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Introduction 

Research Background and Motivation 

In daily interpersonal conversations, various paralinguistic events are often 

accompanied, such as laughter, throat clearing and sigh, etc. Although these non-verbal 

sounds do not constitute meaningful words or sentences, they play an important role in 

communication: On the one hand, they are natural means of expressing emotions and 

attitudes, capable of conveying the speaker's emotional state (good laughter, lost sighs, 

etc.) (Schuller et al., 2013); On the other hand, these acoustic signals can be used to 

regulate the rhythm of interaction and the flow of conversation. For example, laughter 

is often used to soften the tone and enhance affinity, while filler words or throat clearing 

sounds are sometimes used to maintain the right to speak and prevent the other party 

from interrupting, also express personality (Argyle, Alkema, & Gilmour, 1971; Isbister 

& Nass, 2000; Mazzocconi et al., 2022). According to research statistics, non-verbal 

event such as laughter account for nearly 10% of the vocalisation time in multi-person 

meetings, This shows their universality and importance in oral 

communication.(Laskowski, 2009). Therefore, studying these paralinguistic event 

phenomena is conducive to a better understanding of the emotional transmission and 

interaction regulation mechanisms in conversations. 

However, the current mainstream Automatic Speech Recognition (ASR) 

technology lacks robustness to the above-mentioned non-verbal events. Most 

commercial or research-level ASR systems often use “clean” speech without 

interference during training. When the actual input speech signals are mixed with 

unconventional sounds such as laughter and sighing, the system is prone to mistake 

them for noise or simply ignore them. Thereby introducing deletion, replacement or 

insertion errors (Fukuda et al., 2018; Truong & Van Leeuwen, 2007). For example, 

Fukuda et al. found that when using a model trained only on neutral speech to recognise 

speech with emotional components, the recognition accuracy would significantly 

decrease. It also can be seen that the improper handling of emotional or paralinguistics 

components byf existing ASRs is more likely to lead to a significant reduction in 

transcription performance. 

In an attempt to address this problem, several researchers have turned their 

attention to automatic detection of paralinguistics events. Relevant studies have shown 

that the introduction of specialised acoustic features can effectively distinguish non-

verbal event from normal speech (Ludusan, 2023) . Furthermore, the Harmonics to 

Noise Ratio (HNR) can measure the proportion of periodic components and the spectral 

tilt is able to describe energy distribution. It has also been proven that these features 



have significant discriminative power for detecting paralinguistic events such as 

laughter and sighs (Ludusan & Wagner, 2022). With the help of these features to 

indicate the sound quality and spectral form, the accuracy of the event detection 

algorithm has been greatly improved. In tasks of social signal detection in Gupta, 

Audhkhasi, Lee, & Narayanan in 2016, the AUC of the model integrating such features 

for laughter events can exceed 95%. Overall, the existing literature has achieved some 

results in the extraction of acoustic features and event detection of paralinguistic events. 

these research has laid variable and solid foundation to further research. 

Nevertheless, no study has systematically explored how these paralinguistic events 

affect the actual transcription performance of ASR. Previous work mostly focused on 

detecting events such as laughter itself, but lacked in-depth analysis of systematic error 

patterns. Are certain acoustic features (such as abnormally low HNR or significant 

spectral skew) associated with a high error rate? And if so, what kinds of errors are most 

common (deletions, insertions, substitutions) when the ASR encounters these sounds? 

These questions have not been effectively answered so far. For this purpose, this paper 

selects the commercial ASR of iFlytek as the research object. By using the 

paralinguistic vocal segments such as laughter, throat clearing, and sighing in the real 

dialogue corpus of the Buckeyes corpus, it systematically analyses the error patterns of 

this ASR before and after these special acoustic events. A correlation model between 

vocalisation features and recognition error rate is quantitatively established in 

combination with acoustic characteristics. iFlytek Co., Ltd. is a globally leading listed 

company in intelligent speech and artificial intelligence. Its core technologies cover 

intelligent speech recognition, synthesis, natural language processing and cognitive 

intelligence. Meanwhile, the ASR system of iflytek has been widely applied in fields 

such as government affairs, education, customer service and healthcare, with mature 

commercial products and large-scale real deployment cases. Therefore, it has become 

an ideal object for studying the performance of ASR under the challenge of 

paralinguistic languages. This study aims to reveal the influence mechanism of 

paralinguistic events on recognition performance and provide a reference for improving 

the robustness of ASR in natural conversation scenarios. 

Research questions 

Based on the above background, this paper focuses on the following Research 

Questions: 

• RQ1: When paralinguistics events such as laughter, throat-clearing, and sigh occur 

in the speech, are there systematic error patterns in the transcription of iFlytek ASR? 

What specific types of errors (deletion, replacement, insertion) are manifested and 



where do they occur frequently? 

•  RQ2: If such errors do exist, are they statistically associated with the acoustic 

characteristics of the sound emission segment (such as HNR, spectral tilt, zero cross 

rate ZCR, etc.)? That is to say, can these indicators be used to explain and predict 

situations with high error rates? 

Overview of the Paper Structure and Main Conclusion 

By answering the above questions, this paper aims to fill the gap in the research on 

paralinguistic event and the error mechanism of ASR, deepen the understanding of the 

causes of recognition failure, and provide a basis for designing more robust 

conversational ASR systems in the future. 

The following structural arrangement of this article is as follows: 

Chapter 2, Methodology, introduces the experimental process, including corpus 

preprocessing, acoustic feature extraction, error annotation methods and statistic 

analysis strategy; Chapter 3 Analysis & Results presents the statistical analysis of the 

transcription performance of iFlytek ASR before and after paralinguistic events, 

quantifying the types of errors and the correlation strength with acoustic characteristics; 

Chapter 4 Discussion gives a glance at the further view of the research topic; Chapter 

5 Conclusion summarises the contributions of this paper and presents the limitations of 

this study as well as the future research directions. 

Methodology 

Corpus description 

This study conducted our experiments on the Buckeye Speech Corpus, a well-

known repository of spontaneous American English conversation. The Buckeye Corpus 

contains recorded interviews of 40 speakers from central Ohio (20 male, 20 female), 

balanced by age group (half under 40 years old, half over 40 years old), in order to 

obtain diverse samples of adult voices. Each speaker participated in an interview about 

everyday topics, yielding natural conversational speech; individual interviews range 

from approximately 30 to 60 minutes in duration. The corpus contains approximately 

300,000 words of transcribed informal speech in total. The conversations are rich in 

disfluencies (such as pauses and fillers) and paralinguistic vocalizations.The corpus 

creators explicitly annotated certain non-verbal events (such as laughter) in the 

transcripts, which provided a valuable starting point for our study. 



Laughter is officially transcribed with special tags (such as "<LAUGH>"), 

allowing us to automatically locate many instances of laughter in the data. However, 

other paralinguistic features were not systematically marked in the original 

transliteration. Therefore, I made additional manual annotations to identify and mark 

these events. 

Guided by the recording and its aligned transcribed text, the study have conducted 

detailed annotation of the target sublanguage event. Use Praat (version 6.4.30) for 

annotation. For each interview recording, for the audio and its corresponding annotation 

file, writer compiled the Adjacent.praat script (Appendix 1) to load it into Praat. 

Subsequently, annotator added tier7: para to the TextGrid for paralinguistic events, 

marking the occurrence of each target event with precise time boundaries. define the 

tags as follows: 

⚫ laughter: Any laughter segment is marked as "laughter", covering the complete 

duration of audible laughter. Including muffled laughter (such as light laughter 

with vocal cord vibration) and clear laughter or breathy laughter (such as 

laughter with only exhalation) (if present in the paragraph). 

⚫ Throat-clearing: Any instance of throu-clearing (typically short, rough, cough-

like sounds used for clearing the throat) is marked as "throat-clearing". These 

events are usually very brief and characterized by low tones, shrill or rough 

sounds. 

⚫ sigh: Any audible sigh (usually a long exhalation, sometimes accompanied by 

breathy or slightly voiced sounds) is marked as "sigh". We include obvious 

sighs and softer breaths as long as the annotator can confidently recognize 

them as sighs. 

In this section, annotator located a grand total of 162 target occurrences of 

paralinguistic events: roughly 86 of laughter, around 30 of throat-clearing, and 

approximately 46 of sighing. Within this conversational scenario, a ‘‘sentence’’ is 

defined as a portion of monologic speech by a single speaker which ends with a pause, 

thought change, or a breath. This research also separated out the audio and TextGrid 

files of sentences with paralinguistic events for further analyses. For all other analyses, 

this research worked with the originals, which were recorded at 16kHz (16-bit PCM 

monophonic) to ensure compatibility with the ASR system and the tools used for the 

acoustic analyses. This research also defined as ‘sentence’ a defined unit of interaction 

as a stretch of monologic speech by one participant. This research separated out the 

audio and TextGrid files with paralinguistic embellishments for further analysis in this 

case. 



Text cleaning and annotation 

To evaluate the ASR performance around each paralinguinal event, this research 

need to input the speech containing these events into the ASR system and then compare 

the machine output with the reference transcription. This research did not handle the 

entire long interview but isolated the short audio frequency bands containing the events 

of interest. Specifically, for each labeled instance of laughter, throbbing or sighing, this 

research extracted the corresponding event along with brief context before and after it. 

This method reflects a real use case (ASR transcribing the session snippet where the 

event occurred) and ensures that this research can precisely locate local errors in the 

event. This research access the iflytek ASR API to obtain the transcription of each audio 

clip. Meanwhile, create tier8: ASR in the annotation file and import all unsegmented 

ASR transliterations. 

Before analyzing and identifying errors, writer conducted meticulous 

preprocessing on the reference transcribed text and the ASR output transcribed text to 

ensure that their formats were consistent and easy to compare. This research carried out 

text normalization processing using three original scripts, namely tierlabelcheck.praat 

(Appendix 2), extract_tier2.praat (Appendix 3), and clean_stan_collection.praat 

(Appendix 4). In this section, this research have removed any elements that might 

interfere with the alignment of the reference text with the recognized text. This research 

have generated the manually aligned (tier9: ASRseg) standard transcribed word 

segmentation version (tier10: stanSeg) and the standard written unsegmented version 

(tier10: stanUnseg). First, this research convert all the transcribed text to lowercase and 

remove punctuation marks and fill word markers to prevent surface differences such as 

case or comma from being counted as errors. A key step in preprocessing is to handle 

the sub-language event markup in the reference transcription. In the original 

transcription (and our annotations), events such as laughter or coughing may be 

indicated by labels or parentheses (for example, in Buckeye corpora, laughter is marked 

as "<LAUGH>"). To calculate the word error rate, this research removed these non-

lexical event markers from the reference text because they are not spoken words that 

the ASR can recognize. This approach can prevent ASR from being unfairly miscounted 

for "not outputting laughter/coughing" and the like. For incomplete words or breaks 

(for example, a word is only said halfway, which is usually marked with hyphens or 

special symbols in transliteration), this research remove the break marks and treat such 

words as complete words in alignment (because ASR may guess the word or omit it 

completely). 

In the design of the annotation scheme, an important consideration is to distinguish 

between the segmented version and the unsegmented version. The conversation 



recording is initially a continuous audio segment, but for certain analytical requirements 

(such as the WER calculation described in the next section), it is more convenient to 

process it by discourse segmentation. The reason for this approach is that while 

conducting error analysis at the discourse level (facilitating the calculation of WER), it 

is still possible to understand the exact time when the error occurred relative to the 

event on the continuous timeline. 

Through such data preparation, this research avoided false mismatches caused by 

format issues and focused the error analysis on substantial differences. The output of 

the preprocessing stage is a set of cleaned reference texts and the corresponding ASR 

output texts, which can now be used for alignment and error calculation in the next 

stage. 

Word error rate (WER) culculation and error detection 

After obtaining the cleaned transcribed text, this research developed a custom script 

werstep1.praat (Appendix 5) to calculate the Word Error Rate (WER) of the ASR 

system on this dataset and identify the specific types of errors that occurred. WER is a 

standard indicator for evaluating the accuracy of ASR, and its definition is as follows: 

WER=S+D+IN×100%, \text{WER} = \frac{S + D + I}{N} \times 100\% ,WER=NS+D+I×100% 

Here, S represents the number of substitution errors, D represents the number of 

deletion errors, I represents the number of insertion errors, and N represents the total 

number of reference (correct) transcriptions. This research calculate WER in units of 

each segment's discourse. This research achieved this alignment and error counting 

through a custom script - specifically, this research developed a Praat script called 

WERstep1.praat to automate this process. This script takes in the cleaned reference 

sentences and the corresponding ASR assumption sentences, and outputs the marked 

alignment results. The script compares the reference text and the ASR assumption word 

by word. 

If the words match exactly, it is counted as correct recognition. If a certain word in the 

reference has no corresponding hypothetical word in alignment, the algorithm would 

inserted an empty space at that position, it is judged as a deletion error. If redundant 

words that do not exist in the reference are found in the ASR assumption (additional 

insertions occur during alignment), it is judged as an insertion error. If a word in the 

assumption aligns with a different word in the reference (text mismatch), it is regarded 

as a substitution error (i.e., the ASR wrongly identifies this word as another one). 

Through the above program, writer calculated the WER of each discourse fragment and 



summarized the results. The WERstep1.praat script not only calculates the number of 

errors but also classifies each error by type and records its location. To facilitate 

inspection and verification, this script generates detailed error reports for each discourse. 

For example, the report look like this: 

File: TextGrid s0201a_la02 

  ASR Text:      "oh yes i did both" 

  Standard Text: "oh yes i did vote" 

 

  ASR word count: 5 

  Standard word count: 5 

  ASR Words:     [oh | yes | i | did | both] 

  Standard Words:[oh | yes | i | did | vote] 

 

  Error analysis 

  Error 1: SUBSTITUTION - ASR:"both" → Standard:"vote" (position 5) 

 

  Summary  

  WER: 20.00% 

  Edit distance: 1 / Reference length: 5 

  Error type distribution: 

    Deletions: 0 

    Insertions: 0 

Substitutions: 1 

 

The above automatically generated format enables us to verify the accuracy of 

alignment and at a glance understand what types of errors have occurred. From the 

results, writer can see that some discourse segments have no errors at all (WER is 0%), 

while others have several substitution or deletion errors, etc. After performing this 

alignment analysis on all the utterances, writer obtained the overall WER of the entire 

corpus by dividing the total number of errors by the total number of words. By 

identifying the types of errors, writer are well-prepared to test such hypotheses in the 

subsequent analysis. 

Temporal mapping of errors to paralinguistic events 

After obtaining the time and type information of ASR errors, the next step is to 

map these errors onto the timeline of paralinguistics events. This step aligns the results 

of error analysis with the events writer manually label, thereby determining which 

errors are triggered by or occur simultaneously with paralinguistics events. The overall 

idea is: For each labeled paralinguistics event, check whether an ASR error occurs 

during the event or in the period immediately following it. Writer utilized the 

correspondence between the discourse established in the annotation stage and the 



continuous timeline to write the script parastep2.praat (Appendix 6) to achieve this goal. 

The script traverses each event in the TextGrid (with known start and end times and 

labels) to find the discourse unit where it is located. Then, based on the previously 

aligned information, determine whether an error occurred within the duration of the 

event or in a short time window after the event ended. 

In actual operation, implementing this mapping requires combining the error 

analysis results with event annotation data. Writer constructed a comprehensive dataset, 

in which each entry corresponds to a specific labeled event instance. Each entry 

contains: event meta-information, including event type (laughter, throat_clear or sigh), 

and the start and end times of the event. For ASR error messages and time relationship 

variables, writer have noted that errors related to secondary language events are only 

valid (none, after, berfore, and during). The example is as follow: 

File: TextGrid s0101a_la02 

  Comparing 3 aligned intervals: 

  Error 1: Interval 3 | ASR:"around" vs Standard:"horrendous" | Time: 0.695-1.507s 

    -> Relationship: feature_during 

  Errors: 1 

  Before: 0 

  During: 1 

  After: 0 

  None: 0 

 

Acoustic feature extraction 

After determining the position of each paralinguistics event in the audio, writer 

extracted quantitative acoustic features from it to characterize the sound attributes of 

these events. Our goal is to capture the acoustic characteristics of events such as 

laughter, coughing, and sighing, and subsequently analyze the relationship between 

these characteristics and ASR errors. According to the nature of the target event, writer 

selected three core features: Harmonics-to-Noise Ratio (HNR), Spectral Tilt and Zero-

Crossing Rate (ZCR). These features were chosen because they can effectively 

distinguish between speech and non-speech/noise signals, and previous studies have 

shown that they can reflect the differences in sound quality and noise components. 

