Detecting categorical perception in continuous discrimination data

Paul Boersma & Kateřina Chládková

University of Amsterdam

Interspeech 2010, Makuhari Japan, 27 September 2010

< 口 > < 同 >

Previous research ●○○	The present study	Data oo	Analysis oo	Example model fits	Conclusions	Appendix
Categoric	al percept	tion				

• same category = same label

discrimination

• same category = difficult discrimination

Sac

→ ∃ → < ∃</p>

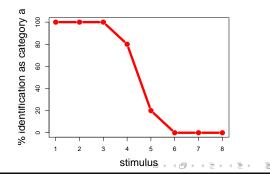
< 口 > < 同 >

Previous research ●○○	The present study	Data oo	Analysis oo	Example model fits	Conclusions	Appendix
Categoric	al percept	tion				

same category = same label

discrimination

• same category = difficult discrimination



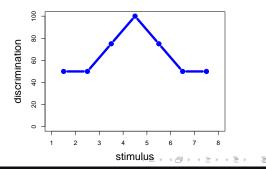
Sac

Previous research ●○○	The present study	Data oo	Analysis 00	Example model fits	Conclusions	Appendix
Categoric	al percept	ion				

same category = same label

discrimination

same category = difficult discrimination



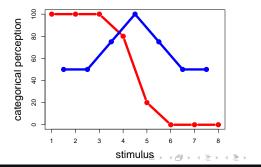
Sac

Previous research ●○○	The present study	Data oo	Analysis 00	Example model fits	Conclusions	Appendix
Categoric	al percept	ion				

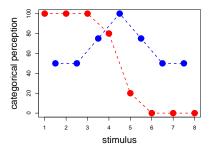
same category = same label

discrimination

same category = difficult discrimination

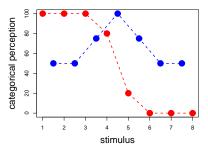


- small number of different stimuli
- repeated multiple times



Rogers & Davis (2009): such design increases listeners' categorical bias

- small number of different stimuli
- repeated multiple times



Rogers & Davis (2009): such design increases listeners' categorical bias

- Rogers & Davis' (2009) solution: test categorical perception 'continuously', i.e. on a densely-sampled phonetic continuum, without repetition
- remaining problem with Rogers & Davis: (indentification results: logistic regression,) discrimination results: non-continuous method of analysis

- 4 E b

Previous research The present study Data Analysis Example model fits Conclusions Appendix on The aim of the present study

to provide a **continuous analysis method** for continuous discrimination data

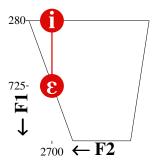
Categorical perception with continuous data

Paul Boersma & Kateřina Chládková

-

< 口 > < 同 >

- vowel continuum between $/i/and/\epsilon/$
- discrimination along the F1 dimension



< □ > < 同 >

¹Chládková & Benders (in prep.).

Categorical perception with continuous data

- E Paul Boersma & Kateřina Chládková

SQC

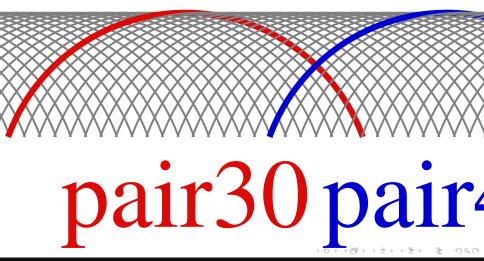
Previous research	The present study ○○●○	Data oo	Analysis oo	Example model fits	Conclusions	Appendix
Stimuli						

- 260 different vowels = 130 stimulus pairs
- equal steps between 280 Hz and 725 Hz (6.93 erb and 12.86 erb)

Previous research	The present study ○○●○	Data oo	Analysis oo	Example model fits	Conclusions	Appendix
Stimuli						

- 260 different vowels = 130 stimulus pairs
- equal steps between 280 Hz and 725 Hz (6.93 erb and 12.86 erb)

Previous research	The present study ○○●○	Data oo	Analysis oo	Example model fits	Conclusions	Appendix
Stimuli						



Previous research	The present study ○○○●	Data oo	Analysis oo	Example model fits	Conclusions	Appendix
Testing p	rocedure					

- AX task
- each of the 130 stimulus pairs included twice,
 i.e. a b in one trial, b a in the other trial
- the auditory F1 distance is always the same
- Participants: 62 monolingual Czechs
- **Question:** How many categories do they have along the continuum?

