Auditory cues determine allomorphy
 Vocalized and non-vocalized prepositions in Czech

Kateřina Chládková

Phonetic Sciences, University of Amsterdam

I. Non-syllabic prepositions

non-vocalized form vocalized form meaning Always vocalized:

k	ke	'to'
v	ve	'in'
s	se	'with'
z	ze	'from'

Always non-vocalized

k tomu 'to that'
k autu 'to a car'

Articulatory ease $\quad \leftarrow$ Previous Explanations \rightarrow BUT: no problem with producing complex clusters such as /ks/, /sk/, /pstr/, why not /ksk/ then?

ke kolu 'to a bike'

II. The explanation I propose: prepositional vocalization is listener-oriented

Perceptual ease

the $/ \varepsilon /$ is inserted so that the listener can recover the preposition
auditory cues almost exclusively determine the choice between the vocalized and non-vocalized prepositional forms
the speaker has no articulatory difficulty with e.g. [k:]
but the listener would not be able to recover the preposition

OCP-like effect (McCarthy 1986, Rubach 2000, Boersma 2000)
structural constraints against what can be a word contribute as well (cf. ke psu BUT k psovi)
$/ \varepsilon /$ inserted in SF (because if present it is stressed)
UF prefers $|\mathrm{k}|$ (k is much more frequent)
simulations show that such a grammar is learnable

III. The analysis

modeled in Bidirectional Phonetics and Phonology in parallel BiPhon (Boersma 2007, 2008)
5 levels of representations used in the present analysis (the Tableaus below collapse the Aud.F. and the Art.F.) constraints that operate at a level of representation and constraints evaluating the mapping between levels Stochastic Optimality Theory as the evaluation strategy

IV.a Simple onsets

${ }^{*}\left[C_{i} C_{]}\right]_{\text {Art }} \rightarrow$ do not produce two adjacent identical separate consonantal articulatory gestures
*/CC/ [-C:] \rightarrow an auditorily prolonged single consonant that follows a pause does not correspond to two consonantal segments in the SF */ / [x] \rightarrow the presence of auditory events does not correspond to the absence of a segment in the SF

Production of <to + a bike>:								
ranking value	100	100	100	100	80	50		
	*<to>		*/CC/	**//		* $<$ to		
<to + a bike>	\|ks		${ }^{*}\left[C_{i} C_{i}\right]_{\text {art }}$	[C:]	[x]	DEP	\|k	
\|k + kolu	/.kko.lu./ [kkolu]		*!					
\|k + kolu	/.kko.lu./ [kiolu]			*!				
\|k + kolu	/.kko.lu./ [kkkolu]				*!			
vis \|k + kolu	/.ke.ko.lu./ [kekolu]							
\|ke + kolu	/.ke.ko.lu./ [kskolu]	*!						

Failed comprehension of [k:olu] when <to + a bike> intended:

เ⿶凵 /.ko.lu./ |kolu| <coke ${ }_{\text {Acc }}$.
/ko.lu./ |kolul <to + a bike>
/.ko.lu./ |k + kolu| <to + a bike>
/.ko.lu. $\mid k+$ kolu $<$ to + a bike>
.ke.ko.lu. $\mid k+$ kolu $<$ to + a bike>
$\frac{\text { ke.ko.lu. } / \mid k+\text { kolu } \ll \text { to }+ \text { a bike }>}{\text { kko.lu. } / \mid k+\text { kolu| }<\text { to }+ \text { a bike }}$

IV.b Cue constraints: Complex onsets

Dissimilar consonantal cues auditorily = different segments in the SF. C = /place/ [formant] + /manner/ [noise, silence] + /voicing/ [periodicity] $/ / /=$ velar + plosive + voiceless; /p/ = bilabial + plosive + voiceless; /s/ = alveolar + fricative + voiceless $\Rightarrow / k p s /=6$ dififerent cues
optimally: /CCC/ = 8 cues, /CCCC/ = 10 cues
*/CCC/[6cue] $\rightarrow 6$ different consonantal cues do not correspond to 3 consonantal segments in the SF

$$
\begin{aligned}
& *[10 \text { cue }] / C C C C / \ll^{*}[9 c u e] / C C C C / \ll{ }^{*}[6 c u e] / \text { CCCC } / . . . \text { etc. } \\
& *[6 c u e] / C C / \ll^{*}[6 c u e] / C C C C / \ldots \text { etc. }
\end{aligned}
$$

Cue constraints interact with DEP:

ranking value	82	80.1	80	78	frequency

*[7cue] *[6cue] *"[7cue] of this /CCCC//CCC/ DEP /CCC/ winner

[^0]
V. When the cue constraints are not enough

[^1]| constraint weight | 15 | 10 | 5 | 5 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | DEP | *ONSETCCC | MINWORD | *FeEtUn | harmony |
| res <to + us > \|k + namm| /.knarm./ | | | | -1 | -5 |
| <to + us> \|k + narm| /.ke.narm./ | -1 | | | | -15 |
| <to + a dog> \|k + psul /.kpsu./ | | -1 | -1 | -1 | -20 |
| res <to + a dog> \|k + psul /.ke.psu./ | -1 | | | | -15 |
| kse <to + dogs> \|k + psurm| / kpsum./ | | -1 | | -1 | -15 |
| ks <to + dogs> \|k+ psum| /.ke.psurm./ | -1 | | | | -15 |
| ke <to + a dog> \|k + psovi| /.kpso.vi./ | | -1 | | | -10 |
| <to + a dog> \|k + psovi| /.ks.pso.vi./ | -1 | | | | -15 |
| Leto + CV> \|k+CV|/kCV// | | | -1 | -1 | -10 |
| <to + CV> \|k + CV|/.kE.CV// | -1 | | | | -15 |

[^0]: 1. $<$ to + a fence $>$
 rs lk + plotul / /kplo.tu. / [kplotu]
 77%
 |k + plotul /.ke.plo.tu./ [ksplotu]
 2. < to dogs >
 ke [k + psumpl/.kpsum./ [kpsum]
 res |k + psumpl/.ke.psurm./ [kepsum]
 48\%
 3. <to + a chink >

 ks |k + Jkvir.re| /.ke. Skvi..re./ [keJkvir.rc]
 81\%
[^1]: Both ke psovi and k psovi are attested,
 and we also observe ke psu (but NOT k psu). (all are <to +a dog >)
 This cannot be handled by the cue constraints introduced above.
 \Rightarrow there are three structural constraints:
 *FEETUN \rightarrow feet are not monosyllabic
 MINWORD \rightarrow a light monosyllable is not a prosodic word
 *ONSETCCC \rightarrow onsets are not composed of 3 or more segments
 Lese these constraints work both in HG (see Tableau on the right),
 as well as in OT under the local conjunction approach (Smolensky 1997).

