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Abstract

With the current highs of Al, the exploration of speech recognition has become a big
part of the field of Natural Language Processing, with attention also given to exploring the
quantitative differences between human and Al speech model performance. Building on the
foundation of Adolfi et al. (2023) and the time domain perturbed speech, the current study
aimed to look into how the Al language model, particularly Wav2Vec2.0, qualitatively
performs with the manipulated speech in the frequency domain as compared to humans and if
there is a convergence in their performance curve with different manipulation conditions,
while some of Adolfi’s et al. manipulations were also replicated. It was found that the
qualitative performance curve of wav2vec2.0 for each manipulation is consistent with that of
humans. However, it should be noted that the study utilised only ten audio samples, which
represented a limitation. Therefore, a future recommendation is made to conduct a
comparative analysis between human and Al models using a larger sample size and a

standardised experimental setup.



1. Introduction

Speech, the evolutionary trait that is uniquely present in humans, serves as an intricate
and remarkable tool for communication. The multiplex system present for speech processing
and production is what allows humans to master it, even with the distinct variety it appears
with in the world (Pagel, 2017). What is fascinating to researchers about speech in humans is
not only its idiosyncratic nature but also the robustness with which it is produced and
comprehended. Speech perception is the skill with which language is comprehended and, thus,
is fundamental for language development. The use of multiple mental processes, like memory,
analytical reasoning, attention to detail, et cetera, altogether makes it possible to accomplish
the complexities, like ambiguity and variety in meaning by change of context, with which
speech emerges and thus, achieve speech perception. With all this mental power that goes into
this process, speech processing, therefore, serves as a window into various facets of human

intelligence and cognitive abilities. (Heald & Nusbaum,2014).

With the recent progression that Artificial Intelligence, which is “the simulation of
human intelligence process performed by a machine or particularly computer systems” (Burns,
2023), has experienced, this attempt to replicate human intelligence and the processes it can
achieve has also made its stride to recreate the mental process of language processing. This
niche field of Al is called Natural Language Processing (NLP). Speech perception in this area
has gotten its own name, Automatic Speech Recognition (ASR). This process is achieved with
the help of Deep Neural Networks (DNNs), which are created through the stacking of neural
networks and the presence of a hidden layer, to some extent, an attempt to recreate the neural
network in the human brain (Aouichaoui, A. R. et al., 2021). This age of ASR DDNs has also
seen its own transformations. There have been many carefully engineered architectures used in
Automatic Speech Recognition, such as convolutional (O’Shea & Nash, 2015), recurrent
(Amodei et al., 2015; Hannun et al., 2014), and Transformer (Baevski, Zhou, Mohamed, &
Auli, 2020; Schneider, Baevski, Collobert, & Auli, 2019).

As this field sees its enhancements, the robustness of Al with speech recognition is also
checked compared to Human speech comprehension. Recent studies have also moved away
from the quantitative-centric research and started to qualitatively examine trends of Al ASR
(Like Long’s (1990), U-shaped learning of a second language has been a trend that is observed

in human speech) and their similarities to the trends, for the same conditions, seen in human



speech comprehension. The following section will highlight some studies that help understand

this quantitative-to-qualitative transition.

1.1. Background

Although former research had established that humans consistently outperform ASR
models in speech recognition, with consideration to the recent developments in the field of
NLP. Spille and Meyer (2018) conducted an investigation of the difference in the quantitative
performance of deep neural networks (DNNs) automatic speech recognition systems and
standard human speech recognition with regard to simple and complex speech signals; in order
to investigate the gap between ASR and human speech recognition and suggest further
improvements in the DNNs. They made use of simple one-channel audio with stationary speech
and a multi-talker babble noise. And also, in contrast, complex audios had what the authors
called ‘multi-channel scenes’, which included diffused sounds and moving talkers, in order to

reach their aim.

The study found that, overall, human speech recognition did perform better than ASR
at all times. It was observed that in simple audio, ASR systems had reached the level of human
speech recognition; the same cannot be said for complex audio recognition. Furthermore, ASR

always performs worse in this aspect.

Furthermore, the study by Spille and Meyer (2018) emphasised the significance of
incorporating multi-channel scenes and diffused sounds into the evaluation of ASR systems.
By simulating realistic audio environments with moving talkers and complex acoustic
backgrounds, the researchers provided insights into the limitations of current ASR models.
These findings indicate the need to enhance ASR algorithms to handle better real-world
scenarios where multiple sources of speech and environmental noise coexist. By addressing the
challenges posed by such complex audio, ASR systems can strive towards achieving uniformity
with human speech recognition across an extensive range of conditions. The study by Spille
and Meyer serves as a valuable reference for future research endeavours aimed at refining ASR

technology and narrowing the gap between machine and human speech perception.

Another study looked deeper into the aspect of the new advancement of Al. Millet &

Dunbar (2021) focused on exploring if self-supervised models, without the presence of any
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form of their own representation spaces, are similar to humans when initially learning a
language. The focus was to investigate if self-supervised models also show perception bias, the
specialisation of perceptual differences encountered in the native language that weakens the
ability to discriminate the perceptual differences present in other languages, and not present in
the native language. In the experiment, ASR machines were trained in one language, and their
output was observed with the stimulus of another language. It was studied if their output is
similar to what you see in human speech recognition output. They used perceptual spaces of

French and English human speakers as a comparison.

It was found that, unlike humans who show a clear perceptual bias or perceptual
magnetic effect (Kuhl, 1990), the self-supervised models were able to learn the representation
spaces of the new sounds in the new language. They were good at capturing detailed perceptual
patterns and presenting language-neutral characteristics. Models were more effective in
capturing broader, language-related effects rather than how people perceive sound and show
magnetism toward familiar ones. These findings strongly indicated that the advantages of self-
supervised speech models do not just learn specific features of audio but rather process general

features present in the audio available to them.

The previous studies have provided valuable insights into the quantitative and
qualitative evaluation of automatic speech recognition (ASR) models using natural speech.
However, it is essential to note that humans also exhibit high recognition performance with
perturbed speech, as extensively studied in the field of human speech comprehension. Building
upon this understanding, the subsequent investigation by Adolfi et al. (2023) explores a range
of signal perturbations, laying the conceptual groundwork for the current study. By examining
the effects of these perturbations on speech recognition, this research aims to establish a solid

foundation for its ensuing exploration.

1.2. Introduction: Adolfi et al. (2023)

Adolfi et al. (2023) recognised that there is variation in performance between natural
and artificial speech recognition when analysing the qualitative results of the same task. But
also, that, narrowing the variety of tasks can lead to resonance in the type of results seen in
these two recognition systems. The study focused on qualitative conversion, which explores

the trend in performance, rather than a quantitative one, which measures how well the system
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performs. This recognition called for a closer inspection of the qualitative convergence, which
was investigated by examining the robustness of state-of-the-art neural networks in speech

recognition when encountering different Spectro-temporal granularities.

1.2.1. Methodology: Adolfi et al. (2023)

Adolfi et al. conducted a comprehensive investigation involving eight different
manipulations applied to audio signals. These manipulations can be described as follows:

Firstly, there is the technique of shuffling, which involves the disruption of audio
samples given a specific time window which leads to loss of coherence, in the temporal domain,
at a larger scale. Secondly, reversing involves the local reversal of the signal, resulting in frame-
wise reversed speech over time. The third manipulation, known as masking, entails adding

background noise to the original signal, effectively introducing a layer of interference.

Silencing, the fourth manipulation, involves inserting periods of silence in places where
speech signals were originally present. Chimaera, the fifth technique, combines the slow
amplitude modulation of one sound with the rapid carriers of another sound. This process
results in the creation of chimeric audio, involving the factorisation of envelopes and fine

structuring of signals.

The sixth manipulation, known as mosaic, involves altering the Spectro-temporal
resolution of speech signals by manipulating the coarse-graining of time-frequency bins. This
systematic alteration leads to mosaicized sounds. Time warping, the seventh technique,
involves modifying the speed of speech without affecting its pitch. This is achieved through
temporal compression or stretching in the time-frequency domain.

Finally, Repackaging, this technique redistributes the original chunks of samples in the
temporal domain while maintaining the pitch of the speech signal. Additionally, a period of

silence is concatenated with the repackaged signal.

In summary, Adolfi’s investigation encompasses a diverse range of manipulations
applied to audio signals, including shuffling, reversing, masking, silencing, chimaera synthesis,
mosaicization, time warping, and repackaging. These manipulations serve to explore the
several ways in which audio signals can be transformed and manipulated, contributing to a

deeper understanding of signal processing and its impact on speech perception.



The stimuli of each of these manipulations were concatenated together and presented
to the systems in the form of waveforms or spectrograms, depending on the type of input the
model takes. The word “rate error” was used as the evaluation metric for the performance of
the neural network, which was calculated by dividing the sum of substitutions, deletions, and
insertions by the sum of substitutions, deletions, and correctly recognised words. The study
looked into four speech recognition models, Deepspeech (LSTM), Wav2vec2.0 (1DConv-TF),
Fairseq-s2t (2DConv-TF), Silero (Sep-2DConv).

1.2.2. Results: Adolfi et al. (2023)

Adolfi et al. found that with specific manipulations, which are of a less destructive
nature, such as reversal, shuffling, time warping, chimerizing, and mosacizing performance
patterns observed were similar, to some extent, to those seen in human studies for the same
perturbations. On the contrary, manipulations of a more complex nature or the ones that were
more destructive, such as masking and silencing, showed a disparity in the type of performance
for humans and the models used except for with the wav2vec2.0 model, where a similar pattern,

to humans, for these signal destructing manipulations was seen.

One peculiar and informative outcome was for the repacking manipulation experiment,
where all models ultimately failed to capture the human study performance results. This finding
highlights a systematic failure of models to recover perceptual performance in certain situations
or conditions in which humans almost always excel. This experiment brings to attention the

significant difference between ASR and human comprehension in the perceptual domain.

