, why don’t we do exactly that? The formula that provides us with out R2 value is pretty simple to
write down,

R2 “ 1´ SSres
SStot

and equally simple to calculate in R:

> R.squared <- 1 - (SS.resid / SS.tot)

> print( R.squared )

[1] 0.8161018

The R2 value, sometimes called the coefficient of determination3 has a simple interpretation: it is
the proportion of the variance in the outcome variable that can be accounted for by the predictor. So in
this case, the fact that we have obtained R2 “ .816 means that the predictor (my.sleep) explains 81.6%
of the variance in the outcome (my.grump).

Naturally, you don’t actually need to type in all these commands yourself if you want to obtain the
R2 value for your regression model. As we’ll see later on in Section 15.5.3, all you need to do is use the
summary() function. However, let’s put that to one side for the moment. There’s another property of R2

that I want to point out.

15.4.2 The relationship between regression and correlation

At this point we can revisit my earlier claim that regression, in this very simple form that I’ve discussed
so far, is basically the same thing as a correlation. Previously, we used the symbol r to denote a Pearson
correlation. Might there be some relationship between the value of the correlation coefficient r and the
R2 value from linear regression? Of course there is: the squared correlation r2 is identical to the R2 value
for a linear regression with only a single predictor. To illustrate this, here’s the squared correlation:

> r <- cor(X, Y) # calculate the correlation

> print( r^2 ) # print the squared correlation

[1] 0.8161027

Yep, same number. In other words, running a Pearson correlation is more or less equivalent to running
a linear regression model that uses only one predictor variable.

3And by “sometimes” I mean “almost never”. In practice everyone just calls it “R-squared”.
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15.4.3 The adjusted R2 value

One final thing to point out before moving on. It’s quite common for people to report a slightly
different measure of model performance, known as “adjusted R2”. The motivation behind calculating
the adjusted R2 value is the observation that adding more predictors into the model will always call
the R2 value to increase (or at least not decrease). The adjusted R2 value introduces a slight change
to the calculation, as follows. For a regression model with K predictors, fit to a data set containing N

observations, the adjusted R2 is:

adj. R2 “ 1´
ˆ

SSres
SStot

ˆ N ´ 1

N ´K ´ 1

˙

This adjustment is an attempt to take the degrees of freedom into account. The big advantage of the
adjusted R2 value is that when you add more predictors to the model, the adjusted R2 value will only
increase if the new variables improve the model performance more than you’d expect by chance. The big
disadvantage is that the adjusted R2 value can’t be interpreted in the elegant way that R2 can. R2 has
a simple interpretation as the proportion of variance in the outcome variable that is explained by the
regression model; to my knowledge, no equivalent interpretation exists for adjusted R2.

An obvious question then, is whether you should report R2 or adjusted R2. This is probably a matter
of personal preference. If you care more about interpretability, then R2 is better. If you care more about
correcting for bias, then adjusted R2 is probably better. Speaking just for myself, I prefer R2: my feeling
is that it’s more important to be able to interpret your measure of model performance. Besides, as we’ll
see in Section 15.5, if you’re worried that the improvement in R2 that you get by adding a predictor is
just due to chance and not because it’s a better model, well, we’ve got hypothesis tests for that.

15.5

Hypothesis tests for regression models

So far we’ve talked about what a regression model is, how the coefficients of a regression model are
estimated, and how we quantify the performance of the model (the last of these, incidentally, is basically
our measure of effect size). The next thing we need to talk about is hypothesis tests. There are two
different (but related) kinds of hypothesis tests that we need to talk about: those in which we test whether
the regression model as a whole is performing significantly better than a null model; and those in which
we test whether a particular regression coefficient is significantly different from zero.

At this point, you’re probably groaning internally, thinking that I’m going to introduce a whole new
collection of tests. You’re probably sick of hypothesis tests by now, and don’t want to learn any new ones.
Me too. I’m so sick of hypothesis tests that I’m going to shamelessly reuse the F -test from Chapter 14
and the t-test from Chapter 13. In fact, all I’m going to do in this section is show you how those tests
are imported wholesale into the regression framework.

15.5.1 Testing the model as a whole

Okay, suppose you’ve estimated your regression model. The first hypothesis test you might want to try
is one in which the null hypothesis that there is no relationship between the predictors and the outcome,
and the alternative hypothesis is that the data are distributed in exactly the way that the regression model
predicts. Formally, our “null model” corresponds to the fairly trivial “regression” model in which we
include 0 predictors, and only include the intercept term b0

H0 : Yi “ b0 ` ǫi
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If our regression model has K predictors, the “alternative model” is described using the usual formula
for a multiple regression model:

H1 : Yi “
˜

K
ÿ

k“1

bkXik

¸

` b0 ` ǫi

How can we test these two hypotheses against each other? The trick is to understand that just like we
did with ANOVA, it’s possible to divide up the total variance SStot into the sum of the residual variance
SSres and the regression model variance SSmod. I’ll skip over the technicalities, since we covered most of
them in the ANOVA chapter, and just note that:

SSmod “ SStot ´ SSres

And, just like we did with the ANOVA, we can convert the sums of squares in to mean squares by dividing
by the degrees of freedom.

MSmod “ SSmod

dfmod

MSres “ SSres
dfres

So, how many degrees of freedom do we have? As you might expect, the df associated with the model is
closely tied to the number of predictors that we’ve included. In fact, it turns out that dfmod “ K. For
the residuals, the total degrees of freedom is dfres “ N ´K ´ 1.

Now that we’ve got our mean square values, you’re probably going to be entirely unsurprised (possibly
even bored) to discover that we can calculate an F -statistic like this:

F “ MSmod

MSres

and the degrees of freedom associated with this are K and N ´ K ´ 1. This F statistic has exactly
the same interpretation as the one we introduced in Chapter 14. Large F values indicate that the null
hypothesis is performing poorly in comparison to the alternative hypothesis. And since we already did
some tedious “do it the long way” calculations back then, I won’t waste your time repeating them. In a
moment I’ll show you how to do the test in R the easy way, but first, let’s have a look at the tests for the
individual regression coefficients.

15.5.2 Tests for individual coefficients

The F -test that we’ve just introduced is useful for checking that the model as a whole is performing
better than chance. This is important: if your regression model doesn’t produce a significant result for
the F -test then you probably don’t have a very good regression model (or, quite possibly, you don’t have
very good data). However, while failing this test is a pretty strong indicator that the model has problems,
passing the test (i.e., rejecting the null) doesn’t imply that the model is good! Why is that, you might be
wondering? The answer to that can be found by looking at the coefficients for the regression.2 model:

> print( regression.2 )

Call:

lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood)

Coefficients:

(Intercept) dan.sleep baby.sleep

125.96557 -8.95025 0.01052
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I can’t help but notice that the estimated regression coefficient for the baby.sleep variable is tiny (0.01),
relative to the value that we get for dan.sleep (-8.95). Given that these two variables are absolutely on
the same scale (they’re both measured in “hours slept”), I find this suspicious. In fact, I’m beginning to
suspect that it’s really only the amount of sleep that I get that matters in order to predict my grumpiness.

Once again, we can reuse a hypothesis test that we discussed earlier, this time the t-test. The test
that we’re interested has a null hypothesis that the true regression coefficient is zero (b “ 0), which is to
be tested against the alternative hypothesis that it isn’t (b ‰ 0). That is:

H0 : b “ 0
H1 : b ‰ 0

How can we test this? Well, if the central limit theorem is kind to us, we might be able to guess that the
sampling distribution of b̂, the estimated regression coefficient, is a normal distribution with mean centred
on b. What that would mean is that if the null hypothesis were true, then the sampling distribution of
b̂ has mean zero and unknown standard deviation. Assuming that we can come up with a good estimate
for the standard error of the regression coefficient, sepb̂q, then we’re in luck. That’s exactly the situation
for which we introduced the one-sample t way back in Chapter 13. So let’s define a t-statistic like this,

t “ b̂

sepb̂q

I’ll skip over the reasons why, but our degrees of freedom in this case are df “ N ´K ´ 1. Irritatingly,
the estimate of the standard error of the regression coefficient, sepb̂q, is not as easy to calculate as the
standard error of the mean that we used for the simpler t-tests in Chapter 13. In fact, the formula is
somewhat ugly, and not terribly helpful to look at.4 For our purposes it’s sufficient to point out that
the standard error of the estimated regression coefficient depends on both the predictor and outcome
variables, and is somewhat sensitive to violations of the homogeneity of variance assumption (discussed
shortly).

In any case, this t-statistic can be interpreted in the same way as the t-statistics that we discussed in
Chapter 13. Assuming that you have a two-sided alternative (i.e., you don’t really care if b ą 0 or b ă 0),
then it’s the extreme values of t (i.e., a lot less than zero or a lot greater than zero) that suggest that
you should reject the null hypothesis.

15.5.3 Running the hypothesis tests in R

To compute all of the quantities that we have talked about so far, all you need to do is ask for a
summary() of your regression model. Since I’ve been using regression.2 as my example, let’s do that:

> summary( regression.2 )

The output that this command produces is pretty dense, but we’ve already discussed everything of interest
in it, so what I’ll do is go through it line by line. The first line reminds us of what the actual regression
model is:

Call:

lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood)

4For advanced readers only. The vector of residuals is ǫ “ y ´ Xb̂. For K predictors plus the intercept, the estimated
residual variance is σ̂2 “ ǫ1ǫ{pN ´ K ´ 1q. The estimated covariance matrix of the coefficients is σ̂2pX1

Xq´1, the main

diagonal of which is sepb̂q, our estimated standard errors.
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You can see why this is handy, since it was a little while back when we actually created the regression.2

model, and so it’s nice to be reminded of what it was we were doing. The next part provides a quick
summary of the residuals (i.e., the ǫi values),

Residuals:

Min 1Q Median 3Q Max

-11.0345 -2.2198 -0.4016 2.6775 11.7496

which can be convenient as a quick and dirty check that the model is okay. Remember, we did assume
that these residuals were normally distributed, with mean 0. In particular it’s worth quickly checking
to see if the median is close to zero, and to see if the first quartile is about the same size as the third
quartile. If they look badly off, there’s a good chance that the assumptions of regression are violated.
These ones look pretty nice to me, so let’s move on to the interesting stuff. The next part of the R output
looks at the coefficients of the regression model:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 125.96557 3.04095 41.423 <2e-16 ***

dan.sleep -8.95025 0.55346 -16.172 <2e-16 ***

baby.sleep 0.01052 0.27106 0.039 0.969

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Each row in this table refers to one of the coefficients in the regression model. The first row is the
intercept term, and the later ones look at each of the predictors. The columns give you all of the relevant
information. The first column is the actual estimate of b (e.g., 125.96 for the intercept, and -8.9 for the
dan.sleep predictor). The second column is the standard error estimate σ̂b. The third column gives you

the t-statistic, and it’s worth noticing that in this table t “ b̂{sepb̂q every time. Finally, the fourth column
gives you the actual p value for each of these tests.5 The only thing that the table itself doesn’t list is
the degrees of freedom used in the t-test, which is always N ´K ´ 1 and is listed immediately below, in
this line:

Residual standard error: 4.354 on 97 degrees of freedom

The value of df “ 97 is equal to N ´K ´ 1, so that’s what we use for our t-tests. In the final part of the
output we have the F -test and the R2 values which assess the performance of the model as a whole

Residual standard error: 4.354 on 97 degrees of freedom

Multiple R-squared: 0.8161, Adjusted R-squared: 0.8123

F-statistic: 215.2 on 2 and 97 DF, p-value: < 2.2e-16

So in this case, the model performs significantly better than you’d expect by chance (F p2, 97q “ 215.2,
p ă .001), which isn’t all that surprising: the R2 “ .812 value indicate that the regression model accounts
for 81.2% of the variability in the outcome measure. However, when we look back up at the t-tests
for each of the individual coefficients, we have pretty strong evidence that the baby.sleep variable has
no significant effect; all the work is being done by the dan.sleep variable. Taken together, these results
suggest that regression.2 is actually the wrong model for the data: you’d probably be better off dropping
the baby.sleep predictor entirely. In other words, the regression.1 model that we started with is the
better model.

5Note that, although R has done multiple tests here, it hasn’t done a Bonferroni correction or anything. These are
standard one-sample t-tests with a two-sided alternative. If you want to make corrections for multiple tests, you need to
do that yourself.
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15.6

Testing the significance of a correlation

15.6.1 Hypothesis tests for a single correlation

I don’t want to spend too much time on this, but it’s worth very briefly returning to the point I made
earlier, that Pearson correlations are basically the same thing as linear regressions with only a single
predictor added to the model. What this means is that the hypothesis tests that I just described in a
regression context can also be applied to correlation coefficients. To see this, let’s take a summary() of the
regression.1 model:

> summary( regression.1 )

Call:

lm(formula = dan.grump ~ dan.sleep, data = parenthood)

Residuals:

Min 1Q Median 3Q Max

-11.025 -2.213 -0.399 2.681 11.750

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 125.9563 3.0161 41.76 <2e-16 ***

dan.sleep -8.9368 0.4285 -20.85 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.332 on 98 degrees of freedom

Multiple R-squared: 0.8161, Adjusted R-squared: 0.8142

F-statistic: 434.9 on 1 and 98 DF, p-value: < 2.2e-16

The important thing to note here is the t test associated with the predictor, in which we get a result of
tp98q “ ´20.85, p ă .001. Now let’s compare this to the output of a different function, which goes by
the name of cor.test(). As you might expect, this function runs a hypothesis test to see if the observed
correlation between two variables is significantly different from 0. Let’s have a look:

> cor.test( x = parenthood$dan.sleep, y = parenthood$dan.grump )

Pearson’s product-moment correlation

data: parenthood$dan.sleep and parenthood$dan.grump

t = -20.8544, df = 98, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.9340614 -0.8594714

sample estimates:

cor

-0.903384

Again, the key thing to note is the line that reports the hypothesis test itself, which seems to be saying
that tp98q “ ´20.85, p ă .001. Hm. Looks like it’s exactly the same test, doesn’t it? And that’s exactly
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what it is. The test for the significance of a correlation is identical to the t test that we run on a coefficient
in a regression model.

15.6.2 Hypothesis tests for all pairwise correlations

Okay, one more digression before I return to regression properly. In the previous section I talked about
the cor.test() function, which lets you run a hypothesis test on a single correlation. The cor.test()

function is (obviously) an extension of the cor() function, which we talked about in Section 5.7. However,
the cor() function isn’t restricted to computing a single correlation: you can use it to compute all pairwise
correlations among the variables in your data set. This leads people to the natural question: can the
cor.test() function do the same thing? Can we use cor.test() to run hypothesis tests for all possible
parwise correlations among the variables in a data frame?

The answer is no, and there’s a very good reason for this. Testing a single correlation is fine: if you’ve
got some reason to be asking “is A related to B?”, then you should absolutely run a test to see if there’s a
significant correlation. But if you’ve got variables A, B, C, D and E and you’re thinking about testing the
correlations among all possible pairs of these, a statistician would want to ask: what’s your hypothesis?
If you’re in the position of wanting to test all possible pairs of variables, then you’re pretty clearly on a
fishing expedition, hunting around in search of significant effects when you don’t actually have a clear
research hypothesis in mind. This is dangerous, and the authors of cor.test() obviously felt that they
didn’t want to support that kind of behaviour.

On the other hand... a somewhat less hardline view might be to argue we’ve encountered this situation
before, back in Section 14.5 when we talked about post hoc tests in ANOVA. When running post hoc tests,
we didn’t have any specific comparisons in mind, so what we did was apply a correction (e.g., Bonferroni,
Holm, etc) in order to avoid the possibility of an inflated Type I error rate. From this perspective, it’s
okay to run hypothesis tests on all your pairwise correlations, but you must treat them as post hoc
analyses, and if so you need to apply a correction for multiple comparisons. That’s what the correlate()

function in the lsr package does. When we use the correlate() function in Section 5.7 all it did was
print out the correlation matrix. But you can get it to output the results of all the pairwise tests as well
by specifying test=TRUE. Here’s what happens with the parenthood data:

> library(lsr)

> correlate(parenthood, test=TRUE)

CORRELATIONS

============

- correlation type: pearson

- correlations shown only when both variables are numeric

dan.sleep baby.sleep dan.grump day

dan.sleep . 0.628*** -0.903*** -0.098

baby.sleep 0.628*** . -0.566*** -0.010

dan.grump -0.903*** -0.566*** . 0.076

day -0.098 -0.010 0.076 .

---

Signif. codes: . = p < .1, * = p<.05, ** = p<.01, *** = p<.001

p-VALUES

========

- total number of tests run: 6
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- correction for multiple testing: holm

dan.sleep baby.sleep dan.grump day

dan.sleep . 0.000 0.000 0.990

baby.sleep 0.000 . 0.000 0.990

dan.grump 0.000 0.000 . 0.990

day 0.990 0.990 0.990 .

SAMPLE SIZES

============

dan.sleep baby.sleep dan.grump day

dan.sleep 100 100 100 100

baby.sleep 100 100 100 100

dan.grump 100 100 100 100

day 100 100 100 100

The output here contains three matrices. First it prints out the correlation matrix. Second it prints
out a matrix of p-values, using the Holm method6 to correct for multiple comparisons. Finally, it prints
out a matrix indicating the sample size (number of pairwise complete cases) that contributed to each
correlation.

So there you have it. If you really desperately want to do pairwise hypothesis tests on your correlations,
the correlate() function will let you do it. But please, please be careful. I can’t count the number of
times I’ve had a student panicking in my office because they’ve run these pairwise correlation tests, and
they get one or two significant results that don’t make any sense. For some reason, the moment people
see those little significance stars appear, they feel compelled to throw away all common sense and assume
that the results must correspond to something real that requires an explanation. In most such cases, my
experience has been that the right answer is “it’s a Type I error”.

15.7

Regarding regression coefficients

Before moving on to discuss the assumptions underlying linear regression and what you can do to check if
they’re being met, there’s two more topics I want to briefly discuss, both of which relate to the regression
coefficients. The first thing to talk about is calculating confidence intervals for the coefficients; after that,
I’ll discuss the somewhat murky question of how to determine which of predictor is most important.

15.7.1 Confidence intervals for the coefficients

Like any population parameter, the regression coefficients b cannot be estimated with complete precision
from a sample of data; that’s part of why we need hypothesis tests. Given this, it’s quite useful to be able
to report confidence intervals that capture our uncertainty about the true value of b. This is especially
useful when the research question focuses heavily on an attempt to find out how strongly variable X

is related to variable Y , since in those situations the interest is primarily in the regression weight b.

6You can change the kind of correction it applies by specifying the p.adjust.method argument.
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Fortunately, confidence intervals for the regression weights can be constructed in the usual fashion,

CIpbq “ b̂˘
´

tcrit ˆ sepb̂q
¯

where sepb̂q is the standard error of the regression coefficient, and tcrit is the relevant critical value of the
appropriate t distribution. For instance, if it’s a 95% confidence interval that we want, then the critical
value is the 97.5th quantile of a t distribution with N ´K ´ 1 degrees of freedom. In other words, this is
basically the same approach to calculating confidence intervals that we’ve used throughout. To do this
in R we can use the confint() function. There arguments to this function are

• object. The regression model (lm object) for which confidence intervals are required.

• parm. A vector indicating which coefficients we should calculate intervals for. This can be either a
vector of numbers or (more usefully) a character vector containing variable names. By default, all
coefficients are included, so usually you don’t bother specifying this argument.

• level. A number indicating the confidence level that should be used. As is usually the case, the
default value is 0.95, so you wouldn’t usually need to specify this argument.

So, suppose I want 99% confidence intervals for the coefficients in the regression.2 model. I could do
this using the following command:

> confint( object = regression.2,

+ level = .99

+ )

0.5 % 99.5 %

(Intercept) 117.9755724 133.9555593

dan.sleep -10.4044419 -7.4960575

baby.sleep -0.7016868 0.7227357

Simple enough.

15.7.2 Calculating standardised regression coefficients

One more thing that you might want to do is to calculate “standardised” regression coefficients,
often denoted β. The rationale behind standardised coefficients goes like this. In a lot of situations,
your variables are on fundamentally different scales. Suppose, for example, my regression model aims to
predict people’s IQ scores, using their educational attainment (number of years of education) and their
income as predictors. Obviously, educational attainment and income are not on the same scales: the
number of years of schooling can only vary by 10s of years, whereas income would vary by 10,000s of
dollars (or more). The units of measurement have a big influence on the regression coefficients: the b

coefficients only make sense when interpreted in light of the units, both of the predictor variables and the
outcome variable. This makes it very difficult to compare the coefficients of different predictors. Yet there
are situations where you really do want to make comparisons between different coefficients. Specifically,
you might want some kind of standard measure of which predictors have the strongest relationship to the
outcome. This is what standardised coefficients aim to do.

The basic idea is quite simple: the standardised coefficients are the coefficients that you would have
obtained if you’d converted all the variables to z-scores before running the regression.7 The idea here

7Strictly, you standardise all the regressors: that is, every “thing” that has a regression coefficient associated with it in
the model. For the regression models that I’ve talked about so far, each predictor variable maps onto exactly one regressor,
and vice versa. However, that’s not actually true in general: we’ll see some examples of this in Chapter 16. But for now,
we don’t need to care too much about this distinction.
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is that, by converting all the predictors to z-scores, they all go into the regression on the same scale,
thereby removing the problem of having variables on different scales. Regardless of what the original
variables were, a β value of 1 means that an increase in the predictor of 1 standard deviation will produce
a corresponding 1 standard deviation increase in the outcome variable. Therefore, if variable A has a
larger β value than variable B, it is deemed to have a stronger relationship with the outcome. Or at least
that’s the idea: it’s worth being a little cautious here, since this does rely very heavily on the assumption
that “a 1 standard deviation change” is fundamentally the same kind of thing for all variables. It’s not
always obvious that this is true.

Leaving aside the interpretation issues, let’s look at how it’s calculated. What you could do is
standardise all the variables yourself and then run a regression, but there’s a much simpler way to do it.
As it turns out, the β coefficient for a predictor X and outcome Y has a very simple formula, namely

βX “ bX ˆ
σX

σY

where σX is the standard deviation of the predictor, and σY is the standard deviation of the outcome
variable Y . This makes matters a lot simpler. To make things even simpler, the lsr package includes a
function standardCoefs() that computes the β coefficients.

> standardCoefs( regression.2 )

b beta

dan.sleep -8.95024973 -0.90474809

baby.sleep 0.01052447 0.00217223

This clearly shows that the dan.sleep variable has a much stronger effect than the baby.sleep variable.
However, this is a perfect example of a situation where it would probably make sense to use the original
coefficients b rather than the standardised coefficients β. After all, my sleep and the baby’s sleep are
already on the same scale: number of hours slept. Why complicate matters by converting these to
z-scores?

15.8

Assumptions of regression

The linear regression model that I’ve been discussing relies on several assumptions. In Section 15.9 we’ll
talk a lot more about how to check that these assumptions are being met, but first, let’s have a look at
each of them.

• Normality. Like half the models in statistics, standard linear regression relies on an assumption of
normality. Specifically, it assumes that the residuals are normally distributed. It’s actually okay if
the predictors X and the outcome Y are non-normal, so long as the residuals ǫ are normal. See
Section 15.9.3.

• Linearity. A pretty fundamental assumption of the linear regression model is that relationship
between X and Y actually be linear! Regardless of whether it’s a simple regression or a multiple
regression, we assume that the relatiships involved are linear. See Section 15.9.4.

• Homogeneity of variance. Strictly speaking, the regression model assumes that each residual ǫi is
generated from a normal distribution with mean 0, and (more importantly for the current purposes)
with a standard deviation σ that is the same for every single residual. In practice, it’s impossible
to test the assumption that every residual is identically distributed. Instead, what we care about
is that the standard deviation of the residual is the same for all values of Ŷ , and (if we’re being
especially paranoid) all values of every predictor X in the model. See Section 15.9.5.
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• Uncorrelated predictors. The idea here is that, is a multiple regression model, you don’t want your
predictors to be too strongly correlated with each other. This isn’t “technically” an assumption
of the regression model, but in practice it’s required. Predictors that are too strongly correlated
with each other (referred to as “collinearity”) can cause problems when evaluating the model. See
Section 15.9.6

• Residuals are independent of each other. This is really just a “catch all” assumption, to the effect
that “there’s nothing else funny going on in the residuals”. If there is something weird (e.g., the
residuals all depend heavily on some other unmeasured variable) going on, it might screw things
up.

• No “bad” outliers. Again, not actually a technical assumption of the model (or rather, it’s sort of
implied by all the others), but there is an implicit assumption that your regression model isn’t being
too strongly influenced by one or two anomalous data points; since this raises questions about the
adequacy of the model, and the trustworthiness of the data in some cases. See Section 15.9.2.

15.9

Model checking

The main focus of this section is regression diagnostics, a term that refers to the art of checking
that the assumptions of your regression model have been met, figuring out how to fix the model if the
assumptions are violated, and generally to check that nothing “funny” is going on. I refer to this as the
“art” of model checking with good reason: it’s not easy, and while there are a lot of fairly standardised
tools that you can use to diagnose and maybe even cure the problems that ail your model (if there are
any, that is!), you really do need to exercise a certain amount of judgment when doing this. It’s easy to
get lost in all the details of checking this thing or that thing, and it’s quite exhausting to try to remember
what all the different things are. This has the very nasty side effect that a lot of people get frustrated
when trying to learn all the tools, so instead they decide not to do any model checking. This is a bit of
a worry!

In this section, I describe several different things you can do to check that your regression model is
doing what it’s supposed to. It doesn’t cover the full space of things you could do, but it’s still much
more detailed than what I see a lot of people doing in practice; and I don’t usually cover all of this in
my intro stats class myself. However, I do think it’s important that you get a sense of what tools are at
your disposal, so I’ll try to introduce a bunch of them here. Finally, I should note that this section draws
quite heavily from the Fox and Weisberg (2011) text, the book associated with the car package. The car

package is notable for providing some excellent tools for regression diagnostics, and the book itself talks
about them in an admirably clear fashion. I don’t want to sound too gushy about it, but I do think that
Fox and Weisberg (2011) is well worth reading.

15.9.1 Three kinds of residuals

The majority of regression diagnostics revolve around looking at the residuals, and by now you’ve
probably formed a sufficiently pessimistic theory of statistics to be able to guess that – precisely because of
the fact that we care a lot about the residuals – there are several different kinds of residual that we might
consider. In particular, the following three kinds of residual are referred to in this section: “ordinary
residuals”, “standardised residuals”, and “Studentised residuals”. There is a fourth kind that you’ll see
referred to in some of the Figures, and that’s the “Pearson residual”: however, for the models that we’re
talking about in this chapter, the Pearson residual is identical to the ordinary residual.
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The first and simplest kind of residuals that we care about are ordinary residuals. These are the
actual, raw residuals that I’ve been talking about throughout this chapter. The ordinary residual is just
the difference between the fitted value Ŷi and the observed value Yi. I’ve been using the notation ǫi to
refer to the i-th ordinary residual, and by gum I’m going to stick to it. With this in mind, we have the
very simple equation

ǫi “ Yi ´ Ŷi

This is of course what we saw earlier, and unless I specifically refer to some other kind of residual, this
is the one I’m talking about. So there’s nothing new here: I just wanted to repeat myself. In any case,
you can get R to output a vector of ordinary residuals, you can use a command like this:

> residuals( object = regression.2 )

One drawback to using ordinary residuals is that they’re always on a different scale, depending on
what the outcome variable is and how good the regression model is. That is, Unless you’ve decided to run
a regression model without an intercept term, the ordinary residuals will have mean 0; but the variance
is different for every regression. In a lot of contexts, especially where you’re only interested in the pattern
of the residuals and not their actual values, it’s convenient to estimate the standardised residuals,
which are normalised in such a way as to have standard deviation 1. The way we calculate these is to
divide the ordinary residual by an estimate of the (population) standard deviation of these residuals. For
technical reasons, mumble mumble, the formula for this is:

ǫ1
i “

ǫi

σ̂
?
1´ hi

where σ̂ in this context is the estimated population standard deviation of the ordinary residuals, and hi

is the “hat value” of the ith observation. I haven’t explained hat values to you yet (but have no fear,8

it’s coming shortly), so this won’t make a lot of sense. For now, it’s enough to interpret the standardised
residuals as if we’d converted the ordinary residuals to z-scores. In fact, that is more or less the truth,
it’s just that we’re being a bit fancier. To get the standardised residuals, the command you want is this:

> rstandard( model = regression.2 )

Note that this function uses a different name for the input argument, but it’s still just a linear regression
object that the function wants to take as its input here.

The third kind of residuals are Studentised residuals (also called “jackknifed residuals”) and they’re
even fancier than standardised residuals. Again, the idea is to take the ordinary residual and divide it by
some quantity in order to estimate some standardised notion of the residual, but the formula for doing
the calculations this time is subtly different:

ǫ˚
i “

ǫi

σ̂p´iq

?
1´ hi

Notice that our estimate of the standard deviation here is written σ̂p´iq. What this corresponds to is
the estimate of the residual standard deviation that you would have obtained, if you just deleted the ith
observation from the data set. This sounds like the sort of thing that would be a nightmare to calculate,
since it seems to be saying that you have to run N new regression models (even a modern computer
might grumble a bit at that, especially if you’ve got a large data set). Fortunately, some terribly clever
person has shown that this standard deviation estimate is actually given by the following equation:

σ̂p´iq “ σ̂

d

N ´K ´ 1´ ǫ1
i
2

N ´K ´ 2

Isn’t that a pip? Anyway, the command that you would use if you wanted to pull out the Studentised
residuals for our regression model is

8Or have no hope, as the case may be.
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Figure 15.5: An illustration of outliers. The dotted lines plot the regression line that would have been
estimated without the anomalous observation included, and the corresponding residual (i.e., the Studen-
tised residual). The solid line shows the regression line with the anomalous observation included. The
outlier has an unusual value on the outcome (y axis location) but not the predictor (x axis location), and
lies a long way from the regression line.
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> rstudent( model = regression.2 )

Before moving on, I should point out that you don’t often need to manually extract these residuals
yourself, even though they are at the heart of almost all regression diagnostics. That is, the residuals(),
rstandard() and rstudent() functions are all useful to know about, but most of the time the various
functions that run the diagnostics will take care of these calculations for you. Even so, it’s always nice to
know how to actually get hold of these things yourself in case you ever need to do something non-standard.

