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Abstract

DeepFake speech poses a growing threat to systems that rely on voice or voice recog-
nition. As a result, the detection of voice DeepFakes and the development of spoofing
countermeasures have received significant attention in literature. This study presents
a comparison between traditional detection approaches, which involve extracting fea-
tures from audio and training a detection model on these features, and a state-of-the-art
transformer-based method (wav2vec2). Experiments were conducted using the WaveFake
dataset. We found that transformer-based methods consistently outperform traditional
feature-based approaches, both in terms of generalization to unseen DeepFake models
and effective recognition of seen DeepFake models. Additionally, we found that among
the seven DeepFake models in the dataset, the detection models performed poorest on Hi-
FiGAN, both when this model was present in the train set and when it was not, possibly
leading to the conclusion that this model creates the highest quality DeepFakes present.
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Chapter 1

Introduction

Advancements in technology have made it increasingly difficult to distinguish between
real and fake content on the internet. One notable development in this area is the rise
of "DeepFakes": a term derived from deep learning−an AI method used to analyze and
replicate patterns, and fake−indicating the synthetic nature of the content. DeepFake
technology enables the creation of highly realistic audio and video, often making it chal-
lenging for humans to discern (Chadha et al., 2021). The negative implications of such a
technology have already been observed, for instance, in 2019 then Speaker of the House
Nancy Pelosi was featured in a manipulated video in which she appeared incoherent (Lee,
2019).

The goal of this research is to detect DeepFake speech. Earlier efforts have already
been made to accomplish this, but these studies often used datasets with generic text-
to-speech models that did not replicate the voice of any particular person. Kühne et al.
(2020) found that humans rated text-to-speech voices significantly differently to human
voices in terms of several characteristics, like eeriness. This indicates that the fake and
real voices were quite easy to distinguish, even for humans. Examples of research with
generic text-to-speech data include the works of Hamza et al. (2022) and Khochare et al.
(2021): Both of these studies utilize the Fake or Real (FoR) dataset, in which fake speech
samples are generated using generic text-to-speech models.

Of particular interest, however, are cases in which the speech of a specific individual
is manipulated. This is often a high-profile individual, like in the case of Nancy Pelosi
discussed previously. This is why in this research I propose using the WaveFake dataset:
This dataset was created using several state-of-the-art DeepFake models trained on the
LJSpeech dataset, which consists of 13,100 short audio clips (on average 6 seconds each;
approximately 24 hours total) read by a single female speaker (Frank & Schönherr, 2021).
Since this dataset is based on the speech of an actual person, it can serve as a more
accurate benchmark for the effectiveness of DeepFake speech detection systems in real-
world scenarios.
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1.1 Background and Related Work

1.1.1 DeepFake Speech
DeepFake speech refers to audio in which a speaker’s voice or message has been artificially
generated or altered by AI. Recent DeepFake systems produce such high quality voice
that they are indistinguishable from real speech (Wang et al., 2020). This capability
enables convincing voice cloning and raises security concerns: attackers can impersonate
public figures or private individuals with malicious intent (Reimao & Tzerpos, 2019). In
fact, criminals have already exploited this threat: one case involved synthesized audio
used to mimic a CEO’s voice and authorize a $240,000 fraudulent transfer (Stupp, 2019).
This makes robust detection of AI-generated speech critical, yet challenging due to the
realism of modern DeepFakes. As a result, research on developing reliable detectors has
intensified in recent years (Yi et al., 2023).

1.1.2 Datasets
To facilitate development of detection methods, researchers have compiled specialized
datasets of synthetic and real speech. For example, early anti-spoofing challenges like
ASVspoof and ADD provided benchmark datasets to evaluate DeepFake detection meth-
ods (T. Yang et al., 2025). Additional datasets have also emerged. The Fake-or-Real
(FoR) corpus contains over 87,000 synthetic utterances paired with 111,000 genuine
recordings collected from diverse open sources (Reimao & Tzerpos, 2019). Similarly,
the WaveFake dataset provides tens of thousands of AI-generated clips produced by mul-
tiple state-of-the-art neural architectures and is accompanied by a dataset of respective
real speech (Frank & Schönherr, 2021). These resources serve as important benchmarks
for training and comparing detection algorithms.

1.1.3 Detection Approaches
Prior detection approaches have ranged from classical machine learning on hand-crafted
features to end-to-end neural architectures. A common strategy is to extract acoustic de-
scriptors—such as short-time spectral or cepstral features (MFCC, CQCC, etc. (Todisco
et al., 2017)) and prosodic metrics (pitch, energy, duration)—that may capture artifacts
of speech synthesis (Chadha et al., 2021). Early detectors typically used these features
with Gaussian mixture models or support vector machines (Yi et al., 2023). In contrast,
recent state-of-the-art systems utilize deep neural networks: convolutional or residual
networks trained on spectrograms (or even raw waveforms) show promising results (Yi
et al., 2023). Light CNNs and ResNet variants have been widely adopted as baselines in
recent ASVspoof and ADD competitions (Yi et al., 2023). Transformers are a newer type
of neural network and also show promising results, offering robust and accurate DeepFake
detection (Goyal et al., 2025).

3



Chapter 2

The dataset

The foundation of the WaveFake dataset is the LJSpeech dataset. LJSpeech is a public
dataset consisting of 13,100 short audio clips, which are 6 seconds in length on average,
totaling around 24 hours. These audio clips consist of excerpts from seven non-fiction
books read by a single female speaker and were captured using the built-in microphone
of a MacBook Pro (Frank & Schönherr, 2021).

Raw audio has a very high temporal resolution−generally the sampling rate is at least
16000 Hz. Raw audio also has short-term (e.g., phonemes) and long-term (e.g., prosody)
patterns, which makes it challenging to model (Kumar et al., 2019). Because of this, the
usual practice for generating DeepFakes is to extract some low-dimensional intermediate
representation from the provided text. This intermediate representation often consists of
linguistic features or mel spectrograms (Frank & Schönherr, 2021). Then, an additional
model, often called a vocoder, maps this intermediate representation to raw audio.

WaveFake extends the LJSpeech dataset by generating DeepFake versions of each clip
using seven state-of-the-art vocoder models: MelGAN, Large MelGAN, Parallel Wave-
GAN (PWG), Multi-band MelGAN (MB-MelGAN), Full-band MelGAN (FB-MelGAN),
HiFi-GAN, and WaveGlow (Frank & Schönherr, 2021). These models are briefly described
in the following section.