Finally, the research points away from the nominal quantitative differences between
ASR and human beings to focus on the qualitative drawbacks of further achieving human-like
perception. Adolfi et al. suggests that the models need more flexibility in task performance by
effectively utilising alternative spectral and temporal scales. Merely introducing different
training approaches or increasing model capacity would not address these qualitative
differences. Instead, substantial architectural modifications would be necessary to overcome
these limitations. The identified qualitative differences provide insights into potential
architectural constraints and improvements, indicating areas for further model development

and comparison.



The most significant observation is the phenomenon of repackaging, where all models
consistently fail to capture human behaviour. This effect opens up alternative avenues for
theorising, computational cognitive modelling, and improving engineering solutions. By
exploring the reasons behind this failure, researchers can gain a deeper understanding of the
architectural modifications required to bridge the gap between model performance and human
perception.

In summary, the study reveals that specific perturbations elicit similar performance
patterns among models and align with human perception, while other perturbations highlight
disparities. The repackaging experiment explicitly demonstrates a systematic failure of all
models to capture human performance. The qualitative differences observed suggest that
substantial architectural modifications are necessary to address these shortcomings. This
research provides valuable insights for further model development and offers alternative

directions for theorising and computational cognitive modelling.

1.3. Gap In the Last Studies
Adolfi et al. offered a linguistic lens to the study of the performance of Al. Although it
includes different types of perturbed speech; most of the perturbations consisted of
manipulation of the time domain, leaving the frequency domain untouched. Therefore, leaving
an unfulfilled gap of lack of frequency domain change exploration, which has been, previously,

investigated in humans.

1.4. Present Study
The present study is an adaptation of Adolfi et al.’s paper and tries to bridge the gap left by
Adolfi et al.’s research, exploring frequency domain changes. Although the study builds on
Adolfi et al.’s conceptual foundation, including some of the audio manipulations included in

the paper, it is not a direct replication due to not having completely similar methodologies.

The specific research question was: How does the qualitative performance of the wav2vec2.0

model compared to that of humans when recognising frequency-shifted speech?



2. Methodology

2.1. Model: Wav2Vec2.0
This study uses the hugging face model Wav2Vec2.0, which is also used in the Adolfi et al.
study, the paper that gives the conceptual foundation of the current study. The model
Wav2Vec2.0, which changes raw waveforms into a floating array of vectors, was first proposed
in the paper “wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
Representations” by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli
(Baeyski et al., 2020). This section will elaborate on the architecture, training and working of

the model and specify how it was used in the current study.

2.1.1. Architecture
Wav2Vec2.0 is a self-supervised model with a transformer architecture that makes use

of the Self-attention mechanism for its working.

2.1.2. What are Transformers?

Transformer in the context of machine learning and artificial intelligence refers to a
type of model architecture used in natural language processing tasks. This architecture was
introduced by Vaswani et al. in a paper titled "Attention is All You Need" in 2017. Transformers
are based on the concept of "attention mechanisms", where the model learns to weigh the
importance of different inputs in the sequence rather than processing them independently or in
a fixed order like in previous recurrent neural networks (RNNs) and convolutional neural
networks (CNNs). This approach allows transformers to handle long-range dependencies
between words in a text more effectively. They are particularly powerful in tasks like translation,

summarisation, and generation of text.

2.1.3. What is Self-Supervised?

Self-supervised learning is a type of machine learning where the data provides the
supervision itself, meaning that labels are generated from the input data instead of relying on
explicitly provided labels. It is a form of unsupervised learning but with a twist. The model is
given a pretext task, such as predicting the next word in a sentence (in the case of language
models like GPT-3) or predicting a masked part of an image (in the case of some computer
vision tasks). This process allows the model to learn to use representations of the data. Once

trained, the model can be fine-tuned for specific tasks using a smaller amount of labelled data.
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Unsupervised learning and self-supervision share similarities in their approach, but they
differ in terms of the tasks they address. Unsupervised learning is primarily utilised for
clustering tasks, where the absence of data labels poses a challenge. Conversely, self-
supervision focuses on training algorithms typically employed in supervised learning, such as

classification and regression, without providing explicit labels.

2.1.4. What is Self-Attention?
Self-attention, also known as intra-attention, is a mechanism used in Transformer
models that allows each element in a sequence (e.g., each word in a sentence) to look at every

other element to gather contextual information.

Self-attention calculates the relevance score between all pairs of input elements. Then,
it uses these scores to weigh the impact of different elements when generating a new
representation for a given element. This calculation enables the model to consider the context

of each word in the sentence.

More formally, self-attention works by applying three matrices (learned during training)
to the input vector of each word: the Query, Key, and Value matrices. It then computes the dot
product of the Query and Key vectors of each word, applies a SoftMax function to get the

weights (attention scores), and multiplies these weights with the Value vectors to get the output.

The power of the self-attention mechanism comes from its ability to focus on distinct
parts of the input sequence when encoding a specific word, allowing for the modelling of

complex dependencies.

An illustrative example that sheds light on this concept is the task of sentence
translation, specifically when faced with a sentence like "The animal could not cross the road
because it was slippery." In this case, the pronoun 'it' can be interpreted as referring to either
the animal or the road. The self-attention mechanism plays a vital role in enabling a model to
discern the accurate attribution of 'it' by leveraging contextual information. By employing self-
attention, the model can effectively capture the dependencies and relationships between words,

thereby making informed decisions regarding the intended referent of ‘it
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2.2. Training
The basic Wav2Vec2.0 model is trained on 960 hours (about one and a half months) of
unlabeled data from the LibriSpeech Dataset.

2.3. Wav2Vec2CTCTokenizer
The Wav2Vec2CTCTokenizer is the fine-tuned version of the Wav2Vec for automatic
speech recognition of English. This Tokenizer helps map the sequence of the wav2vec2 output

to its corresponding transcription. (Platen, 2021)

2.4. Methodology

The research framework employed in this study builds upon an open-source codebase
provided by the authors of the previous paper, allowing for a robust and reliable foundation.
Extending the existing code from Adolfi et al., several selective steps were meticulously
replicated and further modified to enhance functionality and address specific research
objectives. In alignment with the preceding work, this paper primarily focuses on the
qualitative evaluation of the model's performance. However, it uniquely centres on the
recreation of repackaged, masked and silencing speech signals. By employing advanced
techniques and adaptations from existing methods, these recreated signals were used as input
for the Wav2Vec2.0 model, facilitating a thorough qualitative assessment of its performance.
The significance of qualitative evaluation lies in its ability to offer valuable insights into the
model's behaviour and its suitability for real-world scenarios. Consequently, this research
contributes to the existing body of knowledge by improving upon the open-source code and
providing a comprehensive qualitative analysis of the Wav2Vec2.0 model's performance in the

context of the frequency domain-related manipulated speech signals.

2.4.1. Data Manipulation

This section presents a comprehensive overview of the data manipulation techniques
employed in our study. Each technique is explained in detail, highlighting its underlying
principles and the corresponding code implementation available in the Appendix. These
techniques enable us to investigate the effects of various audio manipulations on speech signals,

providing valuable insights into the characteristics and behaviours of the modified data.
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Repackaging

Repackaging is a versatile technique that combines several audio manipulations,
including time warping, multiple-timescale modification, and insertion of silence. The goal of
repackaging is to modify the audio signal while preserving its underlying pitch. To achieve the
said manipulation, a window of the signal is compressed by a factor of two, effectively altering
its temporal characteristics. Subsequently, a specific length of silence is added to the signal,
creating gaps or pauses within the audio. The analysis of this manipulation focuses on the ratio
between the duration of the modified audio and the inserted silence length. This ratio, ranging
from 0.5 to 2.0, allows for investigating the impact of varying degrees of compression and
silence on speech perception and intelligibility. The code snippet for implementing the

repackaging technique can be found in the Appendix under the 'compress_insert mix' function.

Masking

Masking is a type of speech interruption technique that introduces interferences in the
speech by adding noise masks to the signal. This manipulation aims to create glimpses of the
original input signal amidst the added noise. By applying the 'mask' function from Adolfi et
al.'s code, a portion of the audio signal is corrupted by the addition of noise. The length of the
masked portion can be adjusted to explore various levels of speech interruption. This technique
enables the study of how noise interference affects speech perception and recognition. The
corresponding code snippet for implementing the masking technique is available in the

Appendix.

Silencing

Silencing, similar to masking, is another type of speech interruption technique used to
disturb a portion of the audio signal. However, instead of adding noise, silence is inserted into
specific sections of the signal, resulting in glimpses of the original input. By utilising the same
'mask’ function, silence is introduced to create interruptions in the speech signal. The length of
the window portion affected by silence can be varied to examine the influence of silence
interruptions on speech intelligibility. The code snippet for implementing the silencing

technique can be found in the Appendix.
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Shifting Frequency Up
Frequency manipulation involves changing the frequency content of a signal. To
achieve this, we use an algorithm called Fast Fourier Transform (FFT), which operates in both

the time domain and frequency domain.

In the time domain, the signal is represented as a waveform. The FFT algorithm isolates
the frequency information that is found in a waveform, separating the different frequency
components. By applying the inverse of this process, we can convert the isolated frequency

back into its original form.

In the code, the SciPy library's FFT function is used, precisely the RFFT method.
Usually, when a waveform is passed through the FFT function, the input is a NumPy array
consisting of complex and real values. However, the RFFT method takes in as input an array

of only real values, which facilitates frequency shifting.

To shift the frequency, we specify the desired frequency shift value. The shift is then
calculated in bins, which determine how the frequency components will be replaced. This is
calculated using the following formula:

(1

shift frequency(Hz) = length of array transformed audio

F hift in bins =
requency shift in bins sampling rate of the audio(Hz)

Finally, the frequency shift is performed on the transformed audio, and the RFFT output

1s inverted to obtain the modified waveform.

