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Categorical perception

identification

same category = same label

discrimination

same category = difficult discrimination
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Previous research The present study Data Analysis Example model fits Conclusions Appendix

Categorical perception

identification
same category = same label

discrimination
same category = difficult discrimination

1 2 3 4 5 6 7 8

0
20

40
60

80
10

0

stimulus

di
sc

rim
in

at
io

n

Categorical perception with continuous data Paul Boersma & Kateřina Chládková
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A problem with previous studies

small number of different stimuli

repeated multiple times
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Rogers & Davis (2009): such design increases listeners’
categorical bias
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The solution, and a remaining problem

Rogers & Davis’ (2009) solution:
test categorical perception ‘continuously’ ,
i.e. on a densely-sampled phonetic continuum, without
repetition

remaining problem with Rogers & Davis:
(indentification results: logistic regression,)
discrimination results: non-continuous method of
analysis
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The aim of the present study

to provide a continuous analysis method
for continuous discrimination data
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Part of a larger experiment1

vowel continuum between
/i/ and /E/

discrimination along the F1
dimension
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1Chládková & Benders (in prep.).
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Stimuli

260 different vowels = 130 stimulus pairs

equal steps between 280 Hz and 725 Hz (6.93 erb and
12.86 erb)

pair30 pair47 pair1056.93 12.86
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Stimuli

pair30 pair47
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Testing procedure

AX task

each of the 130 stimulus pairs included twice,
i.e. a – b in one trial, b – a in the other trial

the auditory F1 distance is always the same

Participants: 62 monolingual Czechs

Question: How many categories do they have along the
continuum?
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Data: visual inspection
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Visual inspection

Raw data: max 2 ‘different’ responses / pair: peaks hard to find

Smoothed data (convolution with a Gaussian): inspection possible

Listener 1

Stimulus pair
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Visual inspection

Raw data: max 2 ‘different’ responses / pair: peaks hard to find

Smoothed data (convolution with a Gaussian): inspection possible
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Visual inspection

Raw data: max 2 ‘different’ responses / pair: peaks hard to find

Smoothed data (convolution with a Gaussian): inspection possible
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Data: analysis
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Analysis: estimate the ‘best’ number of peaks

per listener, model the data with every possible number
of discrimination peaks

estimate the best value of the parameters that define a
model with n discrimination peaks

0 peaks: pconst

1 peak: pmin, pmax , µ, σ
2 peaks: pmin, p1max , µ1, σ1, p2max , µ2, σ2

...

find which model best fits the data ,
i.e. test whether a model fits the data significantly better
than the preceding simpler model
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Model: listener 1

Best fit = 0 peaks

⇒ listens acoustically or has one category
(no evidence for more, p = 0.11)

Smoothed data
Model
Smoothed model
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Model: listener 2

Best fit = 1 peak

⇒ has at least two categories, p = 2.1 · 10−12

(no evidence for more, p = 0.28)

Smoothed data
Model
Smoothed model
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Model: listener 3

Best fit = 2 peaks

⇒ has at least three categories, p = 0.00011
(no evidence for more, p = 0.93)

Smoothed data
Model
Smoothed model
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Conclusions

Method of analysis of continuous discrimination data

finds the plausible (minimum) number of categories

estimates location and crispness of category
boundaries

preserves the continuous nature of the data
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Thank you.

Categorical perception with continuous data Paul Boersma & Kateřina Chládková
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Maximum-likelihood fit: algorithm

→ the algorithm for 2 peaks
parameters: pmin, p1max , µ1, σ1, p2max , µ2, σ2

1 assign random values to the 7 parameters
2 randomly change the 7 parameters a little bit
3 check whether LL improves (becomes less negative)
4 if LL improves, keep the values of the parameters
5 repeat steps 2 - 4 1000 times
6 repeat steps 1 - 5 100 times
7 keep the parameters that give the best best LL

Categorical perception with continuous data Paul Boersma & Kateřina Chládková
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