
 1

Modelling word retrieval issues in

aphasic patients in a neural network

by

Amélie J. Croshere

BA thesis Linguistics

University of Amsterdam

Supervised by Paul Boersma

July 2024

 2

1. Introduction
Neural modelling has been around for several decades, and has many different applications

in many different fields. One of those fields is linguistics. Within linguistics, neural modelling

can be used for several different things. In this thesis, neural modelling will be used to simulate

an impairment in word-retrieval in people with aphasia and the effects the therapy those people

received has on their impairment.

Aphasia is a language disorder that can impact several areas of speech, both in

comprehending and in producing speech. It is usually acquired as a consequence of brain

damage, after, for example, a stroke, but it can also be part of a neurodegenerative disease like

Alzheimer’s Disease.

Modelling a word-retrieval impairment in people with aphasia has been attempted before

by Grasemann et al. (2021), who created the BiLex model to simulate the effect of treatment

on lexical access in bilingual people suffering from aphasia.

To do this, they first created a model that could simulate pre-stroke lexical access in each of

the participants, taking into account their age and language exposure to each of their two

languages. Their model is based on Self-Organising Maps (SOMs), with one corresponding to

the semantic system, which is shared between the two languages, and two corresponding to the

two phonetic systems of the participants’ languages. The maps were connected via bidirectional

associative connections, and the weights between those connections were based on language

dominance. Not all neurons on one layer were connected to all neurons on the next layer.

Grasemann et al. (2021) does not explain which neurons are connected and which are not, but

it may be assumed that the neurons that are connected are located near each other. A

visualisation of the model can be seen below.

Figure 1: a visual representation of Grasemann et al. (2021)’s model

A SOM algorithm was used to train both languages, but only one language at a time, by

training one of the two phonetic maps, namely the one belonging to the language being trained,

and the shared semantic map together. The weights were adapted through Hebbian learning.

This pre-stroke simulating model was trained until its scores matched those of the participant

pre-stroke. The model takes a semantic representation of a word as input, and then transfers it

from the semantic map to one of the phonetic maps. The output was interpreted as correct if

the most highly activated phonetic unit matched the input word. Next, to simulate the effect of

the stroke on word retrieval, circular areas containing neurons and their connections were

removed from all maps, and after that further damage was done to the semantic map until it

matched the patient’s PAPT score. The PAPT (pyramids and palm trees test) is a metric used to

evaluate semantic processing regardless of language, and is administered by giving the

participant one word, and then presenting them with two options to choose between, with both

options representing a similar concept to the presented word. The participants then have to pick

 3

the option that is more similar to the presented word. However, when modelling the patient’s

PAPT score in the model, the model did not develop a lexical impairment large enough to match

the patient’s, so further damage was done to the two phonetic maps until the lexical impairment

in the model was sufficient for both languages. Finally, to simulate the effect of the treatment,

a retraining cycle was developed, which attempted to mirror the actual treatment protocol the

patients underwent. Firstly, thirty words were selected at random from a corpus containing

concrete nouns. Those nouns were then used to retrain the semantic map. Afterwards, to

simulate the exposure to the target words in the treated language, the phonetic map of the

treated language and the semantic map were retrained, along with the connections between

them. Lastly, the model was given the opportunity to recover the correct associations in the

untreated language. This was done by transferring the activation from the phonetic map of the

treated language to the phonetic map of the untreated language through the connections

between the two phonetic maps, which could then be used to retrain the connections between

the phonetic map of the untreated language and the semantic map. Furthermore, the activations

from the semantic map were also transferred to the phonetic map of the untreated language

through the connections between the semantic map and the phonetic map of the untreated

language, which could then be used to retrain the connections between the phonetic map of the

untreated language and the phonetic map of the treated language. Every time the patient

attended a therapy session, this cycle was used to retrain the model. After every therapy session,

and thus cycle, the model was tested in both languages, and the results were compared to those

of the patients. The model was also trained to account for exposure to language in between

therapy sessions. Six parameters were found using an Evolutionary Algorithm and used to

determine learning rates and conditions for how the untreated language was retrained.

