

THE IMPACT OF PARALINGUISTIC

EVENTS ON AUTOMATIC SPEECH

RECOGNITION

EVIDENCE FROM BUCKEYE CORPUS

XUEFEIYANG ZHANG

Content

Introduction ... 3

Research Background and Motivation ... 3

Research questions ... 4

Overview of the Paper Structure and Main Conclusion ... 5

Methodology .. 5

Corpus description ... 5

Text cleaning and annotation ... 7

Word error rate (WER) culculation and error detection ... 8

Temporal mapping of errors to paralinguistic events .. 9

Acoustic feature extraction .. 10

Statistic analysis strategy .. 12

Descriptive Statistics .. 12

Inferential statistics ... 13

Analysis & Results .. 15

Descriptive statistics ... 15

Distribution of paralinguistic event types ... 15

WER by Event Type .. 16

Composition of error types by event type ... 17

Temporal localization of errors .. 19

Distribution of acoustic features by error occurrence .. 20

Spearman Correlation among acoustic feature ... 23

Inferential statistics ... 23

Logistic regression ... 23

Model 1: any error occurrence... 24

Model 2: deletion error occurrence ... 26

Model 3: insertion error occurrence... 27

Model 4: substitution error occurrence... 28

Summary ... 29

Discussion. ... 29

Conclusion ... 32

Reference ... 35

Appendix .. 37

Appendix 1: Adjacent.praat ... 37

Appendix 2: tierlabelcheck.praat .. 38

Appendix 3: extract_tier2.praat ... 40

Appendix 4:clean_stan_collection.praat ... 46

Appendix 5: werstep1.praat ... 51

Appendix 6: parastep2.praat ... 60

Appendix 7: aacoustic feature.praat ... 67

Appendix 8: master_table.praat ... 70

Appendix 9: descriptive.stat,rmd.. 75

Appendix 10: regression_model.rmd .. 84

Introduction

Research Background and Motivation

In daily interpersonal conversations, various paralinguistic events are often

accompanied, such as laughter, throat clearing and sigh, etc. Although these non-verbal

sounds do not constitute meaningful words or sentences, they play an important role in

communication: On the one hand, they are natural means of expressing emotions and

attitudes, capable of conveying the speaker's emotional state (good laughter, lost sighs,

etc.) (Schuller et al., 2013); On the other hand, these acoustic signals can be used to

regulate the rhythm of interaction and the flow of conversation. For example, laughter

is often used to soften the tone and enhance affinity, while filler words or throat clearing

sounds are sometimes used to maintain the right to speak and prevent the other party

from interrupting, also express personality (Argyle, Alkema, & Gilmour, 1971; Isbister

& Nass, 2000; Mazzocconi et al., 2022). According to research statistics, non-verbal

event such as laughter account for nearly 10% of the vocalisation time in multi-person

meetings, This shows their universality and importance in oral

communication.(Laskowski, 2009). Therefore, studying these paralinguistic event

phenomena is conducive to a better understanding of the emotional transmission and

interaction regulation mechanisms in conversations.

However, the current mainstream Automatic Speech Recognition (ASR)

technology lacks robustness to the above-mentioned non-verbal events. Most

commercial or research-level ASR systems often use “clean” speech without

interference during training. When the actual input speech signals are mixed with

unconventional sounds such as laughter and sighing, the system is prone to mistake

them for noise or simply ignore them. Thereby introducing deletion, replacement or

insertion errors (Fukuda et al., 2018; Truong & Van Leeuwen, 2007). For example,

Fukuda et al. found that when using a model trained only on neutral speech to recognise

speech with emotional components, the recognition accuracy would significantly

decrease. It also can be seen that the improper handling of emotional or paralinguistics

components byf existing ASRs is more likely to lead to a significant reduction in

transcription performance.

In an attempt to address this problem, several researchers have turned their

attention to automatic detection of paralinguistics events. Relevant studies have shown

that the introduction of specialised acoustic features can effectively distinguish non-

verbal event from normal speech (Ludusan, 2023) . Furthermore, the Harmonics to

Noise Ratio (HNR) can measure the proportion of periodic components and the spectral

tilt is able to describe energy distribution. It has also been proven that these features

have significant discriminative power for detecting paralinguistic events such as

laughter and sighs (Ludusan & Wagner, 2022). With the help of these features to

indicate the sound quality and spectral form, the accuracy of the event detection

algorithm has been greatly improved. In tasks of social signal detection in Gupta,

Audhkhasi, Lee, & Narayanan in 2016, the AUC of the model integrating such features

for laughter events can exceed 95%. Overall, the existing literature has achieved some

results in the extraction of acoustic features and event detection of paralinguistic events.

these research has laid variable and solid foundation to further research.

Nevertheless, no study has systematically explored how these paralinguistic events

affect the actual transcription performance of ASR. Previous work mostly focused on

detecting events such as laughter itself, but lacked in-depth analysis of systematic error

patterns. Are certain acoustic features (such as abnormally low HNR or significant

spectral skew) associated with a high error rate? And if so, what kinds of errors are most

common (deletions, insertions, substitutions) when the ASR encounters these sounds?

These questions have not been effectively answered so far. For this purpose, this paper

selects the commercial ASR of iFlytek as the research object. By using the

paralinguistic vocal segments such as laughter, throat clearing, and sighing in the real

dialogue corpus of the Buckeyes corpus, it systematically analyses the error patterns of

this ASR before and after these special acoustic events. A correlation model between

vocalisation features and recognition error rate is quantitatively established in

combination with acoustic characteristics. iFlytek Co., Ltd. is a globally leading listed

company in intelligent speech and artificial intelligence. Its core technologies cover

intelligent speech recognition, synthesis, natural language processing and cognitive

intelligence. Meanwhile, the ASR system of iflytek has been widely applied in fields

such as government affairs, education, customer service and healthcare, with mature

commercial products and large-scale real deployment cases. Therefore, it has become

an ideal object for studying the performance of ASR under the challenge of

paralinguistic languages. This study aims to reveal the influence mechanism of

paralinguistic events on recognition performance and provide a reference for improving

the robustness of ASR in natural conversation scenarios.

Research questions

Based on the above background, this paper focuses on the following Research

Questions:

• RQ1: When paralinguistics events such as laughter, throat-clearing, and sigh occur

in the speech, are there systematic error patterns in the transcription of iFlytek ASR?

What specific types of errors (deletion, replacement, insertion) are manifested and

where do they occur frequently?

• RQ2: If such errors do exist, are they statistically associated with the acoustic

characteristics of the sound emission segment (such as HNR, spectral tilt, zero cross

rate ZCR, etc.)? That is to say, can these indicators be used to explain and predict

situations with high error rates?

Overview of the Paper Structure and Main Conclusion

By answering the above questions, this paper aims to fill the gap in the research on

paralinguistic event and the error mechanism of ASR, deepen the understanding of the

causes of recognition failure, and provide a basis for designing more robust

conversational ASR systems in the future.

The following structural arrangement of this article is as follows:

Chapter 2, Methodology, introduces the experimental process, including corpus

preprocessing, acoustic feature extraction, error annotation methods and statistic

analysis strategy; Chapter 3 Analysis & Results presents the statistical analysis of the

transcription performance of iFlytek ASR before and after paralinguistic events,

quantifying the types of errors and the correlation strength with acoustic characteristics;

Chapter 4 Discussion gives a glance at the further view of the research topic; Chapter

5 Conclusion summarises the contributions of this paper and presents the limitations of

this study as well as the future research directions.

Methodology

Corpus description

This study conducted our experiments on the Buckeye Speech Corpus, a well-

known repository of spontaneous American English conversation. The Buckeye Corpus

contains recorded interviews of 40 speakers from central Ohio (20 male, 20 female),

balanced by age group (half under 40 years old, half over 40 years old), in order to

obtain diverse samples of adult voices. Each speaker participated in an interview about

everyday topics, yielding natural conversational speech; individual interviews range

from approximately 30 to 60 minutes in duration. The corpus contains approximately

300,000 words of transcribed informal speech in total. The conversations are rich in

disfluencies (such as pauses and fillers) and paralinguistic vocalizations.The corpus

creators explicitly annotated certain non-verbal events (such as laughter) in the

transcripts, which provided a valuable starting point for our study.

Laughter is officially transcribed with special tags (such as "<LAUGH>"),

allowing us to automatically locate many instances of laughter in the data. However,

other paralinguistic features were not systematically marked in the original

transliteration. Therefore, I made additional manual annotations to identify and mark

these events.

Guided by the recording and its aligned transcribed text, the study have conducted

detailed annotation of the target sublanguage event. Use Praat (version 6.4.30) for

annotation. For each interview recording, for the audio and its corresponding annotation

file, writer compiled the Adjacent.praat script (Appendix 1) to load it into Praat.

Subsequently, annotator added tier7: para to the TextGrid for paralinguistic events,

marking the occurrence of each target event with precise time boundaries. define the

tags as follows:

⚫ laughter: Any laughter segment is marked as "laughter", covering the complete

duration of audible laughter. Including muffled laughter (such as light laughter

with vocal cord vibration) and clear laughter or breathy laughter (such as

laughter with only exhalation) (if present in the paragraph).

⚫ Throat-clearing: Any instance of throu-clearing (typically short, rough, cough-

like sounds used for clearing the throat) is marked as "throat-clearing". These

events are usually very brief and characterized by low tones, shrill or rough

sounds.

⚫ sigh: Any audible sigh (usually a long exhalation, sometimes accompanied by

breathy or slightly voiced sounds) is marked as "sigh". We include obvious

sighs and softer breaths as long as the annotator can confidently recognize

them as sighs.

In this section, annotator located a grand total of 162 target occurrences of

paralinguistic events: roughly 86 of laughter, around 30 of throat-clearing, and

approximately 46 of sighing. Within this conversational scenario, a ‘‘sentence’’ is

defined as a portion of monologic speech by a single speaker which ends with a pause,

thought change, or a breath. This research also separated out the audio and TextGrid

files of sentences with paralinguistic events for further analyses. For all other analyses,

this research worked with the originals, which were recorded at 16kHz (16-bit PCM

monophonic) to ensure compatibility with the ASR system and the tools used for the

acoustic analyses. This research also defined as ‘sentence’ a defined unit of interaction

as a stretch of monologic speech by one participant. This research separated out the

audio and TextGrid files with paralinguistic embellishments for further analysis in this

case.

Text cleaning and annotation

To evaluate the ASR performance around each paralinguinal event, this research

need to input the speech containing these events into the ASR system and then compare

the machine output with the reference transcription. This research did not handle the

entire long interview but isolated the short audio frequency bands containing the events

of interest. Specifically, for each labeled instance of laughter, throbbing or sighing, this

research extracted the corresponding event along with brief context before and after it.

This method reflects a real use case (ASR transcribing the session snippet where the

event occurred) and ensures that this research can precisely locate local errors in the

event. This research access the iflytek ASR API to obtain the transcription of each audio

clip. Meanwhile, create tier8: ASR in the annotation file and import all unsegmented

ASR transliterations.

Before analyzing and identifying errors, writer conducted meticulous

preprocessing on the reference transcribed text and the ASR output transcribed text to

ensure that their formats were consistent and easy to compare. This research carried out

text normalization processing using three original scripts, namely tierlabelcheck.praat

(Appendix 2), extract_tier2.praat (Appendix 3), and clean_stan_collection.praat

(Appendix 4). In this section, this research have removed any elements that might

interfere with the alignment of the reference text with the recognized text. This research

have generated the manually aligned (tier9: ASRseg) standard transcribed word

segmentation version (tier10: stanSeg) and the standard written unsegmented version

(tier10: stanUnseg). First, this research convert all the transcribed text to lowercase and

remove punctuation marks and fill word markers to prevent surface differences such as

case or comma from being counted as errors. A key step in preprocessing is to handle

the sub-language event markup in the reference transcription. In the original

transcription (and our annotations), events such as laughter or coughing may be

indicated by labels or parentheses (for example, in Buckeye corpora, laughter is marked

as "<LAUGH>"). To calculate the word error rate, this research removed these non-

lexical event markers from the reference text because they are not spoken words that

the ASR can recognize. This approach can prevent ASR from being unfairly miscounted

for "not outputting laughter/coughing" and the like. For incomplete words or breaks

(for example, a word is only said halfway, which is usually marked with hyphens or

special symbols in transliteration), this research remove the break marks and treat such

words as complete words in alignment (because ASR may guess the word or omit it

completely).

In the design of the annotation scheme, an important consideration is to distinguish

between the segmented version and the unsegmented version. The conversation

recording is initially a continuous audio segment, but for certain analytical requirements

(such as the WER calculation described in the next section), it is more convenient to

process it by discourse segmentation. The reason for this approach is that while

conducting error analysis at the discourse level (facilitating the calculation of WER), it

is still possible to understand the exact time when the error occurred relative to the

event on the continuous timeline.

Through such data preparation, this research avoided false mismatches caused by

format issues and focused the error analysis on substantial differences. The output of

the preprocessing stage is a set of cleaned reference texts and the corresponding ASR

output texts, which can now be used for alignment and error calculation in the next

stage.

Word error rate (WER) culculation and error detection

After obtaining the cleaned transcribed text, this research developed a custom script

werstep1.praat (Appendix 5) to calculate the Word Error Rate (WER) of the ASR

system on this dataset and identify the specific types of errors that occurred. WER is a

standard indicator for evaluating the accuracy of ASR, and its definition is as follows:

WER=S+D+IN×100%, \text{WER} = \frac{S + D + I}{N} \times 100\% ,WER=NS+D+I×100%

Here, S represents the number of substitution errors, D represents the number of

deletion errors, I represents the number of insertion errors, and N represents the total

number of reference (correct) transcriptions. This research calculate WER in units of

each segment's discourse. This research achieved this alignment and error counting

through a custom script - specifically, this research developed a Praat script called

WERstep1.praat to automate this process. This script takes in the cleaned reference

sentences and the corresponding ASR assumption sentences, and outputs the marked

alignment results. The script compares the reference text and the ASR assumption word

by word.

If the words match exactly, it is counted as correct recognition. If a certain word in the

reference has no corresponding hypothetical word in alignment, the algorithm would

inserted an empty space at that position, it is judged as a deletion error. If redundant

words that do not exist in the reference are found in the ASR assumption (additional

insertions occur during alignment), it is judged as an insertion error. If a word in the

assumption aligns with a different word in the reference (text mismatch), it is regarded

as a substitution error (i.e., the ASR wrongly identifies this word as another one).

Through the above program, writer calculated the WER of each discourse fragment and

summarized the results. The WERstep1.praat script not only calculates the number of

errors but also classifies each error by type and records its location. To facilitate

inspection and verification, this script generates detailed error reports for each discourse.

For example, the report look like this:

File: TextGrid s0201a_la02

 ASR Text: "oh yes i did both"

 Standard Text: "oh yes i did vote"

 ASR word count: 5

 Standard word count: 5

 ASR Words: [oh | yes | i | did | both]

 Standard Words:[oh | yes | i | did | vote]

 Error analysis

 Error 1: SUBSTITUTION - ASR:"both" → Standard:"vote" (position 5)

 Summary

 WER: 20.00%

 Edit distance: 1 / Reference length: 5

 Error type distribution:

 Deletions: 0

 Insertions: 0

Substitutions: 1

The above automatically generated format enables us to verify the accuracy of

alignment and at a glance understand what types of errors have occurred. From the

results, writer can see that some discourse segments have no errors at all (WER is 0%),

while others have several substitution or deletion errors, etc. After performing this

alignment analysis on all the utterances, writer obtained the overall WER of the entire

corpus by dividing the total number of errors by the total number of words. By

identifying the types of errors, writer are well-prepared to test such hypotheses in the

subsequent analysis.

Temporal mapping of errors to paralinguistic events

After obtaining the time and type information of ASR errors, the next step is to

map these errors onto the timeline of paralinguistics events. This step aligns the results

of error analysis with the events writer manually label, thereby determining which

errors are triggered by or occur simultaneously with paralinguistics events. The overall

idea is: For each labeled paralinguistics event, check whether an ASR error occurs

during the event or in the period immediately following it. Writer utilized the

correspondence between the discourse established in the annotation stage and the

continuous timeline to write the script parastep2.praat (Appendix 6) to achieve this goal.