Intuitively speaking, paralinguinal events such as laughter and coughing often 

introduce more noise or irregular vibrations compared to normal speech. Therefore, 

writer expect them to have lower harmonics (lower HNR), different spectral energy 

distributions, and higher waveform zero-crossing rates. 

Writer used the Praat script to measure the acoustic characteristics of each event. 



Writer wrote a Praat script, acoustic feature.praat (Appendix 7), to automate file-by-file 

processing: The script opens each audio file and its corresponding TextGrid, and then 

traverses all intervals on the sub-language event annotation layer. For each interval 

marked as the target event (laughter, throat clearing or sighing), the script extracts the 

audio clip and calculates three features: 

⚫ HNR (Harmonic Noise Ratio) : The script calls Praat's algorithm to calculate the 

average harmonic nature (HNR) of this event period using the standard 

autocorrelation method (the lowr limit of the pitch tracking fundamental frequency 

is approximately set to 75 Hz). HNR is expressed in decibels (dB) as the ratio of 

the periodic component (harmonic) energy to the noise energy in sound. The higher 

the HNR value, the stronger the periodic components of the sound (such as clear 

voiced sounds), while a lower HNR indicates that the sound has more noise 

components and is more non-periodic. For instance, a continuous vowel may have 

a high HNR (indicating a clear phonetic pitch), while a cough or a shrill laugh, due 

to airflow disorder, will have a significantly lower HNR. 

⚫ Spectral Tilt: The t script achieves this measurement by first converting the 

extracted sound segments into power spectra and then calculating the long-term 

average spectrum. The specific approach is to measure the average energy within 

the low-frequency band (0-1000 Hz) and the high-frequency band (1000-4000 Hz), 

and then calculate the energy difference between the high and low-frequency bands 

and divide it by the bandwidth to obtain the spectral tilt value. This result 

essentially represents the slope of the spectrum (the rate of change of energy with 

frequency). A more negative spectral tilt indicates a relatively stronger low-

frequency component (typical of fundamental frequency-dominated turbidity), 

while a less negative or even positive tilt indicates a relatively larger proportion of 

high-frequency components (typical of noise or clear sound). For instance, a 

sighing sound with breath may present a relatively flat (less negative) spectral tilt 

because it contains a large amount of high-frequency noise components. In contrast, 

a normal voiced vowel will have a steep negative incline. 

⚫ Zero-crossing rate (ZCR) : The Praat script calculates the ZCR by obtaining the 

point process of waveform zero-crossing within the segment and dividing the 

number of zero-crossing points by the duration. A higher ZCR indicates frequent 

changes in the waveform symbol, usually suggesting that the sound has significant 

high-frequency components or noise (as noise causes the waveform to fluctuate 

rapidly). On the contrary, voiced speech dominated by low-frequency fundamental 

tones has a lower ZCR. For instance, the ZCR of a noisy cough or a burst of 

laughter might be much higher than that of a smooth voiced sound. 

 



Statistic analysis strategy 

Finally, this study conducted a two-pronged statistical analysis using the completed 

event-level dataset: firstly, descriptive analysis was carried out to summarize patterns 

and features, and secondly, inferential analysis was performed to test our hypothesis 

regarding the relationship between the acoustic attributes of para-language events and 

ASR errors. This part fully utilized R and Rstudio(Version 2025.05.1+513) to 

coordinate the execution of data reading, model fitting and result output, ensuring the 

reproducibility of the entire process. 

Descriptive Statistics 

First, this study integrated the above content using the praat script 

master_table.praat (Appendix 8) and output a master analysis table. Then this study 

created an R markdown script, descriptive.stat,rmd(Appendix 9), which first examined 

the distribution of the data and simple relationships, including calculating the base 

frequency and error rate. 

This study tallied the total number of errors that occurred in the corpus and 

subdivided their distribution by error type (deletion, insertion, replacement). For 

instance, this study focus on the proportion of various types of errors in all errors (such 

as deletion errors accounting for X%, replacement errors accounting for Y%, etc.) to 

understand which type of error is the most common and to grasp the ASR performance 

as a whole. 

Then, this study particularly examined the association between paralinguistics 

event types and errors. For each event category (laughter, throbbing, sighing), this study 

calculated the frequency of ASR errors. For instance, it can be expressed as the error 

rate of each type of event (for example: "Among N laughter events, M are accompanied 

by at least one ASR error, that is, the rate is __%"). This study also further subdivide 

by error types: for instance, "What proportion of laughter incidents specifically 

correspond to deletion errors?" "Insertion error?" "Replacement error?" " . These 

statistical results are presented in the form of contingency tables or bar charts, etc. The 

purpose of doing this is to observe whether certain events (such as laughter) are more 

likely to trigger ASR errors than others, or are more likely to trigger specific types of 

errors. 

This study also visualized the distribution of acoustic features (HNR, spectral tilt, 

ZCR) and compared the differences in these features between events that triggered 

errors and those that did not. For each feature, this study drew, for example, box plots 

or histograms, and grouped and compared the data into two groups: "any Error 

occurred" (Error=1) and "no error occurred" (Error=0). This enables us to make a 



preliminary judgment, for example, whether events with a lower HNR are more often 

accompanied by errors. In addition to the graphical presentation, this study also 

conducted a preliminary statistical test in the descriptive analysis stage. 

Before explaining the model coefficients, this study tested the assumptions and 

performance of the model. At this step, this study conducted a multicollinearity test to 

examine the pairwise Spearman correlations of HNR, spectral skew, and ZC, 

distinguishing the independent role of each independent variable. All absolute 

correlations were below 0.7, indicating no severe multicollinearity. The regression 

coefficients can be interpreted according to their "respective independent effects" to 

ensure the accuracy of the logistic regression model's fitting analysis. 

Inferential statistics 

Based on the findings of descriptive analysis, this study established a set of logistic 

regression models using the script regression_model.rmd(Appendix 10) to formally test 

and quantify the impact of para-language event characteristics on the occurrence of 

ASR errors. Since our result variable is binary classification (whether an error occurs 

or not), logistic regression is an appropriate choice. This study constructed four 

independent models, each corresponding to a specific result: 

⚫ AnyError model: Dependent variable = whether any ASR error occurred 

(if at least one type of error occurred during/after the event, it is recorded 

as 1; otherwise, it is 0). This model examines the overall possibility of 

errors occurring. 

⚫ DelOccur model: Dependent variable = whether a deletion error occurs (1 

if it occurs, 0 otherwise). 

⚫ InsOccur model: Dependent variable = Whether an insertion error 

occurred. 

⚫ SubOccur model: Dependent variable = Whether a substitution error 

occurred. 

All four models use the same set of independent variables: acoustic feature HNR, 

spectral tilt, ZCR, and event type category. Incorporating event types (a categorical 

variable with three values: laughter, throat_clear, and sigh) into the model can take into 

account the potential systematic differences among different event categories beyond 

numerical characteristics. For instance, the "laughter" event itself may pose a different 

kind of challenge to ASR than the "sighing" event. Therefore, the event type factor is 

introduced to capture such categorical effects. This study performed dumb encoding 

processing on the event type variables (for example, taking laughter as the benchmark 

category) and then incorporated them into the regression. Take the AnyError model as 



an example, its general form can be expressed as: 

logit(Pr(AnyError=1))= 

β0+β1HNR+β2SpectralTilt+β3ZCR+β4(ThroatClear)+β5(Sigh) 

Among them, (ThroatClear) and (Sigh) are mute variables, with laughter as the 

reference category. For example, expressed by the R formula, it is: 

AnyError ~ HNR + spectralTilt + ZCR + EventType 

The forms of other models (DelOccur, InsOccur, SubOccur) are similar, except that 

the binary dependent variable is defined as whether their respective error types occur 

or not. This study use R and Rstudio (Version: 2025.05.1+513) to fit these models. 

In all models, this study have adjusted for multiple non-independent observations 

from the same speaker. Since each speaker may contribute multiple event instances, it 

may not hold true that the observations are independent of each other (the speaking 

style or recording conditions of the same speaker may systematically affect the error 

rate). To solve this problem, this study calculated the robust standard error of speaker 

clustering, that is, this study adjusted the standard error by clustering speakers. 

Specifically, after fitting each logistic regression model, this study use a robust 

divergence estimator (sandwich estimator) to obtain the standard error and p-value that 

are robust to the intra-speaker correlation. The meaning of this approach is that, for 

instance, even if speaker X contains many events (and thus contributes many erroneous 

instances), our inference takes into account the clustering of these observations in the 

calculation rather than treating them completely as independent data points. This 

method is similar to considering the speaker random effect in the model, but given that 

the number of speakers is relatively small (in this case, building a complete multi-level 

model may not be very stable), this study chose the method of clustering robust standard 

errors. All statistical modeling was completed in RStudio. This study used an R 

Markdown script (logistic_regressive.rmd) to coordinate the execution of data reading, 

model fitting, and result output, ensuring that the entire process was reproducible. 

Each logistic regression model generates coefficients (and corresponding odds 

ratios) for each predictor variable, indicating the direction and significance of the 

predictor variable's influence on the probability of ASR errors. For instance, if the 

coefficient of HNR in the AnyError model is negative, it means that as HNR increases 

(i.e., the sound becomes more harmonious/audible), the probability of any error 

occurring decreases - conversely, a lower HNR (the event is noisier) is more likely to 

cause errors. This study did indeed discover such patterns: This study will not delve 



into the results here. Generally speaking, the model identified certain acoustic features 

as important predictors of error occurrence (for example, a lower HNR and a higher 

ZCR are associated with an increased probability of error occurrence, which is 

consistent with our expectations). The event type factor in the model also reveals the 

differences between different categories; For instance, after controlling for the 

influence of acoustic features, the probability of a certain type of event (such as throat 

clearing) causing errors may be higher than that of another type (such as laughter), 

suggesting that there are categorical influences in addition to the features this study 

measure. These findings will be elaborated in detail in the results section, but 

methodologically, logistic regression enables us to quantify these effects and assess 

their statistical significance. 

Analysis & Results 

Descriptive statistics 

Distribution of paralinguistic event types 

A total of 162 paralinguiistic events were marked, including 86 laughs (53.1%), 46 

sighs (28.4%), and 30 throat-clearing events (18.5%), as shown in Table 1. This 

distribution indicates that in this dataset, laughter is the most common type of 

paralinguistic event, accounting for more than half of the observed. The frequency of 

sigh and throat-clearingis relatively low. They account for approximately 47% of the 

remaining events. Figure 1 visually presents this distribution. It can be seen that the 

frequency of laughter incidents is significantly higher than that of the other two types. 

Label n percent 

laughter 86 53.1% 

sigh 46 28.4% 

throat-clearing 30 18.5% 

Total 162 100% 

Table 1 Counts and percentages of paralinguistic event types in the dataset. Laughter was the most 

frequent event (n = 86, 53.1%), followed by sigh (n = 46, 28.4%) and throat-clearing (n = 30, 18.5%). 



 

Figure 1 The distribution of paralinguistics events in the corpus. A total of 162 events werre marked, among 

which laughter was the most common (n = 86, accounting for 53.1%), followed by sighing (n = 46, 

accounting for 28.4%) and throat clearing (n = 30, accounting for 18.5%) 

 

WER by Event Type 

This paper conducted a statistical analysis of the word error rate (WER) of speech 

recognition for each paralinguistic event fragment. Figure 2 shows the WER 

distribution of the laughing, sighing and throat-clearing event segments, and Table 2 

lists the corresponding descriptive statistics. The WER median of the laughing 

segments was only 10% (first quartile (Q1) = 0%, third quartile (Q3) = 25%), indicating 

that at least 25% of the laughter segments could be transcribed error-free (WER = 0). 

In contrast, the typical error rate of event segments containing sighing and throat-

clearing was higher: the median WER of sighing segments was 14.3%, and that of 

throat-clearing segments was 16.0%. The quartile range of the throating-clearing 

segments is the narrowestern (approximately 11.5% - 20.8%, IQR ≈ 9.3%), indicating 

that the recognition performance of these segments is relatively consistent. On the 

contrary, the WER distribution of laughter segments is more dispersed (IQR = 25%), 

meaning that although many laughter segments are perfectly recognized, there are also 

some with significant recognition errors. The average WER values of the three event 

types are all around 17% to 19% (Table 2), among which the average WER of the 



segments related to sighing is the highest (19.2%). 

Label n Mean SD Median Q1 Q3 IQR 

laughter 86 17.83 23.28 10 0 25 25 

sigh 46 19.19 20.24 14.29 8.04 25.81 17.77 

throat-

clearing 

30 16.54 12.95 16.03 11.46 20.79 9.33 

Table 2 Summary statistics (mean, median, standard deviation, quartiles) of word error rates (WER) 

across event types. Laughter segments had the lowest median WER (10%), while sigh and throat-clearing 

showed higher central tendencies. 

 

Figure 2 WER box plots of different paralinguistics event types. The median WER of the laughing 

segment was the lowest (10%), while the median of the sighing (14.3%) and throat-clearing (16.0%) 

segments was higher. 

 

Composition of error types by event type 

Subsequently, this paper analyzed the composition of the types of recognition 

errors corresponding to each paralinguistics event (deletion, insertion and replacement 

errors). Table 3 lists the quantity and percentage of each type of error in each event type 

fragment, and Figure 3 presents the proportion of different error types in the form of 

stacked bar charts. There were a total of 92 recognition errors in the smiling voice 

segment. Among them, nearly half were replacement errors (45 cases, accounting for 



48.9%), approximately 39.1% were deletion errors (36 cases), while insertion errors 

were the fewest (11 cases, accounting for 12.0%). The total number of errors caused by 

exclamation segments was the highest (235 in total), and the composition of the errors 

was relatively more balanced: replacement errors accounted for approximately 43.4%, 

deletion errors accounted for 30.6%, and insertion errors accounted for approximately 

26.0%. The total number of errors containing the throat-clearing segment was the 

lowest (40), and its error composition had distinct characteristics: insertion and 

replacement errors each accounted for 40% (16 cases each), while deletion errors only 

accounted for 20% (8 cases). Figure 3 (stacked bar chart) highlights these differences 

in the distribution of error types among different event types. 

Label Deletions Insertions Substitutions TotalErrors D_Percent I_Percent S_Percent 

laughter 36 11 45 92 39.1 12 48.9 

sigh 72 61 102 235 30.6 26 43.4 

throat-

clearing 

8 16 16 40 20 40 40 

Table 3 Frequencies and percentages of recognition error types (deletions, insertions, substitutions) within 

each event category.  

 

 

Figure 3 The composition of error types for each event type (deletion, insertion, replacement). The 

errors in the laughter segments are mainly replacement and deletion, while the distribution of errors 



in the sighing segments is more balanced.  

 

 

Temporal localization of errors 

Temporal localization of errors. This paper examined where error tokens occur 

relative to the paralinguistic event (Table 5; Figure 5). Aggregating across sentences 

within each event type, 96.1% of all errors fell within a ±1 s neighborhood of the event 

boundary (Before + During + After), indicating that recognition mistakes cluster tightly 

around the event. 

By event type, laughter shows a balanced split between Before (41.9%) and During 

(45.9%), with a smaller After share (9.5%) and very few errors elsewhere (No-Feature 

= 2.7%). Sigh concentrates more Before the event (50.0%) than During (31.2%), with 

After accounting for 16.7% and a minimal No-Feature fraction (2.1%). Throat-clearing 

places the largest share During the event (46.7%), with Before = 30.0%, After = 13.3%, 

and a comparatively larger No-Feature proportion (10.0%). These temporal profiles 

complement the error-type compositions (Figure 3): e.g., the stronger During 

concentration for throat-clearing aligns with turbulent bursts disturbing speech 

precisely at the event core, whereas sighs tend to perturb the lead-in portion of the 

sentence. Counts for reference. The underlying error-token totals by event type are: 

laughter 74, sigh 48, and throat-clearing 30.   

Label Before During After No_Feature Row_Total Before_Pct During_Pct After_Pct No_Feature_Pct 

laughter 31 34 7 2 74 41.9 45.9 9.5 2.7 

sigh 24 15 8 1 48 50 31.2 16.7 2.1 

throat-clearing 9 14 4 3 30 30 46.7 13.3 10 

Table 4 Distribution of error tokens relative to event timing (Before, During, After, No Feature) across event 

categories. Errors clustered around event boundaries, with sighs showing more “Before” errors and throat-

clearing showing more “During” errors. 



 

Figure 4 The temporal and positional distribution of identification errors in different event types 

(before the event, during the event, after the event, and no event). Errors tend to be concentrated 

near the boundaries of events. 

