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Abstract

This study investigates the acoustic cues that might distinguish unnatural

cloned singing voices from human singing voices. The examined acoustic cues

include pitch, intensity, jitter, shimmer, Cepstral Peak Prominence and

Harmonics-to-Noise Ratio. For comparison, three groups of vocal sources were

created: original versions, cover versions and cloned versions. The cloned

versions were synthesized using a voice model created from the Opencpop

corpus. Pitch contour graphs were used to describe patterns, while the other

cues were compared through linear mixed models. The results showed that the

acoustic features jitter and shimmer are distinguishing factors for cloned versus

human singing voices, since cloned songs always exhibited lower jitter and

shimmer. These low values might result from over-regularization during the

singing voice cloning process, which led to a perception of emotionlessness.

Intensity is another cue that explains why cloned songs are perceived as less

natural than human singing songs, but this study could not draw conclusions on

spectral tilt, CPP or HNR.
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1. Introduction

1.1. Voice Synthesis and Music Clone

Voice Synthesis has grown into a mature field in recent years. It has evolved

from formant synthesis to technology with algorithms, machine-learning and

perception-based modelling (Malisz et al., 2019). The development enhances its

intelligibility and coherence, and expands its scope of application beyond

simply generating synthetic voices. That is where voice cloning comes into

play.

Voice cloning is a subfield of voice synthesis that replicates the voice of a

specific individual to replace the content that they never actually recorded. In

other words, it endows the given synthetic audio with another identifiable voice

identity (Rosi et al., 2025). The technology builds on Text-to-Speech (TTS)

systems and is enhanced by formant synthesis and neural networks (Zhang,

2024).

Voice cloning first requires the creation of an artificial voice that resembles

the target human voice. During this process, high-quality audio recordings of

the target speaker are needed for acoustic feature extraction. These extracted

features are successively used by neural networks and voice decoders to train a

voice model. Then, given texts are inputted into the trained model to generate

new speech. Likewise, to clone new songs, given vocal tracks are inputted to

generate new vocal tracks.
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There are at least two approaches to cloning a voice. The first is speaker

adaptation, which fine-tunes multi-speaker generative models to match the

voice nuances of a specific person in accordance with their features. It demands

less data from that person. The other is speaker encoding, which estimates and

employs the voice of an unseen speaker to directly create a model (Arik et al.,

2018). Regardless of their difference in generating the final models, they both

undergo the process of feature extraction and reconstruction, where mistakes are

likely to occur and naturalness might be compromised.

In fact, a couple of studies have suggested that synthesized voices are

lower in naturalness compared to real human voices. Synthesized voices are

found to be less intelligible, pleasant, likable and natural than human voices

(Kühne et al., 2020; Zhang, 2024). The deficiency leads to human ability to

distinguish synthesized voices from real ones with around 70% precision (Mai

et al., 2023; Müller et al., 2022; Warren et al., 2024). The existing literature

mostly employs perception tasks, with a lack of acoustic feature investigation.

In recent years, more researchers have noticed this absence, Zhang (2024)

attributed the lower pleasantness than human voices to physical voice qualities,

such as pitch and tone. Nussbaum et al. (2025) suggested unnatural voices may

deviate from human voices in pitch contour, temporal structure, or spectral

composition.

These days have seen voice cloning expanding from speech to music, where

the original vocal tracks are replaced by those of cloned voices. However,
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unlike voice cloning in speech, cloned songs have been rarely evaluated in

terms of naturalness (Nussbaum et al., 2025). As a blend of musical and

linguistic elements, cloned songs are expected to demonstrate unique features in

addition to those from cloned speech.

1.2. Naturalness

Naturalness is a highly influential factor in distinguishing

machine-generated from real human voices. Originally derived from biology, it

referred to an adaptive form, with its opposite being deviation. When introduced

into phonetics, this concept is mostly adopted as the equivalent of

human-likeness but remains conceptually undefined (Cooper et al., 2024).

Nussbaum et al. (2025) proposed two types of naturalness: the first is the

deviation-based naturalness. It assumes a reference that represents maximum

naturalness. The second is the human-likeness-based naturalness, which

emphasizes the similarity to human voice.

The reason for this undefined situation is the vagueness of human-likeness.

Human-likeness is always considered as a subjective judgment. Seebauer et al.

(2023) connected features like “fluttering”, “strange”, “irritating”, “metallic”

with human-unlikeness. Concerning the topic of cloned songs, the focus is to

distinguish human vocal songs from machine deepfake ones. Thus, naturalness

is defined as the opposite of unnaturalness, which refers to mechanical and

robot-like features here.
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The evaluation of naturalness is typically conducted through two

approaches.

The first is a subjective approach through perception tasks like listening

tasks. Participants are presented with audio-clips of human and synthetic voices,

and rate them on scales (Kühne et al., 2020). But these tasks are influenced by

individual bias and may lack consistent standards, which lowers reproducibility

and may lead to unstable conclusions (Mayo et al., 2011; Xiong et al., 2023).

The other approach is more objective, eliminating the random bias of

individual variation. Software engineers and researchers need to assess the

feasibility of their newly developed models. They evaluate metrics like jitter,

shimmer, spectral slope, cepstral peak prominence(CPP), fundamental

frequency(F0) and Mel-cepstral distance(MCD) by programs like openSmile

package (Eyben et al., 2010) in Python. Compared with perception tests, this

approach is adopted more by machines as the discriminating way.

From a linguistic perspective, these acoustic metrics require more careful

interpretation under the difference. For example, linguistics provides an

explanation for the jitter difference between cloned and human voices, pointing

out why one is higher than the other. This perspective compensates for the

simplified interpretation of acoustic cues in computer science. Therefore, this

study intends to measure these objective metrics with the awareness of

linguistics.
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1.3. Acoustic Cues

Humans depend on linguistic features such as prosody, accent and fluency to

make judgments about the sounds they hear. The appreciation for music further

demands harmony in timbre, dynamics and genre.

For machines, measurable acoustic cues are their objects for assessment. To

date, few linguistic studies have explored the acoustic cues of synthetic songs.

Given its blend of speech and music, a relatively comprehensive and valid

evaluation of the naturalness of synthetic songs requires attention to at least two

dimensions: vocals and melody. Since cloned songs retain the original melody,

the emphasis should be laid onto vocals.

Jitter, shimmer, spectral flux, dynamics, cepstral peak prominence (CPP)

and the fundamental frequency (F0) explain voice quality (Hinterleitner et al.,

2015; Seebauer et al., 2023). Despite the lack of evaluation in cloned songs

naturalness, some existing literature has investigated another branch of synthetic

music, which is AI-generated music. Composed by artificial intelligence, those

works are new in both vocal and backing tracks. That is to say, from the melody

and lyrics to the vocal and singing techniques, they do not use other works as

reference. Compared to standard Text-to-Sound (TTS) synthesis, it considers a

wider range of contextual factors when it comes to metrics like dynamics and

pitch (Nishimura et al., 2016). The acoustic cues such as spectral features,

excitation parameters, waveform and duration are always measured (Nishimura

et al., 2016), which can be referred to.
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In Mandarin Chinese, tone is one of the most critical features, since pitch

contour carries lexical meanings. Thus, unnatural transitions in pitch trajectory

may affect perceived naturalness.

In addition to pitch, a comprehensive investigation of voice quality is also

needed. Spectral tilt, the decrease in intensity of higher harmonics in the sound

spectrum, can manifest voice quality and is estimated to exhibit a difference

between synthetic and human voices (Garellek, 2022). Breathy voices show a

higher spectral tilt than normal voices, which in turn are higher than creaky

voices, often associated with deficient synthesized voices.

Cepstral Peak Prominence (CPP), the difference between the cepstral peak

and the corresponding line, is also highly correlated with breathiness. Higher

CPP indicates smoother sound quality, while lower values are always more

creaky. It is always combined with Harmonics-to-Noise Ratio (HNR), the

hoarseness measurement by calculating the ratio between periodic part and

noise.

Jitter, the variation in frequency, quantifies the perturbation resulting from

unstable vibration of vocal folds. Higher values of jitter often contribute to a

voice sounding rough and hoarse. But even in healthy voices, it is expected to

observe a small amount of jitter because of the complexity of vocal fold control.