The script traverses each event in the TextGrid (with known start and end times and

labels) to find the discourse unit where it is located. Then, based on the previously

aligned information, determine whether an error occurred within the duration of the

event or in a short time window after the event ended.

In actual operation, implementing this mapping requires combining the error

analysis results with event annotation data. Writer constructed a comprehensive dataset,

in which each entry corresponds to a specific labeled event instance. Each entry

contains: event meta-information, including event type (laughter, throat_clear or sigh),

and the start and end times of the event. For ASR error messages and time relationship

variables, writer have noted that errors related to secondary language events are only

valid (none, after, berfore, and during). The example is as follow:

File: TextGrid s0101a_la02

 Comparing 3 aligned intervals:

 Error 1: Interval 3 | ASR:"around" vs Standard:"horrendous" | Time: 0.695-1.507s

 -> Relationship: feature_during

 Errors: 1

 Before: 0

 During: 1

 After: 0

 None: 0

Acoustic feature extraction

After determining the position of each paralinguistics event in the audio, writer

extracted quantitative acoustic features from it to characterize the sound attributes of

these events. Our goal is to capture the acoustic characteristics of events such as

laughter, coughing, and sighing, and subsequently analyze the relationship between

these characteristics and ASR errors. According to the nature of the target event, writer

selected three core features: Harmonics-to-Noise Ratio (HNR), Spectral Tilt and Zero-

Crossing Rate (ZCR). These features were chosen because they can effectively

distinguish between speech and non-speech/noise signals, and previous studies have

shown that they can reflect the differences in sound quality and noise components.

Intuitively speaking, paralinguinal events such as laughter and coughing often

introduce more noise or irregular vibrations compared to normal speech. Therefore,

writer expect them to have lower harmonics (lower HNR), different spectral energy

distributions, and higher waveform zero-crossing rates.

Writer used the Praat script to measure the acoustic characteristics of each event.

Writer wrote a Praat script, acoustic feature.praat (Appendix 7), to automate file-by-file

processing: The script opens each audio file and its corresponding TextGrid, and then

traverses all intervals on the sub-language event annotation layer. For each interval

marked as the target event (laughter, throat clearing or sighing), the script extracts the

audio clip and calculates three features:

⚫ HNR (Harmonic Noise Ratio) : The script calls Praat's algorithm to calculate the

average harmonic nature (HNR) of this event period using the standard

autocorrelation method (the lowr limit of the pitch tracking fundamental frequency

is approximately set to 75 Hz). HNR is expressed in decibels (dB) as the ratio of

the periodic component (harmonic) energy to the noise energy in sound. The higher

the HNR value, the stronger the periodic components of the sound (such as clear

voiced sounds), while a lower HNR indicates that the sound has more noise

components and is more non-periodic. For instance, a continuous vowel may have

a high HNR (indicating a clear phonetic pitch), while a cough or a shrill laugh, due

to airflow disorder, will have a significantly lower HNR.

⚫ Spectral Tilt: The t script achieves this measurement by first converting the

extracted sound segments into power spectra and then calculating the long-term

average spectrum. The specific approach is to measure the average energy within

the low-frequency band (0-1000 Hz) and the high-frequency band (1000-4000 Hz),

and then calculate the energy difference between the high and low-frequency bands

and divide it by the bandwidth to obtain the spectral tilt value. This result

essentially represents the slope of the spectrum (the rate of change of energy with

frequency). A more negative spectral tilt indicates a relatively stronger low-

frequency component (typical of fundamental frequency-dominated turbidity),

while a less negative or even positive tilt indicates a relatively larger proportion of

high-frequency components (typical of noise or clear sound). For instance, a

sighing sound with breath may present a relatively flat (less negative) spectral tilt

because it contains a large amount of high-frequency noise components. In contrast,

a normal voiced vowel will have a steep negative incline.

⚫ Zero-crossing rate (ZCR) : The Praat script calculates the ZCR by obtaining the

point process of waveform zero-crossing within the segment and dividing the

number of zero-crossing points by the duration. A higher ZCR indicates frequent

changes in the waveform symbol, usually suggesting that the sound has significant

high-frequency components or noise (as noise causes the waveform to fluctuate

rapidly). On the contrary, voiced speech dominated by low-frequency fundamental

tones has a lower ZCR. For instance, the ZCR of a noisy cough or a burst of

laughter might be much higher than that of a smooth voiced sound.

Statistic analysis strategy

Finally, this study conducted a two-pronged statistical analysis using the completed

event-level dataset: firstly, descriptive analysis was carried out to summarize patterns

and features, and secondly, inferential analysis was performed to test our hypothesis

regarding the relationship between the acoustic attributes of para-language events and

ASR errors. This part fully utilized R and Rstudio(Version 2025.05.1+513) to

coordinate the execution of data reading, model fitting and result output, ensuring the

reproducibility of the entire process.

Descriptive Statistics

First, this study integrated the above content using the praat script

master_table.praat (Appendix 8) and output a master analysis table. Then this study

created an R markdown script, descriptive.stat,rmd(Appendix 9), which first examined

the distribution of the data and simple relationships, including calculating the base

frequency and error rate.

This study tallied the total number of errors that occurred in the corpus and

subdivided their distribution by error type (deletion, insertion, replacement). For

instance, this study focus on the proportion of various types of errors in all errors (such

as deletion errors accounting for X%, replacement errors accounting for Y%, etc.) to

understand which type of error is the most common and to grasp the ASR performance

as a whole.

Then, this study particularly examined the association between paralinguistics

event types and errors. For each event category (laughter, throbbing, sighing), this study

calculated the frequency of ASR errors. For instance, it can be expressed as the error

rate of each type of event (for example: "Among N laughter events, M are accompanied

by at least one ASR error, that is, the rate is __%"). This study also further subdivide

by error types: for instance, "What proportion of laughter incidents specifically

correspond to deletion errors?" "Insertion error?" "Replacement error?" " . These

statistical results are presented in the form of contingency tables or bar charts, etc. The

purpose of doing this is to observe whether certain events (such as laughter) are more

likely to trigger ASR errors than others, or are more likely to trigger specific types of

errors.

This study also visualized the distribution of acoustic features (HNR, spectral tilt,

ZCR) and compared the differences in these features between events that triggered

errors and those that did not. For each feature, this study drew, for example, box plots

or histograms, and grouped and compared the data into two groups: "any Error

occurred" (Error=1) and "no error occurred" (Error=0). This enables us to make a

preliminary judgment, for example, whether events with a lower HNR are more often

accompanied by errors. In addition to the graphical presentation, this study also

conducted a preliminary statistical test in the descriptive analysis stage.

Before explaining the model coefficients, this study tested the assumptions and

performance of the model. At this step, this study conducted a multicollinearity test to

examine the pairwise Spearman correlations of HNR, spectral skew, and ZC,

distinguishing the independent role of each independent variable. All absolute

correlations were below 0.7, indicating no severe multicollinearity. The regression

coefficients can be interpreted according to their "respective independent effects" to

ensure the accuracy of the logistic regression model's fitting analysis.

Inferential statistics

Based on the findings of descriptive analysis, this study established a set of logistic

regression models using the script regression_model.rmd(Appendix 10) to formally test

and quantify the impact of para-language event characteristics on the occurrence of

ASR errors. Since our result variable is binary classification (whether an error occurs

or not), logistic regression is an appropriate choice. This study constructed four

independent models, each corresponding to a specific result:

⚫ AnyError model: Dependent variable = whether any ASR error occurred

(if at least one type of error occurred during/after the event, it is recorded

as 1; otherwise, it is 0). This model examines the overall possibility of

errors occurring.

⚫ DelOccur model: Dependent variable = whether a deletion error occurs (1

if it occurs, 0 otherwise).

⚫ InsOccur model: Dependent variable = Whether an insertion error

occurred.

⚫ SubOccur model: Dependent variable = Whether a substitution error

occurred.

All four models use the same set of independent variables: acoustic feature HNR,

spectral tilt, ZCR, and event type category. Incorporating event types (a categorical

variable with three values: laughter, throat_clear, and sigh) into the model can take into

account the potential systematic differences among different event categories beyond

numerical characteristics. For instance, the "laughter" event itself may pose a different

kind of challenge to ASR than the "sighing" event. Therefore, the event type factor is

introduced to capture such categorical effects. This study performed dumb encoding

processing on the event type variables (for example, taking laughter as the benchmark

category) and then incorporated them into the regression. Take the AnyError model as

an example, its general form can be expressed as:

logit(Pr(AnyError=1))=

β0+β1HNR+β2SpectralTilt+β3ZCR+β4(ThroatClear)+β5(Sigh)

Among them, (ThroatClear) and (Sigh) are mute variables, with laughter as the

reference category. For example, expressed by the R formula, it is:

AnyError ~ HNR + spectralTilt + ZCR + EventType

The forms of other models (DelOccur, InsOccur, SubOccur) are similar, except that

the binary dependent variable is defined as whether their respective error types occur

or not. This study use R and Rstudio (Version: 2025.05.1+513) to fit these models.

In all models, this study have adjusted for multiple non-independent observations

from the same speaker. Since each speaker may contribute multiple event instances, it

may not hold true that the observations are independent of each other (the speaking

style or recording conditions of the same speaker may systematically affect the error

rate). To solve this problem, this study calculated the robust standard error of speaker

clustering, that is, this study adjusted the standard error by clustering speakers.

Specifically, after fitting each logistic regression model, this study use a robust

divergence estimator (sandwich estimator) to obtain the standard error and p-value that

are robust to the intra-speaker correlation. The meaning of this approach is that, for

instance, even if speaker X contains many events (and thus contributes many erroneous

instances), our inference takes into account the clustering of these observations in the

calculation rather than treating them completely as independent data points. This

method is similar to considering the speaker random effect in the model, but given that

the number of speakers is relatively small (in this case, building a complete multi-level

model may not be very stable), this study chose the method of clustering robust standard

errors. All statistical modeling was completed in RStudio. This study used an R

Markdown script (logistic_regressive.rmd) to coordinate the execution of data reading,

model fitting, and result output, ensuring that the entire process was reproducible.

Each logistic regression model generates coefficients (and corresponding odds

ratios) for each predictor variable, indicating the direction and significance of the

predictor variable's influence on the probability of ASR errors. For instance, if the

coefficient of HNR in the AnyError model is negative, it means that as HNR increases

(i.e., the sound becomes more harmonious/audible), the probability of any error

occurring decreases - conversely, a lower HNR (the event is noisier) is more likely to

cause errors. This study did indeed discover such patterns: This study will not delve

into the results here. Generally speaking, the model identified certain acoustic features

as important predictors of error occurrence (for example, a lower HNR and a higher

ZCR are associated with an increased probability of error occurrence, which is

consistent with our expectations). The event type factor in the model also reveals the

differences between different categories; For instance, after controlling for the

influence of acoustic features, the probability of a certain type of event (such as throat

clearing) causing errors may be higher than that of another type (such as laughter),

suggesting that there are categorical influences in addition to the features this study

measure. These findings will be elaborated in detail in the results section, but

methodologically, logistic regression enables us to quantify these effects and assess

their statistical significance.

Analysis & Results

Descriptive statistics

Distribution of paralinguistic event types

A total of 162 paralinguiistic events were marked, including 86 laughs (53.1%), 46

sighs (28.4%), and 30 throat-clearing events (18.5%), as shown in Table 1. This

distribution indicates that in this dataset, laughter is the most common type of

paralinguistic event, accounting for more than half of the observed. The frequency of

sigh and throat-clearingis relatively low. They account for approximately 47% of the

remaining events. Figure 1 visually presents this distribution. It can be seen that the

frequency of laughter incidents is significantly higher than that of the other two types.

Label n percent

laughter 86 53.1%

sigh 46 28.4%

throat-clearing 30 18.5%

Total 162 100%

Table 1 Counts and percentages of paralinguistic event types in the dataset. Laughter was the most

frequent event (n = 86, 53.1%), followed by sigh (n = 46, 28.4%) and throat-clearing (n = 30, 18.5%).

Figure 1 The distribution of paralinguistics events in the corpus. A total of 162 events werre marked, among

which laughter was the most common (n = 86, accounting for 53.1%), followed by sighing (n = 46,

accounting for 28.4%) and throat clearing (n = 30, accounting for 18.5%)

WER by Event Type

This paper conducted a statistical analysis of the word error rate (WER) of speech

recognition for each paralinguistic event fragment. Figure 2 shows the WER

distribution of the laughing, sighing and throat-clearing event segments, and Table 2

lists the corresponding descriptive statistics. The WER median of the laughing

segments was only 10% (first quartile (Q1) = 0%, third quartile (Q3) = 25%), indicating

that at least 25% of the laughter segments could be transcribed error-free (WER = 0).

In contrast, the typical error rate of event segments containing sighing and throat-

clearing was higher: the median WER of sighing segments was 14.3%, and that of

throat-clearing segments was 16.0%. The quartile range of the throating-clearing

segments is the narrowestern (approximately 11.5% - 20.8%, IQR ≈ 9.3%), indicating

that the recognition performance of these segments is relatively consistent. On the

contrary, the WER distribution of laughter segments is more dispersed (IQR = 25%),

meaning that although many laughter segments are perfectly recognized, there are also

some with significant recognition errors. The average WER values of the three event

types are all around 17% to 19% (Table 2), among which the average WER of the

segments related to sighing is the highest (19.2%).

Label n Mean SD Median Q1 Q3 IQR

laughter 86 17.83 23.28 10 0 25 25

sigh 46 19.19 20.24 14.29 8.04 25.81 17.77

throat-

clearing

30 16.54 12.95 16.03 11.46 20.79 9.33

Table 2 Summary statistics (mean, median, standard deviation, quartiles) of word error rates (WER)

across event types. Laughter segments had the lowest median WER (10%), while sigh and throat-clearing

showed higher central tendencies.

Figure 2 WER box plots of different paralinguistics event types. The median WER of the laughing

segment was the lowest (10%), while the median of the sighing (14.3%) and throat-clearing (16.0%)

segments was higher.

Composition of error types by event type

Subsequently, this paper analyzed the composition of the types of recognition

errors corresponding to each paralinguistics event (deletion, insertion and replacement

errors). Table 3 lists the quantity and percentage of each type of error in each event type

fragment, and Figure 3 presents the proportion of different error types in the form of

stacked bar charts. There were a total of 92 recognition errors in the smiling voice

segment. Among them, nearly half were replacement errors (45 cases, accounting for

48.9%), approximately 39.1% were deletion errors (36 cases), while insertion errors

were the fewest (11 cases, accounting for 12.0%). The total number of errors caused by

exclamation segments was the highest (235 in total), and the composition of the errors

was relatively more balanced: replacement errors accounted for approximately 43.4%,

deletion errors accounted for 30.6%, and insertion errors accounted for approximately

26.0%. The total number of errors containing the throat-clearing segment was the

lowest (40), and its error composition had distinct characteristics: insertion and

replacement errors each accounted for 40% (16 cases each), while deletion errors only

accounted for 20% (8 cases). Figure 3 (stacked bar chart) highlights these differences

in the distribution of error types among different event types.

Label Deletions Insertions Substitutions TotalErrors D_Percent I_Percent S_Percent

laughter 36 11 45 92 39.1 12 48.9

sigh 72 61 102 235 30.6 26 43.4

throat-

clearing

8 16 16 40 20 40 40

Table 3 Frequencies and percentages of recognition error types (deletions, insertions, substitutions) within

each event category.

Figure 3 The composition of error types for each event type (deletion, insertion, replacement). The

errors in the laughter segments are mainly replacement and deletion, while the distribution of errors

in the sighing segments is more balanced.

Temporal localization of errors

Temporal localization of errors. This paper examined where error tokens occur

relative to the paralinguistic event (Table 5; Figure 5). Aggregating across sentences

within each event type, 96.1% of all errors fell within a ±1 s neighborhood of the event

boundary (Before + During + After), indicating that recognition mistakes cluster tightly

around the event.

