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Complexity has been linked to ease of learning. This article explores the roles of 
two measures of complexity – feature economy and logical complexity – in the 
acquisition of sets of signs, taken from a small sign language that serves as an 
analogue of plosive inventories in spoken language. In a learning experiment, 
participants acquired data sets that varied in feature economy and logical 
complexity. The results from this study suggest that ease of learning is best 
predicted by logical complexity, and that a considerable number of learners 
unintentionally reduce the complexity of their input. 

 
 
1   Introduction 
 
The contributions in this volume present various perspectives on the notion of complexity, 
illustrating the wide array of applications this term has in linguistics. Perhaps the most widely 
known example from phonology is found in the description of syllable structure, where onsets 
and codas are called complex if they contain more than one segment. However, many other 
interpretations are possible: Maddieson (2009), for instance, argues that a phonological 
alternation is more complex when it is less predictable.  The present article focuses on two 
specific quantifications of complexity, namely feature economy and logical complexity (or 
incompressibility), and compares them as predictors for ease of learning in a phonological 
acquisition task.  
     The structure of this article is as follows: section 2 discusses the possible role of 
complexity in phonological acquisition, and introduces the measures of feature economy and 
logical complexity; section 3 describes the experimental stimuli and procedure; section 4 
presents the results; the conclusion and discussion form section 5. 
 
 

                                                
1 I’m greatly indebted to Paul Boersma and Silke Hamann for invaluable advice and fruitful 
discussion, to Dirk Jan Vet for technical assistance, to an anonymous reviewer for their excellent 
suggestions, and to all participants for their time and effort. 
2 Correspondence: Spuistraat 134, 1012 VB Amsterdam; seinhorst@uva.nl  
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2 Complexity in the acquisition of feature combinations 
 
Phonological segments are often regarded as bundles of features. For instance, the 
combination of [–continuant], [+bilabial] and [–voiced] describes the segment /p/, and only 
/p/. Such features are not merely useful descriptive tools, but they have psychological reality 
in the speaker-listener (a.o. Chládková 2013). Features are commonly used to analyse the 
internal structure of phoneme inventories, both in spoken language and sign language. 
Pressures of articulatory/gestural ease and perceptual distinctiveness play a major role in the 
typology of such inventories (for spoken language: Passy 1890; Martinet 1955, 1968; 
Boersma 1998; Boersma and Hamann 2008; for sign language: Crasborn 2001; Mathur and 
Rathmann 2001; Ann 2008; Ormel, Crasborn and Van der Kooij 2013), but cognitive 
constraints operate on the typology of phoneme inventories as well. For instance, it has often 
been noted that sound systems disprefer gaps; Martinet (1968) ascribes the sparsity of such 
systems to cognitive factors. In terms of feature economy – a principle stating that languages 
tend to maximally combine their phonological features (De Groot 1931; Martinet 1955; 
Clements 2003, 2005) – Martinet would predict that more economical inventories are easier to 
learn; and what is easier to learn, is more likely to be cross-linguistically frequent (Kirby and 
Hurford 2002; Christiansen and Chater 2008; Chater and Christiansen 2010). 
 
2.1  Learning of category structures: non-linguistic stimuli 

 
In experimental psychology, the learning of classes of feature combinations has been 
investigated since at least the early 1960s (a.o. Shepard, Hovland and Jenkins 1961; Nosofsky 
et al. 1994; Feldman 2000). These experiments use a set of 8 stimuli whose properties are 
described in terms of three binary features. This data set can be divided into two mutually 
exclusive classes of 4 stimuli in different ways, all of which may be – through rotation and/or 
mirroring – reduced to one of six possible so-called category structures.3 These are Types I–
VI in Figure 1. The stimuli that are included in a class are drawn as black circles, those that 
are not included as white circles.  
 
  

 
 

         I            II         III          IV          V         VI 
    

    Figure 1. The six category structures from Shepard et al. (1961). 
 

                                                
3 I will speak of ‘classes’ rather than ‘categories’, because the latter term will later be used to refer to 
phonological categories. 
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The three features are represented in the three dimensions: they are binary because they can 
only take on two values (i.e. in the figure: front vs. back, left vs. right, top vs. bottom). 
Suppose that the features are shape (square vs. triangle), size (small vs. large) and colour 
(black vs. white). If the stimuli are divided according to Type I, this division could look like 
Figure 2a.; divisions of Types II and VI could look like Figures 2b. and c. respectively. 
 