Usually, individuals will differ in jitter which helps to distinguish one from

another.

Shimmer, the variation in amplitude, is also used to evaluate voice quality
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combined with jitter. The human production system usually generates unstable

fluctuations in amplitude. Higher values of shimmer often suggests a hoarse,

breathy and rough voice. Its range of values also distinguishes speakers.

As previously stated, cloned songs are different from cloned speech since

they are sung instead of spoken. Even if the melody dimension is not the focus,

this study still aims to provide another perspective for assessing cloned music,

which is a musicological perspective.

Voice range profile (VRP) is first expected to be this measurement. It is

commonly used in musicology to evaluate a singer’s vocal capacity through the

maximum range of pitches and dynamics of a vowel. However, since VRP is

usually measured under a controlled environment where singers are instructed

to sing the same phoneme from low to high pitch, it is not plausible to measure

it using these songs as materials. Thus, this study uses intensity as a proxy.

Although intensity also demands identical recording environment, it can be

normalized and compared. Intensity measures the energy in the amplitude

waveform. It reflects how the dynamics flow within one sentence or one

segment.

1.4. Research Questions

Unnaturalness of cloned songs is the opposite of human-like features, and it

is expected that acoustic features of cloned songs are significantly different

from those of original or human cover songs in perception and objective cues.
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Thus, this study aims to investigate what the difference in acoustic cues is.

The focused research question is

Can pitch, intensity and voice quality acoustic metrics serve as

distinguishing factors between cloned and real human singing voices?

To address this question, a set of acoustic features were selected and

compared between cloned songs, their original versions and the counterparts

covered by the singer from the corpus Opencpop. The features include

1. Pitch

2. Intensity

3. Spectral Tilt

4. Cepstral Peak Prominence (CPP)

5. Harmonics-to-Noise Ratio (HNR)

6. Jitter

7. Shimmer

The results are assumed to show different features of pitch contour between

cloned and human singing voices. Meanwhile, statistically significant

differences are expected to be found between the average of human and cloned

singing voices in some or all of other calculable acoustic cues. Higher values in

cloned songs are expected in terms of jitter and shimmer, while higher values in

human singing songs are expected for CPP and HNR.

2. Methodology
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This study examines disparities in acoustic features between Mandarin pop

songs sung by humans and their cloned counterparts to identify objective

correlates of naturalness.

2.1. Materials

Three versions of vocal data are categorized into Group A, B and C. Each

group comprises 5 songs and a total of 15 stimuli were analyzed (Appendices).

2.1.1. Group A: Cover Versions

Audio sources were extracted from Opencpop, a Mandarin singing corpus

(Wang et al., 2022). It consists of 100 Mandarin pop songs (5.2 hours)

performed by a professional female singer under a controlled condition. The

recording files were recorded at 44.1 kHz. The corpus also includes annotated

TextGrid files (Graph 1) marking sentences, characters, syllables, notes,

duration, segments and melismas. No singer demographic data is available.

Access to this corpus has been permitted.

The 5 target stimuli were randomly selected from the inventory.

2.1.2. Group B: Original Versions

Original versions consist of the five same songs performed by their original

artists. All selected songs were performed by different female singers.

2.1.3. Group C: Cloned Versions

Cloned songs were implemented through Ultimate Vocal Remover 5 (UVR5)

and Retrieval-based-Voice-Conversion-WebUI (RVC).
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The source for the voice model was from Opencpop. The voice model used

5 songs in its list, other than the 5 songs used as cloning stems. These songs

were randomly selected. The recordings in Opencpop were unaccompanied

singing, so no further removal of backing tracks was needed. The blank parts

were cut. The acoustic features in these isolated vocals were extracted and used

to train the target voice model.

The vocal stems were the clean versions of Group B, whose instrumental

tracks had been removed by UVR5. Target cloned versions were finally

synthesized by RVC, depending on the trained voice model and vocal stems,

yielding cloned vocals without backing tracks. The detailed cloning process will

be described in the section “Cloning Process”.

2.1.4. Textgrid Annotation

The primary annotation is in Praat Textgrid format from the Opencpop

corpus. Each textgrid file comprises 7 tiers (Graph 1, Graph 2): (1) sentences, (2)

characters, (3) syllables, (4) notes, (5) duration, (6) segments, (7) melismas.

Graph 1 TextGrid File for Sound File 2004 Cover.wav (One in Group A)
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Graph 2 TextGrid File for Sound File 2004 Original.wav / Clone.wav (One in Group B and C)

For the segments tier, Mandarin employs pinyin, a syllabic transcription

system where consonantal onsets and syllable finals compose syllables. This

means finals in Mandarin are not only simple vowels but also composites

containing a nucleus (a vowel or vowels) and often a nasal final, such as /ua/,

/ian/ and /ing/. Therefore, in this tier, consonantal onsets and syllable finals,

rather than the standard IPA, are observed.

The Textgrid files from Opencpop corpus are suitable for Group A, but not

for Group B and C. While original and cover versions may be perceptually

similar in temporal distributions, they diverge from cloned songs in time. To

ensure accurate comparisons, the TextGrid annotations from the Opencpop

corpus were manually verified for the Group A, and the TextGrid files for

Groups B and C were adjusted based on them. During adjustment, the

researcher manually dragged the boundaries in the segments tier to align with

the actual performance, based on visual inspection of the waveform and
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auditory perception. The sentence boundary changed along with the adjustment

of segment boundaries. Function “rubber banding” in TextGrid Window was

used, so that boundaries within a selection could be dragged together with the

Option and Command keys pressed.

Graph 3 The Comparisons between Groups

2.2. Cloning Process

The cloning process was performed by RVC WebUI. The first step was to

extract features and create a voice model. It required audio data whose duration

was between 10 to 50 minutes. In this study, the total duration of 5 used sound

files was 19 minutes 46 seconds, with the empty part omitted. These truncated

files were uploaded to RVC and automatically traversed by the system. The

processed audio files were then used to extract features through the “rmvpe”

algorithm, which yielded the best result as its instructions said. The subsequent

model training had a total of 500 epochs, and a batch size of 4 was employed

per GPU. The trained model timbre was saved in a .pth file format, and the

efficient features were saved in an .index file.



14

The second step was to infer the new cloned songs, utilizing the .pth file

and .index file. Because the features were extracted from a female singing voice

and were going to be implanted in female singing voices, no modified tone was

applied. The “rmvpe” algorithm was selected and the contribution of retrieved

features was 50%. After setting all these parameters, the cloned songs were

automatically conversed.

2.3. Acoustic Measurement

The chosen acoustic measurements were grouped into sentence-level and

segment-level analyses. The feature extraction was performed by Praat

(Boersma & Weenink, 2025). Three scripts (Appendices) were created for batch

processing.

2.3.1. Sentence-level Cues

2.3.1.1.Pitch

Fundamental frequency was extracted using the “To Pitch (raw

cross-correlation)” function in Praat on a sentence basis. The pitch contour

graphs were the final outputs.

2.3.1.2.Intensity

Because some intervals involved a silent segment or were totally silent, not

all intervals were included. In fact, all intervals that contained a minimum

intensity lower than 0 were excluded, since 0 dB typically represents the

threshold of human hearing. The range per sentence was measured as the
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difference between the 90th percentiles and the 10th percentiles, to mitigate the

influence of extreme values.

2.3.1.3.Spectral Tilt

Spectral tilt was measured per sentence to observe the difference between

the high energy zone and the low energy zone within the same sentences.

2.3.2. Segment-level Cues

2.3.2.1.Jitter

Jitter is usually measured on sustained vowels because they provide easier

observations of micro-instabilities. Since the production was within songs and

no deliberate extension of vowels was allowed, this study extracted all segments

including vowels in Mandarin (Appendices). The difference was calculated in

milliseconds(ms). It was measured in Praat through the function “To

PointProcess Periodic- Get jitter”.

2.3.2.2.Shimmer

For the same reason, shimmer was measured on all segments including

vowel sounds. The measure was expressed in decibels (dB) via the function “To

PointProcess Periodic- Get shimmer” in Praat.

2.3.2.3.Cepstral Peak Prominence (CPP)

Segments involving vowels were extracted from the phoneme tier in the

TextGrid. The corresponding parts in .wav files were used to create CPP by the

function “To PowerCepstrogram”.