2.1 DeepFake models used
The dataset includes six DeepFake vocoder models based on Generative Adversarial Net-
works (GANs) (Frank & Schönherr, 2021). GANs consist of two neural networks−a
generator and a discriminator−which are trained in opposition to each other. The gener-
ator attempts to create realistic synthetic data, with the goal of fooling the discriminator.
The discriminator simultaneously learns to distinguish between real and synthetic inputs
(Creswell et al., 2018). This adversarial training allows GANs to produce highly convinc-
ing DeepFakes.

The GANs used by Frank and Schönherr (2021) to create the DeepFakes are:
MelGAN: a GAN-based model that uses a fully convolutional network consisting of
transposed convolutional layers to upsample the inputs, which are mel spectrograms. It
uses a multi-scale architecture as the discriminator, D1 operates on the scale of raw audio,
and D2 and D3 operate on downsampled versions of the raw audio, having a downsam-
pling factor of 2 and 4 respectively. This downsampling is performed to detect patterns
at different scales. This downsampling is also achieved by convolutions (Kumar et al.,
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2019).
Large MelGAN: a larger version of MelGAN described above, including a larger recep-
tive field, which means that the region of the input on which an output unit depends is
larger (Luo et al., 2016).
Parallel WaveGAN (PWG): A GAN-based model that uses convolutional layers to
upsample the inputs, similar to MelGAN. However, instead of relying solely on time-
domain waveform differences, it evaluates spectral consistency using STFTs computed at
different resolutions (i.e., varying window sizes and hop lengths). This allows it to cap-
ture crucial speech features such as formants, thereby potentially improving the quality
of DeepFake synthesis (Yamamoto et al., 2020).
Multi-band MelGAN (MB-MelGAN): An enhanced version of MelGAN that im-
proves waveform generation speed and quality. It decomposes the audio into multiple
frequency bands, processes each band separately, and then combines them to reconstruct
the full audio. This approach reduces computational complexity and enhances the model’s
ability to capture fine-grained spectral details (G. Yang et al., 2021).
Full-band MelGAN (FB-MelGAN): A variant of MB-MelGAN that removes the
sub-band decomposition, generating full-band audio directly. Unlike MelGAN, it incor-
porates multi-scale STFT losses (similar to Parallel WaveGAN) to improve audio fidelity
by comparing generated and real waveforms at multiple resolutions (G. Yang et al., 2021).
HiFi-GAN: A model that uses a fully convolutional neural network as the generator and
includes two discriminators, namely a multi-scale and multi-period discriminator. The
multi-period discriminator captures audio patterns at different temporal scales using mul-
tiple sub-discriminators, each processing the input based on a distinct non-overlapping
periodic reshaping of the waveform achieved by convolutions. The multi-scale discrimina-
tor solves the non-overlapping property of the multi-period discriminator by consecutively
evaluating the entire audio sequence (Kong et al., 2020).

The dataset also includes one flow-based DeepFake model:
WaveGlow: WaveGlow is a flow-based generative model designed for high-quality speech
synthesis from mel spectrograms. Unlike GAN-based models, WaveGlow employs invert-
ible and differentiable transformations, enabling exact likelihood computation. This ap-
proach allows for efficient training using a single cost function: maximizing the likelihood
of the training data. (Prenger et al., 2019).

The DeepFakes appear to have been generated using pre-trained versions of the Hi-
FiGAN and WaveGlow models mentioned above (Frank & Schönherr, 2021), whereas
the remaining DeepFake models are not explicitly mentioned to be pre-trained (Frank &
Schönherr, 2021). The DeepFake models appear to be trained on the entire LJSpeech
dataset, meaning the goal is recreating the training distribution (Frank & Schönherr,
2021). This should generate high-quality audio, but also comes with a risk of overfit-
ting. However, since these models primarily follow a GAN structure, the generator only
interacts with the discriminator, meaning that the real audio is never directly seen by
the model (Frank & Schönherr, 2021). Therefore, the risk of (almost) exact replication
is small, which is also apparent when looking at characteristics of the generated speech,
e.g., average pitch is clearly lower in the DeepFake samples (Frank & Schönherr, 2021),
which supports the fact that these models did not produce exact replications. WaveGlow
also shows this difference, which is the only non-GAN model.
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Chapter 3

Feature-based method

A strategy for detecting DeepFakes often present in literature is extracting features from
the audio and training a machine learning model on these features (Almutairi & Elgibreen,
2022). This strategy will also be implemented in this research. However, before being
able to implement such a strategy we must make sure that the audio from which these
features will be extracted is of equal length. This is because an increase in signal length
also comes with an increase in extracted features: many features are extracted using
sliding windows, and longer audio contains more of these windows. In the LJSpeech
dataset (and, consequently, the WaveFake dataset), the lengths of the clips vary widely.
The shortest clip is 1.1 seconds long and the longest clip is 10.1 seconds long.

A variable size feature vector is not suitable for training, to solve this problem only
the first 2 seconds of the clips will be included, which is also in line with the work of
Khochare et al. (2021). Clips with a length of less than 2 seconds will be withheld from
the data.

Features found to be effective for discerning between real and DeepFake audio in a
number of papers will be included and these features are summarized here:

MFCCs: A feature found to be effective in several articles was MFCCs (Hamza
et al., 2022)(Bird & Lotfi, 2023). MFCCs mimic human hearing by operating on a log
scale (Hamza et al., 2022), possibly enabling a model to be more tuned to how humans
perceive and create speech.

Spectral Features: Spectral features were also found to be effective in recognizing
DeepFakes (Hamza et al., 2022)(Khochare et al., 2021). Spectral features attempt to
summarize information about how energy is distributed across frequencies (Tzanetakis,
2011) using several aspects, such as roll-off point, centroid and bandwith. These will be
included in the model.

The roll-off point is the frequency Rn below which 85% of the energy distribution of
the magnitude spectrum is concentrated (Tzanetakis, 2011).

The spectral centroid is the center of gravity of the magnitude spectrum and is defined
as (J. Li et al., 2024):

fcentroid =
∑N−1

n=0 f(n) ∗ X(n)∑N−1
n=0 X(n)

Where f(n) represents the frequency bins in the frequency domain and X(n) represents
the corresponding magnitudes (J. Li et al., 2024).