  
 
 

 
 
     
 
 
       (a) Type I        (b) Type II        (c) Type VI    
 
Figure 2. Examples of stimulus divisions from different Shepard types. 
 
Shepard et al. (1961: 3) presume that higher Type numbers are more difficult to learn and 
remember. In order to classify stimuli from a Type I division as belonging to either the left 
class or the right one, two features can be disregarded: in the example shown in Fig. 2(a), 
shape and size are irrelevant. For the Type II division from Fig. 2(b), only size is irrelevant, 
and for Type VI divisions, none of the features can be ignored.  
 Shepard et al. carried out two experiments. In the first experiment, learners were 
shown the individual stimuli and replied to them with one of two response categories, after 
which they received feedback on their response. The experiment was completed when 
participants had given 32 consecutive correct responses. In the second experiment, subjects 
were asked to formulate the rules they thought underlay the division, and two weeks later 
were instructed to recreate the division from memory. The results of both experiments reflect 
the increasing difficulty of the six types: learners perform best on Type I category structures, 
worse on divisions of Type II, even more poorly on Types III–V, and worst on Type VI. For 
instance, many participants indicated that they had learned Type VI divisions by rote. In an 
experiment using the same six types, Griffiths, Christian & Kalish (2008) presented learners 
with three out of four stimuli from a class, then asked them to complete the set. In an iterated 
learning paradigm, they found that Type I became increasingly frequent over generations. 
 
There are (at least) two ways of quantifying complexity in the Shepard types: we can compute 
their feature economy indices, and their logical complexities. Table 1 lists all feature 
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economy indices E, using a computation similar to Hall (2007: 176)’s “Exploitation” 
measure: feature economy is computed by dividing the number of categories in a class 
(always 4) by the product of the number of shape, size and colour distinctions within a class. 
This product yields the total number of possible categories given the distinctions made; E thus 
expresses to what extent a type makes use of its full “potential”. The columns in Table 1 show 
the number of categories in each class, the number of shape distinctions, the number of size 
distinctions, the number of colour distinctions, and the feature economy index. Note that the 
measure of economy does not necessarily correlate with the number of features that are 
relevant to learners in the tasks. 
 
Table 1. Feature economy indices E of Shepard, Hovland and Jenkins’ six types.  
 

Type categories shapes sizes colours E 
I 4 2 2 1 1.0 
II 4 2 2 2 0.5 
III 4 2 2 2 0.5 
IV 4 2 2 2 0.5 
V 4 2 2 2 0.5 
VI 4 2 2 2 0.5 

 
If feature economy is related to ease of learning, higher values of E should correspond to 
better performance in a learning task. On the basis of this measure, however, we would not 
expect Shepard, Hovland and Jenkins’ results: it erroneously predicts similar scores for Types 
II–VI. 
 
Feldman (2000) calls upon a different measure of complexity: he suggests that participants’ 
scores can be predicted by logical (Boolean) complexity or incompressibility, and that 
logically simple data sets are easier to learn. Table 1 from Feldman (2000: 631) is presented 
here as Table 2. For each type, this table lists the disjunctive normal form (a summation of the 
members of the class), the minimal formula (the shortest possible description of the set) and 
the logical complexity lc of a class. This measure of complexity has been quantified as the 
number of literals in the minimal formula. More compressible sets can be represented with a 
shorter minimal formula, and are hence less complex. a, b and c are the three binary 
dimensions or Boolean variables that can either have value 0 (e.g. ¬a, written here as a´) or 1 
(e.g. a). ab means a ∧ b. 
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Table 2. Logical complexities lc of Shepard, Hovland and Jenkins’ six category structures. 
The letters a, b and c indicate the relevant three features. 
 