Shifting Frequency Down
Shifting the frequency down is done on the same principle and steps as mentioned in
the section above. The only difference when shifting frequency down is the shift frequency is
specified as a negative value. So, if you specify the shift frequency as a thousand, in frequency
shifted up as:
()
shift frequency = 1000 Hz

It would be specified for shifting frequency down by a thousand as follows:
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3)
shift frequency = —1000 Hz

2.4.2. Analysis

In evaluating the performance of various manipulations, each manipulated metric was
distinct for the manipulation. However, the models' overall performance was determined using
a standard metric called Word Error Rate (WER). The WER metric takes into account different
types of measures, including deletions (D), substitutions (S), correct words (C), and insertions
(I). These error types are calculated and then combined in a formula to find out the overall
performance of the Wav2Vec2.0 model.

The formula for calculating the WER is as follows:

4

A higher WER score indicates a more significant number of errors and thus indicates
the poorer performance of the Wav2Vec2.0 model. To evaluate the performance of the model,
it was tested on the first ten audio samples from the test set of LibriSpeech, as described by
Panayotov et al. (2015). It is worth noting that although the Wav2Vec2.0 model was trained on
960 hours of the LibriSpeech dataset, it had not been exposed to the specific test set used in
this evaluation. This ensures the integrity of the testing process and avoids any potential bias

or overfitting issues.

By employing the WER metric and testing the model on unseen data, researchers can
effectively assess the performance of the Wav2Vec2.0 model and compare it to other models
or variations that underwent different manipulations. The goal is to identify the model with the
lowest WER score, indicating superior performance in accurately transcribing speech and

minimising errors.

3. Results

This section presents an overview of the manipulation types investigated in this study,
focusing on their performance evaluation through Word Error Rate (WER). Furthermore, the

qualitative outcomes of relevant human studies are discussed to facilitate a comparative
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analysis of the model's qualitative performance. It is necessary to mention that the model

performs poorly in a quantitative way, but this study focuses only on the qualitative manner.

3.1. Repackaged

Wav2Vec Word Error Rate

WER (Word Error Rate)

0.9

0.8 1 12 14 1.6 1.8

Audio:Silence Ratio

Figure 1. x Audio: Silence ratio vs WER

Repackaging manipulation refers to the repositioning of speech information in time.
Previous studies conducted on both humans and machines (Fu et al., 2001) have observed a
significant decline in performance once the speech signal is compressed. However, it has been
found that this compression of the speech signal can be improved by strategically adding
appropriate amounts of silence. Multiple studies (Bosker & Ghitza, 2018; Penn et al., 2018;
Ghitza, 2012, 2014; Ghitza & Greenberg, 2009) have demonstrated that the inclusion of the
right amount of silence in compressed speech leads to a recovery in performance, resulting in

a U-shaped performance curve.

In the current study, a similar trend is observed, where a soft U-shaped curve is evident
in Figure 1. Towards the end of the study, while the error rate increases in the human
participants for the last Audio: Silence ratio, a subsequent decline in the error rate is observed.
This suggests that carefully managing the balance between speech and silence can have a

positive impact on performance.
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3.2. Masked

Wav2Vec Word Error Rate

0.045

WER (Word Error Rate)

Window Length (ms)

Figure 2. Window length(ms) vs WER

Masking refers to the process of introducing masking noise to corrupt speech
information present in a signal. Previous studies conducted on humans (Miller & Licklider,
1950) have demonstrated that the error rate shows a notable improvement as the window length
increases. Interestingly, the worst performance is consistently observed at the mid-length

window values.

In the current study, Figure 2 displays a strikingly similar pattern to the findings in
human studies. Performance shows a significant enhancement at longer window lengths, while
the worst performance is consistently observed at the mid-length window values. This
observation further supports the notion that the manipulation of window length affects speech

perception, aligning with previous research findings.
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3.3. Silencing

Wav2Vec Word Error Rate

0.95

0.9

0.8

0.75

WER (Word Error Rate)

0.7

0.6

Window Length (ms)

Figure 3. Window length (ms) vs WER

Silencing refers to the deletion of speech information from a speech signal. Previous
human studies conducted on silence speech interruption have revealed a performance curve
that closely resembles the findings from the masking study (Miller & Licklider, 1950).
However, in contrast to the mid-length window values showing the worst performance in the
masking study, the performance curve observed in the present study, as depicted in Figure 3,
follows a similar pattern to the human study. In this case, the performance is initially poor and

gradually improves over time.

The results obtained in Figure 3 reinforce the similarity between the effects of silencing
on speech perception in humans and the findings from previous research. Despite the variation
in the specific window length dynamics, both studies demonstrate that manipulating silence

interruptions can have a significant impact on performance.
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3.4. Shifting Frequency Up

Wav2Vec Word Error Rate
0.8

0.7
0.6
0.5
0.4

0.3

WER (Word Error Rate)

200 400 600 800 1000

Frequency Shift (Hz)

5000 T

Frequency (Hz)
Frequency (Hz)

0 3.505
‘Time (s) Time (s)

Figure 5. The spectrogram of the original audio and the Spectrogram of the audio shifted up by 1000 Hz, respectively.

When the frequency is shifted upward, previous human studies have shown that this
specific type of alteration typically leads to a decrease in performance as extreme values are
reached in cases where the worst performance can be observed (Shannon et al., 1995). A
slightly similar trend can be observed in Figure 4, which depicts the performance of
Wav2Vec?2.0 across different shift values. The performance curve remains relatively stable with
increasing shift values, except for the extreme value of 1000 Hz, where a sharp decline in

performance is evident.

The findings depicted in Figure 4 align closely with the observations from previous
human studies, reinforcing the notion that frequency shifts within a specific range do not
significantly impact speech perception. However, when the shift value reaches extreme levels,

it disrupts the normal perception of speech, leading to a noticeable decrease in performance.
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3.5. Shifting Frequency Down

Wav2Vec Word Error Rate

0.7
0.6
0.5
0.4

0.3

WER (Word Error Rate)

200 400 600 800 1000

Negative Frequency Shift(Hz)

Figure 6. Negative Frequency shift (Hz) vs WER

Normal_audio
1.7525

Frequency (Hz)

Frequency (Hz)

0 3.505
Time (s) Time (s)

Figure 7. Spectrogram of normal audio and the Spectrogram of audio shifted down by 1000 Hz, respectively.

The study on humans (Shannon et al., 1995) does not specify any differences between
performance curves of frequency being shifted upwards or downwards but rather points to a
gradual decrease in performance as frequency-related information is varied. Thus, a similar
performance curve to frequency-shifted up is assumed. With this assumption, the results
depicted in Figure 6 are consistent with the observations made in previous research (Shannon
et al., 1995). It is also observed that for this type of frequency change, higher error rates and
worse performance are noticeable, even in middle values. This observation shows that
downward frequency shifts within a certain range start to show a substantial impact on speech
perception. And reaches the worst decline in performance at an extreme value. The
performance curve starts worsening after reaching the middle value of 500 Hz., ultimately

reaching the worst performance at the extreme value of 1000 Hz.
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Unlike shifting the frequency upward, the current observation shows that when the

frequency is shifted downward, a gradually worsening performance curve is found.

4. Discussion

In this section, we will discuss the differences between the current findings and those
of previous studies, highlighting variations in methodology and suggesting potential areas for
improvement. We will also address the mistakes made by Adolfi et al. in their paper and further
expand on the implications of the observed performance trends. This section also conveys the

answer to the research question.

Regarding two of the three manipulations adopted from the Adolfi et al. paper, namely
masking and silencing, both of which involve speech interruption, the findings of the current
study align with those of the previous study. However, an interesting observation can be made
about the third manipulation, repackaging. In contrast to the Adolfi et al. paper, where the
repackaging curve did not converge with the human performance curve, the current study
observed a partial convergence. One key difference between the two studies is that while Adolfi
et al. tested the entire test set of LibriSpeech and averaged the results, the current study
averaged only the first ten audios in the dataset. Although this can be seen as a drawback, it
allowed for a closer examination of the individual audio and highlighted the importance of
stimulus type. It was observed that some audios exhibited a complete match with the
performance curve seen in human studies, providing valuable insights into the effects of

repackaging and choice of stimulus.

This brings attention to a limitation of the Adolfi et al. paper, where the same stimulus
as the human studies was not employed, potentially impacting the generalizability of their
findings, particularly when considering the effects of word frequency on speech recognition.
Addressing this discrepancy in future studies can lead to a more comprehensive understanding
of the factors influencing speech perception. That is, creating a study design where humans

and Al models are tested on the same stimulus in the same condition.
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Furthermore, it was noted that Adolfi et al.'s paper contains contradictions regarding
the performance of Neural Networks. While they claim that the word error rate (WER)
increases as silence is added, their Audio: Silence ratio actually increased in the graph shown
in the paper, indicating a decrease in silence. These inconsistencies highlight the importance

of thorough analysis and accurate reporting in research publications.

Moving on to the manipulations exclusively explored in the current study, namely
frequency shifting (both upward and downward), it was observed that the performance of the
model converged with that seen in human studies. This result indicates the model's ability to
handle frequency shifts in a manner consistent with human speech perception. On the other
hand, it was interesting to notice that when the frequency is shifted downward, wav2vec2.0
showed worse performance as compared to when the frequency is shifted upward. This finding
becomes clearer by observing the frequencies that are lost in the two manipulations. When the
frequency is shifted up, only the high frequencies that are less critical to speech perception are
lost. On the other hand, when the frequency is shifted down, lower frequencies, that are

fundamental to speech perception, like f0, are lost, which makes recognition of speech harder.