15.9.2 Three kinds of anomalous data

One danger that you can run into with linear regression models is that your analysis might be dispro-
portionately sensitive to a smallish number of “unusual” or “anomalous” observations. I discussed this
idea previously in Section 6.5.2 in the context of discussing the outliers that get automatically identified
by the boxplot() function, but this time we need to be much more precise. In the context of linear regres-
sion, there are three conceptually distinct ways in which an observation might be called “anomalous”.
All three are interesting, but they have rather different implications for your analysis.

The first kind of unusual observation is an outlier. The definition of an outlier (in this context) is
an observation that is very different from what the regression model predicts. An example is shown in
Figure 15.5. In practice, we operationalise this concept by saying that an outlier is an observation that
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Figure 15.6: An illustration of high leverage points. The anomalous observation in this case is unusual
both in terms of the predictor (x axis) and the outcome (y axis), but this unusualness is highly con-
sistent with the pattern of correlations that exists among the other observations; as a consequence, the
observation falls very close to the regression line and does not distort it.
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has a very large Studentised residual, ǫ˚
i . Outliers are interesting: a big outlier might correspond to junk

data – e.g., the variables might have been entered incorrectly, or some other defect may be detectable.
Note that you shouldn’t throw an observation away just because it’s an outlier. But the fact that it’s an
outlier is often a cue to look more closely at that case, and try to find out why it’s so different.

The second way in which an observation can be unusual is if it has high leverage: this happens
when the observation is very different from all the other observations. This doesn’t necessarily have to
correspond to a large residual: if the observation happens to be unusual on all variables in precisely the
same way, it can actually lie very close to the regression line. An example of this is shown in Figure 15.6.
The leverage of an observation is operationalised in terms of its hat value, usually written hi. The formula
for the hat value is rather complicated9 but its interpretation is not: hi is a measure of the extent to
which the i-th observation is “in control” of where the regression line ends up going. You can extract the
hat values using the following command:

> hatvalues( model = regression.2 )

In general, if an observation lies far away from the other ones in terms of the predictor variables, it will
have a large hat value (as a rough guide, high leverage is when the hat value is more than 2-3 times the

9Again, for the linear algebra fanatics: the “hat matrix” is defined to be that matrix H that converts the vector of
observed values y into a vector of fitted values ŷ, such that ŷ “ Hy. The name comes from the fact that this is the matrix
that “puts a hat on y”. The hat value of the i-th observation is the i-th diagonal element of this matrix (so technically I
should be writing it as hii rather than hi). Oh, and in case you care, here’s how it’s calculated: H “ XpX1

Xq´1
X

1. Pretty,
isn’t it?
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Figure 15.7: An illustration of high influence points. In this case, the anomalous observation is highly
unusual on the predictor variable (x axis), and falls a long way from the regression line. As a consequence,
the regression line is highly distorted, even though (in this case) the anomalous observation is entirely
typical in terms of the outcome variable (y axis).
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average; and note that the sum of the hat values is constrained to be equal to K ` 1). High leverage
points are also worth looking at in more detail, but they’re much less likely to be a cause for concern
unless they are also outliers.

This brings us to our third measure of unusualness, the influence of an observation. A high influence
observation is an outlier that has high leverage. That is, it is an observation that is very different to all
the other ones in some respect, and also lies a long way from the regression line. This is illustrated in
Figure 15.7. Notice the contrast to the previous two figures: outliers don’t move the regression line much,
and neither do high leverage points. But something that is an outlier and has high leverage... that has a
big effect on the regression line. That’s why we call these points high influence; and it’s why they’re the
biggest worry. We operationalise influence in terms of a measure known as Cook’s distance,

Di “
ǫ˚
i
2

K ` 1
ˆ hi

1´ hi

Notice that this is a multiplication of something that measures the outlier-ness of the observation (the
bit on the left), and something that measures the leverage of the observation (the bit on the right). In
other words, in order to have a large Cook’s distance, an observation must be a fairly substantial outlier
and have high leverage. In a stunning turn of events, you can obtain these values using the following
command:

> cooks.distance( model = regression.2 )
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As a rough guide, Cook’s distance greater than 1 is often considered large (that’s what I typically use as
a quick and dirty rule), though a quick scan of the internet and a few papers suggests that 4{N has also
been suggested as a possible rule of thumb.

As hinted above, you don’t usually need to make use of these functions, since you can have R au-
tomatically draw the critical plots.10 For the regression.2 model, these are the plots showing Cook’s
distance (Figure 15.8) and the more detailed breakdown showing the scatter plot of the Studentised
residual against leverage (Figure 15.9). To draw these, we can use the plot() function. When the main
argument x to this function is a linear model object, it will draw one of six different plots, each of which
is quite useful for doing regression diagnostics. You specify which one you want using the which argument
(a number between 1 and 6). If you don’t do this then R will draw all six. The two plots of interest to
us in this context are generated using the following commands:

> plot(x = regression.2, which = 4) # Figure 15.8

> plot(x = regression.2, which = 5) # Figure 15.9

An obvious question to ask next is, if you do have large values of Cook’s distance, what should
you do? As always, there’s no hard and fast rules. Probably the first thing to do is to try running the
regression with that point excluded and see what happens to the model performance and to the regression
coefficients. If they really are substantially different, it’s time to start digging into your data set and
your notes that you no doubt were scribbling as your ran your study; try to figure out why the point is so
different. If you start to become convinced that this one data point is badly distorting your results, you
might consider excluding it, but that’s less than ideal unless you have a solid explanation for why this
particular case is qualitatively different from the others and therefore deserves to be handled separately.11

To give an example, let’s delete the observation from day 64, the observation with the largest Cook’s
distance for the regression.2 model. We can do this using the subset argument:

> lm( formula = dan.grump ~ dan.sleep + baby.sleep, # same formula

+ data = parenthood, # same data frame...

+ subset = -64 # ...but observation 64 is deleted

+ )

Call:

lm(formula = dan.grump ~ dan.sleep + baby.sleep, data = parenthood,

subset = -64)

Coefficients:

(Intercept) dan.sleep baby.sleep

126.3553 -8.8283 -0.1319

As you can see, those regression coefficients have barely changed in comparison to the values we got
earlier. In other words, we really don’t have any problem as far as anomalous data are concerned.

15.9.3 Checking the normality of the residuals

Like many of the statistical tools we’ve discussed in this book, regression models rely on a normality
assumption. In this case, we assume that the residuals are normally distributed. The tools for testing
this aren’t fundamentally different to those that we discussed earlier in Section 13.9. Firstly, I firmly

10Though special mention should be made of the influenceIndexPlot() and influencePlot() functions in the car package.
These produce somewhat more detailed pictures than the default plots that I’ve shown here. There’s also an outlierTest()

function that tests to see if any of the Studentised residuals are significantly larger than would be expected by chance.
11An alternative is to run a “robust regression”; I’ll discuss robust regression in a later version of this book.
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Figure 15.8: Cook’s distance for every observation. This is one of the standard regression plots produced
by the plot() function when the input is a linear regression object. It is obtained by setting which=4.
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Figure 15.9: Residuals versus leverage. This is one of the standard regression plots produced by the
plot() function when the input is a linear regression object. It is obtained by setting which=5.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- 469 -



Value of residual

F
re

q
u

e
n

c
y

−10 −5 0 5 10

0
2

4
6

8
1

0
1

2

Figure 15.10: A histogram of the (ordinary) residuals in the regression.2 model. These residuals look
very close to being normally distributed, much moreso than is typically seen with real data. This shouldn’t
surprise you... they aren’t real data, and they aren’t real residuals!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- 470 -



−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(dan.grump ~ dan.sleep + baby.sleep)

Normal Q−Q

78

81 36

Figure 15.11: Plot of the theoretical quantiles according to the model, against the quantiles of the
standardised residuals. This is one of the standard regression plots produced by the plot() function
when the input is a linear regression object. It is obtained by setting which=2.
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believe that it never hurts to draw an old fashioned histogram. The command I use might be something
like this:

> hist( x = residuals( regression.2 ), # data are the residuals

+ xlab = "Value of residual", # x-axis label

+ main = "", # no title

+ breaks = 20 # lots of breaks

+ )

The resulting plot is shown in Figure 15.10, and as you can see the plot looks pretty damn close to normal,
almost unnaturally so. I could also run a Shapiro-Wilk test to check, using the shapiro.test() function;
the W value of .99, at this sample size, is non-significant (p “ .84), again suggesting that the normality
assumption isn’t in any danger here. As a third measure, we might also want to draw a QQ-plot using
the qqnorm() function. The QQ plot is an excellent one to draw, and so you might not be surprised to
discover that it’s one of the regression plots that we can produce using the plot() function:

> plot( x = regression.2, which = 2 ) # Figure 15.11

The output is shown in Figure 15.11, showing the standardised residuals plotted as a function of their
theoretical quantiles according to the regression model. The fact that the output appends the model
specification to the picture is nice.
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Figure 15.12: Plot of the fitted values against the observed values of the outcome variable. A straight
line is what we’re hoping to see here. This looks pretty good, suggesting that there’s nothing grossly
wrong, but there could be hidden subtle issues.
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15.9.4 Checking the linearity of the relationship

The third thing we might want to test is the linearity of the relationships between the predictors and
the outcomes. There’s a few different things that you might want to do in order to check this. Firstly, it
never hurts to just plot the relationship between the fitted values Ŷi and the observed values Yi for the
outcome variable, as illustrated in Figure 15.12. To draw this we could use the fitted.values() function
to extract the Ŷi values in much the same way that we used the residuals() function to extract the ǫi
values. So the commands to draw this figure might look like this:

> yhat.2 <- fitted.values( object = regression.2 )

> plot( x = yhat.2,

+ y = parenthood$dan.grump,

+ xlab = "Fitted Values",

+ ylab = "Observed Values"

+ )

One of the reasons I like to draw these plots is that they give you a kind of “big picture view”. If this plot
looks approximately linear, then we’re probably not doing too badly (though that’s not to say that there
aren’t problems). However, if you can see big departures from linearity here, then it strongly suggests
that you need to make some changes.

In any case, in order to get a more detailed picture it’s often more informative to look at the relation-
ship between the fitted values and the residuals themselves. Again, we could draw this plot using low

- 472 -



50 60 70 80

−
1
0

−
5

0
5

1
0

Fitted values

R
e
s
id

u
a
ls

lm(dan.grump ~ dan.sleep + baby.sleep)

Residuals vs Fitted

78

81 36

Figure 15.13: Plot of the fitted values against the residuals for regression.2, with a line showing the
relationship between the two. If this is horizontal and straight, then we can feel reasonably confident
that the “average residual” for all “fitted values” is more or less the same. This is one of the standard
regression plots produced by the plot() function when the input is a linear regression object. It is
obtained by setting which=1.
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level commands, but there’s an easier way. Just plot() the regression model, and select which = 1:

> plot(x = regression.2, which = 1) # Figure 15.13

The output is shown in Figure 15.13. As you can see, not only does it draw the scatterplot showing the
fitted value against the residuals, it also plots a line through the data that shows the relationship between
the two. Ideally, this should be a straight, perfectly horizontal line. There’s some hint of curvature here,
but it’s not clear whether or not we be concerned.

A somewhat more advanced version of the same plot is produced by the residualPlots() function in
the car package. This function not only draws plots comparing the fitted values to the residuals, it does
so for each individual predictor. The command is

> residualPlots( model = regression.2 ) # Figure 15.14

and the resulting plots are shown in Figure 15.14. Note that this function also reports the results of a
bunch of curvature tests. For a predictor variable X in some regression model, this test is equivalent
to adding a new predictor to the model corresponding to X2, and running the t-test on the b coefficient
associated with this new predictor. If it comes up significant, it implies that there is some nonlinear
relationship between the variable and the residuals. For what it’s worth, here’s what you get for the
regression.2 model:
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Figure 15.14: Plot of the fitted values against the residuals for regression.2, along with similar plots
for the two predictors individually. This plot is produced by the residualPlots() function in the car

package. Note that it refers to the residuals as “Pearson residuals”, but in this context these are the
same as ordinary residuals.
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Test stat Pr(>|t|)

dan.sleep 2.160 0.033

baby.sleep -0.545 0.587

Tukey test 2.162 0.031

The third line here is the Tukey test, which is basically the same test, except that instead of squaring
one of the predictors and adding it to the model, you square the fitted-value. In any case, the fact that
the curvature tests have come up significant is hinting that the curvature that we can see in Figures 15.13
and 15.14 is genuine;12 although it still bears remembering that the pattern in Figure 15.12 is pretty
damn straight: in other words the deviations from linearity are pretty small, and probably not worth
worrying about.

12And, if you take the time to check the residualPlots() for regression.1, it’s pretty clear that this isn’t some wacky dis-
tortion being caused by the fact that baby.sleep is a useless predictor variable. It’s an actual nonlinearity in the relationship
between dan.sleep and dan.grump.
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In a lot of cases, the solution to this problem (and many others) is to transform one or more of the
variables. We discussed the basics of variable transformation in Sections 7.2 and 7.3, but I do want to
make special note of one additional possibility that I didn’t mention earlier: the Box-Cox transform. The
Box-Cox function is a fairly simple one, but it’s very widely used

fpx, λq “ xλ ´ 1

λ

for all values of λ except λ “ 0. When λ “ 0 we just take the natural logarithm (i.e., lnpxq). You
can calculate it using the boxCox() function in the car package. Better yet, if what you’re trying to do
is convert a data to normal, or as normal as possible, there’s the powerTransform() function in the car

package that can estimate the best value of λ. Variable transformation is another topic that deserves
a fairly detailed treatment, but (again) due to deadline constraints, it will have to wait until a future
version of this book.

15.9.5 Checking the homogeneity of variance

The regression models that we’ve talked about all make a homogeneity of variance assumption: the
variance of the residuals is assumed to be constant. The “default” plot that R provides to help with doing
this (which = 3 when using plot()) shows a plot of the square root of the size of the residual

a

|ǫi|, as a
function of the fitted value Ŷi. We can produce the plot using the following command,

> plot(x = regression.2, which = 3)

and the resulting plot is shown in Figure 15.15. Note that this plot actually uses the standardised residuals
(i.e., converted to z scores) rather than the raw ones, but it’s immaterial from our point of view. What
we’re looking to see here is a straight, horizontal line running through the middle of the plot.

A slightly more formal approach is to run hypothesis tests. The car package provides a function called
ncvTest() (non-constant variance test) that can be used for this purpose (Cook & Weisberg, 1983).
I won’t explain the details of how it works, other than to say that the idea is that what you do is run
a regression to see if there is a relationship between the squared residuals ǫi and the fitted values Ŷi, or
possibly to run a regression using all of the original predictors instead of just Ŷi.

13 Using the default
settings, the ncvTest() looks for a relationship between Ŷi and the variance of the residuals, making it a
straightforward analogue of Figure 15.15. So if we run it for our model,

> ncvTest( regression.2 )

Non-constant Variance Score Test

Variance formula: ~ fitted.values

Chisquare = 0.09317511 Df = 1 p = 0.7601788

We see that our original impression was right: there’s no violations of homogeneity of variance in this
data.

It’s a bit beyond the scope of this chapter to talk too much about how to deal with violations of
homogeneity of variance, but I’ll give you a quick sense of what you need to consider. The main thing to
worry about, if homogeneity of variance is violated, is that the standard error estimates associated with
the regression coefficients are no longer entirely reliable, and so your t tests for the coefficients aren’t
quite right either. A simple fix to the problem is to make use of a “heteroscedasticity corrected covariance
matrix” when estimating the standard errors. These are often called sandwich estimators, for reasons

13Note that the underlying mechanics of the test aren’t the same as the ones I’ve described for regressions; the goodness
of fit is assessed using what’s known as a score-test not an F -test, and the test statistic is (approximately) χ2 distributed
if there’s no relationship
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Figure 15.15: Plot of the fitted values (model predictions) against the square root of the abs standardised
residuals. This plot is used to diagnose violations of homogeneity of variance. If the variance is really
constant, then the line through the middle should be horizontal and flat. This is one of the standard
regression plots produced by the plot() function when the input is a linear regression object. It is
obtained by setting which=3.
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that only make sense if you understand the maths at a low level14 You don’t need to understand what
this means (not for an introductory class), but it might help to note that there’s a hccm() function in
the car() package that does it. Better yet, you don’t even need to use it. You can use the coeftest()

function in the lmtest package, but you need the car package loaded:

> coeftest( regression.2, vcov= hccm )

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 125.965566 3.247285 38.7910 <2e-16 ***

dan.sleep -8.950250 0.615820 -14.5339 <2e-16 ***

baby.sleep 0.010524 0.291565 0.0361 0.9713

---

14Again, a footnote that should be read only by the two readers of this book that love linear algebra (mmmm... I love the
smell of matrix computations in the morning; smells like... nerd). In these estimators, the covariance matrix for b is given
by pX1

Xq´1
X

1
ΣX pX1

Xq´1. See, it’s a “sandwich”? Assuming you think that pX1
Xq´1 “ “bread” and X

1
ΣX “ “filling”,

that is. Which of course everyone does, right? In any case, the usual estimator is what you get when you set Σ “ σ̂2
I. The

corrected version that I learned originally uses Σ “ diagpǫ2i q (White, 1980). However, the version that Fox and Weisberg
(2011) have implemented as the default in the hccm() function is a tweak on this, proposed by Long and Ervin (2000). This
version uses Σ “ diagpǫ2i {p1 ´ h2

i qq, where hi is the ith hat value. Gosh, regression is fun, isn’t it?

- 476 -



Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Not surprisingly, these t tests are pretty much identical to the ones that we saw when we used the
summary(regression.2) command earlier; because the homogeneity of variance assumption wasn’t vio-
lated. But if it had been, we might have seen some more substantial differences.

15.9.6 Checking for collinearity

The last kind of regression diagnostic that I’m going to discuss in this chapter is the use of variance
inflation factors (VIFs), which are useful for determining whether or not the predictors in your regres-
sion model are too highly correlated with each other. There is a variance inflation factor associated with
each predictor Xk in the model, and the formula for the k-th VIF is:

VIFk “
1

1´R2

p´kq

where R2

p´kq refers to R-squared value you would get if you ran a regression using Xk as the outcome

variable, and all the other X variables as the predictors. The idea here is that R2

p´kq is a very good
measure of the extent to which Xk is correlated with all the other variables in the model. Better yet,
the square root of the VIF is pretty interpretable: it tells you how much wider the confidence interval for
the corresponding coefficient bk is, relative to what you would have expected if the predictors are all nice
and uncorrelated with one another. If you’ve only got two predictors, the VIF values are always going
to be the same, as we can see if we use the vif() function (car package)...

> vif( mod = regression.2 )

dan.sleep baby.sleep

1.651038 1.651038

And since the square root of 1.65 is 1.28, we see that the correlation between our two predictors isn’t
causing much of a problem.

To give a sense of how we could end up with a model that has bigger collinearity problems, suppose
I were to run a much less interesting regression model, in which I tried to predict the day on which the
data were collected, as a function of all the other variables in the data set. To see why this would be a
bit of a problem, let’s have a look at the correlation matrix for all four variables:

> cor( parenthood )

dan.sleep baby.sleep dan.grump day

dan.sleep 1.00000000 0.62794934 -0.90338404 -0.09840768

baby.sleep 0.62794934 1.00000000 -0.56596373 -0.01043394

dan.grump -0.90338404 -0.56596373 1.00000000 0.07647926

day -0.09840768 -0.01043394 0.07647926 1.00000000

We have some fairly large correlations between some of our predictor variables! When we run the
regression model and look at the VIF values, we see that the collinearity is causing a lot of uncertainty
about the coefficients. First, run the regression...

> regression.3 <- lm( day ~ baby.sleep + dan.sleep + dan.grump, parenthood )

and second, look at the VIFs...

> vif( regression.3 )

baby.sleep dan.sleep dan.grump

1.651064 6.102337 5.437903

Yep, that’s some mighty fine collinearity you’ve got there.
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15.10

Model selection

One fairly major problem that remains is the problem of “model selection”. That is, if we have a data
set that contains several variables, which ones should we include as predictors, and which ones should we
not include? In other words, we have a problem of variable selection. In general, model selection is a
complex business, but it’s made somewhat simpler if we restrict ourselves to the problem of choosing a
subset of the variables that ought to be included in the model. Nevertheless, I’m not going to try covering
even this reduced topic in a lot of detail. Instead, I’ll talk about two broad principles that you need to
think about; and then discuss one concrete tool that R provides to help you select a subset of variables
to include in your model. Firstly, the two principles:

• It’s nice to have an actual substantive basis for your choices. That is, in a lot of situations you the
researcher have good reasons to pick out a smallish number of possible regression models that are
of theoretical interest; these models will have a sensible interpretation in the context of your field.
Never discount the importance of this. Statistics serves the scientific process, not the other way
around.

• To the extent that your choices rely on statistical inference, there is a trade off between simplicity
and goodness of fit. As you add more predictors to the model, you make it more complex; each
predictor adds a new free parameter (i.e., a new regression coefficient), and each new parameter
increases the model’s capacity to “absorb” random variations. So the goodness of fit (e.g., R2)
continues to rise as you add more predictors no matter what. If you want your model to be able to
generalise well to new observations, you need to avoid throwing in too many variables.

This latter principle is often referred to as Ockham’s razor, and is often summarised in terms of the
following pithy saying: do not multiply entities beyond necessity. In this context, it means: don’t chuck
in a bunch of largely irrelevant predictors just to boost your R2. Hm. Yeah, the original was better.

In any case, what we need is an actual mathematical criterion that will implement the qualitative
principle behind Ockham’s razor in the context of selecting a regression model. As it turns out there are
several possibilities. The one that I’ll talk about is the Akaike information criterion (AIC; Akaike,
1974) simply because it’s the default one used in the R function step(). In the context of a linear
regression model (and ignoring terms that don’t depend on the model in any way!), the AIC for a model
that has K predictor variables plus an intercept is:15

AIC “ SSres
σ̂2

` 2K

The smaller the AIC value, the better the model performance is. If we ignore the low level details, it’s
fairly obvious what the AIC does: on the left we have a term that increases as the model predictions get
worse; on the right we have a term that increases as the model complexity increases. The best model is
the one that fits the data well (low residuals; left hand side) using as few predictors as possible (low K;
right hand side). In short, this is a simple implementation of Ockham’s razor.

15Note, however, that the step() function computes the full version of AIC, including the irrelevant constants that I’ve
dropped here. As a consequence this equation won’t correctly describe the AIC values that you see in the outputs here.
However, if you calculate the AIC values using my formula for two different regression models and take the difference
between them, this will be the same as the differences between AIC values that step() reports. In practice, this is all you
care about: the actual value of an AIC statistic isn’t very informative, but the differences between two AIC values are

useful, since these provide a measure of the extent to which one model outperforms another.
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15.10.1 Backward elimination

Okay, let’s have a look at the step() function at work. In this example I’ll keep it simple and use
only the basic backward elimination approach. That is, start with the complete regression model,
including all possible predictors. Then, at each “step” we try all possible ways of removing one of the
variables, and whichever of these is best (in terms of lowest AIC value) is accepted. This becomes our
new regression model; and we then try all possible deletions from the new model, again choosing the
option with lowest AIC. This process continues until we end up with a model that has a lower AIC value
than any of the other possible models that you could produce by deleting one of its predictors. Let’s see
this in action. First, I need to define the model from which the process starts.

> full.model <- lm( formula = dan.grump ~ dan.sleep + baby.sleep + day,

+ data = parenthood

+ )

That’s nothing terribly new: yet another regression. Booooring. Still, we do need to do it: the object

argument to the step() function will be this regression model. With this in mind, I would call the step()

function using the following command:

> step( object = full.model, # start at the full model

+ direction = "backward" # allow it remove predictors but not add them

+ )

although in practice I didn’t need to specify direction because "backward" is the default. The output is
somewhat lengthy, so I’ll go through it slowly. Firstly, the output reports the AIC value for the current
best model:

Start: AIC=299.08

dan.grump ~ dan.sleep + baby.sleep + day

That’s our starting point. Since small AIC values are good, we want to see if we can get a value smaller
than 299.08 by deleting one of those three predictors. So what R does is try all three possibilities, calculate
the AIC values for each one, and then print out a short table with the results:

Df Sum of Sq RSS AIC

- baby.sleep 1 0.1 1837.2 297.08

- day 1 1.6 1838.7 297.16

<none> 1837.1 299.08

- dan.sleep 1 4909.0 6746.1 427.15

To read this table, it helps to note that the text in the left hand column is telling you what change R

made to the regression model. So the line that reads <none> is the actual model we started with, and
you can see on the right hand side that this still corresponds to an AIC value of 299.08 (obviously). The
other three rows in the table correspond to the other three models that it looked at: it tried removing
the baby.sleep variable, which is indicated by - baby.sleep, and this produced an AIC value of 297.08.
That was the best of the three moves, so it’s at the top of the table. So, this move is accepted, and now
we start again. There are two predictors left in the model, dan.sleep and day, so it tries deleting those:

Step: AIC=297.08

dan.grump ~ dan.sleep + day

Df Sum of Sq RSS AIC

- day 1 1.6 1838.7 295.17

<none> 1837.2 297.08

- dan.sleep 1 8103.0 9940.1 463.92

- 479 -



Okay, so what we can see is that removing the day variable lowers the AIC value from 297.08 to 295.17.
So R decides to keep that change too, and moves on:

Step: AIC=295.17

dan.grump ~ dan.sleep

Df Sum of Sq RSS AIC

<none> 1838.7 295.17

- dan.sleep 1 8159.9 9998.6 462.50

This time around, there’s no further deletions that can actually improve the AIC value. So the step()

function stops, and prints out the result of the best regression model it could find:

Call:

lm(formula = dan.grump ~ dan.sleep, data = parenthood)

Coefficients:

(Intercept) dan.sleep

125.956 -8.937

which is (perhaps not all that surprisingly) the regression.1 model that we started with at the beginning
of the chapter.

15.10.2 Forward selection

As an alternative, you can also try forward selection. This time around we start with the smallest
possible model as our start point, and only consider the possible additions to the model. However, there’s
one complication: you also need to tell step() what the largest possible model you’re willing to entertain
is, using the scope argument. The simplest usage is like this:

> null.model <- lm( dan.grump ~ 1, parenthood ) # intercept only.

> step( object = null.model, # start with null.model

+ direction = "forward", # only consider "addition" moves

+ scope = dan.grump ~ dan.sleep + baby.sleep + day # largest model allowed

+ )

If I do this, the output takes on a similar form, but now it only considers addition (+) moves rather than
deletion (-) moves:

Start: AIC=462.5

dan.grump ~ 1

Df Sum of Sq RSS AIC

+ dan.sleep 1 8159.9 1838.7 295.17

+ baby.sleep 1 3202.7 6795.9 425.89

<none> 9998.6 462.50

+ day 1 58.5 9940.1 463.92

Step: AIC=295.17

dan.grump ~ dan.sleep

Df Sum of Sq RSS AIC

<none> 1838.7 295.17
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+ day 1 1.55760 1837.2 297.08

+ baby.sleep 1 0.02858 1838.7 297.16

Call:

lm(formula = dan.grump ~ dan.sleep, data = parenthood)

Coefficients:

(Intercept) dan.sleep

125.956 -8.937

As you can see, it’s found the same model. In general though, forward and backward selection don’t
always have to end up in the same place.

15.10.3 A caveat

Automated variable selection methods are seductive things, especially when they’re bundled up in
(fairly) simple functions like step(). They provide an element of objectivity to your model selection, and
that’s kind of nice. Unfortunately, they’re sometimes used as an excuse for thoughtlessness. No longer
do you have to think carefully about which predictors to add to the model and what the theoretical basis
for their inclusion might be... everything is solved by the magic of AIC. And if we start throwing around
phrases like Ockham’s razor, well, it sounds like everything is wrapped up in a nice neat little package
that no-one can argue with.

Or, perhaps not. Firstly, there’s very little agreement on what counts as an appropriate model
selection criterion. When I was taught backward elimination as an undergraduate, we used F -tests to
do it, because that was the default method used by the software. The default in the step() function is
AIC, and since this is an introductory text that’s the only method I’ve described, but the AIC is hardly
the Word of the Gods of Statistics. It’s an approximation, derived under certain assumptions, and it’s
guaranteed to work only for large samples when those assumptions are met. Alter those assumptions and
you get a different criterion, like the BIC for instance. Take a different approach again and you get the
NML criterion. Decide that you’re a Bayesian and you get model selection based on posterior odds ratios.
Then there are a bunch of regression specific tools that I haven’t mentioned. And so on. All of these
different methods have strengths and weaknesses, and some are easier to calculate than others (AIC is
probably the easiest of the lot, which might account for its popularity). Almost all of them produce the
same answers when the answer is “obvious” but there’s a fair amount of disagreement when the model
selection problem becomes hard.

What does this mean in practice? Well, you could go and spend several years teaching yourself the
theory of model selection, learning all the ins and outs of it; so that you could finally decide on what
you personally think the right thing to do is. Speaking as someone who actually did that, I wouldn’t
recommend it: you’ll probably come out the other side even more confused than when you started. A
better strategy is to show a bit of common sense... if you’re staring at the results of a step() procedure,
and the model that makes sense is close to having the smallest AIC, but is narrowly defeated by a model
that doesn’t make any sense... trust your instincts. Statistical model selection is an inexact tool, and as
I said at the beginning, interpretability matters.