The results of this study showed that this model can model aphasia and therapy outcomes

in English-Spanish bilinguals fairly well, especially in the treated language. The modelling of

the untreated language also showed some success, but to a lesser extent.

Boersma et al. (2022) uses a different model, in which they model a small, invented

language. Their model uses three levels: an auditory-phonetic level, a morphology/meaning

level and an emergent phonological level in between those two. The auditory-phonetic level is

represented by basilar membrane frequencies on which representations of the F1 and F2 of

certain sounds can be mapped, which can be seen on the bottom left side of Figure 2. So, one

utterance, which is, in their case, a vowel, causes two Gaussian bumps on the membrane. In

the model, each of the used morphemes has its own node on the bottom layer, as can be seen

on the bottom right side of Figure 2. If the input is a sound, represented on the basilar

membrane, the expected output is the representation of the associated morpheme on the

morpheme level. If the input is a meaning, represented by a morpheme, the expected output is

the associated sound, represented on the basilar membrane. The middle layer of nodes, which

represent the emergent phonological level, consists of an arbitrary number of nodes, which are

linked to the input with weights determined during the training of the model. The top layer of

nodes also consists of an arbitrary number of nodes, which are connected to the middle layer.

Thus, the model works from the input layer, to the middle layer, to the top layer, back to the

middle layer and then back to the bottom layer to provide an output. A visualisation of the

model can be seen below.

 4

Figure 2: a representation of Boersma et al. (2022)’s model

To start training this model, all of the biases and weights are set to zero. Throughout the

model, all connections need to be symmetric. This means that the influence node 1 has on node

2 is the same as the influence node 2 has on node 1. The training of the model consists of four

phases per sound/word. First, the initial settling phase, in which the activities that were just

applied spread to the next layers of the model, but the input layer remains unchanged. Next,

there is the Hebbian learning phase, in which the weights and biases are adapted according to

the ‘neurons that fire together, wire together’ principle. Thirdly, there is the dreaming phase, in

which the input layer can now change, and the activities are not constant anymore. Lastly, the

anti-Hebbian learning phase takes place, in which some of the knowledge, that already existed,

is deleted. These four phases are repeated for new pairs of sounds and meanings until the model

contains as much existing knowledge as new knowledge, meaning the model is properly

trained.

This thesis will simulate the effects of aphasia, as presented in Graseman et al. (2021), but

with the model presented in Boersma et al. (2022).

In the following section, the model structure, the data and the training and testing procedure

will be described. After that, the results section will describe the outcomes of the presented

model. Lastly, the discussion will discuss this model and the outcomes, and conclude this paper.

 5

2. Method

2.1 The model1
The model is made up of three layers of nodes. The number of nodes on the bottom layer is

determined by the number of phonetic and semantic features the input words have as per

Grasemann et al. (2021), which in this case is 544. 144 of those are for the phonetic features,

and the other 400 are for the semantic features. The bottom layer also functions as the output

layer; if the given input is phonetic, and thus only covers the phonetic nodes, the semantic

nodes will function as the output layer, and if only semantic input is given, which only covers

the semantic nodes, the phonetic nodes will function as the output layer. The middle and top

layer have a semi-arbitrary number of nodes, in this case 500 nodes on the middle layer and

465 on the top layer. All nodes are connected to all nodes on adjacent layers through

connections with weights, which are bidirectional; they perform the same actions no matter

which direction the activity goes. A visual representation of the model can be seen below.

Figure 3: a representation of the model used here. The nodes on the bottom layer are

signified by their blue colour, those on the middle layer by their green colour, and those on the

top layer by their pink colour. Not all nodes are visualised here due to there being too many

nodes to visualise properly and in a clear manner.