The spectral bandwith quantifies the spread of a signal’s spectrum around its centroid;
a high bandwidth means energy is spread widely across frequencies (Tzanetakis, 2011).
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Root Mean Square Energy: Root Mean Square Energy is a measure of signal
loudness, which is also a feature that has found to be effective (Khochare et al., 2021).
Root Mean Square Energy is defined as (Khochare et al., 2021):

xrms =
√

1
n

(x2
1 + x2

2 + . . . + x2
n)

Although the clips are not calibrated for loudness, the recording conditions remain similar,
which might make this feature useful for classification.

Jitter and Shimmer Features: Jitter and shimmer can be a measure of speech
quality and these features have been shown to be effective for DeepFake speech detection
(K. Li et al., 2023). Jitter and shimmer are visualized below: jitter measures pertur-
bations in the term or frequency (pitch) of the soundwave, while shimmer measures
perturbations in the amplitude or loudness of the soundwave (K. Li et al., 2023).

Figure 3.1: Visualization of Jitter and Shimmer from ResearchGate1

The features will be extracted using the OpenSMILE library, which is explained in
the following section.

3.1 OpenSMILE
The openSMILE (Speech & Music Interpretation by Large-space Extraction) toolkit is a
widely used open-source framework for audio feature extraction. It implements a broad
library of low-level descriptors (LLDs) – including spectral and cepstral measures (e.g.
MFCCs, PLP coefficients), prosodic features (pitch, energy/loudness), formant frequen-
cies, and other voice-quality metrics – and can compute first-order derivatives (deltas) as
well as a variety of higher-level transformations (Eyben et al., 2010).

Most importantly, openSMILE can apply statistical functionals (e.g. means, vari-
ances, percentiles, peak times) to LLD trajectories to produce utterance-level summary
features. The toolkit is written in optimized C++, which enables fast and efficient com-
putation of the features (Eyben et al., 2010).

Its flexibility and comprehensive feature set have made it a widely used toolkit in
speech and paralinguistic research, e.g., openSMILE served as the official feature extractor
in INTERSPEECH challenge tasks (Eyben et al., 2010).

1https://www.researchgate.net/figure/Graphical-representation-of-F-0-Jitter-and-Shimmer_fig7_
321351129
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3.1.1 The ComParE 2016 featureset
A prominent openSMILE configuration is the INTERSPEECH 2016 Computational Par-
alinguistics (ComParE) Challenge feature set. This is an especially large “brute-force”
paralinguistic feature collection. The ComParE 2016 set produces 6,373 utterance-level
features (J. Chen et al., 2021). These are derived by first extracting 65 acoustic LLDs
(covering energy, spectral and voicing characteristics, for example, MFCC bands, spectral
flux/entropy, F0 (pitch), intensity, jitter/shimmer, etc.) and their 65 first-order deltas
(audEERING, 2016b). By default these LLDs are computed on overlapping windowed
frames of 20 ms length with a 10 ms step size (audEERING, 2016b), which is a common
setting for speech analysis. After frame-level extraction, a large battery of statistical func-
tionals (including means, standard deviations, percentiles, linear regression coefficients,
and contour-related measures such as rise/fall times of peaks) is applied to each LLD and
delta track (audEERING, 2016a). The result is a high-dimensional feature vector that
encapsulates broad acoustic patterns over the entire utterance. Because of its exhaustive
coverage, the ComParE feature set is able to be used in a broad range of tasks (Schuller
et al., 2016).

3.1.2 Selecting from the ComParE 2016 featureset
We will select the features mentioned at the start of section 3 from the ComParE 2016
featureset. This is done by, for example, selecting all features which contain "MFCC"
for selecting the MFCC features. We thereby reduce the total amount of features from
6373 to 2300 features. The total amount of instances of each of the selected features is
summarized here:

Feature Type Amount of Features (ComParE 2016 Feature Set)
MFCC 1400
Spectral 566
RMS Energy 100
Jitter & Shimmer 234
Total 2300

Table 3.1: Feature breakdown from the ComParE 2016 feature set

3.2 Models
We will use several machine learning models to evaluate and compare performance on
our dataset for the feature-based method. These models have been chosen because of
their effectiveness in earlier studies. The selected models include XGBoost (Hamza et
al., 2022), Random Forest (Khochare et al., 2021) and a slightly older model: Support
Vector Machine (SVM) (Yi et al., 2023).

3.2.1 XGBoost
XGBoost (Extreme Gradient Boosting) is a gradient tree boosting algorithm, meaning it
builds an ensemble of weak learners (decision trees) in a sequential manner where each
subsequent model attempts to correct the errors of its predecessor (Natekin & Knoll,
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2013). XGBoost achieves state-of-the-art results in many machine learning challenges.
XGBoost also includes many optimization techniques, in order to create a scalable algo-
rithm (T. Chen & Guestrin, 2016).

3.2.2 Random Forest
Random Forest is an ensemble learning method that generates many decision trees, each
created with a random subset of the columns. The final class prediction for an instance
is the most predicted class, i.e., the mode of the predictions made by the decision trees
(Biau & Scornet, 2015).

3.2.3 Support Vector Machine
Support Vector Machine (SVM) is a supervised learning algorithm that constructs a
hyperplane in a high-dimensional space to separate different classes. SVMs can use kernel
functions to handle non-linear classification tasks, making them versatile and powerful
for complex datasets (Suthaharan, 2016).

9



Chapter 4

Transformer method

Transformers are a newer type of neural network based on attention layers. Transformers
were introduced in 2017 and have proven to be effective on a wide range of challenging
tasks (Vaswani et al., 2017). wav2vec2 is a self-supervised transformer and has demon-
strated excellent performance, even with limited labeled data, thus making it well-suited
for our problem (Baevski et al., 2020).

Wav2vec2 takes raw audio waveforms as input and uses a Convolutional Neural Net-
work (CNN) to extract representations from this raw audio. CNNs are especially pow-
erful, since they make strong assumptions about the nature of the audio, for instance,
that audio in close vicinity matters more to local structure than distant audio. After
this, a transformer takes these representations as input and processes them to produce
contextualized representations that capture information from the entire sequence. This
is achieved through a Transformer-based network that models dependencies across the
entire sequence of latent representations by using attention layers (Baevski et al., 2020).
The architecture is visualized below:

Figure 4.1: Architecture of wav2vec2 (from original paper)

During fine-tuning for downstream classification tasks, a classification head is added.
The CNN part of wav2vec2, also known as the feature extractor, is usually frozen (Con-
neau et al., 2020), meaning that this part of the model will not be trained further.
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Chapter 5

Results

The data we will use is very imbalanced: For each real instance in the LJSpeech dataset
there are 7 DeepFake instances in the WaveFake dataset. If we train on such data, we
risk creating a model that only classifies audio as DeepFake, since this would still result
in a very high percentage of correct predictions.