By event type, laughter shows a balanced split between Before (41.9%) and During

(45.9%), with a smaller After share (9.5%) and very few errors elsewhere (No-Feature

= 2.7%). Sigh concentrates more Before the event (50.0%) than During (31.2%), with

After accounting for 16.7% and a minimal No-Feature fraction (2.1%). Throat-clearing

places the largest share During the event (46.7%), with Before = 30.0%, After = 13.3%,

and a comparatively larger No-Feature proportion (10.0%). These temporal profiles

complement the error-type compositions (Figure 3): e.g., the stronger During

concentration for throat-clearing aligns with turbulent bursts disturbing speech

precisely at the event core, whereas sighs tend to perturb the lead-in portion of the

sentence. Counts for reference. The underlying error-token totals by event type are:

laughter 74, sigh 48, and throat-clearing 30.

Label Before During After No_Feature Row_Total Before_Pct During_Pct After_Pct No_Feature_Pct

laughter 31 34 7 2 74 41.9 45.9 9.5 2.7

sigh 24 15 8 1 48 50 31.2 16.7 2.1

throat-clearing 9 14 4 3 30 30 46.7 13.3 10

Table 4 Distribution of error tokens relative to event timing (Before, During, After, No Feature) across event

categories. Errors clustered around event boundaries, with sighs showing more “Before” errors and throat-

clearing showing more “During” errors.

Figure 4 The temporal and positional distribution of identification errors in different event types

(before the event, during the event, after the event, and no event). Errors tend to be concentrated

near the boundaries of events.

Distribution of acoustic features by error occurrence

This paper further examined the relationship between certain acoustic feature

values and the occurrence of recognition errors. Specifically, this paper compared the

distribution differences of three acoustic indicators - HNR (Harmonic noise ratio),

spectral tilt, and zero-crossing rate (ZCR) - between fragments with no recognition

errors and those with at least one recognition error. As shown in Figure 4, the HNR,

spectral tilt, and ZCR distributions of the error-free fragments and those containing the

error-containing fragments are highly overlapped. HNR shows a slightly higher trend

in error-free segments (with a median of approximately 4 dB), while in error-containing

segments, the median is about 2 dB (see Figure 4), suggesting that segments with more

harmonious speech quality (lower noise components) may be less prone to recognition

errors. However, there was almost no difference in spectral tilt between the two groups

(the median of both groups was approximately -6 dB, as shown in Figure 5). Similarly,

the zero-crossing rate did not show a significant difference in terms of whether errors

occurred: the median ZCR of both error-free and error-containing fragments was

approximately 1.3-1.5 kHz, and the variability within each group was considerable

(Figure 6). Overall, these acoustic features did not show significant changes due to

whether there were recognition errors or not.

Figure 5 A box plot of HNR distribution classified by whether errors occur or not. The HNR of the

error-free segments is slightly higher than that of the error-containing segments, indicating that

more harmonious speech quality is more conducive to recognition

Figure 6 A box plot of ZCR distribution classified by whether errors occur or not. Both groups had

significant internal variability, but the median difference was not significant.

Figure 7 A box plot of spectral tilt distribution classified by whether errors occur or not. There was

almost no significant difference between the two groups.

Spearman Correlation among acoustic feature

Finally, this paper calculated the Spearman rank correlation coefficients between

each pair of acoustic features to evaluate the relationship among HNR, spectral tilt and

ZCR (Table 4). The results show that the correlation between any pair of features has

not reached a statistically significant level, and the values of the correlation coefficients

are all close to zero. As shown in Table 4, the Spearman correlation coefficient ρ

between HNR and spectral tilt is -0.02 (p = 0.80), indicating that there is almost no

monotonic correlation between these two features. Similarly, the correlation between

HNR and ZCR was also very low (ρ = -0.076, p = 0.336), and the correlation coefficient

between spectral tilt and ZCR was 0.06 (p = 0.452). All these related p values are much

greater than 0.05. The above results indicate that these three acoustic features are

basically independent of each other in this dataset, and no significant linear or

monotonic correlations have been observed.

Pair rho p

HNR vs. Spectral Tilt 0.047 0.582

HNR vs. ZCR -0.107 0.214

Spectral Tilt vs. ZCR 0.131 0.127

Table 5 Pairwise Spearman rank correlation coefficients among acoustic features (HNR, spectral tilt, ZCR).

None of the correlations was statistically significant, suggesting independence among features.

Inferential statistics

Logistic regression

To answer research question 2, this paper conducted a series of logistic regression

analyses to examine whether the acoustic characteristics of paralinguistic events were

statistically associated with a high error rate of ASR and whether they could be used to

explain and predict the occurrence of errors. This study established four binary Logistic

models respectively for four results: (M1) whether arbitrary identification errors occur,

(M2) whether deletion errors occur, (M3) whether insertion errors occur, and (M4)

whether replacement errors occur. Each model takes three acoustic features (HNR,

spectral slope, and ZCR, all standardized) as continuous independent variables and

event types (laughter, sighing, and throat clearing) as categorical independent variables

(with laughter as the baseline category). The model adopts a robust standard error based

on the speaker to consider the correlation among multiple observations of the same

speaker. Table 6 summarizes the results of the four models (showing the odds ratios,

their 95% confidence intervals and P-values).

Variable M1_AnyError M2_DelOccur M3_InsOccur M4_SubOccur

z-HNR 0.53 [0.31, 0.9]

(0.02)

0.98 [0.78,

1.24] (0.876)

0.71 [0.34, 1.46]

(0.351)

0.79 [0.5, 1.23]

(0.294)

z-Spectral Tilt 1.24 [0.97,

1.59] (0.086)

1.18 [0.84,

1.66] (0.329)

1.07 [0.67, 1.71]

(0.772)

1.23 [0.78,

1.94] (0.38)

z-ZCR 0.65 [0.46,

0.91] (0.013)

1.35 [0.83, 2.2]

(0.229)

0.61 [0.48, 0.77]

(<0.001)

0.81 [0.68,

0.98] (0.026)

Event: sigh 2.63 [0.95,

7.29] (0.062)

0.7 [0.19, 2.61]

(0.593)

10.57 [3.87,

28.89] (<0.001)

0.95 [0.42,

2.16] (0.909)

Event: throat-

clearing

1.59 [0.59,

4.25] (0.358)

0.81 [0.3, 2.13]

(0.662)

5.86 [2.7, 12.7]

(<0.001)

0.91 [0.56,

1.48] (0.719)

Table 6 Logistic regression results for acoustic predictors of ASR errors (odds ratio [95% CI] and p-value).

 Model 1: any error occurrence

Model 1 examines whether any ASR error occurs. The results show that there are

two acoustic features that are significant predictive factors. HNR was significantly

negatively correlated with error occurrence: for every 1-standard deviation increase in

HNR, the odds of error occurrence were approximately 0.53 times that of the original

(odds ratio OR = 0.53, 95% CI [0.31, 0.90], p = 0.02). In other words, paragraphs with

a lower HNR (i.e., fewer harmonic components and higher noise components in the

speech) are more prone to recognition errors. Similarly, ZCR was also significantly

negatively correlated with the occurrence of errors: for every 1-standard deviation

increase in ZCR, the probability of errors was only 0.65 times that of the original (OR

= 0.65, 95% CI [0.46, 0.91], p = 0.013), indicating that paragraphs with lower ZCR

were significantly more prone to errors; A higher ZCR (more zeroing times, usually

indicating more high-frequency components or silent noise) tends to reduce the

possibility of errors occurring. The slope of the third characteristic spectrum did not

reach a significant level in the model (OR = 1.24, p = 0.086), suggesting that its effect

was relatively weak or there was redundancy with HNR. In terms of event types, the

probability of errors caused by sighing events increased by approximately 2.6 times

compared to laughter events (OR = 2.63, p = 0.062 compared to laughter), with a larger

effect but not reaching a significant level. The throat-clearing event showed a smaller

and less significant increase in the error rate compared to laughter (OR = 1.59, p =

0.358). Overall, noisier sounds with fewer harmonic components (low HNR) and

sounds with a lower zero-crossing rate (low ZCR) are significantly associated with a

higher incidence of recognition errors, which to some extent answers RQ2. After

controlling for acoustic characteristics, the influence of event categories on the overall

occurrence of errors is relatively weak, although the trend that sighs are more prone to

errors than laughter is notable.

Figure 8 Prediction curve of arbitrary ASR error probability varying with HNR. The curve shows that

when the HNR is low (low harmonic noise ratio), the possibility of recognition errors increases

significantly.

Figure 9 Prediction curve of arbitrary ASR error probability varying with ZCR. It can be seen that as

ZCR increases, the probability of recognition errors decreases.

Model 2: deletion error occurrence

The second model analyzes word deletion errors (i.e., ASR misses words related to the

sub-language event). Compared with the overall error model, none of the acoustic

features showed a significant effect on the deletion of errors (all p > 0.2 in Model 2).

As shown in Table 6, the odds ratios of HNR, spectral slope and ZCR for the occurrence

of deletion errors are all close to 1.0, and they are not statistically significant. For

instance, the OR of HNR was 0.98 (p = 0.876), and the OR of ZCR was 1.35 (p = 0.229),

neither showing a reliable association. Similarly, the type of event had no significant

impact on deletion errors: whether it was sighing OR clearing the voice, there was no

significant difference in the occurrence rate of deletion errors compared to the laughter

event (sighing OR = 0.70, p = 0.593; clearing the voice OR = 0.81, p = 0.662). This

means that the occurrence of word deletion errors seems to have no obvious correlation

with these acoustic indicators - under the existing data, whether the ASR misses a

certain word does not systematically depend on the noise level (HNR) of the

sublanguage sound, spectral tilt, or zero-crossing rate, nor does it depend on the specific

type of event. One possible explanation is that the removal of errors depends more on

the language environment or the behavior of the ASR's language model (such as

skipping incomprehensible segments), rather than the objective acoustic features of the

paralinguistics sound itself.

Model 3: insertion error occurrence

The third model focuses on insertion errors, that is, ASR hears out words in the corpus

that are not actually spoken (usually caused by mistaking non-verbal sounds for verbal

ones). In this model, this study identified significant and clear predictive factors. ZCR

was highly significant: For every 1-standard deviation increase in ZCR, the probability

of insertion errors was only 0.61 times that of the original (OR = 0.61, 95% CI [0.48,

0.77], p < 0.001). This indicates that paralinguistic events with a lower zero-crossing

rate (fewer zero-crossing times) are more likely to induce false insertions in ASR, while

events with a higher ZCR (more zero-crossing times, higher frequency and noise) are

less likely to be transcribed into false words. From a practical perspective, sounds with

more periodic or low-frequency components (low ZCR) are more likely to enable the

ASR to "hear" non-existent words, while high-frequency noise events (high ZCR) are

less likely to cause such misidentification.

It is worth noting that the event type itself has a very strong impact on insertion errors,

even after controlling for each acoustic feature. While keeping HNR, spectral slope and

ZCR the same, the possibility of sighing events causing insertion errors was more than

ten times that of laughter events (OR = 10.57, 95% CI [3.87, 28.89], p < 0.001), and

the possibility of throat clearing events causing insertions was approximately six times

that of laughter events (OR = 5.86). 95% CI [2.70, 12.70], p < 0.001. These effects were

statistically highly significant and consistent with the descriptive results of RQ1 -

specifically, ASR often "inserted" speculative content (for example, recognizing sighs

as additional syllables or words) during sighing and throat clearing, while the tendency

to insert was much lower in laughter segments. Figure 8 shows the model predictions

of the probability of insertion errors under different event types, clearly demonstrating

the significant differences in insertion error rates between laughter and sighing, as well

as throat clearing events. In conclusion, Model 3 demonstrates that both the acoustic

property ZCR and the event category are powerful predictors of insertion errors. For

this type of error, it also verifies RQ2: These metrics can indeed be used to explain and

predict under what circumstances a higher insertion error rate will occur.

Figure 10 Probability of insertion errors predicted by paralinguistics event types.

Model 4: substitution error occurrence

The fourth model examines substitution errors, that is, ASR replaces the originally

correct words with incorrect ones (usually due to incorrect recognition of the

surrounding speech content when paralinguistics events occur). The discoveries of this

model are relatively limited. Among the acoustic characteristics, ZCR demonstrated a

moderate but significant effect: OR = 0.81 (95% CI [0.68, 0.98], p = 0.026), indicating

that a higher ZCR was associated with a lower probability of replacement errors. From

a practical perspective, for every one standard deviation increase in ZCR, the

probability of replacement errors decreases by approximately 19%. Neither HNR nor

spectral slope had a significant effect on replacement errors (p values were 0.294 and

0.380, respectively). Although the direction of HNR's effect remained negative (OR =

0.79), which is consistent with the view that "a lower HNR may increase the risk of

errors", it did not reach statistical significance in this model. On the other hand, the type

of event had no significant impact on the occurrence of replacement errors - after

controlling for acoustic characteristics, there was no significant difference in the

probability of replacement errors between sighing and throbbing events compared to

laughter events (OR approximately 0.9, p > 0.7, see Table 6). This indicates that the

replacement error is mainly related to certain acoustic conditions (especially low ZCR),

but it does not depend much on the specific type of the event itself. When the acoustic

environment is prone to confusion (for example, a very low ZCR may indicate a voice

component that ASR attempts to interpret as speech), replacement errors are more likely

to occur; However, once acoustic factors are taken into account, whether the sound is

laughter, a sigh or a throbbing does not significantly change the probability of

replacement errors occurring.

Summary

In conclusion, these inferential analyses clearly answer RQ2: There is a statistical

correlation between the acoustic characteristics of specific paralural events and the

possibility of ASR errors occurring, and thus can be used to a considerable extent to

predict situations with high error rates. Specifically, events with low HNR (higher noise)

and low ZCR (fewer zero-crossing) are associated with a higher probability of

recognition errors - whether in terms of overall errors or specific error types - and this

result confirms the role of these acoustic indicators as indicators of ASR ease. In

addition, the types of parapultural events also play a certain role, especially in terms of

insertion errors: Events such as sighing and clearing the throat essentially pose a greater

challenge to ASR than laughter (leading to more insertion errors), even beyond the

scope that can be purely explained by their acoustic parameters. In conclusion, RQ2's

response is affirmative: There is indeed a statistical correlation between the systematic

error patterns of iFLYTEK's ASR and the acoustic attributes of events such as laughter,

voice clearing, and sighing. These acoustic indicators (such as HNR, spectral slope, and

ZCR), as well as the event types themselves, all help explain and predict in which

situations the ASR is prone to errors.

Discussion.

This study theoretically deepens the understanding of the interaction between

automatic speech recognition (ASR) and paralanguage phenomena. Previous ASR

studies mainly focused on vocabulary and phonetic content in spoken language, while

non-verbal sounds such as laughter, sighing, and throat clearing were often regarded as

background noise and ignored. Our results clearly indicate that these paralinguinal

events are by no means dispensable "noises", but will have a significant impact on

recognition performance.This discovery, from a new perspective, confirms the

understanding of the function of paralanguage signals in the fields of linguistics and

phonetics: these non-verbal acoustic signals carry emotional and interactive

information in conversations and also significantly change the way machines process

speech. Therefore, this study has, in a theoretical sense, built a bridge between ASR

technology and paralanguage research. On the one hand, we have demonstrated that it

is necessary to introduce attention to paralanguage events in ASR systems, which

broadens the perspective of traditional speech recognition theories. On the other hand,

we also provide a new perspective for the study of paralanguage phenomena, that is, by

examining the success or failure of machine recognition, we can, in turn, gain insights

into the acoustic essence and communicative function of these sounds.

In terms of technical implementation, our approach has good replicability and

expansion potential. From the perspective of corpus processing, we used the Buckeye

natural corpus as the basis for analysis. The Buckeye corpus contains a wealth of

pronunciation variations and non-verbal events from real conversations. We made

meticulous annotations on it, aligning events such as laughter, sighing, and throat

clearing with adjacent words one by one, and calculated the error types and acoustic

features of the corresponding segments. This strict alignment and annotation method

ensures the credibility of the analysis results and also provides a template for others to

reproduce the research. In terms of acoustic feature extraction, this study selected

classic indicators such as HNR (Harmonic Noise ratio), spectral skew, and zero-

crossing rate (ZCR) to quantify the sound characteristics of sub-language events. The

extraction of these features relies on mature tools and algorithms, and thus is universal.