Overall, the qualitative performance of Wav2vec2.0 is remarkably high, displaying its
potential for practical applications in the field of Natural Language Processing (NLP).
Although the performance curves do not perfectly align with human studies, displaying some
differences in specific values while still following a similar trend, these variations provide
valuable insights that can be further investigated and improved upon. Future research can build
upon these findings to refine the understanding and application of speech manipulations,
ultimately enhancing the performance of speech recognition systems in various NLP tasks.
Such advancements can contribute to the development of more robust and accurate speech

technologies, benefiting a wide range of applications and users.

5. Conclusion

The present study builds upon previous research that has explored the convergence of
the qualitative performance of neural network automatic speech recognition systems with that
of human speech recognition. This convergence suggests a resemblance in the functioning of

Al and human intelligence. In this study, the performance of Wav2Vec2.0 was examined in
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relation to perturbed or frequency-shifted speech signals, and it was found that the model
performs similarly to humans in a qualitative sense. The performance curves for all five

different manipulations showed a high degree of alignment.

However, it should be noted that one of the replicated manipulations, namely
repackaging, exhibited a performance curve that did not align with previous research. This
discrepancy emphasises the drawback of using a smaller number of audio samples compared
to the foundational study, Adolfi et al. (2023). Additionally, the choice of stimulus is crucial,
and the fact that the previous study did not utilise the same stimulus as human studies could be
a contributing factor to the differing performance curves. Hence, it is suggested that future
research should consider conducting studies involving both humans and AI models using the

same stimulus for a more comprehensive analysis.

In conclusion, the current study offers valuable insights into the similarities and
differences between human speech recognition and artificial speech recognition. It highlights
the importance of qualitative research in understanding the behaviour of language models,
emphasising that quantitative research alone may not provide a complete picture. The findings
contribute to advancing our understanding of the capabilities and limitations of AI models in

speech recognition tasks, laying the groundwork for further improvements and applications in
the field.
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7. Appendix

The code is attached below in pdf form.
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~ A comparison of Wav2Vec 2.0 and humans in handling frequency shifted speech: A Qualitative Analysis

This Colab notebook presents an analysis of speech manipulations using the Wav2Vec2.0 model and evaluates its performance using
evaluation metrics. The research is conducted as part of a bachelor thesis, aiming to investigate the robustness of the model in the presence of
various speech manipulations. The notebook demonstrates the tokenization of audio signals and the application of manipulations such as
masking and shifting. It feeds the manipulated signals to the model for transcription prediction and calculates evaluation metrics like Word
Error Rate (WER) by comparing the predicted transcriptions with a reference. The obtained transcriptions, WER values, and relevant metrics
provide insights into the model's accuracy and performance in different speech manipulation scenarios. This work contributes to the
understanding of the Wav2Vec2.0 model's applicability in real-world speech processing tasks and serves as a valuable resource for researchers

and practitioners in the field of automatic speech recognition.

Nilansha Dargan 13130366

Installing and Importing

#Installing datasets & wget
!pip install -g datasets wget

486.2/486.2 kB 8.4 MB/s
Preparing metadata (setup.py) ... done

110.5/110.5 kB 9.0 MB/s
212.5/212.5 kB 18.6 MB/s
134.3/134.3 kB 12.7 MB/s

236.8/236.8 kB 17.8 MB/s

114.5/114.5 kB 6.4 MB/s
268.8/268.8 kB 18.0 MB/s
149.6/149.6 kB 10.0 MB/s
Building wheel for wget (setup.py) ... done

#Installing Transformers
!pip install -g transformers

~

#Importing important libraries and Adolfi(2023) available code
import wget
import os
if not os.path.exists('pycochleagram'):
!git clone https://github.com/mcdermottLab/pycochleagram
os.chdir('pycochleagram')
!python setup.py install
if not os.path.exists('manipulations.py'):

eta 0:00:

eta 0:00:
eta 0:00:

eta 0:00

eta 0:00
eta 0:00
eta 0:00
eta 0:00

00

00
00
:00

1.0/1.0 MB 34.3 MB/s eta 0:00:00

:00
:00
:00
:00

7.2/7.2 MB 44.6 MB/s eta 0:00:00
.8/7.8 MB 32.7 MB/s eta 0:00:00

1.3/1.3 MB 61.7 MB/s eta 0:00:00

wget.download('https://gitfront.io/r/fedeadolfi/b8d002dbffa6392bbe8dl793e2ea5d66a8e209ac/asr-vs-humans/raw/manipulations.py’

if not os.path.exists('analyses.py'):

wget.download('https://gitfront.io/r/fedeadolfi/b8d002dbffa6392bbe8dl793e2ea5d66a8e209ac/asr-vs-humans/raw/analyses.py')

https://colab.research.google.com/drive/19wNDDWRSSwVqtwwB XDjNqf7LbRCI9B8Y#scroll To=DQKH-CV4I--0&printMode=true
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copylng bulld/llpb/pycocnieagram/erprilter.py —> Dulld/bAlSTt.llNUX-X8b_b4/egg/pycocnleagram
copying build/lib/pycochleagram/demo.py -> build/bdist.linux-x86_64/egg/pycochleagram
copying build/lib/pycochleagram/utils.py -> build/bdist.linux-x86_64/egg/pycochleagram
copying build/lib/pycochleagram/__init .py -> build/bdist.linux-x86_64/egg/pycochleagram
byte-compiling build/bdist.linux-x86_64/egg/pycochleagram/subband.py to subband.cpython-310.pyc
byte-compiling build/bdist.linux-x86_64/egg/pycochleagram/cochleagram.py to cochleagram.cpython-310.pyc
byte-compiling build/bdist.linux-x86_64/egg/pycochleagram/erbfilter.py to erbfilter.cpython-310.pyc
byte-compiling build/bdist.linux-x86_64/egg/pycochleagram/demo.py to demo.cpython-310.pyc
byte-compiling build/bdist.linux-x86_64/egg/pycochleagram/utils.py to utils.cpython-310.pyc
byte-compiling build/bdist.linux-x86_64/egg/pycochleagram/__init_ .py to _ init_.cpython-310.pyc
creating build/bdist.linux-x86_64/egg/EGG-INFO
copying pycochleagram.egg-info/PKG-INFO -> build/bdist.linux-x86_64/egg/EGG-INFO
copying pycochleagram.egg-info/SOURCES.txt -> build/bdist.linux-x86_ 64/egg/EGG-INFO
copying pycochleagram.egg-info/dependency_links.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying pycochleagram.egg-info/not-zip-safe -> build/bdist.linux-x86_64/egg/EGG-INFO
copying pycochleagram.egg-info/requires.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying pycochleagram.egg-info/top_level.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
creating dist
creating 'dist/pycochleagram-0.1-py3.10.egg' and adding 'build/bdist.linux-x86_64/egg' to it
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing pycochleagram-0.1l-py3.10.egg
creating /usr/local/lib/python3.10/dist-packages/pycochleagram-0.1-py3.10.egg
Extracting pycochleagram-0.1l-py3.10.egg to /usr/local/lib/python3.10/dist-packages
Adding pycochleagram 0.1 to easy-install.pth file

Installed /usr/local/lib/python3.10/dist-packages/pycochleagram-0.1l-py3.10.egg
Processing dependencies for pycochleagram==0.1
Finished processing dependencies for pycochleagram==0.1

from datasets import load_dataset, get dataset config names, get_dataset split names
import IPython.display as ipd

from IPython.display import Audio

from manipulations import *

from analyses import *

import soundfile as sf

import librosa

import torch

from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer

Loading LibriSpeech test data

1s_test = load_dataset("librispeech_asr", "clean", split="test", streaming=True)

Downloading builder script: 11.5k/? [00:00<00:00, 280kB/s]
Downloading metadata: 10.1k/? [00:00<00:00, 174kB/s]

Downloading readme: 10.2k/? [00:00<00:00, 191kB/s]

N_samples = 100
1s_test_subset = list(ls_test.take(N_samples))

def get_signal(ls_item):
return ls_item[ 'audio']['array']

def get_sr(ls_item):
return ls_item[ 'audio']['sampling_rate']

# choose audio sample
sample = ls_test_subset[0]
print(type(sample))

signal = get_signal(sample)
sr = get_sr(sample)

sr_ms = sr / 1000
print(type(signal))
print(sr)

<class 'dict'>
<class 'numpy.ndarray'>
16000

Audio(data=signal, rate=sr)

0:00/0:03

Using the model: Wav2Vec2.0

https://colab.research.google.com/drive/19wNDDWRSSwVqtwwB XDjNqf7LbRCI9B8Y#scroll To=DQKH-CV4I--0&printMode=true 2/23
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# Create an instance of the Wav2Vec2Tokenizer class and load the tokenizer from the "facebook/wav2vec2-base-960h" pretrained n

tokenizer = Wav2Vec2Tokenizer.from pretrained("facebook/wav2vec2-base-960h")

# Create an instance of the Wav2Vec2ForCTC class and load the model from the "facebook/wav2vec2-base-960h" pretrained model

model = Wav2Vec2ForCTC.from pretrained("facebook/wav2vec2-base-960h")

Downloading (...)olve/main/vocab.json: 100% 291/291 [00:00<00:00, 9.35kB/s]
Downloading (...)okenizer_config.json: 100% 163/163 [00:00<00:00, 7.43kB/s]
Downloading (...)cial_tokens_map.json: 100% 85.0/85.0 [00:00<00:00, 2.31kB/s]

Downloading (...)lve/main/config.json: 1.60k/? [00:00<00:00, 49.5kB/s]

The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may

The tokenizer class you load from this checkpoint is 'Wav2Vec2CTCTokenizer'.
The class this function is called from is 'Wav2Vec2Tokenizer'.

/usr/local/lib/python3.10/dist-packages/transformers/models/wav2vec2/tokenization wav2vec2.py:792: FutureWarning: The cl:

warnings.warn(

Downloading model.safetensors: 100% 378M/378M [00:04<00:00, 54.3MB/s]

Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-base-960h and are new!.