2.3.2.4.Harmonics-to-Noise Ratio (HNR)
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It was also applied to segments involving vowels. HNR was obtained

through the function “Analyze Spectrum - To Harmonicity(cc)”. The minimum

pitch value was assumed to be 60 Hz.

2.3.2.5.Deviation fromMedium Intensity

The deviation was measured on all segments instead of only those which

include vowels. The intensity variation within one segment is much lower than

that in a sentence. In this sense, it is implausible to get comparable values

through difference between the 90th percentiles and the 10th percentiles.

Therefore, instead of selecting a range, this study measured the difference value

between the average intensity of a segment and the median intensity of this file.

To prevent the extreme values, those segments with a negative intensity were

excluded.

2.3.2.6.Spectral Tilt

Spectral tilt was also measured on the segment basis to see whether a

difference exists.

2.4. Statistics

The data was processed through R studio (R Core Team, 2024)

To investigate which acoustic features characterize the unnaturalness of

cloned songs, this study set a ternary contrast. It was between cover (Group A),

original (Group B) and cloned versions (Group C). In the following exploratory

research, two pairs of binary contrasts were set. The first one was between cover
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(Group A) and cloned versions (Group C), while the second was between

original (Group B) and cloned versions (Group C).

The statistical comparisons were made across intensity, spectral tilt, jitter,

shimmer, CPP and HNR. Linear mixed models were employed to assess the

acoustic differences across sources. The lmer() function from the lmerTest

package in R was used with restricted maximum likelihood (REML) estimation.

The dependent variables were respectively each observed acoustic cue. The

between-participant variable was the source type, where cover (Group A),

original (Group B) and cloned (Group C) were the three levels. The random

variables included source and id. Id stood for segments located at the same

place across three versions of songs. For example, 2004_01 would occur three

times in cloned, original and cover versions respectively. The effect of source

might vary randomly across different songs.

Pitch contour was compared graphically.

3. Results and Discussions

3.1. Pitch Contour

The number of pitch contour graphs at the sentence level was in total 666.

The analysis skipped all blank graphs where no lyrics existed. To provide a clear

description of pitch contour patterns, the analysis selected graphs labeled as tens

or ten multiples (10, 20, 30...) across the 15 song samples for illustration.

Although a limited number of pitch contours were illustrated here, their features
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were representative and observed across the graphs. Since the cover versions,

recorded by another singer instead of synthesized from the original version, was

unaligned with the original and clone version, it could not be precisely

compared to the original and clone graphs. In this case, most of the comparisons

below were conducted between original stems and their cloned derivatives.

Between original and clone versions, similar to what had been observed in

deepfake speech, the F0 sequence of human and deepfake (cloned) voices was

similar but not identical in the same sentences (Warren et al., 2025). Their

differences were mainly represented through the following aspects:

3.1.1. Continuity

Across most comparisons, graphs of original versions exhibited the most

continuous pitch contour (Graph 4) , while that of clone versions showed more

fragmentation in the pitch curves (Graph 5). The gaps in cloned songs showed

that some syllables connected in human singing had been broken during the

cloning process. This discontinuity suggested that cloned songs might ignore

connections between syllables, which always exist in human singing. The

absence of syllable-to-syllable connections impacted song fluency at the

microscope level, with absent holistic chunks of words sounding like breathing.

Breathing is a subtle factor that influences human perception of naturalness

in speech subconsciously (Layton et al., 2024). Frequent breaths lead to

inconsistent perception of songs, with each break disrupting the listeners’

perception. In singing performance, proper breathing plays a huge part in the
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naturalness and aesthetics of sounds (Wang, 2024). Although a certain number

of breathing gaps enhance the naturalness of perception, the imperceptible

mixed breathing is what singers usually adopt, which requires prolonged

exhalation between words, different from the short breaks between syllables in

the cloned songs. In addition, the normal pattern for breath in speech shows

most breaths exist at the phrase and sentence boundaries, rather than the syllable

boundaries.

Graph 4 (2013Original-sentence 10)

Graph 5 (2013Clone-sentence 10)
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However, in a few times, original versions (Graph 6) might display more

gaps than cloned versions (Graph 7). A drastic pitch leap always co-occurred

with this deviation. In the following example, at around 185 seconds, a sudden

jump to higher than 500 Hz in the original version was observed. In contrast, the

graph from the clone song maintained a continuous pitch contour here.

Graph 6 (2004 Original-sentence 30)

Graph 7 (2004 Clone-sentence 30)

The sudden leap might indicate an error in showing pitch contours, so these

graphs were discarded because of these technical errors.
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3.1.2. Variability

Consistent with what Warren et al. (2025) found, synthetic audio could not

perfectly mimic and generate the correct F0 sequence. Although the clone

adaptation mirrored the broad structure of its cloned basis, the original version,

it appeared less dynamic. Compared with cloned singing voices (Graph 9),

original singing voices (Graph 8) had more subtle variations at the onsets and

ends of each syllable.

Graph 8 (2059 Original-sentence 40)

Graph 9 (2059 Clone-sentence 40)
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This partial discrepancy might indicate that cloned singing voices inhibited

phrasing features from the original singing voices in the pursuit of fluency. The

micro-vibrations in human singing voice had been observed by Ardaillon (2017),

claiming that two types of fluctuations confer naturalness in singing voice. The

first type is independent of the singer’s skills and connected with voice

mechanism and articulation. The second type, different from one singer to

another, conveys expressiveness and enhances aesthetics of singing voice.

No matter which type the fluctuations found here belonged to, it could be

assumed that the absence of these micro-vibrations might lead to reduced

expressiveness, showing a limitation of cloning process in capturing and

imitating emotional expressions. This deficiency might finally lead to more

emotionally flat and robotic in cloned songs.

Despite how subtle these vibrations were, their importance was recognized.

Naturalness would be enhanced if the target song is fitted with vibrations in

reference speech (Umbert et al., 2015) .

3.2. Cloned vs. the Average of Cover and Original voices on files

level

3.2.1. Intensity Range and Spectral Tilt at the Sentence Level

The intensity range, defined as the difference between the 90th percentile

and the 10th percentile intensity, was compared between same sentences from a
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set of files (its cloned, cover and original versions). The model used was

“range_of_intensity.dB. ~ source + (source| song) + (1 | id)”. The average value

of cover and original songs represented human voices. The cloned version was

perceived to be significantly higher than the human voices version (estimated

difference = 2.332 dB, t = 3.470, 95% confidence interval = 0.568dB... 4.096dB,

p = 0.02). The human singing voices themselves did not differ significantly

from each other (estimated difference = 3.189 dB, t = 1.750, 95% confidence

interval = -1.878 dB... 8.256 dB, p = 0.16). No significant distinction existed

between human singing voices and cloned singing voice in terms of spectral tilt

(estimated difference = 0.060 dB , t = 0.058, 95% confidence interval = -

2.816dB...2.935 dB, p = 0.96). The model used was “spectralTilt ~ source +

(source | song) + (1 | id)”.

The widened intensity might be explained by an intensified mechanism

adopted in singing voice synthesis. When humans sing, sub-glottal and

vocal-fold pressure increases compared to the spoken status. Thus, the synthesis

of singing voices deliberately adds pressure to increase the glottal formant’s

frequency and decrease spectral tilt (Ardaillon, 2017). It is possible that this

mechanism was overused during the synthesis process, and the intensity was

amplified in excess.

The random effect for id in terms of intensity range (standard deviation =

7.384 dB) and spectral tilt (standard deviation = 3.486 dB) was great, as the

standard deviation of residual was respectively 3.638 dB and 1.719 dB. This
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high randomness indicated certain differences took place within segments

located at the same positions across versions. The random effect for song was

relatively weak, both in intensity range (standard deviation = 2.624 dB) and

spectral tilt (standard deviation = 1.366 dB), suggesting similarities across

songs.

The above analysis gives a preliminary conclusion that the intensity range

plays a part in distinguishing human vocal songs from cloned songs, while

spectral tilt may not. Thus, a wider intensity range at sentence level may serve

as an acoustic indicator for cloned songs.

