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In this paper, a new type of neural network, the Spike-Timing Depen-
dent Plasticity (STDP) model, is introduced within the framework of
Bidirectional Phonology & Phonetics (BiPhon) in the interest of creat-
ing a more biologically accurate neural network (NN) that implements
temporality through causal relations between nodes. Two STDP mod-
els were tested: the first model focused on the functionality of STDP,
demonstrating the ability of the network to adjust weights accord-
ingly; the second model was set in the BiPhon-NN framework and was
tested on its ability to learn from input to produce the correct output.
A simulation consisting of exclusively excitatory connections was un-
successful in establishing balanced bidirectional weights to produce
the correct output. Additionally, a second simulation including exci-
tatory and inhibitory connections was run and elicited similar results
to the first. The simplification of the model may be the key driving
force behind the lack of bidirectionality of the model. Further im-
provements to the model can include the implementation of memory
leak adjustments, a distinction of high- and low-frequency stimulation,
and triplet learning.

Journal of Language Modelling Template, Master's thesis (2022). pp. 1–31



Angelica van Beemdelust

1 INTRODUCTION

The combination of artificial intelligence and linguistic research aims
to describe and explain various phenomena in language using neu-
ral networks (NN) and models that replicate what occurs in natural
speech. These models account for generalizations found across lan-
guages and phenomena that have been discovered through research
in psycholinguistics. Focusing on speech perception and production,
a bidirectional grammar model of phonetics and phonology (BiPhon)
has previously been used to account for experimental and linguistic
data (Boersma 2011) and has been combined with NNs (Beemdelust
2020; Boersma 2019; Boersma et al. 2020; Seinhorst 2021). Written
language is semi-permanent - what is on paper stays on paper - while
spoken language is fleeting - in that once words have been said, they
are no longer physically available. Hitherto, no NN within BiPhon
has realistically implemented the aspect of time, temporality, within
speech. One type of NN that does include a temporal aspect and also
has been considered a biologically plausible network is that of the
spike-timing dependent plasticity (STDP) model (Sjöström and Gerst-
ner 2010). In this paper, it is the aim to use an STDP-model within the
framework of BiPhon-NN to create a more biologically accurate NN
model. Section 2 provides the background required for understanding
the BiPhon grammar model as well as the STDP-model. In section 3,
the first of two STDP-models is described and analyzed with the second
STDP-model being presented and tested in 4. The final two sections,
section 5 and 6 contain the discussion and conclusion respectively.

2 BACKGROUND

The background is divided into three sections: section 2.1 outlines the
bidirectional phonology & phonetics framework; section 2.2, contains
a short description of a biological neuron to better understand the
functionality of Spike-Timing Dependent Plasticity models, and in the
final section, section 2.3, this model is further elaborated.
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Figure 1:
The BiPhon
grammar model

2.1Bidirectionality in Phonetics & Phonology

Within phonetics and phonology, one framework that is used is Bidi-
rectional Phonology & Phonetics (BiPhon) (Boersma 2011). Previ-
ously, BiPhon was combined with Optimality Theory (Prince and
Smolensky 2004; Boersma 2011) and became known as BiPhon-OT,
but recently BiPhon has also gained traction using neural networks
(Beemdelust 2020; Boersma 2019; Boersma et al. 2020; Seinhorst
2021), known as BiPhon-NN. The grammatical model for both BiPhon-
OT and BiPhon-NN is the same, as seen in Figure 1.

As the name suggests, this model takes both a top-down and
bottom-up approach; meaning, it is not only a grammar model but
also a model of processing. Language production takes a top-down
form, starting with the context moving down to the pronunciation
known as the articulatory form, while comprehension is a bottom-
up process which starts from the listener at the auditory form and
moves up through the model to the context. Both the speaker and the
listener go through intermediate representations (morphemes, under-
lying form, and surface form), using the same grammatical system
rather than two different paths.