Previous research	The present study ○○○●	Data oo	Analysis oo	Example model fits	Conclusions	Appendix
Testing p	rocedure					

- AX task
- each of the 130 stimulus pairs included twice,
 i.e. a b in one trial, b a in the other trial
- the auditory F1 distance is always the same
- Participants: 62 monolingual Czechs
- **Question:** How many categories do they have along the continuum?

Previous research	The present study ○○○●	Data oo	Analysis oo	Example model fits	Conclusions	Appendix
Testing p	rocedure					

- AX task
- each of the 130 stimulus pairs included twice,
 i.e. a b in one trial, b a in the other trial
- the auditory F1 distance is always the same
- Participants: 62 monolingual Czechs
- **Question:** How many categories do they have along the continuum?

Previous research	The present study	Data	Analysis	Example model fits	Conclusions	Appendix
		•0				

Data: visual inspection

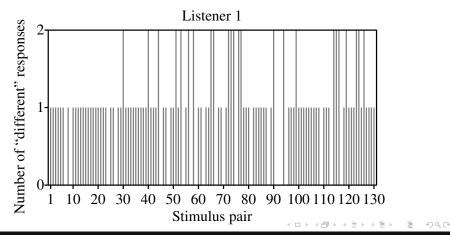
Categorical perception with continuous data

Paul Boersma & Kateřina Chládková

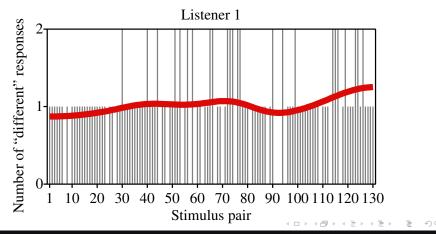
Sac

Raw data: max 2 'different' responses / pair: peaks hard to find

Smoothed data (convolution with a Gaussian): inspection possible

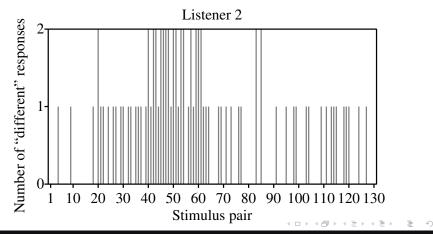


Raw data: max 2 'different' responses / pair: peaks hard to find Smoothed data (convolution with a Gaussian): inspection possible

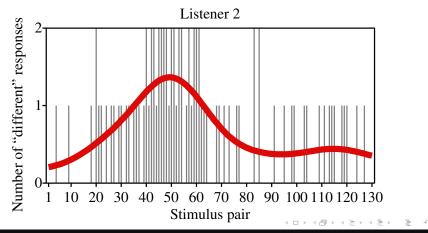


Raw data: max 2 'different' responses / pair: peaks hard to find

Smoothed data (convolution with a Gaussian): inspection possible

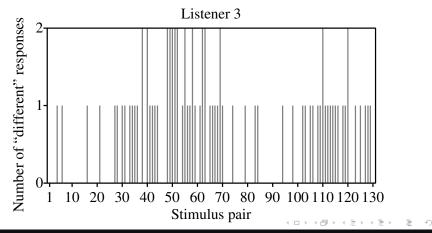


Raw data: max 2 'different' responses / pair: peaks hard to find Smoothed data (convolution with a Gaussian): inspection possible