3.2.2. Deviation from Medium Intensity and Spectral Tilt at Segment Level

At the segment level, intensity was compared by the deviation from the

median value. The model used was “medium_difference.dB. ~ source + (source

| song) + (1 | id)”. Cloned versions were significantly lower than human voice

versions (estimated difference = 1.868 dB, t = 2.821, 95% confidence interval =

0.031 dB...3.705 dB, p = 0.048) in the difference from median intensity,

indicating less variation. There was no significant difference within human

singing voices (estimated difference = 1.832 dB, t = 1.126, 95% confidence

interval = -2.684 dB... 6.348 dB, p = 0.32).

Interestingly, even if intensity range within a sentence was wider in cloned

singing voices than human singing voices, the intensity deviation from the

median value at the segment level was more concentrated. In other words, the

amplitude had been strengthened but the stability had been improved. This
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finding was consistent with the observations at the sentence level, and might

also be related to an imperfect imitation of the original intensity. The intensity

contour had been found to vary the most at the beginnings and ends of segments

and note sequences in human singing (Umbert et al., 2015). But since voice

synthesis has deficiency in imitation at joint positions, these variations are very

likely to be ignored during the synthesis procedure.

In terms of spectral tilt, the used model was “spectralTilt ~ source + (source

| song) + (1 | id)”. No significant difference was found between human and

cloned singing voices (estimated difference = 0.714 dB, t = 0.302, 95%

confidence interval = - 7.550 dB... 6.068 dB, p = 0.78). Thus, no evidence

showed that spectral tilt was an acoustic cue distinguishing human and cloned

voices.

A higher random effect for id was also observed in deviation from median

intensity (standard deviation = 5.316 dB) and spectral tilt (standard deviation =

8.082 dB), consistent with that at the sentence level. This emphasized the

necessity to investigate the reason behind this high randomness. Id did not

restrict the type of segments, and thus consonants and segments including

vowels were investigated together, which might result in this high randomness .

The analysis at the segment level further confirmed that intensity is crucial

in distinguishing cloned singing voices from human singing voices, with

observations on either intensity deviation or intensity range.

3.2.3. Jitter and Shimmer
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Jitter of cloned songs was observed to be significantly lower than that of

human singing songs (estimated difference = 0.001, t = 3.333, 95% confidence

interval = -1.42*10-4...1.65*10-3, p = 0.03). No significant difference was found

within human singing songs (estimated difference = 5.52*10-4, t = 1.302, 95%

confidence interval = -6.34*10-4...1.74*10-3, p = 0.26). The used model was

“jitter ~ source + (source | song) + (1 | id)”. However, contrary to the previous

prediction, these two types exhibited inverse trends, with cloned songs having

lower jitter.

In clinical linguistics, lower jitter is always connected with stable and

healthy voices, while a higher jitter value is related to disordered voices. To

explain the result in this study, the feeling dimension was introduced. Consistent

with what Norrenbrock et al. (2011) demonstrated, natural synthetic voice

displayed more perturbation to convey natural feelings. In their research, they

found unit-selection-type synthesis was rated better than diphone synthesis in

terms of naturalness, since the first one preserved more original perturbation

from the inventory speaker than the latter.

Here, though seemingly steadier in frequency, cloned singing voice did not

imitate the original perturbation in an idealized way. Without these variations,

singing voices could be perceived as emotionless and consequently less natural.

As for the random factor, the highest influence among the three groups was

id, with a standard deviation as 0.005. The standard deviation for residual was

slightly higher than 0.005. The other random factor did not influence much on
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the model. The random factor song (standard deviation = 0.001) showed a

relatively lower value of variance.

Echoing the pattern found in jitter, cloned singing voice had a significantly

higher value than its human voice counterparts (estimated value = 0.008, t =

3.509, 95% confidence interval = 0.001...0.015, p = 0.02), while no

distinguishing difference was found within human singing voices (estimated

value = 0.015, t = 2.326, 95% confidence interval = -0.003...0.033, p = 0.08). Its

used model was “shimmer ~ source + (source | song) + (1 | id)”. The relatively

lower shimmer value in cloned songs reflected subtle variations in intensity, in

line with the observations in spectral tilt. Cloned songs exhibited a more stable

output of amplitude, which was also out of expectations. Despite always as an

indicator for more stable and cleaner voices, here, the lower value might

indicate an over-regulation during the voice synthesis process .

Random factor id in shimmer showed a similar pattern as jitter, with a

standard deviation 0.017. The standard deviation for residual was 0.019, so it

was undeniable that variance across id was significant. The random factor song

(standard deviation = 0.007) still did not show much difference.

From the observations on the difference between cloned songs and human

vocal songs in jitter and shimmer, it might indicate over-regulation during the

synthetic process. Even if voice cloning systems replicate human voices closely,

they appear to fall short in emulating fluctuation in human vocals. For these

frequency and amplitude micro-variations, it is very likely that the synthetic
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system reduces them to enhance fluency. In this way, however, the innate

vibrations involved in human voice are lost and naturalness is damaged.

In contrast, human singers always show more pitch and intensity

modulations in their performance to convey feelings and emotions. In the

meantime, the imperfect structure of vocal organs determines the inseparable

vibrations in frequency and amplitude. During the synthetic process, however,

some of the subtle variations are ignored by the models. Alternatively, they are

perceived but deliberately suppressed due to the pursuit of smoothness and

fluency, even though synthetic sounds are not constrained by physiological

needs. This over-smoothing effects had already been perceived in singing voice

synthesis and are reported to damage the naturalness of songs (Zhang et al.,

2022).

Although the lower values of jitter and shimmer may enhance the fluency of

songs, they indicate a damage to emotional expression and consequently

diminish the perception of naturalness. The neglect and suppression of these

vibrations play a vital role in distinguishing cloned singing voices from real

human voices. Even if the songs are phonemically more accurate, they sound

less “human”. However, this finding creates a paradox that higher acoustic

fidelity in the pursuit of high fluency may come at the cost of emotional

lacking.

Based on the above analysis, lower jitter and shimmer can be a phonetic

marker for cloned singing voice. Even if synthetic models have made strides in
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fidelity, they may still be unable to capture the subtle vibrations that conveys

expressions or deliberately suppress them, which leads to a lower level of

naturalness.

3.2.4. Cepstral Peak Prominence (CPP)

Cloned versions were found to exhibit higher values than original voices

(estimated value = 1.507 dB, t = 3.600, 95% confidence interval = 0.348 dB...

2.667 dB, p = 0.022). The model used was “ CPP.dB. ~ source + (source | song)

+ (1 | id)”. A higher CPP value indicated greater periodicity, but when it

exceeded a certain range, the voice quality might drop. Norrenbrock et al. (2012)

found that the most muffled voice in their data exhibited the highest CPP values,

but they claimed no clear borderline could be drawn.

Here, based on the previous assumption that cloning process might

over-regularize sounds, a higher CPP value in cloned voices possibly suggested

that the cloning process involved an enhancement of voice periodicity, which

might be excessive compared to human singing. This aligned with the previous

observations that synthesis prioritized signal stability at the expense of subtle

irregularities. The micro-variations used to express feelings and style were

ignored and discarded. Thus, the vocoders made the output sound clearer and

more stable instead of being expressive. In addition, listeners might associate

this higher periodicity with indifference.

Random by-song (standard deviation = 1.066 dB) variance indicated no

huge difference occurred between songs. Though the standard deviation of id
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(standard deviation = 2.639 dB) still remained the highest among them, it was

relatively lower than the residual (standard deviation = 2.976 dB).

However, in terms of CPP, a significant difference between original and

cover versions was perceived (estimated difference = 1.619 dB, t = 5.598, 95%

confidence interval = 0.826 dB... 2.412 dB, p = 0.005). This finding was

counterintuitive, given that both original and cover versions were sung by

human performers. This difference will be further discussed in the “Exploratory

Findings” section.

3.2.5. Harmonics-to-Noise-Ratio (HNR)

Cloned singing voice had significantly higher HNR than human singing

voices (estimated difference = 1.868 dB, t= 2.821, 95% confidence interval =

0.031 dB... 3.705 dB, p = 0.047). The model used was “hnr.dB. ~ source +

(source | song) + (1 | id)”. The elevated HNR value in cloned versions suggested

a stable periodicity, which was consistent with the findings on CPP. A

distinguishing difference between original and cover versions was also

perceived in HNR (estimated difference = 3.248 dB, t = 3.996, 95% confidence

interval = -6.348 dB... 2.684 dB, p = 0.02). This counterintuitive finding,

together with what was found on CPP, will be discussed in “Exploratory

Findings” section.