 

Distribution of acoustic features by error occurrence 

This paper further examined the relationship between certain acoustic feature 

values and the occurrence of recognition errors. Specifically, this paper compared the 

distribution differences of three acoustic indicators - HNR (Harmonic noise ratio), 

spectral tilt, and zero-crossing rate (ZCR) - between fragments with no recognition 

errors and those with at least one recognition error. As shown in Figure 4, the HNR, 

spectral tilt, and ZCR distributions of the error-free fragments and those containing the 

error-containing fragments are highly overlapped. HNR shows a slightly higher trend 

in error-free segments (with a median of approximately 4 dB), while in error-containing 

segments, the median is about 2 dB (see Figure 4), suggesting that segments with more 

harmonious speech quality (lower noise components) may be less prone to recognition 

errors. However, there was almost no difference in spectral tilt between the two groups 

(the median of both groups was approximately -6 dB, as shown in Figure 5). Similarly, 

the zero-crossing rate did not show a significant difference in terms of whether errors 

occurred: the median ZCR of both error-free and error-containing fragments was 

approximately 1.3-1.5 kHz, and the variability within each group was considerable 



(Figure 6). Overall, these acoustic features did not show significant changes due to 

whether there were recognition errors or not. 

 

Figure 5 A box plot of HNR distribution classified by whether errors occur or not. The HNR of the 

error-free segments is slightly higher than that of the error-containing segments, indicating that 

more harmonious speech quality is more conducive to recognition



 

Figure 6 A box plot of ZCR distribution classified by whether errors occur or not. Both groups had 

significant internal variability, but the median difference was not significant.

 



Figure 7 A box plot of spectral tilt distribution classified by whether errors occur or not. There was 

almost no significant difference between the two groups. 

 

Spearman Correlation among acoustic feature 

Finally, this paper calculated the Spearman rank correlation coefficients between 

each pair of acoustic features to evaluate the relationship among HNR, spectral tilt and 

ZCR (Table 4). The results show that the correlation between any pair of features has 

not reached a statistically significant level, and the values of the correlation coefficients 

are all close to zero. As shown in Table 4, the Spearman correlation coefficient ρ 

between HNR and spectral tilt is -0.02 (p = 0.80), indicating that there is almost no 

monotonic correlation between these two features. Similarly, the correlation between 

HNR and ZCR was also very low (ρ = -0.076, p = 0.336), and the correlation coefficient 

between spectral tilt and ZCR was 0.06 (p = 0.452). All these related p values are much 

greater than 0.05. The above results indicate that these three acoustic features are 

basically independent of each other in this dataset, and no significant linear or 

monotonic correlations have been observed. 

Pair rho p 

HNR vs. Spectral Tilt 0.047 0.582 

HNR vs. ZCR -0.107 0.214 

Spectral Tilt vs. ZCR 0.131 0.127 

Table 5 Pairwise Spearman rank correlation coefficients among acoustic features (HNR, spectral tilt, ZCR). 

None of the correlations was statistically significant, suggesting independence among features. 

Inferential statistics 

Logistic regression 

To answer research question 2, this paper conducted a series of logistic regression 

analyses to examine whether the acoustic characteristics of paralinguistic events were 

statistically associated with a high error rate of ASR and whether they could be used to 

explain and predict the occurrence of errors. This study established four binary Logistic 

models respectively for four results: (M1) whether arbitrary identification errors occur, 

(M2) whether deletion errors occur, (M3) whether insertion errors occur, and (M4) 

whether replacement errors occur. Each model takes three acoustic features (HNR, 

spectral slope, and ZCR, all standardized) as continuous independent variables and 

event types (laughter, sighing, and throat clearing) as categorical independent variables 

(with laughter as the baseline category). The model adopts a robust standard error based 

on the speaker to consider the correlation among multiple observations of the same 

speaker. Table 6 summarizes the results of the four models (showing the odds ratios, 

their 95% confidence intervals and P-values). 



Variable M1_AnyError M2_DelOccur M3_InsOccur M4_SubOccur 

z-HNR 0.53 [0.31, 0.9] 

(0.02) 

0.98 [0.78, 

1.24] (0.876) 

0.71 [0.34, 1.46] 

(0.351) 

0.79 [0.5, 1.23] 

(0.294) 

z-Spectral Tilt 1.24 [0.97, 

1.59] (0.086) 

1.18 [0.84, 

1.66] (0.329) 

1.07 [0.67, 1.71] 

(0.772) 

1.23 [0.78, 

1.94] (0.38) 

z-ZCR 0.65 [0.46, 

0.91] (0.013) 

1.35 [0.83, 2.2] 

(0.229) 

0.61 [0.48, 0.77] 

(<0.001) 

0.81 [0.68, 

0.98] (0.026) 

Event: sigh 2.63 [0.95, 

7.29] (0.062) 

0.7 [0.19, 2.61] 

(0.593) 

10.57 [3.87, 

28.89] (<0.001) 

0.95 [0.42, 

2.16] (0.909) 

Event: throat-

clearing 

1.59 [0.59, 

4.25] (0.358) 

0.81 [0.3, 2.13] 

(0.662) 

5.86 [2.7, 12.7] 

(<0.001) 

0.91 [0.56, 

1.48] (0.719) 

Table 6 Logistic regression results for acoustic predictors of ASR errors (odds ratio [95% CI] and p-value). 

 Model 1: any error occurrence 

Model 1 examines whether any ASR error occurs. The results show that there are 

two acoustic features that are significant predictive factors. HNR was significantly 

negatively correlated with error occurrence: for every 1-standard deviation increase in 

HNR, the odds of error occurrence were approximately 0.53 times that of the original 

(odds ratio OR = 0.53, 95% CI [0.31, 0.90], p = 0.02). In other words, paragraphs with 

a lower HNR (i.e., fewer harmonic components and higher noise components in the 

speech) are more prone to recognition errors. Similarly, ZCR was also significantly 

negatively correlated with the occurrence of errors: for every 1-standard deviation 

increase in ZCR, the probability of errors was only 0.65 times that of the original (OR 

= 0.65, 95% CI [0.46, 0.91], p = 0.013), indicating that paragraphs with lower ZCR 

were significantly more prone to errors; A higher ZCR (more zeroing times, usually 

indicating more high-frequency components or silent noise) tends to reduce the 

possibility of errors occurring. The slope of the third characteristic spectrum did not 

reach a significant level in the model (OR = 1.24, p = 0.086), suggesting that its effect 

was relatively weak or there was redundancy with HNR. In terms of event types, the 

probability of errors caused by sighing events increased by approximately 2.6 times 

compared to laughter events (OR = 2.63, p = 0.062 compared to laughter), with a larger 

effect but not reaching a significant level. The throat-clearing event showed a smaller 

and less significant increase in the error rate compared to laughter (OR = 1.59, p = 

0.358). Overall, noisier sounds with fewer harmonic components (low HNR) and 

sounds with a lower zero-crossing rate (low ZCR) are significantly associated with a 

higher incidence of recognition errors, which to some extent answers RQ2. After 

controlling for acoustic characteristics, the influence of event categories on the overall 

occurrence of errors is relatively weak, although the trend that sighs are more prone to 

errors than laughter is notable. 

 



 

 

 

Figure 8 Prediction curve of arbitrary ASR error probability varying with HNR. The curve shows that 

when the HNR is low (low harmonic noise ratio), the possibility of recognition errors increases 

significantly.  



 

Figure 9 Prediction curve of arbitrary ASR error probability varying with ZCR. It can be seen that as 

ZCR increases, the probability of recognition errors decreases.  

 

Model 2: deletion error occurrence 

The second model analyzes word deletion errors (i.e., ASR misses words related to the 

sub-language event). Compared with the overall error model, none of the acoustic 

features showed a significant effect on the deletion of errors (all p > 0.2 in Model 2). 

As shown in Table 6, the odds ratios of HNR, spectral slope and ZCR for the occurrence 

of deletion errors are all close to 1.0, and they are not statistically significant. For 

instance, the OR of HNR was 0.98 (p = 0.876), and the OR of ZCR was 1.35 (p = 0.229), 

neither showing a reliable association. Similarly, the type of event had no significant 

impact on deletion errors: whether it was sighing OR clearing the voice, there was no 

significant difference in the occurrence rate of deletion errors compared to the laughter 

event (sighing OR = 0.70, p = 0.593; clearing the voice OR = 0.81, p = 0.662). This 

means that the occurrence of word deletion errors seems to have no obvious correlation 

with these acoustic indicators - under the existing data, whether the ASR misses a 

certain word does not systematically depend on the noise level (HNR) of the 

sublanguage sound, spectral tilt, or zero-crossing rate, nor does it depend on the specific 

type of event. One possible explanation is that the removal of errors depends more on 



the language environment or the behavior of the ASR's language model (such as 

skipping incomprehensible segments), rather than the objective acoustic features of the 

paralinguistics sound itself. 

Model 3: insertion error occurrence 

The third model focuses on insertion errors, that is, ASR hears out words in the corpus 

that are not actually spoken (usually caused by mistaking non-verbal sounds for verbal 

ones). In this model, this study identified significant and clear predictive factors. ZCR 

was highly significant: For every 1-standard deviation increase in ZCR, the probability 

of insertion errors was only 0.61 times that of the original (OR = 0.61, 95% CI [0.48, 

0.77], p < 0.001). This indicates that paralinguistic events with a lower zero-crossing 

rate (fewer zero-crossing times) are more likely to induce false insertions in ASR, while 

events with a higher ZCR (more zero-crossing times, higher frequency and noise) are 

less likely to be transcribed into false words. From a practical perspective, sounds with 

more periodic or low-frequency components (low ZCR) are more likely to enable the 

ASR to "hear" non-existent words, while high-frequency noise events (high ZCR) are 

less likely to cause such misidentification. 

It is worth noting that the event type itself has a very strong impact on insertion errors, 

even after controlling for each acoustic feature. While keeping HNR, spectral slope and 

ZCR the same, the possibility of sighing events causing insertion errors was more than 

ten times that of laughter events (OR = 10.57, 95% CI [3.87, 28.89], p < 0.001), and 

the possibility of throat clearing events causing insertions was approximately six times 

that of laughter events (OR = 5.86). 95% CI [2.70, 12.70], p < 0.001. These effects were 

statistically highly significant and consistent with the descriptive results of RQ1 - 

specifically, ASR often "inserted" speculative content (for example, recognizing sighs 

as additional syllables or words) during sighing and throat clearing, while the tendency 

to insert was much lower in laughter segments. Figure 8 shows the model predictions 

of the probability of insertion errors under different event types, clearly demonstrating 

the significant differences in insertion error rates between laughter and sighing, as well 

as throat clearing events. In conclusion, Model 3 demonstrates that both the acoustic 

property ZCR and the event category are powerful predictors of insertion errors. For 

this type of error, it also verifies RQ2: These metrics can indeed be used to explain and 

predict under what circumstances a higher insertion error rate will occur.



 

Figure 10 Probability of insertion errors predicted by paralinguistics event types. 

 

Model 4: substitution error occurrence 

The fourth model examines substitution errors, that is, ASR replaces the originally 

correct words with incorrect ones (usually due to incorrect recognition of the 

surrounding speech content when paralinguistics events occur). The discoveries of this 

model are relatively limited. Among the acoustic characteristics, ZCR demonstrated a 

moderate but significant effect: OR = 0.81 (95% CI [0.68, 0.98], p = 0.026), indicating 

that a higher ZCR was associated with a lower probability of replacement errors. From 

a practical perspective, for every one standard deviation increase in ZCR, the 

probability of replacement errors decreases by approximately 19%. Neither HNR nor 

spectral slope had a significant effect on replacement errors (p values were 0.294 and 

0.380, respectively). Although the direction of HNR's effect remained negative (OR = 

0.79), which is consistent with the view that "a lower HNR may increase the risk of 

errors", it did not reach statistical significance in this model. On the other hand, the type 

of event had no significant impact on the occurrence of replacement errors - after 

controlling for acoustic characteristics, there was no significant difference in the 

probability of replacement errors between sighing and throbbing events compared to 

laughter events (OR approximately 0.9, p > 0.7, see Table 6). This indicates that the 



replacement error is mainly related to certain acoustic conditions (especially low ZCR), 

but it does not depend much on the specific type of the event itself. When the acoustic 

environment is prone to confusion (for example, a very low ZCR may indicate a voice 

component that ASR attempts to interpret as speech), replacement errors are more likely 

to occur; However, once acoustic factors are taken into account, whether the sound is 

laughter, a sigh or a throbbing does not significantly change the probability of 

replacement errors occurring. 

Summary 

In conclusion, these inferential analyses clearly answer RQ2: There is a statistical 

correlation between the acoustic characteristics of specific paralural events and the 

possibility of ASR errors occurring, and thus can be used to a considerable extent to 

predict situations with high error rates. Specifically, events with low HNR (higher noise) 

and low ZCR (fewer zero-crossing) are associated with a higher probability of 

recognition errors - whether in terms of overall errors or specific error types - and this 

result confirms the role of these acoustic indicators as indicators of ASR ease. In 

addition, the types of parapultural events also play a certain role, especially in terms of 

insertion errors: Events such as sighing and clearing the throat essentially pose a greater 

challenge to ASR than laughter (leading to more insertion errors), even beyond the 

scope that can be purely explained by their acoustic parameters. In conclusion, RQ2's 

response is affirmative: There is indeed a statistical correlation between the systematic 

error patterns of iFLYTEK's ASR and the acoustic attributes of events such as laughter, 

voice clearing, and sighing. These acoustic indicators (such as HNR, spectral slope, and 

ZCR), as well as the event types themselves, all help explain and predict in which 

situations the ASR is prone to errors. 

Discussion. 

This study theoretically deepens the understanding of the interaction between 

automatic speech recognition (ASR) and paralanguage phenomena. Previous ASR 

studies mainly focused on vocabulary and phonetic content in spoken language, while 

non-verbal sounds such as laughter, sighing, and throat clearing were often regarded as 

background noise and ignored. Our results clearly indicate that these paralinguinal 

events are by no means dispensable "noises", but will have a significant impact on 

recognition performance.This discovery, from a new perspective, confirms the 

understanding of the function of paralanguage signals in the fields of linguistics and 

phonetics: these non-verbal acoustic signals carry emotional and interactive 

information in conversations and also significantly change the way machines process 



speech. Therefore, this study has, in a theoretical sense, built a bridge between ASR 

technology and paralanguage research. On the one hand, we have demonstrated that it 

is necessary to introduce attention to paralanguage events in ASR systems, which 

broadens the perspective of traditional speech recognition theories. On the other hand, 

we also provide a new perspective for the study of paralanguage phenomena, that is, by 

examining the success or failure of machine recognition, we can, in turn, gain insights 

into the acoustic essence and communicative function of these sounds. 

In terms of technical implementation, our approach has good replicability and 

expansion potential. From the perspective of corpus processing, we used the Buckeye 

natural corpus as the basis for analysis. The Buckeye corpus contains a wealth of 

pronunciation variations and non-verbal events from real conversations. We made 

meticulous annotations on it, aligning events such as laughter, sighing, and throat 

clearing with adjacent words one by one, and calculated the error types and acoustic 

features of the corresponding segments. This strict alignment and annotation method 

ensures the credibility of the analysis results and also provides a template for others to 

reproduce the research. In terms of acoustic feature extraction, this study selected 

classic indicators such as HNR (Harmonic Noise ratio), spectral skew, and zero-

crossing rate (ZCR) to quantify the sound characteristics of sub-language events. The 

extraction of these features relies on mature tools and algorithms, and thus is universal. 

Any researcher using a similar speech database can repeat our process: first, label the 

paralingual events, then extract the above acoustic indicators, and finally conduct a 

correlation analysis with the recognition errors. In addition, this study adopted a method 

combining statistical description and Logistic regression model to explore the 

correlation between features and errors. This methodology is transparent and easy to 

promote. The results of Logistic regression not only provide interpretable statistical 

associations but also serve as a basis for comparison with more complex machine 

learning models in the future. Overall, our technical route is clear and the steps are well-

defined, providing a referenceable paradigm for research in related fields. 

The findings of this study have significant implications for enhancing the 

robustness of actual ASR systems. Firstly, this study confirmed that paralingual events 

can significantly reduce the recognition accuracy of ASR, and the impact of different 

types of events on error patterns varies. For instance, this study observed that although 

laughter occurred most frequently in the corpus, it caused relatively less harm to ASR. 

It is speculated that the reason lies in the fact that laughter has a certain harmonic 

structure, making it easier for ASR to identify that it is not normal speech and thus less 

likely to misrecognize it as lexical content. Events like sighing and throat clearing often 

have irregular sounds and abnormal spectral energy distribution, which makes them 



more likely to confuse the recognition model, leading to the insertion of additional false 

words or the omission of the real words that follow immediately. Through error type 

analysis, this study found that when ASR encounters sighing and throat clearing, it 

tends to generate a relatively high proportion of insertion errors - the system will 

mistake these noises for some kind of pronunciation and "mishear" non-existent words. 