This model’s algorithm is the same as in Boersma et al. (2022), and has already been

described briefly in the introduction. Here, a more thorough explanation is provided.

In its initial state, all the model’s activations, weights and biases are zero. When the first

input, which can be a phonetic sequence, a semantic sequence, or a combination of both, is

applied, this changes. The activities spread from the bottom layer to the middle layer, adapting

the excitation accordingly. This is done by multiplying the excitation of each node with the

weight placed on the connection that connects that node to the adjacent layer, and adding up

the bias of that node and the sum of those multiplications, after which a logistic function is

applied. Because the middle layer is connected to two layers, namely the bottom and the top

1 The code for this model can be found on https://github.com/ameliejcr/thesis

https://github.com/ameliejcr/thesis

 6

layer, both the sum of the multiplications for the nodes on the bottom layer and the sum of the

multiplications for the nodes on the top layer will be added up with the bias to become the

activation of the nodes on the middle layer, after applying the logistic function. Then, the

activities are spread from the middle layer to the top layer in the same way. Even though this

step spreads to the middle and top layer, no spreading to the bottom layer takes place here, this

will happen in the dreaming phase. After having repeated the spreading to the middle and top

layer ten times, the first phase, the initial settling phase, is complete. This phase is also

expressed in the formulas below, which are cited from Boersma et al. (2022).

𝑦𝑙 ← 𝜎 (𝑏𝑙 + ∑ 𝑥𝑘𝑢𝑘𝑙

𝐾

𝑘=1

+ ∑ 𝑣𝑙𝑚𝑧𝑚

𝑀

𝑚=1

)

Formula 1: the logistic function  is applied to the sum of the bias of middle node l (bl), the

sum of, for all nodes on the bottom layer, the activities of bottom node k (xk) multiplied by the

weight ukl, which goes from bottom node k to middle node l, and the sum of, for all nodes on

the top layer, the activities of top node m (zm) multiplied by the weight vlm, which goes from the

middle node l to the top node m. This becomes the activation of node yl on the middle layer.

𝜎(𝑥) ≔ 1/(1 + exp −𝑥)

Formula 2: the logistic function used in Formulas 1, 3, 10 and 11

𝑧𝑚 ← 𝜎 (𝑐𝑚 + ∑ 𝑦𝑙𝑣𝑙𝑚

𝐿

𝑙=1

)

Formula 3: the logistic function  is applied to sum of the bias of node m (cm) and the sum

of, for all nodes on the middle layer, the activities of middle node l (yl) multiplied by the weight

vlm between middle node l and top node m. This becomes the activation of node zm on the top

layer.

In the second phase, a Hebbian learning rule is applied. Hebbian learning states that neurons

that fire together, wire together. This is implemented by changing all of the biases of all the

nodes and all of the weights between all three layers. The new biases are computed by adding

the current bias to a multiplication of the learning rate, which is 0.001 in this case, and the

excitation of the node in question. The new weights are computed by adding the current weight

to the multiplication of the learning rate times the activity of the connecting node on one side

of the connection of the weight times the activity of the node on the other side of the connection

of the weight. This phase is visualized in the following formulas, cited from Boersma et al.

(2022):

𝑎𝑘 ← 𝑎𝑘 + 𝜂𝑥𝑘

Formula 4: the bias of node k on the bottom layer (ak) becomes the old bias, plus the learning

rate , which in this case is 0.001, multiplied by the activation of bottom node k