This problem has been solved by making perfectly balanced datasets with a subset
of the data, each of these subsets having the goal of providing a fair metric for the two
evaluation methods described below. Having a perfectly balanced dataset will also prevent
the need of using more complicated evaluation metrics that can account for unbalanced
datasets, such as F1-score. The main evaluation metric used will be the simple accuracy
score, defined as the ratio of correctly classified instances to the total number of instances.

Using a real clip in the train set and a DeepFake version of the clip in the test set or
vice versa is problematic: if you know the clip in the train set is real/fake you can infer
that the clip in the test set is fake/real. Whether models actually have this capability is
questionable, but it nonetheless seems unsound. Therefore, if a real version of the clip is
in either the train or test set, the DeepFake version will also be in that same set.

Two evaluation methods will be implemented: A model-seen test, meaning that the
DeepFake models in the test set also occur in the train set, and a leave-one-model-
out test, meaning that the Deepfake model in the test set does not occur in the train
set. This will allow testing of both the accuracy of representation of seen DeepFake
models and the generalization of our detection models to unseen DeepFake models. It
will simultaneously allow us to test to what degree the DeepFake generation methods are
resistant to generalization and representation.

We chose not to shuffle the LJSpeech-based WaveFake dataset prior to splitting. This
preserves the natural ordering of the source material. This ordering corresponds to mean-
ingful structure, such as progression through book chapters, books, or recording session
continuity. By maintaining this sequence, we aim to evaluate model performance in a
setting that more closely resembles real-world conditions, where temporal or thematical
consistency may influence detection. This approach also ensures that a sentence in the
test set is not directly adjacent to a sentence in the train set, which would be very likely
when shuffling, since the excerpts are segmented by simply splitting on silence (Ito, 2017).
Adjacency of sentences might lead to unrepresentative levels of performance, since the
“tells” differentiating between real and DeepFake audio might be overly similar.
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5.1 Model-seen results
The first testing that will be done is model-seen testing, meaning that all DeepFake
methods occur in both the train and test sets. This will be done by making 10 separate
datasets for cross-validation. The exact method to create these datasets is described here:

1. For each of the real clips, randomly select one DeepFake replica to also be included
in the dataset.

• For the first two datasets, the first 20% of the dataset will be the test set.
• For the second two datasets, the second 20% of the dataset will be the test

set.
• Continue this for all the 10 datasets (There are 5 test sets in total).

2. We report average performance across these splits.

5.1.1 Feature-based method
We first begin by testing the feature-based method using the features and detection
models described in Chapter 3. As mentioned, performance is averaged across the ten
splits. We also report performance across vocoder models. This performance is calculated
as the accuracy across real/DeepFake pairs of which the DeepFake method is the same
as the vocoder model. Accuracies across splits as well as model distribution can be found
in Appendix A.

Model Total Mel MelGAN MB- FB- PWG HiFi Wave
Acc. GAN (L) MelGAN MelGAN GAN Glow

SVM 0.5204 0.5337 0.5261 0.5212 0.5173 0.5233 0.5182 0.5035
(RBF) ±0.0053 ±0.0119 ±0.0134 ±0.0078 ±0.0092 ±0.0133 ±0.0098 ±0.0116
Random 0.7919 0.8899 0.8714 0.8332 0.6565 0.7579 0.7284 0.8100
Forest ±0.0084 ±0.0245 ±0.0215 ±0.0203 ±0.0202 ±0.0139 ±0.0194 ±0.0119
XG- 0.8483 0.9210 0.8981 0.8939 0.7238 0.8261 0.7984 0.8787
Boost ±0.0066 ±0.0165 ±0.0103 ±0.0168 ±0.0192 ±0.0086 ±0.0168 ±0.0089

Table 5.1: Model-seen accuracies (Including XGBoost with default parameters:
max_depth=3, n_estimators=100, lr=0.1)

We can see that XGBoost clearly performs the best out of the 3 detection models. The
DeepFake models on which XGBoost performs poorest are FB-MelGAN and HiFiGAN,
possibly leading to the conclusion that these create the highest quality DeepFakes. This
is supported by the fact that all models were seen in the train set, meaning that the
architectural differences among the DeepFake models should make only little difference.

The performance of Support Vector Machine is poor and even very close to random
guessing. Since the kernel used (Radial Basis Function) is already the most expressive
available, Support Vector Machine will be excluded from any further testing. Random
Forest is significantly outperformed by XGBoost across all DeepFake models, leading to
the decision that fine-tuning XGBoost is more fruitful for possible performance gains.
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Hyperparameter Tuning We will now also find the best set of parameters for the
best-performing model (XGBoost). We will do this using a grid search. The grid search
will evaluate combinations of the following three hyperparameters:

1. n_estimators: which is the number of trees generated by the XGBoost model,
with values of [100, 200].

2. tree_depth: which is the maximum height (or alternatively depth) of a tree, with
values of [3, 5, 7].

3. learning_rate: which is the learning rate of the XGBoost model, with values of
[0.01, 0.1, 0.2].

This grid search will optimize average accuracy across all models and shifts, since
the accumulated accuracy is equivalent to this metric, this will be optimized. The best-
performing model for this metric was the cofiguration n_estimators=200, max_depth=3,
lr=0.2.

Model Total Mel MelGAN MB- FB- PWG HiFi Wave
Acc. GAN (L) MelGAN MelGAN GAN Glow

XG- 0.8586 0.9278 0.9085 0.9095 0.7287 0.8454 0.8097 0.8831
Boost ±0.00464 ±0.01205 ±0.01913 ±0.01433 ±0.02005 ±0.01017 ±0.01643 ±0.00855

Table 5.2: Model-seen accuracies (XGBoost, n_estimators=200, max_depth=3, lr=0.2)

We can see that performance improved slightly for each model and in terms of the
total accuracy across the test set, but no significant changes occured.

5.1.2 XGBoost Feature Importances
We will now also plot the 20 most important features for this best-performing model
below. We report feature importances in terms of gain, which is the average reduction in
loss when the feature is used. In simple terms, this means how much the model improves
on average each time the feature is used to split on. We use the term split since XGBoost
is a decision tree-based model.