15.10.4 Comparing two regression models

An alternative to using automated model selection procedures is for the researcher to explicitly select
two or more regression models to compare to each other. You can do this in a few different ways,
depending on what research question you’re trying to answer. Suppose we want to know whether or not
the amount of sleep that my son got has any relationship to my grumpiness, over and above what we
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might expect from the amount of sleep that I got. We also want to make sure that the day on which we
took the measurement has no influence on the relationship. That is, we’re interested in the relationship
between baby.sleep and dan.grump, and from that perspective dan.sleep and day are nuisance variable
or covariates that we want to control for. In this situation, what we would like to know is whether
dan.grump ~ dan.sleep + day + baby.sleep (which I’ll call Model 1, or M1) is a better regression model
for these data than dan.grump ~ dan.sleep + day (which I’ll call Model 0, or M0). There are two different
ways we can compare these two models, one based on a model selection criterion like AIC, and the other
based on an explicit hypothesis test. I’ll show you the AIC based approach first because it’s simpler, and
follows naturally from the step() function that we saw in the last section. The first thing I need to do is
actually run the regressions:

> M0 <- lm( dan.grump ~ dan.sleep + day, parenthood )

> M1 <- lm( dan.grump ~ dan.sleep + day + baby.sleep, parenthood )

Now that I have my regression models, I could use the summary() function to run various hypothesis tests
and other useful statistics, just as we have discussed throughout this chapter. However, since the current
focus on model comparison, I’ll skip this step and go straight to the AIC calculations. Conveniently, the
AIC() function in R lets you input several regression models, and it will spit out the AIC values for each
of them:16

> AIC( M0, M1 )

df AIC

M0 4 582.8681

M1 5 584.8646

Since Model 0 has the smaller AIC value, it is judged to be the better model for these data.

A somewhat different approach to the problem comes out of the hypothesis testing framework. Sup-
pose you have two regression models, where one of them (Model 0) contains a subset of the predictors
from the other one (Model 1). That is, Model 1 contains all of the predictors included in Model 0, plus
one or more additional predictors. When this happens we say that Model 0 is nested within Model 1, or
possibly that Model 0 is a submodel of Model 1. Regardless of the terminology what this means is that
we can think of Model 0 as a null hypothesis and Model 1 as an alternative hypothesis. And in fact we
can construct an F test for this in a fairly straightforward fashion. We can fit both models to the data

and obtain a residual sum of squares for both models. I’ll denote these as SS
p0q
res and SS

p1q
res respectively.

The superscripting here just indicates which model we’re talking about. Then our F statistic is

F “ pSSp0q
res ´ SSp1q

resq{k
pSSp1q

resq{pN ´ p´ 1q

where N is the number of observations, p is the number of predictors in the full model (not including the
intercept), and k is the difference in the number of parameters between the two models.17 The degrees
of freedom here are k and N ´ p´ 1. Note that it’s often more convenient to think about the difference

16While I’m on this topic I should point out that there is also a function called BIC() which computes the Bayesian
information criterion (BIC) for the models. So you could type BIC(M0,M1) and get a very similar output. In fact, while I’m
not particularly impressed with either AIC or BIC as model selection methods, if you do find yourself using one of these
two, the empirical evidence suggests that BIC is the better criterion of the two. In most simulation studies that I’ve seen,
BIC does a much better job of selecting the correct model.

17It’s worth noting in passing that this same F statistic can be used to test a much broader range of hypotheses than
those that I’m mentioning here. Very briefly: notice that the nested model M0 corresponds to the full model M1 when
we constrain some of the regression coefficients to zero. It is sometimes useful to construct submodels by placing other
kinds of constraints on the regression coefficients. For instance, maybe two different coefficients might have to sum to
zero, or something like that. You can construct hypothesis tests for those kind of constraints too, but it is somewhat more
complicated and the sampling distribution for F can end up being something known as the non-central F distribution,
which is waaaaay beyond the scope of this book! All I want to do is alert you to this possibility.
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between those two SS values as a sum of squares in its own right. That is:

SS∆ “ SSp0q
res ´ SSp1q

res

The reason why this his helpful is that we can express SS∆ a measure of the extent to which the two
models make different predictions about the the outcome variable. Specifically:

SS∆ “
ÿ

i

´

ŷ
p1q
i ´ ŷ

p0q
i

¯2

where ŷ
p0q
i is the fitted value for yi according to modelM0 and ŷ

p1q
i is the is the fitted value for yi according

to model M1.

Okay, so that’s the hypothesis test that we use to compare two regression models to one another.
Now, how do we do it in R? The answer is to use the anova() function. All we have to do is input the
two models that we want to compare (null model first):

> anova( M0, M1 )

Analysis of Variance Table

Model 1: dan.grump ~ dan.sleep + day

Model 2: dan.grump ~ dan.sleep + day + baby.sleep

Res.Df RSS Df Sum of Sq F Pr(>F)

1 97 1837.2

2 96 1837.1 1 0.063688 0.0033 0.9541

Note that, just like we saw with the output from the step() function, R has used the acronym RSS to refer
to the residual sum of squares from each model. That is, RSS in this output corresponds to SSres in the
formula above. Since we have p ą .05 we retain the null hypothesis (M0). This approach to regression,
in which we add all of our covariates into a null model, and then add the variables of interest into an
alternative model, and then compare the two models in hypothesis testing framework, is often referred
to as hierarchical regression.

15.11

Summary

• Basic ideas in linear regression and how regression models are estimated (Sections 15.1 and 15.2).

• Multiple linear regression (Section 15.3).

• Measuring the overall performance of a regression model using R2 (Section 15.4)

• Hypothesis tests for regression models (Section 15.5)

• Calculating confidence intervals for regression coefficients, and standardised coefficients (Section 15.7)

• The assumptions of regression (Section 15.8) and how to check them (Section 15.9)

• Selecting a regression model (Section 15.10)
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16. Factorial ANOVA

Over the course of the last few chapters you can probably detect a general trend. We started out looking
at tools that you can use to compare two groups to one another, most notably the t-test (Chapter 13).
Then, we introduced analysis of variance (ANOVA) as a method for comparing more than two groups
(Chapter 14). The chapter on regression (Chapter 15) covered a somewhat different topic, but in doing
so it introduced a powerful new idea: building statistical models that have multiple predictor variables
used to explain a single outcome variable. For instance, a regression model could be used to predict the
number of errors a student makes in a reading comprehension test based on the number of hours they
studied for the test, and their score on a standardised IQ test. The goal in this chapter is to import
this idea into the ANOVA framework. For instance, suppose we were interested in using the reading
comprehension test to measure student achievements in three different schools, and we suspect that girls
and boys are developing at different rates (and so would be expected to have different performance on
average). Each student is classified in two different ways: on the basis of their gender, and on the basis of
their school. What we’d like to do is analyse the reading comprehension scores in terms of both of these
grouping variables. The tool for doing so is generically referred to as factorial ANOVA. However, since
we have two grouping variables, we sometimes refer to the analysis as a two-way ANOVA, in contrast to
the one-way ANOVAs that we ran in Chapter 14.

16.1

Factorial ANOVA 1: balanced designs, no interactions

When we discussed analysis of variance in Chapter 14, we assumed a fairly simple experimental design:
each person falls into one of several groups, and we want to know whether these groups have different
means on some outcome variable. In this section, I’ll discuss a broader class of experimental designs,
known as factorial designs, in we have more than one grouping variable. I gave one example of how
this kind of design might arise above. Another example appears in Chapter 14, in which we were looking
at the effect of different drugs on the mood.gain experienced by each person. In that chapter we did find a
significant effect of drug, but at the end of the chapter we also ran an analysis to see if there was an effect
of therapy. We didn’t find one, but there’s something a bit worrying about trying to run two separate
analyses trying to predict the same outcome. Maybe there actually is an effect of therapy on mood gain,
but we couldn’t find it because it was being “hidden” by the effect of drug? In other words, we’re going
to want to run a single analysis that includes both drug and therapy as predictors. For this analysis each
person is cross-classified by the drug they were given (a factor with 3 levels) and what therapy they
received (a factor with 2 levels). We refer to this as a 3ˆ 2 factorial design. If we cross-tabulate drug by
therapy, using the xtabs() function (see Section 7.1), we get the following table:
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> xtabs( ~ drug + therapy, clin.trial )

therapy

drug no.therapy CBT

placebo 3 3

anxifree 3 3

joyzepam 3 3

As you can see, not only do we have participants corresponding to all possible combinations of the two
factors, indicating that our design is completely crossed, it turns out that there are an equal number
of people in each group. In other words, we have a balanced design. In this section I’ll talk about how
to analyse data from balanced designs, since this is the simplest case. The story for unbalanced designs
is quite tedious, so we’ll put it to one side for the moment.

16.1.1 What hypotheses are we testing?

Like one-way ANOVA, factorial ANOVA is a tool for testing certain types of hypotheses about popu-
lation means. So a sensible place to start would be to be explicit about what our hypotheses actually are.
However, before we can even get to that point, it’s really useful to have some clean and simple notation
to describe the population means. Because of the fact that observations are cross-classified in terms of
two different factors, there are quite a lot of different means that one might be interested. To see this,
let’s start by thinking about all the different sample means that we can calculate for this kind of design.
Firstly, there’s the obvious idea that we might be interested in this table of group means:

> aggregate( mood.gain ~ drug + therapy, clin.trial, mean )

drug therapy mood.gain

1 placebo no.therapy 0.300000

2 anxifree no.therapy 0.400000

3 joyzepam no.therapy 1.466667

4 placebo CBT 0.600000

5 anxifree CBT 1.033333

6 joyzepam CBT 1.500000

Now, this output shows a cross-tabulation of the group means for all possible combinations of the two
factors (e.g., people who received the placebo and no therapy, people who received the placebo while
getting CBT, etc). However, we can also construct tables that ignore one of the two factors. That gives
us output that looks like this:

> aggregate( mood.gain ~ drug, clin.trial, mean )

drug mood.gain

1 placebo 0.4500000

2 anxifree 0.7166667

3 joyzepam 1.4833333

> aggregate( mood.gain ~ therapy, clin.trial, mean )

therapy mood.gain

1 no.therapy 0.7222222

2 CBT 1.0444444

But of course, if we can ignore one factor we can certainly ignore both. That is, we might also be
interested in calculating the average mood gain across all 18 participants, regardless of what drug or
psychological therapy they were given:

> mean( clin.trial$mood.gain )

[1] 0.88333
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At this point we have 12 different sample means to keep track of! It is helpful to organise all these
numbers into a single table, which would look like this:

no therapy CBT total
placebo 0.30 0.60 0.45
anxifree 0.40 1.03 0.72
joyzepam 1.47 1.50 1.48
total 0.72 1.04 0.88

Now, each of these different means is of course a sample statistic: it’s a quantity that pertains to the
specific observations that we’ve made during our study. What we want to make inferences about are
the corresponding population parameters: that is, the true means as they exist within some broader
population. Those population means can also be organised into a similar table, but we’ll need a little
mathematical notation to do so. As usual, I’ll use the symbol µ to denote a population mean. However,
because there are lots of different means, I’ll need to use subscripts to distinguish between them.

Here’s how the notation works. Our table is defined in terms of two factors: each row corresponds to
a different level of Factor A (in this case drug), and each column corresponds to a different level of Factor
B (in this case therapy). If we let R denote the number of rows in the table, and C denote the number
of columns, we can refer to this as an Rˆ C factorial ANOVA. In this case R “ 3 and C “ 2. We’ll use
lowercase letters to refer to specific rows and columns, so µrc refers to the population mean associated
with the rth level of Factor A (i.e. row number r) and the cth level of Factor B (column number c).1 So
the population means are now written like this:

no therapy CBT total
placebo µ11 µ12

anxifree µ21 µ22

joyzepam µ31 µ32

total

Okay, what about the remaining entries? For instance, how should we describe the average mood gain
across the entire (hypothetical) population of people who might be given Joyzepam in an experiment like
this, regardless of whether they were in CBT? We use the “dot” notation to express this. In the case of
Joyzepam, notice that we’re talking about the mean associated with the third row in the table. That is,
we’re averaging across two cell means (i.e., µ31 and µ32). The result of this averaging is referred to as a
marginal mean, and would be denoted µ3. in this case. The marginal mean for CBT corresponds to the
population mean associated with the second column in the table, so we use the notation µ.2 to describe
it. The grand mean is denoted µ.. because it is the mean obtained by averaging (marginalising2) over
both. So our full table of population means can be written down like this:

no therapy CBT total
placebo µ11 µ12 µ1.

anxifree µ21 µ22 µ2.

joyzepam µ31 µ32 µ3.

total µ.1 µ.2 µ..

1The nice thing about the subscript notation is that generalises nicely: if our experiment had involved a third factor,
then we could just add a third subscript. In principle, the notation extends to as many factors as you might care to include,
but in this book we’ll rarely consider analyses involving more than two factors, and never more than three.

2Technically, marginalising isn’t quite identical to a regular mean: it’s a weighted average, where you take into account
the frequency of the different events that you’re averaging over. However, in a balanced design, all of our cell frequencies
are equal by definition, so the two are equivalent. We’ll discuss unbalanced designs later, and when we do so you’ll see that
all of our calculations become a real headache. But let’s ignore this for now.
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Now that we have this notation, it is straightforward to formulate and express some hypotheses.
Let’s suppose that the goal is to find out two things: firstly, does the choice of drug have any effect
on mood, and secondly, does CBT have any effect on mood? These aren’t the only hypotheses that we
could formulate of course, and we’ll see a really important example of a different kind of hypothesis in
Section 16.2, but these are the two simplest hypotheses to test, and so we’ll start there. Consider the first
test. If drug has no effect, then we would expect all of the row means to be identical, right? So that’s
our null hypothesis. On the other hand, if the drug does matter then we should expect these row means
to be different. Formally, we write down our null and alternative hypotheses in terms of the equality of
marginal means:

Null hypothesis, H0: row means are the same, i.e., µ1. “ µ2. “ µ3.

Alternative hypothesis, H1: at least one row mean is different.

It’s worth noting that these are exactly the same statistical hypotheses that we formed when we ran a
one-way ANOVA on these data back in Chapter 14. Back then I used the notation µP to refer to the
mean mood gain for the placebo group, with µA and µJ corresponding to the group means for the two
drugs, and the null hypothesis was µP “ µA “ µJ . So we’re actually talking about the same hypothesis:
it’s just that the more complicated ANOVA requires more careful notation due to the presence of multiple
grouping variables, so we’re now referring to this hypothesis as µ1. “ µ2. “ µ3.. However, as we’ll see
shortly, although the hypothesis is identical, the test of that hypothesis is subtly different due to the fact
that we’re now acknowledging the existence of the second grouping variable.

Speaking of the other grouping variable, you won’t be surprised to discover that our second hypothesis
test is formulated the same way. However, since we’re talking about the psychological therapy rather
than drugs, our null hypothesis now corresponds to the equality of the column means:

Null hypothesis, H0: column means are the same, i.e., µ.1 “ µ.2

Alternative hypothesis, H1: column means are different, i.e., µ.1 ‰ µ.2

16.1.2 Running the analysis in R

The null and alternative hypotheses that I described in the last section should seem awfully familiar:
they’re basically the same as the hypotheses that we were testing in our simpler one-way ANOVAs in
Chapter 14. So you’re probably expecting that the hypothesis tests that are used in factorial ANOVA
will be essentially the same as the F -test from Chapter 14. You’re expecting to see references to sums of
squares (SS), mean squares (MS), degrees of freedom (df), and finally an F -statistic that we can convert
into a p-value, right? Well, you’re absolutely and completely right. So much so that I’m going to depart
from my usual approach. Throughout this book, I’ve generally taken the approach of describing the logic
(and to an extent the mathematics) that underpins a particular analysis first; and only then introducing
the R commands that you’d use to produce the analysis. This time I’m going to do it the other way
around, and show you the R commands first. The reason for doing this is that I want to highlight the
similarities between the simple one-way ANOVA tool that we discussed in Chapter 14, and the more
complicated tools that we’re going to use in this chapter.

If the data you’re trying to analyse correspond to a balanced factorial design, then running your
analysis of variance is easy. To see how easy it is, let’s start by reproducing the original analysis from
Chapter 14. In case you’ve forgotten, for that analysis we were using only a single factor (i.e., drug) to
predict our outcome variable (i.e., mood.gain), and so this was what we did:

> model.1 <- aov( mood.gain ~ drug, clin.trial )

> summary( model.1 )

Df Sum Sq Mean Sq F value Pr(>F)
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drug 2 3.45 1.727 18.6 8.6e-05 ***

Residuals 15 1.39 0.093

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Note that this time around I’ve used the name model.1 as the label for my aov object, since I’m planning
on creating quite a few other models too. To start with, suppose I’m also curious to find out if therapy

has a relationship to mood.gain. In light of what we’ve seen from our discussion of multiple regression
in Chapter 15, you probably won’t be surprised that all we have to do is extend the formula: in other
words, if we specify mood.gain ~ drug + therapy as our model, we’ll probably get what we’re after:

> model.2 <- aov( mood.gain ~ drug + therapy, clin.trial )

> summary( model.2 )

Df Sum Sq Mean Sq F value Pr(>F)

drug 2 3.45 1.727 26.15 1.9e-05 ***

therapy 1 0.47 0.467 7.08 0.019 *

Residuals 14 0.92 0.066

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

This output is pretty simple to read too: the first row of the table reports a between-group sum of squares
(SS) value associated with the drug factor, along with a corresponding between-group df value. It also
calculates a mean square value (MS), and F -statistic and a p-value. There is also a row corresponding
to the therapy factor, and a row corresponding to the residuals (i.e., the within groups variation).

Not only are all of the individual quantities pretty familiar, the relationships between these different
quantities has remained unchanged: just like we saw with the original one-way ANOVA, note that the
mean square value is calculated by dividing SS by the corresponding df . That is, it’s still true that

MS “ SS

df

regardless of whether we’re talking about drug, therapy or the residuals. To see this, let’s not worry
about how the sums of squares values are calculated: instead, let’s take it on faith that R has calculated
the SS values correctly, and try to verify that all the rest of the numbers make sense. First, note that
for the drug factor, we divide 3.45 by 2, and end up with a mean square value of 1.73. For the therapy

factor, there’s only 1 degree of freedom, so our calculations are even simpler: dividing 0.47 (the SS value)
by 1 gives us an answer of 0.47 (the MS value).

Turning to the F statistics and the p values, notice that we have two of each: one corresponding to
the drug factor and the other corresponding to the therapy factor. Regardless of which one we’re talking
about, the F statistic is calculated by dividing the mean square value associated with the factor by the
mean square value associated with the residuals. If we use “A” as shorthand notation to refer to the first
factor (factor A; in this case drug) and “R” as shorthand notation to refer to the residuals, then the F

statistic associated with factor A is denoted FA, and is calculated as follows:

FA “
MSA
MSR

and an equivalent formula exists for factor B (i.e., therapy). Note that this use of “R” to refer to residuals
is a bit awkward, since we also used the letter R to refer to the number of rows in the table, but I’m
only going to use “R” to mean residuals in the context of SSR and MSR, so hopefully this shouldn’t be
confusing. Anyway, to apply this formula to the drugs factor, we take the mean square of 1.73 and divide
it by the residual mean square value of 0.07, which gives us an F -statistic of 26.15. The corresponding
calculation for the therapy variable would be to divide 0.47 by 0.07 which gives 7.08 as the F -statistic.
Not surprisingly, of course, these are the same values that R has reported in the ANOVA table above.
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The last part of the ANOVA table is the calculation of the p values. Once again, there is nothing
new here: for each of our two factors, what we’re trying to do is test the null hypothesis that there is
no relationship between the factor and the outcome variable (I’ll be a bit more precise about this later
on). To that end, we’ve (apparently) followed a similar strategy that we did in the one way ANOVA,
and have calculated an F -statistic for each of these hypotheses. To convert these to p values, all we need
to do is note that the that the sampling distribution for the F statistic under the null hypothesis (that
the factor in question is irrelevant) is an F distribution: and that two degrees of freedom values are those
corresponding to the factor, and those corresponding to the residuals. For the drug factor we’re talking
about an F distribution with 2 and 14 degrees of freedom (I’ll discuss degrees of freedom in more detail
later). In contrast, for the therapy factor sampling distribution is F with 1 and 14 degrees of freedom.
If we really wanted to, we could calculate the p value ourselves using the pf() function (see Section 9.5).
Just to prove that there’s nothing funny going on, here’s what that would look like for the drug variable:

> pf( q=26.15, df1=2, df2=14, lower.tail=FALSE )

[1] 1.871981e-05

And as you can see, this is indeed the p value reported in the ANOVA table above.

At this point, I hope you can see that the ANOVA table for this more complicated analysis corre-
sponding to model.2 should be read in much the same way as the ANOVA table for the simpler analysis
for model.1. In short, it’s telling us that the factorial ANOVA for our 3 ˆ 2 design found a significant
effect of drug (F2,14 “ 26.15, p ă .001) as well as a significant effect of therapy (F1,14 “ 7.08, p “ .02). Or,
to use the more technically correct terminology, we would say that there are two main effects of drug
and therapy. At the moment, it probably seems a bit redundant to refer to these as “main” effects: but
it actually does make sense. Later on, we’re going to want to talk about the possibility of “interactions”
between the two factors, and so we generally make a distinction between main effects and interaction
effects.

16.1.3 How are the sum of squares calculated?

In the previous section I had two goals: firstly, to show you that the R commands needed to do
factorial ANOVA are pretty much the same ones that we used for a one way ANOVA. The only difference
is the formula argument to the aov() function. Secondly, I wanted to show you what the ANOVA table
looks like in this case, so that you can see from the outset that the basic logic and structure behind
factorial ANOVA is the same as that which underpins one way ANOVA. Try to hold onto that feeling.
It’s genuinely true, insofar as factorial ANOVA is built in more or less the same way as the simpler one-
way ANOVA model. It’s just that this feeling of familiarity starts to evaporate once you start digging
into the details. Traditionally, this comforting sensation is replaced by an urge to murder the the authors
of statistics textbooks.

Okay, let’s start looking at some of those details. The explanation that I gave in the last section
illustrates the fact that the hypothesis tests for the main effects (of drug and therapy in this case) are
F -tests, but what it doesn’t do is show you how the sum of squares (SS) values are calculated. Nor
does it tell you explicitly how to calculate degrees of freedom (df values) though that’s a simple thing
by comparison. Let’s assume for now that we have only two predictor variables, Factor A and Factor B.
If we use Y to refer to the outcome variable, then we would use Yrci to refer to the outcome associated
with the i-th member of group rc (i.e., level/row r for Factor A and level/column c for Factor B). Thus,
if we use Ȳ to refer to a sample mean, we can use the same notation as before to refer to group means,
marginal means and grand means: that is, Ȳrc is the sample mean associated with the rth level of Factor
A and the cth level of Factor B, Ȳr.would be the marginal mean for the rth level of Factor A, Ȳ.c would
be the marginal mean for the cth level of Factor B, and Ȳ.. is the grand mean. In other words, our sample
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means can be organised into the same table as the population means. For our clinical trial data, that
table looks like this:

no therapy CBT total

placebo Ȳ11 Ȳ12 Ȳ1.

anxifree Ȳ21 Ȳ22 Ȳ2.

joyzepam Ȳ31 Ȳ32 Ȳ3.

total Ȳ.1 Ȳ.2 Ȳ..

And if we look at the sample means that I showed earlier, we have Ȳ11 “ 0.30, Ȳ12 “ 0.60 etc. In our
clinical trial example, the drugs factor has 3 levels and the therapy factor has 2 levels, and so what we’re
trying to run is a 3ˆ 2 factorial ANOVA. However, we’ll be a little more general and say that Factor A
(the row factor) has R levels and Factor B (the column factor) has C levels, and so what we’re runnning
here is an Rˆ C factorial ANOVA.

Now that we’ve got our notation straight, we can compute the sum of squares values for each of the
two factors in a relatively familiar way. For Factor A, our between group sum of squares is calculated by
assessing the extent to which the (row) marginal means Ȳ1., Ȳ2. etc, are different from the grand mean
Ȳ... We do this in the same way that we did for one-way ANOVA: calculate the sum of squared difference
between the Ȳi. values and the Ȳ.. values. Specifically, if there are N people in each group, then we
calculate this:

SSA “ pN ˆ Cq
R

ÿ

r“1

`

Ȳr. ´ Ȳ..

˘2

As with one-way ANOVA, the most interesting3 part of this formula is the
`

Ȳr. ´ Ȳ..

˘2
bit, which cor-

responds to the squared deviation associated with level r. All that this formula does is calculate this
squared deviation for all R levels of the factor, add them up, and then multiply the result by N ˆ C.
The reason for this last part is that there are multiple cells in our design that have level r on Factor
A: in fact, there are C of them, one corresponding to each possible level of Factor B! For instance, in
our toy example, there are two different cells in the design corresponding to the anxifree drug: one for
people with no.therapy, and one for the CBT group. Not only that, within each of these cells there are N

observations. So, if we want to convert our SS value into a quantity that calculates the between-groups
sum of squares on a “per observation” basis, we have to multiply by by N ˆ C. The formula for factor
B is of course the same thing, just with some subscripts shuffled around:

SSB “ pN ˆRq
C
ÿ

c“1

`

Ȳ.c ´ Ȳ..

˘2

Now that we have these formulas, we can check them against the R output from the earlier sec-
tion. First, notice that we calculated all the marginal means (i.e., row marginal means Ȳr. and column
marginal means Ȳ.c) earlier using aggregate(), and we also calculated the grand mean. Let’s repeat
those calculations, but this time we’ll save the results to varibles so that we can use them in subsequent
calculations:

> drug.means <- aggregate( mood.gain ~ drug, clin.trial, mean )[,2]

> therapy.means <- aggregate( mood.gain ~ therapy, clin.trial, mean )[,2]

> grand.mean <- mean( clin.trial$mood.gain )

3English translation: “least tedious”.
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Okay, now let’s calculate the sum of squares associated with the main effect of drug. There are a total of
N “ 3 people in each group, and C “ 2 different types of therapy. Or, to put it another way, there are
3ˆ 2 “ 6 people who received any particular drug. So our calculations are:

> SS.drug <- (3*2) * sum( (drug.means - grand.mean)^2 )

> SS.drug

[1] 3.453333

Not surprisingly, this is the same number that you get when you look up the SS value for the drugs factor
in the ANOVA table that I presented earlier. We can repeat the same kind of calculation for the effect
of therapy. Again there are N “ 3 people in each group, but since there are R “ 3 different drugs, this
time around we note that there are 3ˆ 3 “ 9 people who received CBT, and an additional 9 people who
received the placebo. So our calculation is now:

> SS.therapy <- (3*3) * sum( (therapy.means - grand.mean)^2 )

> SS.therapy

[1] 0.4672222

and we are, once again, unsurprised to see that our calculations are identical to the ANOVA output.

So that’s how you calculate the SS values for the two main effects. These SS values are analogous to
the between-group sum of squares values that we calculated when doing one-way ANOVA in Chapter 14.
However, it’s not a good idea to think of them as between-groups SS values anymore, just because we
have two different grouping variables and it’s easy to get confused. In order to construct an F test,
however, we also need to calculate the within-groups sum of squares. In keeping with the terminology
that we used in the regression chapter (Chapter 15) and the terminology that R uses when printing out
the ANOVA table, I’ll start referring to the within-groups SS value as the residual sum of squares SSR.

The easiest way to think about the residual SS values in this context, I think, is to think of it as
the leftover variation in the outcome variable after you take into account the differences in the marginal
means (i.e., after you remove SSA and SSB). What I mean by that is we can start by calculating the
total sum of squares, which I’ll label SST . The formula for this is pretty much the same as it was for
one-way ANOVA: we take the difference between each observation Yrci and the grand mean Ȳ.., square
the differences, and add them all up

SST “
R

ÿ

r“1

C
ÿ

c“1

N
ÿ

i“1

`

Yrci ´ Ȳ..

˘2

The “triple summation” here looks more complicated than it is. In the first two summations, we’re
summing across all levels of Factor A (i.e., over all possible rows r in our table), across all levels of Factor
B (i.e., all possible columns c). Each rc combination corresponds to a single group, and each group
contains N people: so we have to sum across all those people (i.e., all i values) too. In other words, all
we’re doing here is summing across all observations in the data set (i.e., all possible rci combinations).

At this point, we know the total variability of the outcome variable SST , and we know how much of
that variability can be attributed to Factor A (SSA) and how much of it can be attributed to Factor B
(SSB). The residual sum of squares is thus defined to be the variability in Y that can’t be attributed to
either of our two factors. In other words:

SSR “ SST ´ pSSA ` SSBq

Of course, there is a formula that you can use to calculate the residual SS directly, but I think that it
makes more conceptual sense to think of it like this. The whole point of calling it a residual is that it’s
the leftover variation, and the formula above makes that clear. I should also note that, in keeping with
the terminology used in the regression chapter, it is commonplace to refer to SSA ` SSB as the variance
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attributable to the “ANOVA model”, denoted SSM , and so we often say that the total sum of squares
is equal to the model sum of squares plus the residual sum of squares. Later on in this chapter we’ll see
that this isn’t just a surface similarity: ANOVA and regression are actually the same thing under the
hood.

In any case, it’s probably worth taking a moment to check that we can calculate SSR using this
formula, and verify that we do obtain the same answer that R produces in its ANOVA table. The
calculations are pretty straightforward. First we calculate the total sum of squares:

> SS.tot <- sum( (clin.trial$mood.gain - grand.mean)^2 )

> SS.tot

[1] 4.845

and then we use it to calculate the residual sum of squares:

> SS.res <- SS.tot - (SS.drug + SS.therapy)

> SS.res

[1] 0.9244444

Yet again, we get the same answer.

16.1.4 What are our degrees of freedom?

The degrees of freedom are calculated in much the same way as for one-way ANOVA. For any given
factor, the degrees of freedom is equal to the number of levels minus 1 (i.e., R ´ 1 for the row variable,
Factor A, and C ´ 1 for the column variable, Factor B). So, for the drugs factor we obtain df “ 2, and
for the therapy factor we obtain df “ 1. Later on on, when we discuss the interpretation of ANOVA as a
regression model (see Section 16.6) I’ll give a clearer statement of how we arrive at this number, but for
the moment we can use the simple definition of degrees of freedom, namely that the degrees of freedom
equals the number of quantities that are observed, minus the number of constraints. So, for the drugs

factor, we observe 3 separate group means, but these are constrained by 1 grand mean; and therefore the
degrees of freedom is 2. For the residuals, the logic is similar, but not quite the same. The total number
of observations in our experiment is 18. The constraints correspond to the 1 grand mean, the 2 additional
group means that the drug factor introduces, and the 1 additional group mean that the the therapy factor
introduces, and so our degrees of freedom is 14. As a formula, this is N ´ 1´ pR ´ 1q ´ pC ´ 1q, which
simplifies to N ´R´ C ` 1.

