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1. Introduction 
Neural modelling has been around for several decades, and has many different applications 

in many different fields. One of those fields is linguistics. Within linguistics, neural modelling 

can be used for several different things. In this thesis, neural modelling will be used to simulate 

an impairment in word-retrieval in people with aphasia and the effects the therapy those people 

received has on their impairment.  

Aphasia is a language disorder that can impact several areas of speech, both in 

comprehending and in producing speech. It is usually acquired as a consequence of brain 

damage, after, for example, a stroke, but it can also be part of a neurodegenerative disease like 

Alzheimer’s Disease. 

Modelling a word-retrieval impairment in people with aphasia has been attempted before 

by Grasemann et al. (2021), who created the BiLex model to simulate the effect of treatment 

on lexical access in bilingual people suffering from aphasia. 

To do this, they first created a model that could simulate pre-stroke lexical access in each of 

the participants, taking into account their age and language exposure to each of their two 

languages. Their model is based on Self-Organising Maps (SOMs), with one corresponding to 

the semantic system, which is shared between the two languages, and two corresponding to the 

two phonetic systems of the participants’ languages. The maps were connected via bidirectional 

associative connections, and the weights between those connections were based on language 

dominance. Not all neurons on one layer were connected to all neurons on the next layer. 

Grasemann et al. (2021) does not explain which neurons are connected and which are not, but 

it may be assumed that the neurons that are connected are located near each other.  A 

visualisation of the model can be seen below. 

 

 
Figure 1: a visual representation of Grasemann et al. (2021)’s model 

 

A SOM algorithm was used to train both languages, but only one language at a time, by 

training one of the two phonetic maps, namely the one belonging to the language being trained, 

and the shared semantic map together. The weights were adapted through Hebbian learning. 

This pre-stroke simulating model was trained until its scores matched those of the participant 

pre-stroke. The model takes a semantic representation of a word as input, and then transfers it 

from the semantic map to one of the phonetic maps. The output was interpreted as correct if 

the most highly activated phonetic unit matched the input word. Next, to simulate the effect of 

the stroke on word retrieval, circular areas containing neurons and their connections were 

removed from all maps, and after that further damage was done to the semantic map until it 

matched the patient’s PAPT score. The PAPT (pyramids and palm trees test) is a metric used to 

evaluate semantic processing regardless of language, and is administered by giving the 

participant one word, and then presenting them with two options to choose between, with both 

options representing a similar concept to the presented word. The participants then have to pick 
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the option that is more similar to the presented word. However, when modelling the patient’s 

PAPT score in the model, the model did not develop a lexical impairment large enough to match 

the patient’s, so further damage was done to the two phonetic maps until the lexical impairment 

in the model was sufficient for both languages. Finally, to simulate the effect of the treatment, 

a retraining cycle was developed, which attempted to mirror the actual treatment protocol the 

patients underwent. Firstly, thirty words were selected at random from a corpus containing 

concrete nouns. Those nouns were then used to retrain the semantic map. Afterwards, to 

simulate the exposure to the target words in the treated language, the phonetic map of the 

treated language and the semantic map were retrained, along with the connections between 

them. Lastly, the model was given the opportunity to recover the correct associations in the 

untreated language. This was done by transferring the activation from the phonetic map of the 

treated language to the phonetic map of the untreated language through the connections 

between the two phonetic maps, which could then be used to retrain the connections between 

the phonetic map of the untreated language and the semantic map. Furthermore, the activations 

from the semantic map were also transferred to the phonetic map of the untreated language 

through the connections between the semantic map and the phonetic map of the untreated 

language, which could then be used to retrain the connections between the phonetic map of the 

untreated language and the phonetic map of the treated language. Every time the patient 

attended a therapy session, this cycle was used to retrain the model. After every therapy session, 

and thus cycle, the model was tested in both languages, and the results were compared to those 

of the patients. The model was also trained to account for exposure to language in between 

therapy sessions. Six parameters were found using an Evolutionary Algorithm and used to 

determine learning rates and conditions for how the untreated language was retrained. 