On the contrary, in the laughter section, there are significantly fewer insertion errors, 

indicating that the system is more likely to treat laughter as muted. This difference 

indicates that enhancing the ASR's ability to distinguish different sub-language acoustic 

patterns is the key to improving the system's accuracy. From an application perspective, 

ASR developers should consider explicitly handling these non-verbal events in the 

model. For instance, in actual voice assistants or transcription tools, a preprocessing 

module can be added. When events such as laughter or sighing are detected, special 

markers can be used to replace or filter the audio segment, thereby preventing the 

misidentification of incorrect content. This approach is consistent with the 

"paralinguinal perception" recognition concept proposed in the latest research: 

integrating paralinguinal cues as decodable special labels into the recognition output, 

enabling the system to simultaneously transcribe both lexical and non-verbal 

information.With such improvements, ASR will no longer simply ignore or mishear 

situations like laughter in natural conversations, but can handle them more robustably, 

enhancing the user experience and transcription quality in practical applications. 

It is worth further discussion that our analysis also reveals that the mechanism by 

which paralanguage events cause errors is closely related to their acoustic properties. 

The Logistic regression results show that changes in specific acoustic features 

significantly affect the probability of error occurrence. Among them, a low HNR value 

(i.e., high noise component) and a low ZCR value (i.e., low waveform zero crossover 

rate, suggesting a stronger periodic component) are both statistically correlated with an 

increase in ASR error rate. This indicates that when the paralingual sounds are 

characterized by being noisy or dominated by low frequencies, the recognition model 

is more prone to confusion. This conclusion is in line with intuition: highly noisy and 

irregular sounds can interfere with the model's matching of normal speech patterns, 

thereby increasing the possibility of recognition failure. Furthermore, this study found 

that even after controlling for the above-mentioned acoustic features, different event 

types themselves still have differences in influence. For instance, the possibility of an 

sighing event leading to insertion misidentification is much higher than that of laughter, 

even if the HNR, spectral tilt and other values of the two are similar. This implies that 

apart from simple acoustic parameters, there are more complex differences in signal 

morphology between laughter and sighing (for instance, laughter is often accompanied 

by vowel pitch fluctuations, while sighing is more of a continuous airflow sound). 



These differences make ASR even more helpless when it comes to sighing. This 

discovery emphasizes at a deeper level the importance of incorporating event type 

information into the recognition process: perhaps future models can handle and model 

such specific events differently to reduce the errors caused by them. 

Finally, this study provides some valuable lessons and experiences for the design 

and training of future ASR systems. Our analysis of the time distribution of errors shows 

that recognition errors tend to occur in the period near the occurrence of paralanguage 

events (approximately within one second before and after). This means that the 

interference of paralanguage events on ASR is mainly local and immediate, and will 

not have a continuous impact on distant speech segments. Therefore, the ASR system 

can focus on optimizing these critical moments. For instance, when laughter is detected 

or throat clearing has just ended, the system can temporarily reduce the language 

model's trust in the output of the voice content or increase the tolerance for silence/noise 

to avoid the trap of mistaking instantaneous abnormal sounds for words. Similarly, 

during the model training phase, training data containing para-language events should 

be purposefully added (and the correct event positions should be marked), enabling the 

model to learn to "skip" or "go blank" during these brief interludes, rather than forcing 

words to match. In addition, our research has demonstrated that simple acoustic features 

can already effectively predict high-error scenarios, suggesting that future ASRs can 

combine these easily extracted indicators to achieve online error early warning or 

adaptive adjustment. For instance, the HNR, ZCR and other values of the input voice 

are monitored in real time. Once an abnormal range is detected (which may correspond 

to the occurrence of laughter, etc.), the system can adjust the decoding strategy or 

activate a dedicated sub-language processing module. In conclusion, the techniques and 

experiences of this study point out the direction for building more robust ASR systems 

for natural dialogue: integrating the detection and processing of paralingual events will 

help significantly reduce the recognition error rate in real-world applications. 

Conclusion 

This paper systematically studies the impact of paralanguage events (such as 

laughter, sighing, and throat clearing) in natural conversations on automatic speech 

recognition systems, and has achieved the following main results and contributions. 

Firstly, based on the Buckeye corpus and iFLYTEK's commercial ASR system, this 

study quantitatively demonstrated that para-language events can lead to a decline in 

recognition performance and detailedly revealed the differences in error patterns 

triggered by different events. This fills a gap in existing research - few previous works 

have explored paralanguage phenomena so deeply from the perspective of recognition 



errors. This study not only reported the changing trend of the overall recognition error 

rate when paralingual events occurred, but also for the first time associated specific 

error types (insertion, deletion, replacement) with specific events, depicting a unique 

map of the errors that ASR is prone to under different paralingual events. Secondly, this 

study analyzed the internal factors causing the errors in combination with acoustic 

characteristics and found that parameters such as harmonic-noise ratio, spectral tilt, and 

zero-crossing rate were significantly associated with the identification errors. This 

discovery provides an empirical basis for explaining the easily confused signal 

characteristics of ASR and verifies that certain acoustic indicators can serve as effective 

signals for predicting and identifying difficulties. Overall, the research work of this 

paper has made new progress in the intersection of ASR robustness and paralingual 

signal processing: our conclusions emphasize the importance of taking paralingual 

events into account for improving recognition accuracy and provide empirical support 

for future improvements in ASR. 

Despite the above achievements, this study still has some limitations that need to 

be overcome in future work. Firstly, in terms of the corpus, the Buckeye dialogue library 

used in the research is relatively limited in scale and the language is English. Although 

this corpus covers a wealth of spontaneous oral phenomena, its representativeness is 

still limited. Subsequent research can introduce larger-scale, multilingual natural 

dialogue data to verify the universality of the findings of this study. Secondly, the ASR 

system this study selected is a single commercial model (iFLYTEK), and its 

architecture and training data are specific. Therefore, the application of this result on 

different recognition engines (such as other commercial systems or open-source models) 

still needs further investigation. Secondly, the types of paralingual events focused on in 

this article mainly include laughter, sighing, and throat clearing, and do not include 

other common non-verbal sounds such as crying, panting, and filler words. These 

unexplored factors may also have an impact on recognition and are worthy of being 

taken into account in future research. Furthermore, in terms of methods, the statistical 

modeling this study adopt (such as Logistic regression) assumes a linear feature 

interaction relationship and may not be able to capture more complex nonlinear 

influences. In the future, more complex error prediction models can be constructed by 

means of deep learning and other methods, or directly used for real-time detection of 

paralanguage events. Finally, regarding the improvement of the ASR system itself, our 

research only put forward directional suggestions and did not implement 

countermeasure verification in this paper. For instance, integrating paralingual event 

markers into ASR decoding or adding dedicated pre-detection modules, the practical 

effects of these schemes remain to be evaluated through new experiments. 



In conclusion, enhancing the robustness of ASR in natural conversation scenarios 

is a challenging yet significant task. Our research reveals that paralanguage events are 

one of the key factors affecting recognition performance, highlighting the shortcomings 

of traditional ASR systems in human-computer interaction environments. Future 

research should verify and expand the conclusions of this study on a broader range of 

data and models, and explore innovative methods to enable the ASR recognition engine 

to handle non-verbal sounds such as laughter more "intelligently". For instance, develop 

models capable of jointly transcribing speech and paralinguinal signals, enabling 

machines not only to "understand" what is said but also to mark the speaker's laughter, 

sighs and other behaviors; Or design a multimodal interaction system that combines 

voice recognition with signals such as expressions and postures to reduce the 

interference of non-verbal events in pure audio. This study believe that as these 

directions are further advanced, future automatic speech recognition will be closer to 

human auditory capabilities, maintaining high accuracy even in noisy and ever-

changing conversations, laying the foundation for more natural voice interaction. 
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Appendix 

Appendix 1: Adjacent.praat 

 

form: "Report on Buckeye corpus" 

 folder: "Buckeye folder", "/Volumes/Buckeye" 

endform 

 

corpusFolderPath$ = buckeye_folder$ 

writeInfoLine: "Reporting on the Buckeye folder “", corpusFolderPath$, "”..." 

 

stopwatch 

folderNames$# = folderNames$#: corpusFolderPath$ + "/s*" 

numberOfFolders = size (folderNames$#) 

 

for ifolder to numberOfFolders 

 folderName$ = folderNames$# [ifolder] 

 folderPath$ = corpusFolderPath$ + "/" + folderName$ 

 appendInfoLine: folderPath$ 

 subfolderNames$# = folderNames$#: folderPath$ + "/*" 

 numberOfSubfolders = size (subfolderNames$#) 

  

 for isubfolder to numberOfSubfolders 

  subfolderName$ = subfolderNames$# [isubfolder] 

  subfolderPath$ = folderPath$ + "/" + subfolderName$ 

  appendInfo: subfolderPath$ 

 

  # 

  # Read all the data. 

  # 

  soundFilePath$ = subfolderPath$ + "/" + subfolderName$ + ".wav" 

  Read Sound with adjacent annotation files (Buckeye): soundFilePath$ 

                selectObject: "Sound untitled" 

                Rename: subfolderName$ 

                selectObject: "TextGrid untitled" 

                Rename: subfolderName$ 

 endfor 

endfor 

  



Appendix 2: tierlabelcheck.praat  

 

# Script to check tier 2 and tier 3 names in all TextGrid files in the script folder 

 

folder$ = "scripts/" 

 

# Create output file to save the results 

output_file$ = "output_data/tier_names_report.txt" 

writeFile: output_file$, "TextGrid Tier Names Report", newline$ 

appendFile: output_file$, "Generated on: ", date$(), newline$ 

appendFile: output_file$, "================================", newline$, 

newline$ 

 

# Get all TextGrid files in the folder 

Create Strings as file list: "textgrid_list", folder$ + "*.TextGrid" 

numFiles = Get number of strings 

 

# Check if any TextGrid files were found 

if numFiles = 0 

    appendFile: output_file$, "No TextGrid files found in folder: ", folder$, newline$ 

    writeInfoLine: "No TextGrid files found in folder: ", folder$ 

else 

    writeInfoLine: "Found ", numFiles, " TextGrid files. Processing..." 

    appendFile: output_file$, "Found ", numFiles, " TextGrid files:", newline$, 

newline$ 

     

    # Process each TextGrid file 

    for i from 1 to numFiles 

        selectObject: "Strings textgrid_list" 

        fileName$ = Get string: i 

        fullPath$ = folder$ + fileName$ 

         

        # Try to read the TextGrid file 

     

            textgrid_id = Read from file: fullPath$ 

            selectObject: textgrid_id 

          

            # Get basic information about the TextGrid 

            numTiers = Get number of tiers 

             

            # Write file name to output 

            appendFile: output_file$, "File: ", fileName$, newline$ 

            appendFile: output_file$, "Total tiers: ", numTiers, newline$ 

             



            # Check tier 2 

            if numTiers >= 2 

                tier2_name$ = Get tier name: 2 

                appendFile: output_file$, "Tier 2 name: ", tier2_name$, newline$ 

                writeInfoLine: fileName$, " - Tier 2: ", tier2_name$ 

            else 

                appendFile: output_file$, "Tier 2: NOT FOUND (file has only ", 

numTiers, " tier(s))", newline$ 

                writeInfoLine: fileName$, " - Tier 2: NOT FOUND" 

            endif 

             

            # Check tier 3 

            if numTiers >= 3 

                tier3_name$ = Get tier name: 3 

                appendFile: output_file$, "Tier 3 name: ", tier3_name$, newline$ 

                writeInfoLine: fileName$, " - Tier 3: ", tier3_name$ 

            else 

                appendFile: output_file$, "Tier 3: NOT FOUND (file has only ", 

numTiers, " tier(s))", newline$ 

                writeInfoLine: fileName$, " - Tier 3: NOT FOUND" 

            endif 

             

            appendFile: output_file$, newline$ 

             

            # Clean up 

            Remove 

         endfor 

endif 

 

# Clean up 

removeObject: "Strings textgrid_list" 

 

# Final message 

appendFile: output_file$, "================================", newline$ 

appendFile: output_file$, "Report completed on: ", date$(), newline$ 

writeInfoLine: "Processing complete! Results saved to: ", output_file$ 

  



Appendix 3: extract_tier2.praat  

# Extract all tier 2 text to check if there's annotation mistake between tiers 

 

folder$ = "scripts/" 

outputFile$ = "output_data/tier2_content_analysis.txt" 

 

# get all TextGrid 

Create Strings as file list: "textgrid_list", folder$ + "*.TextGrid" 

numFiles = Get number of strings 

 

writeInfoLine: "find ", numFiles, " textgrid，extracting tier 2" 

 

# output 

output$ = "tier 2 content analysis" + newline$ 

output$ = output$ + "time: " + date$() + newline$ 

output$ = output$ + "folder: " + folder$ + newline$ 

output$ = output$ + "===========================================" + 

newline$ + newline$ 

 

allUniqueLabels$ = "|" 

specialCharacters$ = "" 

totalIntervals = 0 

filesProcessed = 0 

 

# process every TextGrid 

for i from 1 to numFiles 

    selectObject: "Strings textgrid_list" 

    fileName$ = Get string: i 

    fullPath$ = folder$ + fileName$ 

     

    writeInfoLine: "processing ", i, "/", numFiles, ": ", fileName$ 

     

    # read TextGrid  

    textgrid_id = Read from file: fullPath$ 

    selectObject: textgrid_id 

     

    # check tier number 

    numTiers = Get number of tiers 

    if numTiers < 2 

        output$ = output$ + "文件: " + fileName$ + " warning: only " + 

string$(numTiers) + " 个 tier，skip" + newline$ 



        Remove 

        goto NEXT_FILE 

    endif 

     

    # add filename 

    output$ = output$ + "file: " + fileName$ + " ===" + newline$ 

     

    # get tier 2 

    tierName$ = Get tier name: 2 

    output$ = output$ + "Tier2name: " + tierName$ + newline$ 

     

    # get all intervals in tier 2 

    numIntervals = Get number of intervals: 2 

    output$ = output$ + "Intervals number: " + string$(numIntervals) + newline$ 

     

    fileIntervalCount = 0 

     

    for j from 1 to numIntervals 

        intervalText$ = Get label of interval: 2, j 

        startTime = Get start time of interval: 2, j 

        endTime = Get end time of interval: 2, j 

         

        # only non empty intervals 

        if intervalText$ <> "" 

            fileIntervalCount = fileIntervalCount + 1 

             

            output$ = output$ + "  [" + fixed$(startTime, 3) + "-" + 

fixed$(endTime, 3) + "]: " + intervalText$ + newline$ 

             

            # collect labels 

            searchPattern$ = "|" + intervalText$ + "|" 

            if index(allUniqueLabels$, searchPattern$) = 0 

                allUniqueLabels$ = allUniqueLabels$ + intervalText$ + "|" 

            endif 

             

            call analyzeSpecialCharacters: intervalText$ 

        endif 

    endfor 

     

    output$ = output$ + "non empty intervals number: " + string$(fileIntervalCount) 

+ newline$ + newline$ 

     

    totalIntervals = totalIntervals + fileIntervalCount 

    filesProcessed = filesProcessed + 1 



     

    Remove 

     

    label NEXT_FILE 

endfor 

 

# output 

output$ = output$ + "===========================================" + 

newline$ 

output$ = output$ + "output:" + newline$ 

output$ = output$ + "file number: " + string$(filesProcessed) + newline$ 

output$ = output$ + "interval number: " + string$(totalIntervals) + newline$ + 

newline$ 

 

# analyse labels 

output$ = output$ + "label list" + newline$ 

call extractUniqueLabels: allUniqueLabels$ 

output$ = output$ + uniqueLabelsReport$ + newline$ 

 

# analysis 

output$ = output$ + "--- 特殊字符和模式分析 ---" + newline$ 

call analyzePatterns: allUniqueLabels$ 

output$ = output$ + patternsReport$ + newline$ 

 

# 保存结果到文件 

writeFile: outputFile$, output$ 

 

removeObject: "Strings textgrid_list" 

 

writeInfoLine: "completed！" 

 

 

# analysis characters 

procedure analyzeSpecialCharacters: text$ 

    textLength = length(text$) 

    normalChars$ = 

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ012345678

9 -" 

     

    for k from 1 to textLength 

        char$ = mid$(text$, k, 1) 



        # collect special characters 

        if index(normalChars$, char$) = 0 

            if index(specialCharacters$, char$) = 0 

                specialCharacters$ = specialCharacters$ + char$ 

            endif 

        endif 

    endfor 

endproc 

 