16.1.5 Factorial ANOVA versus one-way ANOVAs

Now that we’ve seen how a factorial ANOVA works, it’s worth taking a moment to compare it to the
results of the one way analyses, because this will give us a really good sense of why it’s a good idea to
run the factorial ANOVA. In Chapter 14 that I ran a one-way ANOVA that looked to see if there are any
differences between drugs, and a second one-way ANOVA to see if there were any differences between
therapies. As we saw in Section 16.1.1, the null and alternative hypotheses tested by the one-way ANOVAs
are in fact identical to the hypotheses tested by the factorial ANOVA. Looking even more carefully at
the ANOVA tables, we can see that the sum of squares associated with the factors are identical in the
two different analyses (3.45 for drug and 0.92 for therapy), as are the degrees of freedom (2 for drug, 1
for therapy). But they don’t give the same answers! Most notably, when we ran the one-way ANOVA
for therapy in Section 14.11 we didn’t find a significant effect (the p-value was 0.21). However, when we
look at the main effect of therapy within the context of the two-way ANOVA, we do get a significant
effect (p “ .019). The two analyses are clearly not the same.
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Why does that happen? The answer lies in understanding how the residuals are calculated. Recall
that the whole idea behind an F -test is to compare the variability that can be attributed to a particular
factor with the variability that cannot be accounted for (the residuals). If you run a one-way ANOVA for
therapy, and therefore ignore the effect of drug, the ANOVA will end up dumping all of the drug-induced
variability into the residuals! This has the effect of making the data look more noisy than they really
are, and the effect of therapy which is correctly found to be significant in the two-way ANOVA now
becomes non-significant. If we ignore something that actually matters (e.g., drug) when trying to assess
the contribution of something else (e.g., therapy) then our analysis will be distorted. Of course, it’s
perfectly okay to ignore variables that are genuinely irrelevant to the phenomenon of interest: if we had
recorded the colour of the walls, and that turned out to be non-significant in a three-way ANOVA (i.e.
mood.gain ~ drug + therapy + wall.colour), it would be perfectly okay to disregard it and just report
the simpler two-way ANOVA that doesn’t include this irrelevant factor. What you shouldn’t do is drop
variables that actually make a difference!

16.1.6 What kinds of outcomes does this analysis capture?

The ANOVA model that we’ve been talking about so far covers a range of different patterns that we
might observe in our data. For instance, in a two-way ANOVA design, there are four possibilities: (a)
only Factor A matters, (b) only Factor B matters, (c) both A and B matter, and (d) neither A nor B
matters. An example of each of these four possibilities is plotted in Figure 16.1.

16.2

Factorial ANOVA 2: balanced designs, interactions allowed

The four patterns of data shown in Figure 16.1 are all quite realistic: there are a great many data sets
that produce exactly those patterns. However, they are not the whole story, and the ANOVA model
that we have been talking about up to this point is not sufficient to fully account for a table of group
means. Why not? Well, so far we have the ability to talk about the idea that drugs can influence mood,
and therapy can influence mood, but no way of talking about the possibility of an interaction between
the two. An interaction between A and B is said to occur whenever the effect of Factor A is different,
depending on which level of Factor B we’re talking about. Several examples of an interaction effect with
the context of a 2ˆ2 ANOVA are shown in Figure 16.2. To give a more concrete example, suppose that
the operation of Anxifree and Joyzepam is governed quite different physiological mechanisms, and one
consequence of this is that while Joyzepam has more or less the same effect on mood regardless of whether
one is in therapy, Anxifree is actually much more effective when administered in conjunction with CBT.
The ANOVA that we developed in the previous section does not capture this idea. To get some idea of
whether an interaction is actually happening here, it helps to plot the various group means. There are
quite a few different ways draw these plots in R. One easy way is to use the interaction.plot() function,
but this function won’t draw error bars for you. A fairly simple function that will include error bars for
you is the lineplot.CI() function in the sciplots package (see Section 10.5.2). The command

> lineplot.CI( x.factor = clin.trial$drug,

+ response = clin.trial$mood.gain,

+ group = clin.trial$therapy,

+ ci.fun = ciMean,

+ xlab = "drug",

+ ylab = "mood gain" )

produces the output is shown in Figure 16.3 (don’t forget that the ciMean function is in the lsr package,
so you need to have lsr loaded!). Our main concern relates to the fact that the two lines aren’t parallel.
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Figure 16.1: The four different outcomes for a 2ˆ 2 ANOVA when no interactions are present. In panel
(a) we see a main effect of Factor A, and no effect of Factor B. Panel (b) shows a main effect of Factor
B but no effect of Factor A. Panel (c) shows main effects of both Factor A and Factor B. Finally, panel
(d) shows no effect of either factor.
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Figure 16.2: Qualitatively different interactions for a 2ˆ 2 ANOVA
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The effect of CBT (difference between solid line and dotted line) when the drug is Joyzepam (right side)
appears to be near zero, even smaller than the effect of CBT when a placebo is used (left side). However,
when Anxifree is administered, the effect of CBT is larger than the placebo (middle). Is this effect real, or
is this just random variation due to chance? Our original ANOVA cannot answer this question, because
we make no allowances for the idea that interactions even exist! In this section, we’ll fix this problem.

16.2.1 What exactly is an interaction effect?

The key idea that we’re going to introduce in this section is that of an interaction effect. What that
means for our R formulas is that we’ll write down models like

mood.gain ~ drug + therapy + drug:therapy

so although there are only two factors involved in our model (i.e., drug and therapy), there are three
distinct terms (i.e., drug, therapy and drug:therapy). That is, in addition to the main effects of drug and
therapy, we have a new component to the model, which is our interaction term drug:therapy. Intuitively,
the idea behind an interaction effect is fairly simple: it just means that the effect of Factor A is different,
depending on which level of Factor B we’re talking about. But what does that actually mean in terms
of our data? Figure 16.2 depicts several different patterns that, although quite different to each other,
would all count as an interaction effect. So it’s not entirely straightforward to translate this qualitative
idea into something mathematical that a statistician can work with. As a consequence, the way that the
idea of an interaction effect is formalised in terms of null and alternative hypotheses is slightly difficult,
and I’m guessing that a lot of readers of this book probably won’t be all that interested. Even so, I’ll try
to give the basic idea here.

To start with, we need to be a little more explicit about our main effects. Consider the main effect
of Factor A (drug in our running example). We originally formulated this in terms of the null hypothesis
that the two marginal means µr. are all equal to each other. Obviously, if all of these are equal to each
other, then they must also be equal to the grand mean µ.. as well, right? So what we can do is define the
effect of Factor A at level r to be equal to the difference between the marginal mean µr. and the grand
mean µ... Let’s denote this effect by αr, and note that

αr “ µr. ´ µ..

Now, by definition all of the αr values must sum to zero, for the same reason that the average of the
marginal means µr. must be the grand mean µ... We can similarly define the effect of Factor B at level i
to be the difference between the column marginal mean µ.c and the grand mean µ..

βc “ µ.c ´ µ..

and once again, these βc values must sum to zero. The reason that statisticians sometimes like to talk
about the main effects in terms of these αr and βc values is that it allows them to be precise about what
it means to say that there is no interaction effect. If there is no interaction at all, then these αr and βc

values will perfectly describe the group means µrc. Specifically, it means that

µrc “ µ.. ` αr ` βc

That is, there’s nothing special about the group means that you couldn’t predict perfectly by knowing
all the marginal means. And that’s our null hypothesis, right there. The alternative hypothesis is that

µij ‰ µ.. ` αr ` βc

for at least one group rc in our table. However, statisticians often like to write this slightly differently.
They’ll usually define the specific interaction associated with group rc to be some number, awkwardly

- 497 -



0
.0

0
.5

1
.0

1
.5

2
.0

drug

m
o
o
d
 g

a
in

placebo anxifree joyzepam

   

CBT
no.therap

Figure 16.3: An interaction plot for the group means in the clinical trial data. The command to produce
it is included in the main text. You’ll notice that the legend doesn’t quite fit properly. You can fix this
by playing around with the x.leg and y.leg arguments: type ?lineplot.CI for details.
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referred to as pαβqrc, and then they will say that the alternative hypothesis is that

µrc “ µ.. ` αr ` βc ` pαβqrc

where pαβqrc is non-zero for at least one group. This notation is kind of ugly to look at, but it is handy
as we’ll see in the next section when discussing how to calculate the sum of squares.

16.2.2 Calculating sums of squares for the interaction

How should we calculate the sum of squares for the interaction terms, SSA:B? Well, first off, it helps
to notice how the previous section defined the interaction effect in terms of the extent to which the actual
group means differ from what you’d expect by just looking at the marginal means. Of course, all of those
formulas refer to population parameters rather than sample statistics, so we don’t actually know what
they are. However, we can estimate them by using sample means in place of population means. So for
Factor A, a good way to estimate the main effect at level r as the difference between the sample marginal
mean Ȳrc and the sample grand mean Ȳ... That is, we would use this as our estimate of the effect:

α̂r “ Ȳr. ´ Ȳ..

Similarly, our estimate of the main effect of Factor B at level c can be defined as follows:

β̂c “ Ȳ.c ´ Ȳ..
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Now, if you go back to the formulas that I used to describe the SS values for the two main effects, you’ll
notice that these effect terms are exactly the quantities that we were squaring and summing! So what’s
the analog of this for interaction terms? The answer to this can be found by first rearranging the formula
for the group means µrc under the alternative hypothesis, so that we get this:

pαβqrc “ µrc ´ µ.. ´ αr ´ βc

“ µrc ´ µ.. ´ pµr. ´ µ..q ´ pµ.c ´ µ..q
“ µrc ´ µr. ´ µ.c ` µ..

So, once again, if we substitute our sample statistics in place of the population means, we get the following
as our estimate of the interaction effect for group rc, which is

ˆpαβqrc “ Ȳrc ´ Ȳr. ´ Ȳ.c ` Ȳ..

Now all we have to do is sum all of these estimates across all R levels of Factor A and all C levels of
Factor B, and we obtain the following formula for the sum of squares associated with the interaction as
a whole:

SSA:B “ N

R
ÿ

r“1

C
ÿ

c“1

`

Ȳrc ´ Ȳr. ´ Ȳ.c ` Ȳ..

˘2

where, we multiply by N because there are N observations in each of the groups, and we want our SS
values to reflect the variation among observations accounted for by the interaction, not the variation
among groups.

Now that we have a formula for calculating SSA:B , it’s important to recognise that the interaction
term is part of the model (of course), so the total sum of squares associated with the model, SSM is now
equal to the sum of the three relevant SS values, SSA ` SSB ` SSA:B . The residual sum of squares SSR
is still defined as the leftover variation, namely SST ´ SSM , but now that we have the interaction term
this becomes

SSR “ SST ´ pSSA ` SSB ` SSA:Bq
As a consequence, the residual sum of squares SSR will be smaller than in our original ANOVA that
didn’t include interactions.

16.2.3 Degrees of freedom for the interaction

Calculating the degrees of freedom for the interaction is, once again, slightly trickier than the corre-
sponding calculation for the main effects. To start with, let’s think about the ANOVA model as a whole.
Once we include interaction effects in the model, we’re allowing every single group has a unique mean,
µrc. For an RˆC factorial ANOVA, this means that there are RˆC quantities of interest in the model,
and only the one constraint: all of the group means need to average out to the grand mean. So the model
as a whole needs to have pR ˆ Cq ´ 1 degrees of freedom. But the main effect of Factor A has R ´ 1
degrees of freedom, and the main effect of Factor B has C ´ 1 degrees of freedom. Which means that the
degrees of freedom associated with the interaction is

dfA:B “ pRˆ C ´ 1q ´ pR´ 1q ´ pC ´ 1q
“ RC ´R´ C ` 1

“ pR´ 1qpC ´ 1q

which is just the product of the degrees of freedom associated with the row factor and the column factor.

What about the residual degrees of freedom? Because we’ve added interaction terms, which absorb

some degrees of freedom, there are fewer residual degrees of freedom left over. Specifically, note that if
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the model with interaction has a total of pRˆCq´ 1, and there are N observations in your data set that

are constrained to satisfy 1 grand mean, your residual degrees of freedom now become N´pRˆCq´1`1,

or just N ´ pRˆ Cq.

16.2.4 Running the ANOVA in R

Adding interaction terms to the ANOVA model in R is straightforward. Returning to our running
example of the clinical trial, in addition to the main effect terms of drug and therapy, we include the
interaction term drug:therapy. So the R command to create the ANOVA model now looks like this:

> model.3 <- aov( mood.gain ~ drug + therapy + drug:therapy, clin.trial )

However, R allows a convenient shorthand. Instead of typing out all three terms, you can shorten the
right hand side of the formula to drug*therapy. The * operator inside the formula is taken to indicate
that you want both main effects and the interaction. So we can also run our ANOVA like this, and get
the same answer:

> model.3 <- aov( mood.gain ~ drug * therapy, clin.trial )

> summary( model.3 )

Df Sum Sq Mean Sq F value Pr(>F)

drug 2 3.45 1.727 31.71 1.6e-05 ***

therapy 1 0.47 0.467 8.58 0.013 *

drug:therapy 2 0.27 0.136 2.49 0.125

Residuals 12 0.65 0.054

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

As it turns out, while we do have a significant main effect of drug (F2,12 “ 31.7, p ă .001) and therapy
type (F1,12 “ 8.6, p “ .013), there is no significant interaction between the two (F2,12 “ 2.5, p “ 0.125).

16.2.5 Interpreting the results

There’s a couple of very important things to consider when interpreting the results of factorial ANOVA.
Firstly, there’s the same issue that we had with one-way ANOVA, which is that if you obtain a significant
main effect of (say) drug, it doesn’t tell you anything about which drugs are different to one another.
To find that out, you need to run additional analyses. We’ll talk about some analyses that you can run
in Sections 16.7 and 16.8. The same is true for interaction effects: knowing that there’s a significant
interaction doesn’t tell you anything about what kind of interaction exists. Again, you’ll need to run
additional analyses.

Secondly, there’s a very peculiar interpretation issue that arises when you obtain a significant inter-
action effect but no corresponding main effect. This happens sometimes. For instance, in the crossover
interaction shown in Figure 16.2a, this is exactly what you’d find: in this case, neither of the main effects
would be significant, but the interaction effect would be. This is a difficult situation to interpret, and
people often get a bit confused about it. The general advice that statisticians like to give in this situation
is that you shouldn’t pay much attention to the main effects when an interaction is present. The reason
they say this is that, although the tests of the main effects are perfectly valid from a mathematical point
of view, when there is a significant interaction effect the main effects rarely test interesting hypotheses.
Recall from Section 16.1.1 that the null hypothesis for a main effect is that the marginal means are equal
to each other, and that a marginal mean is formed by averaging across several different groups. But if
you have a significant interaction effect, then you know that the groups that comprise the marginal mean
aren’t homogeneous, so it’s not really obvious why you woud even care about those marginal means.
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Here’s what I mean. Again, let’s stick with a clinical example. Suppose that we had a 2 ˆ 2 design
comparing two different treatments for phobias (e.g., systematic desensitisation vs flooding), and two
different anxiety reducing drugs (e.g., Anxifree vs Joyzepam). Now suppose what we found was that
Anxifree had no effect when desensitisation was the treatment, and Joyzepam had no effect when flooding
was the treatment. But both were pretty effective for the other treatment. This is a classic crossover
interaction, and what we’d find when running the ANOVA is that there is no main effect of drug, but a
significant interaction. Now, what does it actually mean to say that there’s no main effect? Wel, it means
that, if we average over the two different psychological treatments, then the average effect of Anxifree
and Joyzepam is the same. But why would anyone care about that? When treating someone for phobias,
it is never the case that a person can be treated using an “average” of flooding and desensitisation: that
doesn’t make a lot of sense. You either get one or the other. For one treatment, one drug is effective;
and for the other treatment, the other drug is effective. The interaction is the important thing; the main
effect is kind of irrelevant.

This sort of thing happens a lot: the main effect are tests of marginal means, and when an interaction
is present we often find ourselves not being terribly interested in marginal means, because they imply
averaging over things that the interaction tells us shouldn’t be averaged! Of course, it’s not always the
case that a main effect is meaningless when an interaction is present. Often you can get a big main
effect and a very small interaction, in which case you can still say things like “drug A is generally more
effective than drug B” (because there was a big effect of drug), but you’d need to modify it a bit by
adding that “the difference in effectiveness was different for different psychological treatments”. In any
case, the main point here is that whenever you get a significant interaction you should stop and think
about what the main effect actually means in this context. Don’t automatically assume that the main
effect is interesting.

16.3

Effect size, estimated means, and confidence intervals

In this section I’ll discuss a few additional quantities that you might find yourself wanting to calculate
for a factorial ANOVA. The main thing you will probably want to calculate is the effect size for each
term in your model, but you may also want to R to give you some estimates for the group means and
associated confidence intervals.

16.3.1 Effect sizes

The effect size calculations for a factorial ANOVA is pretty similar to those used in one way ANOVA
(see Section 14.4). Specifically, we can use η2 (eta-squared) as simple way to measure how big the overall
effect is for any particular term. As before, η2 is defined by dividing the sum of squares associated with
that term by the total sum of squares. For instance, to determine the size of the main effect of Factor A,
we would use the following formula

η2A “
SSA
SST

As before, this can be interpreted in much the same way as R2 in regression.4 It tells you the proportion
of variance in the outcome variable that can be accounted for by the main effect of Factor A. It is
therefore a number that ranges from 0 (no effect at all) to 1 (accounts for all of the variability in the

4This chapter seems to be setting a new record for the number of different things that the letter R can stand for: so far
we have R referring to the software package, the number of rows in our table of means, the residuals in the model, and now
the correlation coefficient in a regression. Sorry: we clearly don’t have enough letters in the alphabet. However, I’ve tried
pretty hard to be clear on which thing R is referring to in each case.
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outcome). Moreover, the sum of all the η2 values, taken across all the terms in the model, will sum to
the the total R2 for the ANOVA model. If, for instance, the ANOVA model fits perfectly (i.e., there is
no within-groups variability at all!), the η2 values will sum to 1. Of course, that rarely if ever happens
in real life.

However, when doing a factorial ANOVA, there is a second measure of effect size that people like
to report, known as partial η2. The idea behind partial η2 (which is sometimes denoted pη

2 or η2p) is
that, when measuring the effect size for a particular term (say, the main effect of Factor A), you want to
deliberately ignore the other effects in the model (e.g., the main effect of Factor B). That is, you would
pretend that the effect of all these other terms is zero, and then calculate what the η2 value would have
been. This is actually pretty easy to calculate. All you have to do is remove the sum of squares associated
with the other terms from the denominator. In other words, if you want the partial η2 for the main effect
of Factor A, the denominator is just the sum of the SS values for Factor A and the residuals:

partial η2A “
SSA

SSA ` SSR

This will always give you a larger number than η2, which the cynic in me suspects accounts for the
popularity of partial η2. And once again you get a number between 0 and 1, where 0 represents no effect.
However, it’s slightly trickier to interpret what a large partial η2 value means. In particular, you can’t
actually compare the partial η2 values across terms! Suppose, for instance, there is no within-groups
variability at all: if so, SSR “ 0. What that means is that every term has a partial η2 value of 1. But
that doesn’t mean that all terms in your model are equally important, or indeed that they are equally
large. All it mean is that all terms in your model have effect sizes that are large relative to the residual
variation. It is not comparable across terms.

To see what I mean by this, it’s useful to see a concrete example. Once again, we’ll use the etaSquared()
function from the lsr package. As before, we input the aov object for which we want the η2 calculations
performed, and R outputs a matrix showing the effect sizes for each term in the model. First, let’s have
a look at the effect sizes for the original ANOVA without the interaction term:

> etaSquared( model.2 )

eta.sq partial.eta.sq

drug 0.712762 0.78883

therapy 0.096434 0.33573

Looking at the η2 values first, we see that drug accounts for 71.3% of the variance (i.e. η2 “ 0.713)
in mood.gain, whereas therapy only accounts for 9.6%. This leaves a total of 19.1% of the variation
unaccounted for (i.e., the residuals constitute 19.1% of the variation in the outcome). Overall, this
implies that we have a very large effect5 of drug and a modest effect of therapy.

Now let’s look at the partial η2 values. Because the effect of therapy isn’t all that large, controlling
for it doesn’t make much of a difference, so the partial η2 for drug doesn’t increase very much, and we
obtain a value of pη

2 “ 0.789). In contrast, because the effect of drug was very large, controlling for it
makes a big difference, and so when we calculate the partial η2 for therapy you can see that it rises to

pη
2 “ 0.336. The question that we have to ask ourselves is, what does these partial η2 values actually

mean? The way I generally interpret the partial η2 for the main effect of Factor A is to interpret it as
a statement about a hypothetical experiment in which only Factor A was being varied. So, even though
in this experiment we varied both A and B, we can easily imagine an experiment in which only Factor A
was varied: the partial η2 statistic tells you how much of the variance in the outcome variable you would
expect to see accounted for in that experiment. However, it should be noted that this interpretation –
like many things associated with main effects – doesn’t make a lot of sense when there is a large and
significant interaction effect.

5Implausibly large, I would think: the artificiality of this data set is really starting to show!

- 502 -



Speaking of interaction effects, here’s what we get when we calculate the effect sizes for the model
that includes the interaction term. As you can see, the η2 values for the main effects don’t change, but
the partial η2 values do:

> etaSquared( model.3 )

eta.sq partial.eta.sq

drug 0.712762 0.84091

therapy 0.096434 0.41696

drug:therapy 0.055957 0.29327

16.3.2 Estimated group means

In many situations you will find yourself wanting to report estimates of all the group means based
on the results of your ANOVA, as well as confidence intervals associated with them. You can use the
effect() function in the effects package to do this (don’t forget to install the package if you don’t have
it already!). If the ANOVA that you have run is a saturated model (i.e., contains all possible main
effects and all possible interaction effects) then the estimates of the group means are actually identical
to the sample means, though the confidence intervals will use a pooled estimate of the standard errors,
rather than use a separate one for each group. To illustrate this, let’s apply the effect() function to our
saturated model (i.e., model.3) for the clinical trial data. The effect() function contains two arguments
we care about: the term argument specifies what terms in the model we want the means to be calculated
for, and the mod argument specifies the model:

> library(effects)

> eff <- effect( term = "drug*therapy", mod = model.3 )

> eff

drug*therapy effect

therapy

drug no.therapy CBT

placebo 0.300000 0.600000

anxifree 0.400000 1.033333

joyzepam 1.466667 1.500000

Notice that these are actually the same numbers we got when computing the sample means earlier (i.e.,
the group.means variable that we computed using aggregate()). One useful thing that we can do using
the effect variable eff, however, is extract the confidence intervals using the summary() function:

> summary(eff)

drug*therapy effect

therapy

drug no.therapy CBT

placebo 0.300000 0.600000

anxifree 0.400000 1.033333

joyzepam 1.466667 1.500000

Lower 95 Percent Confidence Limits

therapy

drug no.therapy CBT

placebo 0.006481093 0.3064811

anxifree 0.106481093 0.7398144

joyzepam 1.173147759 1.2064811
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Upper 95 Percent Confidence Limits

therapy

drug no.therapy CBT

placebo 0.5935189 0.8935189

anxifree 0.6935189 1.3268522

joyzepam 1.7601856 1.7935189

In this output, we see that the estimated mean mood gain for the placebo group with no therapy was
0.300, with a 95% confidence interval from 0.006 to 0.594. Note that these are not the same confidence
intervals that you would get if you calculated them separately for each group, because of the fact that the
ANOVA model assumes homogeneity of variance and therefore uses a pooled estimate of the standard
deviation.

When the model doesn’t contain the interaction term, then the estimated group means will be different
from the sample means. Instead of reporting the sample mean, the effect() function will calculate the
value of the group means that would be expected on the basis of the marginal means (i.e., assuming no
interaction). Using the notation we developed earlier, the estimate reported for µrc, the mean for level r
on the (row) Factor A and level c on the (column) Factor B would be µ..`αr`βc. If there are genuinely
no interactions between the two factors, this is actually a better estimate of the population mean than
the raw sample mean would be. The command to obtain these estimates is actually identical to the last
one, except that we use model.2. When you do this, R will give you a warning message:

> eff <- effect( "drug*therapy", model.2 )

Warning message:

In analyze.model(term, mod, xlevels, default.levels) :

drug:therapy does not appear in the model

but this isn’t anything to worry about. This is R being polite, and letting you know that the estimates
it is constructing are based on the assumption that no interactions exist. It kind of makes sense that it
would do this: when we use "drug*therapy" as our input, we’re telling R that we want it to output the
estimated group means (rather than marginal means), but the actual input "drug*therapy" might mean
that you want interactions included or you might not. There’s no actual ambiguity here, because the
model itself either does or doesn’t have interactions, but the authors of the function thought it sensible
to include a warning just to make sure that you’ve specified the actual model you care about. But,
assuming that we genuinely don’t believe that there are any interactions, model.2 is the right model to
use, so we can ignore this warning.6 In any case, when we inspect the output, we get the following table
of estimated group means:

> eff

drug*therapy effect

therapy

drug no.therapy CBT

placebo 0.2888889 0.6111111

anxifree 0.5555556 0.8777778

joyzepam 1.3222222 1.6444444

As before, we can obtain confidence intervals using the following command:

> summary( eff )

but the output looks pretty much the same as last time, and this book is already way too long, so I won’t
include it here.

6In fact, there’s a function Effect() within the effects package that has slightly different arguments, but computes the
same things, and won’t give you this warning message.
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16.4

Assumption checking

As with one-way ANOVA, the key assumptions of factorial ANOVA are homogeneity of variance (all
groups have the same standard deviation), normality of the residuals, and independence of the observa-
tions. The first two are things we can test for. The third is something that you need to assess yourself
by asking if there are any special relationships between different observations. Additionally, if you aren’t
using a saturated model (e.g., if you’ve omitted the interaction terms) then you’re also assuming that the
omitted terms aren’t important. Of course, you can check this last one by running an ANOVA with the
omitted terms included and see if they’re significant, so that’s pretty easy. What about homogeneity of
variance and normality of the residuals? As it turns out, these are pretty easy to check: it’s no different
to the checks we did for a one-way ANOVA.

16.4.1 Levene test for homogeneity of variance

To test whether the groups have the same variance, we can use the Levene test. The theory behind
the Levene test was discussed in Section 14.7, so I won’t discuss it again. Once again, you can use the
leveneTest() function in the car package to do this. This function expects that you have a saturated
model (i.e., included all of the relevant terms), because the test is primarily concerned with the within-
group variance, and it doesn’t really make a lot of sense to calculate this any way other than with respect
to the full model. So we try either of the following commands:

> leveneTest( model.2 )

> leveneTest( mood.gain ~ drug + therapy, clin.trial )

R will spit out the following error:

Error in leveneTest.formula(formula(y), data = model.frame(y), ...) :

Model must be completely crossed formula only.

Instead, if you want to run the Levene test, you need to specify a saturated model. Either of the following
two commands would work:7

> leveneTest( model.3 )

> leveneTest( mood.gain ~ drug * therapy, clin.trial )

and would produce the following as the output:

Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 5 0.0955 0.9912

12

The fact that the Levene test is non-significant means that we can safely assume that the homogeneity
of variance assumption is not violated.

7Due to the way that the leveneTest() function is implemented, however, if you use a formula like mood.gain ~ drug +

therapy + drug:therapy, or input an ANOVA object based on a formula like this, you actually get the error message. That
shouldn’t happen, because this actually is a fully crossed model. However, there’s a quirky shortcut in the way that the
leveneTest() function checks whether your model is fully crossed that means that it doesn’t recognise this as a fully crossed
model. Essentially what the function is doing is checking that you used * (which ensures that the model is fully crossed),
and not + or : in your model formula. So if you’ve manually typed out all of the relevant terms for a fully crossed model,
the leveneTest() function doesn’t detect it. I think this is a bug.
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16.4.2 Normality of residuals

As with one-way ANOVA, we can test for the normality of residuals in a straightforward fashion
(see Section 14.9). First, we use the residuals() function to extract the residuals from the model itself,
and then we can examine those residuals in a few different ways. It’s generally a good idea to examine
them graphically, by drawing histograms (i.e., hist() function) and QQ plots (i.e., qqnorm() function. If
you want a formal test for the normality of the residuals, then we can run the Shapiro-Wilk test (i.e.,
shapiro.test()). If we wanted to check the residuals with respect to model.2 (i.e., the model with both
main effects but no interactions) then we could do the following:

> resid <- residuals( model.2 ) # pull the residuals

> hist( resid ) # draw a histogram

> qqnorm( resid ) # draw a normal QQ plot

> shapiro.test( resid ) # run the Shapiro-Wilk test

Shapiro-Wilk normality test

data: resid

W = 0.9563, p-value = 0.5329

I haven’t included the plots (you can draw them yourself if you want to see them), but you can see from
the non-significance of the Shapiro-Wilk test that normality isn’t violated here.

16.5

The F test as a model comparison

At this point, I want to talk in a little more detail about what the F -tests in an ANOVA are actually
doing. In the context of ANOVA, I’ve been referring to the F -test as a way of testing whether a particular
term in the model (e.g., main effect of Factor A) is significant. This interpretation is perfectly valid, but
it’s not necessarily the most useful way to think about the test. In fact, it’s actually a fairly limiting
way of thinking about what the F -test does. Consider the clinical trial data we’ve been working with
in this chapter. Suppose I want to see if there are any effects of any kind that involve therapy. I’m
not fussy: I don’t care if it’s a main effect or an interaction effect.8 One thing I could do is look at the
output for model.3 earlier: in this model we did see a main effect of therapy (p “ .013) but we did not
see an interaction effect (p “ .125). That’s kind of telling us what we want to know, but it’s not quite
the same thing. What we really want is a single test that jointly checks the main effect of therapy and
the interaction effect.

Given the way that I’ve been describing the ANOVA F -test up to this point, you’d be tempted to
think that this isn’t possible. On the other hand, if you recall the chapter on regression (in Section 15.10),
we were able to use F -tests to make comparisons between a wide variety of regression models. Perhaps
something of that sort is possible with ANOVA? And of course, the answer here is yes. The thing that
you really need to understand is that the F -test, as it is used in both ANOVA and regression, is really a
comparison of two statistical models. One of these models is the full model (alternative hypothesis), and
the other model is a simpler model that is missing one or more of the terms that the full model includes
(null hypothesis). The null model cannot contain any terms that are not in the full model. In the example
I gave above, the full model is model.3, and it contains a main effect for therapy, a main effect for drug,
and the drug by therapy interaction term. The null model would be model.1 since it contains only the
main effect of drug.