Type disjunctive normal form minimal formula lc 
I a´b´c´+a´b´c+a´bc´+a´bc a´ 1 
II a´b´c´+a´b´c+abc´+abc ab+a´b´ 4 
III a´b´c´+a´b´c+a´bc´+ab´c a´(bc)´+ab´c 6 
IV a´b´c´+a´b´c+a´bc´+ab´c´ a´(bc)´+ab´c´ 6 
V a´b´c´+a´b´c+a´bc´+abc a´(bc)´+abc 6 
VI a´b´c´+a´bc+ab´c+abc´ a(b´c+bc´)+a´(b´c´+bc) 10 

 
Because all divisions are symmetric, both classes in a type (i.e. both halves in Figs. 2(a)-(c)) 
have the same complexity index. 
 Table 3 allows for easy comparison between the two complexity indices for each type: 
 
Table 3. All complexity indices of Shepard, Hovland and Jenkins’ six category structures. 
 

Type E lc 
I 1.0 1 
II 0.5 4 
III 0.5 6 
IV 0.5 6 
V 0.5 6 
VI 0.5 10 

 
Note that logical complexity correctly predicts the hierarchy found by Shepard, Hovland and 
Jenkins (1961); it also predicts the hierarchy found in Feldman’s (2000) experiments with 
smaller subsets from Shepard types. 
 
 
2.2  Learning of category structures: linguistic stimuli 
 
The learning experiments discussed above suggest that ease of learning in a non-linguistic 
acquisition task is better predicted by complexity than by feature economy, and Kirby et al. 
(2015) postulate that pressures of increasing compressibility have played a crucial role in the 
evolution of language as well. So far, fairly little experimental data on the role of complexity 
in phonological acquisition is available. Saffran and Thiessen (2003) suggest that infants have 
less difficulty acquiring sound patterns over which a phonological generalisation can be 
drawn than they have with non-generalisable stimuli; Pater and Staubs (2013) provide a 
computational model of the learning of plosive inventories across generations with a grammar 
based on feature economy, and show that inventories with a high feature economy emerge as 
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a result of the iterated learning process; Moreton, Pater and Pertsova (2015) use the Shepard 
types to investigate the learning of phonological alternations, but do not exactly replicate the 
order found in non-linguistic experiments.  
  
Any experiment that investigates language acquisition must differ fundamentally from 
experiments as described in §2.1, because of the nature of the language learning process: 
language acquisition does not involve a dichotomy between categories that are present in the 
language vs. those that are absent. The language learner is only confronted with positive 
evidence about the sounds in his language, and does not have any knowledge of feature 
combinations that the language lacks. That means that he does not hear non-native phonemes 
(which would be similar to Shepard et al.’s design), nor is he exposed to only part of a sound 
system (which would be similar to Griffiths et al.’s design). Remember, however, that the 
complexity indices given in Tables 1-3 are identical for both classes in a Shepard division: if  
a class of stimuli is absent, that does not change the complexity of the remaining class. 
 This article reports on an exploratory study that compares the measures of feature 
economy and logical complexity in a phonological acquisition task. Like the experiments with 
Shepard types, it makes use of category structures, but in this experiment they mirror the 
structure of cross-linguistically frequent plosive inventories. Plosive inventories were chosen 
because all spoken languages seem to make use of this type of speech sound (Maddieson 
1984; Mielke 2008). Many languages have at least a three-way place of articulation contrast, 
and most implement an additional voicing contrast. The combinations of the cross-
linguistically preferred features are listed in Table 4: 
 
Table 4. Cross-linguistically frequent feature combinations in plosive inventories. 
 

 [bilabial] [alveolar] [velar] 
[–voiced] /p/ /t/ /k/ 
[+voiced] /b/ /d/ /ɡ/ 

 
The translation of these features into a Shepard type-like representation yields an equilateral 
triangular prism: in one feature plane (voicing), there are two values, in the other (place) there 
are three, equidistant from each other. Any inventory can be represented within this prism, cf. 
Figure 3. Suppose that the bottom plane contains all voiceless segments, the top plane all 
voiced ones; of the three vertical edges, the left one connects the labials, the central one 
connects the alveolars, and the right one connects the velars. The top left vertex thus indicates 
[b], the bottom right vertex corresponds to [k]. Figures 3(a)-(e) show how a number of 
randomly chosen systems can be represented within the prism: black circles indicate 
categories that the system does contain, white circles correspond to categories that the system 
does not contain. 
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     (a) “b p t”          (b) “p t d ɡ”      (c) “p t d k ɡ”      (d) “b d k”       (e) “b p ɡ k” 
 
    Figure 3. Feature representations of phoneme inventories. 
 