Any researcher using a similar speech database can repeat our process: first, label the

paralingual events, then extract the above acoustic indicators, and finally conduct a

correlation analysis with the recognition errors. In addition, this study adopted a method

combining statistical description and Logistic regression model to explore the

correlation between features and errors. This methodology is transparent and easy to

promote. The results of Logistic regression not only provide interpretable statistical

associations but also serve as a basis for comparison with more complex machine

learning models in the future. Overall, our technical route is clear and the steps are well-

defined, providing a referenceable paradigm for research in related fields.

The findings of this study have significant implications for enhancing the

robustness of actual ASR systems. Firstly, this study confirmed that paralingual events

can significantly reduce the recognition accuracy of ASR, and the impact of different

types of events on error patterns varies. For instance, this study observed that although

laughter occurred most frequently in the corpus, it caused relatively less harm to ASR.

It is speculated that the reason lies in the fact that laughter has a certain harmonic

structure, making it easier for ASR to identify that it is not normal speech and thus less

likely to misrecognize it as lexical content. Events like sighing and throat clearing often

have irregular sounds and abnormal spectral energy distribution, which makes them

more likely to confuse the recognition model, leading to the insertion of additional false

words or the omission of the real words that follow immediately. Through error type

analysis, this study found that when ASR encounters sighing and throat clearing, it

tends to generate a relatively high proportion of insertion errors - the system will

mistake these noises for some kind of pronunciation and "mishear" non-existent words.

On the contrary, in the laughter section, there are significantly fewer insertion errors,

indicating that the system is more likely to treat laughter as muted. This difference

indicates that enhancing the ASR's ability to distinguish different sub-language acoustic

patterns is the key to improving the system's accuracy. From an application perspective,

ASR developers should consider explicitly handling these non-verbal events in the

model. For instance, in actual voice assistants or transcription tools, a preprocessing

module can be added. When events such as laughter or sighing are detected, special

markers can be used to replace or filter the audio segment, thereby preventing the

misidentification of incorrect content. This approach is consistent with the

"paralinguinal perception" recognition concept proposed in the latest research:

integrating paralinguinal cues as decodable special labels into the recognition output,

enabling the system to simultaneously transcribe both lexical and non-verbal

information.With such improvements, ASR will no longer simply ignore or mishear

situations like laughter in natural conversations, but can handle them more robustably,

enhancing the user experience and transcription quality in practical applications.

It is worth further discussion that our analysis also reveals that the mechanism by

which paralanguage events cause errors is closely related to their acoustic properties.

The Logistic regression results show that changes in specific acoustic features

significantly affect the probability of error occurrence. Among them, a low HNR value

(i.e., high noise component) and a low ZCR value (i.e., low waveform zero crossover

rate, suggesting a stronger periodic component) are both statistically correlated with an

increase in ASR error rate. This indicates that when the paralingual sounds are

characterized by being noisy or dominated by low frequencies, the recognition model

is more prone to confusion. This conclusion is in line with intuition: highly noisy and

irregular sounds can interfere with the model's matching of normal speech patterns,

thereby increasing the possibility of recognition failure. Furthermore, this study found

that even after controlling for the above-mentioned acoustic features, different event

types themselves still have differences in influence. For instance, the possibility of an

sighing event leading to insertion misidentification is much higher than that of laughter,

even if the HNR, spectral tilt and other values of the two are similar. This implies that

apart from simple acoustic parameters, there are more complex differences in signal

morphology between laughter and sighing (for instance, laughter is often accompanied

by vowel pitch fluctuations, while sighing is more of a continuous airflow sound).

These differences make ASR even more helpless when it comes to sighing. This

discovery emphasizes at a deeper level the importance of incorporating event type

information into the recognition process: perhaps future models can handle and model

such specific events differently to reduce the errors caused by them.

Finally, this study provides some valuable lessons and experiences for the design

and training of future ASR systems. Our analysis of the time distribution of errors shows

that recognition errors tend to occur in the period near the occurrence of paralanguage

events (approximately within one second before and after). This means that the

interference of paralanguage events on ASR is mainly local and immediate, and will

not have a continuous impact on distant speech segments. Therefore, the ASR system

can focus on optimizing these critical moments. For instance, when laughter is detected

or throat clearing has just ended, the system can temporarily reduce the language

model's trust in the output of the voice content or increase the tolerance for silence/noise

to avoid the trap of mistaking instantaneous abnormal sounds for words. Similarly,

during the model training phase, training data containing para-language events should

be purposefully added (and the correct event positions should be marked), enabling the

model to learn to "skip" or "go blank" during these brief interludes, rather than forcing

words to match. In addition, our research has demonstrated that simple acoustic features

can already effectively predict high-error scenarios, suggesting that future ASRs can

combine these easily extracted indicators to achieve online error early warning or

adaptive adjustment. For instance, the HNR, ZCR and other values of the input voice

are monitored in real time. Once an abnormal range is detected (which may correspond

to the occurrence of laughter, etc.), the system can adjust the decoding strategy or

activate a dedicated sub-language processing module. In conclusion, the techniques and

experiences of this study point out the direction for building more robust ASR systems

for natural dialogue: integrating the detection and processing of paralingual events will

help significantly reduce the recognition error rate in real-world applications.

Conclusion

This paper systematically studies the impact of paralanguage events (such as

laughter, sighing, and throat clearing) in natural conversations on automatic speech

recognition systems, and has achieved the following main results and contributions.

Firstly, based on the Buckeye corpus and iFLYTEK's commercial ASR system, this

study quantitatively demonstrated that para-language events can lead to a decline in

recognition performance and detailedly revealed the differences in error patterns

triggered by different events. This fills a gap in existing research - few previous works

have explored paralanguage phenomena so deeply from the perspective of recognition

errors. This study not only reported the changing trend of the overall recognition error

rate when paralingual events occurred, but also for the first time associated specific

error types (insertion, deletion, replacement) with specific events, depicting a unique

map of the errors that ASR is prone to under different paralingual events. Secondly, this

study analyzed the internal factors causing the errors in combination with acoustic

characteristics and found that parameters such as harmonic-noise ratio, spectral tilt, and

zero-crossing rate were significantly associated with the identification errors. This

discovery provides an empirical basis for explaining the easily confused signal

characteristics of ASR and verifies that certain acoustic indicators can serve as effective

signals for predicting and identifying difficulties. Overall, the research work of this

paper has made new progress in the intersection of ASR robustness and paralingual

signal processing: our conclusions emphasize the importance of taking paralingual

events into account for improving recognition accuracy and provide empirical support

for future improvements in ASR.

Despite the above achievements, this study still has some limitations that need to

be overcome in future work. Firstly, in terms of the corpus, the Buckeye dialogue library

used in the research is relatively limited in scale and the language is English. Although

this corpus covers a wealth of spontaneous oral phenomena, its representativeness is

still limited. Subsequent research can introduce larger-scale, multilingual natural

dialogue data to verify the universality of the findings of this study. Secondly, the ASR

system this study selected is a single commercial model (iFLYTEK), and its

architecture and training data are specific. Therefore, the application of this result on

different recognition engines (such as other commercial systems or open-source models)

still needs further investigation. Secondly, the types of paralingual events focused on in

this article mainly include laughter, sighing, and throat clearing, and do not include

other common non-verbal sounds such as crying, panting, and filler words. These

unexplored factors may also have an impact on recognition and are worthy of being

taken into account in future research. Furthermore, in terms of methods, the statistical

modeling this study adopt (such as Logistic regression) assumes a linear feature

interaction relationship and may not be able to capture more complex nonlinear

influences. In the future, more complex error prediction models can be constructed by

means of deep learning and other methods, or directly used for real-time detection of

paralanguage events. Finally, regarding the improvement of the ASR system itself, our

research only put forward directional suggestions and did not implement

countermeasure verification in this paper. For instance, integrating paralingual event

markers into ASR decoding or adding dedicated pre-detection modules, the practical

effects of these schemes remain to be evaluated through new experiments.

In conclusion, enhancing the robustness of ASR in natural conversation scenarios

is a challenging yet significant task. Our research reveals that paralanguage events are

one of the key factors affecting recognition performance, highlighting the shortcomings

of traditional ASR systems in human-computer interaction environments. Future

research should verify and expand the conclusions of this study on a broader range of

data and models, and explore innovative methods to enable the ASR recognition engine

to handle non-verbal sounds such as laughter more "intelligently". For instance, develop

models capable of jointly transcribing speech and paralinguinal signals, enabling

machines not only to "understand" what is said but also to mark the speaker's laughter,

sighs and other behaviors; Or design a multimodal interaction system that combines

voice recognition with signals such as expressions and postures to reduce the

interference of non-verbal events in pure audio. This study believe that as these

directions are further advanced, future automatic speech recognition will be closer to

human auditory capabilities, maintaining high accuracy even in noisy and ever-

changing conversations, laying the foundation for more natural voice interaction.

Reference

Argyle, M., Alkema, F., & Gilmour, R. (1971). The communication of friendly and

hostile attitudes by verbal and non-verbal signals. European Journal of Social

Psychology, 1(3), 385–402. https://doi.org/10.1002/ejsp.2420010307

Fukuda, T., Ichikawa, O., & Nishimura, M. (2018). Detecting breathing sounds in

realistic Japanese telephone conversations and its application to automatic speech

recognition. Speech Communication, 98, 95–103.

https://doi.org/10.1016/j.specom.2018.01.008

Gupta, R., Audhkhasi, K., Lee, S., & Narayanan, S. (2016). Detecting paralinguistic

events in audio stream using context in features and probabilistic decisions. Computer

Speech & Language, 36, 72–92. https://doi.org/10.1016/j.csl.2015.08.003

ISBISTER, K., & NASS, C. (2000). Consistency of personality in interactive characters:

verbal cues, non-verbal cues, and user characteristics. International Journal of Human-

Computer Studies, 53(2), 251–267. https://doi.org/10.1006/ijhc.2000.0368

Laskowski, K. (2009). Contrasting emotion-bearing laughter types in multiparticipant

vocal activity detection for meetings. 2009 IEEE International Conference on Acoustics,

Speech and Signal Processing, 4765–4768.

https://doi.org/10.1109/ICASSP.2009.4960696

Ludusan, B. (2023). The usefulness of phonetically-motivated features for automatic

laughter detection. Disfluency in Spontaneous Speech (DiSS) Workshop 2023, 33–37.

https://doi.org/10.21437/DiSS.2023-7

Ludusan, B., & Wagner, P. (2022). ha-HA-hha? Intensity and voice quality

characteristics of laughter. Speech Prosody 2022, 560–564.

https://doi.org/10.21437/SpeechProsody.2022-114

Mazzocconi, C., Tian, Y., & Ginzburg, J. (2022). What’s Your Laughter Doing There?

A Taxonomy of the Pragmatic Functions of Laughter. IEEE Transactions on Affective

Computing, 13(3), 1302–1321. https://doi.org/10.1109/TAFFC.2020.2994533

Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., Müller, C., &

Narayanan, S. (2013). Paralinguistics in speech and language—State-of-the-art and the

challenge. Computer Speech & Language, 27(1), 4–39.

https://doi.org/10.1016/j.csl.2012.02.005

https://doi.org/10.1016/j.specom.2018.01.008
https://doi.org/10.1016/j.csl.2015.08.003
https://doi.org/10.1109/ICASSP.2009.4960696
https://doi.org/10.21437/DiSS.2023-7
https://doi.org/10.21437/SpeechProsody.2022-114
https://doi.org/10.1016/j.csl.2012.02.005

Truong, K. P., & Van Leeuwen, D. A. (2007). Automatic discrimination between

laughter and speech. Speech Communication, 49(2), 144–158.

https://doi.org/10.1016/j.specom.2007.01.001

https://doi.org/10.1016/j.specom.2007.01.001

Appendix

Appendix 1: Adjacent.praat

form: "Report on Buckeye corpus"

 folder: "Buckeye folder", "/Volumes/Buckeye"

endform

corpusFolderPath$ = buckeye_folder$

writeInfoLine: "Reporting on the Buckeye folder “", corpusFolderPath$, "”..."

stopwatch

folderNames$# = folderNames$#: corpusFolderPath$ + "/s*"

numberOfFolders = size (folderNames$#)

for ifolder to numberOfFolders

 folderName$ = folderNames$# [ifolder]

 folderPath$ = corpusFolderPath$ + "/" + folderName$

 appendInfoLine: folderPath$

 subfolderNames$# = folderNames$#: folderPath$ + "/*"

 numberOfSubfolders = size (subfolderNames$#)

 for isubfolder to numberOfSubfolders

 subfolderName$ = subfolderNames$# [isubfolder]

 subfolderPath$ = folderPath$ + "/" + subfolderName$

 appendInfo: subfolderPath$

 #

 # Read all the data.

 #

 soundFilePath$ = subfolderPath$ + "/" + subfolderName$ + ".wav"

 Read Sound with adjacent annotation files (Buckeye): soundFilePath$

 selectObject: "Sound untitled"

 Rename: subfolderName$

 selectObject: "TextGrid untitled"

 Rename: subfolderName$

 endfor

endfor

Appendix 2: tierlabelcheck.praat

Script to check tier 2 and tier 3 names in all TextGrid files in the script folder

folder$ = "scripts/"

Create output file to save the results

output_file$ = "output_data/tier_names_report.txt"

writeFile: output_file$, "TextGrid Tier Names Report", newline$

appendFile: output_file$, "Generated on: ", date$(), newline$

appendFile: output_file$, "================================", newline$,

newline$

Get all TextGrid files in the folder

Create Strings as file list: "textgrid_list", folder$ + "*.TextGrid"

numFiles = Get number of strings

Check if any TextGrid files were found

if numFiles = 0

 appendFile: output_file$, "No TextGrid files found in folder: ", folder$, newline$

 writeInfoLine: "No TextGrid files found in folder: ", folder$

else

 writeInfoLine: "Found ", numFiles, " TextGrid files. Processing..."

 appendFile: output_file$, "Found ", numFiles, " TextGrid files:", newline$,

newline$

 # Process each TextGrid file

 for i from 1 to numFiles

 selectObject: "Strings textgrid_list"

 fileName$ = Get string: i

 fullPath$ = folder$ + fileName$

 # Try to read the TextGrid file

 textgrid_id = Read from file: fullPath$

 selectObject: textgrid_id

 # Get basic information about the TextGrid

 numTiers = Get number of tiers

 # Write file name to output

 appendFile: output_file$, "File: ", fileName$, newline$

 appendFile: output_file$, "Total tiers: ", numTiers, newline$

 # Check tier 2

 if numTiers >= 2

 tier2_name$ = Get tier name: 2

 appendFile: output_file$, "Tier 2 name: ", tier2_name$, newline$

 writeInfoLine: fileName$, " - Tier 2: ", tier2_name$

 else

 appendFile: output_file$, "Tier 2: NOT FOUND (file has only ",

numTiers, " tier(s))", newline$

 writeInfoLine: fileName$, " - Tier 2: NOT FOUND"

 endif

 # Check tier 3

 if numTiers >= 3

 tier3_name$ = Get tier name: 3

 appendFile: output_file$, "Tier 3 name: ", tier3_name$, newline$

 writeInfoLine: fileName$, " - Tier 3: ", tier3_name$

 else

 appendFile: output_file$, "Tier 3: NOT FOUND (file has only ",

numTiers, " tier(s))", newline$

 writeInfoLine: fileName$, " - Tier 3: NOT FOUND"

 endif

 appendFile: output_file$, newline$

 # Clean up

 Remove

 endfor

endif

Clean up

removeObject: "Strings textgrid_list"