8There could be all sorts of reasons for doing this, I would imagine.
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16.5.1 The F test comparing two models

Let’s frame this in a slightly more abstract way. We’ll say that our full model can be written as an R

formula that contains several different terms, say Y ~ A + B + C + D. Our null model only contains some
subset of these terms, say Y ~ A + B. Some of these terms might be main effect terms, others might be
interaction terms. It really doesn’t matter. The only thing that matters here is that we want to treat
some of these terms as the “starting point” (i.e. the terms in the null model, A and B), and we want to
see if including the other terms (i.e., C and D) leads to a significant improvement in model performance,
over and above what could be achieved by a model that includes only A and B. In essence, we have null
and alternative hypotheses that look like this:

Hypothesis Correct model? R formula for correct model
Null M0 Y ~ A + B

Alternative M1 Y ~ A + B + C + D

Is there a way of making this comparison directly?

To answer this, let’s go back to fundamentals. As we saw in Chapter 14, the F -test is constructed
from two kinds of quantity: sums of squares (SS) and degrees of freedom (df). These two things define a
mean square value (MS = SS/df), and we obtain our F statistic by contrasting the MS value associated
with “the thing we’re interested in” (the model) with the MS value associated with “everything else”
(the residuals). What we want to do is figure out how to talk about the SS value that is associated with
the difference between two models. It’s actually not all that hard to do.

Let’s start with the fundamental rule that we used throughout the chapter on regression:

SST “ SSM ` SSR

That is, the total sums of squares (i.e., the overall variability of the outcome variable) can be decomposed
into two parts: the variability associated with the model SSM , and the residual or leftover variability,
SSR. However, it’s kind of useful to rearrange this equation slightly, and say that the SS value associated
with a model is defined like this...

SSM “ SST ´ SSR

Now, in our scenario, we have two models: the null model (M0) and the full model (M1):

SSM0 “ SST ´ SSR0

SSM1 “ SST ´ SSR1

Next, let’s think about what it is we actually care about here. What we’re interested in is the difference

between the full model and the null model. So, if we want to preserve the idea that what we’re doing
is an “analysis of the variance” (ANOVA) in the outcome variable, what we should do is define the SS
associated with the difference to be equal to the difference in the SS:

SS∆ “ SSM1 ´ SSM0

“ pSST ´ SSR1q ´ pSST ´ SSR0q
“ SSR0 ´ SSR1

Now that we have our degrees of freedom, we can calculate mean squares and F values in the usual
way. Specifically, we’re interested in the mean square for the difference between models, and the mean
square for the residuals associated with the full model (M1), which are given by

MS∆ “ SS∆
df∆
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MSR1 “ SSR1

dfR1

Finally, taking the ratio of these two gives us our F statistic:

F “ MS∆
MSR1

16.5.2 Running the test in R

At this point, it may help to go back to our concrete example. The null model here is model.1, which
stipulates that there is a main effect of drug, but no other effects exist. We expressed this via the model
formula mood.gain ~ drug. The alternative model here is model.3, which stipulates that there is a main
effect of drug, a main effect of therapy, and an interaction. If we express this in the “long” format, this
model corresponds to the formula mood.gain ~ drug + therapy + drug:therapy, though we often express
this using the * shorthand. The key thing here is that if we compare model.1 to model.3, we’re lumping
the main effect of therapy and the interaction term together. Running this test in R is straightforward:
we just input both models to the anova() function, and it will run the exact F -test that I outlined above.

> anova( model.1, model.3 )

Analysis of Variance Table

Model 1: mood.gain ~ drug

Model 2: mood.gain ~ drug * therapy

Res.Df RSS Df Sum of Sq F Pr(>F)

1 15 1.392

2 12 0.653 3 0.738 4.52 0.024 *

Let’s see if we can reproduce this F -test ourselves. Firstly, if you go back and look at the ANOVA tables
that we printed out for model.1 and model.3 you can reassure yourself that the RSS values printed in this
table really do correspond to the residual sum of squares associated with these two models. So let’s type
them in as variables:

> ss.res.null <- 1.392

> ss.res.full <- 0.653

Now, following the procedure that I described above, we will say that the “between model” sum of
squares, is the difference between these two residual sum of squares values. So, if we do the subtraction,
we discover that the sum of squares associated with those terms that appear in the full model but not
the null model is:

> ss.diff <- ss.res.null - ss.res.full

> ss.diff

[1] 0.739

Right. Next, as always we need to convert these SS values into MS (mean square) values, which we do by
dividing by the degrees of freedom. The degrees of freedom associated with the full-model residuals hasn’t
changed from our original ANOVA for model.3: it’s the total sample size N , minus the total number of
groups G that are relevant to the model. We have 18 people in the trial and 6 possible groups (i.e., 2
therapies ˆ 3 drugs), so the degrees of freedom here is 12. The degrees of freedom for the null model are
calculated similarly. The only difference here is that there are only 3 relevant groups (i.e., 3 drugs), so
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the degrees of freedom here is 15. And, because the degrees of freedom associated with the difference is
equal to the difference in the two degrees of freedom, we arrive at the conclusion that we have 15´12 “ 3
degrees of freedom. Now that we know the degrees of freedom, we can calculate our MS values:

> ms.res <- ss.res.full / 12

> ms.diff <- ss.diff / 3

Okay, now that we have our two MS values, we can divide one by the other, and obtain an F -statistic ...

> F.stat <- ms.diff / ms.res

> F.stat

[1] 4.5268

... and, just as we had hoped, this turns out to be identical to the F -statistic that the anova() function
produced earlier.

16.6

ANOVA as a linear model

One of the most important things to understand about ANOVA and regression is that they’re basically
the same thing. On the surface of it, you wouldn’t think that this is true: after all, the way that I’ve
described them so far suggests that ANOVA is primarily concerned with testing for group differences, and
regression is primarily concerned with understanding the correlations between variables. And as far as it
goes, that’s perfectly true. But when you look under the hood, so to speak, the underlying mechanics of
ANOVA and regression are awfully similar. In fact, if you think about it, you’ve already seen evidence
of this. ANOVA and regression both rely heavily on sums of squares (SS), both make use of F tests, and
so on. Looking back, it’s hard to escape the feeling that Chapters 14 and 15 were a bit repetitive.

The reason for this is that ANOVA and regression are both kinds of linear models. In the case of
regression, this is kind of obvious. The regression equation that we use to define the relationship between
predictors and outcomes is the equation for a straight line, so it’s quite obviously a linear model. And if
that wasn’t a big enough clue, the simple fact that the command to run a regression is lm() is kind of a
hint too. When we use an R formula like outcome ~ predictor1 + predictor2 what we’re really working
with is the somewhat uglier linear model:

Yp “ b1X1p ` b2X2p ` b0 ` ǫp

where Yp is the outcome value for the p-th observation (e.g., p-th person), X1p is the value of the first
predictor for the p-th observation, X2p is the value of the second predictor for the p-th observation, the
b1, b2 and b0 terms are our regression coefficients, and ǫp is the p-th residual. If we ignore the residuals
ǫp and just focus on the regression line itself, we get the following formula:

Ŷp “ b1X1p ` b2X2p ` b0

where Ŷp is the value of Y that the regression line predicts for person p, as opposed to the actually-
observed value Yp. The thing that isn’t immediately obvious is that we can write ANOVA as a linear
model as well. However, it’s actually pretty straightforward to do this. Let’s start with a really simple
example: rewriting a 2ˆ 2 factorial ANOVA as a linear model.
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16.6.1 Some data

To make things concrete, let’s suppose that our outcome variable is the grade that a student receives
in my class, a ratio-scale variable corresponding to a mark from 0% to 100%. There are two predictor
variables of interest: whether or not the student turned up to lectures (the attend variable), and whether
or not the student actually read the textbook (the reading variable). We’ll say that attend = 1 if the
student attended class, and attend = 0 if they did not. Similarly, we’ll say that reading = 1 if the student
read the textbook, and reading = 0 if they did not.

Okay, so far that’s simple enough. The next thing we need to do is to wrap some maths around this
(sorry!). For the purposes of this example, let Yp denote the grade of the p-th student in the class. This
is not quite the same notation that we used earlier in this chapter: previously, we’ve used the notation
Yrci to refer to the i-th person in the r-th group for predictor 1 (the row factor) and the c-th group
for predictor 2 (the column factor). This extended notation was really handy for describing how the
SS values are calculated, but it’s a pain in the current context, so I’ll switch notation here. Now, the
Yp notation is visually simpler than Yrci, but it has the shortcoming that it doesn’t actually keep track
of the group memberships! That is, if I told you that Y0,0,3 “ 35, you’d immediately know that we’re
talking about a student (the 3rd such student, in fact) who didn’t attend the lectures (i.e., attend = 0)
and didn’t read the textbook (i.e. reading = 0), and who ended up failing the class (grade = 35). But if
I tell you that Yp “ 35 all you know is that the p-th student didn’t get a good grade. We’ve lost some
key information here. Of course, it doesn’t take a lot of thought to figure out how to fix this: what we’ll
do instead is introduce two new variables X1p and X2p that keep track of this information. In the case
of our hypothetical student, we know that X1p “ 0 (i.e., attend = 0) and X2p “ 0 (i.e., reading = 0). So
the data might look like this:

person, p grade, Yp attendance, X1p reading, X2p

1 90 1 1
2 87 1 1
3 75 0 1
4 60 1 0
5 35 0 0
6 50 0 0
7 65 1 0
8 70 0 1

This isn’t anything particularly special, of course: it’s exactly the format in which we expect to see our
data! In other words, if your data have been stored as a data frame in R then you’re probably expecting
to see something that looks like the rtfm.1 data frame:

> rtfm.1

grade attend reading

1 90 1 1

2 87 1 1

3 75 0 1

4 60 1 0

5 35 0 0

6 50 0 0

7 65 1 0

8 70 0 1

Well, sort of. I suspect that a few readers are probably frowning a little at this point. Earlier on in the
book I emphasised the importance of converting nominal scale variables such as attend and reading to
factors, rather than encoding them as numeric variables. The rtfm.1 data frame doesn’t do this, but the
rtfm.2 data frame does, and so you might instead be expecting to see data like this:
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> rtfm.2

grade attend reading

1 90 yes yes

2 87 yes yes

3 75 no yes

4 60 yes no

5 35 no no

6 50 no no

7 65 yes no

8 70 no yes

However, for the purposes of this section it’s important that we be able to switch back and forth between
these two different ways of thinking about the data. After all, our goal in this section is to look at some
of the mathematics that underpins ANOVA, and if we want to do that we need to be able to see the
numerical representation of the data (in rtfm.1) as well as the more meaningful factor representation (in
rtfm.2). In any case, we can use the xtabs() function to confirm that this data set corresponds to a
balanced design

> xtabs( ~ attend + reading, rtfm.2 )

reading

attend no yes

no 2 2

yes 2 2

For each possible combination of the attend and reading variables, we have exactly two students. If we’re
interested in calculating the mean grade for each of these cells, we can use the aggregate() function:

> aggregate( grade ~ attend + reading, rtfm.2, mean )

attend reading grade

1 no no 42.5

2 yes no 62.5

3 no yes 72.5

4 yes yes 88.5

Looking at this table, one gets the strong impression that reading the text and attending the class both
matter a lot.

16.6.2 ANOVA with binary factors as a regression model

Okay, let’s get back to talking about the mathematics. We now have our data expressed in terms of
three numeric variables: the continuous variable Y , and the two binary variables X1 and X2. What I
want to you to recognise is that our 2ˆ2 factorial ANOVA is exactly equivalent to the regression model

Yp “ b1X1p ` b2X2p ` b0 ` ǫp

This is, of course, the exact same equation that I used earlier to describe a two-predictor regression model!
The only difference is that X1 and X2 are now binary variables (i.e., values can only be 0 or 1), whereas
in a regression analysis we expect that X1 and X2 will be continuous. There’s a couple of ways I could
try to convince you of this. One possibility would be to do a lengthy mathematical exercise, proving that
the two are identical. However, I’m going to go out on a limb and guess that most of the readership of
this book will find that to be annoying rather than helpful. Instead, I’ll explain the basic ideas, and then
rely on R to show that that ANOVA analyses and regression analyses aren’t just similar, they’re identical
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for all intents and purposes.9 Let’s start by running this as an ANOVA. To do this, we’ll use the rtfm.2

data frame, since that’s the one in which I did the proper thing of coding attend and reading as factors,
and I’ll use the aov() function to do the analysis. Here’s what we get...

> anova.model <- aov( grade ~ attend + reading, data = rtfm.2 )

> summary( anova.model )

Df Sum Sq Mean Sq F value Pr(>F)

attend 1 648 648 21.60 0.00559 **

reading 1 1568 1568 52.27 0.00079 ***

Residuals 5 150 30

So, by reading the key numbers off the ANOVA table and the table of means that we presented earlier,
we can see that the students obtained a higher grade if they attended class pF1,5 “ 26.1, p “ .0056q and
if they read the textbook pF1,5 “ 52.3, p “ .0008q. Let’s make a note of those p-values and those F

statistics.

> library(effects)

> Effect( c("attend","reading"), anova.model )

attend*reading effect

reading

attend no yes

no 43.5 71.5

yes 61.5 89.5

Now let’s think about the same analysis from a linear regression perspective. In the rtfm.1 data set,
we have encoded attend and reading as if they were numeric predictors. In this case, this is perfectly
acceptable. There really is a sense in which a student who turns up to class (i.e. attend = 1) has in fact
done “more attendance” than a student who does not (i.e. attend = 0). So it’s not at all unreasonable
to include it as a predictor in a regression model. It’s a little unusual, because the predictor only takes
on two possible values, but it doesn’t violate any of the assumptions of linear regression. And it’s easy
to interpret. If the regression coefficient for attend is greater than 0, it means that students that attend
lectures get higher grades; if it’s less than zero, then students attending lectures get lower grades. The
same is true for our reading variable.

Wait a second... why is this true? It’s something that is intuitively obvious to everyone who has
taken a few stats classes and is comfortable with the maths, but it isn’t clear to everyone else at first
pass. To see why this is true, it helps to look closely at a few specific students. Let’s start by considering
the 6th and 7th students in our data set (i.e. p “ 6 and p “ 7). Neither one has read the textbook,
so in both cases we can set reading = 0. Or, to say the same thing in our mathematical notation, we
observe X2,6 “ 0 and X2,7 “ 0. However, student number 7 did turn up to lectures (i.e., attend = 1,
X1,7 “ 1) whereas student number 6 did not (i.e., attend = 0, X1,6 “ 0). Now let’s look at what happens
when we insert these numbers into the general formula for our regression line. For student number 6, the
regression predicts that

Ŷ6 “ b1X1,6 ` b2X2,6 ` b0

“ pb1 ˆ 0q ` pb2 ˆ 0q ` b0

“ b0

So we’re expecting that this student will obtain a grade corresponding to the value of the intercept term
b0. What about student 7? This time, when we insert the numbers into the formula for the regression

9This is cheating in some respects: because ANOVA and regression are provably the same thing, R is lazy: if you read
the help documentation closely, you’ll notice that the aov() function is actually just the lm() function in disguise! But we
shan’t let such things get in the way of our story, shall we?
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line, we obtain the following:

Ŷ7 “ b1X1,7 ` b2X2,7 ` b0

“ pb1 ˆ 1q ` pb2 ˆ 0q ` b0

“ b1 ` b0

Because this student attended class, the predicted grade is equal to the intercept term b0 plus the
coefficient associated with the attend variable, b1. So, if b1 is greater than zero, we’re expecting that the
students who turn up to lectures will get higher grades than those students who don’t. If this coefficient
is negative, we’re expecting the opposite: students who turn up at class end up performing much worse.
In fact, we can push this a little bit further. What about student number 1, who turned up to class
(X1,1 “ 1) and read the textbook (X2,1 “ 1)? If we plug these numbers into the regression, we get

Ŷ1 “ b1X1,1 ` b2X2,1 ` b0

“ pb1 ˆ 1q ` pb2 ˆ 1q ` b0

“ b1 ` b2 ` b0

So if we assume that attending class helps you get a good grade (i.e., b1 ą 0) and if we assume that
reading the textbook also helps you get a good grade (i.e., b2 ą 0), then our expectation is that student
1 will get a grade that that is higher than student 6 and student 7.

And at this point, you won’t be at all suprised to learn that the regression model predicts that student
3, who read the book but didn’t attend lectures, will obtain a grade of b2` b0. I won’t bore you with yet
another regression formula. Instead, what I’ll do is show you the following table of expected grades:

read textbook?
no yes

attended? no b0 b0 ` b2
yes b0 ` b1 b0 ` b1 ` b2

As you can see, the intercept term b0 acts like a kind of “baseline” grade that you would expect from
those students who don’t take the time to attend class or read the textbook. Similarly, b1 represents
the boost that you’re expected to get if you come to class, and b2 represents the boost that comes from
reading the textbook. In fact, if this were an ANOVA you might very well want to characterise b1 as the
main effect of attendance, and b2 as the main effect of reading! In fact, for a simple 2ˆ 2 ANOVA that’s
exactly how it plays out.

Okay, now that we’re really starting to see why ANOVA and regression are basically the same thing,
let’s actually run our regression using the rtfm.1 data and the lm() function to convince ourselves that
this is really true. Running the regression in the usual way gives us the following output:10

> regression.model <- lm( grade ~ attend + reading, data = rtfm.1 )

> summary( regression.model )

BLAH BLAH BLAH

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 43.500 3.354 12.969 4.86e-05 ***

attend 18.000 3.873 4.648 0.00559 **

10In the example given above, I’ve typed summary( regression.model ) to get the hypothesis tests. However, the summary()

function does produce a lot of output, which is why I’ve used the BLAH BLAH BLAH text to hide the unnecessary parts of the
output. But in fact, you can use the coef() function to do the same job. If you the command coef( summary( regression.model

)) you’ll get exactly the same output that I’ve shown above (minus the BLAH BLAH BLAH). Compare and contrast this to the
output of coef( regression.model ).
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reading 28.000 3.873 7.230 0.00079 ***

BLAH BLAH BLAH

There’s a few interesting things to note here. Firstly, notice that the intercept term is 43.5, which is
close to the “group” mean of 42.5 observed for those two students who didn’t read the text or attend
class. Moreover, it’s identical to the predicted group mean that we pulled out of our ANOVA using the
Effects() function! Secondly, notice that we have the regression coefficient of b1 “ 18.0 for the attendance
variable, suggesting that those students that attended class scored 18% higher than those who didn’t. So
our expectation would be that those students who turned up to class but didn’t read the textbook would
obtain a grade of b0 ` b1, which is equal to 43.5 ` 18.0 “ 61.5. Again, this is similar to the observed
group mean of 62.5, and identical to the expected group mean that we pulled from our ANOVA. You can
verify for yourself that the same thing happens when we look at the students that read the textbook.

Actually, we can push a little further in establishing the equivalence of our ANOVA and our regression.
Look at the p-values associated with the attend variable and the reading variable in the regression output.
They’re identical to the ones we encountered earlier when running the ANOVA. This might seem a little
surprising, since the test used when running our regression model calculates a t-statistic and the ANOVA
calculates an F -statistic. However, if you can remember all the way back to Chapter 9, I mentioned that
there’s a relationship between the t-distribution and the F -distribution: if you have some quantity that
is distributed according to a t-distribution with k degrees of freedom and you square it, then this new
squared quantity follows an F -distribution whose degrees of freedom are 1 and k. We can check this with
respect to the t statistics in our regression model. For the attend variable we get a t value of 4.648. If
we square this number we end up with 21.604, which is identical to the corresponding F statistic in our
ANOVA.

Finally, one last thing you should know. Because R understands the fact that ANOVA and regression
are both examples of linear models, it lets you extract the classic ANOVA table from your regression
model using the anova() function. All you have to do is this:

> anova( regression.model )

Analysis of Variance Table

Response: grade

Df Sum Sq Mean Sq F value Pr(>F)

attend 1 648 648 21.600 0.0055943 **

reading 1 1568 1568 52.267 0.0007899 ***

Residuals 5 150 30

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

16.6.3 Changing the baseline category

At this point, you’re probably convinced that the ANOVA and the regression are actually identical
to each other. So there’s one last thing I should show you. What happens if I use the data from rtfm.2

to run the regression? In rtfm.2, we coded the attend and reading variables as factors rather than as
numeric variables. Does this matter? It turns out that it doesn’t. The only differences are superficial:

> regression.model.2 <- lm( grade ~ attend + reading, data = rtfm.2 )

> summary( regression.model.2 )

BLAH BLAH BLAH

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 43.500 3.354 12.969 4.86e-05 ***

attendyes 18.000 3.873 4.648 0.00559 **

readingyes 28.000 3.873 7.230 0.00079 ***

BLAH BLAH BLAH

The only thing that is different is that R labels the two variables differently: the output now refers to
attendyes and readingyes. You can probably guess what this means. When R refers to readingyes it’s
trying to indicate that it is assuming that “yes = 1” and “no = 0”. This is important. Suppose we
wanted to say that “yes = 0” and “no = 1”. We could still run this as a regression model, but now all
of our coefficients will go in the opposite direction, because the effect of readingno would be referring to
the consequences of not reading the textbook. To show you how this works, we can use the relevel()

function in R to change which level of the reading variable is set to “0”. Here’s how it works. First, let’s
get R to print out the reading factor as it currently stands:

> rtfm.2$reading

[1] yes yes yes no no no no yes

Levels: no yes

Notice that order in which R prints out the levels is “no” and then “yes”. Now let’s apply the relevel()

function:

> relevel( x = rtfm.2$reading, ref = "yes" )

[1] yes yes yes no no no no yes

Levels: yes no

R now lists “yes” before “no”. This means that R will now treat “yes” as the “reference” level (sometimes
called the baseline level) when you include it in an ANOVA. So let’s now create a new data frame with
our factors recoded...

> rtfm.3 <- rtfm.2 # copy the old data frame

> rtfm.3$reading <- relevel( rtfm.2$reading, ref="yes" ) # re-level the reading factor

> rtfm.3$attend <- relevel( rtfm.2$attend, ref="yes" ) # re-level the attend factor

Finally, let’s re-run our regression, this time using the re-coded data:

> regression.model.3 <- lm( grade ~ attend + reading, data = rtfm.3 )

> summary( regression.model.3 )

BLAH BLAH BLAH

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.500 3.354 26.684 1.38e-06 ***

attendno -18.000 3.873 -4.648 0.00559 **

readingno -28.000 3.873 -7.230 0.00079 ***

BLAH BLAH BLAH

As you can see, there are now a few changes. Most obviously, the attendno and readingno effects are both
negative, though they’re the same magnitude as before: if you don’t read the textbook, for instance, you
should expect your grade to drop by 28% relative to someone who did. The t-statistics have reversed sign
too. The p-values remain the same, of course. The intercept has changed too. In our original regression,
the baseline corresponded to a student who didn’t attend class and didn’t read the textbook, so we got a
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value of 43.5 as the expected baseline grade. However, now that we’ve recoded our variables, the baseline
corresponds to a student who has read the textbook and did attend class, and for that student we would
expect a grade of 89.5.

16.6.4 How to encode non binary factors as contrasts

At this point, I’ve shown you how we can view a 2ˆ 2 ANOVA into a linear model. And it’s pretty
easy to see how this generalises to a 2ˆ 2ˆ 2 ANOVA or a 2ˆ 2ˆ 2ˆ 2 ANOVA... it’s the same thing,
really: you just add a new binary variable for each of your factors. Where it begins to get trickier is
when we consider factors that have more than two levels. Consider, for instance, the 3ˆ 2 ANOVA that
we ran earlier in this chapter using the clin.trial data. How can we convert the three-level drug factor
into a numerical form that is appropriate for a regression?

The answer to this question is pretty simple, actually. All we have to do is realise that a three-level
factor can be redescribed as two binary variables. Suppose, for instance, I were to create a new binary
variable called druganxifree. Whenever the drug variable is equal to "anxifree" we set druganxifree = 1.
Otherwise, we set druganxifree = 0. This variable sets up a contrast, in this case between anxifree and
the other two drugs. By itself, of course, the druganxifree contrast isn’t enough to fully capture all of the
information in our drug variable. We need a second contrast, one that allows us to distinguish between
joyzepam and the placebo. To do this, we can create a second binary contrast, called drugjoyzepam,
which equals 1 if the drug is joyzepam, and 0 if it is not. Taken together, these two contrasts allows us
to perfectly discriminate between all three possible drugs. The table below illustrates this:

drug druganxifree drugjoyzepam

"placebo" 0 0
"anxifree" 1 0
"joyzepam" 0 1

If the drug administered to a patient is a placebo, then both of the two contrast variables will equal 0. If
the drug is Anxifree, then the druganxifree variable will equal 1, and drugjoyzepam will be 0. The reverse
is true for Joyzepam: drugjoyzepam is 1, and druganxifree is 0.

Creating contrast variables manually is not too difficult to do using basic R commands. For example,
here’s how we would create the druganxifree variable:

> druganxifree <- as.numeric( clin.trial$drug == "anxifree" )

> druganxifree

[1] 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

The clin.trial$drug == "anxifree" part of the command returns a logical vector that has a value of TRUE
if the drug is Anxifree, and a value of FALSE if the drug is Joyzepam or the placebo. The as.numeric()

function just converts TRUE to 1 and FALSE to 0. Obviously, this command creates the druganxifree variable
inside the workspace. If you wanted to add it to the clin.trial data frame, you’d use a commmand like
this instead:

> clin.trial$druganxifree <- as.numeric( clin.trial$drug == "anxifree" )

You could then repeat this for the other contrasts that you wanted to use. However, it’s kind of tedious
to do this over and over again for every single contrast that you want to create. To make it a little
easier, the lsr package contains a simple function called expandFactors() that will convert every factor
in a data frame into a set of contrast variables.11 We can use it to create a new data frame, clin.trial.2

11Advanced users may want to look into the model.matrix() function, which produces similar output. Alternatively, you
can use a command like contr.treatment(3)[clin.trial$drug,]. I’ll talk about the contr.treatment() function later.
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that contains the same data as clin.trial, but with the two factors represented in terms of the contrast
variables:

> clin.trial.2 <- expandFactors( clin.trial )

> clin.trial.2

druganxifree drugjoyzepam therapyCBT mood.gain

1 0 0 0 0.5

2 0 0 0 0.3

3 0 0 0 0.1

4 1 0 0 0.6

5 1 0 0 0.4

6 1 0 0 0.2

7 0 1 0 1.4

8 0 1 0 1.7

BLAH BLAH BLAH

It’s not as pretty as the original clin.trial data, but it’s definitely saying the same thing. We have now
recoded our three-level factor in terms of two binary variables, and we’ve already seen that ANOVA and
regression behave the same way for binary variables. However, there are some additional complexities
that arise in this case, which we’ll discuss in the next section.

16.6.5 The equivalence between ANOVA and regression for non-binary factors

Now we have two different versions of the same data set: our original data frame clin.trial in which
the drug variable is expressed as a single three-level factor, and the expanded data set clin.trial.2 in
which it is expanded into two binary contrasts. Once again, the thing that we want to demonstrate is that
our original 3ˆ 2 factorial ANOVA is equivalent to a regression model applied to the contrast variables.
Let’s start by re-running the ANOVA:

> drug.anova <- aov( mood.gain ~ drug + therapy, clin.trial )

> summary( drug.anova )

Df Sum Sq Mean Sq F value Pr(>F)

drug 2 3.45 1.727 26.15 1.9e-05 ***

therapy 1 0.47 0.467 7.08 0.019 *

Residuals 14 0.92 0.066

Obviously, there’s no surprises here. That’s the exact same ANOVA that we ran earlier, except for the
fact that I’ve arbitrarily decided to rename the output variable as drug.anova for some stupid reason.12

Next, let’s run a regression, using druganxifree, drugjoyzepam and therapyCBT as the predictors. Here’s
what we get:

> drug.regression <- lm( mood.gain ~ druganxifree + drugjoyzepam + therapyCBT, clin.trial.2 )

> summary( drug.regression )

BLAH BLAH BLAH

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.289 0.121 2.38 0.032 *

12Future versions of this book will try to be a bit more consistent with the naming scheme for variables. One of the
many problems with having to write a lengthy text very quickly to meet a teaching deadline is that you lose some internal
consistency.
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druganxifree 0.267 0.148 1.80 0.094 .

drugjoyzepam 1.033 0.148 6.97 6.6e-06 ***

therapyCBT 0.322 0.121 2.66 0.019 *

BLAH BLAH BLAH

Hm. This isn’t the same output that we got last time. Not surprisingly, the regression output prints out
the results for each of the three predictors separately, just like it did every other time we used lm(). On
the one hand, we can see that the p-value for the therapyCBT variable is exactly the same as the one for
the therapy factor in our original ANOVA, so we can be reassured that the regression model is doing the
same thing as the ANOVA did. On the other hand, this regression model is testing the druganxifree

contrast and the drugjoyzepam contrast separately, as if they were two completely unrelated variables. It’s
not surprising of course, because the poor lm() function has no way of knowing that drugjoyzepam and
druganxifree are actually the two different contrasts that we used to encode our three-level drug factor.
As far as it knows, drugjoyzepam and druganxifree are no more related to one another than drugjoyzepam

and therapyCBT. However, you and I know better. At this stage we’re not at all interested in determining
whether these two contrasts are individually significant. We just want to know if there’s an “overall”
effect of drug. That is, what we want R to do is to run some kind of “omnibus” test, one in which the two
“drug-related” contrasts are lumped together for the purpose of the test. Sound familiar? This is exactly
the situation that we discussed in Section 16.5, and it is precisely this situation that the F -test is built
to handle. All we need to do is specify our null model, which in this case would include the therapyCBT

predictor, and omit both of the drug-related variables, and then run it through the anova() function:

> nodrug.regression <- lm( mood.gain ~ therapyCBT, clin.trial.2 )

> anova( nodrug.regression, drug.regression )

Analysis of Variance Table

Model 1: mood.gain ~ therapyCBT

Model 2: mood.gain ~ druganxifree + drugjoyzepam + therapyCBT

Res.Df RSS Df Sum of Sq F Pr(>F)

1 16 4.38

2 14 0.92 2 3.45 26.1 1.9e-05 ***

Ah, that’s better. Our F -statistic is 26.1, the degrees of freedom are 2 and 14, and the p-value is 0.000019.
The numbers are identical to the ones we obtained for the main effect of drug in our original ANOVA.
Once again, we see that ANOVA and regression are essentially the same: they are both linear models,
and the underlying statistical machinery for ANOVA is identical to the machinery used in regression.
The importance of this fact should not be understated. Throughout the rest of this chapter we’re going
to rely heavily on this idea.