Languages generally employ between three and six of these segments, which means that a 
total of !

! + !
! + !

! + !
!  = 20 + 15 + 6 + 1 = 42 different plosive inventories can be drawn 

from this set. Through rotation and mirroring, each and any of these 42 inventories can be 
reduced to one of the eight category structures depicted in Figure 4. 
 

 
 
Figure 4. The eight possible types of plosive category structures. 
 
Any inventory with three categories must belong to one of the Types I–III; any inventory with 
four categories is of one of the Types IV–VI; Type VII describes all five-category systems, 
and Type VIII comprises the full set. For instance, the inventory in Fig. 3(a) is of Type II; that 
in 3(b) of Type VI; that in 3(c) of Type VII; that in 3(d) of Type III; and that in 3(e) of Type 
V.  
 
2.3  Feature economy, logical complexity, and gaps 
 
 For each of the six types in Fig. 4, Table 5 lists the number of categories C, the number 
of voicing feature values V, the number of place feature values P, and an index of feature 

economy E (𝐸 = !
!"
, as above). 

 
 
 
 
 
 
 
 

    I                 II               III               IV               V               VI              VII            VIII 
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    Table 5. Feature economy indices E for all eight category structures (C = number of 
categories, V = number of voicing feature values, P = number of place feature values). 
 

Type C V P E 
I 3 1 3 1.0 
II 3 2 2 0.75 
III 3 2 3 0.5 
IV 4 2 3 0.67 
V 4 2 2 1.0 
VI 4 2 3 0.67 
VII 5 2 3 0.83 
VIII 6 2 3 1.0 

  
Table 6 presents the disjunctive normal forms, minimal formulae and logical complexities of 
the eight types. The voicing feature is represented as a, and can have one of two values a and 
a´; the place feature is represented as b, and can have one of three values b, b´ and b˝. 
 
Table 6. Logical complexities lc for all eight category structures. The letters a and b indicate 
the relevant two features. 
 

Type disjunctive normal form minimal formula lc 
I ab+ab´+ab˝ a 1 
II ab+ab´+a´b ab´+b 3 
III ab+ab´+a´b˝ a(b+b´)+a´b˝ 5 
IV ab+ab´+ab˝+a´b´ a+a´b´ 3 
V ab+ab´+a´b+a´b´ b+b´ 2 
VI ab+ab´+a´b+a´b˝ ab´+a´b˝+b 5 
VII ab+ab´+ab˝+a´b+a´b´ a+a´(b+b´) 4 
VIII ab+ab´+ab˝+a´b+a´b´+a´b˝ A [all] 1 

 
Table 7 lists the values of both complexity measures for all eight types. 
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Table 7. Feature economy indices E and logical complexities lc for all eight category 
structures. 
 

Type E lc 
I 1.0 1 
II 0.75 3 
III 0.5 5 
IV 0.67 3 
V 1.0 2 
VI 0.67 5 
VII 0.83 4 
VIII 1.0 1 

 
In general, feature economy seems to increase as logical complexity decreases, but the 
correlation between them is not perfect (ρ = -.866). Compare, for instance, Types IV and VI, 
which have the same E but different lc values, or Types III and VI, which have the same lc 
but different E values. If learnability is positively correlated with feature economy, hierarchy 
(i) is to be expected, in ascending order of difficulty (‘x < y’ means ‘x is easier to learn than 
y’; if logical complexity predicts learnability, we expect hierarchy (ii). 
 

(i)  I = V = VIII < VII < II < IV = VI < III 
 
(ii) I = VIII < V < II = IV < VII < III = VI 

 
Fig. 4 clearly shows that most types, i.e. all except for I, V and VIII, have a number of gaps in 
the system. These gaps correspond to categories that could have existed given the relevant 
features of the inventory, but that are in fact absent. Both experimental data and observations 
about natural language acquisition suggest that learners’ errors tend to favour regular systems, 
i.e. systems without gaps (a.o. Singleton and Newport 2004; Hudson Kam and Newport 2005; 
Reali and Griffiths 2009; Ferdinand et al. 2013). This tendency may be attributed to inductive 
biases: in the learning process, hypotheses favouring regular systems may have higher a priori 
probabilities and are thus more likely to be selected in acquisition. Such errors are readily 
explained in terms of complexity: filling a gap always increases the feature economy of a 
system, and in most cases increases its compressibility (the only exceptions would be a Type 
III system changing into a Type VI system, keeping its logical complexity at 5, and a Type IV 
system changing into a Type VII system, raising its logical complexity from 3 to 4). 
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3  Stimuli and method 
 
This section describes an experimental paradigm that aims to assess the learnability of the 
types from Fig. 4. This paradigm should shed light on two questions: firstly, whether 
learnability differs between types, and secondly, whether learnability is better predicted by 
feature economy or by logical complexity. 
 