Final message

appendFile: output_file$, "================================", newline$

appendFile: output_file$, "Report completed on: ", date$(), newline$

writeInfoLine: "Processing complete! Results saved to: ", output_file$

Appendix 3: extract_tier2.praat

Extract all tier 2 text to check if there's annotation mistake between tiers

folder$ = "scripts/"

outputFile$ = "output_data/tier2_content_analysis.txt"

get all TextGrid

Create Strings as file list: "textgrid_list", folder$ + "*.TextGrid"

numFiles = Get number of strings

writeInfoLine: "find ", numFiles, " textgrid，extracting tier 2"

output

output$ = "tier 2 content analysis" + newline$

output$ = output$ + "time: " + date$() + newline$

output$ = output$ + "folder: " + folder$ + newline$

output$ = output$ + "===" +

newline$ + newline$

allUniqueLabels$ = "|"

specialCharacters$ = ""

totalIntervals = 0

filesProcessed = 0

process every TextGrid

for i from 1 to numFiles

 selectObject: "Strings textgrid_list"

 fileName$ = Get string: i

 fullPath$ = folder$ + fileName$

 writeInfoLine: "processing ", i, "/", numFiles, ": ", fileName$

 # read TextGrid

 textgrid_id = Read from file: fullPath$

 selectObject: textgrid_id

 # check tier number

 numTiers = Get number of tiers

 if numTiers < 2

 output$ = output$ + "文件: " + fileName$ + " warning: only " +

string$(numTiers) + " 个 tier，skip" + newline$

 Remove

 goto NEXT_FILE

 endif

 # add filename

 output$ = output$ + "file: " + fileName$ + " ===" + newline$

 # get tier 2

 tierName$ = Get tier name: 2

 output$ = output$ + "Tier2name: " + tierName$ + newline$

 # get all intervals in tier 2

 numIntervals = Get number of intervals: 2

 output$ = output$ + "Intervals number: " + string$(numIntervals) + newline$

 fileIntervalCount = 0

 for j from 1 to numIntervals

 intervalText$ = Get label of interval: 2, j

 startTime = Get start time of interval: 2, j

 endTime = Get end time of interval: 2, j

 # only non empty intervals

 if intervalText$ <> ""

 fileIntervalCount = fileIntervalCount + 1

 output$ = output$ + " [" + fixed$(startTime, 3) + "-" +

fixed$(endTime, 3) + "]: " + intervalText$ + newline$

 # collect labels

 searchPattern$ = "|" + intervalText$ + "|"

 if index(allUniqueLabels$, searchPattern$) = 0

 allUniqueLabels$ = allUniqueLabels$ + intervalText$ + "|"

 endif

 call analyzeSpecialCharacters: intervalText$

 endif

 endfor

 output$ = output$ + "non empty intervals number: " + string$(fileIntervalCount)

+ newline$ + newline$

 totalIntervals = totalIntervals + fileIntervalCount

 filesProcessed = filesProcessed + 1

 Remove

 label NEXT_FILE

endfor

output

output$ = output$ + "===" +

newline$

output$ = output$ + "output:" + newline$

output$ = output$ + "file number: " + string$(filesProcessed) + newline$

output$ = output$ + "interval number: " + string$(totalIntervals) + newline$ +

newline$

analyse labels

output$ = output$ + "label list" + newline$

call extractUniqueLabels: allUniqueLabels$

output$ = output$ + uniqueLabelsReport$ + newline$

analysis

output$ = output$ + "--- 特殊字符和模式分析 ---" + newline$

call analyzePatterns: allUniqueLabels$

output$ = output$ + patternsReport$ + newline$

保存结果到文件

writeFile: outputFile$, output$

removeObject: "Strings textgrid_list"

writeInfoLine: "completed！"

analysis characters

procedure analyzeSpecialCharacters: text$

 textLength = length(text$)

 normalChars$ =

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ012345678

9 -"

 for k from 1 to textLength

 char$ = mid$(text$, k, 1)

 # collect special characters

 if index(normalChars$, char$) = 0

 if index(specialCharacters$, char$) = 0

 specialCharacters$ = specialCharacters$ + char$

 endif

 endif

 endfor

endproc

extract uniquelabels

procedure extractUniqueLabels: labelString$

 uniqueLabelsReport$ = ""

 labelCount = 0

 remainingString$ = labelString$

 if left$(remainingString$, 1) = "|"

 remainingString$ = right$(remainingString$, length(remainingString$) - 1)

 endif

 while length(remainingString$) > 0

 separatorPos = index(remainingString$, "|")

 if separatorPos = 0

 if remainingString$ <> ""

 labelCount = labelCount + 1

 uniqueLabelsReport$ = uniqueLabelsReport$ +

string$(labelCount) + ". " + remainingString$ + newline$

 endif

 remainingString$ = ""

 else

 currentLabel$ = left$(remainingString$, separatorPos - 1)

 if currentLabel$ <> ""

 labelCount = labelCount + 1

 uniqueLabelsReport$ = uniqueLabelsReport$ +

string$(labelCount) + ". " + currentLabel$ + newline$

 endif

 remainingString$ = right$(remainingString$, length(remainingString$)

- separatorPos)

 endif

 endwhile

 uniqueLabelsReport$ = "in total: " + string$(labelCount) + " unique labels:" +

newline$ + uniqueLabelsReport$

endproc

analyzePatterns

procedure analyzePatterns: labelString$

 patternsReport$ = ""

 bracketCount = 0

 laughCount = 0

 cutCount = 0

 noiseCount = 0

 errorCount = 0

 dashCount = 0

 remainingString$ = labelString$

 if left$(remainingString$, 1) = "|"

 remainingString$ = right$(remainingString$, length(remainingString$) - 1)

 endif

 while length(remainingString$) > 0

 separatorPos = index(remainingString$, "|")

 if separatorPos = 0

 currentLabel$ = remainingString$

 remainingString$ = ""

 else

 currentLabel$ = left$(remainingString$, separatorPos - 1)

 remainingString$ = right$(remainingString$, length(remainingString$)

- separatorPos)

 endif

 if currentLabel$ <> ""

 if index(currentLabel$, "<") > 0 and index(currentLabel$, ">") > 0

 bracketCount = bracketCount + 1

 endif

 if index(currentLabel$, "laugh") > 0 or index(currentLabel$,

"LAUGH") > 0 or index(currentLabel$, "Laugh") > 0

 laughCount = laughCount + 1

 endif

 if index(currentLabel$, "cut") > 0 or index(currentLabel$, "CUT") > 0

or index(currentLabel$, "Cut") > 0

 cutCount = cutCount + 1

 endif

 if index(currentLabel$, "voc") > 0 or index(currentLabel$, "VOC") > 0

or index(currentLabel$, "noise") > 0 or index(currentLabel$, "NOISE") > 0

 noiseCount = noiseCount + 1

 endif

 if index(currentLabel$, "error") > 0 or index(currentLabel$,

"ERROR") > 0 or index(currentLabel$, "Error") > 0

 errorCount = errorCount + 1

 endif

 if index(currentLabel$, "-") > 0

 dashCount = dashCount + 1

 endif

 endif

 endwhile

 patternsReport$ = "尖括号标签 (<...>): " + string$(bracketCount) + " 个" +

newline$

 patternsReport$ = patternsReport$ + "laugh: " + string$(laughCount) + " 个" +

newline$

 patternsReport$ = patternsReport$ + "cut: " + string$(cutCount) + " 个" +

newline$

 patternsReport$ = patternsReport$ + "voc/noise: " + string$(noiseCount) + " 个"

+ newline$

 patternsReport$ = patternsReport$ + "error: " + string$(errorCount) + " 个" +

newline$

 patternsReport$ = patternsReport$ + "include -: " + string$(dashCount) + " 个"

+ newline$

 patternsReport$ = patternsReport$ + "special characters: " +

specialCharacters$ + newline$

endproc

Appendix 4:clean_stan_collection.praat

Clean stan tier from Collection

folderPath$ = "scripts/"

collectionFile$ = folderPath$ + "praat.Collection"

read Collection

Read from file: collectionFile$

get all objects

select all

numberOfObjects = numberOfSelected()

writeInfoLine: "Collection include ", numberOfObjects, " objects"

get object ID

for i from 1 to numberOfObjects

 objectIDs[i] = selected(i)

endfor

read TextGrid

textGridCount = 0

for objectIndex from 1 to numberOfObjects

 selectObject: objectIDs[objectIndex]

 objectType$ = extractWord$(selected$(), "")

 if objectType$ = "TextGrid"

 textGridCount = textGridCount + 1

 objectName$ = selected$()

 writeInfoLine: ""

 writeInfoLine: "process TextGrid ", textGridCount, ": ", objectName$

 # find tier9 (stan)

 numTiers = Get number of tiers

 stanTier = 0

 for tierNum from 1 to numTiers

 tierName$ = Get tier name: tierNum

 if (tierNum = 9) or (tierName$ = "stan")

 stanTier = tierNum

 writeInfoLine: " find stan tier: ", tierName$, " (tier ", tierNum,

")"

 goto foundStanTier

 endif

 endfor

 writeInfoLine: " skip: no tier9 stan found"

 goto nextTextGrid

 label foundStanTier

 # create segment version

 numIntervals = Get number of intervals: stanTier

 # clean text, keep interval

 for intNum from 1 to numIntervals

 originalText$ = Get label of interval: stanTier, intNum

 if originalText$ <> ""

 cleanedText$ = originalText$

 # clean labels

 while index(cleanedText$, "<") > 0 and index(cleanedText$,

">") > 0

 startPos = index(cleanedText$, "<")

 endPos = index(cleanedText$, ">")

 if endPos > startPos

 bracketContent$ = mid$(cleanedText$, startPos + 1,

endPos - startPos - 1)

 # check transcript within label

 extractedText$ = ""

 if index(bracketContent$, "-") > 0

 # process LAUGH-i-love-it

 dashPos = index(bracketContent$, "-")

 afterDash$ = right$(bracketContent$,

length(bracketContent$) - dashPos)

 if index(afterDash$, "=") > 0

 # process f=for

 equalPos = index(afterDash$, "=")

 extractedText$ = right$(afterDash$,

length(afterDash$) - equalPos)

 else

 # process"_", it's_hilarious

 if index(afterDash$, "_") > 0

 # replace with space

 extractedText$ = replace$(afterDash$,

"_", " ", 0)

 extractedText$ =

replace$(extractedText$, "-", " ", 0)

 else

 extractedText$ = replace$(afterDash$, "-

", " ", 0)

 endif

 endif

 endif

 # replace"<>"

 beforeBracket$ = left$(cleanedText$, startPos - 1)

 afterBracket$ = right$(cleanedText$,

length(cleanedText$) - endPos)

 cleanedText$ = beforeBracket$ + " " + extractedText$ +

" " + afterBracket$

 else

 goto endBracketLoop

 endif

 endwhile

 label endBracketLoop

 # delect other"<>"

 cleanedText$ = replace$(cleanedText$, "<", " ", 0)

 cleanedText$ = replace$(cleanedText$, ">", " ", 0)

 # delete other symbol

 cleanedText$ = replace$(cleanedText$, ".", " ", 0)

 cleanedText$ = replace$(cleanedText$, ",", " ", 0)

 cleanedText$ = replace$(cleanedText$, "!", " ", 0)

 cleanedText$ = replace$(cleanedText$, "?", " ", 0)

 cleanedText$ = replace$(cleanedText$, ":", " ", 0)

 cleanedText$ = replace$(cleanedText$, ";", " ", 0)

 cleanedText$ = replace$(cleanedText$, "(", " ", 0)

 cleanedText$ = replace$(cleanedText$, ")", " ", 0)

 cleanedText$ = replace$(cleanedText$, "[", " ", 0)

 cleanedText$ = replace$(cleanedText$, "]", " ", 0)

 cleanedText$ = replace$(cleanedText$, "*", " ", 0)

 cleanedText$ = replace$(cleanedText$, "&", " ", 0)

 cleanedText$ = replace$(cleanedText$, "#", " ", 0)

 cleanedText$ = replace$(cleanedText$, "@", " ", 0)

 # clean redundant space

 while index(cleanedText$, " ") > 0

 cleanedText$ = replace$(cleanedText$, " ", " ", 0)

 endwhile

 while left$(cleanedText$, 1) = " " and length(cleanedText$) > 0

 cleanedText$ = right$(cleanedText$, length(cleanedText$) -

1)

 endwhile

 while right$(cleanedText$, 1) = " " and length(cleanedText$) > 0

 cleanedText$ = left$(cleanedText$, length(cleanedText$) - 1)

 endwhile

 # set text after cleaning

 Set interval text: stanTier, intNum, cleanedText$

 if originalText$ <> cleanedText$

 writeInfoLine: " Interval ", intNum, ": """, originalText$,

""" → """, cleanedText$, """"

 endif

 endif

 endfor

 # rename tier 9 to stanSeg

 Set tier name: stanTier, "stanSeg"

 # create unsegment version

 # collect text after cleaning

 allCleanText$ = ""

 for intNum from 1 to numIntervals

 intervalText$ = Get label of interval: stanTier, intNum

 if intervalText$ <> ""

 if allCleanText$ = ""

 allCleanText$ = intervalText$

 else

 allCleanText$ = allCleanText$ + " " + intervalText$

 endif

 endif

 endfor

 # create unseg tier

 totalStartTime = Get start time

 totalEndTime = Get end time

 Insert interval tier: stanTier + 1, "stanUnseg"

 unsegmentedTier = stanTier + 1

 Set interval text: unsegmentedTier, 1, allCleanText$

 label nextTextGrid

 endif

endfor

save Collection

writeInfoLine: "saving Collection..."

Write to binary file: collectionFile$

writeInfoLine: "completed"

Appendix 5: werstep1.praat

WER Analysis Script

Compare tier8 (ASR) vs tier11 (stanUnseg)

folderPath$ = "scripts/"

collectionFile$ = folderPath$ + "praat.Collection"

outputFile$ = "output_data/wer_detailed_results.txt"

read Collection

Read from file: collectionFile$

get all objects

select all

numberOfObjects = numberOfSelected()

writeInfoLine: "Collection contains ", numberOfObjects, " objects"

get all objects ID

for i from 1 to numberOfObjects

 objectIDs[i] = selected(i)

endfor

initialise

totalFiles = 0

totalWords = 0

totalErrors = 0

totalDeletions = 0

totalInsertions = 0

totalSubstitutions = 0

creat output file

deleteFile: outputFile$

fileappend "'outputFile$'" WER analysis results with word details'newline$'

fileappend "'outputFile$'" Time: 'date$()''newline$'

fileappend "'outputFile$'" 'newline$'

process every TextGrid

writeInfoLine: "Starting to process ", numberOfObjects, " objects..."

for objectIndex from 1 to numberOfObjects

 selectObject: objectIDs[objectIndex]

 objectType$ = extractWord$(selected$(), "")

 writeInfoLine: "Object ", objectIndex, " type: ", objectType$

 if objectType$ = "TextGrid"

 totalFiles = totalFiles + 1

 objectName$ = selected$()

 writeInfoLine: ""

 writeInfoLine: "Processing file ", totalFiles, ": ", objectName$

 fileappend "'outputFile$'" File: 'objectName$''newline$'

 # get tier number

 numTiers = Get number of tiers

 # find tier

 asrTier = 0

 stanTier = 0

 for tierNum from 1 to numTiers

 tierName$ = Get tier name: tierNum

 if tierNum = 8 or tierName$ = "ASR"

 asrTier = tierNum

 writeInfoLine: " Found ASR tier: ", tierName$, " (tier ",

tierNum, ")"

 endif

 if tierNum = 11 or tierName$ = "stanUnseg"

 stanTier = tierNum

 writeInfoLine: " Found stanUnseg tier: ", tierName$, " (tier ",

tierNum, ")"

 endif

 endfor

 if asrTier = 0 or stanTier = 0

 writeInfoLine: " Skipped: Missing required tiers"

 fileappend "'outputFile$'" Error: Missing ASR tier or stanUnseg

tier'newline$'

 fileappend "'outputFile$'" 'newline$'

 goto nextTextGrid

 endif

 # get text

 asrIntervals = Get number of intervals: asrTier

 stanIntervals = Get number of intervals: stanTier

 # merge all text

 asrText$ = ""

 stanText$ = ""