The results of this study showed that this model can model aphasia and therapy outcomes 

in English-Spanish bilinguals fairly well, especially in the treated language. The modelling of 

the untreated language also showed some success, but to a lesser extent. 

Boersma et al. (2022) uses a different model, in which they model a small, invented 

language. Their model uses three levels: an auditory-phonetic level, a morphology/meaning 

level and an emergent phonological level in between those two. The auditory-phonetic level is 

represented by basilar membrane frequencies on which representations of the F1 and F2 of 

certain sounds can be mapped, which can be seen on the bottom left side of Figure 2. So, one 

utterance, which is, in their case, a vowel, causes two Gaussian bumps on the membrane. In 

the model, each of the used morphemes has its own node on the bottom layer, as can be seen 

on the bottom right side of Figure 2. If the input is a sound, represented on the basilar 

membrane, the expected output is the representation of the associated morpheme on the 

morpheme level. If the input is a meaning, represented by a morpheme, the expected output is 

the associated sound, represented on the basilar membrane. The middle layer of nodes, which 

represent the emergent phonological level, consists of an arbitrary number of nodes, which are 

linked to the input with weights determined during the training of the model. The top layer of 

nodes also consists of an arbitrary number of nodes, which are connected to the middle layer. 

Thus, the model works from the input layer, to the middle layer, to the top layer, back to the 

middle layer and then back to the bottom layer to provide an output. A visualisation of the 

model can be seen below. 
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Figure 2: a representation of Boersma et al. (2022)’s model 

 

To start training this model, all of the biases and weights are set to zero. Throughout the 

model, all connections need to be symmetric. This means that the influence node 1 has on node 

2 is the same as the influence node 2 has on node 1. The training of the model consists of four 

phases per sound/word. First, the initial settling phase, in which the activities that were just 

applied spread to the next layers of the model, but the input layer remains unchanged. Next, 

there is the Hebbian learning phase, in which the weights and biases are adapted according to 

the ‘neurons that fire together, wire together’ principle. Thirdly, there is the dreaming phase, in 

which the input layer can now change, and the activities are not constant anymore. Lastly, the 

anti-Hebbian learning phase takes place, in which some of the knowledge, that already existed, 

is deleted. These four phases are repeated for new pairs of sounds and meanings until the model 

contains as much existing knowledge as new knowledge, meaning the model is properly 

trained. 

This thesis will simulate the effects of aphasia, as presented in Graseman et al. (2021), but 

with the model presented in Boersma et al. (2022). 

In the following section, the model structure, the data and the training and testing procedure 

will be described. After that, the results section will describe the outcomes of the presented 

model. Lastly, the discussion will discuss this model and the outcomes, and conclude this paper. 
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2. Method 

2.1 The model1 
The model is made up of three layers of nodes. The number of nodes on the bottom layer is 

determined by the number of phonetic and semantic features the input words have as per 

Grasemann et al. (2021), which in this case is 544. 144 of those are for the phonetic features, 

and the other 400 are for the semantic features. The bottom layer also functions as the output 

layer; if the given input is phonetic, and thus only covers the phonetic nodes, the semantic 

nodes will function as the output layer, and if only semantic input is given, which only covers 

the semantic nodes, the phonetic nodes will function as the output layer. The middle and top 

layer have a semi-arbitrary number of nodes, in this case 500 nodes on the middle layer and 

465 on the top layer. All nodes are connected to all nodes on adjacent layers through 

connections with weights, which are bidirectional; they perform the same actions no matter 

which direction the activity goes. A visual representation of the model can be seen below. 

 

 
Figure 3: a representation of the model used here. The nodes on the bottom layer are 

signified by their blue colour, those on the middle layer by their green colour, and those on the 

top layer by their pink colour. Not all nodes are visualised here due to there being too many 

nodes to visualise properly and in a clear manner. 

 

This model’s algorithm is the same as in Boersma et al. (2022), and has already been 

described briefly in the introduction. Here, a more thorough explanation is provided.  