We can see that the 20 most important features are primarily MFCC features, but
also contain jitter features, with two of these jitter features being the most important
features present. It is also apparent that all of these features are smoothed averages,
possibly since this reduces any noise present. We briefly explain both the MFCC features
and the jitter features present:

MFCC features: The MFCC features are all similar:

• They are either computed using smoothing averages or their deltas.

• The MFCC’s used mostly range between 8 and 12 (out of 14 total)

• They are either LPGain (Linear Predictive Gain) or LPC (Linear Predictive Cod-
ing) features.

The Linear Predictive Coding Coefficients (lpc1 and lpc2) and Linear Predictive Gain
features are closely related, both being part of the Linear Predictive Model: Linear
Predictive Coding models the vocal tract using several coefficients (Sawant et al., 2010).
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The gain factor refers to the amount of excitation driving the vocal tract (Sawant et al.,
2010). Creating a model of the vocal tract enables the detection of inconsistencies, which
appears to be valuable for detecting DeepFake speech.

Jitter features: There are 3 jitter features in this set:

• The first precentile of the smoothed average of jitterDDP.

• The first quartile of the smoothed average of jitterDDP.

• The flatness of the smoothed average of jitterDDP.

JitterDDP refers to difference of differences of periods, a robust measure of pitch in-
stability. It calculates the average absolute difference between the differences of successive
pitch periods, and then normalizes this value by dividing it by the average pitch period
length over the frame (audEERING GmbH, 2025).

It is clear that the lower percentiles of jitter are an important factor, possibly since
DeepFake speech sustains a more constant jitter throughout the entire excerpt than real
speech. Jitter flatness is also a factor, which means significant changes in jitter might
also differentiate between real and DeepFake audio.

Figure 5.1: Feature importances of best performing XGBoost model

5.1.3 Transformer method
We now also implement the same strategy for the transformer method (using wav2vec2).
We use the base wav2vec2 model and only clips of more than 2 seconds are included,
which are truncated to 2 seconds. This is mainly done to save time and resources.
Fine-tuning was performed for 5 epochs with a learning rate of 10−5 The results are
summmarized below; again, complete results and DeepFake model distributions can be
found in appendix A:
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Model Total Mel MelGAN MB- FB- PWG HiFi Wave
Acc. GAN (L) MelGAN MelGAN GAN Glow

Wav2- 0.9852 0.9959 0.9951 0.9988 0.9687 0.9952 0.9496 0.9941
Vec2 ±0.0021 ±0.0016 ±0.0017 ±0.0009 ±0.0083 ±0.0024 ±0.0072 ±0.0032

Table 5.3: Model-seen accuracies (fine-tuned wav2vec2, 10−5 learning rate, trained for 5
epochs)

Again, DeepFakes created by FB-MelGAN and HiFiGAN result in the poorest classifi-
cation results of the detection model (wav2vec2). We can see that wav2vec2 significantly
outperforms the best feature-based model (XGBoost) across all DeepFake models.

5.2 Leave-one-model-out results
The previous training procedure involved all DeepFake generation models being in both
the train and the test set. We will now also try keeping one model out of sample by
using this model as the test set and training on all other models. For this, 7 alternative
datasets will be created. For the first dataset, with 0 “shift”, the first 1

7th part will include
DeepFakes from the standard MelGAN model, the second 1

7th will include DeepFakes from
the larger MelGAN version, and so on in the order visible in the figure below.

Then, for the second dataset, a “shift” is introduced, which means now the first 1
7th

part of the dataset will be faked by the larger MelGAN version, while the standard
MelGAN version fakes the last 1

7th part of the dataset. The exact shifts are displayed in
the figure below.

Then, for evaluation, each of the cells in the figure is taken as the test set exactly
once, and the remaining cells in the row are the train set. This will allow us to test
generalization to an unseen model 7 times for each of the 7 models.

Part of Dataset1 2 3 4 5 6 7

0 Shift MelGAN MelGAN (L) MB-MelGAN FB-MelGAN PWG HiFi-GAN WaveGlow

1 Shift MelGAN (L) MB-MelGAN FB-MelGAN PWG HiFi-GAN WaveGlow MelGAN

2 Shift MB-MelGAN FB-MelGAN PWG HiFi-GAN WaveGlow MelGAN MelGAN (L)

3 Shift FB-MelGAN PWG HiFi-GAN WaveGlow MelGAN MelGAN (L) MB-MelGAN

4 Shift PWG HiFi-GAN WaveGlow MelGAN MelGAN (L) MB-MelGAN FB-MelGAN

5 Shift HiFi-GAN WaveGlow MelGAN MelGAN (L) MB-MelGAN FB-MelGAN PWG

6 Shift WaveGlow MelGAN MelGAN (L) MB-MelGAN FB-MelGAN PWG HiFi-GAN

Visualization of the seven different datasets. (used for cross-validation)

Leaving one model out of the train set simulates the real-world scenario of encoun-
tering previously unseen DeepFake generation techniques, allowing us to evaluate the
generalization capability of our detection system. It will also allow us to compare the
DeepFake generation models in terms of resistance to generalization. Since XGBoost was
clearly the best-performing model in the previous experiments, we chose to only report
the performance of this model for the feature-based case.
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5.2.1 Feature-based method (XGBoost)
We again begin with the feature-based method, but now only consider the best-performing
model in previous experiments, considering we thought it unlikely that the performance
of Random Forest could rise so significantly that it outperforms XGBoost.

Shift Mel MelGAN MB- FB- PWG HiFi- Wave
GAN (L) MelGAN MelGAN GAN Glow

0 0.9031 0.8066 0.8955 0.7097 0.7799 0.7756 0.8703
1 0.9294 0.8043 0.8635 0.7018 0.7640 0.7659 0.8529
2 0.9215 0.8115 0.8702 0.6956 0.7922 0.8001 0.8409
3 0.9203 0.7928 0.9077 0.7022 0.7689 0.7908 0.8513
4 0.8934 0.7603 0.8972 0.6904 0.8013 0.7782 0.8515
5 0.9255 0.7954 0.8764 0.6815 0.8038 0.7868 0.8337
6 0.8974 0.8346 0.8793 0.6589 0.7570 0.7893 0.8500

Avg 0.9031 0.8066 0.8793 0.6841 0.7839 0.7814 0.8498
±0.01287 ±0.01678 ±0.01571 ±0.01378 ±0.01613 ±0.01075 ±0.01451

Table 5.4: leave-one-model-out accuracies (XGBoost with default parameters:
max_depth=3, n_estimators=100, lr=0.1)

We can see that the detection accuracies across all of the DeepFake models have
dropped significantly now that the model in the test set is not present in the training
data. The ordering of accuracies has not changed drastically; still, the poorest accuracies
are achieved on HiFiGAN and FB-MelGAN, suggesting that these models produce the
highest quality DeepFakes, or are more different than the other DeepFake generation
techniques.