 # merge ASR tier text

 for intNum from 1 to asrIntervals

 intervalText$ = Get label of interval: asrTier, intNum

 if intervalText$ <> ""

 if asrText$ <> ""

 asrText$ = asrText$ + " " + intervalText$

 else

 asrText$ = intervalText$

 endif

 endif

 endfor

 # merge stan tier text

 for intNum from 1 to stanIntervals

 intervalText$ = Get label of interval: stanTier, intNum

 if intervalText$ <> ""

 if stanText$ <> ""

 stanText$ = stanText$ + " " + intervalText$

 else

 stanText$ = intervalText$

 endif

 endif

 endfor

 # output comprision

 fileappend "'outputFile$'" ASR Text: "'asrText$'"'newline$'

 fileappend "'outputFile$'" Standard Text: "'stanText$'"'newline$'

 fileappend "'outputFile$'" 'newline$'

 # segment by space

 asrWords = 0

 stanWords = 0

 # segment(ASR)

 if asrText$ <> ""

 # by space

 asrTextCopy$ = asrText$

 while index(asrTextCopy$, " ") > 0

 spacePos = index(asrTextCopy$, " ")

 asrWords = asrWords + 1

 asrWord$[asrWords] = left$(asrTextCopy$, spacePos - 1)

 asrTextCopy$ = right$(asrTextCopy$, length(asrTextCopy$) -

spacePos)

 endwhile

 # last word

 if asrTextCopy$ <> ""

 asrWords = asrWords + 1

 asrWord$[asrWords] = asrTextCopy$

 endif

 endif

 # segment(stan)

 if stanText$ <> ""

 # by space

 stanTextCopy$ = stanText$

 while index(stanTextCopy$, " ") > 0

 spacePos = index(stanTextCopy$, " ")

 stanWords = stanWords + 1

 stanWord$[stanWords] = left$(stanTextCopy$, spacePos - 1)

 stanTextCopy$ = right$(stanTextCopy$, length(stanTextCopy$) -

spacePos)

 endwhile

 # last word

 if stanTextCopy$ <> ""

 stanWords = stanWords + 1

 stanWord$[stanWords] = stanTextCopy$

 endif

 endif

 writeInfoLine: " ASR word count: ", asrWords

 writeInfoLine: " Standard word count: ", stanWords

 fileappend "'outputFile$'" ASR word count: 'asrWords''newline$'

 fileappend "'outputFile$'" Standard word count: 'stanWords''newline$'

 # output comprision

 asrWordList$ = ""

 stanWordList$ = ""

 for w from 1 to asrWords

 if w > 1

 asrWordList$ = asrWordList$ + " | "

 endif

 asrWordList$ = asrWordList$ + asrWord$[w]

 endfor

 for w from 1 to stanWords

 if w > 1

 stanWordList$ = stanWordList$ + " | "

 endif

 stanWordList$ = stanWordList$ + stanWord$[w]

 endfor

 fileappend "'outputFile$'" ASR Words: ['asrWordList$']'newline$'

 fileappend "'outputFile$'" Standard Words:['stanWordList$']'newline$'

 fileappend "'outputFile$'" 'newline$'

 # calculate edit distance(word level)

 asrLen = asrWords

 stanLen = stanWords

 if asrLen = 0 and stanLen = 0

 writeInfoLine: " Skipped: Both tiers are empty"

 fileappend "'outputFile$'" Skipped: Both tiers are empty'newline$'

 fileappend "'outputFile$'" 'newline$'

 goto nextTextGrid

 endif

 for i from 0 to asrLen

 for j from 0 to stanLen

 dp[i, j] = 0

 endfor

 endfor

 for i from 0 to asrLen

 dp[i, 0] = i

 endfor

 for j from 0 to stanLen

 dp[0, j] = j

 endfor

 for i from 1 to asrLen

 asrCurrentWord$ = asrWord$[i]

 for j from 1 to stanLen

 stanCurrentWord$ = stanWord$[j]

 if asrCurrentWord$ = stanCurrentWord$

 dp[i, j] = dp[i-1, j-1]

 else

 deletion = dp[i-1, j] + 1

 insertion = dp[i, j-1] + 1

 substitution = dp[i-1, j-1] + 1

 if deletion <= insertion and deletion <= substitution

 dp[i, j] = deletion

 elsif insertion <= substitution

 dp[i, j] = insertion

 else

 dp[i, j] = substitution

 endif

 endif

 endfor

 endfor

 editDistance = dp[asrLen, stanLen]

 referenceLength = stanLen

 if referenceLength > 0

 werPercent = (editDistance / referenceLength) * 100

 else

 werPercent = 0

 endif

 # error types and specific error details

 i = asrLen

 j = stanLen

 fileDeletions = 0

 fileInsertions = 0

 fileSubstitutions = 0

 # details error information

 errorCount = 0

 fileappend "'outputFile$'" Error analysis'newline$'

 while i > 0 or j > 0

 if i > 0 and j > 0

 asrCurrentWord$ = asrWord$[i]

 stanCurrentWord$ = stanWord$[j]

 if asrCurrentWord$ = stanCurrentWord$

 i = i - 1

 j = j - 1

 elsif dp[i, j] = dp[i-1, j-1] + 1

 # Substitution

 fileSubstitutions = fileSubstitutions + 1

 errorCount = errorCount + 1

 fileappend "'outputFile$'" Error 'errorCount':

SUBSTITUTION - ASR:"'asrCurrentWord$'" → Standard:"'stanCurrentWord$'"

(position 'j')'newline$'

 i = i - 1

 j = j - 1

 elsif dp[i, j] = dp[i-1, j] + 1

 # Insertion (ASR has extra word)

 fileInsertions = fileInsertions + 1

 errorCount = errorCount + 1

 fileappend "'outputFile$'" Error 'errorCount':

INSERTION - ASR extra word:"'asrCurrentWord$'" (after position 'j')'newline$'

 i = i - 1

 else

 # Deletion (ASR missing word from standard)

 fileDeletions = fileDeletions + 1

 errorCount = errorCount + 1

 fileappend "'outputFile$'" Error 'errorCount': DELETION

- Missing standard word:"'stanCurrentWord$'" (position 'j')'newline$'

 j = j - 1

 endif

 elsif i > 0

 # Insertion (remaining ASR words)

 fileInsertions = fileInsertions + 1

 errorCount = errorCount + 1

 asrCurrentWord$ = asrWord$[i]

 fileappend "'outputFile$'" Error 'errorCount': INSERTION -

ASR extra word:"'asrCurrentWord$'" (at end)'newline$'

 i = i - 1

 else

 # Deletion (remaining standard words)

 fileDeletions = fileDeletions + 1

 errorCount = errorCount + 1

 stanCurrentWord$ = stanWord$[j]

 fileappend "'outputFile$'" Error 'errorCount': DELETION -

Missing standard word:"'stanCurrentWord$'" (at beginning)'newline$'

 j = j - 1

 endif

 endwhile

 if errorCount = 0

 fileappend "'outputFile$'" No errors detected - Perfect

match!'newline$'

 endif

 # output

 writeInfoLine: " WER: ", fixed$(werPercent, 2), "%"

 writeInfoLine: " Error count: ", editDistance, "/", referenceLength

 writeInfoLine: " Deletions: ", fileDeletions, ", Insertions: ", fileInsertions,

", Substitutions: ", fileSubstitutions

 # culculate

 werString$ = fixed$(werPercent, 2)

 fileappend "'outputFile$'" 'newline$'

 fileappend "'outputFile$'" Summary 'newline$'

 fileappend "'outputFile$'" WER: 'werString$'%'newline$'

 fileappend "'outputFile$'" Edit distance: 'editDistance' / Reference

length: 'referenceLength''newline$'

 fileappend "'outputFile$'" Error type distribution:'newline$'

 fileappend "'outputFile$'" Deletions: 'fileDeletions''newline$'

 fileappend "'outputFile$'" Insertions: 'fileInsertions''newline$'

 fileappend "'outputFile$'" Substitutions: 'fileSubstitutions''newline$'

 fileappend "'outputFile$'" 'newline$'

 fileappend "'outputFile$'"

==='newline$'

 fileappend "'outputFile$'" 'newline$'

 totalWords = totalWords + referenceLength

 totalErrors = totalErrors + editDistance

 totalDeletions = totalDeletions + fileDeletions

 totalInsertions = totalInsertions + fileInsertions

 totalSubstitutions = totalSubstitutions + fileSubstitutions

 label nextTextGrid

 endif

endfor

if totalWords > 0

 overallWER = (totalErrors / totalWords) * 100

else

 overallWER = 0

endif

Output overall results

writeInfoLine: ""

writeInfoLine: "Overall Statistics"

writeInfoLine: "Files processed: ", totalFiles

writeInfoLine: "Total words: ", totalWords

writeInfoLine: "Total errors: ", totalErrors

writeInfoLine: "Overall WER: ", fixed$(overallWER, 2), "%"

writeInfoLine: "Error type distribution:"

writeInfoLine: " Deletions: ", totalDeletions, " (",

fixed$(totalDeletions/totalErrors*100, 1), "%)"

writeInfoLine: " Insertions: ", totalInsertions, " (",

fixed$(totalInsertions/totalErrors*100, 1), "%)"

writeInfoLine: " Substitutions: ", totalSubstitutions, " (",

fixed$(totalSubstitutions/totalErrors*100, 1), "%)"

deletionPercent$ = fixed$(totalDeletions/totalErrors*100, 1)

insertionPercent$ = fixed$(totalInsertions/totalErrors*100, 1)

substitutionPercent$ = fixed$(totalSubstitutions/totalErrors*100, 1)

overallWERString$ = fixed$(overallWER, 2)

fileappend "'outputFile$'" overall statistics 'newline$'

fileappend "'outputFile$'" Files processed: 'totalFiles''newline$'

fileappend "'outputFile$'" Total words: 'totalWords''newline$'

fileappend "'outputFile$'" Total errors: 'totalErrors''newline$'

fileappend "'outputFile$'" Overall WER: 'overallWERString$'%'newline$'

fileappend "'outputFile$'" Error type distribution:'newline$'

fileappend "'outputFile$'" Deletions: 'totalDeletions'

('deletionPercent$'%)'newline$'

fileappend "'outputFile$'" Insertions: 'totalInsertions'

('insertionPercent$'%)'newline$'

fileappend "'outputFile$'" Substitutions: 'totalSubstitutions'

('substitutionPercent$'%)'newline$'

appendFileLine: outputFile$, ""

appendFileLine: outputFile$, "completed"

select all

Remove

writeInfoLine: ""

writeInfoLine: "Results saved to: ", outputFile$

writeInfoLine: "WER Analysis completed"

Appendix 6: parastep2.praat

Paralinguistic features analysis - Step 2: Error-feature relationship analysis

folderPath$ = "scripts/"

collectionFile$ = folderPath$ + "praat.Collection"

outputFile$ = "output_data/paralinguistic_analysis_results.txt"

Time window settings (seconds)

beforeWindow = 2.0

afterWindow = 2.0

writeInfoLine: "Paralinguistic features analysis"

writeInfoLine: "Collection file: ", collectionFile$

Read Collection

Read from file: collectionFile$

Get all objects

select all

numberOfObjects = numberOfSelected()

writeInfoLine: "Collection contains ", numberOfObjects, " objects"

Get object ID list

for i from 1 to numberOfObjects

 objectIDs[i] = selected(i)

endfor

Initialize statistics

totalFiles = 0

totalErrorIntervals = 0

featureBefore = 0

featureDuring = 0

featureAfter = 0

noFeature = 0

Create results file

deleteFile: outputFile$

fileappend "'outputFile$'" Paralinguistic features analysis results'newline$'

fileappend "'outputFile$'" Time: 'date$()''newline$'

fileappend "'outputFile$'" Before window: 'beforeWindow's, After window:

'afterWindow's'newline$'

fileappend "'outputFile$'" 'newline$'

Process each TextGrid

for objectIndex from 1 to numberOfObjects

 selectObject: objectIDs[objectIndex]

 objectType$ = extractWord$(selected$(), "")

 if objectType$ = "TextGrid"

 totalFiles = totalFiles + 1

 objectName$ = selected$("TextGrid")

 writeInfoLine: "Processing file ", totalFiles, ": ", objectName$

 fileappend "'outputFile$'" File: TextGrid 'objectName$''newline$'

 numTiers = Get number of tiers

 # Find target tiers

 paraTier = 0

 asrSegTier = 0

 stanSegTier = 0

 for tierNum from 1 to numTiers

 tierName$ = Get tier name: tierNum

 if tierNum = 7

 paraTier = tierNum

 elif tierNum = 9

 asrSegTier = tierNum

 elif tierNum = 10

 stanSegTier = tierNum

 endif

 endfor

 if asrSegTier = 0 or stanSegTier = 0

 writeInfoLine: " Skipped: Missing required segmented tiers"

 fileappend "'outputFile$'" Skipped: Missing required tiers'newline$'

 goto nextFile

 endif

 # Get paralinguistic features from tier 7

 paraFeatures = 0

 if paraTier > 0

 paraIntervals = Get number of intervals: paraTier

 writeInfoLine: " Found paralinguistic tier with ", paraIntervals, "

intervals"

 for intNum from 1 to paraIntervals

 intervalText$ = Get label of interval: paraTier, intNum

 if intervalText$ <> ""

 paraFeatures = paraFeatures + 1

 paraStart[paraFeatures] = Get start time of interval: paraTier,

intNum

 paraEnd[paraFeatures] = Get end time of interval: paraTier,

intNum

 paraLabel$[paraFeatures] = intervalText$

 writeInfoLine: " Feature ", paraFeatures, ": '",

intervalText$, "' from ", paraStart[paraFeatures], " to ", paraEnd[paraFeatures]

 endif

 endfor

 else

 writeInfoLine: " No paralinguistic tier found"

 endif

 writeInfoLine: " Total paralinguistic features: ", paraFeatures

 # Compare segmented tiers interval by interval

 asrSegIntervals = Get number of intervals: asrSegTier

 stanSegIntervals = Get number of intervals: stanSegTier

 # Check if tiers have same number of intervals (should be aligned)

 if asrSegIntervals <> stanSegIntervals

 writeInfoLine: " Warning: Different number of intervals - ASR: ",

asrSegIntervals, ", Standard: ", stanSegIntervals

 endif

 minIntervals = min(asrSegIntervals, stanSegIntervals)

 # Initialize file counters

 fileErrorIntervals = 0

 fileFeatureBefore = 0

 fileFeatureDuring = 0

 fileFeatureAfter = 0

 fileNoFeature = 0

 fileappend "'outputFile$'" Comparing 'minIntervals' aligned

intervals:'newline$'

 # Compare each aligned interval

 for intervalNum from 1 to minIntervals

 asrText$ = Get label of interval: asrSegTier, intervalNum

 stanText$ = Get label of interval: stanSegTier, intervalNum

 # Skip empty intervals (unless both are different types of empty)

 if asrText$ <> stanText$

 # Found an error interval

 fileErrorIntervals = fileErrorIntervals + 1

 # Get timing of this interval

 errorStart = Get start time of interval: stanSegTier, intervalNum

 errorEnd = Get end time of interval: stanSegTier, intervalNum

 writeInfoLine: " Error interval ", intervalNum, ": ASR='",

asrText$, "' vs Standard='", stanText$, "' (", errorStart, "-", errorEnd, ")"

 fileappend "'outputFile$'" Error 'fileErrorIntervals': Interval

'intervalNum' | ASR:"'asrText$'" vs Standard:"'stanText$'" | Time: 'errorStart:3'-

'errorEnd:3's'newline$'

 # Analyze relationship with paralinguistic features

 call classifyErrorRelationship errorStart errorEnd

 endif

 endfor

 if fileErrorIntervals = 0

 fileappend "'outputFile$'" No errors detected - Perfect

alignment!'newline$'

 endif

 # Output file statistics

 writeInfoLine: " File results: Errors=", fileErrorIntervals, " | Before=",

fileFeatureBefore, " | During=", fileFeatureDuring, " | After=", fileFeatureAfter, " |