In its initial state, all the model’s activations, weights and biases are zero. When the first 

input, which can be a phonetic sequence, a semantic sequence, or a combination of both, is 

applied, this changes. The activities spread from the bottom layer to the middle layer, adapting 

the excitation accordingly. This is done by multiplying the excitation of each node with the 

weight placed on the connection that connects that node to the adjacent layer, and adding up 

the bias of that node and the sum of those multiplications, after which a logistic function is 

applied. Because the middle layer is connected to two layers, namely the bottom and the top 

 
1 The code for this model can be found on https://github.com/ameliejcr/thesis 

 

                  

              

            

https://github.com/ameliejcr/thesis


 6 

layer, both the sum of the multiplications for the nodes on the bottom layer and the sum of the 

multiplications for the nodes on the top layer will be added up with the bias to become the 

activation of the nodes on the middle layer, after applying the logistic function. Then, the 

activities are spread from the middle layer to the top layer in the same way. Even though this 

step spreads to the middle and top layer, no spreading to the bottom layer takes place here, this 

will happen in the dreaming phase. After having repeated the spreading to the middle and top 

layer ten times, the first phase, the initial settling phase, is complete. This phase is also 

expressed in the formulas below, which are cited from Boersma et al. (2022). 

 

𝑦𝑙  ←  𝜎 (𝑏𝑙 + ∑ 𝑥𝑘𝑢𝑘𝑙

𝐾

𝑘=1

+  ∑ 𝑣𝑙𝑚𝑧𝑚

𝑀

𝑚=1

) 

 

Formula 1: the logistic function  is applied to the sum of the bias of middle node l (bl), the 

sum of, for all nodes on the bottom layer, the activities of bottom node k (xk) multiplied by the 

weight ukl, which goes from bottom node k to middle node l, and the sum of, for all nodes on 

the top layer, the activities of top node m (zm) multiplied by the weight vlm, which goes from the 

middle node l to the top node m. This becomes the activation of node yl on the middle layer. 

 

𝜎(𝑥) ≔ 1/(1 + exp −𝑥) 

 

Formula 2: the logistic function used in Formulas 1, 3, 10 and 11 

 

𝑧𝑚  ←  𝜎 (𝑐𝑚 +  ∑ 𝑦𝑙𝑣𝑙𝑚

𝐿

𝑙=1

) 

 

Formula 3: the logistic function   is applied to sum of the bias of node m (cm) and the sum 

of, for all nodes on the middle layer, the activities of middle node l (yl) multiplied by the weight 

vlm between middle node l and top node m. This becomes the activation of node zm on the top 

layer. 

 

 

In the second phase, a Hebbian learning rule is applied. Hebbian learning states that neurons 

that fire together, wire together. This is implemented by changing all of the biases of all the 

nodes and all of the weights between all three layers. The new biases are computed by adding 

the current bias to a multiplication of the learning rate, which is 0.001 in this case, and the 

excitation of the node in question. The new weights are computed by adding the current weight 

to the multiplication of the learning rate times the activity of the connecting node on one side 

of the connection of the weight times the activity of the node on the other side of the connection 

of the weight. This phase is visualized in the following formulas, cited from Boersma et al. 

(2022): 

 

𝑎𝑘  ←  𝑎𝑘 +  𝜂𝑥𝑘 

 

Formula 4: the bias of node k on the bottom layer (ak) becomes the old bias, plus the learning 

rate , which in this case is 0.001, multiplied by the activation of bottom node k 

 

𝑏𝑙  ←  𝑏𝑙 +  𝜂𝑦𝑙 
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Formula 5: the bias of node l on the middle layer (bl) becomes the old bias, plus the learning 

rate multiplied by the activation of middle node l 

 

𝑐𝑚  ←  𝑐𝑚 +  𝜂𝑧𝑚 

 

Formula 6: the bias of node m on the top layer (cm) becomes the old bias, plus the learning 

rate multiplied by the activation of top node m 

 