𝑏𝑙 ← 𝑏𝑙 + 𝜂𝑦𝑙

 7

Formula 5: the bias of node l on the middle layer (bl) becomes the old bias, plus the learning

rate multiplied by the activation of middle node l

𝑐𝑚 ← 𝑐𝑚 + 𝜂𝑧𝑚

Formula 6: the bias of node m on the top layer (cm) becomes the old bias, plus the learning

rate multiplied by the activation of top node m

𝑢𝑘𝑙 ← 𝑢𝑘𝑙 + 𝜂𝑥𝑘𝑦𝑙

Formula 7: the weight between bottom node k and middle node l becomes the previous

weight plus the learning rate multiplied by the activation of bottom node k and the activation

of middle node l

𝑣𝑙𝑚 ← 𝑣𝑙𝑚 + 𝜂𝑦𝑙𝑧𝑚

Formula 8: the weight between middle node l and top node m becomes the previous weight

plus the learning rate multiplied by the activation of middle node l and the activation of top

node m

In the dreaming phase, the bottom layer receives activities that are spread from the middle

layer, though a formula similar to the one used in the initial settling phase, minus the logistic

function. To the middle and top layers, a Bernoulli distribution is applied to Formula 1 and

Formula 3, both with the logistic function. Those distributions will return a probability in the

form of a number between zero and one for each node on both layers. Per node, the probability

will be compared to a randomly generated number between zero and one, and if the randomly

generated number is equal to or higher than the probability, the excitation of the node becomes

zero. Otherwise, it becomes one. This phase is also repeated ten times. This phase can also be

found in the formulas below, cited from Boersma et al. (2022).

𝑥𝑘 ← 𝑎𝑘 + ∑ 𝑢𝑘𝑙𝑦𝑙

𝐿

𝑙=1

Formula 9: the bias of bottom node k is added to the sum of, for all nodes on the middle

layer, the activities of middle node l multiplied by the weight ukl between bottom node k and

middle node l. This becomes the activation of node k on the bottom layer.

𝑧𝑚 ~ ℬ (𝜎 (𝑐𝑚 + ∑ 𝑦𝑙𝑣𝑙𝑚

𝐿

𝑙=1

))

Formula 10: the Bernoulli distribution is applied to Formula 3 to generate the new activity

for top node m

𝑦𝑙 ~ ℬ (𝜎 (𝑏𝑙 + ∑ 𝑥𝑘𝑢𝑘𝑙

𝐾

𝑘=1

+ ∑ 𝑣𝑙𝑚𝑧𝑚

𝑀

𝑚=1

))

 8

Formula 11: the Bernoulli distribution is applied to Formula 2 to generate the new activity

for middle node l

Lastly, the anti-Hebbian learning phase reverses the Hebbian learning phase, by subtracting

the learning rate times the excitation from the bias to form the new bias, and subtracting the

learning rate times the activity of the node on one end of the connection times the activity of

the node on the other end of the connection from the weight to form the new weight. This phase

is also expressed in formulas cited from Boersma et al. (2022), which can be seen below.

𝑎𝑘 ← 𝑎𝑘 − 𝜂𝑥𝑘

Formula 12: the bias of node k on the bottom layer (ak) becomes the old bias, minus the

learning rate  multiplied by the activation of bottom node k

𝑏𝑙 ← 𝑏𝑙 − 𝜂𝑦𝑙

Formula 13: the bias of node l on the middle layer (bl) becomes the old bias, minus the

learning rate multiplied by the activation of middle node l

𝑐𝑚 ← 𝑐𝑚 − 𝜂𝑧𝑚

Formula 14: the bias of node m on the top layer (cm) becomes the old bias, minus the

learning rate multiplied by the activation of top node m

𝑢𝑘𝑙 ← 𝑢𝑘𝑙 − 𝜂𝑥𝑘𝑦𝑙

Formula 15: the weight between bottom node k and middle node l becomes the previous

weight minus the learning rate multiplied by the activation of bottom node k and the activation

of middle node l

𝑣𝑙𝑚 ← 𝑣𝑙𝑚 − 𝜂𝑦𝑙𝑧𝑚

Formula 16: the weight between middle node l and top node m becomes the previous weight

minus the learning rate multiplied by the activation of middle node l and the activation of top

node m

For mimicking the effect of aphasia, a method was designed in which a number between

zero and one, which can be multiplied by 100 to create a percentage, could be entered. The

percentage pertains to how many percent of all nodes are to be removed, along with all their

connections. All of the nodes that are to be deleted are selected randomly, by having each node

generate a random number between zero and one, and comparing that to the decimal. If the

randomly generated number is lower or equal to the percentage, that node and its connections

will be removed.