None=", fileNoFeature

 fileappend "'outputFile$'" Errors: 'fileErrorIntervals''newline$'

 fileappend "'outputFile$'" Before: 'fileFeatureBefore''newline$'

 fileappend "'outputFile$'" During: 'fileFeatureDuring''newline$'

 fileappend "'outputFile$'" After: 'fileFeatureAfter''newline$'

 fileappend "'outputFile$'" None: 'fileNoFeature''newline$'

 fileappend "'outputFile$'" 'newline$'

 # Update overall statistics

 totalErrorIntervals = totalErrorIntervals + fileErrorIntervals

 featureBefore = featureBefore + fileFeatureBefore

 featureDuring = featureDuring + fileFeatureDuring

 featureAfter = featureAfter + fileFeatureAfter

 noFeature = noFeature + fileNoFeature

 label nextFile

 endif

endfor

Calculate overall percentages

if totalErrorIntervals > 0

 beforePercent = (featureBefore / totalErrorIntervals) * 100

 duringPercent = (featureDuring / totalErrorIntervals) * 100

 afterPercent = (featureAfter / totalErrorIntervals) * 100

 noFeaturePercent = (noFeature / totalErrorIntervals) * 100

else

 beforePercent = 0

 duringPercent = 0

 afterPercent = 0

 noFeaturePercent = 0

endif

Output overall results

writeInfoLine: ""

writeInfoLine: "final results"

writeInfoLine: "Files processed: ", totalFiles

writeInfoLine: "Total error intervals: ", totalErrorIntervals

writeInfoLine: "Before: ", featureBefore, " (", fixed$(beforePercent, 1), "%)"

writeInfoLine: "During: ", featureDuring, " (", fixed$(duringPercent, 1), "%)"

writeInfoLine: "After: ", featureAfter, " (", fixed$(afterPercent, 1), "%)"

writeInfoLine: "None: ", noFeature, " (", fixed$(noFeaturePercent, 1), "%)"

fileappend "'outputFile$'" final results'newline$'

fileappend "'outputFile$'" Files processed: 'totalFiles''newline$'

fileappend "'outputFile$'" Total error intervals: 'totalErrorIntervals''newline$'

fileappend "'outputFile$'" Before: 'featureBefore' ('beforePercent:1'%)'newline$'

fileappend "'outputFile$'" During: 'featureDuring' ('duringPercent:1'%)'newline$'

fileappend "'outputFile$'" After: 'featureAfter' ('afterPercent:1'%)'newline$'

fileappend "'outputFile$'" None: 'noFeature' ('noFeaturePercent:1'%)'newline$'

writeInfoLine: ""

writeInfoLine: "Results saved to: ", outputFile$

Clean up all objects

writeInfoLine: "Cleaning up objects..."

select all

Remove

writeInfoLine: "completed"

start process

procedure classifyErrorRelationship .errorStart .errorEnd

 relationship$ = "no_feature"

 writeInfoLine: " Analyzing error at ", .errorStart, "-", .errorEnd, " with ",

paraFeatures, " features"

 if paraFeatures > 0

 for pf from 1 to paraFeatures

 writeInfoLine: " Feature ", pf, ": '", paraLabel$[pf], "' (",

paraStart[pf], "-", paraEnd[pf], ")"

 # Check overlap (during)

 if .errorStart < paraEnd[pf] and .errorEnd > paraStart[pf]

 relationship$ = "feature_during"

 writeInfoLine: " -> DURING: Time overlap detected"

 goto endFeatureCheck

 endif

 # Check before window

 if .errorEnd <= paraStart[pf] and paraStart[pf] - .errorEnd <=

beforeWindow

 relationship$ = "feature_before"

 gap = paraStart[pf] - .errorEnd

 writeInfoLine: " -> BEFORE: Gap = ", gap, "s (within ",

beforeWindow, "s window)"

 goto endFeatureCheck

 endif

 # Check after window

 if .errorStart >= paraEnd[pf] and .errorStart - paraEnd[pf] <=

afterWindow

 relationship$ = "feature_after"

 gap = .errorStart - paraEnd[pf]

 writeInfoLine: " -> AFTER: Gap = ", gap, "s (within ",

afterWindow, "s window)"

 goto endFeatureCheck

 endif

 endfor

 label endFeatureCheck

 else

 writeInfoLine: " -> No paralinguistic features to compare"

 endif

 writeInfoLine: " Final classification: ", relationship$

 # Update file counters

 if relationship$ = "feature_before"

 fileFeatureBefore = fileFeatureBefore + 1

 elsif relationship$ = "feature_during"

 fileFeatureDuring = fileFeatureDuring + 1

 elsif relationship$ = "feature_after"

 fileFeatureAfter = fileFeatureAfter + 1

 else

 fileNoFeature = fileNoFeature + 1

 endif

 fileappend "'outputFile$'" -> Relationship: 'relationship$''newline$'

endproc

writeInfoLine: ""

writeInfoLine: "Results saved to: ", outputFile$

writeInfoLine: "para relationship completed"

Appendix 7: aacoustic feature.praat

Script for analyzing paralinguistic features(HNR, Spectral Tilt, and ZCR) for

specific labeled intervals in tier 7 (“para”).

form Analyze paralinguistic features

 text input_directory scripts

 text output_file output_data/acoustic_feature_results.txt

endform

Create output file and write header

writeFileLine: output_file$, "File | Label | Start | End | Mean_HNR | Spectral_Tilt |

ZCR"

get all wav

Create Strings as file list: "fileList", input_directory$ + "/*.wav"

numberOfFiles = Get number of strings

for i from 1 to numberOfFiles

 select Strings fileList

 filename$ = Get string: i

 basename$ = filename$ - ".wav"

 # read sound and textgrid

 Read from file: input_directory$ + "/" + filename$

 sound = selected("Sound")

 Read from file: input_directory$ + "/" + basename$ + ".TextGrid"

 textgrid = selected("TextGrid")

 # get number of interval in tier 7

 select textgrid

 numberOfIntervals = Get number of intervals: 7

 # Process each interval in tier 7

 for interval to numberOfIntervals

 select textgrid

 label$ = Get label of interval: 7, interval

 if label$ = "laughter" or label$ = "throat-clearing" or label$ = "sigh"

 start = Get start time of interval: 7, interval

 end = Get end time of interval: 7, interval

 duration = end - start

 # Extract sound segment

 select sound

 Extract part: start, end, "rectangular", 1, "no"

 segment = selected("Sound")

 # Calculate HNR

 To Harmonicity (cc): 0.01, 75, 0.1, 4.5

 meanHNR = Get mean: 0, 0

 Remove

 # Calculate Spectral Tilt

 select segment

 To Spectrum: "yes"

 spectrum = selected("Spectrum")

 select spectrum

 To Ltas (1-to-1)

 ltas = selected("Ltas")

 select ltas

 # Get slope between low band (0-1000 Hz) and high band (1000-4000

Hz)

 lowBand = Get mean: 0, 1000, "energy"

 highBand = Get mean: 1000, 4000, "energy"

 spectralTilt = 10 * log10(highBand / lowBand)

 removeObject: spectrum, ltas

 # Calculate ZCR

 select segment

 To PointProcess (zeroes): 1, "yes", "yes"

 points = Get number of points

 zcr = points / duration

 Remove

 # Write results to file

 resultLine$ = basename$ + tab$ + label$ + tab$ + fixed$(start, 3) +

tab$ +

 ... fixed$(end, 3) + tab$ + fixed$(meanHNR, 3) + tab$ +

 ... fixed$(spectralTilt, 3) + tab$ + fixed$(zcr, 3)

 appendFileLine: output_file$, resultLine$

 select segment

 removeObject: segment

 endif

 endfor

 removeObject: sound, textgrid

endfor

select Strings fileList

Remove

Clean up any remaining objects

writeInfoLine: "Cleaning up objects..."

select all

numberOfRemainingObjects = numberOfSelected()

if numberOfRemainingObjects > 0

 writeInfoLine: "Removing ", numberOfRemainingObjects, " remaining objects"

 Remove

endif

writeInfoLine: "complete"

Appendix 8: master_table.praat

Master analysis table

Combines WER + Paralinguistic + Acoustic data

folderPath$ = "praat_analysis/output_data/"

outputFile$ = "descriptive_stat/master_analysis_table.tsv"

Arrays for master data

fileCount = 0

#WER

werLines = Read Strings from raw text file: folderPath$ + "wer_detailed_results.txt"

numberOfLines = Get number of strings

for line from 1 to numberOfLines

 text$ = Get string: line

 # Get file name

 if index(text$, "File: TextGrid ") > 0

 fileCount = fileCount + 1

 start = index(text$, "TextGrid ") + 9

 fileName$[fileCount] = right$(text$, length(text$) - start + 1)

 endif

 # Get WER percentage

 if index(text$, "WER: ") > 0 and fileCount > 0

 start = index(text$, "WER: ") + 5

 end = index(text$, "%")

 werPercent[fileCount] = number(mid$(text$, start, end - start))

 endif

 # Get error counts in one go

 if index(text$, "Deletions: ") > 0 and fileCount > 0

 # Extract all three numbers from this section

 deletions[fileCount] = number(mid$(text$, index(text$, "Deletions: ") + 11,

3))

 endif

 if index(text$, "Insertions: ") > 0 and fileCount > 0

 insertions[fileCount] = number(mid$(text$, index(text$, "Insertions: ") +

12, 3))

 endif

 if index(text$, "Substitutions: ") > 0 and fileCount > 0

 substitutions[fileCount] = number(mid$(text$, index(text$, "Substitutions:

") + 15, 3))

 totalErrors[fileCount] = deletions[fileCount] + insertions[fileCount] +

substitutions[fileCount]

 endif

endfor

select werLines

Remove

#Paralinguistic

paraLines = Read Strings from raw text file: folderPath$ +

"paralinguistic_analysis_results.txt"

numberOfLines = Get number of strings

Initialize para arrays

for i from 1 to fileCount

 before[i] = 0

 during[i] = 0

 after[i] = 0

 none[i] = 0

endfor

currentFile = 0

for line from 1 to numberOfLines

 text$ = Get string: line

 # Find current file

 if index(text$, "File: TextGrid ") > 0

 start = index(text$, "TextGrid ") + 9

 currentFileName$ = right$(text$, length(text$) - start + 1)

 # Match with existing files

 currentFile = 0

 for i from 1 to fileCount

 if fileName$[i] = currentFileName$

 currentFile = i

 goto foundFile

 endif

 endfor

 label foundFile

 endif

 # Extract individual values

 if currentFile > 0

 if index(text$, " Before: ") > 0

 start = index(text$, "Before: ") + 8

 before[currentFile] = number(right$(text$, length(text$) - start + 1))

 endif

 if index(text$, " During: ") > 0

 start = index(text$, "During: ") + 8

 during[currentFile] = number(right$(text$, length(text$) - start + 1))

 endif

 if index(text$, " After: ") > 0

 start = index(text$, "After: ") + 7

 after[currentFile] = number(right$(text$, length(text$) - start + 1))

 endif

 if index(text$, " None: ") > 0

 start = index(text$, "None: ") + 6

 none[currentFile] = number(right$(text$, length(text$) - start + 1))

 endif

 endif

endfor

select paraLines

Remove

#Acoustic

acousticLines = Read Strings from raw text file: folderPath$ +

"acoustic_feature_results.txt"

numberOfLines = Get number of strings

Initialize acoustic arrays

for i from 1 to fileCount

 label$[i] = "NA"

 startTime$[i] = "NA"

 endTime$[i] = "NA"

 hnr$[i] = "NA"

 tilt$[i] = "NA"

 zcr$[i] = "NA"

endfor

Skip header, process data

for line from 2 to numberOfLines

 text$ = Get string: line

 if text$ = ""

 goto nextLine

 endif

 # Simple tab parsing

 parts = 0

 remaining$ = text$

 while index(remaining$, tab$) > 0

 parts = parts + 1

 pos = index(remaining$, tab$)

 part$[parts] = left$(remaining$, pos - 1)

 remaining$ = right$(remaining$, length(remaining$) - pos)

 endwhile

 parts = parts + 1

 part$[parts] = remaining$

 if parts >= 6

 # Match file name (remove extensions)

 acousticFile$ = replace$(part$[1], ".wav", "", 0)

 acousticFile$ = replace$(acousticFile$, ".TextGrid", "", 0)

 for i from 1 to fileCount

 baseFileName$ = replace$(fileName$[i], ".TextGrid", "", 0)

 if baseFileName$ = acousticFile$ and label$[i] = "NA"

 label$[i] = part$[2]

 startTime$[i] = part$[3]

 endTime$[i] = part$[4]

 hnr$[i] = part$[5]

 tilt$[i] = part$[6]

 if parts >= 7

 zcr$[i] = part$[7]

 endif

 goto nextLine

 endif

 endfor

 endif

 label nextLine

endfor

select acousticLines

Remove

#Write master table

deleteFile: outputFile$

Header

appendFileLine: outputFile$, "FileName" + tab$ + "WER_Percent" + tab$ +

"Total_WER_Errors" + tab$ +

... "Deletions" + tab$ + "Insertions" + tab$ + "Substitutions" + tab$ +

... "Feature_Before" + tab$ + "Feature_During" + tab$ + "Feature_After" + tab$ +

"No_Feature" + tab$ +

... "Total_Feature_Errors" + tab$ + "Label" + tab$ + "Start" + tab$ + "End" + tab$ +

... "Mean_HNR" + tab$ + "Spectral_Tilt" + tab$ + "ZCR"

Data rows

for i from 1 to fileCount

 totalFeature = before[i] + during[i] + after[i] + none[i]

 line$ = fileName$[i] + tab$ +

 ... string$(werPercent[i]) + tab$ + string$(totalErrors[i]) + tab$ +

 ... string$(deletions[i]) + tab$ + string$(insertions[i]) + tab$ +

string$(substitutions[i]) + tab$ +

 ... string$(before[i]) + tab$ + string$(during[i]) + tab$ + string$(after[i])

+ tab$ + string$(none[i]) + tab$ +

 ... string$(totalFeature) + tab$ + label$[i] + tab$ + startTime$[i] +

tab$ + endTime$[i] + tab$ +

 ... hnr$[i] + tab$ + tilt$[i] + tab$ + zcr$[i]

 appendFileLine: outputFile$, line$

 endfor

writeInfoLine: "complete"

Appendix 9: descriptive.stat,rmd

title: "descriptive_stat"

author: "Xuefeiyang Zhang"

date: "2025-08-12"

output: html_document

Step 1: Event distribution analysis

Set path

data_dir <- "../descriptive_stat"

output_dir <- "../descriptive_stat/output"

cat("=== DISTRIBUTION OF NUMBER OF EVENTS ===\n")

Read data

data_file <- file.path(data_dir, "master_analysis_table.tsv")

data <- read.delim(data_file, sep = "\t", header = TRUE, stringsAsFactors = FALSE)

cat("Data loaded:", nrow(data), "observations\n")

Create frequency table

label_counts <- table(data$Label)

Convert to data frame and calculate percentages

event_dist <- data.frame(

 Label = names(label_counts),

 n = as.numeric(label_counts),

 stringsAsFactors = FALSE

)

Calculate percentages

event_dist$percent <- paste0(round(event_dist$n / sum(event_dist$n) * 100, 1), "%")

Sort by frequency

event_dist <- event_dist[order(event_dist$n, decreasing = TRUE),]

Add total row

total_row <- data.frame(

 Label = "Total",

 n = sum(event_dist$n),

 percent = "100%",

 stringsAsFactors = FALSE

)

Combine table

table_event_distribution <- rbind(event_dist, total_row)

Reset row names

rownames(table_event_distribution) <- NULL

Print and save table

cat("\nEvent Distribution Table:\n")

print(table_event_distribution)

output_file <- file.path(output_dir, "table1_event_distribution.tsv")

write.table(table_event_distribution, output_file, sep = "\t", row.names = FALSE,

quote = FALSE)

cat("\nTable saved to:", output_file, "\n")

Create bar chart

cat("\nCreating bar chart...\n")

chart_data <- event_dist[event_dist$Label != "Total",]