3.2.6. Exploratory Findings

Based on the above analysis, intensity range at the sentence level, deviation

from median intensity at the segment level, jitter and shimmer have been
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observed to distinguish cloned singing voices from human singing voices. No

significant distinction has been found between the original and cover version in

these metrics.

However, the situation becomes difficult when a significant difference was

also perceived within human singing voices, i.e. the cover version and the

original version. These distinctions existed in CPP (estimated difference = 1.619

dB, t = 5.598, 95% confidence interval = 0.826 dB... 2.412 dB, p = 0.005) and

HNR (estimated difference = 3.248 dB, t = 3.996, 95% confidence interval =

0.995 dB... 5.501 dB, p = 0.02). In intensity and spectral tilt at the segment

level, although no significant difference between cover and original versions has

been found, the random effects for song between them are high. The standard

deviation of intensity is 3.632 dB and that of spectral tilt is 5.477 dB, both

higher than that of residuals (standard deviation of intensity residual: 3.346;

standard deviation of intensity spectral tilt: 5.079). These findings introduced

further questions: How can we ensure these acoustic cues play a part in

distinguishing cloned songs from human singing songs? Is there any pattern?

To explore these questions, this study set two contrasts. One was between

cloned and cover versions, while the other was between original and versions.

3.2.6.1.Intensity Range and Spectral Tilt at Sentence Level

Cloned songs showed a significantly higher number in intensity range than

original songs (estimated difference = 4.046 dB, t = 4.815, 95% confidence

interval = 1.706 dB... 6.387 dB, p = 0.01) but not than cover songs (estimated
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difference = 0.602 dB, t = 0.458, 95% confidence interval = -2.951 dB... 4.155

dB, p = 0.67). In both comparisons, cloned songs exhibited a wider intensity

range.

No conspicuous significance was observed in spectral tilt between either

type of human singing voices and cloned voice.

3.2.6.2.Deviation from Medium Intensity and Spectral Tilt at Segment

Level

Cloned songs exhibited a significant lower value in deviation from medium

intensity at the segment level than original songs (estimated difference = 0.963

dB, 95% confidence interval = 0.226 dB... 1.700 dB, t = 3.632, p = 0.02), while

no significant difference was found between cover and cloned voices (estimated

difference = 2.762 dB, t = 1.910, 95% confidence interval = -1.253 dB... 6.776

dB, p = 0.13). But one commonality lied in that human voices both manifested a

wider deviation from medium intensity on average. Same with the findings on

research questions, the random effect for id was found to be very obvious.

No obvious difference between any one of human singing voices and the

cloned voice was perceived in spectral tilt either.

3.2.6.3.Jitter and Shimmer

In terms of jitter, cloned songs were observed to exhibit significantly lower

value than original songs (estimated difference = 0.001, t = 2.937, 95%

confidence interval = 4.77*10-5... 2.23*10-3, p = 0.04), but not between the

cover and cloned versions (estimated difference = 0.001, t = 2.116, 95%
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confidence interval = -1.91*10-4 ... 1.46*10-3 , p = 0.10). Across the two

contrasts, numerically lower jitter in the cloned voice compared with the human

voices suggested less fundamental frequency variation in synthetic voices.

Likewise, shimmer values between cloned and cover songs did not differ

much (estimated difference = 0.001, t =1.025, 95% confidence interval =

-0.002 ... 0.004,p = 0.36). But cloned songs displayed a significant lower

shimmer than original songs (estimated difference = 0.016, t = 2.801, 95%

confidence interval = 1.68*10-4 ... 3.15*10-2, p = 0.048), with shimmer in cloned

songs higher.

3.2.6.4.Cepstral Peak Prominence (CPP)

For Cepstral Peak Prominence (CPP), cloned versions were observed to

exhibit significantly higher values than original versions (estimated difference =

2.307 dB, t = 6.598, 95% confidence interval = 1.334 dB... 3.281 dB, p = 0.002),

but not than cover versions (estimated difference = 0.699 dB, t = 1.331, 95%

confidence interval = -0.752 dB... 2.149 dB, p = 0.25).

3.2.6.5.Harmonics-to-Noise-Ratio (HNR)

Cloned versions showed a significantly higher value in HNR than original

versions (estimated difference = 3.251 dB , t = 3.708, 95% confidence interval =

0.817 dB... 5.685 dB, p = 0.02). But this distinction was not observed between

cover and cloned songs (estimated difference = 0.007 dB, t = 0.037, 95%

confidence interval = -0.563 dB... 0.579 dB, p = 0.972)

3.2.6.6.Assumptions
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No difference was found between the cover and cloned versions, while more

distinctions were observed between the original and cover version. It pointed to

a serious problem concerning the comparison between human voices singing

and cloned voices singing, which was the difficulty to establish a standard for

human voices.

Specifically, the cover and cloned versions shared the same underlying vocal

source from the Opencpop corpus. But the original versions were performed by

different artists, introducing inter-speakers variability which might contribute to

the difference between cover and original versions. With the difference within

human singing voices, the persuasiveness of CPP and HNR values has been

reduced.

4. Limitations

This study did not control the original version group to have its vocal source

from the same singer, which might influence the perceived difference between

human singing voices and cloned singing voices. In the future study, researchers

can delve into this topic using songs from the same artist as the cloned stems.

Another limitation for this research lay in the gender restrictions. In this

study, the data only included female voices. Without male voice samples, it may

be difficult to conclude that jitter and shimmer have a tendency for cloned songs

values to be lower than human songs.

5. Future Studies

In this study, the random effect for song was found to be weak in terms of
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voice quality metrics. But all samples belonged to Mandarin Pop songs. Will the

weight of random effect change when it comes to other genres? Or will it

change when it comes to other languages? These directions are expected to be

explored. For example, other song genres always exhibit different vocal effects.

RNB (Rhythm and Blues) features with more melisma where pitch manifests

more variations on one syllable, which might cause a difference in the random

effect for song.

In addition, the random factor id, which identified segments at the same

location across versions, showed a high level of randomness. It suggests that

segments in some locations may display certain patterns, and these patterns are

likely to be concerned with segment types, referring to consonantal onsets and

segments including vowels.

It is also suggested that a combined investigation of perceptual studies and

acoustic analyses should be conducted in the future to verify whether their

results correlate. Although humans and models can both detect synthetic voices,

their error patterns differ: humans are more prone to believe deepfakes as

humans while machines tend to misidentify real voices as synthetic (Warren et

al., 2024). This divergence underscores the necessity of combining human

perception and acoustic cues. Whether certain subjective features of speech

correspond to objective acoustic cue is still unclear (Wagner et al., 2019).

Moreover, in songs, the lexical pitch is generated to match a musical score.

Human singing may incorporate expressive deviations from the musical note,
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while cloned vocals might not replicate them perfectly. Voice quality metrics

were proved to vary between lower and higher registers (Meireles & Mixdorff,

2020). Whether this difference will be perceived between segments

corresponding with musical notes in lower register and higher register is worthy

of being researched.

6. Conclusions

The acoustic features jitter and shimmer can be regarded as distinguishing

factors for cloned and human singing voice, since cloned songs always exhibit

lower jitter and shimmer. These low values may result from over-regularity

during the singing voice cloning process. Intensity is another cue that explains

why cloned songs are perceived less natural than human singing songs.

However, this study cannot draw conclusions on spectral tilt, CPP or HNR.