# extract uniquelabels 

procedure extractUniqueLabels: labelString$ 

    uniqueLabelsReport$ = "" 

    labelCount = 0 

     

    remainingString$ = labelString$ 

     

    if left$(remainingString$, 1) = "|" 

        remainingString$ = right$(remainingString$, length(remainingString$) - 1) 

    endif 

     

    while length(remainingString$) > 0 

        separatorPos = index(remainingString$, "|") 

         

        if separatorPos = 0 

            if remainingString$ <> "" 

                labelCount = labelCount + 1 

                uniqueLabelsReport$ = uniqueLabelsReport$ + 

string$(labelCount) + ". " + remainingString$ + newline$ 

            endif 

            remainingString$ = "" 

        else 

            currentLabel$ = left$(remainingString$, separatorPos - 1) 

            if currentLabel$ <> "" 

                labelCount = labelCount + 1 

                uniqueLabelsReport$ = uniqueLabelsReport$ + 

string$(labelCount) + ". " + currentLabel$ + newline$ 

            endif 

            remainingString$ = right$(remainingString$, length(remainingString$) 

- separatorPos) 

        endif 

    endwhile 

     

    uniqueLabelsReport$ = "in total: " + string$(labelCount) + " unique labels:" + 

newline$ + uniqueLabelsReport$ 



endproc 

 

# analyzePatterns 

procedure analyzePatterns: labelString$ 

    patternsReport$ = "" 

     

    bracketCount = 0 

    laughCount = 0 

    cutCount = 0 

    noiseCount = 0 

    errorCount = 0 

    dashCount = 0 

     

    remainingString$ = labelString$ 

     

    if left$(remainingString$, 1) = "|" 

        remainingString$ = right$(remainingString$, length(remainingString$) - 1) 

    endif 

     

    while length(remainingString$) > 0 

        separatorPos = index(remainingString$, "|") 

         

        if separatorPos = 0 

 

            currentLabel$ = remainingString$ 

            remainingString$ = "" 

        else 

 

            currentLabel$ = left$(remainingString$, separatorPos - 1) 

            remainingString$ = right$(remainingString$, length(remainingString$) 

- separatorPos) 

        endif 

         

        if currentLabel$ <> "" 

 

            if index(currentLabel$, "<") > 0 and index(currentLabel$, ">") > 0 

                bracketCount = bracketCount + 1 

            endif 

 

            if index(currentLabel$, "laugh") > 0 or index(currentLabel$, 

"LAUGH") > 0 or index(currentLabel$, "Laugh") > 0 

                laughCount = laughCount + 1 

            endif 



            if index(currentLabel$, "cut") > 0 or index(currentLabel$, "CUT") > 0 

or index(currentLabel$, "Cut") > 0 

                cutCount = cutCount + 1 

            endif 

            if index(currentLabel$, "voc") > 0 or index(currentLabel$, "VOC") > 0 

or index(currentLabel$, "noise") > 0 or index(currentLabel$, "NOISE") > 0 

                noiseCount = noiseCount + 1 

            endif 

            if index(currentLabel$, "error") > 0 or index(currentLabel$, 

"ERROR") > 0 or index(currentLabel$, "Error") > 0 

                errorCount = errorCount + 1 

            endif 

            if index(currentLabel$, "-") > 0 

                dashCount = dashCount + 1 

            endif 

        endif 

    endwhile 

     

    patternsReport$ = "尖括号标签 (<...>): " + string$(bracketCount) + " 个" + 

newline$ 

    patternsReport$ = patternsReport$ + "laugh: " + string$(laughCount) + " 个" + 

newline$ 

    patternsReport$ = patternsReport$ + "cut: " + string$(cutCount) + " 个" + 

newline$ 

    patternsReport$ = patternsReport$ + "voc/noise: " + string$(noiseCount) + " 个" 

+ newline$ 

    patternsReport$ = patternsReport$ + "error: " + string$(errorCount) + " 个" + 

newline$ 

    patternsReport$ = patternsReport$ + "include -: " + string$(dashCount) + " 个" 

+ newline$ 

    patternsReport$ = patternsReport$ + "special characters: " + 

specialCharacters$ + newline$ 

endproc 

 

 

 

  



Appendix 4:clean_stan_collection.praat 

# Clean stan tier from Collection 

 

folderPath$ = "scripts/" 

collectionFile$ = folderPath$ + "praat.Collection" 

 

# read Collection 

Read from file: collectionFile$ 

 

# get all objects 

select all 

numberOfObjects = numberOfSelected() 

writeInfoLine: "Collection include ", numberOfObjects, " objects" 

 

# get object ID 

for i from 1 to numberOfObjects 

    objectIDs[i] = selected(i) 

endfor 

 

# read TextGrid 

textGridCount = 0 

for objectIndex from 1 to numberOfObjects 

    selectObject: objectIDs[objectIndex] 

    objectType$ = extractWord$(selected$(), "") 

     

    if objectType$ = "TextGrid" 

        textGridCount = textGridCount + 1 

        objectName$ = selected$() 

         

        writeInfoLine: "" 

        writeInfoLine: "process TextGrid ", textGridCount, ": ", objectName$ 

         

        # find tier9 (stan) 

        numTiers = Get number of tiers 

        stanTier = 0 

         

        for tierNum from 1 to numTiers 

            tierName$ = Get tier name: tierNum 

            if (tierNum = 9) or (tierName$ = "stan") 

                stanTier = tierNum 

                writeInfoLine: "  find stan tier: ", tierName$, " (tier ", tierNum, 

")" 

                goto foundStanTier 

            endif 



        endfor 

         

        writeInfoLine: "  skip: no tier9 stan found" 

        goto nextTextGrid 

         

        label foundStanTier 

         

        # create segment version 

        numIntervals = Get number of intervals: stanTier 

         

        # clean text, keep interval 

        for intNum from 1 to numIntervals 

            originalText$ = Get label of interval: stanTier, intNum 

             

            if originalText$ <> "" 

                cleanedText$ = originalText$ 

                 

                # clean labels 

                while index(cleanedText$, "<") > 0 and index(cleanedText$, 

">") > 0 

                    startPos = index(cleanedText$, "<") 

                    endPos = index(cleanedText$, ">") 

                     

                    if endPos > startPos 

                        bracketContent$ = mid$(cleanedText$, startPos + 1, 

endPos - startPos - 1) 

                         

                        # check transcript within label 

                        extractedText$ = "" 

                        if index(bracketContent$, "-") > 0 

                            # process LAUGH-i-love-it  

                            dashPos = index(bracketContent$, "-") 

                            afterDash$ = right$(bracketContent$, 

length(bracketContent$) - dashPos) 

                             

                            if index(afterDash$, "=") > 0 

                                # process f=for 

                                equalPos = index(afterDash$, "=") 

                                extractedText$ = right$(afterDash$, 

length(afterDash$) - equalPos) 

                            else 

                                # process"_", it's_hilarious 

                                if index(afterDash$, "_") > 0 

                                    # replace with space 



                                    extractedText$ = replace$(afterDash$, 

"_", " ", 0) 

                                    extractedText$ = 

replace$(extractedText$, "-", " ", 0) 

                                else 

                                    extractedText$ = replace$(afterDash$, "-

", " ", 0) 

                                endif 

                            endif 

                        endif 

                         

                        # replace"<>" 

                        beforeBracket$ = left$(cleanedText$, startPos - 1) 

                        afterBracket$ = right$(cleanedText$, 

length(cleanedText$) - endPos) 

                        cleanedText$ = beforeBracket$ + " " + extractedText$ + 

" " + afterBracket$ 

                    else 

                        goto endBracketLoop 

                    endif 

                endwhile 

                 

                label endBracketLoop 

                 

                # delect other"<>" 

                cleanedText$ = replace$(cleanedText$, "<", " ", 0) 

                cleanedText$ = replace$(cleanedText$, ">", " ", 0) 

                 

                # delete other symbol 

                cleanedText$ = replace$(cleanedText$, ".", " ", 0) 

                cleanedText$ = replace$(cleanedText$, ",", " ", 0) 

                cleanedText$ = replace$(cleanedText$, "!", " ", 0) 

                cleanedText$ = replace$(cleanedText$, "?", " ", 0) 

                cleanedText$ = replace$(cleanedText$, ":", " ", 0) 

                cleanedText$ = replace$(cleanedText$, ";", " ", 0) 

                cleanedText$ = replace$(cleanedText$, "(", " ", 0) 

                cleanedText$ = replace$(cleanedText$, ")", " ", 0) 

                cleanedText$ = replace$(cleanedText$, "[", " ", 0) 

                cleanedText$ = replace$(cleanedText$, "]", " ", 0) 

                cleanedText$ = replace$(cleanedText$, "*", " ", 0) 

                cleanedText$ = replace$(cleanedText$, "&", " ", 0) 

                cleanedText$ = replace$(cleanedText$, "#", " ", 0) 

                cleanedText$ = replace$(cleanedText$, "@", " ", 0) 

                 



                # clean redundant space 

                while index(cleanedText$, "  ") > 0 

                    cleanedText$ = replace$(cleanedText$, "  ", " ", 0) 

                endwhile 

                 

                while left$(cleanedText$, 1) = " " and length(cleanedText$) > 0 

                    cleanedText$ = right$(cleanedText$, length(cleanedText$) - 

1) 

                endwhile 

                while right$(cleanedText$, 1) = " " and length(cleanedText$) > 0 

                    cleanedText$ = left$(cleanedText$, length(cleanedText$) - 1) 

                endwhile 

                 

                # set text after cleaning 

                Set interval text: stanTier, intNum, cleanedText$ 

                 

                if originalText$ <> cleanedText$ 

                    writeInfoLine: "    Interval ", intNum, ": """, originalText$, 

""" → """, cleanedText$, """" 

                endif 

            endif 

        endfor 

         

        # rename tier 9 to stanSeg 

        Set tier name: stanTier, "stanSeg" 

         

        # create unsegment version 

        # collect text after cleaning 

        allCleanText$ = "" 

        for intNum from 1 to numIntervals 

            intervalText$ = Get label of interval: stanTier, intNum 

             

            if intervalText$ <> "" 

                if allCleanText$ = "" 

                    allCleanText$ = intervalText$ 

                else 

                    allCleanText$ = allCleanText$ + " " + intervalText$ 

                endif 

            endif 

        endfor 

         

        # create unseg tier 

        totalStartTime = Get start time 

        totalEndTime = Get end time 



        Insert interval tier: stanTier + 1, "stanUnseg" 

        unsegmentedTier = stanTier + 1 

        Set interval text: unsegmentedTier, 1, allCleanText$ 

         

        label nextTextGrid 

    endif 

endfor 

 

# save Collection 

writeInfoLine: "saving Collection..." 

Write to binary file: collectionFile$ 

 

writeInfoLine: "completed" 

  



Appendix 5: werstep1.praat 

# WER Analysis Script 

# Compare tier8 (ASR) vs tier11 (stanUnseg) 

 

folderPath$ = "scripts/" 

collectionFile$ = folderPath$ + "praat.Collection" 

outputFile$ = "output_data/wer_detailed_results.txt" 

 

# read Collection 

Read from file: collectionFile$ 

 

# get all objects 

select all 

numberOfObjects = numberOfSelected() 

writeInfoLine: "Collection contains ", numberOfObjects, " objects" 

 

# get all objects ID 

for i from 1 to numberOfObjects 

    objectIDs[i] = selected(i) 

endfor 

 

# initialise 

totalFiles = 0 

totalWords = 0 

totalErrors = 0 

totalDeletions = 0 

totalInsertions = 0 

totalSubstitutions = 0 

 

# creat output file 

deleteFile: outputFile$ 

fileappend "'outputFile$'" WER analysis results with word details'newline$' 

fileappend "'outputFile$'" Time: 'date$()''newline$' 

fileappend "'outputFile$'" 'newline$' 

 

# process every TextGrid 

writeInfoLine: "Starting to process ", numberOfObjects, " objects..." 

for objectIndex from 1 to numberOfObjects 

    selectObject: objectIDs[objectIndex] 

    objectType$ = extractWord$(selected$(), "") 

    writeInfoLine: "Object ", objectIndex, " type: ", objectType$ 

     

    if objectType$ = "TextGrid" 

        totalFiles = totalFiles + 1 



        objectName$ = selected$() 

         

        writeInfoLine: "" 

        writeInfoLine: "Processing file ", totalFiles, ": ", objectName$ 

        fileappend "'outputFile$'" File: 'objectName$''newline$' 

         

        # get tier number 

        numTiers = Get number of tiers 

         

        # find tier 

        asrTier = 0 

        stanTier = 0 

         

        for tierNum from 1 to numTiers 

            tierName$ = Get tier name: tierNum 

            if tierNum = 8 or tierName$ = "ASR" 

                asrTier = tierNum 

                writeInfoLine: "  Found ASR tier: ", tierName$, " (tier ", 

tierNum, ")" 

            endif 

            if tierNum = 11 or tierName$ = "stanUnseg" 

                stanTier = tierNum 

                writeInfoLine: "  Found stanUnseg tier: ", tierName$, " (tier ", 

tierNum, ")" 

            endif 

        endfor 

         

        if asrTier = 0 or stanTier = 0 

            writeInfoLine: "  Skipped: Missing required tiers" 

            fileappend "'outputFile$'"   Error: Missing ASR tier or stanUnseg 

tier'newline$' 

            fileappend "'outputFile$'" 'newline$' 

            goto nextTextGrid 

        endif 

         

        # get text 

        asrIntervals = Get number of intervals: asrTier 

        stanIntervals = Get number of intervals: stanTier 

         

        # merge all text 

        asrText$ = "" 

        stanText$ = "" 

         

        # merge ASR tier text 



        for intNum from 1 to asrIntervals 

            intervalText$ = Get label of interval: asrTier, intNum 

            if intervalText$ <> "" 

                if asrText$ <> "" 

                    asrText$ = asrText$ + " " + intervalText$ 

                else 

                    asrText$ = intervalText$ 

                endif 

            endif 

        endfor 

         

        # merge stan tier text 

        for intNum from 1 to stanIntervals 

            intervalText$ = Get label of interval: stanTier, intNum 

            if intervalText$ <> "" 

                if stanText$ <> "" 

                    stanText$ = stanText$ + " " + intervalText$ 

                else 

                    stanText$ = intervalText$ 

                endif 

            endif 

        endfor 

         

        # output comprision 

        fileappend "'outputFile$'"   ASR Text:      "'asrText$'"'newline$' 

        fileappend "'outputFile$'"   Standard Text: "'stanText$'"'newline$' 

        fileappend "'outputFile$'" 'newline$' 

         

        # segment by space 

        asrWords = 0 

        stanWords = 0 

         

        # segment(ASR) 

        if asrText$ <> "" 

            # by space 

            asrTextCopy$ = asrText$ 

            while index(asrTextCopy$, " ") > 0 

                spacePos = index(asrTextCopy$, " ") 

                asrWords = asrWords + 1 

                asrWord$[asrWords] = left$(asrTextCopy$, spacePos - 1) 

                asrTextCopy$ = right$(asrTextCopy$, length(asrTextCopy$) - 

spacePos) 

            endwhile 

            # last word 



            if asrTextCopy$ <> "" 

                asrWords = asrWords + 1 

                asrWord$[asrWords] = asrTextCopy$ 

            endif 

        endif 

         

        # segment(stan) 

        if stanText$ <> "" 

            # by space 

            stanTextCopy$ = stanText$ 

            while index(stanTextCopy$, " ") > 0 

                spacePos = index(stanTextCopy$, " ") 

                stanWords = stanWords + 1 

                stanWord$[stanWords] = left$(stanTextCopy$, spacePos - 1) 

                stanTextCopy$ = right$(stanTextCopy$, length(stanTextCopy$) - 

spacePos) 

            endwhile 

            # last word 

            if stanTextCopy$ <> "" 

                stanWords = stanWords + 1 

                stanWord$[stanWords] = stanTextCopy$ 

            endif 

        endif 

         

        writeInfoLine: "  ASR word count: ", asrWords 

        writeInfoLine: "  Standard word count: ", stanWords 

        fileappend "'outputFile$'"   ASR word count: 'asrWords''newline$' 

        fileappend "'outputFile$'"   Standard word count: 'stanWords''newline$' 

         

        # output comprision 

        asrWordList$ = "" 

        stanWordList$ = "" 