A much smaller instance of this model was later created for the purpose of being able to go

through all the phases faster than the model described above, so all phases could be run through

10,000 times, since that is how Boersma et al. (2022) train their model, for it to be in a

moderately advanced state. This model has twenty nodes on the bottom layer, ten on the middle

 9

layer, and five on the top layer. The bottom nodes are divided into ten nodes for phonetic input,

and ten for semantic input.

2.2 Data
The data used to train and test this model consists of two parts. Firstly, there is the data

containing the encoded words. In total, 638 words were used, and all of them are concrete

nouns. Each one of those words has a phonetic encoding and a semantic encoding. For the

phonetic encoding, the words are divided up into syllables. Those syllables are then divided up

into onsets, nuclei and codas. Every syllable could have up to two onsets, two nuclei and two

codas maximum. For every onset and coda, the onset/coda receives a value matching its place,

manner, whether it is voiced or not and whether it is lateral or not, according to the IPA. Every

nucleus receives values for how open and front the nucleus is, and whether it is long and/or

rounded. Those values range from zero to one, with every value matching a quality the sound

could have. Every word can have up to six syllables. An example of the structure of the phonetic

data is provided below.

 nucleus coda

 ope

n

front long rounde

d

plac

e

mann

er

voice

d

later

al

wor

d

ant 0 0 0.5 0 0.3 1 1 0

Table 1: an example of how the phonetic data is structured. Here, only one nucleus and one

coda are shown, but one syllable can have up to two onsets, two nuclei and two codas. A zero

for ‘open’ means the vowel is open, a zero for ‘front’ means that the vowel is a front vowel, a

0.5 for ‘long’ means the vowel is short, and a zero for ‘rounded’ means the vowel is unrounded.

Regarding the coda, a 0.3 for ‘place’ means signifies the consonant is alveolar, a one for

‘manner’ indicates the consonant is nasal, a one for ‘voice’ means the consonant is voiced, and

a zero for ‘lateral’ means the consonant is not lateral.

For the semantic encoding, every word gets assigned a specific value between zero and one

based on how much a certain quality applies to that word, with zero meaning ‘does not apply

at all’ and one being ‘applies perfectly’. For example, one of the qualities is ‘small’, and one

of the words is ‘baby’. The word ‘baby’ gets assigned the value 0.99995000299985 for the

quality ‘small’, which is high, because most people would view a baby as being small. An

example of the structure of the semantic data is provided below.

word comm

on

purchas

ed

reusab

le

small Is/are

different

sizes

heav

y

Is a

househo

ld item

accordi

on

0.0000

1

0.99997

4

0.8157

68

0.000

01

0.8420

83

0.000

01

0.000

01

Table 2: an example of how the semantic data is structured: how much each of these qualities

apply to an accordion as an example word.

The second part of the data is how well the patients with aphasia performed on word retrieval

tests. This data is synthetic, since I was unable to retrieve the patient data used in Grasemann

et al. (2021). The synthetic data used here consisted of percentages, with the percentages

 10

signifying the nodes that are to be deleted, along with all of their connections. The percentages

used were 20%, 40% and 60%.

For the smaller model, which was created for the purpose of being able to repeat all four

phases 10,000 times, a small part of the testing data was used. Ten words were used for training,

each with the first ten values from both the semantic features and the phonetic features for that

word. The testing data consisted of another ten words, five of which were used to give the first

ten values of the phonetic data as input, with the matching semantic data as expected output,

and the other five were used to test the other way around.