To conclude, humans are imperfect, so is our voice. If cloned voices want to

be more real, they need to embrace human’s imperfection.
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Appendices
Table 1

Songs for Model

Training

(Chinese)

Songs for Model

Training

(English)

Songs for

Targeted Stimuli

(Chinese)

Songs for

Targeted Stimuli

(English)

《光年之外》 Light Years

Away

《半句再见》 Half a Goodbye

《我怀念的》 What I Miss 《走马》 Galloping Horse

《日不落》 Sun Never Sets 《宁夏》 Quiet Summer

《勇气》 Courage 《可惜不是你》 Unfortunately

Not You

《易燃易爆炸》 Highly

Flammable and

Explosive

《阴天》 Cloudy Day

Lists for segments extracted for voice quality metrics

a e o i u v er ia ie

ua uo ve ai ei ao ou an en

in vn iao iou uan van ian uai uei

uen ang eng ong ing iang iong uang ueng

Praat Script 1: Intensity and Spectral Tilt at sentence level
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#Step 1: Read TextGrid Files and Wav Files
appendInfoLine: "fileName source song id range_of_intensity(dB) spectralTilt"
folder$ = "Files"
fileNames$# = fileNames$# (folder$ + "/*.TextGrid")
for ifile to size (fileNames$#)

textgrid = Read from file: folder$ + "/" + fileNames$# [ifile]
name$ = fileNames$# [ifile] - ".TextGrid"
if index (name$, "_Clone") >0

source$ = "C"
elsif index (name$, "_Original") >0

source$ = "O"
else

source$ = "V"
endif
song$ = name$ - "_Clone" - "_Original"
sound = Read from file: folder$ + "/" + name$ + ".wav"

#Step 2: Measure and Draw Pitch

selectObject: sound
intensity = To Intensity: 100.0, 0.0, "yes"
intensity_max = Get maximum: 0.0, 0.0, "parabolic"
intensity_min = Get minimum: 0.0, 0.0, "parabolic"

selectObject: textgrid
number_of_sentences = Get number of intervals: 1
for m from 1 to number_of_sentences

selectObject: textgrid
sentence_start = Get start point: 1, m
sentence_end = Get end point: 1, m
selectObject: sound
sound2 = Extract part: sentence_start, sentence_end, "rectangular", 1.0, "yes"
path$ = "E:\Pitch Graphs\"
name$ = "pitch_" + fileNames$#[ifile] + string$(m) + ".png"
selectObject: sound2
pitch2 = To Pitch (raw cross-correlation): 0.0, 50, 600, 15, "yes", 0.03, 0.45, 0.01,

0.35, 0.14
Select outer viewport: 0, 6, 0, 3
selectObject: pitch2
Draw: 0, 0, 0, 500, "yes"
Save as 300-dpi PNG file: path$ + name$
Erase all
removeObject: sound2, pitch2

endfor

#Step 3: Measure Intensity Range and Spectral Tilt at sentence level

selectObject: textgrid
number_of_sentences = Get number of intervals: 1
for m from 1 to number_of_sentences
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selectObject: textgrid
sentence_start = Get start point: 1, m

sentence_end = Get end point: 1, m
selectObject: sound
sound_sentence = Extract part: sentence_start, sentence_end, "rectangular", 1.0,

"yes"
selectObject: sound_sentence
intensity_sentence = To Intensity: 100.0, 0.0, "yes"
intensity_min = Get minimum: 0.0, 0.0, "parabolic"
intensity0.1 = Get quantile: 0, 0, 0.1
intensity0.9 = Get quantile: 0, 0, 0.9
if intensity_min < 0

intesity_range$ = "NA"
else

intensity_range$ = string$ (intensity0.9 - intensity0.1)
selectObject: sound_sentence
spectrum_sentence = To Spectrum: "no"
spectralTilt_sentence = Get band energy difference: 0.0, 500.0, 500.0, 4000.0
appendInfoLine: fileNames$# [ifile]," ", source$, " ", song$, " ", song$ + "_" +

string$ (m), " ", intensity_range$," ", spectralTilt_sentence
removeObject: spectrum_sentence

endif
removeObject: sound_sentence, intensity_sentence

endfor
removeObject: textgrid, sound
endfor

Praat Script 2: Intensity and Spectral Tilt at segment level
#Step 1: Read TextGrid Files and Wav Files
appendInfoLine: "fileName source song id segments medium_difference(dB)
spectralTilt"
folder$ = "Files"
fileNames$# = fileNames$# (folder$ + "/*.TextGrid")
for ifile to size (fileNames$#)

textgrid = Read from file: folder$ + "/" + fileNames$# [ifile]
name$ = fileNames$# [ifile] - ".TextGrid"
if index (name$, "_Clone") >0

source$ = "C"
elsif index (name$, "_Original") >0

source$ = "O"
else

source$ = "V"
endif
song$ = name$ - "_Clone" - "_Original"
sound = Read from file: folder$ + "/" + name$ + ".wav"

#Step 2: Measure Intensity and Spectral Tilts at segment level
selectObject: sound
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intensity = To Intensity: 100.0, 0.0, "yes"
intensity_median = Get quantile: 0, 0, 0.5
selectObject: textgrid
number_of_phonemes = Get number of intervals: 6
for n from 1 to number_of_phonemes

selectObject: textgrid
segment_start = Get start point: 6, n
segment_end = Get end point: 6, n
segment_label$ = Get label of interval: 6, n
selectObject:sound
sound_segment = Extract part: segment_start, segment_end, "rectangular", 1.0, "yes"
selectObject: sound_segment
duration_segment = Get total duration
duration_min_segment = 0.064
if duration_segment > duration_min_segment

selectObject: sound_segment
intensity_segment = To Intensity: 100.0, 0.0, "yes"
intensity_min = Get minimum: 0.0, 0.0, "parabolic"
if intensity_min > 0

intensity_mean = Get mean: 0.0, 0.0, "energy"
intensity_difference$ = string$ (intensity_mean - intensity_median)
selectObject: sound_segment
spectrum_segment = To Spectrum: "no"
spectralTilt_segment = Get band energy difference: 0.0, 500.0, 500.0,

4000.0
spectralTilt_segment$ = string$ (spectralTilt_segment)
removeObject: intensity_segment, spectrum_segment

else
intensity_difference$ = "NA"
spectralTilt_segment$ = "NA"
removeObject: intensity_segment

endif
else

intensity_difference$ = "NA"
spectralTilt_segment$ = "NA"

endif
appendInfoLine: fileNames$# [ifile]," ", source$, " ", song$, " ", song$ + "_" +

string$ (n), " ", segment_label$, " ", intensity_difference$," ", spectralTilt_segment$
removeObject: sound_segment

endfor
removeObject: intensity, textgrid, sound

endfor

Praat Script 3: Jitter, Shimmer, CPP, HNR
#Step 1: Read TextGrid Files and Wav Files

appendInfoLine: "song source id segments CPP(dB) hnr(dB) jitter shimmer"
folder$ = "Files"
fileNames$# = fileNames$# (folder$ + "/*.TextGrid")
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for ifile to size (fileNames$#)
textgrid = Read from file: folder$ + "/" + fileNames$# [ifile]
name$ = fileNames$# [ifile] - ".TextGrid"
if index (name$, "_Clone") >0

source$ = "C"
elsif index (name$, "_Original") >0

source$ = "O"
else

source$ = "V"
endif
song$ = name$ - "_Clone" - "_Original"
sound = Read from file: folder$ + "/" + name$ + ".wav"

#Step 2: Measure CPP and HNR

iline = 1
list$# = {"a","e","o","i","u","v",

..."er","ia","ie","ua","uo","ve","ai","ei","ao","ou","an","en","in","vn",

..."iao","iou","uan","van","ian","uai","uei","uen",

..."ang","eng","ong","ing","iang","iong","uang","ueng"}
selectObject: textgrid
number_of_phonemes = Get number of intervals: 6
for n from 1 to number_of_phonemes

selectObject: textgrid
phoneme_start = Get start point: 6, n
phoneme_end = Get end point: 6, n
phone_label$ = Get label of interval: 6, n
if index (list$#, phone_label$) > 0

selectObject: sound
sound3 = Extract part: phoneme_start, phoneme_end, "rectangular", 1.0, "yes"
selectObject: sound3
duration = Get total duration
duration_min = 6.0/70
if duration >= duration_min

pitch3 = To Pitch (raw cross-correlation): 0.0, 100, 600, 15, "yes", 0.03,
0.45, 0.01, 0.35, 0.14

selectObject: sound3
cpp = To PowerCepstrogram: 70, 0.002, 5000, 50
cpp1 = To PowerCepstrum (slice): 0.15
prominence = Get peak prominence: 70, 333.3, "parabolic", 0.001, 0.05,