         

        for w from 1 to asrWords 

            if w > 1 

                asrWordList$ = asrWordList$ + " | " 

            endif 

            asrWordList$ = asrWordList$ + asrWord$[w] 

        endfor 

         

        for w from 1 to stanWords 

            if w > 1 

                stanWordList$ = stanWordList$ + " | " 

            endif 



            stanWordList$ = stanWordList$ + stanWord$[w] 

        endfor 

         

        fileappend "'outputFile$'"   ASR Words:     ['asrWordList$']'newline$' 

        fileappend "'outputFile$'"   Standard Words:['stanWordList$']'newline$' 

        fileappend "'outputFile$'" 'newline$' 

         

        # calculate edit distance(word level) 

        asrLen = asrWords 

        stanLen = stanWords 

         

        if asrLen = 0 and stanLen = 0 

            writeInfoLine: "  Skipped: Both tiers are empty" 

            fileappend "'outputFile$'"   Skipped: Both tiers are empty'newline$' 

            fileappend "'outputFile$'" 'newline$' 

            goto nextTextGrid 

        endif 

         

        for i from 0 to asrLen 

            for j from 0 to stanLen 

                dp[i, j] = 0 

            endfor 

        endfor 

         

        for i from 0 to asrLen 

            dp[i, 0] = i 

        endfor 

        for j from 0 to stanLen 

            dp[0, j] = j 

        endfor 

         

        for i from 1 to asrLen 

            asrCurrentWord$ = asrWord$[i] 

            for j from 1 to stanLen 

                stanCurrentWord$ = stanWord$[j] 

                 

                if asrCurrentWord$ = stanCurrentWord$ 

                    dp[i, j] = dp[i-1, j-1] 

                else 

 

                    deletion = dp[i-1, j] + 1 

                    insertion = dp[i, j-1] + 1 

                    substitution = dp[i-1, j-1] + 1 

                     



                    if deletion <= insertion and deletion <= substitution 

                        dp[i, j] = deletion 

                    elsif insertion <= substitution 

                        dp[i, j] = insertion 

                    else 

                        dp[i, j] = substitution 

                    endif 

                endif 

            endfor 

        endfor 

         

        editDistance = dp[asrLen, stanLen] 

        referenceLength = stanLen 

        if referenceLength > 0 

            werPercent = (editDistance / referenceLength) * 100 

        else 

            werPercent = 0 

        endif 

         

        # error types and specific error details 

        i = asrLen 

        j = stanLen 

        fileDeletions = 0 

        fileInsertions = 0 

        fileSubstitutions = 0 

         

        # details error information 

        errorCount = 0 

         

        fileappend "'outputFile$'"   Error analysis'newline$' 

         

        while i > 0 or j > 0 

            if i > 0 and j > 0 

                asrCurrentWord$ = asrWord$[i] 

                stanCurrentWord$ = stanWord$[j] 

                 

                if asrCurrentWord$ = stanCurrentWord$ 

                    i = i - 1 

                    j = j - 1 

                elsif dp[i, j] = dp[i-1, j-1] + 1 

                    # Substitution 

                    fileSubstitutions = fileSubstitutions + 1 

                    errorCount = errorCount + 1 



                    fileappend "'outputFile$'"   Error 'errorCount': 

SUBSTITUTION - ASR:"'asrCurrentWord$'" → Standard:"'stanCurrentWord$'" 

(position 'j')'newline$' 

                    i = i - 1 

                    j = j - 1 

                elsif dp[i, j] = dp[i-1, j] + 1 

                    # Insertion (ASR has extra word) 

                    fileInsertions = fileInsertions + 1 

                    errorCount = errorCount + 1 

                    fileappend "'outputFile$'"   Error 'errorCount': 

INSERTION - ASR extra word:"'asrCurrentWord$'" (after position 'j')'newline$' 

                    i = i - 1 

                else 

                    # Deletion (ASR missing word from standard) 

                    fileDeletions = fileDeletions + 1 

                    errorCount = errorCount + 1 

                    fileappend "'outputFile$'"   Error 'errorCount': DELETION 

- Missing standard word:"'stanCurrentWord$'" (position 'j')'newline$' 

                    j = j - 1 

                endif 

            elsif i > 0 

                # Insertion (remaining ASR words) 

                fileInsertions = fileInsertions + 1 

                errorCount = errorCount + 1 

                asrCurrentWord$ = asrWord$[i] 

                fileappend "'outputFile$'"   Error 'errorCount': INSERTION - 

ASR extra word:"'asrCurrentWord$'" (at end)'newline$' 

                i = i - 1 

            else 

                # Deletion (remaining standard words) 

                fileDeletions = fileDeletions + 1 

                errorCount = errorCount + 1 

                stanCurrentWord$ = stanWord$[j] 

                fileappend "'outputFile$'"   Error 'errorCount': DELETION - 

Missing standard word:"'stanCurrentWord$'" (at beginning)'newline$' 

                j = j - 1 

            endif 

        endwhile 

         

        if errorCount = 0 

            fileappend "'outputFile$'"   No errors detected - Perfect 

match!'newline$' 

        endif 

         



        # output 

        writeInfoLine: "  WER: ", fixed$(werPercent, 2), "%" 

        writeInfoLine: "  Error count: ", editDistance, "/", referenceLength 

        writeInfoLine: "  Deletions: ", fileDeletions, ", Insertions: ", fileInsertions, 

", Substitutions: ", fileSubstitutions 

         

        # culculate 

        werString$ = fixed$(werPercent, 2) 

        fileappend "'outputFile$'" 'newline$' 

        fileappend "'outputFile$'"   Summary 'newline$' 

        fileappend "'outputFile$'"   WER: 'werString$'%'newline$' 

        fileappend "'outputFile$'"   Edit distance: 'editDistance' / Reference 

length: 'referenceLength''newline$' 

        fileappend "'outputFile$'"   Error type distribution:'newline$' 

        fileappend "'outputFile$'"     Deletions: 'fileDeletions''newline$' 

        fileappend "'outputFile$'"     Insertions: 'fileInsertions''newline$' 

        fileappend "'outputFile$'"     Substitutions: 'fileSubstitutions''newline$' 

        fileappend "'outputFile$'" 'newline$' 

        fileappend "'outputFile$'" 

========================================='newline$' 

        fileappend "'outputFile$'" 'newline$' 

         

        totalWords = totalWords + referenceLength 

        totalErrors = totalErrors + editDistance 

        totalDeletions = totalDeletions + fileDeletions 

        totalInsertions = totalInsertions + fileInsertions 

        totalSubstitutions = totalSubstitutions + fileSubstitutions 

         

        label nextTextGrid 

    endif 

endfor 

 

if totalWords > 0 

    overallWER = (totalErrors / totalWords) * 100 

else 

    overallWER = 0 

endif 

 

# Output overall results 

writeInfoLine: "" 

writeInfoLine: "Overall Statistics" 

writeInfoLine: "Files processed: ", totalFiles 

writeInfoLine: "Total words: ", totalWords 

writeInfoLine: "Total errors: ", totalErrors 



writeInfoLine: "Overall WER: ", fixed$(overallWER, 2), "%" 

writeInfoLine: "Error type distribution:" 

writeInfoLine: "  Deletions: ", totalDeletions, " (", 

fixed$(totalDeletions/totalErrors*100, 1), "%)" 

writeInfoLine: "  Insertions: ", totalInsertions, " (", 

fixed$(totalInsertions/totalErrors*100, 1), "%)" 

writeInfoLine: "  Substitutions: ", totalSubstitutions, " (", 

fixed$(totalSubstitutions/totalErrors*100, 1), "%)" 

 

deletionPercent$ = fixed$(totalDeletions/totalErrors*100, 1) 

insertionPercent$ = fixed$(totalInsertions/totalErrors*100, 1) 

substitutionPercent$ = fixed$(totalSubstitutions/totalErrors*100, 1) 

overallWERString$ = fixed$(overallWER, 2) 

 

fileappend "'outputFile$'" overall statistics 'newline$' 

fileappend "'outputFile$'" Files processed: 'totalFiles''newline$' 

fileappend "'outputFile$'" Total words: 'totalWords''newline$' 

fileappend "'outputFile$'" Total errors: 'totalErrors''newline$' 

fileappend "'outputFile$'" Overall WER: 'overallWERString$'%'newline$' 

fileappend "'outputFile$'" Error type distribution:'newline$' 

fileappend "'outputFile$'"   Deletions: 'totalDeletions' 

('deletionPercent$'%)'newline$' 

fileappend "'outputFile$'"   Insertions: 'totalInsertions' 

('insertionPercent$'%)'newline$' 

fileappend "'outputFile$'"   Substitutions: 'totalSubstitutions' 

('substitutionPercent$'%)'newline$' 

 

appendFileLine: outputFile$, "" 

appendFileLine: outputFile$, "completed" 

 

select all 

Remove 

 

writeInfoLine: "" 

writeInfoLine: "Results saved to: ", outputFile$ 

writeInfoLine: "WER Analysis completed"  



Appendix 6: parastep2.praat 

# Paralinguistic features analysis - Step 2: Error-feature relationship analysis 

 

folderPath$ = "scripts/" 

collectionFile$ = folderPath$ + "praat.Collection" 

outputFile$ = "output_data/paralinguistic_analysis_results.txt" 

 

# Time window settings (seconds) 

beforeWindow = 2.0 

afterWindow = 2.0 

 

writeInfoLine: "Paralinguistic features analysis" 

writeInfoLine: "Collection file: ", collectionFile$ 

 

# Read Collection 

Read from file: collectionFile$ 

 

# Get all objects 

select all 

numberOfObjects = numberOfSelected() 

writeInfoLine: "Collection contains ", numberOfObjects, " objects" 

 

# Get object ID list 

for i from 1 to numberOfObjects 

    objectIDs[i] = selected(i) 

endfor 

 

# Initialize statistics 

totalFiles = 0 

totalErrorIntervals = 0 

featureBefore = 0 

featureDuring = 0 

featureAfter = 0 

noFeature = 0 

 

# Create results file 

deleteFile: outputFile$ 

fileappend "'outputFile$'" Paralinguistic features analysis results'newline$' 

fileappend "'outputFile$'" Time: 'date$()''newline$' 

fileappend "'outputFile$'" Before window: 'beforeWindow's, After window: 

'afterWindow's'newline$' 

fileappend "'outputFile$'" 'newline$' 

 

# Process each TextGrid 



for objectIndex from 1 to numberOfObjects 

    selectObject: objectIDs[objectIndex] 

    objectType$ = extractWord$(selected$(), "") 

     

    if objectType$ = "TextGrid" 

        totalFiles = totalFiles + 1 

        objectName$ = selected$("TextGrid") 

         

        writeInfoLine: "Processing file ", totalFiles, ": ", objectName$ 

        fileappend "'outputFile$'" File: TextGrid 'objectName$''newline$' 

         

        numTiers = Get number of tiers 

         

        # Find target tiers 

        paraTier = 0 

        asrSegTier = 0 

        stanSegTier = 0 

         

        for tierNum from 1 to numTiers 

            tierName$ = Get tier name: tierNum 

            if tierNum = 7 

                paraTier = tierNum 

            elif tierNum = 9 

                asrSegTier = tierNum 

            elif tierNum = 10 

                stanSegTier = tierNum 

            endif 

        endfor 

         

        if asrSegTier = 0 or stanSegTier = 0 

            writeInfoLine: "  Skipped: Missing required segmented tiers" 

            fileappend "'outputFile$'"   Skipped: Missing required tiers'newline$' 

            goto nextFile 

        endif 

         

        # Get paralinguistic features from tier 7 

        paraFeatures = 0 

        if paraTier > 0 

            paraIntervals = Get number of intervals: paraTier 

            writeInfoLine: "  Found paralinguistic tier with ", paraIntervals, " 

intervals" 

            for intNum from 1 to paraIntervals 

                intervalText$ = Get label of interval: paraTier, intNum 

                if intervalText$ <> "" 



                    paraFeatures = paraFeatures + 1 

                    paraStart[paraFeatures] = Get start time of interval: paraTier, 

intNum 

                    paraEnd[paraFeatures] = Get end time of interval: paraTier, 

intNum 

                    paraLabel$[paraFeatures] = intervalText$ 

                    writeInfoLine: "    Feature ", paraFeatures, ": '", 

intervalText$, "' from ", paraStart[paraFeatures], " to ", paraEnd[paraFeatures] 

                endif 

            endfor 

        else 

            writeInfoLine: "  No paralinguistic tier found" 

        endif 

        writeInfoLine: "  Total paralinguistic features: ", paraFeatures 

         

        # Compare segmented tiers interval by interval 

        asrSegIntervals = Get number of intervals: asrSegTier 

        stanSegIntervals = Get number of intervals: stanSegTier 

         

        # Check if tiers have same number of intervals (should be aligned) 

        if asrSegIntervals <> stanSegIntervals 

            writeInfoLine: "  Warning: Different number of intervals - ASR: ", 

asrSegIntervals, ", Standard: ", stanSegIntervals 

        endif 

         

        minIntervals = min(asrSegIntervals, stanSegIntervals) 

         

        # Initialize file counters 

        fileErrorIntervals = 0 

        fileFeatureBefore = 0 

        fileFeatureDuring = 0 

        fileFeatureAfter = 0 

        fileNoFeature = 0 

         

        fileappend "'outputFile$'"   Comparing 'minIntervals' aligned 

intervals:'newline$' 

         

        # Compare each aligned interval 

        for intervalNum from 1 to minIntervals 

            asrText$ = Get label of interval: asrSegTier, intervalNum 

            stanText$ = Get label of interval: stanSegTier, intervalNum 

             

            # Skip empty intervals (unless both are different types of empty) 

            if asrText$ <> stanText$ 



                # Found an error interval 

                fileErrorIntervals = fileErrorIntervals + 1 

                 

                # Get timing of this interval 

                errorStart = Get start time of interval: stanSegTier, intervalNum 

                errorEnd = Get end time of interval: stanSegTier, intervalNum 

                 

                writeInfoLine: "  Error interval ", intervalNum, ": ASR='", 

asrText$, "' vs Standard='", stanText$, "' (", errorStart, "-", errorEnd, ")" 

                fileappend "'outputFile$'"   Error 'fileErrorIntervals': Interval 

'intervalNum' | ASR:"'asrText$'" vs Standard:"'stanText$'" | Time: 'errorStart:3'-

'errorEnd:3's'newline$' 

                 

                # Analyze relationship with paralinguistic features 

                call classifyErrorRelationship errorStart errorEnd 

                 

            endif 

        endfor 

         

        if fileErrorIntervals = 0 

            fileappend "'outputFile$'"   No errors detected - Perfect 

alignment!'newline$' 

        endif 

         

        # Output file statistics 

        writeInfoLine: "  File results: Errors=", fileErrorIntervals, " | Before=", 

fileFeatureBefore, " | During=", fileFeatureDuring, " | After=", fileFeatureAfter, " | 

None=", fileNoFeature 

        fileappend "'outputFile$'"   Errors: 'fileErrorIntervals''newline$' 

        fileappend "'outputFile$'"   Before: 'fileFeatureBefore''newline$' 

        fileappend "'outputFile$'"   During: 'fileFeatureDuring''newline$' 

        fileappend "'outputFile$'"   After: 'fileFeatureAfter''newline$' 

        fileappend "'outputFile$'"   None: 'fileNoFeature''newline$' 

        fileappend "'outputFile$'" 'newline$' 

         

        # Update overall statistics 

        totalErrorIntervals = totalErrorIntervals + fileErrorIntervals 

        featureBefore = featureBefore + fileFeatureBefore 

        featureDuring = featureDuring + fileFeatureDuring 

        featureAfter = featureAfter + fileFeatureAfter 

        noFeature = noFeature + fileNoFeature 

         

        label nextFile 

    endif 



endfor 

 

# Calculate overall percentages 

if totalErrorIntervals > 0 

    beforePercent = (featureBefore / totalErrorIntervals) * 100 

    duringPercent = (featureDuring / totalErrorIntervals) * 100 

    afterPercent = (featureAfter / totalErrorIntervals) * 100 

    noFeaturePercent = (noFeature / totalErrorIntervals) * 100 

else 

    beforePercent = 0 

    duringPercent = 0 

    afterPercent = 0 

    noFeaturePercent = 0 

endif 

 

# Output overall results 

writeInfoLine: "" 

writeInfoLine: "final results" 

writeInfoLine: "Files processed: ", totalFiles 

writeInfoLine: "Total error intervals: ", totalErrorIntervals 

writeInfoLine: "Before: ", featureBefore, " (", fixed$(beforePercent, 1), "%)" 

writeInfoLine: "During: ", featureDuring, " (", fixed$(duringPercent, 1), "%)" 

writeInfoLine: "After: ", featureAfter, " (", fixed$(afterPercent, 1), "%)" 

writeInfoLine: "None: ", noFeature, " (", fixed$(noFeaturePercent, 1), "%)" 