3.1  Stimuli 
 
In experimental investigation of phonological acquisition, one runs the risk of interference 
from participants’ language background with the learning task. For instance, if one of the 
categories to be learnt is absent from the participant’s language, he is likely to map tokens 
from that (foreign) category to a different, native category (a.o. Lisker 2001 on the perception 
of Polish sibilants by English listeners; for Dutch listeners’ perception of [ɡ], see 
Schuttenhelm 2013). Also, if the segments in the stimulus set are a subset of the participant’s 
segment inventory, he could simply draw upon part of his knowledge: any gaps in the subset 
do not correspond to gaps in the learner’s inventory, which makes it difficult to probe 
learnability issues in the emergence of a new feature system. One solution to this problem is 
the use of linguistic stimuli in a different modality, i.e. signs.4 This strategy has been 
employed more often, exactly in order to avoid influences from the extant language system: 
Smith, Abramova and Kirby (2012), for instance, use sign language to investigate how the 
encoding of semantic features emerges in a preset meaning space (viz. manner and path in 
descriptions of movement). In this experiment, however, an influence of the participant’s 
language background still seems likely, as a result of the semantic component of the task; for 
the investigation of phoneme inventories no transfer is expected, because knowledge of 
features in sign language is independent from knowledge of features in spoken language.   
 
For the present learning experiment, an artificial sign language was composed that consists of 
six signs. In analogy with the ‘basic’ plosive set from Table 3, these signs can be described as 
a combination of two features: a binary thumb opposition feature, and a ternary handshape 
feature. The thumb could be either opposed or unopposed; the three handshapes are (1) zero 
fingers pointing up (a clenched fist); (2) the index finger pointing up; (3) four fingers, i.e. all 
except the thumb, pointing up. These features and their values were chosen because they seem 
perceptually sufficiently distinct. The handshape feature is very commonly used in sign 
languages, with many more feature values than the three presented here. Thumb opposition 
does not seem to be distinctive in sign languages (they rather use e.g. movement), but in terms 
of implementing and running the experiment, a static feature would be easier to use than a 
dynamic one. 

                                                
4 Thanks to Anne Baker and Roland Pfau for this suggestion. 
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Examples of the six signs are shown in Figure 5. Hereafter I will notate them as a 
feature combination composed of two numbers: firstly the handshape feature, given as the 
number of fingers pointing up (0, 1 or 4), and secondly the thumb opposition feature, 
expressed as a Boolean variable (0 = thumb unopposed, 1 = thumb opposed). 

 

  /0 0/  /1 0/   /4 0/ 
 

  /0 1/  /1 1/  /4 1/ 
 
    Figure 5. The six phonemes of the artificial sign language. 
 
A female signer was photographed producing each sign ten times, so that the data set 
contained variability. This was done to replicate the lack of invariance with which every 
learner of a new sound system is faced, and from which he has to induce the intended discrete 
categories that are relevant in his language. 
 
3.2  Method 
 
48 adults participated in the experiment (38 female, 10 male), none of whom had any prior 
knowledge about any sign language. Each participant was trained on one of the category 
structures from Fig. 4, so there were 6 learners per type. The six signs from Fig. 5 were 
distributed among the eight types as shown in Table 8 (‘+’ means “present in the input”, ‘–’ 
means “absent from the input”). In this distribution, the categories were scattered across the 
types fairly evenly, to reduce any influence of salience differences between the signs. 
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Table 8. The distribution of signs across types, as used in the experiment. 
 