𝑢𝑘𝑙  ←  𝑢𝑘𝑙 +  𝜂𝑥𝑘𝑦𝑙 

 

Formula 7: the weight between bottom node k and middle node l becomes the previous 

weight plus the learning rate multiplied by the activation of bottom node k and the activation 

of middle node l 

 

𝑣𝑙𝑚  ←  𝑣𝑙𝑚 +  𝜂𝑦𝑙𝑧𝑚 

 

Formula 8: the weight between middle node l and top node m becomes the previous weight 

plus the learning rate multiplied by the activation of middle node l and the activation of top 

node m 

 

 

In the dreaming phase, the bottom layer receives activities that are spread from the middle 

layer, though a formula similar to the one used in the initial settling phase, minus the logistic 

function. To the middle and top layers, a Bernoulli distribution is applied to Formula 1 and 

Formula 3, both with the logistic function. Those distributions will return a probability in the 

form of a number between zero and one for each node on both layers. Per node, the probability 

will be compared to a randomly generated number between zero and one, and if the randomly 

generated number is equal to or higher than the probability, the excitation of the node becomes 

zero.  Otherwise, it becomes one. This phase is also repeated ten times. This phase can also be 

found in the formulas below, cited from Boersma et al. (2022). 

 

𝑥𝑘  ←  𝑎𝑘 +  ∑ 𝑢𝑘𝑙𝑦𝑙

𝐿

𝑙=1

 

 

Formula 9: the bias of bottom node k is added to the sum of, for all nodes on the middle 

layer, the activities of middle node l multiplied by the weight ukl between bottom node k and 

middle node l. This becomes the activation of node k on the bottom layer. 

 

𝑧𝑚 ~ ℬ (𝜎 (𝑐𝑚 +  ∑ 𝑦𝑙𝑣𝑙𝑚

𝐿

𝑙=1

)) 

 

Formula 10: the Bernoulli distribution is applied to Formula 3 to generate the new activity 

for top node m 

 

𝑦𝑙 ~ ℬ (𝜎 (𝑏𝑙 + ∑ 𝑥𝑘𝑢𝑘𝑙

𝐾

𝑘=1

+  ∑ 𝑣𝑙𝑚𝑧𝑚

𝑀

𝑚=1

)) 
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Formula 11: the Bernoulli distribution is applied to Formula 2 to generate the new activity 

for middle node l 

 

Lastly, the anti-Hebbian learning phase reverses the Hebbian learning phase, by subtracting 

the learning rate times the excitation from the bias to form the new bias, and subtracting the 

learning rate times the activity of the node on one end of the connection times the activity of 

the node on the other end of the connection from the weight to form the new weight. This phase 

is also expressed in formulas cited from Boersma et al. (2022), which can be seen below. 

 

𝑎𝑘  ←  𝑎𝑘 −  𝜂𝑥𝑘 

 

Formula 12: the bias of node k on the bottom layer (ak) becomes the old bias, minus the 

learning rate  multiplied by the activation of bottom node k 

 

𝑏𝑙  ←  𝑏𝑙 −  𝜂𝑦𝑙 

 

Formula 13: the bias of node l on the middle layer (bl) becomes the old bias, minus the 

learning rate multiplied by the activation of middle node l 

 

𝑐𝑚  ←  𝑐𝑚 −  𝜂𝑧𝑚 

 

Formula 14: the bias of node m on the top layer (cm) becomes the old bias, minus the 

learning rate multiplied by the activation of top node m 

 

𝑢𝑘𝑙  ←  𝑢𝑘𝑙 −  𝜂𝑥𝑘𝑦𝑙 

 

Formula 15: the weight between bottom node k and middle node l becomes the previous 

weight minus the learning rate multiplied by the activation of bottom node k and the activation 

of middle node l 

 

𝑣𝑙𝑚  ←  𝑣𝑙𝑚 −  𝜂𝑦𝑙𝑧𝑚 

 

Formula 16: the weight between middle node l and top node m becomes the previous weight 

minus the learning rate multiplied by the activation of middle node l and the activation of top 

node m 

 

 

For mimicking the effect of aphasia, a method was designed in which a number between 

zero and one, which can be multiplied by 100 to create a percentage, could be entered. The 

percentage pertains to how many percent of all nodes are to be removed, along with all their 

connections. All of the nodes that are to be deleted are selected randomly, by having each node 

generate a random number between zero and one, and comparing that to the decimal. If the 

randomly generated number is lower or equal to the percentage, that node and its connections 

will be removed. 