Hyperparameter tuning We will perform hyperparameter tuning to identify the best-
performing XGBoost configuration using a grid search. The grid search will evaluate
combinations of the following three hyperparameters:

1. n_estimators: which is the number of trees generated by the XGBoost model,
with values of [100, 200].

2. tree_depth: which is the maximum height (or alternatively depth) of a tree, with
values of [3, 5, 7].

3. learning_rate: which is the learning rate of the XGBoost model, with values of
[0.01, 0.1, 0.2].
This grid search will optimize average accuracy across all models and shifts, since
the accumulated accuracy is equivalent to this metric, this will be optimized. The
best-performing model for this metric was the configuration n_estimators=200,
max_depth=3, lr=0.2.
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Shift Mel MelGAN MB- FB- PWG HiFi- Wave
GAN (L) MelGAN MelGAN GAN Glow

1 0.9076 0.8269 0.9032 0.7116 0.7896 0.7772 0.8846
2 0.9354 0.8436 0.8706 0.6950 0.7743 0.7708 0.8647
3 0.9322 0.8418 0.8807 0.7019 0.8077 0.8022 0.8502
4 0.9300 0.8362 0.9187 0.6963 0.7899 0.7965 0.8500
5 0.9037 0.8067 0.9101 0.6893 0.8107 0.7806 0.8602
6 0.9249 0.8223 0.8952 0.6780 0.8093 0.7948 0.8345
7 0.9048 0.8637 0.8866 0.6671 0.7674 0.7926 0.8643

Avg 0.9198 0.8347 0.9093 0.6913 0.7927 0.7735 0.8584
±0.01287 ±0.01678 ±0.01571 ±0.01378 ±0.01613 ±0.01075 ±0.01451

Table 5.5: Leave-one-model-out accuracies (XGBoost, n_estimators=200,
max_depth=3, lr=0.2)

We can see in the table that improvements in accuracy were achieved across all models
with the exception of HiFi-GAN, for which the performance decreased slightly.

We choose not to show feature importances in this part, as one model is always
missing from the training data and the features that predict that DeepFake technique
might consequently not be present in the important features. A comparison of feature
importances when leaving out certain DeepFake models is certainly possible, but is beyond
the scope of this research.

5.2.2 Transformer Method
In this part we fine-tune wav2vec2. As mentioned earlier in Chapter 4, we freeze the
CNN part during fine-tuning. Consequently, we fine-tune the transformer part and the
classification head added to wav2vec2 on the training data. Performance will be evaluated
using the same procedures as the feature-based method to enable direct comparison.

The base model of wav2vec2 is used and the inputs are truncated to 2 seconds, while
clips less than two seconds are again excluded from the dataset, this is mainly done due to
memory and time constraints. The model is fine-tuned to the training data for 5 epochs
with a learning rate of 10−5. Results are visible in the table below.

Shift Mel MelGAN MB- FB- PWG HiFi- Wave
GAN (L) MelGAN MelGAN GAN Glow

0 0.9919 0.9877 0.9965 0.9289 0.9661 0.8422 0.9671
1 0.9909 0.9911 0.9986 0.8155 0.9948 0.8143 0.9724
2 0.9962 0.9728 0.9992 0.9439 0.9894 0.8192 0.9763
3 0.9939 0.9839 0.9992 0.9569 0.9907 0.7474 0.9824
4 0.9924 0.9779 0.9973 0.8165 0.9930 0.8785 0.9513
5 0.9605 0.9807 0.9964 0.8859 0.9803 0.8699 0.9929
6 0.9970 0.9445 0.9973 0.9249 0.9839 0.8683 0.9844

Avg 0.9890 0.9769 0.9978 0.8961 0.9855 0.8343 0.9753
±0.05046 ±0.07927 ±0.05873 ±0.08392 ±0.06473 ±0.04848 ±0.04432

Table 5.6: Leave-one-model-out accuracies (fine-tuned wav2vec2, 10−5 learning rate,
trained for 5 epochs)

We can see that performance of wav2vec2 reduces significantly when the tested Deep-
Fake model is not present in the train set, especially for the models on which the lowest
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scores were achieved (FB-MelGAN and HiFiGAN). The classification accuracy of FB-
MelGAN reduced from 0.9867 to 0.8961, while the classification accuracy of HiFiGAN
reduced from 0.9495 to 0.8343. This 0.8343 accuracy score almost makes XGBoost com-
petitive on this particular DeepFake model, since this model achieved a score of 0.7814
on this test, which is only a slight reduction from the 0.7984 accuracy score achieved on
HiFiGAN in the model-seen test. This could mean that while XGBoost performs worse
overall, its generalization capabilities to unseen high quality DeepFakes are substantially
better than wav2vec2, considering the more extreme performance reductions of wav2vec2
from model-seen to leave-one-model-out testing.
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Chapter 6

Discussion

While the transformer-based method demonstrated promising results in detecting Deep-
Fake speech, the generalizability of these findings is constrained by the limitations of the
dataset used. Specifically, the dataset contains speech excerpts and corresponding Deep-
Fake replications from a single speaker, all of which originate from audiobook recordings
(Frank & Schönherr, 2021). The WaveFake dataset we used was also introduced in 2021.
While this is a useful benchmark, this raises several important points.

The use of a single speaker limits the phonetic, prosodic, and expressive variability
present in the data. The model might learn speaker-specific patterns that are good
indicators of a clip being real or DeepFake which are not indicative of DeepFakes on a
broader scale. Audiobooks speech is also often very clean, with little hesitation or pauses.
The presence of background noise is also nearly non-existent. This contrasts with the
reality that these things do appear in real world settings.

The WaveFake dataset was introduced in 2021, meaning that the DeepFake technology
used was also no newer than 2021. DeepFake technology is rapidly advancing (Goyal et
al., 2025), making a relatively recent dataset from 2021 possibly outdated already.