 categories 
Type /0 0/ /0 1/ /1 0/ /1 1/ /4 0/ /4 1/ 

I – + – + – + 
II – – + + + – 

III – + – + + – 
IV + + + – + – 
V – – + + + + 

VI + + + – – + 
VII + + + + – + 

VIII + + + + + + 
 
The experiment was run in ED, a freeware application similar to E-Prime (Vet 2013). Each 
experiment started with a training phase, using pictures of geometric shapes as stimuli, in 
which the participant was familiarised with the task. After this phase, the acquisition of the 
sign language began. The participant was shown a photo of a token for 2000 ms; after 
exposure, a ‘Next’ button appeared under the photo, which the participant had to click to 
proceed to the next stimulus. The stimuli were presented in random order. The categories that 
constitute a type appeared in the input 30 times, so every photo was shown three times. A 
Type V learner thus saw a total of 120 photos. The number of photos shown per category was 
kept constant between types, rather than the total number of photos. Although this does not 
necessarily reflect natural language acquisition, it avoided the possibility that participants 
with larger types would be able to count the number of photos, as well as the risk that 
experiments with smaller types would be monotonous while learners of larger types would 
receive too little input to perform the task accurately. An average experiment, including the 
training phase and debriefing, lasted between 15 and 30 minutes (depending on type size). 
 
Because of the linguistic nature of the experiment (cf. §2.2), the methodology had to differ 
fundamentally from similar experiments with non-linguistic stimuli, such as Shepard et al. 
(1961), with two mutually exclusive classes, or Griffiths et al. (2008), in which participants 
were only exposed to part of the division. Instead, participants were asked to carry out a 
frequency estimation task. After the learning phase, a screen appeared showing pictures of 
eight signs: the six signs from the language plus two control signs. The control signs were not 
possible signs of the sign language: in one, the thumb and index fingers created a circular 
shape while the remaining fingers pointed up (used to convey the meaning “fine”), in the 
other the little finger and thumb pointed up, the remaining fingers down. Juxtaposed to each 
of the signs were sliders, whose leftmost position was labelled “not at all”, and whose 
rightmost position was labelled “very often”. There were no ticks along the slider, in order to 
avoid a preference for the values associated with these ticks. The initial position of the slider 
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was random and has not been recorded. Participants adjusted the positions of the eight sliders 
to indicate the relative frequency with which each of the signs had appeared in the input. The 
test subjects did not have to produce the signs themselves, because the experiment intends to 
investigate the learning of systems with different internal structures, without focusing on the 
roles of perceptual distinctivity and gestural ease. The chosen task was expected to not only 
provide insight into the relative learnability of the data set, but also to reveal the nature of any 
learnability issues, i.e. any systematicity with which participants might disregard and/or add 
categories. 
 
4 Results 
 
The learnability of a type is considered to be indicated by its average error score: the more 
errors participants make on a type, the lower its learnability. The error score has been 
operationalised as follows. The scale on which participants indicated estimated frequency was 
discretised in 100 steps of equal size. The left-hand end of the slider was assigned the value 0, 
the right-hand end was assigned the value 100. The discretisation in 100 steps was done in 
order to make the slider move smoothly on the participant’s computer screen, but since the 
sliders did not appear on the screen big enough for them to actually produce the smallest 
possible difference (i.e. 1 on the scale), their indicated values were rounded off to the nearest 
multiple of 5.  
 Some participants did not use the full range of the scale: in these cases, the highest 
indicated frequency of any category was scaled up to 100, and the other frequencies were 
adjusted accordingly. The lowest indicated frequency, if not zero, was not set to be zero, as 
this value has an absolute interpretation: as opposed to any non-zero, zero means that the 
participant has not seen a sign at all. For all six signs, the difference between rounded 
estimated frequency and input frequency was computed (the latter being either 0 or 100, for 
categories that are absent or present in the input, respectively). The average of these six 
differences is the error score. 
 As an example of frequency scaling and the computation of the error scores, consider 
Table 9, containing possible responses of a fictional Type VII learner. The highest indicated 
frequency is 94, which is rounded off to 95. This latter value is scaled up to 100, and the other 

indicated frequencies are multiplied by !""
!"

 as well. 
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Table 9. An example of frequency scaling and error score computation. 
 

sign indicated 
frequency 

(raw) 

indicated 
frequency 
(rounded) 

indicated 
frequency 
(scaled) 

input 
frequency 

misestimation 

/0 0/ 94 95 100 100 0 
/0 1/ 80 80 84 100 16 
/1 0/ 83 85 89 100 11 
/1 1/ 91 90 95 100 5 
/4 0/ 8 10 11 0 11 
/4 1/ 90 90 95 100 5 

 average misestimation = error score: 8 
 
None of the participants indicated having seen the control signs. The average error scores per 
category are reported in Table 10 and presented visually in Figure 6. 
 