A much smaller instance of this model was later created for the purpose of being able to go 

through all the phases faster than the model described above, so all phases could be run through 

10,000 times, since that is how Boersma et al. (2022) train their model, for it to be in a 

moderately advanced state. This model has twenty nodes on the bottom layer, ten on the middle 
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layer, and five on the top layer. The bottom nodes are divided into ten nodes for phonetic input, 

and ten for semantic input.  

 

2.2 Data 
The data used to train and test this model consists of two parts. Firstly, there is the data 

containing the encoded words. In total, 638 words were used, and all of them are concrete 

nouns. Each one of those words has a phonetic encoding and a semantic encoding. For the 

phonetic encoding, the words are divided up into syllables. Those syllables are then divided up 

into onsets, nuclei and codas. Every syllable could have up to two onsets, two nuclei and two 

codas maximum. For every onset and coda, the onset/coda receives a value matching its place, 

manner, whether it is voiced or not and whether it is lateral or not, according to the IPA. Every 

nucleus receives values for how open and front the nucleus is, and whether it is long and/or 

rounded. Those values range from zero to one, with every value matching a quality the sound 

could have. Every word can have up to six syllables. An example of the structure of the phonetic 

data is provided below. 

 
  nucleus coda 

  ope

n 

front long rounde

d 

plac

e 

mann

er 

voice

d 

later

al 

wor

d 

    
    

ant 0 0 0.5 0 0.3 1 1 0 

Table 1: an example of how the phonetic data is structured. Here, only one nucleus and one 

coda are shown, but one syllable can have up to two onsets, two nuclei and two codas. A zero 

for ‘open’ means the vowel is open, a zero for ‘front’ means that the vowel is a front vowel, a 

0.5 for ‘long’ means the vowel is short, and a zero for ‘rounded’ means the vowel is unrounded. 

Regarding the coda, a 0.3 for ‘place’ means signifies the consonant is alveolar, a one for  

‘manner’ indicates the consonant is nasal, a one for ‘voice’ means the consonant is voiced, and 

a zero for ‘lateral’ means the consonant is not lateral. 

 

For the semantic encoding, every word gets assigned a specific value between zero and one 

based on how much a certain quality applies to that word, with zero meaning ‘does not apply 

at all’ and one being ‘applies perfectly’. For example, one of the qualities is ‘small’, and one 

of the words is ‘baby’. The word ‘baby’ gets assigned the value 0.99995000299985 for the 

quality ‘small’, which is high, because most people would view a baby as being small. An 

example of the structure of the semantic data is provided below. 

 
word comm

on 

purchas

ed 

reusab

le 

small Is/are 

different 

sizes 

heav

y 

Is a 

househo

ld item 

accordi

on 

0.0000

1 

0.99997

4 

0.8157

68 

0.000

01 

0.8420

83 

0.000

01 

0.000

01 

Table 2: an example of how the semantic data is structured: how much each of these qualities 

apply to an accordion as an example word. 

 

The second part of the data is how well the patients with aphasia performed on word retrieval 

tests. This data is synthetic, since I was unable to retrieve the patient data used in Grasemann 

et al. (2021). The synthetic data used here consisted of percentages, with the percentages 
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signifying the nodes that are to be deleted, along with all of their connections. The percentages 

used were 20%, 40% and 60%. 

For the smaller model, which was created for the purpose of being able to repeat all four 

phases 10,000 times, a small part of the testing data was used. Ten words were used for training, 

each with the first ten values from both the semantic features and the phonetic features for that 

word. The testing data consisted of another ten words, five of which were used to give the first 

ten values of the phonetic data as input, with the matching semantic data as expected output, 

and the other five were used to test the other way around.  