"straight", "robust slow"
selectObject: sound3
hnr = To Harmonicity (cc): 0.01, 60.0, 0.1, 1.0
selectObject: hnr
hnr_mean = Get mean: 0.0, 0.0
removeObject: cpp, cpp1, hnr

else
pitch3 = 0 ; No objects
hnr_mean = 0.0
prominence = 0.0
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endif

#Step 3: Measure Jitter and Shimmer

if pitch3 <> 0
selectObject: sound3, pitch3
point = To PointProcess (cc)
jitter = Get jitter (local): 0, 0, 0.0001, 0.02, 1.3
selectObject: sound3, point
shimmer = Get shimmer (local): 0, 0, 0.0001, 0.02, 1.3, 1.6
appendInfoLine: song$, " ", source$ , " ", song$ + "_" + string$ (n), " ",

phone_label$, " ", prominence, " ", hnr_mean, " ", jitter, " ", shimmer
removeObject: sound3, pitch3, point
iline = iline + 1

endif
endif

endfor
endfor
removeObject: sound, textgrid

RMarkdown File
Read Tables
```{r}
library(tidyverse)
library(lmerTest)
library(lme4)
library(dplyr)

data_intensity_sentence_all <- read.table("data/intensity sentence.txt", header = TRUE,
stringsAsFactors = TRUE)

data_intensity_sentence_all

data_intensity_segment_all <- read.table("data/intensity segment.txt", header = TRUE,
stringsAsFactors = TRUE)

data_intensity_segment_all <-
subset(data_intensity_segment_all, !data_intensity_segment_all$segments%in%
(c("SP","AP")))
data_intensity_segment_all

data_phoneme_all <- read.table("data/Phoneme.txt", header = TRUE, stringsAsFactors =
TRUE)
data_phoneme_all$jitter <- as.numeric(as.character(data_phoneme_all$jitter))
data_phoneme_all$shimmer <- as.numeric(as.character(data_phoneme_all$shimmer))
data_phoneme_all
```

Set Contrasts
```{r}
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CODE_VOCAL <- +0.5
CODE_ORIGINAL <- -0.5
CODE_CLONE <- 0
CODE_CLONE1 <- -0.5
CODE_CLONE2 <- +0.5

CODE_AVERAGE_VOCAL <- -1/3
CODE_AVERAGE_CLONE <- +2/3
CODE_AVERAGE_ORIGINAL <- -1/3

contrasts <- cbind(
c(CODE_CLONE, CODE_ORIGINAL, CODE_VOCAL),

c(CODE_AVERAGE_CLONE,CODE_AVERAGE_ORIGINAL,CODE_AVERAGE_VOCA
L)

)

colnames(contrasts) <- cbind(c("-O+V"),
c("-VO+C"))

contrast1 <- cbind(c(CODE_CLONE1, CODE_VOCAL))
colnames(contrast1) <- c("-C+V")
contrast2 <- cbind(c(CODE_CLONE2, CODE_ORIGINAL))
colnames(contrast2) <- c("-O+C")
```

Intensity and Spectral Tilts (ternary) at the Segment Level
```{r}
contrasts(data_intensity_segment_all$source) <- contrasts
contrasts(data_intensity_segment_all$source)

model_intensity_segment <- lmerTest::lmer(medium_difference.dB. ~ source + (source| song)
+ (1 | id),

data = data_intensity_segment_all, REML = TRUE)
fixedEffects_is <- lme4::fixef(model_intensity_segment)
cbind(names(fixedEffects_is),

lmerTest::contest(model_intensity_segment,
diag(length(fixedEffects_is)), joint = FALSE))

summary(model_intensity_segment)

model_spectralTilt_segment <- lmerTest::lmer(spectralTilt ~ source + (source| song) + (1| id),
data = data_intensity_segment_all, REML = TRUE)

fixedEffects_ss <- lme4::fixef(model_spectralTilt_segment)
cbind(names(fixedEffects_ss),

lmerTest::contest(model_spectralTilt_segment,
diag(length(fixedEffects_ss)), joint = FALSE))

summary(model_spectralTilt_segment)
```

Intensity and spectral tilt (between vocal and cloned versions) at the Segment Level
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```{r}
data_intensity_segment_all1 <- data_intensity_segment_all %>%
filter(source %in% c("V", "C"))

data_intensity_segment_all1$source <- droplevels(data_intensity_segment_all1$source)

contrasts(data_intensity_segment_all1$source) <- contrast1
contrasts(data_intensity_segment_all1$source)

model_intensity_segment1 <- lmerTest::lmer(medium_difference.dB. ~ source + (source|
song) + (1 | id),

data = data_intensity_segment_all1, REML = TRUE)
fixedEffects_is1 <- lme4::fixef(model_intensity_segment1)
cbind(names(fixedEffects_is1),

lmerTest::contest(model_intensity_segment1,
diag(length(fixedEffects_is1)), joint = FALSE))

summary(model_intensity_segment1)

model_spectralTilt_segment1 <- lmerTest::lmer(spectralTilt ~ source + (source| song) + (1|
id), data = data_intensity_segment_all1, REML = TRUE)
fixedEffects_ss1 <- lme4::fixef(model_spectralTilt_segment1)
cbind(names(fixedEffects_ss1),

lmerTest::contest(model_spectralTilt_segment1,
diag(length(fixedEffects_ss1)), joint = FALSE))

summary(model_spectralTilt_segment1)
```

Intensity and spectral tilt (between original and cloned versions) at the Segment Level
```{r}
data_intensity_segment_all2 <- data_intensity_segment_all %>%
filter(source %in% c("C", "O"))

data_intensity_segment_all2$source <- droplevels(data_intensity_segment_all2$source)

contrasts(data_intensity_segment_all2$source) <- contrast2
contrasts(data_intensity_segment_all2$source)

model_intensity_segment2 <- lmerTest::lmer(medium_difference.dB. ~ source + (source|
song) + (1 | id) ,

data = data_intensity_segment_all2, REML = TRUE)
fixedEffects_is2 <- lme4::fixef(model_intensity_segment2)
cbind(names(fixedEffects_is2),

lmerTest::contest(model_intensity_segment2,
diag(length(fixedEffects_is2)), joint = FALSE))

summary(model_intensity_segment2)

model_spectralTilt_segment2 <- lmerTest::lmer(spectralTilt ~ source + (source| song) + (1|
id),

data = data_intensity_segment_all2, REML = TRUE)
fixedEffects_ss2 <- lme4::fixef(model_spectralTilt_segment2)
cbind(names(fixedEffects_ss2),

lmerTest::contest(model_spectralTilt_segment2,
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diag(length(fixedEffects_ss2)), joint = FALSE))
summary(model_spectralTilt_segment2)
```

Intensity and Spectral Tilts (Ternary) at the Sentence Level
```{r}
contrasts(data_intensity_sentence_all$source) <- contrasts
contrasts(data_intensity_sentence_all$source)

model_intensity_sentence <- lmerTest::lmer(range_of_intensity.dB. ~ source + (source| song)
+ (1 | id),

data = data_intensity_sentence_all, REML = TRUE)
fixedEffects_i_s <- lme4::fixef(model_intensity_sentence)
cbind(names(fixedEffects_i_s),

lmerTest::contest(model_intensity_sentence,
diag(length(fixedEffects_i_s)), joint = FALSE))

summary(model_intensity_sentence)

model_spectralTilt_sentence <- lmerTest::lmer(spectralTilt ~ source + (source| song) + (1|
id),

data = data_intensity_sentence_all, REML = TRUE)
fixedEffects_s_s <- lme4::fixef(model_spectralTilt_sentence)
cbind(names(fixedEffects_s_s),

lmerTest::contest(model_spectralTilt_sentence,
diag(length(fixedEffects_s_s)), joint = FALSE))

summary(model_spectralTilt_sentence)
```

Intensity and spectral tilt (between cover and cloned versions) at the Sentence Level
```{r}
data_intensity_sentence_all1 <- data_intensity_sentence_all %>%
filter(source %in% c("C", "V"))

data_intensity_sentence_all1$source <- droplevels(data_intensity_sentence_all1$source)

contrasts(data_intensity_sentence_all1$source) <- contrast1
contrasts(data_intensity_sentence_all1$source)

model_intensity_sentence1 <- lmerTest::lmer(range_of_intensity.dB. ~ source + (source|
song) + (1 | id),