 

fileappend "'outputFile$'" final results'newline$' 

fileappend "'outputFile$'" Files processed: 'totalFiles''newline$' 

fileappend "'outputFile$'" Total error intervals: 'totalErrorIntervals''newline$' 

fileappend "'outputFile$'" Before: 'featureBefore' ('beforePercent:1'%)'newline$' 

fileappend "'outputFile$'" During: 'featureDuring' ('duringPercent:1'%)'newline$' 

fileappend "'outputFile$'" After: 'featureAfter' ('afterPercent:1'%)'newline$' 

fileappend "'outputFile$'" None: 'noFeature' ('noFeaturePercent:1'%)'newline$' 

 

writeInfoLine: "" 

writeInfoLine: "Results saved to: ", outputFile$ 

 

# Clean up all objects 

writeInfoLine: "Cleaning up objects..." 

select all 

Remove 

 

writeInfoLine: "completed" 

 

# start process 



 

procedure classifyErrorRelationship .errorStart .errorEnd 

    relationship$ = "no_feature" 

     

    writeInfoLine: "    Analyzing error at ", .errorStart, "-", .errorEnd, " with ", 

paraFeatures, " features" 

     

    if paraFeatures > 0 

        for pf from 1 to paraFeatures 

            writeInfoLine: "      Feature ", pf, ": '", paraLabel$[pf], "' (", 

paraStart[pf], "-", paraEnd[pf], ")" 

             

            # Check overlap (during) 

            if .errorStart < paraEnd[pf] and .errorEnd > paraStart[pf] 

                relationship$ = "feature_during" 

                writeInfoLine: "      -> DURING: Time overlap detected" 

                goto endFeatureCheck 

            endif 

             

            # Check before window 

            if .errorEnd <= paraStart[pf] and paraStart[pf] - .errorEnd <= 

beforeWindow 

                relationship$ = "feature_before" 

                gap = paraStart[pf] - .errorEnd 

                writeInfoLine: "      -> BEFORE: Gap = ", gap, "s (within ", 

beforeWindow, "s window)" 

                goto endFeatureCheck 

            endif 

             

            # Check after window 

            if .errorStart >= paraEnd[pf] and .errorStart - paraEnd[pf] <= 

afterWindow 

                relationship$ = "feature_after" 

                gap = .errorStart - paraEnd[pf] 

                writeInfoLine: "      -> AFTER: Gap = ", gap, "s (within ", 

afterWindow, "s window)" 

                goto endFeatureCheck 

            endif 

        endfor 

        label endFeatureCheck 

    else 

        writeInfoLine: "    -> No paralinguistic features to compare" 

    endif 

     



    writeInfoLine: "    Final classification: ", relationship$ 

     

    # Update file counters 

    if relationship$ = "feature_before" 

        fileFeatureBefore = fileFeatureBefore + 1 

    elsif relationship$ = "feature_during" 

        fileFeatureDuring = fileFeatureDuring + 1 

    elsif relationship$ = "feature_after" 

        fileFeatureAfter = fileFeatureAfter + 1 

    else 

        fileNoFeature = fileNoFeature + 1 

    endif 

     

    fileappend "'outputFile$'"     -> Relationship: 'relationship$''newline$' 

endproc 

 

 

writeInfoLine: "" 

writeInfoLine: "Results saved to: ", outputFile$ 

writeInfoLine: "para relationship completed" 

 

  



Appendix 7: aacoustic feature.praat 

# Script for analyzing paralinguistic features(HNR, Spectral Tilt, and ZCR) for 

specific labeled intervals in tier 7 (“para”). 

 

form Analyze paralinguistic features 

    text input_directory scripts 

    text output_file     output_data/acoustic_feature_results.txt 

endform 

 

#  Create output file and write header 

writeFileLine: output_file$, "File | Label | Start | End | Mean_HNR | Spectral_Tilt | 

ZCR" 

 

# get all wav 

Create Strings as file list: "fileList", input_directory$ + "/*.wav" 

numberOfFiles = Get number of strings 

 

for i from 1 to numberOfFiles 

    select Strings fileList 

    filename$ = Get string: i 

    basename$ = filename$ - ".wav" 

 

    # read sound and textgrid 

    Read from file: input_directory$ + "/" + filename$ 

    sound = selected("Sound") 

    Read from file: input_directory$ + "/" + basename$ + ".TextGrid" 

    textgrid = selected("TextGrid") 

 

    # get number of interval in tier 7 

    select textgrid 

    numberOfIntervals = Get number of intervals: 7 

     # Process each interval in tier 7 

    for interval to numberOfIntervals 

        select textgrid 

        label$ = Get label of interval: 7, interval 

         

        if label$ = "laughter" or label$ = "throat-clearing" or label$ = "sigh" 

            start = Get start time of interval: 7, interval 

            end = Get end time of interval: 7, interval 

            duration = end - start 

             

            # Extract sound segment 

            select sound 

            Extract part: start, end, "rectangular", 1, "no" 



            segment = selected("Sound") 

             

            # Calculate HNR 

            To Harmonicity (cc): 0.01, 75, 0.1, 4.5 

            meanHNR = Get mean: 0, 0 

            Remove 

             

            # Calculate Spectral Tilt 

            select segment 

            To Spectrum: "yes" 

            spectrum = selected("Spectrum") 

            select spectrum 

            To Ltas (1-to-1) 

            ltas = selected("Ltas") 

            select ltas 

            # Get slope between low band (0-1000 Hz) and high band (1000-4000 

Hz) 

            lowBand = Get mean: 0, 1000, "energy" 

            highBand = Get mean: 1000, 4000, "energy" 

            spectralTilt = 10 * log10(highBand / lowBand) 

     removeObject: spectrum, ltas 

 

             

            # Calculate ZCR 

            select segment 

            To PointProcess (zeroes): 1, "yes", "yes" 

            points = Get number of points 

            zcr = points / duration 

            Remove 

             

             # Write results to file 

            resultLine$ = basename$ + tab$ + label$ + tab$ + fixed$(start, 3) + 

tab$ +  

            ... fixed$(end, 3) + tab$ + fixed$(meanHNR, 3) + tab$ +  

            ... fixed$(spectralTilt, 3) + tab$ + fixed$(zcr, 3) 

            appendFileLine: output_file$, resultLine$ 

             

            select segment 

            removeObject: segment 

        endif 

    endfor 

    removeObject: sound, textgrid 

endfor 

 



select Strings fileList 

Remove 

 

# Clean up any remaining objects 

writeInfoLine: "Cleaning up objects..." 

select all 

numberOfRemainingObjects = numberOfSelected() 

if numberOfRemainingObjects > 0 

    writeInfoLine: "Removing ", numberOfRemainingObjects, " remaining objects" 

    Remove 

endif 

 

writeInfoLine: "complete" 

  



Appendix 8: master_table.praat 

# Master analysis table 

# Combines WER + Paralinguistic + Acoustic data 

 

folderPath$ = "praat_analysis/output_data/" 

outputFile$ = "descriptive_stat/master_analysis_table.tsv" 

 

# Arrays for master data 

fileCount = 0 

 

#WER 

werLines = Read Strings from raw text file: folderPath$ + "wer_detailed_results.txt" 

numberOfLines = Get number of strings 

 

for line from 1 to numberOfLines 

    text$ = Get string: line 

     

    # Get file name 

    if index(text$, "File: TextGrid ") > 0 

        fileCount = fileCount + 1 

        start = index(text$, "TextGrid ") + 9 

        fileName$[fileCount] = right$(text$, length(text$) - start + 1) 

    endif 

     

    # Get WER percentage 

    if index(text$, "WER: ") > 0 and fileCount > 0 

        start = index(text$, "WER: ") + 5 

        end = index(text$, "%") 

        werPercent[fileCount] = number(mid$(text$, start, end - start)) 

    endif 

     

    # Get error counts in one go 

    if index(text$, "Deletions: ") > 0 and fileCount > 0 

        # Extract all three numbers from this section 

        deletions[fileCount] = number(mid$(text$, index(text$, "Deletions: ") + 11, 

3)) 

    endif 

    if index(text$, "Insertions: ") > 0 and fileCount > 0 

        insertions[fileCount] = number(mid$(text$, index(text$, "Insertions: ") + 

12, 3)) 

    endif 

    if index(text$, "Substitutions: ") > 0 and fileCount > 0 

        substitutions[fileCount] = number(mid$(text$, index(text$, "Substitutions: 

") + 15, 3)) 



        totalErrors[fileCount] = deletions[fileCount] + insertions[fileCount] + 

substitutions[fileCount] 

    endif 

endfor 

 

select werLines 

Remove 

 

#Paralinguistic 

paraLines = Read Strings from raw text file: folderPath$ + 

"paralinguistic_analysis_results.txt" 

numberOfLines = Get number of strings 

 

# Initialize para arrays 

for i from 1 to fileCount 

    before[i] = 0 

    during[i] = 0 

    after[i] = 0 

    none[i] = 0 

endfor 

 

currentFile = 0 

for line from 1 to numberOfLines 

    text$ = Get string: line 

     

    # Find current file 

    if index(text$, "File: TextGrid ") > 0 

        start = index(text$, "TextGrid ") + 9 

        currentFileName$ = right$(text$, length(text$) - start + 1) 

         

        # Match with existing files 

        currentFile = 0 

        for i from 1 to fileCount 

            if fileName$[i] = currentFileName$ 

                currentFile = i 

                goto foundFile 

            endif 

        endfor 

        label foundFile 

    endif 

     

    # Extract individual values 

    if currentFile > 0 

        if index(text$, "  Before: ") > 0 



            start = index(text$, "Before: ") + 8 

            before[currentFile] = number(right$(text$, length(text$) - start + 1)) 

        endif 

        if index(text$, "  During: ") > 0 

            start = index(text$, "During: ") + 8 

            during[currentFile] = number(right$(text$, length(text$) - start + 1)) 

        endif 

        if index(text$, "  After: ") > 0 

            start = index(text$, "After: ") + 7 

            after[currentFile] = number(right$(text$, length(text$) - start + 1)) 

        endif 

        if index(text$, "  None: ") > 0 

            start = index(text$, "None: ") + 6 

            none[currentFile] = number(right$(text$, length(text$) - start + 1)) 

        endif 

    endif 

endfor 

 

select paraLines 

Remove 

 

#Acoustic 

acousticLines = Read Strings from raw text file: folderPath$ + 

"acoustic_feature_results.txt" 

numberOfLines = Get number of strings 

 

# Initialize acoustic arrays 

for i from 1 to fileCount 

    label$[i] = "NA" 

    startTime$[i] = "NA" 

    endTime$[i] = "NA" 

    hnr$[i] = "NA" 

    tilt$[i] = "NA" 

    zcr$[i] = "NA" 

endfor 

 

# Skip header, process data 

for line from 2 to numberOfLines 

    text$ = Get string: line 

    if text$ = "" 

        goto nextLine 

    endif 

     

    # Simple tab parsing 



    parts = 0 

    remaining$ = text$ 

    while index(remaining$, tab$) > 0 

        parts = parts + 1 

        pos = index(remaining$, tab$) 

        part$[parts] = left$(remaining$, pos - 1) 

        remaining$ = right$(remaining$, length(remaining$) - pos) 

    endwhile 

    parts = parts + 1 

    part$[parts] = remaining$ 

     

    if parts >= 6 

        # Match file name (remove extensions) 

        acousticFile$ = replace$(part$[1], ".wav", "", 0) 

        acousticFile$ = replace$(acousticFile$, ".TextGrid", "", 0) 

         

        for i from 1 to fileCount 

            baseFileName$ = replace$(fileName$[i], ".TextGrid", "", 0) 

            if baseFileName$ = acousticFile$ and label$[i] = "NA" 

                label$[i] = part$[2] 

                startTime$[i] = part$[3] 

                endTime$[i] = part$[4] 

                hnr$[i] = part$[5] 

                tilt$[i] = part$[6] 

                if parts >= 7 

                    zcr$[i] = part$[7] 

                endif 

                goto nextLine 

            endif 

        endfor 

    endif 

     

    label nextLine 

endfor 

 

select acousticLines 

Remove 

 

 

#Write master table 

deleteFile: outputFile$ 

 

# Header 



appendFileLine: outputFile$, "FileName" + tab$ + "WER_Percent" + tab$ + 

"Total_WER_Errors" + tab$ +  

... "Deletions" + tab$ + "Insertions" + tab$ + "Substitutions" + tab$ +  

... "Feature_Before" + tab$ + "Feature_During" + tab$ + "Feature_After" + tab$ + 

"No_Feature" + tab$ +  

... "Total_Feature_Errors" + tab$ + "Label" + tab$ + "Start" + tab$ + "End" + tab$ +  

... "Mean_HNR" + tab$ + "Spectral_Tilt" + tab$ + "ZCR" 

 

# Data rows 

for i from 1 to fileCount 

    totalFeature = before[i] + during[i] + after[i] + none[i] 

     

    line$ = fileName$[i] + tab$ +  

           ... string$(werPercent[i]) + tab$ + string$(totalErrors[i]) + tab$ + 

           ... string$(deletions[i]) + tab$ + string$(insertions[i]) + tab$ + 

string$(substitutions[i]) + tab$ + 

           ... string$(before[i]) + tab$ + string$(during[i]) + tab$ + string$(after[i]) 

+ tab$ + string$(none[i]) + tab$ + 

           ... string$(totalFeature) + tab$ + label$[i] + tab$ + startTime$[i] + 

tab$ + endTime$[i] + tab$ + 

           ... hnr$[i] + tab$ + tilt$[i] + tab$ + zcr$[i] 

     

    appendFileLine: outputFile$, line$ 

  endfor 

 

writeInfoLine: "complete" 

  



Appendix 9: descriptive.stat,rmd 

--- 

title: "descriptive_stat" 

author: "Xuefeiyang Zhang" 

date: "2025-08-12" 

output: html_document 

--- 

 

# Step 1: Event distribution analysis 

 

# Set path 

data_dir <- "../descriptive_stat" 

output_dir <- "../descriptive_stat/output" 

 

cat("=== DISTRIBUTION OF NUMBER OF EVENTS ===\n") 

 

# Read data 

data_file <- file.path(data_dir, "master_analysis_table.tsv") 

data <- read.delim(data_file, sep = "\t", header = TRUE, stringsAsFactors = FALSE) 

 

cat("Data loaded:", nrow(data), "observations\n") 

 

# Create frequency table 

label_counts <- table(data$Label) 

 

# Convert to data frame and calculate percentages 

event_dist <- data.frame( 

  Label = names(label_counts), 

  n = as.numeric(label_counts), 

  stringsAsFactors = FALSE 

) 

 

# Calculate percentages 

event_dist$percent <- paste0(round(event_dist$n / sum(event_dist$n) * 100, 1), "%") 

 

# Sort by frequency 

event_dist <- event_dist[order(event_dist$n, decreasing = TRUE), ] 

 

# Add total row 

total_row <- data.frame( 

  Label = "Total", 

  n = sum(event_dist$n), 

  percent = "100%", 

  stringsAsFactors = FALSE 



) 

 

# Combine table 

table_event_distribution <- rbind(event_dist, total_row) 

 

# Reset row names 

rownames(table_event_distribution) <- NULL 

 

# Print and save table 

cat("\nEvent Distribution Table:\n") 

print(table_event_distribution) 

output_file <- file.path(output_dir, "table1_event_distribution.tsv") 

write.table(table_event_distribution, output_file, sep = "\t", row.names = FALSE, 

quote = FALSE) 

 

cat("\nTable saved to:", output_file, "\n") 

 

# Create bar chart 

cat("\nCreating bar chart...\n") 

 

chart_data <- event_dist[event_dist$Label != "Total", ] 

 

#save bar chart 

png_file <- file.path(output_dir, "figure1_event_distribution.png") 

png(png_file, width = 800, height = 600) 

 

# Set bar chart 

max_count <- max(chart_data$n) 

y_limit <- max_count * 1.1  

 

barplot(chart_data$n,  

        names.arg = chart_data$Label, 

        main = "Distribution of Paralinguistic Events", 

        xlab = "Event Type", 

        ylab = "Count", 

        col = "steelblue", 

        ylim = c(0,y_limit)) 

         

#Add text and labels 

text(x = seq_along(chart_data$n) * 1.2 - 0.5,  

     y = chart_data$n + max(chart_data$n) * 0.02,  

     labels = chart_data$n,  

     pos = 3) 

 



dev.off() 

 

cat("Bar chart saved to:", png_file, "\n") 

 

# Step 2: WER overview 

 

# Set path 

data_dir <- "../descriptive_stat" 

output_dir <- "../descriptive_stat/output" 

 