 

2.3 Training and testing 
To train the model, 608 of the words and their values from Grasemann et al. (2021) were 

used to create a list of tuples, with each tuple containing the values of one word. The other 

thirty words were saved for testing, but were imported from Microsoft Excel into PyCharm, 

the software that was used to create the model, at the same time in the same manner. In the 

training stage, the input was comprised of both the phonetic and the semantic values of the 

words, inputting one word at a time. During the testing stage, half of the words in the ‘testing’ 

list were used to test whether giving only the phonetic values would output the correct semantic 

values, and the other half was used to test whether giving only the semantic values would output 

the correct phonetic values, also inputting one word’s values at a time. The first time the model 

was run, was to see how well the model would perform without the aphasia component, which 

would mean, it the outcomes were correct, it could mimic a human brain. This was done to test 

if the model itself worked correctly before drawing any conclusions based on the aphasia 

component. After that, the aphasia component was added in by deleting, at first, 20% of the 

nodes and all of its connections. Then, the trained model was run again on the testing data to 

see how the node deletion affected the output. The same was done for 40% and 60% node 

deletion. 
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3. Results 
The outcomes of running through all 608 words used for training once and then testing the 

model with 30 words are not very promising. When presenting the model with phonetic input 

only, the model predicted, on average, 1.75% of the semantic nodes correctly. A node’s value 

was seen as ‘correct’ when it differed less than four decimals from what the value was supposed 

to be. When presented with semantic input only, the model predicted 14.81% of the phonetic 

nodes correctly on average. Here, a node was seen as ‘correct’ if the node’s value was the 

closest to the right phonetic encoding. For example, if a node signifies the manner of the sound, 

it could, according to the encoding of the features, potentially have the values 0.0, 0.1, 0.3, 0.5, 

0.8 or 1.0. If the node’s output is 0.4628, its closest match in the list of possible values is 0.5. 

If the node’s output is supposed to be 0.5, the output is seen as ‘correct’.  

When running the model again, but looping through all of the training words twice, the 

phonetic output, generated by inputting semantic values, remained the exact same as when 

looping through the training words once. For the semantic output however, differences were 

found in 13/15 testing words. Since looping through all of the words another time means more 

training, and thus a model that should perform better, it was to be expected that the percentage 

of correct values would rise compared to the run in which the training data was only looped 

through once, but that was not the case. On 8/15 words, the percentage of correct values was 

lower than on the first run. The differences were small, with an average difference of 0.60625%. 

For 5/15 words, the percentage of correct values did rise, with an average of 2.87%. The 

average percentage of correct semantic values is 1.48%, which is lower than the average when 

looping through the training words only once. 

The model was then run another time, this time looping through the training data 28 times. 

This yielded even more peculiar results. Like in the previous run, all of the phonetic output 

values remained the exact same as in the first run. The semantic output, however, did differ. 

For all of the 15 semantic testing words, the percentage of correct values was lower than in the 

initial run. This time, the differences were larger than those observed when comparing looping 

through the training data once and twice; the average difference was 1.18%. The average 

percentage of correct semantic values was 0.45%. An overview of these outcomes and the 

outcomes described above can be found in the table below. 

 

 1x 2x 28x 

% correct 

phonetic values 

14.81 14.81 14.81 

% correct 

semantic values 

1.75 1.48 0.45 

Table 3: an overview of the percentages of correct values for looping through the training 

data a certain amount of times 

 

When including the testing data in the training set, the outcomes do not differ much from 

when the testing words are not included in the training set. The average difference between 

including the testing data in the training set or not is 0.6% for the semantic output. For the 

phonetic output, there was no difference. 

When running the model without any training, the semantic results get noticeably better. On 

average, 95.63% of the semantic outcomes were correct. For the phonetic results, there was, 

once again, no difference. 