In BiPhon-OT, various constraints are ranked to reach the correct
output (production) or input (perception). These ranked constraints
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represent the knowledge and grammar of the speaker or listener. How-
ever, this framework is limited in multiple ways. Firstly, OT requires
discrete categories, which are problematic in emergentist models in
which category creation is gradual without hard boundaries between
different categories (Boersma et al. 2020). Secondly, OT is biologically
implausible for it contains a virtually infinite list of candidates to eval-
uate from.

Amore biologically plausible model would be BiPhon-NN. BiPhon-
NN models are able to model both directions (top-down and bottom-
up) simultaneously. It has shown category formation (Guenther and
Gjaja 1996; Boersma 2019) and is based on the biological neurons
in a brain. While in BiPhon-OT grammar is represented in ranked
constraints, in BiPhon-NN, grammatical knowledge can be found in
a form of long-term memory consisting of connections, known as
weights, between representations of neurons, known as nodes. The
weights between different nodes are varied to be successful in the
production or perception of language. Referring back to figure 1, each
level of representation can be imagined as a large group of neurons
and the connections between each level as the network weights. Each
node in a NN is either more or less active and, depending on the con-
figuration of the neuron activity, the connections grow stronger or
weaker.

In previous models of BiPhon-NN (Beemdelust 2020; Boersma
2019; Boersma et al. 2020; Seinhorst 2021), neuron activity was often
not represented as a binary function being either active or inactive
as they are in brain cells; but instead, nodes were more active or less
active to account for a temporal view in which a higher activity of a
node represents a neuron firing more frequently over a period of time
than those with less activity. Secondly, in order for connections be-
tween nodes in NNs to grow stronger, a method known as Hebbian
learning can applied in which the weight increases when both nodes
are active (Hebb 1949). However, more precisely, for biological neural
connections to actually grow stronger, neuron A fires slightly before
neuron B repeatedly, which results in a causal relationship between
the two neurons. So, for more biologically accurate NNs, an aspect of
causality needs to occur: node A must fire shortly before node B to in-
crease the connection from A to B. Hebb (1949) described this change
in biological neurons as follows (p. 335):
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"When an axon of cell A is near enough to excite cell B and re-
peatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A's
efficiency, as one of the cells firing B, is increased."

2.2Biological neuron

To understand the rationale behind this statement by Hebb, an un-
derstanding of neuron functionality is required. A neuron consists of
a cell body or soma, dendrites, and an axon. The cell body sends out
a combination of an electrical and chemical signal through the axon,
known as the action potential, to the synapses at the end of the axon.
The synapses are connected to dendrites of another neuron, which re-
ceive the action potential pulse from the synapses, raising or lowering
the voltage, also known as the membrane potential, of the receiving
cell. When the action potential increases the membrane potential of
the receiving cell, the connection is excitatory and vice versa, when
the action potential decreases the membrane potential of the receiv-
ing cell, the connection is called inhibitory - both types of connections,
inhibitory or excitatory, are possible for a single presynaptic neuron
(Strata and Harvey 1999). When the membrane potential crosses a
particular threshold, the cell body sends out an action potential and,
after a refractory period in which no other action potential can occur,
stabilizes to its resting state, known as the resting potential.

The connection Hebb (1949) describes is an excitatory connection
where cell A fires, sending out action potentials repeatedly to cell B,
resulting in cell B firing as well. A relationship is created between cell
A firing and cell B firing, the result of which leads to a strengthened
connection from cell A to cell B. In short, if cell A repeatedly causes cell
B to fire, the strength of the connection from cell A to cell B increases,
which then causes cell B to be more likely to fire again in the future
when cell A fires upon cell B.