# Read data 

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t") 

data$WER_Percent <- as.numeric(data$WER_Percent) 

data <- data[!is.na(data$WER_Percent), ] 

 

# Calculate WER statistics 

event_types <- c("laughter", "sigh", "throat-clearing") 

wer_stats <- data.frame() 

 

for(label in event_types) { 

  wer_values <- data[data$Label == label, "WER_Percent"] 

  if(length(wer_values) > 0) { 

    stats_row <- data.frame( 

      Label = label, 

      n = length(wer_values), 

      Mean = round(mean(wer_values), 2), 

      SD = round(sd(wer_values), 2), 

      Median = round(median(wer_values), 2), 

      Q1 = round(quantile(wer_values, 0.25), 2), 

      Q3 = round(quantile(wer_values, 0.75), 2), 

      IQR = round(quantile(wer_values, 0.75) - quantile(wer_values, 0.25), 2) 

    ) 

    wer_stats <- rbind(wer_stats, stats_row) 

  } 

} 

 

# Print and save table 

print(wer_stats) 

write.table(wer_stats, file.path(output_dir, "table2_wer_statistics.tsv"),  

            sep = "\t", row.names = FALSE, quote = FALSE) 

 

# Create boxplot 

boxplot_data <- list() 

sample_sizes <- c() 



for(label in event_types) { 

  boxplot_data[[label]] <- data[data$Label == label, "WER_Percent"] 

  sample_sizes <- c(sample_sizes, sum(data$Label == label)) 

} 

 

label_with_n <- paste0(event_types, "\n(n=", sample_sizes, ")") 

 

# Save boxplot 

png(file.path(output_dir, "figure2_wer_boxplot.png"), width = 800, height = 600) 

 

#set boxplot 

boxplot(boxplot_data, 

        names = label_with_n, 

        main = "WER Distribution by Event Type", 

        xlab = "Event Type", 

        ylab = "WER (%)", 

        col = "steelblue", 

        ylim = c(0, 120)) 

dev.off() 

 

cat("Files saved:\n- table2_wer_statistics.tsv\n- figure2_wer_boxplot.png\n") 

 

 

# Step 3: error type composition 

# Set paths 

data_dir <- "../descriptive_stat" 

output_dir <- "../descriptive_stat/output" 

 

# Read data 

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t") 

data$Deletions <- as.numeric(data$Deletions) 

data$Insertions <- as.numeric(data$Insertions) 

data$Substitutions <- as.numeric(data$Substitutions) 

data <- data[!is.na(data$Deletions) & !is.na(data$Insertions) 

& !is.na(data$Substitutions), ] 

 

# Calculate error composition 

event_types <- c("laughter", "sigh", "throat-clearing") 

error_composition <- data.frame() 

 

for(label in event_types) { 

  label_data <- data[data$Label == label, ] 

   

  if(nrow(label_data) > 0) { 



    total_deletions <- sum(label_data$Deletions, na.rm = TRUE) 

    total_insertions <- sum(label_data$Insertions, na.rm = TRUE) 

    total_substitutions <- sum(label_data$Substitutions, na.rm = TRUE) 

    total_errors <- total_deletions + total_insertions + total_substitutions 

     

    if(total_errors > 0) { 

      d_percent <- round((total_deletions / total_errors) * 100, 1) 

      i_percent <- round((total_insertions / total_errors) * 100, 1) 

      s_percent <- round((total_substitutions / total_errors) * 100, 1) 

    } else { 

      d_percent <- i_percent <- s_percent <- 0 

    } 

     

    composition_row <- data.frame( 

      Label = label, 

      Deletions = total_deletions, 

      Insertions = total_insertions, 

      Substitutions = total_substitutions, 

      TotalErrors = total_errors, 

      D_Percent = d_percent, 

      I_Percent = i_percent, 

      S_Percent = s_percent 

    ) 

     

    error_composition <- rbind(error_composition, composition_row) 

  } 

} 

 

# Print and save table 

print(error_composition) 

write.table(error_composition, file.path(output_dir, "table3_error_composition.tsv"),  

            sep = "\t", row.names = FALSE, quote = FALSE) 

 

# Create stacked bar chart 

chart_data <- as.matrix(error_composition[, c("D_Percent", "I_Percent", 

"S_Percent")]) 

rownames(chart_data) <- error_composition$Label 

 

# Save plot 

png(file.path(output_dir, "figure3_error_composition.png"), width = 800, height = 

600) 

barplot(t(chart_data), 

        main = "Error Type Composition by Event Type", 

        xlab = "Event Type", ylab = "Percentage (%)", 



        col = c("coral", "steelblue", "lightgreen"), 

        legend.text = c("Deletions", "Insertions", "Substitutions"), 

        args.legend = list(x = "topright", bty = "n"), 

        ylim = c(0, 100), beside = FALSE) 

dev.off() 

 

cat("Files saved:\n- table3_error_composition.tsv\n- 

figure3_error_composition.png\n") 

 

# Step 4: Temporal position of errors 

 

# Set path 

data_dir <- "../descriptive_stat" 

output_dir <- "../descriptive_stat/output" 

 

# Read and prepare data 

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t") 

data$Feature_Before <- as.numeric(data$Feature_Before) 

data$Feature_During <- as.numeric(data$Feature_During) 

data$Feature_After <- as.numeric(data$Feature_After) 

data$No_Feature <- as.numeric(data$No_Feature) 

 

# Calculate by event type 

event_types <- c("laughter", "sigh", "throat-clearing") 

results <- data.frame() 

 

for(label in event_types) { 

  label_data <- data[data$Label == label, ] 

   

  before <- sum(label_data$Feature_Before, na.rm = TRUE) 

  during <- sum(label_data$Feature_During, na.rm = TRUE) 

  after <- sum(label_data$Feature_After, na.rm = TRUE) 

  no_feature <- sum(label_data$No_Feature, na.rm = TRUE) 

  total <- before + during + after + no_feature 

   

  row <- data.frame( 

    Label = label, 

    Before = before, During = during, After = after, No_Feature = no_feature, 

    Row_Total = total, 

    Before_Pct = round((before/total)*100, 1), 

    During_Pct = round((during/total)*100, 1), 

    After_Pct = round((after/total)*100, 1), 

    No_Feature_Pct = round((no_feature/total)*100, 1) 

  ) 



  results <- rbind(results, row) 

} 

 

# Save table 

print(results) 

write.table(results, file.path(output_dir, "table4_temporal_position.tsv"),  

            sep = "\t", row.names = FALSE, quote = FALSE) 

 

# Create plot 

chart_data <- as.matrix(results[, c("Before_Pct", "During_Pct", "After_Pct", 

"No_Feature_Pct")]) 

rownames(chart_data) <- results$Label 

 

png(file.path(output_dir, "figure4_temporal_position.png"), width = 800, height = 

600) 

barplot(t(chart_data), 

        main = "Temporal Position of Errors by Event Type", 

        xlab = "Event Type", ylab = "Percentage (%)", 

        col = c("lightgreen", "orange", "coral", "lightgray"), 

        legend.text = c("Before", "During", "After", "No Feature"), 

        args.legend = list(x = "topright", bty = "n"), 

        ylim = c(0, 100), beside = FALSE) 

dev.off() 

 

cat("Files saved: table4_temporal_position.tsv, figure4_temporal_position.png\n") 

 

# Step 5: Acoustic features vs. error occurrence 

 

# Set path 

data_dir <- "../descriptive_stat" 

output_dir <- "../descriptive_stat/output" 

 

# Read data 

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t") 

 

#Prepare data 

data$AnyError <- ifelse(data$Total_WER_Errors > 0, 1, 0) 

 

# Filter undefined labels 

data <- data[data$Mean_HNR != "--undefined--" &  

             data$Spectral_Tilt != "--undefined--" &  

             data$ZCR != "--undefined--", ] 

 

# Convert to numeric 



data$Mean_HNR <- as.numeric(data$Mean_HNR) 

data$Spectral_Tilt <- as.numeric(data$Spectral_Tilt) 

data$ZCR <- as.numeric(data$ZCR) 

data <- data[!is.na(data$Mean_HNR) & !is.na(data$Spectral_Tilt) 

& !is.na(data$ZCR), ] 

 

# Create plots 

features <- list( 

  list(data = data$Mean_HNR, name = "HNR", ylabel = "HNR (dB)", file = 

"figure5_hnr_anyerror.png"), 

  list(data = data$Spectral_Tilt, name = "Spectral Tilt", ylabel = "Spectral Tilt (dB)", 

file = "figure6_tilt_anyerror.png"), 

  list(data = data$ZCR, name = "ZCR", ylabel = "ZCR (Hz)", file = 

"figure7_zcr_anyerror.png") 

) 

 

for(feature in features) { 

  no_error <- feature$data[data$AnyError == 0] 

  with_error <- feature$data[data$AnyError == 1] 

  plot_data <- list("0" = no_error, "1" = with_error) 

   

  png(file.path(output_dir, feature$file), width = 800, height = 600) 

  boxplot(plot_data, 

          main = paste("Distribution of", feature$name, "by Error Occurrence"), 

          xlab = "Any Error (0 = no error; 1 = at least one error)", 

          ylab = feature$ylabel, 

          col = c("steelblue", "coral")) 

  dev.off() 

} 

 

cat("Files saved:\n- figure5_hnr_anyerror.png\n- figure6_tilt_anyerror.png\n- 

figure7_zcr_anyerror.png\n") 

 

# Step 6: spearman correlation 

 

# Set path 

data_dir <- "../descriptive_stat" 

output_dir <- "../descriptive_stat/output" 

 

# Read data 

data <- read.delim(file.path(data_dir, "master_analysis_table.tsv"), sep = "\t") 

 

# Prepare data 

data <- data[data$Mean_HNR != "--undefined--" &  



             data$Spectral_Tilt != "--undefined--" &  

             data$ZCR != "--undefined--", ] 

 

data$Mean_HNR <- as.numeric(data$Mean_HNR) 

data$Spectral_Tilt <- as.numeric(data$Spectral_Tilt) 

data$ZCR <- as.numeric(data$ZCR) 

data <- data[!is.na(data$Mean_HNR) & !is.na(data$Spectral_Tilt) 

& !is.na(data$ZCR), ] 

 

# Calculate correlation 

cor1 <- cor.test(data$Mean_HNR, data$Spectral_Tilt, method = "spearman") 

cor2 <- cor.test(data$Mean_HNR, data$ZCR, method = "spearman") 

cor3 <- cor.test(data$Spectral_Tilt, data$ZCR, method = "spearman") 

 

# Create table 

results <- data.frame( 

  Pair = c("HNR — Spectral Tilt", "HNR — ZCR", "Spectral Tilt — ZCR"), 

  rho = round(c(cor1$estimate, cor2$estimate, cor3$estimate), 3), 

  p = round(c(cor1$p.value, cor2$p.value, cor3$p.value), 3) 

) 

 

# Print and save table 

print(results) 

write.table(results, file.path(output_dir, "table5_spearman_correlations.tsv"),  

            sep = "\t", row.names = FALSE, quote = FALSE) 

 

cat("File saved: table5_spearman_correlations.tsv\n")  



Appendix 10: regression_model.rmd 

# Logistic Regression Analysis  

 

library(sandwich) 

library(lmtest) 

 

# Set path 

data_dir <- "../logistic_model" 

output_dir <- "../logistic_model/output" 

 

# Read data 

data_file <- file.path(data_dir, "modeling_dataset.tsv") 

data <- read.delim(data_file, sep = "\t") 

data$Speaker <- as.factor(data$Speaker) 

 

# Fit models 

m1 <- glm(AnyError ~ zHNR + zTilt + zZCR + Label, data = data, family = 

binomial) 

m2 <- glm(DelOccur ~ zHNR + zTilt + zZCR + Label, data = data, family = 

binomial) 

m3 <- glm(InsOccur ~ zHNR + zTilt + zZCR + Label, data = data, family = binomial) 

m4 <- glm(SubOccur ~ zHNR + zTilt + zZCR + Label, data = data, family = 

binomial) 

 

# Get robust results for each model 

get_results <- function(model, data) { 

  robust_se <- vcovCL(model, cluster = data$Speaker) 

  robust_test <- coeftest(model, vcov = robust_se) 

   

  coefs <- robust_test[, "Estimate"] 

  ses <- robust_test[, "Std. Error"] 

  pvals <- robust_test[, "Pr(>|z|)"] 

   

  ors <- exp(coefs) 

  ci_low <- exp(coefs - 1.96 * ses) 

  ci_high <- exp(coefs + 1.96 * ses) 

   

  results <- data.frame( 

    Variable = names(coefs), 

    OR = round(ors, 2), 

    CI_Low = round(ci_low, 2), 

    CI_High = round(ci_high, 2), 

    p = round(pvals, 3) 

  ) 



   

  results$p[results$p < 0.001] <- "<0.001" 

  return(results) 

} 

 

# Get results 

r1 <- get_results(m1, data) 

r2 <- get_results(m2, data) 

r3 <- get_results(m3, data) 

r4 <- get_results(m4, data) 

 

# Remove intercept 

r1 <- r1[r1$Variable != "(Intercept)", ] 

r2 <- r2[r2$Variable != "(Intercept)", ] 

r3 <- r3[r3$Variable != "(Intercept)", ] 

r4 <- r4[r4$Variable != "(Intercept)", ] 

 

# Make table 

variables <- r1$Variable 

table_result <- data.frame( 

  Variable = variables, 

  M1_AnyError = paste0(r1$OR, " [", r1$CI_Low, ", ", r1$CI_High, "] (", r1$p, ")"), 

  M2_DelOccur = paste0(r2$OR, " [", r2$CI_Low, ", ", r2$CI_High, "] (", r2$p, ")"), 

  M3_InsOccur = paste0(r3$OR, " [", r3$CI_Low, ", ", r3$CI_High, "] (", r3$p, ")"), 

  M4_SubOccur = paste0(r4$OR, " [", r4$CI_Low, ", ", r4$CI_High, "] (", r4$p, ")") 

) 

 

# Clean variable names 

table_result$Variable <- gsub("zHNR", "z-HNR", table_result$Variable) 

table_result$Variable <- gsub("zTilt", "z-Spectral Tilt", table_result$Variable) 

table_result$Variable <- gsub("zZCR", "z-ZCR", table_result$Variable) 

table_result$Variable <- gsub("Labelsigh", "Event: sigh", table_result$Variable) 

table_result$Variable <- gsub("Labelthroat-clearing", "Event: throat-clearing", 

table_result$Variable) 

 

# Print and save table 

print(table_result) 

write.table(table_result, file.path(output_dir, "table6_logistic_main.tsv"), sep = "\t", 

row.names = FALSE, quote = FALSE) 

 

# Make plots 

# Plot 1: Insertion by event type 

new_data <- data.frame( 

  zHNR = 0, zTilt = 0, zZCR = 0, 



  Label = c("laughter", "sigh", "throat-clearing") 

) 

pred <- predict(m3, newdata = new_data, type = "response") 

pred_pct <- pred * 100 

 

png(file.path(output_dir, "figure8_insertion_by_label.png"), width = 800, height = 

600) 

barplot(pred_pct, names.arg = new_data$Label, 

        main = "Predicted Insertion Probability by Event Type", 

        xlab = "Event Type", ylab = "Probability (%)", 

        col = "steelblue") 

dev.off() 

 

# Plot 2: AnyError vs HNR 

hnr_values <- seq(-2, 2, by = 0.1) 

new_data2 <- data.frame( 

  zHNR = hnr_values, zTilt = 0, zZCR = 0, Label = "laughter" 

) 

pred2 <- predict(m1, newdata = new_data2, type = "response") 

pred2_pct <- pred2 * 100 

 

png(file.path(output_dir, "figure9_anyerror_vs_hnr.png"), width = 800, height = 600) 

plot(hnr_values, pred2_pct, type = "l", lwd = 2, col = "steelblue", 

     main = "Any Error Probability vs HNR", 

     xlab = "z-HNR", ylab = "Probability (%)") 

dev.off() 

 

# Plot 3: AnyError vs ZCR 

zcr_values <- seq(-2, 2, by = 0.1) 

new_data3 <- data.frame( 

  zHNR = 0, zTilt = 0, zZCR = zcr_values, Label = "laughter" 

) 

pred3 <- predict(m1, newdata = new_data3, type = "response") 

pred3_pct <- pred3 * 100 

 

png(file.path(output_dir, "figure10_anyerror_vs_zcr.png"), width = 800, height = 600) 

plot(zcr_values, pred3_pct, type = "l", lwd = 2, col = "steelblue", 

     main = "Any Error Probability vs ZCR", 

     xlab = "z-ZCR", ylab = "Probability (%)") 

dev.off() 

 