16.6.6 Degrees of freedom as parameter counting!

At long last, I can finally give a definition of degrees of freedom that I am happy with. Degrees of
freedom are defined in terms of the number of parameters that have to be estimated in a model. For
a regression model or an ANOVA, the number of parameters corresponds to the number of regression
coefficients (i.e. b-values), including the intercept. Keeping in mind that any F -test is always a com-
parison between two models, the first df is the difference in the number of parameters. For example,
model comparison above, the null model (mood.gain ~ therapyCBT) has two parameters: there’s one re-
gression coefficient for the therapyCBT variable, and a second one for the intercept. The alternative model
(mood.gain ~ druganxifree + drugjoyzepam + therapyCBT) has four parameters: one regression coefficient
for each of the three contrasts, and one more for the intercept. So the degrees of freedom associated with
the difference between these two models is df1 “ 4´ 2 “ 2.
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What about the case when there doesn’t seem to be a null model? For instance, you might be thinking
of the F -test that appears at the very bottom of the regression output. I originally described that as a
test of the regression model as a whole. However, that is still a comparison between two models. The
null model is the trivial model that only includes an intercept, which is written as outcome ~ 1 in R,
and the alternative model is the full regression model. The null model in this case contains 1 regression
coefficient, for the intercept term. The alternative model contains K ` 1 regression coefficients, one for
each of the K predictor variables and one more for the intercept. So the df value that you see in this F
test is equal to df1 “ K ` 1´ 1 “ K.

What about the second df value that appears in the F -test? This always refers to the degrees of
freedom associated with the residuals. It is possible to think of this in terms of parameters too, but
in a slightly counterintuitive way. Think of it like this: suppose that the total number of observations
across the study as a whole is N . If you wanted to perfectly describe each of these N values, you need
to do so using, well... N numbers. When you build a regression model, what you’re really doing is
specifying some of the numbers need to perfectly describe the data. If your model has K predictors and
an intercept, then you’ve specified K ` 1 numbers. So, without bothering to figure out exactly how this
would be done, how many more numbers do you think are going to be needed to transform a K ` 1
parameter regression model into a perfect redescription of the raw data? If you found yourself thinking
that pK ` 1q ` pN ´K ´ 1q “ N , and so the answer would have to be N ´K ´ 1, well done! That’s
exactly right: in principle you can imagine an absurdly complicated regression model that includes a
parameter for every single data point, and it would of course provide a perfect description of the data.
This model would contain N parameters in total, but we’re interested in the difference between the
number of parameters required to describe this full model (i.e. N) and the number of parameters used
by the simpler regression model that you’re actually interested in (i.e., K` 1), and so the second degrees
of freedom in the F test is df2 “ N ´K ´ 1, where K is the number of predictors (in a regression model)
or the number of contrasts (in an ANOVA). In the example I gave above, there are N “ 18 observations
in the data set, and K ` 1 “ 4 regression coefficients associated with the ANOVA model, so the degrees
of freedom for the residuals is df2 “ 18´ 4 “ 14.

16.6.7 A postscript

There’s one last thing I want to mention in this section. In the previous example, I used the aov()

function to run an ANOVA using the clin.trial data which codes drug variable as a single factor. I
also used the lm() function to run a regression using the clin.trial data in which we have two separate
contrasts describing the drug. However, it’s also possible to use the lm() function on the the original
data. That is, you could use a command like this:

> drug.lm <- lm( mood.gain ~ drug + therapy, clin.trial )

The fact that drug is a three-level factor does not matter. As long as the drug variable has been declared
to be a factor, R will automatically translate it into two binary contrast variables, and will perform the
appropriate analysis. After all, as I’ve been saying throughout this section, ANOVA and regression are
both linear models, and lm() is the function that handles linear models. In fact, the aov() function
doesn’t actually do very much of the work when you run an ANOVA using it: internally, R just passes
all the hard work straight to lm(). However, I want to emphasise again that it is critical that your factor
variables are declared as such. If drug were declared to be a numeric variable, then R would be happy to
treat it as one. After all, it might be that drug refers to the number of drugs that one has taken in the
past, or something that is genuinely numeric. R won’t second guess you here. It assumes your factors are
factors and your numbers are numbers. Don’t make the mistake of encoding your factors as numbers, or
R will run the wrong analysis. This is not a flaw in R: it is your responsibility as the analyst to make sure
you’re specifying the right model for your data. Software really can’t be trusted with this sort of thing.

Okay, warnings aside, it’s actually kind of neat to run your ANOVA using the lm() function in the
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way I did above. Because you’ve called the lm() function, the summary() that R pulls out is formatted like
a regression. To save space I won’t show you the output here, but you can easily verify this by typing

> summary( drug.lm )

However, because the drug and therapy variables were both factors, the anova() function actually knows
which contrasts to group together for the purposes of running the F -tests, so you can extract the classic
ANOVA table. Again, I won’t reproduce the output here since it’s identical to the ANOVA table I showed
at the start of the section, but it’s worth trying the following command

> anova( drug.lm )

just to see for yourself. However, this behaviour of the anova() function only occurs when the predictor
variables are factors. If we try a command like anova( drug.regression ), the output will continue to
treate druganxifree and drugjoyzepam as if they were two distinct binary factors. This is because in the
drug.regression model we included all the contrasts as “raw” variables, so R had no idea which ones
belonged together. However, when we ran the drug.lm model, we gave R the original factor variables, so
it does know which contrasts go together. The behaviour of the anova() function reflects that.

16.7

Different ways to specify contrasts

In the previous section, I showed you a method for converting a factor into a collection of contrasts. In
the method I showed you, we specify a set of binary variables, in which define a table like this one:

drug druganxifree drugjoyzepam

"placebo" 0 0
"anxifree" 1 0
"joyzepam" 0 1

Each row in the table corresponds to one of the factor levels, and each column corresponds to one of the
contrasts. This table, which always has one more row than columns, has a special name: it is called a
contrast matrix. However, there are lots of different ways to specify a contrast matrix. In this section
I discuss a few of the standard contrast matrices that statisticians use, and how you can use them in R.
If you’re planning to read the section on unbalanced ANOVA later on (Section 16.10) it’s worth reading
this section carefully. If not, you can get away with skimming it, because the choice of contrasts doesn’t
matter much for balanced designs.

16.7.1 Treatment contrasts

In the particular kind of contrasts that I’ve described above, one level of the factor is special, and
acts as a kind of “baseline” category (i.e., placebo in our example), against which the other two are
defined. The name for these kinds of contrast is treatment contrasts. The name reflects the fact that
these contrasts are quite natural and sensible when one of the categories in your factor really is special
because it actually does represent a baseline. That makes sense in our clinical trial example: the placebo

condition corresponds to the situation where you don’t give people any real drugs, and so it’s special.
The other two conditions are defined in relation to the placebo: in one case you replace the placebo with
Anxifree, and in the other case your replace it with Joyzepam.
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R comes with a variety of functions that can generate different kinds of contrast matrices. For example,
the table shown above is a matrix of treatment contrasts for a factor that has 3 levels. But suppose I
want a matrix of treatment contrasts for a factor with 5 levels? The contr.treatment() function will do
this:

> contr.treatment( n=5 )

2 3 4 5

1 0 0 0 0

2 1 0 0 0

3 0 1 0 0

4 0 0 1 0

5 0 0 0 1

Notice that, by default, the first level of the factor is always treated as the baseline category (i.e., it’s
the one that has all zeros, and doesn’t have an explicit contrast associated with it). In Section 16.6.3
I mentioned that you can use the relevel() function to change which category is the first level of the
factor.13 There’s also a special function in R called contr.SAS() that generates a treatment contrast
matrix in which the last category is treated as the baseline:

> contr.SAS( n=5 )

1 2 3 4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 0 0 0 0

However, you can actually select any category you like as the baseline within the contr.treatment()

function, by specifying the base argument in that function. See the help documentation for more details.

16.7.2 Helmert contrasts

Treatment contrasts are useful for a lot of situations, and they’re the default in R. However, they
make most sense in the situation when there really is a baseline category, and you want to assess all the
other groups in relation to that one. In other situations, however, no such baseline category exists, and
it may make more sense to compare each group to the mean of the other groups. This is where Helmert
contrasts, generated by the contr.helmert() function, can be useful. The idea behind Helmert contrasts
is to compare each group to the mean of the “previous” ones. That is, the first contrast represents the
difference between group 2 and group 1, the second contrast represents the difference between group 3
and the mean of groups 1 and 2, and so on. This translates to a contrast matrix that looks like this:

> contr.helmert( n=5 )

[,1] [,2] [,3] [,4]

1 -1 -1 -1 -1

2 1 -1 -1 -1

3 0 2 -1 -1

4 0 0 3 -1

5 0 0 0 4

One useful thing about Helmert contrasts is that every contrast sums to zero (i.e., all the columns sum
to zero). This has the consequence that, when we interpret the ANOVA as a regression, the intercept
term corresponds to the grand mean µ..q if we are using Helmert contrasts. Compare this to treatment

13The lsr package contains a more general function called permuteLevels() that can shuffle them in any way you like.
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contrasts, in which the intercept term corresponds to the group mean for the baseline category. This
property can be very useful in some situations. It doesn’t matter very much if you have a balanced
design, which we’ve been assuming so far, but it will turn out to be important later when we consider
unbalanced designs in Section 16.10. In fact, the main reason why I’ve even bothered to include this
section on specifying is that contrasts become important if you want to understand unbalanced ANOVA.

16.7.3 Sum to zero contrasts

The third option that I should briefly mention are “sum to zero” contrasts, which are used to construct
pairwise comparisons between groups. Specifically, each contrast encodes the difference between one of
the groups and a baseline category, which in this case corresponds to the last group:

> contr.sum( n=5 )

[,1] [,2] [,3] [,4]

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 -1 -1 -1 -1

Much like Helmert contrasts, we see that each column sums to zero, which means that the intercept term
corresponds to the grand mean when ANOVA is treated as a regression model. When interpreting these
contrasts, the thing to recognise is that each of these contrasts is a pairwise comparison between group
5 and one of the other four groups. Specifically, contrast 1 corresponds to a “group 1 minus group 5”
comparison, contrast 2 corresponds to a “group 2 minus group 5” comparison, and so on.

16.7.4 Viewing and setting the default contrasts in R

Every factor variable in R is associated with a contrast matrix. It has to be, otherwise R wouldn’t be
able to run ANOVAs properly! If you don’t specify one explictly, or R will implicitly specify one for you.
Here’s what I mean. When I created the clin.trial data, I didn’t specify any contrast matrix for either
of the factors. You can see this by using the attr() function to print out the “contrasts” attribute of the
factors. For example:

> attr( clin.trial$drug, "contrasts" )

NULL

The NULL output here means that R is telling you that the drug factor doesn’t have any attribute called
“contrasts” for which it has any data. There is no contrast matrix stored anywhere explicitly for this
factor. However, if we now ask R to tell us what contrasts are set up for this factor, it give us this:

> contrasts( clin.trial$drug )

anxifree joyzepam

placebo 0 0

anxifree 1 0

joyzepam 0 1

These are the same treatment contrast that we set up manually in Section 16.6. How did R know to set
up treatment contrasts, even though I never actually told it anything about what contrasts I wanted?
The answer is that R has a hidden list of default “options” that it looks up to resolve situations like this.
You can print out all of the options by typing options() at the command prompt, but it’s not a very
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enlightening read. There are a lot of options, and we’re only interested in contrasts right now. Instead
of printing out all of the options, we can ask for just one, like this:

> options( "contrasts" )

$contrasts

unordered ordered

"contr.treatment" "contr.poly"

What this is telling us is that the default contrasts for unordered factors (i.e., nominal scale variables) are
treatment contrasts, and the default for ordered factors (i.e., interval scale variables) are “polynomial”
contrasts. I don’t discuss ordered factors much in this book, and so I won’t go into what polynomial
contrasts are all about. The key thing is that the options() function also allows you to reset these defaults
(though only for the current session: they’ll revert to the original settings once you close R). Here’s the
command:

> options(contrasts = c("contr.helmert", "contr.poly"))

Once we’ve done this, we can inspect the contrast settings again:

> options("contrasts")

$contrasts

[1] "contr.helmert" "contr.poly"

Now we see that the default contrasts for unordered factors have changed. So if I now ask R to tell
me what contrasts are associated with the drug factor, it gives a different answer because I changed the
default:

> contrasts( clin.trial$drug )

[,1] [,2]

placebo -1 -1

anxifree 1 -1

joyzepam 0 2

Those are Helmert contrasts. In general, if you’re changing the default settings for something in R, it’s
a good idea to reset them to their original values once you’re done. So let’s do that:

> options(contrasts = c("contr.treatment", "contr.poly"))

16.7.5 Setting the contrasts for a single factor

In the previous section, I showed you how to alter the default contrasts. However, suppose that all
you really want to do is change the contrasts associated with a single factor, and leave the defaults as
they are. To do this, what you need to do is specifically assign the contrast matrix as an “attribute’ of
the factor. This is easy to do via the contrasts() function. For instance, suppose I wanted to use sum to
zero contrasts for the drug factor, but keep the default treatment contrasts for everything else. I could
do that like so:

> contrasts( clin.trial$drug ) <- contr.sum(3)

And if I now inspect the contrasts, I get the following
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> contrasts( clin.trial$drug)

[,1] [,2]

placebo 1 0

anxifree 0 1

joyzepam -1 -1

However, the contrasts for everything else will still be the defaults. You can check that we have actually
made a specific change to the factor itself by checking to see if it now has an attribute, using the command
attr( clin.trial$drug, "contrasts" ). This will print out the same output shown above, because the
contrast has in fact been attached to the drug factor, and does not rely on the defaults. If you want to
wipe the attribute and revert the defaults, use a command like this:

> contrasts( clin.trial$drug ) <- NULL

16.7.6 Setting the contrasts for a single analysis

One last way of changing contrasts. You might find yourself wanting to change the contrasts only
for one specific analysis. That’s allowed too, because the aov() and lm() functions have a contrasts

argument that you can use. To change contrasts for one specific analysis, we first set up a list variable
that names14 the contrast types that you want to use for each of the factors:

> my.contrasts <- list( drug = contr.helmert, therapy = contr.helmert )

Next, fit the ANOVA model in the usual way, but this time we’ll specify the contrasts argument:

> mod <- aov( mood.gain ~ drug*therapy, clin.trial, contrasts = my.contrasts )

If you try a command like summary(aov) you won’t see any difference in the output because the choice of
contrasts does not affect the outcome when you have a balanced design (this won’t always be true later
on). However, if you want to check that it has actually worked, you can inspect the value of mod$contrasts:

> mod$contrasts

$drug

[,1] [,2]

placebo -1 -1

anxifree 1 -1

joyzepam 0 2

$therapy

[,1]

no.therapy -1

CBT 1

As you can see, for the purposes of this one particular ANOVA, R has used Helmert contrasts for both
variables. If I had omitted the part of the command that specified the contrasts argument, you’d be
looking at treatment contrasts here because it would have reverted to whatever values the contrasts()

function prints out for each of the factors.

14Technically, this list actually stores the functions themselves. R allows lists to contain functions, which is really neat
for advanced purposes, but not something that matters for this book.
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16.8

Post hoc tests

Time to switch to a different topic. Let’s suppose you’ve done your ANOVA, and it turns out that you
obtained some significant effects. Because of the fact that the F -tests are “omnibus” tests that only really
test the null hypothesis that there are no differences among groups, obtaining a significant effect doesn’t
tell you which groups are different to which other ones. We discussed this issue back in Chapter 14, and
in that chapter our solution was to run t-tests for all possible pairs of groups, making corrections for
multiple comparisons (e.g., Bonferroni, Holm) to control the Type I error rate across all comparisons.
The methods that we used back in Chapter 14 have the advantage of being relatively simple, and being
the kind of tools that you can use in a lot of different situations where you’re testing multiple hypotheses,
but they’re not necessarily the best choices if you’re interested in doing efficient post hoc testing in an
ANOVA context. There are actually quite a lot of different methods for performing multiple comparisons
in the statistics literature (Hsu, 1996), and it would be beyond the scope of an introductory text like this
one to discuss all of them in any detail.

That being said, there’s one tool that I do want to draw your attention to, namely Tukey’s “Honestly
Significant Difference”, or Tukey’s HSD for short. For once, I’ll spare you the formulas, and just stick
to the qualitative ideas. The basic idea in Tukey’s HSD is to examine all relevant pairwise comparisons
between groups, and it’s only really appropriate to use Tukey’s HSD if it is pairwise differences that
you’re interested in.15 For instance, in model.2, where we specified a main effect for drug and a main
effect of therapy, we would be interested in the following four comparisons:

• The difference in mood gain for people given Anxifree versus people given the placebo.

• The difference in mood gain for people given Joyzepam versus people given the placebo.

• The difference in mood gain for people given Anxifree versus people given Joyzepam.

• The difference in mood gain for people treated with CBT and people given no therapy.

For any one of these comparisons, we’re interested in the true difference between (population) group
means. Tukey’s HSD constructs simultaneous confidence intervals for all four of these comparisons.
What we mean by 95% “simultaneous” confidence interval is that there is a 95% probability that all of
these confidence intervals contain the relevant true value. Moreover, we can use these confidence intervals
to calculate an adjusted p value for any specific comparison.

The TukeyHSD() function in R is pretty easy to use: you simply input the model that you want to
run the post hoc tests for. For example, if we were looking to run post hoc tests for model.2, here’s the
command we would use:

> TukeyHSD( model.2 )

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = mood.gain ~ drug + therapy, data = clin.trial)

$drug

15If, for instance, you actually would find yourself interested to know if Group A is significantly different from the mean
of Group B and Group C, then you need to use a different tool (e.g., Scheffe’s method, which is more conservative, and
beyond the scope this book). However, in most cases you probably are interested in pairwise group differences, so Tukey’s
HSD is a pretty useful thing to know about.
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diff lwr upr p adj

anxifree-placebo 0.2666667 -0.1216321 0.6549655 0.2062942

joyzepam-placebo 1.0333333 0.6450345 1.4216321 0.0000186

joyzepam-anxifree 0.7666667 0.3783679 1.1549655 0.0003934

$therapy

diff lwr upr p adj

CBT-no.therapy 0.3222222 0.0624132 0.5820312 0.0186602

The output here is (I hope) pretty straightforward. The first comparison, for example, is the Anxifree
versus placebo difference, and the first part of the output indicates that the observed difference in group
means is .27. The next two numbers indicate that the 95% (simultaneous) confidence interval for this
comparison runs from ´.12 to .65. Because the confidence interval for the difference includes 0, we cannot
reject the null hypothesis that the two group means are identical, and so we’re not all that surprised to
see that the adjusted p-value is .21. In contrast, if you look at the next line, we see that the observed
difference between Joyzepam and the placebo is 1.03, and the 95% confidence interval runs from .64 to
1.42. Because the interval excludes 0, we see that the result is significant pp ă .001q.

So far, so good. What about the situation where your model includes interaction terms? For instance,
in model.3 we allowed for the possibility that there is an interaction between drug and therapy. If that’s
the case, the number of pairwise comparisons that we need to consider starts to increase. As before, we
need to consider the three comparisons that are relevant to the main effect of drug and the one comparison
that is relevant to the main effect of therapy. But, if we want to consider the possibility of a significant
interaction (and try to find the group differences that underpin that significant interaction), we need to
include comparisons such as the following:

• The difference in mood gain for people given Anxifree and treated with CBT, versus people given
the placebo and treated with CBT

• The difference in mood gain for people given Anxifree and given no therapy, versus people given
the placebo and given no therapy.

• etc

There are quite a lot of these comparisons that you need to consider. So, when we run the TukeyHSD()

command for model.3 we see that it has made a lot of pairwise comparisons (19 in total). Here’s the
output:

> TukeyHSD( model.3 )

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = mood.gain ~ drug * therapy, data = clin.trial)

$drug

diff lwr upr p adj

anxifree-placebo 0.2666667 -0.09273475 0.6260681 0.1597148

joyzepam-placebo 1.0333333 0.67393191 1.3927348 0.0000160

joyzepam-anxifree 0.7666667 0.40726525 1.1260681 0.0002740

$therapy

diff lwr upr p adj

CBT-no.therapy 0.3222222 0.08256504 0.5618794 0.012617

$‘drug:therapy‘
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diff lwr upr p adj

anxifree:no.therapy-placebo:no.therapy 0.10000000 -0.539927728 0.7399277 0.9940083

joyzepam:no.therapy-placebo:no.therapy 1.16666667 0.526738939 1.8065944 0.0005667

placebo:CBT-placebo:no.therapy 0.30000000 -0.339927728 0.9399277 0.6280049

anxifree:CBT-placebo:no.therapy 0.73333333 0.093405606 1.3732611 0.0218746

joyzepam:CBT-placebo:no.therapy 1.20000000 0.560072272 1.8399277 0.0004380

joyzepam:no.therapy-anxifree:no.therapy 1.06666667 0.426738939 1.7065944 0.0012553

placebo:CBT-anxifree:no.therapy 0.20000000 -0.439927728 0.8399277 0.8917157

anxifree:CBT-anxifree:no.therapy 0.63333333 -0.006594394 1.2732611 0.0529812

joyzepam:CBT-anxifree:no.therapy 1.10000000 0.460072272 1.7399277 0.0009595

placebo:CBT-joyzepam:no.therapy -0.86666667 -1.506594394 -0.2267389 0.0067639

anxifree:CBT-joyzepam:no.therapy -0.43333333 -1.073261061 0.2065944 0.2750590

joyzepam:CBT-joyzepam:no.therapy 0.03333333 -0.606594394 0.6732611 0.9999703

anxifree:CBT-placebo:CBT 0.43333333 -0.206594394 1.0732611 0.2750590

joyzepam:CBT-placebo:CBT 0.90000000 0.260072272 1.5399277 0.0050693

joyzepam:CBT-anxifree:CBT 0.46666667 -0.173261061 1.1065944 0.2139229

It looks pretty similar to before, but with a lot more comparisons made.

16.9

The method of planned comparisons

Okay, I have a confession to make. I haven’t had time to write this section, but I think the method of
planned comparisons is important enough to deserve a quick discussion. In our discussions of multiple
comparisons, in the previous section and back in Chapter 14, I’ve been assuming that the tests you want
to run are genuinely post hoc. For instance, in our drugs example above, maybe you thought that the
drugs would all have different effects on mood (i.e., you hypothesised a main effect of drug), but you
didn’t have any specific hypothesis about how they would be different, nor did you have any real idea
about which pairwise comparisons would be worth looking at. If that is the case, then you really have to
resort to something like Tukey’s HSD to do your pairwise comparisons.

The situation is rather different, however, if you genuinely did have real, specific hypotheses about
which comparisons are of interest, and you never ever have any intention to look at any other comparisons
besides the ones that you specified ahead of time. When this is true, and if you honestly and rigourously
stick to your noble intentions to not run any other comparisons (even when the data look like they’re
showing you deliciously significant effects for stuff you didn’t have a hypothesis test for), then it doesn’t
really make a lot of sense to run something like Tukey’s HSD, because it makes corrections for a whole
bunch of comparisons that you never cared about and never had any intention of looking at. Under those
circumstances, you can safely run a (limited) number of hypothesis tests without making an adjustment
for multiple testing. This situation is known as the method of planned comparisons, and it is
sometimes used in clinical trials. In a later version of this book, I intend to talk a lot more about planned
comparisons, but I’m writing to a deadline here, in order to get the book available to serve as lecture
notes for the 2013 class, and so I haven’t been able to write this yet.
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16.10

Factorial ANOVA 3: unbalanced designs

Factorial ANOVA is a very handy thing to know about. It’s been one of the standard tools used to
analyse experimental data for many decades, and you’ll find that you can’t read more than two or three
papers in psychology without running into an ANOVA in there somewhere. However, there’s one huge
difference between the ANOVAs that you’ll see in a lot of real scientific articles and the ANOVA that
I’ve just described: in real life, we’re rarely lucky enough to have perfectly balanced designs. For one
reason or another, it’s typical to end up with more observations in some cells than in others. Or, to put
it another way, we have an unbalanced design.

Unbalanced designs need to be treated with a lot more care than balanced designs, and the statistical
theory that underpins them is a lot messier. It might be a consequence of this messiness, or it might be a
shortage of time, but my experience has been that undergraduate research methods classes in psychology
have a nasty tendency to ignore this issue completely. A lot of stats textbooks tend to gloss over it too.
The net result of this, I think, is that a lot of active researchers in the field don’t actually know that
there’s several different “types” of unbalanced ANOVAs, and they produce quite different answers. In
fact, reading the psychological literature, I’m kind of amazed at the fact that most people who report
the results of an unbalanced factorial ANOVA don’t actually give you enough details to reproduce the
analysis: I secretly suspect that most people don’t even realise that their statistical software package is
making a whole lot of substantive data analysis decisions on their behalf. It’s actually a little terrifying,
when you think about it. So, if you want to avoid handing control of your data analysis to stupid software,
read on...

16.10.1 The coffee data

As usual, it will help us to work with some data. The coffee.Rdata file contains a hypothetical data
set (the coffee data frame) that produces an unbalanced 3ˆ 2 ANOVA. Suppose we were interested in
finding out whether or not the tendency of people to babble when they have too much coffee is purely
an effect of the coffee itself, or whether there’s some effect of the milk and sugar that people add to the
coffee. Suppose we took 18 people, and gave them some coffee to drink. The amount of coffee / caffeine
was held constant, and we varied whether or not milk was added: so milk is a binary factor with two
levels, "yes" and "no". We also varied the kind of sugar involved. The coffee might contain "real" sugar,
or it might contain "fake" sugar (i.e., artificial sweetener), or it might contain "none" at all, so the sugar

variable is a three level factor. Our outcome variable is a continuous variable that presumably refers to
some psychologically sensible measure of the extent to which someone is “babbling”. The details don’t
really matter for our purpose. To get a sense of what the data look like, we use the some() function in
the car package. The some() function randomly picks a few of the observations in the data frame to print
out, which is often very handy:

> some( coffee )

milk sugar babble

4 yes real 5.6

5 yes real 4.9

7 yes none 3.8

8 yes none 3.7

12 yes fake 5.6

14 no real 6.1

15 no real 6.3

16 no none 5.5
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17 no none 5.0

18 yes fake 5.0

If we use the aggregate() function to quickly produce a table of means, we get a strong impression that
there are differences between the groups:

> aggregate( babble ~ milk + sugar, coffee, mean )

milk sugar babble

1 yes none 3.700

2 no none 5.550

3 yes fake 5.800

4 no fake 4.650

5 yes real 5.100

6 no real 5.875

This is especially true when we compare these means to the standard deviations for the babble variable,
which you can calculate using aggregate() in much the same way. Across groups, this standard deviation
varies from .14 to .71, which is fairly small relative to the differences in group means.16 So far, it’s looking
like a straightforward factorial ANOVA, just like we did earlier. The problem arises when we check to
see how many observations we have in each group:

> xtabs( ~ milk + sugar, coffee )

sugar

milk none fake real

yes 3 2 3

no 2 4 4

This violates one of our original assumptions, namely that the number of people in each group is the
same. We haven’t really discussed how to handle this situation.

16.10.2 “Standard ANOVA” does not exist for unbalanced designs

Unbalanced designs lead us to the somewhat unsettling discovery that there isn’t really any one thing
that we might refer to as a standard ANOVA. In fact, it turns out that there are three fundamentally
different ways17 in which you might want to run an ANOVA in an unbalanced design. If you have
a balanced design, all three versions produce identical results, with the sums of squares, F -values etc
all conforming to the formulas that I gave at the start of the chapter. However, when your design is
unbalanced they don’t give the same answers. Furthermore, they are not all equally appropriate to every
situation: some methods will be more appropriate to your situation than others. Given all this, it’s
important to understand what the different types of ANOVA are and how they differ from one another.

The first kind of ANOVA is conventionally referred to as Type I sum of squares. I’m sure you
can guess what they other two are called. The “sum of squares” part of the name was introduced by

16This discrepancy in standard deviations might (and should) make you wonder if we have a violation of the homogeneity
of variance assumption. I’ll leave it as an exercise for the reader to check this using the leveneTest() function.

17Actually, this is a bit of a lie. ANOVAs can vary in other ways besides the ones I’ve discussed in this book. For
instance, I’ve completely ignored the difference between fixed-effect models, in which the levels of a factor are “fixed” by
the experimenter or the world, and random-effect models, in which the levels are random samples from a larger population
of possible levels (this book only covers fixed-effect models). Don’t make the mistake of thinking that this book – or any
other one – will tell you “everything you need to know” about statistics, any more than a single book could possibly tell
you everything you need to know about psychology, physics or philosophy. Life is too complicated for that to ever be true.
This isn’t a cause for despair, though. Most researchers get by with a basic working knowledge of ANOVA that doesn’t go
any further than this book does. I just want you to keep in mind that this book is only the beginning of a very long story,
not the whole story.
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the SAS statistical software package, and has become standard nomenclature, but it’s a bit misleading in
some ways. I think the logic for referring to them as different types of sum of squares is that, when you
look at the ANOVA tables that they produce, the key difference in the numbers is the SS values. The
degrees of freedom don’t change, the MS values are still defined as SS divided by df, etc. However, what
the terminology gets wrong is that it hides the reason why the SS values are different from one another.
To that end, it’s a lot more helpful to think of the three different kinds of ANOVA as three different
hypothesis testing strategies. These different strategies lead to different SS values, to be sure, but it’s
the strategy that is the important thing here, not the SS values themselves. Recall from Section 16.5
and 16.6 that any particular F -test is best thought of as a comparison between two linear models. So
when you’re looking at an ANOVA table, it helps to remember that each of those F -tests corresponds to
a pair of models that are being compared. Of course, this leads naturally to the question of which pair of
models is being compared. This is the fundamental difference between ANOVA Types I, II and III: each
one corresponds to a different way of choosing the model pairs for the tests.