You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

# Tokenize the audio signal using the tokenizer and convert it to PyTorch tensors
input_values = tokenizer(signal, return_tensors="pt").input_ values

# Pass the input values through the Wav2Vec2 model to get the logits
logits = model(input_values).logits

# Find the predicted token ids by taking the argmax along the last dimension of the logits
predicted_ids = torch.argmax(logits, dim=-1)

# Decode the predicted token ids into text using the tokenizer and extract the first (and only) sequence

text = tokenizer.batch decode(predicted ids)[0]

#0riginal audio as input
text

'CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS'

Repackaging

~ Redefined timewarp function

#@title Redefined timewarp function
def my_timewarp(signal, stretch_factor):
hop_len = 512
n_fft = 1024
power = None # if None, the complex spectrogram is returned
_spectrogram = torchaudio.transforms.Spectrogram(
n_fft=n_ fft,
win_length=None,
hop_length=hop_len,
power=power,
center=True,
pad_mode="reflect",
)
_timestretch = torchaudio.transforms.TimeStretch(
hop_length=hop_len, n_freq=513, fixed_rate=stretch_factor # > 1.0 is compression

)

_magnitude = lambda arr: torch.abs(arr)
###
_griffinlim = torchaudio.transforms.GriffinLim(
n_iter=32,
n_fft=n_fft,
win_length=None,
hop_length=hop_len,
power=1.0,
)

return _griffinlim(_magnitude(_timestretch(_spectrogram((torch.tensor(signal)))))).numpy()

def _compute_segmentation(signal, win_len):
# Get the remainder of the signal that will be missed by windowing
num_remainder = signal.shape[-1] % win_len
signal_remainder = np.array(signal[signal.shape[-1] - num remainder:])[np.newaxis, :]
# Get sliding windows of the signal, keep only adjacent non-overlapping windows

https://colab.research.google.com/drive/19wNDDWRSSwVqtwwB XDjNqf7LbRCI9B8Y#scroll To=DQKH-CV4I--0&printMode=true
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chunks = np.array(
np.lib.stride_tricks.sliding window_view(signal, win_len, axis=0)[0::win_len, :]
) # shape=(num_chunks, window_shape)

return chunks, signal_remainder

def _compute_insert(chunks, len_silence):
# Assumes shape of “chunks™ is (num_chunks, len_chunks)
# returns chunks with silence. Shape = (num_chunks, len_chunks + len_silence)
return np.concatenate([
np.append(arr, np.zeros(len_silence))[np.newaxis, :]
for arr in chunks
], axis=0)

def _assemble_sequence(chunks, remainder):
return np.concatenate([arr for arr in chunks] + [remainder[0, :]], axis=0)

def compress_insert(signal, len_silence, stretch_factor=3.0, win_len=640):
signal_compressed = my_ timewarp(signal, stretch_factor)

chunks, remainder = _compute_segmentation(signal_ compressed, win_len)
chunks_transf = _compute_insert(chunks, len_silence)
signal transf = _assemble_sequence(chunks_transf, remainder)

return signal_transf

def compress_insert_mix(signal, stretch_ factor=3.0, win_len=640, snr=1.0, len silence=640, src=None):
return mix(
compress_insert(signal=signal, len_silence=len_silence,
stretch_factor=stretch_factor, win_len=win_len),
snr=snr,
src=src

)

#Changing the number of samples in which silence is added
len_silence_list = [1280, 1067, 914, 800, 711, 640, 582, 533, 492, 457, 427, 400, 376, 356, 337, 320 ]
#Creating list of manipulated audios
cimed_list = []
#Manipulating audios with different silence length
for length in len_silence_ list:
cimed = compress_insert mix(signal,
stretch_factor= 2.0,
win_len=640,
snr=1.0,
len_silence= length,
src=None)
print(length)
ipd.display(Audio(data=cimed, rate=sr))
cimed_list.append(cimed)

https://colab.research.google.com/drive/19wNDDWRSSwVqtwwB XDjNqf7LbRCI9B8Y#scroll To=DQKH-CV4I--0&printMode=true 4/23
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1280

0:00/0:05
1067

0:00/0:04
914

0:00/0:04
800

0:00/0:03
711

0:00/0:03
640

0:00/0:03
582

0:00/0:03
533

#Feeding manipulations to Wav2Vec2.0

text2_list = []

for s in cimed_list:
input_values = tokenizer(s,return_tensors="pt").input_ values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits,dim=-1)
text_2 = tokenizer.batch_decode(predicted_ids)[0]
text2_list.append(text_2)
print(text_2)
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Analysis
U:00 / V:02

!pip install jiwer

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting jiwer
Downloading jiwer-3.0.2-py3-none-any.whl (21 kB)
Requirement already satisfied: click<9.0.0,>=8.1.3 in /usr/local/lib/python3.10/dist-packages (from jiwer) (8.1.3)
Collecting rapidfuzz==2.13.7 (from jiwer)
Downloading rapidfuzz-2.13.7-cp310-cp310-manylinux_2_ 17_x86_64.manylinux2014_x86_64.whl (2.2 MB)
2.2/2.2 MB 24.4 MB/s eta 0:00:00
Installing collected packages: rapidfuzz, jiwer
Successfully installed jiwer-3.0.2 rapidfuzz-2.13.7

#Calculating Word Eroor Rate for each manipulation
from jiwer import wer

reference = text

error_list = []

for hypothesis in text2_list:
error = wer(reference, hypothesis)
print(error)
error_ list.append(error)
print(error_list)
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0.875,
0.875,
0.875,
0.875,
0.875,
0.875,
0.875,
0.875,
0.875,
0.875,

0.875,

import plotly.express as px

def create_graph(x_values, y_values):
# Create the plot using Plotly Express

0.875]
0.875,
0.875,
0.875,
0.875,
0.875,
0.875,
0.875,
0.875,
0.875,
0.875,

0.875,

0.75,

0.75,

0.75,

0.75,

0.75,

0.75,

0.75,
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0.875]
0.875, 0.875]
0.875, 0.875,
0.875, 0.875,
0.875, 0.875,
0.875, 0.875,
0.875, 0.875,
0.875, 0.875,
0.875, 0.875,

0.875, 0.875,

fig = px.line(x=x_values, y=y values, markers=True)

# Customize the plot

fig.update_layout(
xaxis_title="Audio:Silence Ratio",

yaxis_title="WER (Word Error Rate)",
title="Wav2Vec Word Error Rate",
legend_title="",
showlegend=True,
xaxis=dict(tickfont=dict(size=10)),
yaxis=dict(showgrid=True, gridcolor='gray', gridwidth=0.5),
margin=dict(1=50, r=50, t=50, b=50),

# Show the plot
fig.show()

# Example data

x_data = [0.5, 0.6, 0.7,

y_data = error_list

0.8,

0.9, 1.0, 1.

# Call the function to create the graph
create_graph(x_data, y_data)
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1.0, 0.875]
1.0, 0.875, 1.0]
1.0, 0.875, 1.0,
1.0, 0.875, 1.0,
1.0, 0.875, 1.0,
1.0, 0.875, 1.0,

1.0, 0.875, 1.0,

1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,

1.0]
1.0,
1.0,
1.0,

1.0,

1.8,

1.0]
1.0,
1.0,

1.0,

1.9,

1.0]
1.0,

1.0,

2]

1.0]

1.0,

1.0]
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Wav2Vec Word Error Rate

1.15
1.1 A
1.05
Masking
o \ A I

# Define a list of window lengths(number of samples) for masking
winlen list = [1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

# Create an empty list to store the masked signals
masked_list = []

# Iterate over each window length in the winlen_ list
for length_2 in winlen_ list:

# Mask the original signal using the specified parameters
masked = mask(signal,

win_len=length_2,

mask_fraction=0.5,

mask="noise", # "silence" or "noise"
snr=0.75,
fade_len=0)

# Display the masked audio signal using IPython's display function
ipd.display(Audio(data=masked, rate=sr))

# Append the masked signal to the masked list
masked_list.append(masked)

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

# Create an empty list to store the resulting text after feeding masked signals to Wav2Vec2.0
text3_list = []

# Iterate over each masked signal in the masked_list
for m in masked_ list:

# Tokenize the masked signal using the tokenizer and convert it to PyTorch tensors
input_values = tokenizer(m, return_ tensors="pt").input_values

# Pass the input values through the Wav2Vec2.0 model to get the logits
logits = model(input_values).logits
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# Find the predicted token ids by taking the argmax along the last dimension of the logits
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predicted_ids = torch.argmax(logits, dim=-1)

# Decode the predicted token ids into text using the tokenizer and extract the first (and only) sequence

text_3 =

tokenizer.batch_decode(predicted_ids)[0]

# Append the resulting text to the text3 list
text3_list.append(text_3)

# Print the resulting text
print(text_3)

CONCORD
CONCORD
CONCORD
CONCORD
CONCORD
CONCORD
CONCORD
CONCORD
CONCORD
CONCORD
CONCORD

analysing

RETURNED
RETURNED
RETURNED
RETURNED
RETURNED
RETURNED
RETURNED
RETURNED
RETURNED
RETURNED
RETURNED

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

ITS
ITS
ITS
ITS
ITS
ITS
ITs
ITS
ITS
ITS
ITS

# Import the word error rate
from jiwer import wer

# Set the reference text for

reference =

# Create an empty list to store the WER for each manipulation

error_list 2

text

=11

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

(WER)

AMIDST
AMIDST
AMIDST
AMIDST
AMIDST
AMIDST
AMIDST
AMIDST
AMIDST
AMIDST
AMIDST

calculation function from the jiwer library

comparison

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

TENTS
TENTS
TENTS
TENTS
TENTS
TENTS
TENTS
TENTS
TENTS
TENTS
TENTS

# Iterate over each hypothesis text in text3_list
for hypothesis 2 in text3_list:

# Calculate the word error rate (WER) between the reference and the hypothesis text

error_2

# Print the calculated WER
print(error_2)

# Append the WER to the error_ list 2
error_list_2.append(error_2)

wer (reference, hypothesis_2)