#save bar chart

png_file <- file.path(output_dir, "figure1_event_distribution.png")

png(png_file, width = 800, height = 600)

Set bar chart

max_count <- max(chart_data$n)

y_limit <- max_count * 1.1

barplot(chart_data$n,

 names.arg = chart_data$Label,

 main = "Distribution of Paralinguistic Events",

 xlab = "Event Type",

 ylab = "Count",

 col = "steelblue",

 ylim = c(0,y_limit))

#Add text and labels

text(x = seq_along(chart_data$n) * 1.2 - 0.5,

 y = chart_data$n + max(chart_data$n) * 0.02,

 labels = chart_data$n,

 pos = 3)

dev.off()

cat("Bar chart saved to:", png_file, "\n")

Step 2: WER overview

Set path

data_dir <- "../descriptive_stat"

output_dir <- "../descriptive_stat/output"

Read data

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t")

data$WER_Percent <- as.numeric(data$WER_Percent)

data <- data[!is.na(data$WER_Percent),]

Calculate WER statistics

event_types <- c("laughter", "sigh", "throat-clearing")

wer_stats <- data.frame()

for(label in event_types) {

 wer_values <- data[data$Label == label, "WER_Percent"]

 if(length(wer_values) > 0) {

 stats_row <- data.frame(

 Label = label,

 n = length(wer_values),

 Mean = round(mean(wer_values), 2),

 SD = round(sd(wer_values), 2),

 Median = round(median(wer_values), 2),

 Q1 = round(quantile(wer_values, 0.25), 2),

 Q3 = round(quantile(wer_values, 0.75), 2),

 IQR = round(quantile(wer_values, 0.75) - quantile(wer_values, 0.25), 2)

)

 wer_stats <- rbind(wer_stats, stats_row)

 }

}

Print and save table

print(wer_stats)

write.table(wer_stats, file.path(output_dir, "table2_wer_statistics.tsv"),

 sep = "\t", row.names = FALSE, quote = FALSE)

Create boxplot

boxplot_data <- list()

sample_sizes <- c()

for(label in event_types) {

 boxplot_data[[label]] <- data[data$Label == label, "WER_Percent"]

 sample_sizes <- c(sample_sizes, sum(data$Label == label))

}

label_with_n <- paste0(event_types, "\n(n=", sample_sizes, ")")

Save boxplot

png(file.path(output_dir, "figure2_wer_boxplot.png"), width = 800, height = 600)

#set boxplot

boxplot(boxplot_data,

 names = label_with_n,

 main = "WER Distribution by Event Type",

 xlab = "Event Type",

 ylab = "WER (%)",

 col = "steelblue",

 ylim = c(0, 120))

dev.off()

cat("Files saved:\n- table2_wer_statistics.tsv\n- figure2_wer_boxplot.png\n")

Step 3: error type composition

Set paths

data_dir <- "../descriptive_stat"

output_dir <- "../descriptive_stat/output"

Read data

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t")

data$Deletions <- as.numeric(data$Deletions)

data$Insertions <- as.numeric(data$Insertions)

data$Substitutions <- as.numeric(data$Substitutions)

data <- data[!is.na(data$Deletions) & !is.na(data$Insertions)

& !is.na(data$Substitutions),]

Calculate error composition

event_types <- c("laughter", "sigh", "throat-clearing")

error_composition <- data.frame()

for(label in event_types) {

 label_data <- data[data$Label == label,]

 if(nrow(label_data) > 0) {

 total_deletions <- sum(label_data$Deletions, na.rm = TRUE)

 total_insertions <- sum(label_data$Insertions, na.rm = TRUE)

 total_substitutions <- sum(label_data$Substitutions, na.rm = TRUE)

 total_errors <- total_deletions + total_insertions + total_substitutions

 if(total_errors > 0) {

 d_percent <- round((total_deletions / total_errors) * 100, 1)

 i_percent <- round((total_insertions / total_errors) * 100, 1)

 s_percent <- round((total_substitutions / total_errors) * 100, 1)

 } else {

 d_percent <- i_percent <- s_percent <- 0

 }

 composition_row <- data.frame(

 Label = label,

 Deletions = total_deletions,

 Insertions = total_insertions,

 Substitutions = total_substitutions,

 TotalErrors = total_errors,

 D_Percent = d_percent,

 I_Percent = i_percent,

 S_Percent = s_percent

)

 error_composition <- rbind(error_composition, composition_row)

 }

}

Print and save table

print(error_composition)

write.table(error_composition, file.path(output_dir, "table3_error_composition.tsv"),

 sep = "\t", row.names = FALSE, quote = FALSE)

Create stacked bar chart

chart_data <- as.matrix(error_composition[, c("D_Percent", "I_Percent",

"S_Percent")])

rownames(chart_data) <- error_composition$Label

Save plot

png(file.path(output_dir, "figure3_error_composition.png"), width = 800, height =

600)

barplot(t(chart_data),

 main = "Error Type Composition by Event Type",

 xlab = "Event Type", ylab = "Percentage (%)",

 col = c("coral", "steelblue", "lightgreen"),

 legend.text = c("Deletions", "Insertions", "Substitutions"),

 args.legend = list(x = "topright", bty = "n"),

 ylim = c(0, 100), beside = FALSE)

dev.off()

cat("Files saved:\n- table3_error_composition.tsv\n-

figure3_error_composition.png\n")

Step 4: Temporal position of errors

Set path

data_dir <- "../descriptive_stat"

output_dir <- "../descriptive_stat/output"

Read and prepare data

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t")

data$Feature_Before <- as.numeric(data$Feature_Before)

data$Feature_During <- as.numeric(data$Feature_During)

data$Feature_After <- as.numeric(data$Feature_After)

data$No_Feature <- as.numeric(data$No_Feature)

Calculate by event type

event_types <- c("laughter", "sigh", "throat-clearing")

results <- data.frame()

for(label in event_types) {

 label_data <- data[data$Label == label,]

 before <- sum(label_data$Feature_Before, na.rm = TRUE)

 during <- sum(label_data$Feature_During, na.rm = TRUE)

 after <- sum(label_data$Feature_After, na.rm = TRUE)

 no_feature <- sum(label_data$No_Feature, na.rm = TRUE)

 total <- before + during + after + no_feature

 row <- data.frame(

 Label = label,

 Before = before, During = during, After = after, No_Feature = no_feature,

 Row_Total = total,

 Before_Pct = round((before/total)*100, 1),

 During_Pct = round((during/total)*100, 1),

 After_Pct = round((after/total)*100, 1),

 No_Feature_Pct = round((no_feature/total)*100, 1)

)

 results <- rbind(results, row)

}

Save table

print(results)

write.table(results, file.path(output_dir, "table4_temporal_position.tsv"),

 sep = "\t", row.names = FALSE, quote = FALSE)

Create plot

chart_data <- as.matrix(results[, c("Before_Pct", "During_Pct", "After_Pct",

"No_Feature_Pct")])

rownames(chart_data) <- results$Label

png(file.path(output_dir, "figure4_temporal_position.png"), width = 800, height =

600)

barplot(t(chart_data),

 main = "Temporal Position of Errors by Event Type",

 xlab = "Event Type", ylab = "Percentage (%)",

 col = c("lightgreen", "orange", "coral", "lightgray"),

 legend.text = c("Before", "During", "After", "No Feature"),

 args.legend = list(x = "topright", bty = "n"),

 ylim = c(0, 100), beside = FALSE)

dev.off()

cat("Files saved: table4_temporal_position.tsv, figure4_temporal_position.png\n")

Step 5: Acoustic features vs. error occurrence

Set path

data_dir <- "../descriptive_stat"

output_dir <- "../descriptive_stat/output"

Read data

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t")

#Prepare data

data$AnyError <- ifelse(data$Total_WER_Errors > 0, 1, 0)

Filter undefined labels

data <- data[data$Mean_HNR != "--undefined--" &

 data$Spectral_Tilt != "--undefined--" &

 data$ZCR != "--undefined--",]

Convert to numeric

data$Mean_HNR <- as.numeric(data$Mean_HNR)

data$Spectral_Tilt <- as.numeric(data$Spectral_Tilt)

data$ZCR <- as.numeric(data$ZCR)

data <- data[!is.na(data$Mean_HNR) & !is.na(data$Spectral_Tilt)

& !is.na(data$ZCR),]

Create plots

features <- list(

 list(data = data$Mean_HNR, name = "HNR", ylabel = "HNR (dB)", file =

"figure5_hnr_anyerror.png"),

 list(data = data$Spectral_Tilt, name = "Spectral Tilt", ylabel = "Spectral Tilt (dB)",

file = "figure6_tilt_anyerror.png"),

 list(data = data$ZCR, name = "ZCR", ylabel = "ZCR (Hz)", file =

"figure7_zcr_anyerror.png")

)

for(feature in features) {

 no_error <- feature$data[data$AnyError == 0]

 with_error <- feature$data[data$AnyError == 1]

 plot_data <- list("0" = no_error, "1" = with_error)

 png(file.path(output_dir, feature$file), width = 800, height = 600)

 boxplot(plot_data,

 main = paste("Distribution of", feature$name, "by Error Occurrence"),

 xlab = "Any Error (0 = no error; 1 = at least one error)",

 ylab = feature$ylabel,

 col = c("steelblue", "coral"))

 dev.off()

}

cat("Files saved:\n- figure5_hnr_anyerror.png\n- figure6_tilt_anyerror.png\n-

figure7_zcr_anyerror.png\n")

Step 6: spearman correlation

Set path

data_dir <- "../descriptive_stat"

output_dir <- "../descriptive_stat/output"

Read data

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t")

Prepare data

data <- data[data$Mean_HNR != "--undefined--" &

 data$Spectral_Tilt != "--undefined--" &

 data$ZCR != "--undefined--",]

data$Mean_HNR <- as.numeric(data$Mean_HNR)

data$Spectral_Tilt <- as.numeric(data$Spectral_Tilt)

data$ZCR <- as.numeric(data$ZCR)

data <- data[!is.na(data$Mean_HNR) & !is.na(data$Spectral_Tilt)

& !is.na(data$ZCR),]

Calculate correlation

cor1 <- cor.test(data$Mean_HNR, data$Spectral_Tilt, method = "spearman")

cor2 <- cor.test(data$Mean_HNR, data$ZCR, method = "spearman")

cor3 <- cor.test(data$Spectral_Tilt, data$ZCR, method = "spearman")

Create table

results <- data.frame(

 Pair = c("HNR — Spectral Tilt", "HNR — ZCR", "Spectral Tilt — ZCR"),

 rho = round(c(cor1$estimate, cor2$estimate, cor3$estimate), 3),

 p = round(c(cor1$p.value, cor2$p.value, cor3$p.value), 3)

)

Print and save table

print(results)

write.table(results, file.path(output_dir, "table5_spearman_correlations.tsv"),

 sep = "\t", row.names = FALSE, quote = FALSE)

cat("File saved: table5_spearman_correlations.tsv\n")

Appendix 10: regression_model.rmd

Logistic Regression Analysis

library(sandwich)

library(lmtest)

Set path

data_dir <- "../logistic_model"

output_dir <- "../logistic_model/output"

Read data

data_file <- file.path(data_dir, "modeling_dataset.tsv")

data <- read.delim(data_file, sep = "\t")

data$Speaker <- as.factor(data$Speaker)

Fit models

m1 <- glm(AnyError ~ zHNR + zTilt + zZCR + Label, data = data, family =

binomial)

m2 <- glm(DelOccur ~ zHNR + zTilt + zZCR + Label, data = data, family =

binomial)

m3 <- glm(InsOccur ~ zHNR + zTilt + zZCR + Label, data = data, family = binomial)

m4 <- glm(SubOccur ~ zHNR + zTilt + zZCR + Label, data = data, family =

binomial)

Get robust results for each model

get_results <- function(model, data) {

 robust_se <- vcovCL(model, cluster = data$Speaker)

 robust_test <- coeftest(model, vcov = robust_se)

 coefs <- robust_test[, "Estimate"]

 ses <- robust_test[, "Std. Error"]

 pvals <- robust_test[, "Pr(>|z|)"]

 ors <- exp(coefs)

 ci_low <- exp(coefs - 1.96 * ses)

 ci_high <- exp(coefs + 1.96 * ses)

 results <- data.frame(

 Variable = names(coefs),

 OR = round(ors, 2),

 CI_Low = round(ci_low, 2),

 CI_High = round(ci_high, 2),

 p = round(pvals, 3)

)

 results$p[results$p < 0.001] <- "<0.001"

 return(results)

}

Get results

r1 <- get_results(m1, data)

r2 <- get_results(m2, data)

r3 <- get_results(m3, data)

r4 <- get_results(m4, data)

Remove intercept

r1 <- r1[r1$Variable != "(Intercept)",]

r2 <- r2[r2$Variable != "(Intercept)",]

r3 <- r3[r3$Variable != "(Intercept)",]

r4 <- r4[r4$Variable != "(Intercept)",]

Make table

variables <- r1$Variable

table_result <- data.frame(

 Variable = variables,

 M1_AnyError = paste0(r1$OR, " [", r1$CI_Low, ", ", r1$CI_High, "] (", r1$p, ")"),

 M2_DelOccur = paste0(r2$OR, " [", r2$CI_Low, ", ", r2$CI_High, "] (", r2$p, ")"),

 M3_InsOccur = paste0(r3$OR, " [", r3$CI_Low, ", ", r3$CI_High, "] (", r3$p, ")"),

 M4_SubOccur = paste0(r4$OR, " [", r4$CI_Low, ", ", r4$CI_High, "] (", r4$p, ")")

)

Clean variable names

table_result$Variable <- gsub("zHNR", "z-HNR", table_result$Variable)

table_result$Variable <- gsub("zTilt", "z-Spectral Tilt", table_result$Variable)

table_result$Variable <- gsub("zZCR", "z-ZCR", table_result$Variable)

table_result$Variable <- gsub("Labelsigh", "Event: sigh", table_result$Variable)

table_result$Variable <- gsub("Labelthroat-clearing", "Event: throat-clearing",

table_result$Variable)

Print and save table

print(table_result)

write.table(table_result, file.path(output_dir, "table6_logistic_main.tsv"), sep = "\t",

row.names = FALSE, quote = FALSE)

Make plots

Plot 1: Insertion by event type

new_data <- data.frame(

 zHNR = 0, zTilt = 0, zZCR = 0,

 Label = c("laughter", "sigh", "throat-clearing")

)

pred <- predict(m3, newdata = new_data, type = "response")

pred_pct <- pred * 100

png(file.path(output_dir, "figure8_insertion_by_label.png"), width = 800, height =

600)

barplot(pred_pct, names.arg = new_data$Label,

 main = "Predicted Insertion Probability by Event Type",

 xlab = "Event Type", ylab = "Probability (%)",

 col = "steelblue")

dev.off()

Plot 2: AnyError vs HNR

hnr_values <- seq(-2, 2, by = 0.1)

new_data2 <- data.frame(

 zHNR = hnr_values, zTilt = 0, zZCR = 0, Label = "laughter"

)

pred2 <- predict(m1, newdata = new_data2, type = "response")

pred2_pct <- pred2 * 100

png(file.path(output_dir, "figure9_anyerror_vs_hnr.png"), width = 800, height = 600)

plot(hnr_values, pred2_pct, type = "l", lwd = 2, col = "steelblue",

 main = "Any Error Probability vs HNR",

 xlab = "z-HNR", ylab = "Probability (%)")

dev.off()

Plot 3: AnyError vs ZCR

zcr_values <- seq(-2, 2, by = 0.1)

new_data3 <- data.frame(

 zHNR = 0, zTilt = 0, zZCR = zcr_values, Label = "laughter"

)

pred3 <- predict(m1, newdata = new_data3, type = "response")

pred3_pct <- pred3 * 100

png(file.path(output_dir, "figure10_anyerror_vs_zcr.png"), width = 800, height = 600)

plot(zcr_values, pred3_pct, type = "l", lwd = 2, col = "steelblue",

 main = "Any Error Probability vs ZCR",

 xlab = "z-ZCR", ylab = "Probability (%)")

dev.off()