Table 10. Error scores per type: averages and standard deviations. 
 

Type feature 
economy 

logical 
complexity 

average 
error score 

st. dev. of 
error score 

I 1.0 1 4 3 
II 0.75 3 2 4 

III 0.5 5 12 12 
IV 0.67 3 6 5 
V 1.0 2 9 8 

VI 0.67 5 40 12 
VII 0.83 4 15 11 

VIII 1.0 1 8 6 
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Figure 6. Error scores per type. Circles indicate individual scores: red bars indicate average 
error scores. 
 
There is an effect of type on error score [F(7, 40) = 12.412, p < .001], so there are statistically 
significant differences in learnability between types. Because of the unequal variances and 
fairly small sample sizes for each type, Dunnett’s T3 test was chosen for post-hoc tests, which 
reveal that the main effect is due to Type VI: participants perform significantly poorer on this 
type than on Types I–V and VIII. The differences between all other types are not statistically 
significant.5 
 
4.1 Feature economy versus logical complexity  
 
Figures 7 and 8 plot the error scores as a function of feature economy and logical complexity, 
respectively. An inverse relation is expected between feature economy and error score, 
whereas the error score is presumed to increase with logical complexity. 
 

                                                
5  The p values from the pairwise comparisons with Type VI: pI-VI = .007; pII-VI = .005; pIII-

VI = .043; pIV-VI = .006; pV-VI = .011; pVI-VII = .062; pVI-VIII = .008. 
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Figure 7. Error scores as a function of feature economy. Circles indicate individual scores: 
red bars indicate average error scores. 
 

 
 
Figure 8. Error scores as a function of logical complexity. Circles indicate individual scores: 
red bars indicate average error scores. 
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A linear regression with feature economy as the sole predictor of error score does not yield 
statistically significant results (βE = -0.268, t = -1.888, p = .065); a linear regression with 
logical complexity as the sole predictor of error score does (βlc = 0.520, t = 4.130, p < .001). 
Steiger’s Z (Steiger 1980) reveals that the difference between both coefficients is statistically 
significant (ρE,lc = .866, n = 48, Z = 3.7, p < .001), meaning that logical complexity predicts 
error scores significantly better than feature economy. 
 The fit of the linear models may be improved by including the size of the learnt type as 
a factor. An influence of number of categories on error score is feasible, as the experiments 
took longer for larger types, and thus posed larger demands on participants’ memory and 
attention spans. Indeed, a linear regression in which both feature economy and number of 
categories predict error score yields statistically significant results [F(2, 45) = 3.626, 
p = .035], but again, logical complexity is the statistically significantly better predictor of the 
two (ρE,nc = .372, ρlc,nc = .583, ρE,lc  = .868, n = 48, Z = 3.17, p = .001). 
 
Although these results cannot be compared directly to findings from experiments with 
Shepard types, they do indicate a crucial role of logical complexity in phonological learning. 
Contrary to Martinet’s (1968) and Pater and Staubs’ (2013) assumption, and in line with 
Feldman (2000) and Griffiths et al. (2008), logical complexity seems to be a better predictor 
of ease of learning than feature economy; apparently logical complexity impedes acquisition 
success. 
 
4.2 Error patterns: reduction of complexity 
 
This subsection zooms in on participants’ response patterns. Table 11 reveals how many 
subjects indicated having seen any of the eight types, and the proportion of correct 
classifications. Note that this summary of subjects’ responses abstracts away from the 
estimated proportions. By means of illustration, consider the fictional Type VII learner from 
Table 9: although they only indicated a very low frequency (raw score 8) for the sign that was 
absent from their input, the fact that they indicated having seen it at all would assign their 
response to Type VIII. There is still a large difference between this system and the input to 
Type VIII learners, in which all six signs occur equally often. 
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Table 11. Subjects’ responses per type. Type changes that added one or more categories are 
given in bold, type changes that removed one or more categories are given in italic. 
 