2.3 Training and testing
To train the model, 608 of the words and their values from Grasemann et al. (2021) were

used to create a list of tuples, with each tuple containing the values of one word. The other

thirty words were saved for testing, but were imported from Microsoft Excel into PyCharm,

the software that was used to create the model, at the same time in the same manner. In the

training stage, the input was comprised of both the phonetic and the semantic values of the

words, inputting one word at a time. During the testing stage, half of the words in the ‘testing’

list were used to test whether giving only the phonetic values would output the correct semantic

values, and the other half was used to test whether giving only the semantic values would output

the correct phonetic values, also inputting one word’s values at a time. The first time the model

was run, was to see how well the model would perform without the aphasia component, which

would mean, it the outcomes were correct, it could mimic a human brain. This was done to test

if the model itself worked correctly before drawing any conclusions based on the aphasia

component. After that, the aphasia component was added in by deleting, at first, 20% of the

nodes and all of its connections. Then, the trained model was run again on the testing data to

see how the node deletion affected the output. The same was done for 40% and 60% node

deletion.

 11

3. Results
The outcomes of running through all 608 words used for training once and then testing the

model with 30 words are not very promising. When presenting the model with phonetic input

only, the model predicted, on average, 1.75% of the semantic nodes correctly. A node’s value

was seen as ‘correct’ when it differed less than four decimals from what the value was supposed

to be. When presented with semantic input only, the model predicted 14.81% of the phonetic

nodes correctly on average. Here, a node was seen as ‘correct’ if the node’s value was the

closest to the right phonetic encoding. For example, if a node signifies the manner of the sound,

it could, according to the encoding of the features, potentially have the values 0.0, 0.1, 0.3, 0.5,

0.8 or 1.0. If the node’s output is 0.4628, its closest match in the list of possible values is 0.5.

If the node’s output is supposed to be 0.5, the output is seen as ‘correct’.

When running the model again, but looping through all of the training words twice, the

phonetic output, generated by inputting semantic values, remained the exact same as when

looping through the training words once. For the semantic output however, differences were

found in 13/15 testing words. Since looping through all of the words another time means more

training, and thus a model that should perform better, it was to be expected that the percentage

of correct values would rise compared to the run in which the training data was only looped

through once, but that was not the case. On 8/15 words, the percentage of correct values was

lower than on the first run. The differences were small, with an average difference of 0.60625%.

For 5/15 words, the percentage of correct values did rise, with an average of 2.87%. The

average percentage of correct semantic values is 1.48%, which is lower than the average when

looping through the training words only once.

The model was then run another time, this time looping through the training data 28 times.

This yielded even more peculiar results. Like in the previous run, all of the phonetic output

values remained the exact same as in the first run. The semantic output, however, did differ.

For all of the 15 semantic testing words, the percentage of correct values was lower than in the

initial run. This time, the differences were larger than those observed when comparing looping

through the training data once and twice; the average difference was 1.18%. The average

percentage of correct semantic values was 0.45%. An overview of these outcomes and the

outcomes described above can be found in the table below.

 1x 2x 28x

% correct

phonetic values

14.81 14.81 14.81

% correct

semantic values

1.75 1.48 0.45

Table 3: an overview of the percentages of correct values for looping through the training

data a certain amount of times

When including the testing data in the training set, the outcomes do not differ much from

when the testing words are not included in the training set. The average difference between

including the testing data in the training set or not is 0.6% for the semantic output. For the

phonetic output, there was no difference.

When running the model without any training, the semantic results get noticeably better. On

average, 95.63% of the semantic outcomes were correct. For the phonetic results, there was,

once again, no difference.

The smaller model was used for three runs. In the first, the testing words were looped

through once. When inputting semantic values only, and thus generating phonetic output

values, the model got 0.69% of the values correct, for all of the words. When inputting phonetic

values only, and thus generating semantic output values, it got 0.5% of the values correct for

 12

four out of five testing words, and 0.25% for one out of five testing words. This averages out

to 0.45% for all five semantic testing words. The same criteria for correctness were applied

here as in the normal model. The model was then run a second time, looping through all of the

training words 1000 times. The results remained the exact same as when looping through the

training words once. Then, the model was run once more, looping though the training words

10,000 times. This also did not yield any new or improved results. A table visualizing these

results is provided below.