16.10.3 Type I sum of squares

The Type I method is sometimes referred to as the “sequential” sum of squares, because it involves
a process of adding terms to the model one at a time. Consider the coffee data, for instance. Suppose
we want to run the full 3 ˆ 2 factorial ANOVA, including interaction terms. The full model, as we’ve
discussed earlier, is expressed by the R formula babble ~ sugar + milk + sugar:milk, though we often
shorten it by using the sugar * milk notation. The Type I strategy builds this model up sequentially,
starting from the simplest possible model and gradually adding terms.

The simplest possible model for the data would be one in which neither milk nor sugar is assumed
to have any effect on babbling. The only term that would be included in such a model is the intercept,
and in R formula notation we would write it as babble ~ 1. This is our initial null hypothesis. The
next simplest model for the data would be one in which only one of the two main effects is included.
In the coffee data, there are two different possible choices here, because we could choose to add milk
first or to add sugar first (pardon the pun). The order actually turns out to matter, as we’ll see later,
but for now let’s just make a choice arbitrarily, and pick sugar. So the second model in our sequence
of models is babble ~ sugar, and it forms the alternative hypothesis for our first test. We now have our
first hypothesis test:

Null model: babble ~ 1

Alternative model: babble ~ sugar

This comparison forms our hypothesis test of the main effect of sugar. The next step in our model building
exercise it to add the other main effect term, so the next model in our sequence is babble ~ sugar + milk.
The second hypothesis test is then formed by comparing the following pair of models:

Null model: babble ~ sugar

Alternative model: babble ~ sugar + milk

This comparison forms our hypothesis test of the main effect of milk. In one sense, this approach is very
elegant: the alternative hypothesis from the first test forms the null hypothesis for the second one. It is
in this sense that the Type I method is strictly sequential. Every test builds directly on the results of
the last one. However, in another sense it’s very inelegant, because there’s a strong asymmetry between
the two tests. The test of the main effect of sugar (the first test) completely ignores milk, whereas the
test of the main effect of milk (the second test) does take sugar into account. In any case, the fourth
model in our sequence is now the full model, babble ~ sugar + milk + sugar:milk, and the corresponding
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hypothesis test is

Null model: babble ~ sugar + milk

Alternative model: babble ~ sugar + milk + sugar:milk

Type I sum of squares is the default hypothesis testing method used by the anova() function, so it’s
easy to produce the results from a Type I analysis. We just type in the same commands that we always
did. Since we’ve now reached the point that we don’t need to hide the fact that ANOVA and regression
are both linear models, I’ll use the lm() function to run the analyses:

> mod <- lm( babble ~ sugar + milk + sugar:milk, coffee )

> anova( mod )

Analysis of Variance Table

Response: babble

Df Sum Sq Mean Sq F value Pr(>F)

sugar 2 3.5575 1.77876 6.7495 0.010863 *

milk 1 0.9561 0.95611 3.6279 0.081061 .

sugar:milk 2 5.9439 2.97193 11.2769 0.001754 **

Residuals 12 3.1625 0.26354

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Leaving aside for one moment the question of how this result should be interpreted, let’s take note of the
fact that our three p-values are .0109, .0811 and .0018 respectively. Next, let’s see if we can replicate the
analysis using tools that we’re a little more familiar with. First, let’s fit all four models:

> mod.1 <- lm( babble ~ 1, coffee )

> mod.2 <- lm( babble ~ sugar, coffee )

> mod.3 <- lm( babble ~ sugar + milk, coffee )

> mod.4 <- lm( babble ~ sugar + milk + sugar:milk, coffee )

To run the first hypothesis test comparing mod.1 to mod.2 we can use the command anova(mod.1, mod.2)

in much the same way that we did in Section 16.5. Similarly, we can use the commands anova(mod.2,

mod.3) and anova(mod.3, mod.4) and to run the second and third hypothesis tests. However, rather than
run each of those commands separately, we can enter the full sequence of models like this:

> anova( mod.1, mod.2, mod.3, mod.4 )

Analysis of Variance Table

Model 1: babble ~ 1

Model 2: babble ~ sugar

Model 3: babble ~ sugar + milk

Model 4: babble ~ sugar + milk + sugar:milk

Res.Df RSS Df Sum of Sq F Pr(>F)

1 17 13.6200

2 15 10.0625 2 3.5575 6.7495 0.010863 *

3 14 9.1064 1 0.9561 3.6279 0.081061 .

4 12 3.1625 2 5.9439 11.2769 0.001754 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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This output is rather more verbose than the last one, but it’s telling essentially the same story.18

The big problem with using Type I sum of squares is the fact that it really does depend on the order
in which you enter the variables. Yet, in many situations the researcher has no reason to prefer one
ordering over another. This is presumably the case for our milk and sugar problem. Should we add milk
first, or sugar first? It feels exactly as arbitrary as a data analysis question as it does as a coffee-making
question. There may in fact be some people with firm opinions about ordering, but it’s hard to imagine
a principled answer to the question. Yet, look what happens when we change the ordering:

> mod <- lm( babble ~ milk + sugar + sugar:milk, coffee )

> anova( mod )

Analysis of Variance Table

Response: babble

Df Sum Sq Mean Sq F value Pr(>F)

milk 1 1.4440 1.44400 5.4792 0.037333 *

sugar 2 3.0696 1.53482 5.8238 0.017075 *

milk:sugar 2 5.9439 2.97193 11.2769 0.001754 **

Residuals 12 3.1625 0.26354

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The p-values for both main effect terms have changed, and fairly dramatically. Among other things, the
effect of milk has become significant (though one should avoid drawing any strong conclusions about this,
as I’ve mentioned previously). Which of these two ANOVAs should one report? It’s not immediately
obvious.

When you look at the hypothesis tests that are used to define the “first” main effect and the “second”
one, it’s clear that they’re qualitatively different from one another. In our initial example, we saw that
the test for the main effect of sugar completely ignores milk, whereas the test of the main effect of milk

does take sugar into account. As such, the Type I testing strategy really does treat the first main effect
as if it had a kind of theoretical primacy over the second one. In my experience there is very rarely if ever
any theoretically primacy of this kind that would justify treating any two main effects asymmetrically.

The consequence of all this is that Type I tests are very rarely of much interest, and so we should
move on to discuss Type II tests and Type III tests. However, for the sake of completeness – on the off
chance that you ever find yourself needing to run Type I tests – I’ll comment briefly on how R determines
the ordering of terms in a Type I test. The key principle in Type I sum of squares is that the hypothesis
testing be sequential, with terms added one at a time. However, it does also imply that main effects be
added first (e.g., factors A, B, C etc), followed by first order interaction terms (e.g., terms like A:B and B:C),
then second order interactions (e.g., A:B:C) and so on. Within each “block” you can specify whatever
order you like. So, for instance, if we specified our model using a command like this,

> mod <- lm( outcome ~ A + B + C + B:C + A:B + A:C )

and then used anova(mod) to produce sequential hypothesis tests, what we’d see is that the main effect
terms would be entered A then B and then C, but then the interactions would be entered in the order B:C
first, then A:B and then finally A:C. Reordering the terms within each group will change the ordering, as
we saw earlier. However, changing the order of terms across blocks has no effect. For instance, if we tried
to move the interaction term B:C to the front, like this,

18The one thing that might seem a little opaque to some people is why the residual degrees of freedom in this output
look different from one another (i.e., ranging from 12 to 17) whereas in the original one the residual degrees of freedom is
fixed at 12. It’s actually the case that R uses a residual df of 12 in all cases (that’s why the p values are the same in the
two outputs, and it’s enough to verify that pnorm(6.7495, 2,12, lower.tail=FALSE)) gives the correct answer of p “ .010863,
for instance, whereas pnorm(6.7495, 2,15, lower.tail=FALSE)) would have given a p-value of about .00812. It’s the residual
degrees of freedom in the full model (i.e., the last one) that matters here.
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> mod <- lm( outcome ~ B:C + A + B + C + A:B + A:C )

it would have no effect. R would still enter the terms in the same order as last time. If for some reason
you really, really need an interaction term to be entered first, then you have to do it the long way, creating
each model manually using a separate lm() command and then using a command like anova(mod.1, mod.2,

mod.3, mod.4) to force R to enter them in the order that you want.

16.10.4 Type III sum of squares

Having just finished talking about Type I tests, you might think that the natural thing to do next
would be to talk about Type II tests. However, I think it’s actually a bit more natural to discuss Type
III tests (which are simple) before talking about Type II tests (which are trickier). The basic idea behind
Type III tests is extremely simple: regardless of which term you’re trying to evaluate, run the F -test
in which the alternative hypothesis corresponds to the full ANOVA model as specified by the user, and
the null model just deletes that one term that you’re testing. For instance, in the coffee example, in
which our full model was babble ~ sugar + milk + sugar:milk, the test for a main effect of sugar would
correspond to a comparison between the following two models:

Null model: babble ~ milk + sugar:milk

Alternative model: babble ~ sugar + milk + sugar:milk

Similarly the main effect of milk is evaluated by testing the full model against a null model that removes
the milk term, like so:

Null model: babble ~ sugar + sugar:milk

Alternative model: babble ~ sugar + milk + sugar:milk

Finally, the interaction term sugar:milk is evaluated in exactly the same way. Once again, we test the
full model against a null model that removes the sugar:milk interaction term, like so:

Null model: babble ~ sugar + milk

Alternative model: babble ~ sugar + milk + sugar:milk

The basic idea generalises to higher order ANOVAs. For instance, suppose that we were trying to run an
ANOVA with three factors, A, B and C, and we wanted to consider all possible main effects and all possible
interactions, including the three way interaction A:B:C. The table below shows you what the Type III
tests look like for this situation:

Term being tested is Null model is outcome ~ ... Alternative model is outcome ~ ...

A B + C + A:B + A:C + B:C + A:B:C A + B + C + A:B + A:C + B:C + A:B:C

B A + C + A:B + A:C + B:C + A:B:C A + B + C + A:B + A:C + B:C + A:B:C

C A + B + A:B + A:C + B:C + A:B:C A + B + C + A:B + A:C + B:C + A:B:C

A:B A + B + C + A:C + B:C + A:B:C A + B + C + A:B + A:C + B:C + A:B:C

A:C A + B + C + A:B + B:C + A:B:C A + B + C + A:B + A:C + B:C + A:B:C

B:C A + B + C + A:B + A:C + A:B:C A + B + C + A:B + A:C + B:C + A:B:C

A:B:C A + B + C + A:B + A:C + B:C A + B + C + A:B + A:C + B:C + A:B:C

As ugly as that table looks, it’s pretty simple. In all cases, the alternative hypothesis corresponds to
the full model, which contains three main effect terms (e.g. A), three first order interactions (e.g. A:B)
and one second order interaction (i.e., A:B:C). The null model always contains 6 of thes 7 terms: and the
missing one is the one whose significance we’re trying to test.

At first pass, Type III tests seem like a nice idea. Firstly, we’ve removed the asymmetry that caused
us to have problems when running Type I tests. And because we’re now treating all terms the same way,
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the results of the hypothesis tests do not depend on the order in which we specify them. This is definitely
a good thing. However, there is a big problem when interpreting the results of the tests, especially for
main effect terms. Consider the coffee data. Suppose it turns out that the main effect of milk is not
significant according to the Type III tests. What this is telling us is that babble ~ sugar + sugar:milk is
a better model for the data than the full model. But what does that even mean? If the interaction term
sugar:milk was also non-significant, we’d be tempted to conclude that the data are telling us that the
only thing that matters is sugar. But suppose we have a significant interaction term, but a non-significant
main effect of milk. In this case, are we to assume that there really is an “effect of sugar”, an “interaction
between milk and sugar”, but no “effect of milk”? That seems crazy. The right answer simply must
be that it’s meaningless19 to talk about the main effect if the interaction is significant. In general, this
seems to be what most statisticians advise us to do, and I think that’s the right advice. But if it really
is meaningless to talk about non-significant main effects in the presence of a significant interaction, then
it’s not at all obvious why Type III tests should allow the null hypothesis to rely on a model that includes
the interaction but omits one of the main effects that make it up. When characterised in this fashion,
the null hypotheses really don’t make much sense at all.

Later on, we’ll see that Type III tests can be redeemed in some contexts, but I’d better show you how
to actually compute a Type III ANOVA first. The anova() function in R does not directly support Type
II tests or Type III tests. Technically, you can do it by creating the various models that form the null
and alternative hypotheses for each test, and then using anova() to compare the models to one another.
I outlined the gist of how that would be done when talking about Type I tests, but speaking from first
hand experience20 I can tell you that it’s very tedious. In practice, the anova() function is only used to
produce Type I tests or to compare specific models of particular interest (see Section 16.5). If you want
Type II or Type III tests you need to use the Anova() function in the car package. It’s pretty easy to use,
since there’s a type argument that you specify. So, to return to our coffee example, our Type III tests
are run as follows:

> mod <- lm( babble ~ sugar * milk, coffee )

> Anova( mod, type=3 )

Anova Table (Type III tests)

Response: babble

Sum Sq Df F value Pr(>F)

(Intercept) 41.070 1 155.839 3.11e-08 ***

sugar 5.880 2 11.156 0.001830 **

milk 4.107 1 15.584 0.001936 **

sugar:milk 5.944 2 11.277 0.001754 **

Residuals 3.162 12

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

As you can see, I got lazy this time and used sugar * milk as a shorthand way of referring to sugar +

milk + sugar:milk. The important point here is that this is just a regular ANOVA table, and we can see
that our Type III tests are significant for all terms, even the intercept.

Except, as usual, it’s not that simple. One of the perverse features of the Type III testing strategy is
that the results turn out to depend on the contrasts that you use to encode your factors (see Section 16.7
if you’ve forgotten what the different types of contrasts are). The results that I presented in the ANOVA

19Or, at the very least, rarely of interest.
20Yes, I’m actually a big enough nerd that I’ve written my own functions implementing Type II tests and Type III tests.

I only did it to convince myself that I knew how the different Types of test worked, but it did turn out to be a handy
exercise: the etaSquared() function in the lsr package relies on it. There’s actually even an argument in the etaSquared()

function called anova. By default, anova=FALSE and the function just prints out the effect sizes. However, if you set anova=TRUE

it will spit out the full ANOVA table as well. This works for Types I, II and III. Just set the types argument to select which
type of test you want.
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table above are based on the R default, which is treatment contrasts; and as we’ll see later, this is usually
a very poor choice if you want to run Type III tests. So let’s see what happens if switch to Helmert
contrasts:

> my.contrasts <- list( milk = "contr.Helmert", sugar = "contr.Helmert" )

> mod.H <- lm( babble ~ sugar * milk, coffee, contrasts = my.contrasts )

> Anova( mod.H, type=3 )

Anova Table (Type III tests)

Response: babble

Sum Sq Df F value Pr(>F)

(Intercept) 434.29 1 1647.8882 3.231e-14 ***

sugar 2.13 2 4.0446 0.045426 *

milk 1.00 1 3.8102 0.074672 .

sugar:milk 5.94 2 11.2769 0.001754 **

Residuals 3.16 12

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Oh, that’s not good at all. In the case of milk in particular, the p-value has changed from .002 to .07.
This is a pretty substantial difference, and hopefully it gives you a sense of how important it is that you
take care when using Type III tests.

Okay, so if the p-values that come out of Type III analyses are so sensitive to the choice of contrasts,
does that mean that Type III tests are essentially arbitrary and not to be trusted? To some extent
that’s true, and when we turn to a discussion of Type II tests we’ll see that Type II analyses avoid this
arbitrariness entirely, but I think that’s too strong a conclusion. Firstly, it’s important to recognise that
some choices of contrasts will always produce the same answers. Of particular importance is the fact that
if the columns of our contrast matrix are all constrained to sum to zero, then the Type III analysis will
always give the same answers. This means that you’ll get the same answers if you use contr.Helmert or
contr.sum or contr.poly, but different answers for contr.treatment or contr.SAS.

> random.contrasts <- matrix( rnorm(6), 3, 2 ) # create a random matrix

> random.contrasts[, 1] <- random.contrasts[, 1] - mean( random.contrasts[, 1] ) # contrast 1 sums to 0

> random.contrasts[, 2] <- random.contrasts[, 2] - mean( random.contrasts[, 2] ) # contrast 2 sums to 0

> random.contrasts # print it to check that we really have an arbitrary contrast matrix...

[,1] [,2]

[1,] 0.38898807 -0.78454935

[2,] -0.04337123 0.70004953

[3,] -0.34561683 0.08449982

> contrasts( coffee$sugar ) <- random.contrasts # random contrasts for sugar

> contrasts( coffee$milk ) <- contr.Helmert(2) # Helmert contrasts for the milk factor

> mod.R <- lm( babble ~ sugar * milk, coffee ) # R will use the contrasts that we assigned

> Anova( mod.R, type = 3 )

Anova Table (Type III tests)

Response: babble

Sum Sq Df F value Pr(>F)

(Intercept) 434.29 1 1647.8882 3.231e-14 ***

sugar 2.13 2 4.0446 0.045426 *

milk 1.00 1 3.8102 0.074672 .

sugar:milk 5.94 2 11.2769 0.001754 **

Residuals 3.16 12
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---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Yep, same answers.

16.10.5 Type II sum of squares

Okay, so we’ve seen Type I and III tests now, and both are pretty straightforward: Type I tests are
performed by gradually adding terms one at a time, whereas Type III tests are performed by taking
the full model and looking to see what happens when you remove each term. However, both have some
serious flaws: Type I tests are dependent on the order in which you enter the terms, and Type III tests
are dependent on how you code up your contrasts. Because of these flaws, neither one is easy to interpret.
Type II tests are a little harder to describe, but they avoid both of these problems, and as a result they
are a little easier to interpret.

Type II tests are broadly similar to Type III tests: start with a “full” model, and test a particular
term by deleting it from that model. However, Type II tests are based on the marginality principle
which states that you should not omit a lower order term from your model if there are any higher order
ones that depend on it. So, for instance, if your model contains the interaction A:B (a 2nd order term),
then it really ought to contain the main effects A and B (1st order terms). Similarly, if it contains a
three way interaction term A:B:C, then the model must also include the main effects A, B and C as well as
the simpler interactions A:B, A:C and B:C. Type III tests routinely violate the marginality principle. For
instance, consider the test of the main effect of A in the context of a three-way ANOVA that includes all
possible interaction terms. According to Type III tests, our null and alternative models are:

Null model: outcome ~ B + C + A:B + A:C + B:C + A:B:C

Alternative model: outcome ~ A + B + C + A:B + A:C + B:C + A:B:C

Notice that the null hypothesis omits A, but includes A:B, A:C and A:B:C as part of the model. This,
according to the Type II tests, is not a good choice of null hypothesis. What we should do instead, if we
want to test the null hypothesis that A is not relevant to our outcome, is to specify the null hypothesis
that is the most complicated model that does not rely on A in any form, even as an interaction. The
alternative hypothesis corresponds to this null model plus a main effect term of A. This is a lot closer to
what most people would intuitively think of as a “main effect of A”, and it yields the following as our
Type II test of the main effect of A.21

Null model: outcome ~ B + C + B:C

Alternative model: outcome ~ A + B + C + B:C

Anyway, just to give you a sense of how the Type II tests play out, here’s the full table of tests that
would be applied in a three-way factorial ANOVA:

21Note, of course, that this does depend on the model that the user specified. If original ANOVA model doesn’t contain
an interaction term for B:C, then obviously it won’t appear in either the null or the alternative. But that’s true for Types
I, II and III. They never include any terms that you didn’t include, but they make different choices about how to construct
tests for the ones that you did include.
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Term being tested is Null model is outcome ~ ... Alternative model is outcome ~ ...

A B + C + B:C A + B + C + B:C

B A + C + A:C A + B + C + A:C

C A + B + A:B A + B + C + A:B

A:B A + B + C + A:C + B:C A + B + C + A:B + A:C + B:C

A:C A + B + C + A:B + B:C A + B + C + A:B + A:C + B:C

B:C A + B + C + A:B + A:C A + B + C + A:B + A:C + B:C

A:B:C A + B + C + A:B + A:C + B:C A + B + C + A:B + A:C + B:C + A:B:C

In the context of the two way ANOVA that we’ve been using in the coffee data, the hypothesis tests are
even simpler. The main effect of sugar corresponds to an F -test comparing these two models:

Null model: babble ~ milk

Alternative model: babble ~ sugar + milk

The test for the main effect of milk is

Null model: babble ~ sugar

Alternative model: babble ~ sugar + milk

Finally, the test for the interaction sugar:milk is:

Null model: babble ~ sugar + milk

Alternative model: babble ~ sugar + milk + sugar:milk

Running the tests are again straightforward. We use the Anova() function, specifying type=2:

> mod <- lm( babble ~ sugar*milk, coffee )

> Anova( mod, type = 2 )

Anova Table (Type II tests)

Response: babble

Sum Sq Df F value Pr(>F)

sugar 3.0696 2 5.8238 0.017075 *

milk 0.9561 1 3.6279 0.081061 .

sugar:milk 5.9439 2 11.2769 0.001754 **

Residuals 3.1625 12

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Type II tests have some clear advantages over Type I and Type III tests. They don’t depend on the
order in which you specify factors (unlike Type I), and they don’t depend on the contrasts that you use
to specify your factors (unlike Type III). And although opinions may differ on this last point, and it will
definitely depend on what you’re trying to do with your data, I do think that the hypothesis tests that
they specify are more likely to correspond to something that you actually care about. As a consequence,
I find that it’s usually easier to interpret the results of a Type II test than the results of a Type I or Type
III test. For this reason, my tentative advice is that, if you can’t think of any obvious model comparisons
that directly map onto your research questions but you still want to run an ANOVA in an unbalanced
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design, Type II tests are probably a better choice than Type I or Type III.22

16.10.6 Effect sizes (and non-additive sums of squares)

The etaSquared() function in the lsr package computes η2 and partial η2 values for unbalanced designs
and for different Types of tests. It’s pretty straightforward. All you have to do is indicate which type of
tests you’re doing,

> etaSquared( mod, type=2 )

eta.sq eta.sq.part

sugar 0.22537682 0.4925493

milk 0.07019886 0.2321436

sugar:milk 0.43640732 0.6527155

and out pops the η2 and partial η2 values, as requested. However, when you’ve got an unbalanced design,
there’s a bit of extra complexity involved. To see why, let’s expand the output from the etaSquared()

function so that it displays the full ANOVA table:

> es <- etaSquared( mod, type=2, anova=TRUE )

> es

eta.sq eta.sq.part SS df MS F p

sugar 0.22537682 0.4925493 3.0696323 2 1.5348161 5.823808 0.017075099

milk 0.07019886 0.2321436 0.9561085 1 0.9561085 3.627921 0.081060698

sugar:milk 0.43640732 0.6527155 5.9438677 2 2.9719339 11.276903 0.001754333

Residuals 0.23219530 NA 3.1625000 12 0.2635417 NA NA

Okay, if you remember back to our very early discussions of ANOVA, one of the key ideas behind the
sums of squares calculations is that if we add up all the SS terms associated with the effects in the model,
and add that to the residual SS, they’re supposed to add up to the total sum of squares. And, on top
of that, the whole idea behind η2 is that – because you’re dividing one of the SS terms by the total SS
value – is that an η2 value can be interpreted as the proportion of variance accounted for by a particular
term.

Now take a look at the output above. Because I’ve included the η2 value associated with the residuals
(i.e., proportion of variance in the outcome attributed to the residuals, rather than to one of the effects),
you’d expect all the η2 values to sum to 1. Because, the whole idea here was that the variance in the
outcome variable can be divided up into the variability attributable to the model, and the variability in
the residuals. Right? Right? And yet when we add up the η2 values for our model...

> sum( es[,"eta.sq"] )

[1] 0.9641783

. . . we discover that for Type II and Type III tests they generally don’t sum to 1. Some of the variability
has gone “missing”. It’s not being attributed to the model, and it’s not being attributed to the residuals
either. What’s going on here?

22I find it amusing to note that the default in R is Type I and the default in SPSS is Type III (with Helmert contrasts).
Neither of these appeals to me all that much. Relatedly, I find it depressing that almost nobody in the psychological
literature ever bothers to report which Type of tests they ran, much less the order of variables (for Type I) or the contrasts
used (for Type III). Often they don’t report what software they used either. The only way I can ever make any sense of
what people typically report is to try to guess from auxiliary cues which software they were using, and to assume that they
never changed the default settings. Please don’t do this... now that you know about these issues, make sure you indicate
what software you used, and if you’re reporting ANOVA results for unbalanced data, then specify what Type of tests you
ran, specify order information if you’ve done Type I tests and specify contrasts if you’ve done Type III tests. Or, even
better, do hypotheses tests that correspond to things you really care about, and then report those!
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Before giving you the answer, I want to push this idea a little further. From a mathematical perspec-
tive, it’s easy enough to see that the missing variance is a consequence of the fact that in Types II and
III, the individual SS values are not obliged to the total sum of squares, and will only do so if you have
balanced data. I’ll explain why this happens and what it means in a second, but first let’s verify that
this is the case using the ANOVA table. First, we can calculate the total sum of squares directly from
the raw data:

> ss.tot <- sum( (coffee$babble - mean(coffee$babble))^2 )

> ss.tot

[1] 13.62

Next, we can read off all the SS values from one of our Type I ANOVA tables, and add them up. As you
can see, this gives us the same answer, just like it’s supposed to:

> type.I.sum <- 3.5575 + 0.9561 + 5.9439 + 3.1625

> type.I.sum

[1] 13.62

However, when we do the same thing for the Type II ANOVA table, it turns out that the SS values in
the table add up to slightly less than the total SS value:

> type.II.sum <- 0.9561 + 3.0696 + 5.9439 + 3.1625

> type.II.sum

[1] 13.1321

So, once again, we can see that there’s a little bit of variance that has “disappeared” somewhere.

Okay, time to explain what’s happened. The reason why this happens is that, when you have un-
balanced designs, your factors become correlated with one another, and it becomes difficult to tell the
difference between the effect of Factor A and the effect of Factor B. In the extreme case, suppose that
we’d run a 2ˆ 2 design in which the number of participants in each group had been as follows:

sugar no sugar
milk 100 0
no milk 0 100

Here we have a spectacularly unbalanced design: 100 people have milk and sugar, 100 people have no
milk and no sugar, and that’s all. There are 0 people with milk and no sugar, and 0 people with sugar but
no milk. Now suppose that, when we collected the data, it turned out there is a large (and statistically
significant) difference between the “milk and sugar” group and the “no-milk and no-sugar” group. Is this
a main effect of sugar? A main effect of milk? Or an interaction? It’s impossible to tell, because the
presence of sugar has a perfect association with the presence of milk. Now suppose the design had been
a little more balanced:

sugar no sugar
milk 100 5
no milk 5 100

This time around, it’s technically possible to distinguish between the effect of milk and the effect of sugar,
because we have a few people that have one but not the other. However, it will still be pretty difficult
to do so, because the association between sugar and milk is still extremely strong, and there are so few
observations in two of the groups. Again, we’re very likely to be in the situation where we know that
the predictor variables (milk and sugar) are related to the outcome (babbling), but we don’t know if the
nature of that relationship is a main effect of one predictor, or the other predictor or the interaction.
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This uncertainty is the reason for the missing variance. The “missing” variance corresponds to vari-
ation in the outcome variable that is clearly attributable to the predictors, but we don’t know which
of the effects in the model is responsible. When you calculate Type I sum of squares, no variance ever
goes missing: the sequentiual nature of Type I sum of squares means that the ANOVA automatically
attributes this variance to whichever effects are entered first. However, the Type II and Type III tests are
more conservative. Variance that cannot be clearly attributed to a specific effect doesn’t get attributed
to any of them, and it goes missing.

16.11

Summary

• Factorial ANOVA with balanced designs, without interactions (Section 16.1) and with interactions
included (Section 16.2)

• Effect size, estimated means, and confidence intervals in a factorial ANOVA (Section 16.3)

• Understanding the linear model underling ANOVA (Sections 16.5, 16.6 and 16.7)

• Post hoc testing using Tukey’s HSD (Section 16.8), and a brief commentary on planned comparisons
(Section 16.9)

• Factorial ANOVA with unbalanced designs (Section 16.10)
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17. Epilogue

It feels somewhat strange to be writing this chapter, and more than a little inappropriate. An epilogue
is what you write when a book is finished, and this book really isn’t finished. There are a lot of things
still missing from this book. It doesn’t have an index yet. The chapter “summaries” are usually no more
than a list of section titles. A lot of references are missing. There are no “do it yourself” exercises. And
in general, I feel that there a lot of things that are wrong with the presentation, organisation and content
of this book. Given all that, I don’t want to try to write a “proper” epilogue. I haven’t finished writing
the substantive content yet, so it doesn’t make sense to try to bring it all together. But this version of
the book is going to go online for students to use, and you will be able to purchase a hard copy too, so I
want to give it at least a veneer of closure. So let’s give it a go, shall we?

17.1

The undiscovered statistics

First, I’m going to talk a bit about some of the content that I wish I’d had the chance to cram into
this version of the book, just so that you can get a sense of what other ideas are out there in the world
of statistics. I think this would be important even if this book were getting close to a final product:
one thing that students often fail to realise is that their introductory statistics classes are just that: an
introduction. If you want to go out into the wider world and do real data analysis, you have to learn
a whole lot of new tools that extend the content of your undergraduate lectures in all sorts of different
ways. Don’t assume that something can’t be done just because it wasn’t covered in undergrad. Don’t
assume that something is the right thing to do just because it was covered in an undergrad class. To stop
you from falling victim to that trap, I think it’s useful to give a bit of an overview of some of the other
ideas out there.

17.1.1 Omissions within the topics covered

Even within the topics that I have covered in the book, there are a lot of omissions that I’d like to
redress in future version of the book. Just sticking to things that are purely about statistics (rather than
things associated with R), the following is a representative but not exhaustive list of topics that I’d like
to expand on in later versions:

• Other types of correlations. In Chapter 5 I talked about two types of correlation: Pearson and
Spearman. Both of these methods of assessing correlation are applicable to the case where you
have two continuous variables and want to assess the relationship between them. What about the
case where your variables are both nominal scale? Or when one is nominal scale and the other is
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continuous? There are actually methods for computing correlations in such cases (e.g., polychoric
correlation), but I just haven’t had time to write about them yet.