To enhance the robustness and practical relevance of DeepFake speech detection sys-
tems, future research should prioritize evaluation on multi-speaker datasets, preferably
with diverse and maybe also multi-language speakers. The real and DeepFake content
should also include the same speaker, as detecting such data is more in line with the
actual requirements of DeepFake detection systems. Training on a dataset in which the
real and DeepFake content are concerning different speakers might also devolve into the
more simple task of speaker recognition.

Recent datasets have begun to address this gap. For example, the MLAAD dataset
offers promise for future research of this type: This dataset consists of DeepFakes in many
different languages across different speakers (Müller et al., 2024). However, experimenting
on such datasets was beyond the scope of the present study, primarily due to their large
scale and the significant computational resources required for training. The use of a single-
speaker dataset also enabled better experimental controls. Nevertheless, experimenting
on larger and more diverse datasets like MLAAD remains a valuable direction for future
work, particularly for exploring generalization across speakers, languages and DeepFake
generation methods.
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Chapter 7

Conclusion

The transformer method tried in this research (wav2vec2) achieved far superior perfor-
mance compared to the more traditional feature-based method, both when the DeepFake
model which it is tested on is present and absent in the train set. This indicates that this
method of DeepFake detection is more effective.

Out of the DeepFake models, HiFiGAN and Full-Band MelGAN were the hardest to
detect, both when they are present in the training data and when they are not, possibly
leading to the conclusion that these models produce the highest quality DeepFakes.

The most important features used by the feature-based model were all computed
using smoothed averages. Among these were a few jitter features, primarily the lower
percentiles of jitter, possibly since DeepFake speech maintains a higher jitter throughout
the entire utterance than real speech. The flatness of jitter was also important, which
might be due to more rapid jitter changes in either real or DeepFake speech. Linear
Predictive Modelling was also important: LPC (Linear Predictive Coding), which is a
technique that is able to analyze speech characteristics such as vocal tract shape, and
Linear Predictive Gain (LPGain), which measures vocal tract excitation are important
features.

The high-accuracy detection of wav2vec2 highlights that it might be possible to clas-
sify speech as real and DeepFake based on real and DeepFake samples of a single speaker.
Aside from this speaker, it might also be possible to, for example, create a "Nancy Pelosi"
dataset containing real and DeepFake clips of Nancy Pelosi to detect DeepFakes of this
speaker.
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Appendix A
Link to code and datasets used (WaveFake Part 1 contains feature-based experiments,
WaveFake Part 2 contains transformer-based experiments):
https://drive.google.com/drive/folders/1pWzg_qxvAlmtxUgFYx0nOpvqtq8ibLwv?usp=sharing

Train Set

Split MelGAN MelGAN-L MB-MelGAN FB-MelGAN PWG HiFi-GAN
Wave
Glow

1 1439 1492 1415 1445 1517 1441 1513
2 1477 1421 1390 1452 1516 1533 1473
3 1469 1545 1423 1450 1455 1499 1422
4 1505 1457 1453 1504 1458 1417 1469
5 1491 1447 1456 1434 1468 1498 1468
6 1535 1472 1467 1422 1460 1478 1428
7 1478 1519 1440 1458 1436 1441 1491
8 1493 1470 1502 1499 1420 1423 1456
9 1510 1405 1534 1467 1466 1434 1446
10 1438 1465 1439 1528 1434 1443 1515

Test Set

Split MelGAN MelGAN-L MB-MelGAN FB-MelGAN PWG HiFi-GAN
Wave
Glow

1 372 380 379 361 331 359 384
2 352 348 384 348 398 363 373
3 351 357 367 387 360 388 355
4 367 371 356 390 348 350 383
5 377 340 371 374 370 380 354
6 346 369 370 334 365 390 392
7 362 367 376 365 359 349 387
8 346 362 368 350 398 362 379
9 382 355 362 371 363 371 362
10 331 352 344 407 363 378 380

Table 1: Model-seen DeepFake model distribution of feature-based models

Split Total Acc. MelGAN MelGAN Large MB-MelGAN FB-MelGAN PWG HiFi-GAN WaveGlow
1 0.5170 0.5296 0.5197 0.5158 0.5069 0.5242 0.5056 0.5169
2 0.5281 0.5540 0.5244 0.5195 0.5201 0.5352 0.5248 0.5188
3 0.5137 0.5171 0.5448 0.5123 0.5116 0.5083 0.5142 0.4887
4 0.5227 0.5381 0.5445 0.5112 0.5167 0.5201 0.5157 0.5117
5 0.5188 0.5279 0.5235 0.5162 0.5160 0.5297 0.5112 0.5071
6 0.5171 0.5202 0.5041 0.5345 0.5030 0.5219 0.5333 0.5013
7 0.5270 0.5497 0.5368 0.5293 0.5288 0.5292 0.5272 0.4910
8 0.5262 0.5246 0.5262 0.5217 0.5329 0.5377 0.5318 0.5092
9 0.5120 0.5301 0.5056 0.5325 0.5108 0.4917 0.5054 0.5069
10 0.5211 0.5453 0.5312 0.5190 0.5258 0.5344 0.5132 0.4829

Table 2: Model-seen accuracies for Support Vector Machine
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Split Total Acc. MelGAN MelGAN Large MB-MelGAN FB-MelGAN PWG HiFi-GAN WaveGlow
1 0.7800 0.8508 0.8434 0.8047 0.6454 0.7598 0.7382 0.8073
2 0.7876 0.8707 0.8506 0.8203 0.6695 0.7751 0.7204 0.8056
3 0.8035 0.8960 0.8936 0.8147 0.6886 0.7778 0.7500 0.8197
4 0.7971 0.8924 0.8585 0.8427 0.6577 0.7672 0.7543 0.8120
5 0.7805 0.8714 0.8471 0.8154 0.6604 0.7500 0.7325 0.7938
6 0.7848 0.8671 0.8604 0.8146 0.6572 0.7438 0.7333 0.8112
7 0.7909 0.9240 0.9114 0.8524 0.6137 0.7326 0.7063 0.7894
8 0.7922 0.9335 0.8854 0.8533 0.6329 0.7462 0.6892 0.8087
9 0.8045 0.9005 0.8817 0.8479 0.6712 0.7686 0.7439 0.8191
10 0.7979 0.8927 0.8821 0.8660 0.6683 0.7576 0.7156 0.8329