The smaller model was used for three runs. In the first, the testing words were looped 

through once. When inputting semantic values only, and thus generating phonetic output 

values, the model got 0.69% of the values correct, for all of the words. When inputting phonetic 

values only, and thus generating semantic output values, it got 0.5% of the values correct for 



 12 

four out of five testing words, and 0.25% for one out of five testing words. This averages out 

to 0.45% for all five semantic testing words. The same criteria for correctness were applied 

here as in the normal model. The model was then run a second time, looping through all of the 

training words 1000 times. The results remained the exact same as when looping through the 

training words once. Then, the model was run once more, looping though the training words 

10,000 times. This also did not yield any new or improved results. A table visualizing these 

results is provided below. 

 

 1x 1000x 10.000x 

% correct 

phonetic values 

0.69 0.69 0.69 

% correct 

semantic values 

0.45 0.45 0.45 

Table 4: an overview of the percentages of correct values for looping through the training 

data a certain amount of times 

 

The model was also run with the aphasia component added in. It was run four times, with 

varying degrees of node deletion. In all of these, the training data was looped through once, 

and is therefore to be compared to the results that that yielded. Firstly, it was run with 20% of 

the nodes deleted. Of the semantic output, only 1.77% of the values were correct. The criteria 

for correctness remained the same as in the other runs. Of the phonetic output, 14.81% of the 

values were correct. These percentages are, remarkably, higher than and the same as those 

without any node deletion, which were 1.75% correct semantic values and 14.81% correct 

phonetic values. 

When deleting 40% of all nodes, the percentage of correct phonetic values remains the same 

as when deleting 20% of all nodes: 14.81%. The percentage of correct semantic values does go 

down, to 1.22%. This is lower than the percentage of correct semantic values when no nodes 

are deleted, as opposed to when 20% of the nodes are deleted. 

With 60% of all nodes deleted, the percentages of correct values are the exact same as when 

40% of all nodes are deleted.  

Lastly, when 80% of all nodes are deleted, the percentage of correct semantic values falls to 

0.8%. The percentage of correct phonetic values still remains 14.81%, as is the case for the 

other runs with a certain percentage of nodes deleted. This also means that the percentage is 

the same as the percentage of correct phonetic values when all nodes remain intact. A table 

displaying all of these percentage is provided below. 

 

 20% 40% 60% 80% 

% correct 

phonetic values 

14.81 14.81 14.81 14.81 

% correct 

semantic 

values 

1.77 1.22 1.22 0.8 

Table 5: an overview of the percentage of correct values for different degrees of node 

deletion 
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4. Discussion 
The results showed that this model does not work as it should. All outcomes, no matter how 

many times the training words have been looped through, are over 85% wrong, except when 

there is no training at all. In all cases, the percentage of phonetic values was higher than the 

percentage of semantic values, once again with the exception of the run where no training took 

place. This can for the most part be explained by the criteria for correctness. For the phonetic 

values, the closest match in the list of possible options is selected as the output of that node, 

after which the value is compared to the expected value for that node. For the semantic values, 

the number is rounded off to four decimals and then compared to the expected value. This 

means that the criteria for the phonetic values are a lot looser than those for the semantic values, 

and it therefore makes sense that the percentage of correct phonetic values is higher than the 

percentage of correct semantic values.  

Another thing that is remarkable about the results is that the percentage of correct phonetic 

values remains the same throughout all runs. If the model were to work properly, those values 

would have changed depending on the percentage of node deletion or how many times the 

training data has been looped through, but that is not the case here. Even at 80% node deletion, 

the percentage remains at 14.81% on average. Currently, there is no explanation for why the 

model behaves in this manner. 

Furthermore, the percentage of correct semantic values under different circumstances is also 

confusing. It would make sense for the percentage to increase with more training, but as shown 

in the results, that is not the case here. When looping through the training data twice, the 

percentage is 0.27% lower than when looping through the training data once. And another 

decrease in the percentage is seen when looping through the data 28 times, but this time the 

percentage drops by 1.03%. An increase in the percentage of correct semantic answers can be 

seen when no training takes place at all, however. The smaller model does not clarify things 

unfortunately. The percentage of correct semantic values remains the exact same throughout 

the three runs, looping through the training data once, 1000 times and 10,000 times. Since the 

percentage of correct phonetic values is also static across the three runs, and both percentages 

are low, it could be due to the model being too small to offer any useful insights. 