In order to create a more biologically accurate network, this
causal relation between cell A and cell B should be implemented. It is
the aim of this paper to take the next step toward a more biologically
accurate bidirectional artificial neural network using what is called a
spike-timing-dependent plasticity (STDP) model. In section 2.3, this
STDP-model is described.
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2.3 STDP-model

Amodel known as the spike-timing-dependent plasticity model (STDP-
model) was chosen for this research for its biological plausibility
(Sjöström and Gerstner 2010). This model requires a minimal tem-
poral difference between one node firing to another node in order to
strengthen or weaken a connection between the nodes as was previ-
ously described by Hebb (1949). This temporal effect has been found
in various areas of the brain. One such place is the hippocampus
(Bliss and Gardner-Medwin 1973; Bliss and Lømo 1973), which plays
an important role in short-term and long-term memory (Caporale and
Dan 1973). The strengthening of synapses as a result of this temporal
shift is known as long-term potentiation (LTP). Conversely, synap-
tic connections may also weaken, the process of which is known as
long-term depression (LTD). Combining LTP and LTD leads to a bidi-
rectional modification of weights on the condition of the neural spikes
occurring in short intervals one after another. For LTP to occur, first
the presynaptic neuron spikes, followed by the postsynaptic neuron
spiking within the next 20 ms (Bi and Poo 1998). For LTD to occur,
the exact reverse is true: the postsynaptic neuron spikes before the
presynaptic neuron (Bi and Poo 1998). In short, the plasticity be-
tween neurons is dependent on the timing of the spike, hence the
name spike-timing-dependent plasticity.

STDP-models can be of varying complexity by adjusting the pa-
rameters of the model. First, the amount of modification of the weight
between nodes is dependent on the temporal difference between the
presynaptic and postsynaptic node firing, similar to short-term mem-
ory only being able to retain information for a short period of time. If a
neuron fired shortly after another one had fired, then the LTD and LTP
are stronger than if the interval between each spike is extended. To
what degree this period between firing nodes plays a role is variable
even within various areas of the brain (Abbott and Nelson 2000). For
example, it is possible that the amount of modification of the weight
is the same for both LTD and LTP, as shown in Figure 2.

Figure 2 shows LTP on the left side of the y-axis and LTD on the
right side of the y-axis. The x-axis is the interval of a presynaptic node
firing tpre and a post-synaptic node firing tpost in ms, the y-axis shows

[ 6 ]



Temporality in bidirectional phonetics and phonology

Figure 2:
The amount of modification of
synaptic weights as a result of
pair-based firing. Both LTP and LTD
are modified an equal amount.

how much the weight strengthens or weakens (the y-axis is not quan-
tified here for visualization purposes). Numerical labels are approxi-
mations used for scale visualization. In Figure 2, there is no difference
between LTP and LTD; for example, weights receive the same LTP or
LTD effect at -5 and 5 ms respectively.

However, it is possible that a weight weakens more easily than
it strengthens. For example, when a postsynaptic node spikes 25 ms
after a presynaptic node has spiked, the LTP may be quite weak. When
the roles are reversed, however, and the postsynaptic node spikes 25
ms before the presynaptic node does, the LTD may still be relatively
strong. In this situation, there is an asymmetry in LTP and LTD ef-
fectiveness in relation to the temporal offset. The visualization of this
effect is presented in Figure 3, where the x-axis is the time difference
between spikes in ms and the y-axis shows the modification asymme-
try. More types of asymmetry than the one presented here have been
found (Caporale and Dan 1973) and variations of asymmetry may lead
to different results. In the model explored in this thesis, a symmetrical
approach was taken.

A second possible complexity is triplet learning. Triplet learning
uses three spikes (triplets) instead of two (pairs) to induce LTP or LTD
(Pfister and Gerstner 2005; Gjorgjieva et al. 2011). In the model of
Gjorgjieva et al. (2011), the LTP is dependent on the timing differ-
ence between the pre- and postsynaptic spikes and on the time the
last postsynaptic spike occurred. Similarly to the asymmetry in weight
modification mentioned above, triplets may also have an effect on the
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Figure 3:
The amount of modification of
synaptic weights as a result of

pair-based firing. The LTP effect is
smaller than the LTD effect.

network.
Finally, a third complexity is the difference in input frequencies.