 1x 1000x 10.000x

% correct

phonetic values

0.69 0.69 0.69

% correct

semantic values

0.45 0.45 0.45

Table 4: an overview of the percentages of correct values for looping through the training

data a certain amount of times

The model was also run with the aphasia component added in. It was run four times, with

varying degrees of node deletion. In all of these, the training data was looped through once,

and is therefore to be compared to the results that that yielded. Firstly, it was run with 20% of

the nodes deleted. Of the semantic output, only 1.77% of the values were correct. The criteria

for correctness remained the same as in the other runs. Of the phonetic output, 14.81% of the

values were correct. These percentages are, remarkably, higher than and the same as those

without any node deletion, which were 1.75% correct semantic values and 14.81% correct

phonetic values.

When deleting 40% of all nodes, the percentage of correct phonetic values remains the same

as when deleting 20% of all nodes: 14.81%. The percentage of correct semantic values does go

down, to 1.22%. This is lower than the percentage of correct semantic values when no nodes

are deleted, as opposed to when 20% of the nodes are deleted.

With 60% of all nodes deleted, the percentages of correct values are the exact same as when

40% of all nodes are deleted.

Lastly, when 80% of all nodes are deleted, the percentage of correct semantic values falls to

0.8%. The percentage of correct phonetic values still remains 14.81%, as is the case for the

other runs with a certain percentage of nodes deleted. This also means that the percentage is

the same as the percentage of correct phonetic values when all nodes remain intact. A table

displaying all of these percentage is provided below.

 20% 40% 60% 80%

% correct

phonetic values

14.81 14.81 14.81 14.81

% correct

semantic

values

1.77 1.22 1.22 0.8

Table 5: an overview of the percentage of correct values for different degrees of node

deletion

 13

4. Discussion
The results showed that this model does not work as it should. All outcomes, no matter how

many times the training words have been looped through, are over 85% wrong, except when

there is no training at all. In all cases, the percentage of phonetic values was higher than the

percentage of semantic values, once again with the exception of the run where no training took

place. This can for the most part be explained by the criteria for correctness. For the phonetic

values, the closest match in the list of possible options is selected as the output of that node,

after which the value is compared to the expected value for that node. For the semantic values,

the number is rounded off to four decimals and then compared to the expected value. This

means that the criteria for the phonetic values are a lot looser than those for the semantic values,

and it therefore makes sense that the percentage of correct phonetic values is higher than the

percentage of correct semantic values.

Another thing that is remarkable about the results is that the percentage of correct phonetic

values remains the same throughout all runs. If the model were to work properly, those values

would have changed depending on the percentage of node deletion or how many times the

training data has been looped through, but that is not the case here. Even at 80% node deletion,

the percentage remains at 14.81% on average. Currently, there is no explanation for why the

model behaves in this manner.

Furthermore, the percentage of correct semantic values under different circumstances is also

confusing. It would make sense for the percentage to increase with more training, but as shown

in the results, that is not the case here. When looping through the training data twice, the

percentage is 0.27% lower than when looping through the training data once. And another

decrease in the percentage is seen when looping through the data 28 times, but this time the

percentage drops by 1.03%. An increase in the percentage of correct semantic answers can be

seen when no training takes place at all, however. The smaller model does not clarify things

unfortunately. The percentage of correct semantic values remains the exact same throughout

the three runs, looping through the training data once, 1000 times and 10,000 times. Since the

percentage of correct phonetic values is also static across the three runs, and both percentages

are low, it could be due to the model being too small to offer any useful insights.