Lastly, it is also noticeable how the percentage of correct semantic values is higher when 

20% of the nodes have been deleted than when no nodes are deleted. The difference is small, 

only 0.03%, but it was expected that the percentage would lower when nodes are deleted. This 

might be connected to the fact that without any training, the semantic outcomes are much better 

than with training. For 40%, 60% and 80% node deletion, the percentage does lower to under 

the percentage of correct semantic values without node deletion. The percentage of correct 

semantic values is the same for 40% and 60% node deletion, so the decline is not linear, as 

could be expected, but it does lower again to 0.8% when comparing the percentage for 60% 

node deletion and 80% node deletion, so it does not bottom out at 1.22%.  

The fact that the model did not work as expected could be due to several different reasons, 

or a combination of them. Firstly, it could be due to a lack of data. In Boersma et al. (2021), 

the model was run with 10,000 new sounds, meanings or pairings. The data used in here 

contains only 630 words, which is significantly less than 10,000.  

Another reason could be that this model has not been run with 10,000 training words, which 

would mean looping through the same words multiple times. This is because of time 

constraints, but it could have important consequences for the outcomes. This is, however, less 

likely than the explanation above, since the smaller model showed no difference between 

running the model once or running the model 10,000 times. This could, however, also be due 

to the scale of the smaller model. 

Thirdly, there could be a mistake in the implementation of the model that was missed during 

the construction and several rounds of debugging of the model. 
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Because the model does not work as expected, it is very difficult to judge its ability to model 

aphasia. For the results that were gathered regarding aphasia, it can be said that, since the 

performance of the model did worsen, at least partly, it does have some capability of modelling 

word retrieval issues. However, only the percentage of correct semantic values was affected by 

the node deletion, and even that showed unexpected results, with the percentage for 20% node 

deletion being higher than no node deletion, and the percentage remaining the same for 60% 

node deletion and 80% node deletion. 

In future research, after getting the model to work for this purpose and testing it with real 

patient data, it could be adapted to model recovery from aphasia over time, like Grasemann et 

al. (2021) attempts to do. Other applications for future research could include adapting it for 

bilingualism, which was also done in Grasemann et al. (2021), and comparing it to monolingual 

usage. In the future this model could also perhaps be used to model other aspects of aphasia, 

such as deficits in grammar or pronunciation. Firstly, however, it should be looked into why 

this model does not function as it should in its current state and how it can be adjusted so it can 

work as it should. There were several things that could have been done in this research to try 

to get better results, like changing the correctness criterium for the semantic output from having 

to match the correct answer up to four decimals to having to match the correct answer up to 

one decimal, but that was not possible because of time restraints. 

In conclusion, the model this paper presents does not work in its current state. When testing 

the model, it did not get a lot of the expected phonetic values correct (< 15% on average per 

word), and even less of the semantic values (<2% on average per word, not counting the run 

where no training took place). Looping through the training data multiple times does not 

improve the performance of the model, it either worsens (as is the case for the semantic values) 

or it remains the same (as is the case for the phonetic values). The performance of the model 

only increases significantly when no training takes place, but only for the semantic outcomes. 

The smaller model did not yield any useful insights, which might be due to the scale of the 

model. The aphasia aspect also does not work as it should. It does lessen the percentage of 

correct responses for the semantic values, but the phonetic values remain the same throughout, 

no matter the percentage of nodes deleted. The percentage of correct semantic values when 

20% of the nodes are deleted is, unexpectantly, higher than when no nodes are deleted. The fact 

that the model does not work could be explained by a lack of data, not running through the data 

enough, or a mistake in the model itself. In the future, it could be investigated how to get this 

model to work properly. 
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