# Print the current contents of the error list 2
print(error_list 2)

0.0
[0.0]
0.0
[0.0, 0.0]
0.0
[0.0, 0.0, 0.0]
0.0
[0.0, 0.0, 0.0, 0.0]
0.0
[0.0, 0.0, 0.0, 0.0, 0.0]
0.0
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
0.0
(.o, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
0.0
(.o, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
0.0
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
0.0
[o.o, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
0.0
[o.o, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
Visualising (make changes)
import matplotlib.pyplot as plt
def create graph(x_values, y_values):
# Customize the plot
plt.plot(x_values, y_values, marker='o', linestyle='-', color='b', linewidth=2)

plt.xlabel("Window length (ms)",

https://colab.research.google.com/drive/19wNDDWRSSwVqtwwB XDjNqf7LbRCI9B8Y#scroll To=DQKH-CV4I--0&printMode=true

fontsize=12)
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plt.ylabel('WER (Word Error Rate)', fontsize=12)
plt.title("Wav2Vec Word Error Rate", fontsize=14)
plt.grid(True)

# Customize the x-axis tick values and labels
plt.xticks(x_values, fontsize=10)

# Add a background grid
plt.grid(color='gray', linestyle='--', linewidth=0.5)

# Add a legend
plt.legend([ 'WER'], loc='lower right'")

# Adjust the plot margins
plt.margins(0.05)

# Show the plot
plt.show()

# Example data
x_data = [1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

y_data = error_list_2

# Call the function to create the graph
create_graph(x_data, y_data)

Wav2Vec Word Error Rate

0.04 A
g
G 0.02 -
o
e
o
1
Y000l e—e—e—o—o—o—o—o—o—o—o
g :
&
o
& —0.02 |
=
—0.04 1
—e— WER
T T T T T T T T T T T
1 100 200 300 400 500 600 700 800 900 1000
Window length (ms)
Silencing
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# Define a list of window lengths(number of samples) for silencing
win_len_list = [1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

# Create an empty list to store the silenced signals
silenced_list = []

# Iterate over each window length in the win_len list
for length_3 in win_len_list:

# Silence the original signal using the specified parameters
silenced = mask(signal,

win_len=length_3,

mask_fraction=0.5,

mask="silence", # "silence" or "noise"
snr=0.75,
fade_len=0)

# Display the silenced audio signal using IPython's display function
ipd.display(Audio(data=silenced, rate=sr))

# Append the silenced signal to the silenced_list
silenced_list.append(silenced)

/usr/local/lib/python3.10/dist-packages/IPython/lib/display.py:174: RuntimeWarning:

invalid value encountered in true_divide

0:00/0:03

0:00/0:03

0:00/0:08

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

# Create an empty list to store the resulting text after feeding silenced signals to Wav2Vec2.0
textd_list = []

# Iterate over each silenced signal in the silenced list
for silence in silenced_list:

# Tokenize the silenced signal using the tokenizer and convert it to PyTorch tensors
input_values = tokenizer(silence, return_tensors="pt").input_values

# Pass the input values through the Wav2Vec2.0 model to get the logits
logits = model(input_values).logits

# Find the predicted token ids by taking the argmax along the last dimension of the logits
predicted_ids = torch.argmax(logits, dim=-1)

# Decode the predicted token ids into text using the tokenizer and extract the first (and only) sequence
text_4 = tokenizer.batch_decode(predicted_ids)[0]

# Append the resulting text to the text4 list
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text4_list.append(text_4)

# Print the resulting text
print(text 4)

AYMATHEPEND
COR RETURN LAAMIDS THE TENT

Analysis

# Set the reference text for comparison
reference = text

# Create an empty list to store the WER for each manipulation
error_list 3 = []

# Iterate over each hypothesis text in text4 list
for hypothesis_3 in text4_list:

# Calculate the word error rate (WER) between the reference and the hypothesis text
error_3 = wer(reference, hypothesis_3)

# Print the calculated WER
print(error_3)

# Append the WER to the error_list_3
error_list_3.append(error_3)

# Print the current contents of the error list 3
print(error_list_3)

1.0
[1.0]

1.0

[1.0, 1.0]

1.0

[1.0, 1.0, 1.0]

1.0

[1.0, 1.0, 1.0, 1.0]

1.0

[1.0, 1.0, 1.0, 1.0, 1.0]

1.0

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

1.0

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

1.0

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

1.0

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

1.0

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
0.875

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.875]

Visualising

import matplotlib.pyplot as plt

def create_graph(x_values, y_values):
# Customize the plot
plt.plot(x_values, y_values, marker='o', linestyle='-', color='b', linewidth=2)
plt.xlabel("Window Length (ms)", fontsize=12)
plt.ylabel('WER (Word Error Rate)', fontsize=12)
plt.title("Wav2Vec Word Error Rate", fontsize=14)
plt.grid(True)

# Customize the x-axis tick values and labels
plt.xticks(x_values, fontsize=10)

# Add a background grid
plt.grid(color='gray', linestyle='--', linewidth=0.5)
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# Add a legend
plt.legend([ 'WER'], loc='lower right')

# Adjust the plot margins
plt.margins(0.05)

# Show the plot
plt.show()

# Example data
x_data = [1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

y_data = error_list_3

# Call the function to create the graph
create_graph(x_data, y_data)

Wav2Vec Word Error Rate
1.00 1 o———————————————¢

0.98 4

0.96 4

0.94 1

0.92

WER (Word Error Rate)

0.90

0.88 4 WER

T T T T T T T T T T
1 100 200 300 400 500 600 700 800 900 1000
Window Length (ms)

My Manipulation (frequency shift)

#Shifting to higher frequency
import numpy as np

from scipy.io import wavfile

from scipy.fft import rfft, irfft

# Normalize the audio data
signal = signal / np.max(np.abs(signal))

# Compute the FFT
transformed_audio = rfft(signal)

# Perform the frequency shift
shift_frequency list =[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] # Frequency shift amount (Hz)

# shift the frequencies

shift list = []

for shift_ frequency in shift frequency list:
shift indices = np.round(shift_ frequency * len(transformed_audio) / sr).astype(int)
transformed_audio_shifted = np.roll(transformed_audio, shift_indices)
shift list.append(transformed audio_shifted)

# Apply the inverse FFT

shift_data_list = []

for transformed audio in shift_list:
shifted audio_data = irfft(transformed audio)
shift_data_list. append(shifted_audio_data)
ipd.display(Audio(data=shifted_audio_data, rate=sr))
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0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

#Feeding manipulations to Wav2Vec2.0
# Create an empty list to store the resulting text after feeding shifted data to Wav2Vec2.0
text5_list = []

# Iterate over each data in shift_data_list
for data in shift_data_ list:

# Tokenize the shifted data using the tokenizer and convert it to PyTorch tensors
input_values = tokenizer(data, return_tensors="pt").input values

# Pass the input values through the Wav2Vec2.0 model to get the logits
logits = model(input_values).logits

# Find the predicted token ids by taking the argmax along the last dimension of the logits
predicted_ids = torch.argmax(logits, dim=-1)

# Decode the predicted token ids into text using the tokenizer and extract the first (and only) sequence
text_5 = tokenizer.batch_decode(predicted_ids)[0]

# Append the resulting text to the text5_list
text5_list.append(text_5)

# Print the resulting text
print(text_5)

CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS
CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS
CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS
CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS
CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS
CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS
CONCARD RETURNED TO ITS PLACE AMIDST THE TENTS
CONCARD RETURNED TO ITS PLACE AMIDST THE TENTS
CONCARN RETURNED TO ITS PLACE AMIDST THE TENTS
KANCAR RETURNED TO ITS PLACE AMIDST THE TENTS

# Set the reference text for comparison
reference = text

# Create an empty list to store the WER for each manipulation
error_list 4 = []

# Iterate over each hypothesis text in text5_list
for hypothesis 4 in text5_list:

# Calculate the word error rate (WER) between the reference and the hypothesis text
error_4 = wer(reference, hypothesis_4)

# Print the calculated WER
print(error_4)

# Append the WER to the error list 4
error_list_4.append(error_4)
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# Print the current contents of the error list 4
print(error_list_4)

0.0
[0.0]
0.0

[0.0,
0.0

[0.0,
0.0

[0.0,
0.0

[0.0,
0.0

[0.0,
0.125
[0.0,
0.125
[0.0,
0.125
[0.0,
0.125
[0.0,

0.0]
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,

0.0,

0.0]
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,

0.0,

0.0]

0.0,

0.0,

0.0,

0.0,

0.0,

0.0,

0.0]

0.0,

0.0,

0.0,

0.0,

0.0,

0.0]
0.0,
0.0,
0.0,

0.0,

import matplotlib.pyplot as plt

0.125]

0.125,

0.125,

0.125,

def create graph(x_values, y_values):

# Customize the plot

plt.plot(x_values, y_values, marker='o', linestyle='-', color='b', linewidth=2)

plt.xlabel("Frequency Shift (Hz)",
plt.ylabel('WER (Word Error Rate)', fontsize=12)

plt.title("Wav2Vec Word Error Rate",

plt.grid(True)

# Customize the x-axis tick values and labels

plt.xticks(x_values, fontsize=10)

# Add a background grid
plt.grid(color='gray', linestyle='--', linewidth=0.5)

# Add a legend

plt.legend([ 'WER'],

# Adjust the plot margins
plt.margins(0.05)

# Show the plot
plt.show()

# Example data
x_data = [100,
y_data = error_list_4

# Call the function to create the graph

200,

300,

400,

create_graph(x_data, y_data)
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500,

600,

0.125]

0.125,

0.125,

0.125]

0.125, 0.125]

fontsize=12)

loc='lower right')

700,

800,

fontsize=14)

900,

10007
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Wav2Vec Word Error Rate

import numpy as np
from scipy.io import wavfile
from scipy.fft import rfft, irfft