Lastly, it is also noticeable how the percentage of correct semantic values is higher when

20% of the nodes have been deleted than when no nodes are deleted. The difference is small,

only 0.03%, but it was expected that the percentage would lower when nodes are deleted. This

might be connected to the fact that without any training, the semantic outcomes are much better

than with training. For 40%, 60% and 80% node deletion, the percentage does lower to under

the percentage of correct semantic values without node deletion. The percentage of correct

semantic values is the same for 40% and 60% node deletion, so the decline is not linear, as

could be expected, but it does lower again to 0.8% when comparing the percentage for 60%

node deletion and 80% node deletion, so it does not bottom out at 1.22%.

The fact that the model did not work as expected could be due to several different reasons,

or a combination of them. Firstly, it could be due to a lack of data. In Boersma et al. (2021),

the model was run with 10,000 new sounds, meanings or pairings. The data used in here

contains only 630 words, which is significantly less than 10,000.

Another reason could be that this model has not been run with 10,000 training words, which

would mean looping through the same words multiple times. This is because of time

constraints, but it could have important consequences for the outcomes. This is, however, less

likely than the explanation above, since the smaller model showed no difference between

running the model once or running the model 10,000 times. This could, however, also be due

to the scale of the smaller model.

Thirdly, there could be a mistake in the implementation of the model that was missed during

the construction and several rounds of debugging of the model.

 14

Because the model does not work as expected, it is very difficult to judge its ability to model

aphasia. For the results that were gathered regarding aphasia, it can be said that, since the

performance of the model did worsen, at least partly, it does have some capability of modelling

word retrieval issues. However, only the percentage of correct semantic values was affected by

the node deletion, and even that showed unexpected results, with the percentage for 20% node

deletion being higher than no node deletion, and the percentage remaining the same for 60%

node deletion and 80% node deletion.

In future research, after getting the model to work for this purpose and testing it with real

patient data, it could be adapted to model recovery from aphasia over time, like Grasemann et

al. (2021) attempts to do. Other applications for future research could include adapting it for

bilingualism, which was also done in Grasemann et al. (2021), and comparing it to monolingual

usage. In the future this model could also perhaps be used to model other aspects of aphasia,

such as deficits in grammar or pronunciation. Firstly, however, it should be looked into why

this model does not function as it should in its current state and how it can be adjusted so it can

work as it should. There were several things that could have been done in this research to try

to get better results, like changing the correctness criterium for the semantic output from having

to match the correct answer up to four decimals to having to match the correct answer up to

one decimal, but that was not possible because of time restraints.

In conclusion, the model this paper presents does not work in its current state. When testing

the model, it did not get a lot of the expected phonetic values correct (< 15% on average per

word), and even less of the semantic values (<2% on average per word, not counting the run

where no training took place). Looping through the training data multiple times does not

improve the performance of the model, it either worsens (as is the case for the semantic values)

or it remains the same (as is the case for the phonetic values). The performance of the model

only increases significantly when no training takes place, but only for the semantic outcomes.

The smaller model did not yield any useful insights, which might be due to the scale of the

model. The aphasia aspect also does not work as it should. It does lessen the percentage of

correct responses for the semantic values, but the phonetic values remain the same throughout,

no matter the percentage of nodes deleted. The percentage of correct semantic values when

20% of the nodes are deleted is, unexpectantly, higher than when no nodes are deleted. The fact

that the model does not work could be explained by a lack of data, not running through the data

enough, or a mistake in the model itself. In the future, it could be investigated how to get this

model to work properly.

 15

5. References
Bhogal, S., Teasell, R., & Speechley, M. (2003). Intensity of Aphasia Therapy, Imact on

Recovery. 34(4).

Boersma, P., Chládková, K., & Benders, T. (2022). Phonological features emerge substance-

freely from the phonetics and the morphology. Canadian Journal of Linguistics, 67(4).

Grasemann, U., Peñaloza, C., Dekhtyar, M., Miikkulainen, R., & Krian, S. (2021).

Predicting language treatment response in bilingual aphasia using neural network‐based patient

models. Sci Rep, 11(10497).