 response  
I II III IV V VI VII VIII oth. pcorr 

in
pu

t 

I 6         1 
II  6        1 

III 1  4      1 .67 
IV    6      1 
V     5   1  .83 

VI      0  6  0 
VII       5 1  .83 

VIII        6  1 
 
The diagonal that runs from the top left to bottom right contains all correct classifications. 
Any number outside this diagonal is an error. In total, the learners have made ten errors: one 
Type III learner reported having seen only two signs, i.e. this participant’s response does not 
correspond to one of the eight types and has been put in the column ‘other’; another Type III 
learner responded with Type I; all six Type VI learners responded with Type VIII; one Type 
VII learner also indicated having seen a Type VIII system. In the second Type III case, this 
means that the learner exchanged one category they had seen for another they had not seen; 
for Types VI and VII, it means that learners introduced only unseen categories in their 
responses. 
 We see that the errors, except for one, favour only Types I and VIII, i.e. the types 
without gaps: the participants show strongly regularising behaviour. This also entails a stark 
decrease of the cumulative logical complexity in the entire data set. The five columns of 
Table 12 list the complexity indices of the eight types; the number of participants who learnt 
them (nbefore; the participant from the ‘other’ column in Table 9 was not taken into 
consideration, so Type III has only five learners); the number of participants who selected 
them after learning (nafter); and the contribution per type to the cumulative complexity before 
and after learning (lcbefore and lcafter, respectively). For each type, lcbefore = lc·nbefore and lcafter = 
lc·nafter. These measures reveal how much every type adds to the cumulative complexity. We 
see that the demise of Type VI reduces the complexity by 30, whereas the growth of Type 
VIII adds 8.  
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Table 12. Cumulative logical complexity in the in- and output (lc = logical complexity, 
nbefore = number of participants who received this type as input, nafter = number of participants 
who chose this type as output, lcbefore = lc·nbefore, lcafter = lc·nafter). 
 

Type lc nbefore nafter lcbefore lcafter 
I 1 6 7 6 7 

II 3 6 6 18 18 
III 5 5 4 25 20 
IV 3 6 6 18 18 
V 2 6 5 12 10 

VI 5 6 0 30 0 
VII 4 6 5 24 20 

VIII 1 6 14 6 14 
total    139 107 

 
The cumulative complexity decreases from 139 to 107, i.e. by 23.0%. This decrease is most 
likely unintentional, as there was no reason for participants to actively implement it; also, 
some participants remarked that the task was easy, while they had in fact selected a different 
type than their input. 
 
5 Conclusion and discussion 
 
In a learning experiment, the roles of two measures of complexity in language acquisition 
were probed: feature economy and logical complexity. The stimuli were combinations of 
phonological features, like phonemes in spoken language; however, because we were 
interested in the acquisition of a new feature system, we used a small language of six signs as 
the stimulus set. These signs could be described in terms of a binary thumb opposition feature 
and a ternary handshape feature, as analogues of the voicing feature and place of articulation 
feature in spoken language, respectively. Participants learnt one of eight data sets (called 
“types”), consisting of three, four, five or six signs, and subsequently carried out a proportion 
estimation task. The types differed in their feature economies and logical complexities. 
 The error scores on this task are better predicted by the logical complexity of the set 
than by its feature economy. The majority of errors favoured regular systems, i.e. systems 
without gaps; because the complexity of such systems is low, the overall complexity in the 
data set as a whole was considerably reduced. 
 
In future research, a larger-scale version of this study will be done with a larger participant 
sample. Additionally, in the future experiment the features will have been distributed among 
learners perfectly evenly (the distribution in the current study left some room for 
improvement; cf. Table 8), to minimise the influence of differences in perceptual salience 
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between signs. These experiments will investigate the learning of both signed and spoken 
stimuli, using the same eight types from the current study. This way we can establish the 
robustness of the learnability effect attested here, and assess the role of the added task of 
feature induction in the sign language acquisition task. In addition, a comparison with 
typological data will be drawn, to see whether the experimental results comply with spoken-
language data; if so, this would provide empirical evidence for the hypothesis that the 
typology of sound systems is constrained by considerations of complexity. In a similar vein, it 
would be interesting to also compare the results with data from other types of inventories that 
can be described in terms of features, such as pronominal systems (with properties like 
number, person, gender, in-/exclusive, proximity etc.). 
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