Table 3: Model-seen accuracies for Random Forest
Split Total Acc. MelGAN MelGAN Large MB-MelGAN FB-MelGAN PWG HiFi-GAN WaveGlow
1 0.8445 0.9126 0.8816 0.8852 0.7230 0.8293 0.8008 0.8698
2 0.8402 0.8864 0.8980 0.8594 0.7385 0.8291 0.7934 0.8753
3 0.8521 0.9103 0.9146 0.8815 0.7403 0.8375 0.8170 0.8761
4 0.8501 0.9292 0.8908 0.8876 0.7333 0.8348 0.8000 0.8786
5 0.8437 0.9098 0.8838 0.8881 0.7286 0.8176 0.8155 0.8672
6 0.8470 0.9147 0.8957 0.9039 0.7081 0.8247 0.8000 0.8737
7 0.8454 0.9351 0.9114 0.9043 0.6973 0.8106 0.7751 0.8773
8 0.8417 0.9321 0.9019 0.8940 0.6886 0.8204 0.7666 0.8865
9 0.8624 0.9463 0.8972 0.9156 0.7534 0.8196 0.8221 0.8826
10 0.8560 0.9335 0.9063 0.9196 0.7273 0.8375 0.7937 0.9000

Table 4: Model-seen accuracies for XGBoost with base parameters

Train Set

Split MelGAN MelGAN-L MB-MelGAN FB-MelGAN PWG HiFi-GAN
Wave
Glow

1 1469 1464 1402 1458 1506 1502 1461
2 1508 1436 1458 1436 1417 1474 1533
3 1463 1402 1512 1507 1475 1432 1472
4 1439 1472 1444 1462 1483 1501 1462
5 1413 1439 1497 1551 1483 1471 1408
6 1423 1491 1453 1447 1491 1457 1500
7 1487 1504 1408 1406 1531 1481 1446
8 1466 1482 1496 1447 1491 1477 1403
9 1436 1499 1473 1499 1473 1477 1441
10 1450 1506 1478 1449 1476 1405 1498

Test Set

Split MelGAN MelGAN-L MB-MelGAN FB-MelGAN PWG HiFi-GAN
Wave
Glow

1 372 388 355 368 323 374 386
2 364 393 365 359 373 373 339
3 370 363 373 410 362 354 333
4 384 367 350 368 339 362 395
5 380 418 333 367 332 369 367
6 368 357 390 367 377 357 350
7 376 335 386 386 320 364 398
8 332 359 383 387 361 363 380
9 371 358 343 369 363 385 377
10 377 378 365 386 351 337 372

Table 5: Model-seen DeepFake model distribution of XGBoost grid search
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Split Total Acc. MelGAN MelGAN Large MB-MelGAN FB-MelGAN PWG HiFi-GAN WaveGlow
1 0.8566 0.9126 0.8905 0.8873 0.7514 0.8514 0.8222 0.8782
2 0.8554 0.9135 0.9109 0.8973 0.7270 0.8552 0.8003 0.8805
3 0.8552 0.9324 0.9091 0.8954 0.7293 0.8564 0.8051 0.8724
4 0.8601 0.9258 0.9114 0.9014 0.7446 0.8510 0.8149 0.8684
5 0.8599 0.9157 0.8744 0.9204 0.7561 0.8404 0.8347 0.8774
6 0.8527 0.9158 0.8908 0.8974 0.7357 0.8196 0.8149 0.8943
7 0.8538 0.9455 0.9075 0.9197 0.6982 0.8422 0.7747 0.8907
8 0.8636 0.9413 0.9457 0.9282 0.7054 0.8407 0.8030 0.8934
9 0.8686 0.9393 0.9162 0.9271 0.7398 0.8471 0.8286 0.8886
10 0.8603 0.9363 0.9285 0.9205 0.6995 0.8504 0.7982 0.8871

Table 6: Model-seen accuracies for best-performing XGBoost model

Train Set

Split MelGAN MelGAN-L MB-MelGAN FB-MelGAN PWG HiFi-GAN
Wave
Glow

1 1446 1489 1520 1439 1453 1469 1446
2 1494 1438 1480 1480 1404 1444 1522
3 1459 1470 1492 1488 1494 1382 1476
4 1465 1484 1460 1461 1428 1489 1474
5 1463 1441 1520 1412 1450 1507 1469
6 1461 1489 1479 1511 1417 1451 1454
7 1529 1548 1439 1371 1469 1412 1493
8 1447 1365 1483 1541 1467 1512 1446
9 1447 1427 1545 1486 1494 1445 1418
10 1443 1528 1459 1464 1453 1509 1406

Test Set

Split MelGAN MelGAN-L MB-MelGAN FB-MelGAN PWG HiFi-GAN
Wave
Glow

1 354 354 376 370 387 387 337
2 349 366 376 368 355 362 389
3 365 364 402 349 353 384 349
4 365 334 378 369 393 367 360
5 369 407 348 362 360 365 354
6 348 379 357 382 373 373 353
7 346 386 392 381 376 363 322
8 361 361 347 357 388 392 360
9 367 388 361 377 352 358 362
10 362 382 337 366 363 373 382

Table 7: Model-seen DeepFake model distribution of transformer method

Split Total Acc. MelGAN MelGAN Large MB-MelGAN FB-MelGAN PWG HiFi-GAN WaveGlow
1 0.9832 0.9958 0.9944 1.0000 0.9649 0.9961 0.9393 0.9955
2 0.9827 0.9928 0.9959 1.0000 0.9552 0.9915 0.9475 0.9949
3 0.9866 0.9986 0.9959 0.9975 0.9742 0.9972 0.9557 0.9871
4 0.9846 0.9973 0.9985 0.9987 0.9715 0.9962 0.9387 0.9917
5 0.9887 0.9973 0.9939 0.9986 0.9793 0.9972 0.9603 0.9944
6 0.9869 0.9971 0.9934 0.9972 0.9751 0.9960 0.9531 0.9986
7 0.9867 0.9957 0.9922 0.9987 0.9738 0.9973 0.9559 0.9938
8 0.9819 0.9958 0.9958 0.9986 0.9524 0.9961 0.9439 0.9930
9 0.9844 0.9946 0.9961 1.0000 0.9708 0.9901 0.9455 0.9931
10 0.9866 0.9945 0.9948 0.9985 0.9699 0.9945 0.9558 0.9987

Table 8: Model-seen accuracies for wav2vec2
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