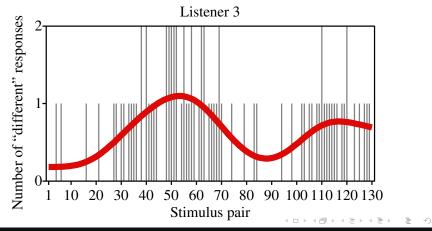


Raw data: max 2 'different' responses / pair: peaks hard to find

Smoothed data (convolution with a Gaussian): inspection possible



Raw data: max 2 'different' responses / pair: peaks hard to find Smoothed data (convolution with a Gaussian): inspection possible



Previous research	The present study	Data	Analysis	Example model fits	Conclusions	Appendix
			00			

Data: analysis

Categorical perception with continuous data

Paul Boersma & Kateřina Chládková

Sac

• per listener, model the data with every possible number of discrimination peaks

- estimate the **best value of the parameters** that define a model with *n* discrimination peaks
 - 0 peaks: pconst
 - 1 peak: *p_{min}*, *p_{max}*, μ, σ
 - 2 peaks: p_{min}, p_{1max}, μ₁, σ₁, p_{2max}, μ₂, σ₂
 - ...
- find which model best fits the data,

i.e. test whether a model fits the data significantly better than the preceding simpler model

nac

< □ > < 同 > < 回 > < 回 > < 回</p>

- per listener, model the data with every possible number of discrimination peaks
- estimate the **best value of the parameters** that define a model with *n* discrimination peaks
 - 0 peaks: pconst
 - 1 peak: *p_{min}*, *p_{max}*, μ, σ
 - 2 peaks: p_{min}, p_{1max}, μ₁, σ₁, p_{2max}, μ₂, σ₂
 - ...
- find which model best fits the data,

i.e. test whether a model fits the data significantly better than the preceding simpler model

< □ > < 同 > < 回 > < 回 > < 回</p>

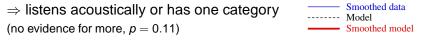
- per listener, model the data with every possible number of discrimination peaks
- estimate the **best value of the parameters** that define a model with *n* discrimination peaks
 - 0 peaks: pconst
 - 1 peak: *p_{min}*, *p_{max}*, μ, σ
 - 2 peaks: p_{min}, p_{1max}, μ₁, σ₁, p_{2max}, μ₂, σ₂
 - ...

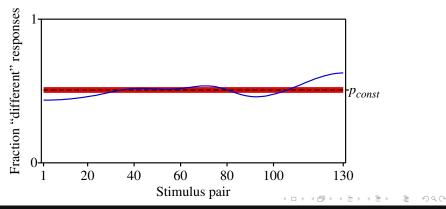
• find which model best fits the data,

i.e. test whether a model fits the data significantly better than the preceding simpler model

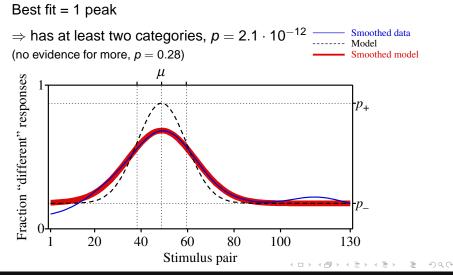
< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Best fit = 0 peaks



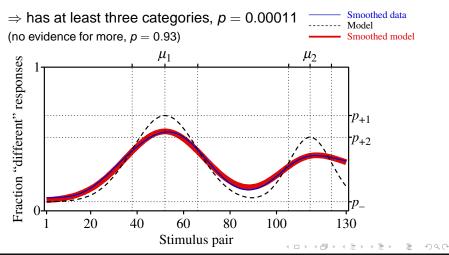


Paul Boersma & Kateřina Chládková



Paul Boersma & Kateřina Chládková

Best fit = 2 peaks



Paul Boersma & Kateřina Chládková

Previous research	The present study	Data oo	Analysis oo	Example model fits	Conclusions ●0	Appendix
Conclusio	ons					

Method of analysis of continuous discrimination data

- finds the plausible (minimum) number of categories
- estimates location and crispness of category boundaries
- preserves the continuous nature of the data

Previous research	The present study	Data oo	Analysis oo	Example model fits	Conclusions ●0	Appendix	
Conclusions							

Method of analysis of continuous discrimination data

- finds the plausible (minimum) number of categories
- estimates location and crispness of category boundaries
- preserves the continuous nature of the data

Previous research	The present study	Data	Analysis	Example model fits	Conclusions	Appendix
					00	

Thank you.