• More detail on effect sizes. In general, I think the treatment of effect sizes throughout the book
is a little more cursory than it should be. In almost every instance, I’ve tended just to pick one
measure of effect size (usually the most popular one) and describe that. However, for almost all
tests and models there are multiple ways of thinking about effect size, and I’d like to go into more
detail in the future.

• Dealing with violated assumptions. In a number of places in the book I’ve talked about some
things you can do when you find that the assumptions of your test (or model) are violated, but I
think that I ought to say more about this. In particular, I think it would have been nice to talk in
a lot more detail about how you can tranform variables to fix problems. I talked a bit about this
in Sections 7.2, 7.3 and 15.9.4, but the discussion isn’t detailed enough I think.

• Interaction terms for regression. In Chapter 16 I talked about the fact that you can have
interaction terms in an ANOVA, and I also pointed out that ANOVA can be interpreted as a kind
of linear regression model. Yet, when talking about regression in Chapter 15 I made not mention
of interactions at all. However, there’s nothing stopping you from including interaction terms in a
regression model. It’s just a little more complicated to figure out what an “interaction” actually
means when you’re talking about the interaction between two continuous predictors, and it can be
done in more than one way. Even so, I would have liked to talk a little about this.

• Method of planned comparison. As I mentioned this in Chapter 16, it’s not always appropriate
to be using post hoc correction like Tukey’s HSD when doing an ANOVA, especially when you had
a very clear (and limited) set of comparisons that you cared about ahead of time. I would like to
talk more about this in a future version of book.

• Multiple comparison methods. Even within the context of talking about post hoc tests and
multiple comparisons, I would have liked to talk about the methods in more detail, and talk about
what other methods exist besides the few options I mentioned.

17.1.2 Statistical models missing from the book

Statistics is a huge field. The core tools that I’ve described in this book (chi-square tests, t-tests, ANOVA
and regression) are basic tools that are widely used in everyday data analysis, and they form the core of
most introductory stats books. However, there are a lot of other tools out there. There are so very many
data analysis situations that these tools don’t cover, and in future versions of this book I want to talk
about them. To give you a sense of just how much more there is, and how much more work I want to
do to finish this thing, the following is a list of statistical modelling tools that I would have liked to talk
about. Some of these will definitely make it into future versions of the book.

• Analysis of covariance. In Chapter 16 I spent a bit of time discussing the connection between
ANOVA and regression, pointing out that any ANOVA model can be recast as a kind of regression
model. More generally, both are examples of linear models, and it’s quite possible to consider linear
models that are more general than either. The classic example of this is “analysis of covariance”
(ANCOVA), and it refers to the situation where some of your predictors are continuous (like in a
regression model) and others are categorical (like in an ANOVA).

• Nonlinear regression. When discussing regression in Chapter 15, we saw that regression assume
that the relationship between predictors and outcomes is linear. One the other hand, when we
talked about the simpler problem of correlation in Chapter 5, we saw that there exist tools (e.g.,
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Spearman correlations) that are able to assess non-linear relationships between variables. There
are a number of tools in statistics that can be used to do non-linear regression. For instance,
some non-linear regression models assume that the relationship between predictors and outcomes
is monotonic (e.g., isotonic regression), while others assume that it is smooth but not necessarily
monotonic (e.g., Lowess regression), while others assume that the relationship is of a known form
that happens to be nonlinear (e.g., polynomial regression).

• Logistic regression. Yet another variation on regression occurs when the outcome variable is
binary valued, but the predictors are continuous. For instance, suppose you’re investigating social
media, and you want to know if it’s possible to predict whether or not someone is on Twitter as
a function of their income, their age, and a range of other variables. This is basically a regression
model, but you can’t use regular linear regression because the outcome variable is binary (you’re
either on Twitter or you’re not): because the outcome variable is binary, there’s no way that the
residuals could possibly be normally distributed. There are a number of tools that statisticians can
apply to this situation, the most prominent of which is logistic regression.

• The General Linear Model (GLM). The GLM is actually a family of models that includes
logistic regression, linear regression, (some) nonlinear regression, ANOVA and many others. The
basic idea in the GLM is essentially the same idea that underpins linear models, but it allows for
the idea that your data might not be normally distributed, and allows for nonlinear relationships
between predictors and outcomes. There are a lot of very handy analyses that you can run that
fall within the GLM, so it’s a very useful thing to know about.

• Survival analysis. In Chapter 2 I talked about “differential attrition”, the tendency for people
to leave the study in a non-random fashion. Back then, I was talking about it as a potential
methodological concern, but there are a lot of situations in which differential attrition is actually
the thing you’re interested in. Suppose, for instance, you’re interested in finding out how long
people play different kinds of computer games in a single session. Do people tend to play RTS (real
time strategy) games for longer stretches than FPS (first person shooter) games? You might design
your study like this. People come into the lab, and they can play for as long or as little as they like.
Once they’re finished, you record the time they spent playing. However, due to ethical restrictions,
let’s suppose that you cannot allow them to keep playing longer than two hours. A lot of people
will stop playing before the two hour limit, so you know exactly how long they played. But some
people will run into the two hour limit, and so you don’t know how long they would have kept
playing if you’d been able to continue the study. As a consequence, your data are systematically
censored: you’re missing all of the very long times. How do you analyse this data sensibly? This is
the problem that survival analysis solves. It is specifically designed to handle this situation, where
you’re systematically missing one “side” of the data because the study ended. It’s very widely used
in health research, and in that context it is often literally used to analyse survival. For instance,
you may be tracking people with a particular type of cancer, some who have received treatment A
and others who have received treatment B, but you only have funding to track them for 5 years. At
the end of the study period some people are alive, others are not. In this context, survival analysis
is useful for determining which treatment is more effective, and telling you about the risk of death
that people face over time.

• Repeated measures ANOVA. When talking about reshaping data in Chapter 7, I introduced
some data sets in which each participant was measured in multiple conditions (e.g., in the drugs
data set, the working memory capacity (WMC) of each person was measured under the influence
of alcohol and caffeine). It is quite common to design studies that have this kind of repeated
measures structure. A regular ANOVA doesn’t make sense for these studies, because the repeated
measurements mean that independence is violated (i.e., observations from the same participant
are more closely related to one another than to observations from other participants. Repeated
measures ANOVA is a tool that can be applied to data that have this structure. The basic idea
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behind RM-ANOVA is to take into account the fact that participants can have different overall
levels of performance. For instance, Amy might have a WMC of 7 normally, which falls to 5 under
the influence of caffeine, whereas Borat might have a WMC of 6 normally, which falls to 4 under
the influence of caffeine. Because this is a repeated measures design, we recognise that – although
Amy has a higher WMC than Borat – the effect of caffeine is identical for these two people. In
other words, a repeated measures design means that we can attribute some of the variation in our
WMC measurement to individual differences (i.e., some of it is just that Amy has higher WMC
than Borat), which allows us to draw stronger conclusions about the effect of caffeine.

• Mixed models. Repeated measures ANOVA is used in situations where you have observations
clustered within experimental units. In the example I gave above, we have multiple WMC measures
for each participant (i.e., one for each condition). However, there are a lot of other ways in which you
can end up with multiple observations per participant, and for most of those situations the repeated
measures ANOVA framework is insufficient. A good example of this is when you track individual
people across multiple time points. Let’s say you’re tracking happiness over time, for two people.
Aaron’s happiness starts at 10, then drops to 8, and then to 6. Belinda’s happiness starts at 6,
then rises to 8 and then to 10. Both of these two people have the same “overall” level of happiness
(the average across the three time points is 8), so a repeated measures ANOVA analysis would
treat Aaron and Belinda the same way. But that’s clearly wrong. Aaron’s happiness is decreasing,
whereas Belinda’s is increasing. If you want to optimally analyse data from an experiment where
people can change over time, then you need a more powerful tool than repeated measures ANOVA.
The tools that people use to solve this problem are called “mixed” models, because they are designed
to learn about individual experimental units (e.g. happiness of individual people over time) as well
as overall effects (e.g. the effect of money on happiness over time). Repeated measures ANOVA is
perhaps the simplest example of a mixed model, but there’s a lot you can do with mixed models
that you can’t do with repeated measures ANOVA.

• Reliability analysis. Back in Chapter 2 I talked about reliability as one of the desirable char-
acteristics of a measurement. One of the different types of reliability I mentioned was inter-item
reliability. For example, when designing a survey used to measure some aspect to someone’s per-
sonality (e.g., extraversion), one generally attempts to include several different questions that all
ask the same basic question in lots of different ways. When you do this, you tend to expect that
all of these questions will tend to be correlated with one another, because they’re all measuring the
same latent construct. There are a number of tools (e.g., Cronbach’s α) that you can use to check
whether this is actually true for your study.

• Factor analysis. One big shortcoming with reliability measures like Cronbach’s α is that they
assume that your observed variables are all measuring a single latent construct. But that’s not true
in general. If you look at most personality questionnaires, or IQ tests, or almost anything where
you’re taking lots of measurements, it’s probably the case that you’re actually measuring several
things at once. For example, all the different tests used when measuring IQ do tend to correlate
with one another, but the pattern of correlations that you see across tests suggests that there are
multiple different “things” going on in the data. Factor analysis (and related tools like principal
components analysis and independent components analsysis) is a tool that you can use to help you
figure out what these things are. Broadly speaking, what you do with these tools is take a big
correlation matrix that describes all pairwise correlations between your variables, and attempt to
express this pattern of correlations using only a small number of latent variables. Factor analysis is
a very useful tool – it’s a great way of trying to see how your variables are related to one another
– but it can be tricky to use well. A lot of people make the mistake of thinking that when factor
analysis uncovers a latent variable (e.g., extraversion pops out as a latent variable when you factor
analyse most personality questionnaires), it must actually correspond to a real “thing”. That’s
not necessarily true. Even so, factor analysis is a very useful thing to know about (especially for
psychologists), and I do want to talk about it in a later version of the book.
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• Multidimensional scaling. Factor analysis is an example of an “unsupervised learning” model.
What this means is that, unlike most of the “supervised learning” tools I’ve mentioned, you can’t
divide up your variables in to predictors and outcomes. Regression is supervised learning; factor
analysis is unsupervised learning. It’s not the only type of unsupervised learning model however.
For example, in factor analysis one is concerned with the analysis of correlations between variables.
However, there are many situations where you’re actually interested in analysing similarities or
dissimilarities between objects, items or people. There are a number of tools that you can use in
this situation, the best known of which is multidimensional scaling (MDS). In MDS, the idea is to
find a “geometric” representation of your items. Each item is “plotted” as a point in some space,
and the distance between two points is a measure of how dissimilar those items are.

• Clustering. Another example of an unsupervised learning model is clustering (also referred to as
classification), in which you want to organise all of your items into meaningful groups, such that
similar items are assigned to the same groups. A lot of clustering is unsupervised, meaning that you
don’t know anything about what the groups are, you just have to guess. There are other “supervised
clustering” situations where you need to predict group memberships on the basis of other variables,
and those group memberships are actually observables: logistic regression is a good example of a
tool that works this way. However, when you don’t actually know the group memberships, you
have to use different tools (e.g., k-means clustering). There’s even situations where you want to
do something called “semi-supervised clustering”, in which you know the group memberships for
some items but not others. As you can probably guess, clustering is a pretty big topic, and a pretty
useful thing to know about.

• Causal models. One thing that I haven’t talked about much in this book is how you can use
statistical modeling to learn about the causal relationships between variables. For instance, consider
the following three variables which might be of interest when thinking about how someone died in
a firing squad. We might want to measure whether or not an execution order was given (variable
A), whether or not a marksman fired their gun (variable B), and whether or not the person got hit
with a bullet (variable C). These three variables are all correlated with one another (e.g., there is
a correlation between guns being fired and people getting hit with bullets), but we actually want
to make stronger statements about them than merely talking about correlations. We want to talk
about causation. We want to be able to say that the execution order (A) causes the marksman to
fire (B) which causes someone to get shot (C). We can express this by a directed arrow notation:
we write it as AÑ B Ñ C. This “causal chain” is a fundamentally different explanation for events
than one in which the marksman fires first, which causes the shooting B Ñ C, and then causes
the executioner to “retroactively” issue the execution order, B Ñ A. This “common effect” model
says that A and C are both caused by B. You can see why these are different. In the first causal
model, if we had managed to stop the executioner from issuing the order (intervening to change A),
then no shooting would have happened. In the second model, the shooting would have happened
any way because the marksman was not following the execution order. There is a big literature
in statistics on trying to understand the causal relationships between variables, and a number of
different tools exist to help you test different causal stories about your data. The most widely used
of these tools (in psychology at least) is structural equations modelling (SEM), and at some point
I’d like to extend the book to talk about it.

Of course, even this listing is incomplete. I haven’t mentioned time series analysis, item response theory,
market basket analysis, classification and regression trees, or any of a huge range of other topics. However,
the list that I’ve given above is essentially my wish list for this book. Sure, it would double the length of
the book, but it would mean that the scope has become broad enough to cover most things that applied
researchers in psychology would need to use.
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17.1.3 Other ways of doing inference

A different sense in which this book is incomplete is that it focuses pretty exclusively on a very narrow
and old-fashioned view of how inferential statistics should be done. In Chapter 10 I talked a little bit
about the idea of unbiased estimators, sampling distributions and so on. In Chapter 11 I talked about
the theory of null hypothesis significance testing and p-values. These ideas have been around since the
early 20th century, and the tools that I’ve talked about in the book rely very heavily on the theoretical
ideas from that time. I’ve felt obligated to stick to those topics because the vast majority of data analysis
in science is also reliant on those ideas. However, the theory of statistics is not restricted to those topics,
and – while everyone should know about them because of their practical importance – in many respects
those ideas do not represent best practice for contemporary data analysis. Here are some of the ideas
that I’ve omitted, all of which I intend to discuss in more detail in future versions of the book:

• Bayesian methods. In a few places in the book I’ve mentioned the fact that there is this thing
called “Bayesian probability”, in which probability is interpreted as a “degree of belief” in some
proposition (e.g., the proposition that I will get a six when I roll a die). Unlike the conventional
frequentist definition of probability, the Bayesian interpretation of probability allows you to assign
probability to “one off” events, rather than restricting probability to events that can be replicated.
The difference between frequentist and Bayesian interpretations of probability is not purely a matter
of interpretation. Bayesian probability leads to different tools for analysing data: if you believe in
Bayesian probability, you get different answers for a lot of statistical questions, and (in my opinion)
the answers you get are generally better ones. I’ve talked a little about Bayesian ideas in this book,
but Bayesian inference is a huge part of contemporary statistical practice, much moreso than you’d
think given the very cursory treatment I’ve given it here.

• Bootstrapping. Throughout the book, whenever I’ve been introduced a hypothesis test, I’ve had a
strong tendency just to make assertions like “the sampling distribution for BLAH is a t-distribution”
or something like that. In some cases, I’ve actually attempted to justify this assertion. For example,
when talking about χ2 tests in Chapter 12, I made reference to the known relationship between
normal distributions and χ2 distributions (see Chapter 9) to explain how we end up assuming that
the sampling distribution of the goodness of fit statistic is χ2. However, it’s also the case that a
lot of these sampling distributions are, well, wrong. The χ2 test is a good example: it is based
on an assumption about the distribution of your data, an assumption which is known to be wrong
for small sample sizes! Back in the early 20th century, there wasn’t much you could do about
this situation: statisticians had developed mathematical results that said that “under assumptions
BLAH about the data, the sampling distribution is approximately BLAH”, and that was about
the best you could do. A lot of times they didn’t even have that: there are lots of data analysis
situations for which no-one has found a mathematical solution for the sampling distributions that
you need. And so up until the late 20th century, the corresponding tests didn’t exist or didn’t work.
However, computers have changed all that now. There are lots of fancy tricks, and some not-so-
fancy, that you can use to get around it. The simplest of these is bootstrapping, and in it’s simplest
form it’s incredibly simple. Here it is: simulate the results of your experiment lots and lots of time,
under the twin assumptions that (a) the null hypothesis is true and (b) the unknown population
distribution actually looks pretty similar to your raw data. In other words, instead of assuming
that the data are (for instance) normally distributed, just assume that the population looks the
same as your sample, and then use computers to simulate the sampling distribution for your test
statistic if that assumption holds. Despite relying on a somewhat dubious assumption (i.e., the
population distribution is the same as the sample!) bootstrapping is quick and easy method that
works remarkably well in practice for lots of data analysis problems.

• Cross validation. One question that pops up in my stats classes every now and then, usually by
a student trying to be provocative, is “Why do we care about inferential statistics at all? Why not
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just describe your sample?” The answer to the question is usually something like this: “Because
our true interest as scientists is not the specific sample that we have observed in the past, we want
to make predictions about data we might observe in the future”. A lot of the issues in statistical
inference arise because of the fact that we always expect the future to be similar to but a bit different
from the past. Or, more generally, new data won’t be quite the same as old data. What we do,
in a lot of situations, is try to derive mathematical rules that help us to draw the inferences that
are most likely to be correct for new data, rather than to pick the statements that best describe
old data. For instance, given two models A and B, and a data set X you collected today, try to
pick the model that will best describe a new data set Y that you’re going to collect tomorrow.
Sometimes it’s convenient to simulate the process, and that’s what cross-validation does. What you
do is divide your data set into two subsets, X1 and X2. Use the subset X1 to train the model (e.g.,
estimate regression coefficients, let’s say), but then assess the model performance on the other one
X2. This gives you a measure of how well the model generalises from an old data set to a new one,
and is often a better measure of how good your model is than if you just fit it to the full data set
X.

• Robust statistics. Life is messy, and nothing really works the way it’s supposed to. This is just
as true for statistics as it is for anything else, and when trying to analyse data we’re often stuck
with all sorts of problems in which the data are just messier than they’re supposed to be. Variables
that are supposed to be normally distributed are not actually normally distributed, relationships
that are supposed to be linear are not actually linear, and some of the observations in your data
set are almost certainly junk (i.e., not measuring what they’re supposed to). All of this messiness
is ignored in most of the statistical theory I developed in this book. However, ignoring a problem
doesn’t always solve it. Sometimes, it’s actually okay to ignore the mess, because some types
of statistical tools are “robust”: if the data don’t satisfy your theoretical assumptions, they still
work pretty well. Other types of statistical tools are not robust: even minor deviations from the
theoretical assumptions cause them to break. Robust statistics is a branch of stats concerned with
this question, and they talk about things like the “breakdown point” of a statistic: that is, how
messy does your data have to be before the statistic cannot be trusted? I touched on this in places.
The mean is not a robust estimator of the central tendency of a variable; the median is. For instance,
suppose I told you that the ages of my five best friends are 34, 39, 31, 43 and 4003 years. How old
do you think they are on average? That is, what is the true population mean here? If you use the
sample mean as your estimator of the population mean, you get an answer of 830 years. If you use
the sample median as the estimator of the population mean, you get an answer of 39 years. Notice
that, even though you’re “technically” doing the wrong thing in the second case (using the median
to estimate the mean!) you’re actually getting a better answer. The problem here is that one of the
observations is clearly, obviously a lie. I don’t have a friend aged 4003 years. It’s probably a typo:
I probably meant to type 43. But what if I had typed 53 instead of 43, or 34 instead of 43? Could
you be sure if this was a typo? Sometimes the errors in the data are subtle, so you can’t detect
them just by eyeballing the sample, but they’re still errors that contaminate your data, and they
still affect your conclusions. Robust statistics is a concerned with how you can make safe inferences
even when faced with contamination that you don’t know about. It’s pretty cool stuff.

17.1.4 Miscellaneous topics

• Missing data. Suppose you’re doing a survey, and you’re interested in exercise and weight. You
send data to four people. Adam says he exercises a lot and is not overweight. Briony says she
exercises a lot and is not overweight. Carol says she does not exercise and is overweight. Dan
says he does not exercise and refuses to answer the question about his weight. Elaine does not
return the survey. You now have a missing data problem. There is one entire survey missing, and
one question missing from another one, What do you do about it? I’ve only barely touched on
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this question in this book, in Section 5.8, and in that section all I did was tell you about some R

commands you can use to ignore the missing data. But ignoring missing data is not, in general, a
safe thing to do. Let’s think about Dan’s survey here. Firstly, notice that, on the basis of my other
responses, I appear to be more similar to Carol (neither of us exercise) than to Adam or Briony.
So if you were forced to guess my weight, you’d guess that I’m closer to her than to them. Maybe
you’d make some correction for the fact that Adam and I are males and Briony and Carol are
females. The statistical name for this kind of guessing is “imputation”. Doing imputation safely is
hard, but important, especially when the missing data are missing in a systematic way. Because
of the fact that people who are overweight are often pressured to feel poorly about their weight
(often thanks to public health campaigns), we actually have reason to suspect that the people who
are not responding are more likely to be overweight than the people who do respond. Imputing a
weight to Dan means that the number of overweight people in the sample will probably rise from
1 out of 3 (if we ignore Dan), to 2 out of 4 (if we impute Dan’s weight). Clearly this matters. But
doing it sensibly is more complicated than it sounds. Earlier, I suggested you should treat me like
Carol, since we gave the same answer to the exercise question. But that’s not quite right: there
is a systematic difference between us. She answered the question, and I didn’t. Given the social
pressures faced by overweight people, isn’t it likely that I’m more overweight than Carol? And of
course this is still ignoring the fact that it’s not sensible to impute a single weight to me, as if you
actually knew my weight. Instead, what you need to do it is impute a range of plausible guesses
(referred to as multiple imputation), in order to capture the fact that you’re more uncertain about
my weight than you are about Carol’s. And let’s not get started on the problem posed by the fact
that Elaine didn’t send in the survey. As you can probably guess, dealing with missing data is an
increasingly important topic. In fact, I’ve been told that a lot of journals in some fields will not
accept studies that have missing data unless some kind of sensible multiple imputation scheme is
followed.

• Power analysis. In Chapter 11 I discussed the concept of power (i.e., how likely are you to be
able to detect an effect if it actually exists), and referred to power analysis, a collection of tools that
are useful for assessing how much power your study has. Power analysis can be useful for planning
a study (e.g., figuring out how large a sample you’re likely to need), but it also serves a useful role
in analysing data that you already collected. For instance, suppose you get a significant result,
and you have an estimate of your effect size. You can use this information to estimate how much
power your study actually had. This is kind of useful, especially if your effect size is not large. For
instance, suppose you reject the null hypothesis p ă .05, but you use power analysis to figure out
that your estimated power was only .08. The significant result means that, if the null hypothesis
was in fact true, there was a 5% chance of getting data like this. But the low power means that,
even if the null hypothesis is false, the effect size was really as small as it looks, there was only an
8% chance of getting data like the one you did. This suggests that you need to be pretty cautious,
because luck seems to have played a big part in your results, one way or the other!

• Data analysis using theory-inspired models. In a few places in this book I’ve mentioned
response time (RT) data, where you record how long it takes someone to do something (e.g., make
a simple decision). I’ve mentioned that RT data are almost invariably non-normal, and positively
skewed. Additionally, there’s a thing known as the speed-accuracy tradeoff: if you try to make
decisions too quickly (low RT), you’re likely to make poorer decisions (lower accuracy). So if you
measure both the accuracy of a participant’s decisions and their RT, you’ll probably find that
speed and accuracy are related. There’s more to the story than this, of course, because some people
make better decisions than others regardless of how fast they’re going. Moreover, speed depends
on both cognitive processes (i.e., time spend thinking) but also physiological ones (e.g., how fast
can you move your muscles). It’s starting to sound like analysing this data will be a complicated
process. And indeed it is, but one of the things that you find when you dig into the psychological
literature is that there already exist mathematical models (called “sequential sampling models”)
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that describe how people make simple decisions, and these models take into account a lot of the
factors I mentioned above. You won’t find any of these theoretically-inspired models in a standard
statistics textbook. Standard stats textbooks describe standard tools, tools that could meaningfully
be applied in lots of different disciplines, not just psychology. ANOVA is an example of a standard
tool: it is just as applicable to psychology as to pharmacology. Sequential sampling models are
not: they are psychology-specific, more or less. This doesn’t make them less powerful tools: in
fact, if you’re analysing data where people have to make choices quickly, you should really be using
sequential sampling models to analyse the data. Using ANOVA or regression or whatever won’t
work as well, because the theoretical assumptions that underpin them are not well-matched to
your data. In contrast, sequential sampling models were explicitly designed to analyse this specific
type of data, and their theoretical assumptions are extremely well-matched to the data. Obviously,
it’s impossible to cover this sort of thing properly, because there are thousands of context-specific
models in every field of science. Even so, one thing that I’d like to do in later versions of the book
is to give some case studies that are of particular relevance to psychologists, just to give a sense for
how psychological theory can be used to do better statistical analysis of psychological data. So, in
later versions of the book I’ll probably talk about how to analyse response time data, among other
things.

17.2

Learning the basics, and learning them in R

Okay, that was... long. And even that listing is massively incomplete. There really are a lot of big
ideas in statistics that I haven’t covered in this book. It can seem pretty depressing to finish a 500-page
textbook only to be told that this only the beginning, especially when you start to suspect that half of
the stuff you’ve been taught is wrong. For instance, there are a lot of people in the field who would
strongly argue against the use of the classical ANOVA model, yet I’ve devote two whole chapters to it!
Standard ANOVA can be attacked from a Bayesian perspective, or from a robust statistics perspective,
or even from a “it’s just plain wrong” perspective (people very frequently use ANOVA when they should
actually be using mixed models). So why learn it at all?

As I see it, there are two key arguments. Firstly, there’s the pure pragmatism argument. Rightly
or wrongly, ANOVA is widely used. If you want to understand the scientific literature, you need to
understand ANOVA. And secondly, there’s the “incremental knowledge” argument. In the same way
that it was handy to have seen one-way ANOVA before trying to learn factorial ANOVA, understanding
ANOVA is helpful for understanding more advanced tools, because a lot of those tools extend on or modify
the basic ANOVA setup in some way. For instance, although mixed models are way more useful than
ANOVA and regression, I’ve never heard of anyone learning how mixed models work without first having
worked through ANOVA and regression. You have to learn to crawl before you can climb a mountain.

Actually, I want to push this point a bit further. One thing that I’ve done a lot of in this book is talk
about fundamentals. I spent a lot of time on probability theory. I talked about the theory of estimation
and hypothesis tests in more detail than I needed to. When talking about R, I spent a lot of time talking
about how the language works, and talking about things like writing your own scripts, functions and
programs. I didn’t just teach you how to draw a histogram using hist(), I tried to give a basic overview
of how the graphics system works. Why did I do all this? Looking back, you might ask whether I really
needed to spend all that time talking about what a probability distribution is, or why there was even a
section on probability density. If the goal of the book was to teach you how to run a t-test or an ANOVA,
was all that really necessary? Or, come to think of it, why bother with R at all? There are lots of free
alternatives out there: PSPP, for instance, is an SPSS-like clone that is totally free, has simple “point
and click” menus, and can (I think) do every single analysis that I’ve talked about in this book. And you
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can learn PSPP in about 5 minutes. Was this all just a huge waste of everyone’s time???

The answer, I hope you’ll agree, is no. The goal of an introductory stats is not to teach ANOVA.
It’s not to teach t-tests, or regressions, or histograms, or p-values. The goal is to start you on the path
towards becoming a skilled data analyst. And in order for you to become a skilled data analyst, you need
to be able to do more than ANOVA, more than t-tests, regressions and histograms. You need to be able
to think properly about data. You need to be able to learn the more advanced statistical models that I
talked about in the last section, and to understand the theory upon which they are based. And you need
to have access to software that will let you use those advanced tools. And this is where – in my opinion
at least – all that extra time I’ve spent on the fundamentals pays off. If you understand the graphics
system in R, then you can draw the plots that you want, not just the canned plots that someone else
has built into R for you. If you understand probability theory, you’ll find it much easier to switch from
frequentist analyses to Bayesian ones. If you understand the core mechanics of R, you’ll find it much
easier to generalise from linear regressions using lm() to using generalised linear models with glm() or
linear mixed effects models using lme() and lmer(). You’ll even find that a basic knowledge of R will go
a long way towards teaching you how to use other statistical programming languages that are based on
it. Bayesians frequently rely on tools like WinBUGS and JAGS, which have a number of similarities to
R, and can in fact be called from within R. In fact, because R is the “lingua franca of statistics”, what
you’ll find is that most ideas in the statistics literature has been implemented somewhere as a package
that you can download from CRAN. The same cannot be said for PSPP, or even SPSS.

In short, I think that the big payoff for learning statistics this way is extensibility. For a book that
only covers the very basics of data analysis, this book has a massive overhead in terms of learning R,
probability theory and so on. There’s a whole lot of other things that it pushes you to learn besides the
specific analyses that the book covers. So if your goal had been to learn how to run an ANOVA in the
minimum possible time, well, this book wasn’t a good choice. But as I say, I don’t think that is your
goal. I think you want to learn how to do data analysis. And if that really is your goal, you want to
make sure that the skills you learn in your introductory stats class are naturally and cleanly extensible to
the more complicated models that you need in real world data analysis. You want to make sure that you
learn to use the same tools that real data analysts use, so that you can learn to do what they do. And so
yeah, okay, you’re a beginner right now (or you were when you started this book), but that doesn’t mean
you should be given a dumbed-down story, a story in which I don’t tell you about probability density,
or a story where I don’t tell you about the nightmare that is factorial ANOVA with unbalanced designs.
And it doesn’t mean that you should be given baby toys instead of proper data analysis tools. Beginners
aren’t dumb; they just lack knowledge. What you need is not to have the complexities of real world data
analysis hidden from from you. What you need are the skills and tools that will let you handle those
complexities when they inevitably ambush you in the real world.

And what I hope is that this book – or the finished book that this will one day turn into – is able to
help you with that.
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Author’s note – I’ve mentioned it before, but I’ll quickly mention it again. This reference list is
appallingly incomplete. Please don’t assume that these are the only sources I’ve relied upon. The final
version of this book will have a lot more references. And if you see anything clever sounding in this book
that doesn’t seem to have a reference, I can absolutely promise you that the idea was someone else’s.
This is an introductory textbook: none of the ideas are original. I’ll take responsibility for all the errors,
but I can’t take credit for any of the good stuff. Everything smart in this book came from someone else,
and they all deserve proper attribution for their excellent work. I just haven’t had the chance to give it
to them yet.
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