data = data_intensity_sentence_all1, REML = TRUE)
fixedEffects_i_s1 <- lme4::fixef(model_intensity_sentence1)
cbind(names(fixedEffects_i_s1),

lmerTest::contest(model_intensity_sentence1,
diag(length(fixedEffects_i_s1)), joint = FALSE))

summary(model_intensity_sentence1)

model_spectralTilt_sentence1 <- lmerTest::lmer(spectralTilt ~ source + (source| song) + (1|
id),

data = data_intensity_sentence_all1, REML = TRUE)
fixedEffects_s_s1 <- lme4::fixef(model_spectralTilt_sentence1)
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cbind(names(fixedEffects_s_s1),
lmerTest::contest(model_spectralTilt_sentence1,

diag(length(fixedEffects_s_s1)), joint = FALSE))
summary(model_spectralTilt_sentence1)
```

Intensity and spectral tilt (between original and cloned versions) at the Sentence Level
```{r}
data_intensity_sentence_all2 <- data_intensity_sentence_all %>%
filter(source %in% c("C", "O"))

data_intensity_sentence_all2$source <- droplevels(data_intensity_sentence_all2$source)

contrasts(data_intensity_sentence_all2$source) <- contrast2
contrasts(data_intensity_sentence_all2$source)

model_intensity_sentence2 <- lmerTest::lmer(range_of_intensity.dB. ~ source + (source|
song) + (1 | id),

data = data_intensity_sentence_all2, REML = TRUE)
fixedEffects_i_s2 <- lme4::fixef(model_intensity_sentence2)
cbind(names(fixedEffects_i_s2),

lmerTest::contest(model_intensity_sentence2,
diag(length(fixedEffects_i_s2)), joint = FALSE))

summary(model_intensity_sentence2)

model_spectralTilt_sentence2 <- lmerTest::lmer(spectralTilt ~ source + (source| song) + (1|
id),

data = data_intensity_sentence_all2, REML = TRUE)
fixedEffects_s_s2 <- lme4::fixef(model_spectralTilt_sentence2)
cbind(names(fixedEffects_s_s2),

lmerTest::contest(model_spectralTilt_sentence2,
diag(length(fixedEffects_s_s2)), joint = FALSE))

summary(model_spectralTilt_sentence2)
```

jitter, shimmer, cpp, lmer (ternary)
```{r}
contrasts(data_phoneme_all$source) <- contrasts
contrasts(data_phoneme_all$source)

model_jitter <- lmerTest::lmer(jitter ~ source + (source| song) + (1| id),
data = data_phoneme_all, REML = TRUE)

fixedEffects_jitter <- lme4::fixef(model_jitter)
cbind(names(fixedEffects_jitter),

lmerTest::contest(model_jitter,
diag(length(fixedEffects_jitter)), joint = FALSE))

summary(model_jitter)

model_shimmer <- lmerTest::lmer(shimmer ~ source + (source| song) + (1| id),
data = data_phoneme_all, REML = TRUE)

fixedEffects_shimmer <- lme4::fixef(model_shimmer)
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cbind(names(fixedEffects_shimmer),
lmerTest::contest(model_shimmer,

diag(length(fixedEffects_shimmer)), joint = FALSE))
summary(model_shimmer)

model_cpp <- lmerTest::lmer(CPP.dB. ~ source + (source| song) + (1| id),
data = data_phoneme_all, REML = TRUE)

fixedEffects_cpp <- lme4::fixef(model_cpp)
cbind(names(fixedEffects_cpp),

lmerTest::contest(model_cpp,
diag(length(fixedEffects_cpp)), joint = FALSE))

summary(model_cpp)

model_hnr <- lmerTest::lmer(hnr.dB. ~ source + (source| song) + (1| id),
data = data_phoneme_all, REML = TRUE)

fixedEffects_hnr <- lme4::fixef(model_hnr)
cbind(names(fixedEffects_hnr),

lmerTest::contest(model_hnr,
diag(length(fixedEffects_hnr)),joint = FALSE))

summary(model_hnr)
```

jitter, shimmer, cpp, lmer (between vocal and cloned versions)
```{r}
data_phoneme_all_filtered1 <- data_phoneme_all %>%
filter(source %in% c("V", "C"))

data_phoneme_all_filtered1$source <- droplevels(data_phoneme_all_filtered1$source)

contrasts(data_phoneme_all_filtered1$source) <- contrast1
contrasts(data_phoneme_all_filtered1$source)

model_jitter1 <- lmerTest::lmer(jitter ~ source + (source| song) + (1| id),
data = data_phoneme_all_filtered1, REML = TRUE)

fixedEffects_jitter1 <- lme4::fixef(model_jitter1)
cbind(names(fixedEffects_jitter1),

lmerTest::contest(model_jitter1,
diag(length(fixedEffects_jitter1)), joint = FALSE))

summary(model_jitter1)

model_shimmer1 <- lmerTest::lmer(shimmer ~ source + (source| song) + (1| id),
data = data_phoneme_all_filtered1, REML = TRUE)

fixedEffects_shimmer1 <- lme4::fixef(model_shimmer1)
cbind(names(fixedEffects_shimmer1),

lmerTest::contest(model_shimmer1,
diag(length(fixedEffects_shimmer1)), joint = FALSE))

summary(model_shimmer1)

model_cpp1 <- lmerTest::lmer(CPP.dB. ~ source + (source| song) + (1| id),
data = data_phoneme_all_filtered1, REML = TRUE)

fixedEffects_cpp1 <- lme4::fixef(model_cpp1)
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cbind(names(fixedEffects_cpp1),
lmerTest::contest(model_cpp1,

diag(length(fixedEffects_cpp1)), joint = FALSE))
summary(model_cpp1)

model_hnr1 <- lmerTest::lmer(hnr.dB. ~ source + (source| song) + (1| id),
data = data_phoneme_all_filtered1, REML = TRUE)

fixedEffects_hnr1 <- lme4::fixef(model_hnr1)
cbind(names(fixedEffects_hnr1),

lmerTest::contest(model_hnr1,
diag(length(fixedEffects_hnr1)), joint = FALSE))

summary(model_hnr1)
```

jitter, shimmer, cpp, lmer (between original and cloned versions)
```{r}
data_phoneme_all_filtered2 <- data_phoneme_all %>%
filter(source %in% c("O", "C"))

data_phoneme_all_filtered2$source <- droplevels(data_phoneme_all_filtered2$source)

contrasts(data_phoneme_all_filtered2$source) <- contrast2
contrasts(data_phoneme_all_filtered2$source)

model_jitter2 <- lmerTest::lmer(jitter ~ source + (source| song) + (1| id),
data = data_phoneme_all_filtered2, REML = TRUE)

fixedEffects_jitter2 <- lme4::fixef(model_jitter2)
cbind(names(fixedEffects_jitter2),

lmerTest::contest(model_jitter2,
diag(length(fixedEffects_jitter2)), joint = FALSE))

summary(model_jitter2)

model_shimmer2 <- lmerTest::lmer(shimmer ~ source + (source| song) + (1| id),
data = data_phoneme_all_filtered2, REML = TRUE)

fixedEffects_shimmer2 <- lme4::fixef(model_shimmer2)
cbind(names(fixedEffects_shimmer2),

lmerTest::contest(model_shimmer2,
diag(length(fixedEffects_shimmer2)), joint = FALSE))

summary(model_shimmer2)

model_cpp2 <- lmerTest::lmer(CPP.dB. ~ source + (source| song) + (1| id),
data = data_phoneme_all_filtered2, REML = TRUE)

fixedEffects_cpp2 <- lme4::fixef(model_cpp2)
cbind(names(fixedEffects_cpp2),

lmerTest::contest(model_cpp2,
diag(length(fixedEffects_cpp2)), joint = FALSE))

summary(model_cpp2)

model_hnr2 <- lmerTest::lmer(hnr.dB. ~ source + (source| song) + (1| id),
data = data_phoneme_all_filtered2, REML = TRUE)

fixedEffects_hnr2 <- lme4::fixef(model_hnr2)
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cbind(names(fixedEffects_hnr2),
lmerTest::contest(model_hnr2,

diag(length(fixedEffects_hnr2)), joint = FALSE))
summary(model_hnr2)
```
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