Categorical perception with continuous data

 $\Xi \rightarrow$ Paul Boersma & Kateřina Chládková

E

< A

\rightarrow the algorithm for 2 peaks

parameters: p_{min} , p_{1max} , μ_1 , σ_1 , p_{2max} , μ_2 , σ_2

- assign random values to the 7 parameters
- In the second second
- Output: Content of the second seco
- If LL improves, keep the values of the parameters
- repeat steps 2 4 1000 times
- repeat steps 1 5 100 times
- keep the parameters that give the best best LL

< □ > < @ >

\rightarrow the algorithm for 2 peaks

parameters: p_{min} , p_{1max} , μ_1 , σ_1 , p_{2max} , μ_2 , σ_2

assign random values to the 7 parameters

- 2 randomly change the 7 parameters a little bit
- Objective to the second sec
- If LL improves, keep the values of the parameters
- repeat steps 2 4 1000 times
- repeat steps 1 5 100 times
- keep the parameters that give the best best LL

 \rightarrow the algorithm for 2 peaks

parameters: p_{min} , p_{1max} , μ_1 , σ_1 , p_{2max} , μ_2 , σ_2

- assign random values to the 7 parameters
- randomly change the 7 parameters a little bit
- Output: Content of the second state of the
- If LL improves, keep the values of the parameters
- repeat steps 2 4 1000 times
- repeat steps 1 5 100 times
- keep the parameters that give the best best LL

< <p>I > I < II</p>

 \rightarrow the algorithm for 2 peaks

parameters: p_{min} , p_{1max} , μ_1 , σ_1 , p_{2max} , μ_2 , σ_2

- assign random values to the 7 parameters
- randomly change the 7 parameters a little bit
- Check whether LL improves (becomes less negative)
- If LL improves, keep the values of the parameters
- repeat steps 2 4 1000 times
- repeat steps 1 5 100 times
- keep the parameters that give the best best LL

 \rightarrow the algorithm for 2 peaks

parameters: p_{min} , p_{1max} , μ_1 , σ_1 , p_{2max} , μ_2 , σ_2

- assign random values to the 7 parameters
- randomly change the 7 parameters a little bit
- Check whether LL improves (becomes less negative)
- If LL improves, keep the values of the parameters
- 5 repeat steps 2 4 1000 times
- repeat steps 1 5 100 times
- keep the parameters that give the best best LL

 \rightarrow the algorithm for 2 peaks

parameters: p_{min} , p_{1max} , μ_1 , σ_1 , p_{2max} , μ_2 , σ_2

- assign random values to the 7 parameters
- randomly change the 7 parameters a little bit
- Check whether LL improves (becomes less negative)
- If LL improves, keep the values of the parameters
- repeat steps 2 4 1000 times
- repeat steps 1 5 100 times
- keep the parameters that give the best best LL

Image: A matrix

 \rightarrow the algorithm for 2 peaks

parameters: p_{min} , p_{1max} , μ_1 , σ_1 , p_{2max} , μ_2 , σ_2

- assign random values to the 7 parameters
- randomly change the 7 parameters a little bit
- Check whether LL improves (becomes less negative)
- If LL improves, keep the values of the parameters
- repeat steps 2 4 1000 times
- repeat steps 1 5 100 times

keep the parameters that give the best best LL

 \rightarrow the algorithm for 2 peaks

parameters: p_{min} , p_{1max} , μ_1 , σ_1 , p_{2max} , μ_2 , σ_2

- assign random values to the 7 parameters
- randomly change the 7 parameters a little bit
- Check whether LL improves (becomes less negative)
- If LL improves, keep the values of the parameters
- repeat steps 2 4 1000 times
- repeat steps 1 5 100 times
- keep the parameters that give the best best LL

Image: A matrix

nac