# Normalize the audio data
signal = signal / np.max(np.abs(signal))

# Perform the frequency shift
shift_ frequency = [-100, -200, -300, -400, -500, -600, -700, -800, -900, -1000] # Frequency shift amount (Hz)

# Compute the FFT
transformed_audio = rfft(signal)

# Shift the frequencies
shifted list = []
for shifted frequency in shift frequency:
shift indices2 = np.round(shifted_frequency * len(transformed_audio) / sr).astype(int)
transformed_audio_shifted2 = np.roll(transformed_audio, shift_ indices2)
shifted list.append(transformed_audio_shifted2)
# Apply the inverse FFT
shifted data list =[]
for transformed audio2 in shifted list:
shifted audio_data2 = irfft(transformed_audio2)

shifted data list.append(shifted_audio_data2)
ipd.display(Audio(data=shifted_audio_data2, rate=sr))

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:03

0:00/0:08

0:00/0:03

0:00/0:03

# Create an empty list to store the resulting text after feeding shifted data to Wav2Vec2.0
text6_list = []

# Iterate over each data2 in shifted _data_list
for data2 in shifted data_list:

# Tokenize the shifted data2 using the tokenizer and convert it to PyTorch tensors
input_values = tokenizer(data2, return_ tensors="pt").input_values

# Pass the input values through the Wav2Vec2.0 model to get the logits
logits = model(input_values).logits

# Find the predicted token ids by taking the argmax along the last dimension of the logits
predicted_ids = torch.argmax(logits, dim=-1)

# Decode the predicted token ids into text using the tokenizer and extract the first (and only) sequence
text_6 = tokenizer.batch_decode(predicted_ids)[0]

# Append the resulting text to the text6 list
text6_list.append(text_6)
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# Print the resulting text
print(text_6)

CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS

CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS

CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS

CONICORD RETURNED TO ITS PLACE AMITS THE TENTS

CONCON RETURNED TO ITS PLACE AMITS THE TENTS

CORRINCLLY ON WHAT TURN TO ITS PLACE IN AMIDST THE TURNS
CARECALY O MATURN T WHICH PASON AMIDST THE TUDES
CARENTLY ON A TRUNK WHICH CANS NEITS THE TUBES

CERECLY O A TRONTWITCH GAINST EM ITS THE TURNS

CAR CLE OF A TROMPAT GAINST AMIDST THE TANTS

# Set the reference text for comparison
reference = text

# Create an empty list to store the WER for each manipulation
error_list 5 = []

# Iterate over each hypothesis text in text6_ list
for hypothesis_5 in text6_list:

# Calculate the word error rate (WER) between the reference and the hypothesis text
error_5 = wer(reference, hypothesis_5)

# Print the calculated WER
print(error_5)

# Append the WER to the error_list_5
error_list_5.append(error_5)

# Print the current contents of the error list 5
print(error_list_5)

0.0
[0.0]

0.0

[0.0, 0.0]

0.0

[0.0, 0.0, 0.0]

0.25

[0.0, 0.0, 0.0, 0.25]

0.25

[0.0, 0.0, 0.0, 0.25, 0.25]

0.75

[0.0, 0.0, 0.0, 0.25, 0.25, 0.75]

0.875

[0.0, 0.0, 0.0, 0.25, 0.25, 0.75, 0.875]

1.0

[0.0, 0.0, 0.0, 0.25, 0.25, 0.75, 0.875, 1.0]

1.0

[0.0, 0.0, 0.0, 0.25, 0.25, 0.75, 0.875, 1.0, 1.0]
0.875

(0.0, 0.0, 0.0, 0.25, 0.25, 0.75, 0.875, 1.0, 1.0, 0.875]

import matplotlib.pyplot as plt

def create_graph(x values, y_values):
# Customize the plot

plt.plot(x_values, y values, marker='o', linestyle='-', color='b', linewidth=2)
plt.xlabel("Negative Frequency Shift (Hz)", fontsize=12)
plt.ylabel( 'WER (Word Error Rate)', fontsize=12)

plt.title("Wav2Vec Word Error Rate", fontsize=14)
plt.grid(True)

# Customize the x-axis tick values and labels
plt.xticks(x_values, fontsize=10)

# Add a background grid
plt.grid(color='gray', linestyle='--', linewidth=0.5)

# Add a legend
plt.legend([ 'WER'], loc='lower right')

# Adjust the plot margins
plt.margins(0.05)
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# Show the plot
plt.show()

# Example data
x_data = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

y_data = error_list_5

# Call the function to create the graph
create_graph(x_data, y_data)

Wav2Vec Word Error Rate

1.0 4

0.8

0.6 1

0.4 4

WER (Word Error Rate)

0.2 1

0.0 1 i i H —8— WER

T T T T T T T T T T
100 200 300 400 500 600 70O 800 900 1000
Negative Frequency Shift (Hz)

Final Repackaging

#Summing list repacking of 10 audios
import numpy as np

# Declaring initial list of list
List rp = np.array([[1.0, 1.125, 1.0, 0.875, 0.875, 0.75, 0.875, 0.875, 0.875, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],

[0.9767441860465116, 1.0465116279069768, 1.0, 1.0, 0.9767441860465116, 1.0, 0.8837209302325582, 0.8837209302325582, 0.9767441¢

(.o, 1.0, 1.2727272727272727, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.07],

[1.0, 1.0, 1.0, 0.9841269841269841, 0.9682539682539683, 0.9682539682539683, 0.9523809523809523, 0.9365079365079365, 0.92063492

[1.2903225806451613, 1.032258064516129, 0.967741935483871, 1.0, 0.9354838709677419, 0.967741935483871, 0.967741935483871,
[1.5454545454545454, 1.2727272727272727, 1.3636363636363635, 1.1818181818181819, 1.0303030303030303, 0.9696969696969697,
[1.0588235294117647, 2.411764705882353, 2.0588235294117645, 1.3529411764705883, 0.9411764705882353, 0.8235294117647058,

0.9:

0.727
0.5882

[L.o0, 1.0, 0.8888888888888888, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.6666666666666666, 0.8888888888888888, 0.666666666666¢
[1.0, 2.272727272727273, 2.0, 1.0, 0.9090909090909091, 1.0, 1.0, 1.0, 0.8181818181818182, 0.6363636363636364, 0.81818181818181
[0.9583333333333334, 0.9166666666666666, 0.9166666666666666, 1.4583333333333333, 1.0, 0.8333333333333334, 0.875, 0.8333333333:Z

# Using numpy sum
res_rp = np.sum(List_rp, 0)

# printing result

print("final list - ", str(res_rp))
final list - [10.82967817 13.07765561 12.46848466 10.85221968 9.63605244 9.31255562

8.86935184 8.90551963 8.44773561 8.76324605 9.06871431 8.64305329
9.02906952 9.08798065 8.4714072 8.35866845]

# Define a list of floating-point numbers

myList_rp = [10.82967817, 13.07765561, 12.46848466, 10.85221968, 9.63605244, 9.31255562, 8.86935184, 8.90551963, 8.44773561, ¢

# Define an integer value
myInt = 10

# Create a new list by dividing each element of myList rp by myInt
newList_rp = [x / myInt for x in myList_rp]

# Print the new list

print(newList_rp)

[1.0829678169999999, 1.307765561, 1.2468484659999999, 1.085221968, 0.963605244, 0.9312555619999999, 0.886935184,

#Creating the final visualisation
import plotly.express as px

https://colab.research.google.com/drive/19wNDDWRSSwVqtwwB XDjNqf7LbRCI9B8Y#scroll To=DQKH-CV4I--0&printMode=true
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def create_graph(x values, y_values):
# Create the plot using Plotly Express
fig =

px.line(x=x_values, y=y_values, markers=True)

# Customize the plot

fig.update_layout(
xaxis_title="Audio:Silence Ratio",
yaxis_title="WER (Word Error Rate)",
title="Wav2Vec Word Error Rate",
legend title="",
showlegend=True,
xaxis=dict(tickfont=dict(size=10)),
yaxis=dict (showgrid=True, gridcolor='gray',
margin=dict(1=50, r=50, t=50, b=50),

gridwidth=0.5),

# Show the plot
fig.show()

# Example data
x_data [0.5, 0.6, 0.7, 0.8,
y_data [1.0829678169999999,

1.8, 1.9, 2]
0.963605244,

0.9, 1.0, 1.1, 1.2, 1.3, 1.4,
1.307765561, 1.2468484659999999,

1.5, 1.6, 1.7,
1.085221968,

0.9312555619999999, 0.886935184,

# Call
create_graph(x_data, y_data)

the function to create the graph

Wav2Vec Word Error Rate

1.3

1.2

1.1

WER (Word Error Rate)

»—\//A\/‘/‘

0.5 1.5

Audio:Silence Ratio

Final Masking

List_mask np.array([((o.o, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07,
[0.09302325581395349, 0.0, 0.046511627906976744, 0.046511627906976744, 0.046511627906976744,
[o.o, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07],
[0.14285714285714285, 0.047619047619047616, 0.07936507936507936,
[0.03225806451612903, 0.03225806451612903, 0.0, 0.0, 0.03225806451612903,
[o.o, 0.0, 0.0, 0.0, 0.0, 0.030303030303030304, 0.06060606060606061, 0.0,
[o.o, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07],

[o.o, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07],
[0.09090909090909091, 0.09090909090909091, 0.0, 0.09090909090909091, 0.09090909090909091,
[0.041666666666666664, 0.041666666666666664, 0.041666666666666664, 0.0, 0.041666666666666664,

0.09302325581395349, 0.09302

0.047619047619047616, 0.14285714285714285, 0.14285714285

0.0, 0.03225806451612903, 0.03225806451612903,
0.0, 0.0, 0.0],

0.09090909090909091,
0.041666666666666664,

# Using numpy sum
res_mask np.sum(List_mask, 0)

# printing result
print("final list -

, str(res_mask))

final list - [0.40071422 0.21245287 0.16754337 0.18503977 0.35420259 0.39875919
0.46132028 0.33416836 0.2046464 0.16662499 0.12154378]

# Define a list of floating-point numbers
[0.40071422, 0.21245287, 0.16754337,

myList_mask 0.18503977, 0.35420259, 0.39875919, 0.46132028, 0.33416836, 0.2046464,
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# Define an integer value
myInt = 10

# Create a new list by dividing each element of myList_mask by myInt
newList mask = [x / myInt for x in myList_mask]

# Print the new list
print(newList_mask)

[0.040071422, 0.021245286999999998, 0.016754337, 0.018503976999999998, 0.035420258999999996, 0.039875918999999996, 0.046:

#Final Visualisation for masking
import plotly.express as px

def create_graph(x_values, y_values):
# Create the plot using Plotly Express
fig = px.line(x=x_values, y=y values, markers=True)

# Customize the plot
fig.update_layout(
xaxis_title="Window Length (ms)",
yaxis_title="WER (Word Error Rate)",
title="Wav2Vec Word Error Rate",
legend_title="",
showlegend=True,
xaxis=dict(tickfont=dict(size=10)),
yaxis=dict(showgrid=True, gridcolor='gray', gridwidth=0.5),
margin=dict(1=50, r=50, t=50, b=50),

# Show the plot
fig.show()
# Example data
x_data = [1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

y_data = [0.040071422, 0.021245286999999998, 0.016754337, 0.018503976999999998, 0.035420258999999996, 0.039875918999999996, 0.

# Call the function to create the graph
create_graph(x_data, y_data)

Wav2Vec Word Error Rate
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Final Silencing

#Summing list repacking of 10 audios
import numpy as np

# Declaring initial list of list
List_sil = np.array([([1.o, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.875],
[t.o, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.7674418604651163, 0.8837209302325582, 0.6511627906976745],
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(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.7272727272727273, 0.9090909090909091, 0.5454545454545454],
{t.o, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.7936507936507936, 0.8571428571428571, 0.5555555555555556],

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9032258064516129, 0.8387096774193549, 0.7096774193548387],

{t.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.3939393939393939, 0.6060606060606061, 0.36363636363636365],

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9411764705882353, 0.23529411764705882, 0.5294117647058824, 0.29411764705882354],
(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.4444444444444444, 1.0, 0.5555555555555556],

{t.o, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8181818181818182, 0.7272727272727273, 0.7272727272727273],

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.7083333333333334, 0.7083333333333334, 0.5833333333333334]])

# Using numpy sum
res_sil = np.sum(List_sil, 0)

# printing result
print("final list -

, str(res_sil))

final list - [10. 10. 10. 10. 10. 10.
10. 9.94117647 6.7917843 8.05974281 5.86076594]

# Define a list of floating-point numbers
myList_sil = [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 9.94117647, 6.7917843, 8.05974281, 5.86076594]

# Define an integer value
myInt = 10

# Create a new list by dividing each element of myList sil by myInt
newList_sil = [x / myInt for x in myList_sil]

# Print the new list
print(newList_sil)

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.994117647, 0.67917843, 0.8059742809999999, 0.586076594]

#Final Visualisation for silencing
import plotly.express as px

def create_graph(x_values, y values):
# Create the plot using Plotly Express
fig = px.line(x=x_values, y=y values, markers=True)

# Customize the plot
fig.update_layout(
xaxis_title="Window Length (ms)",
yaxis_title="WER (Word Error Rate)",
title="Wav2Vec Word Error Rate",
legend_title="",
showlegend=True,
xaxis=dict(tickfont=dict(size=10)),
yaxis=dict(showgrid=True, gridcolor='gray', gridwidth=0.5),
margin=dict(1=50, r=50, t=50, b=50),

# Show the plot
fig.show()
# Example data

x_data = [1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
y_data = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.994117647, 0.67917843, 0.8059742809999999, 0.586076594]

# Call the function to create the graph
create_graph(x_data, y_data)

o
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List_fsu = np.array([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.125, 0.125, 0.125, 0.125],

[0.0, 0.0, 0.023255813953488372, 0.023255813953488372, 0.0, 0.0, 0.023255813953488372, 0.023255813953488372,

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.09090909090909091, 0.090909090909090917],

[0.047619047619047616, 0.06349206349206349, 0.015873015873015872, 0.06349206349206349, 0.047619047619047616,
[0.0, 0.0, 0.03225806451612903, 0.03225806451612903, 0.03225806451612903, 0.03225806451612903, 0.06451612903225806,

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.030303030303030304, 0.0, 0.09090909090909091, 0.09090909090909091],

(0.0, o.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.17647058823529413, 0.5294117647058824],

(0.0, 0.0, 0.0, 0.0, 0.0, 0.1111111111111111, 0.1111211111111111, 0O.1111111111111111, 0.1111111111111111,

[o.o, 0.0, 0.0, 0.0, 0.0, 0.09090909090909091, 0.0, 0.0, 0.0, 0.36363636363636365],

[0.0, 0.041666666666666664, 0.041666666666666664, 0.041666666666666664, 0.041666666666666664, 0.041666666666666664,

# Using numpy sum
res_fsu = np.sum(List_fsu, 0)

# printing result
print("final list -

, str(res_fsu))

final list - [0.04761905 0.10515873 0.11305356 0.16067261 0.12154378 0.32356398
0.45934481 0.42904178 0.89784628 1.63819167]

# Define a list of floating-point numbers

myList_fsu = [0.04761905, 0.10515873, 0.11305356, 0.16067261, 0.12154378, 0.32356398, 0.45934481, 0.42904178,

# Define an integer value
myInt = 10

# Create a new list by dividing each element of myList sil by myInt
newList_fsu = [x / myInt for x in myList_fsu]

# Print the new list
print(newList_fsu)

[0.004761905, 0.010515873, 0.011305355999999999, 0.016067261, 0.012154378, 0.032356397999999995, 0.045934481,

# Final Visualsiation Frequency Up
import plotly.express as px

def create_graph(x_values, y_values):
## Create the plot using Plotly Express
fig = px.line(x=x_values, y=y values, markers=True)

## Customize the plot

fig.update_layout(
xaxis_title="Frequency Shift (Hz)",
yaxis_title="WER (Word Error Rate)",
title="Wav2Vec Word Error Rate",
legend_title="",
showlegend=True,
xaxis=dict(tickfont=dict(size=10)),

yaxis=dict(showgrid=True, gridcolor='gray', gridwidth=0.5, range=[0, 0.8]), # Set y-axis range to [0, 0.8]

margin=dict(1=50, r=50, t=50, b=50),
## Show the plot
fig.show()
## Example data
x_data = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

y_data = [0.004761905, 0.010515873, 0.011305355999999999, 0.016067261, 0.012154378, 0.032356397999999995,

## Call the function to create the graph
create_graph(x_data, y_data)
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List_fsd = np.array([[0.0, 0.0, 0.0, 0.25, 0.25, 0.75, 0.875, 1.0, 1.0, 0.875],

[0.0, 0.0, 0.0, 0.023255813953488372, 0.046511627906976744, 0.046511627906976744, 0.13953488372093023,

[0.047619047619047616, 0.06349206349206349, 0.015873015873015872, 0.06349206349206349, 0.047619047619047616,

0.5813953488372093, 0.¢
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8181818181818182, 1.2727272727272727, 1.4545454545454546, 1.1818181818181819],

0.047619047619047

[0.0, 0.03225806451612903, 0.0, 0.0, 0.03225806451612903, 0.25806451612903225, 0.7096774193548387, 0.8709677419354839, 0.96774
[0.0, 0.0, 0.06060606060606061, 0.030303030303030304, 0.030303030303030304, 0.09090909090909091, 0.18181818181818182, 0.272727

[0.0, 0.0, 0.0, 0.0, 0.0, 0.11764705882352941, 0.29411764705882354, 0.5294117647058824, 0.7058823529411765,
, 0.0, 0.0, 0.1111111111111111, 0.4444444444444444, 0.4444444444444444, 0.7777777777777778, 0.7777777777777778,

[o.
[o.

# Using numpy sum
res_fsd = np.sum(List_fsd, 0)

# printing result
print("final list - ", str(res_fsd))

final list - [0.04761905 0.22075013 0.11814574 0.56149535 1.10871197 2.41049882
5.24596343 6.93668106 8.34670476 8.22911742]

# Define a list of floating-point numbers

myList_fsd = [0.04761905, 0.22075013, 0.11814574, 0.56149535, 1.10871197, 2.41049882, 5.24596343, 6.93668106,

# Define an integer value
myInt = 10

# Create a new list by dividing each element of myList sil by myInt
newList_fsd = [x / myInt for x in myList_fsd]

# Print the new list
print(newList_fsd)

[0.004761905, 0.022075012999999997, 0.011814574, 0.056149534999999993, 0.110871197, 0.241049882,

# Final Visualsation Frequency Down
import plotly.express as px

def create_graph(x_values, y_values):
# Create the plot using Plotly Express
fig = px.line(x=x_values, y=y values, markers=True)

# Customize the plot
fig.update_ layout(
xaxis_title="Negative Frequency Shift(Hz)",
yaxis_title="WER (Word Error Rate)",
title="Wav2Vec Word Error Rate",
legend_title="",
showlegend=True,
xaxis=dict(tickfont=dict(size=10)),
yaxis=dict(showgrid=True, gridcolor='gray', gridwidth=0.5),
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margin=dict(1=50, r=50, t=50, b=50),
)

# Show the plot
fig.show()

# Example data
x_data = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
y_data = [0.004761905, 0.022075012999999997, 0.011814574, 0.056149534999999993, 0.110871197, 0.241049882, 0.524596343, 0.6936¢

# Call the function to create the graph
create_graph(x_data, y_data)
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