It has been found that LTP occurs with high-frequency stimulation
(HFS) in presynaptic weights or with low-frequency stimulation (LFS)
with a large change of membrane potential of the postsynaptic neuron
(postsynaptic depolarization), whereas LTD may occur after LFS on its
own or with a small change of membrane potential (Caporale and Dan
1973). The type of stimulation adds another level of complexity that
may influence the results in an STDP model.

To simplify the creation of the neural network, the three complex-
ities described here have been excluded from this thesis. Two STDP-
models were made in Praat (Boersma and Weenink 2022) and are de-
scribed in the following sections. The first STDP-model learns from in-
ternal structures but does not allow for input or output and is described
further in section 3. In section 4, a second STDP-model is presented
in which input and output correlating to the BiPhon grammar model
is included to test bidirectionality in a time-sensitive neural network
model.

3 STDP MODEL 1

The first model is an STDP-model without external input or output. It
is a collection of nodes that can fire and adjust the weight between
connected nodes as a result of stochastic internal activation. The net-
work structure is described in section 3.1. The initialization phase,
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Figure 4:
STDP-model 1 at
time 0

dreaming phase and learning phase of this model are explained and
demonstrated in subsections 3.1.1, 3.1.2, and 3.1.3, respectively. The
final section, 3.1.4, contains the analysis of the simulation.

3.1Network structure

The first model created to test the STDP-model is shown in Fig-
ure 4. This figure shows a semi-stochastic distribution of nodes. Each
white circle represents a non-active node and each line between nodes
is a pair of weights. In this model, there are 200 nodes in total, with ini-
tial connections being determined by the distance between the nodes.

3.1.1Initialization phase

For the initialization phase, the placement of the nodes and the
strength of the weights between nodes need to be determined. The
placement of nodes is semi-stochastic in that the nodes are placed
within the frame in random locations as long as no node is in the
same position as, or too close to another node. The minimum distance
dmin between each node is 7.5 mm as to avoid overlap and the weight
between each node linearly correlates to the distance between the
nodes. Therefore, the closer two nodes are to each other, the stronger
the weights between the nodes. The maximum distance, dmax, between
each node in which a connection remains present is 25.0 mm; any-
thing above this distance is not connected. The weights between nodes
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are expressed in Hertz, with the minimum weight, wmin, at maximum
distance, dmax, set to 0.001 Hz and the maximum weight, wmax, at
minimum distance, dmin, set to 60 Hz. The initial weights between
each node are calculated as follows (1)1:

(1) wi j(0) =
�

wmin + (wmax − wmin)
dmax − di j

dmax − dmin

�
ci j

where i indicates the presynaptic node that connects to postsynaptic
node j, dij is the distance in millimeters between nodes i and j, and cij
indicates whether there is a connection between nodes i and j. cij is 1
when a connection is present between node i and 0 when there is no
connection.

For simplification of the model, the membrane potential of a neu-
ron is not represented in microvolts, but is expressed in Hertz instead.
By expressing the membrane potential in Hertz, the membrane poten-
tial can be correlated to a rate at which a neuron fires. Each node
is set at a resting firing rate, fmin, which is set at 3 Hz, meaning that
over the course of a second, the neuron will likely fire 3 times with-
out input from its neighbors. The network has a sampling size of 1000
samples per second, meaning that the network will calculate the pos-
sible changes in the network once every millisecond, expressed as dt.
If a node fires 3 times per second in this network, a node has a 0.3%
chance of firing per sample. The stochastic chance of a node firing is
calculated using the following equation (2):

(2) ai(t + d t) =B( fi(t + d t)d t)

where ai is the activity of each node i at time t in seconds plus the time
change dt in seconds. The time change dt is equal to a single sample of
1 millisecond (ms) or 0.001 seconds. B denotes a Bernouilli deviate
and fi is the firing rate. When ai is 1, the node fires and sends out an
action potential to every node it is connected to. When ai is 0, the node
does not fire. For example, if fi at time (t + dt) is equal to 20 Hz, the
result within the Bernouilli deviate is 20 · 0.001 = 0.02, which leads
to a 2% chance of ai being 1, and a 98% chance of ai being 0.

1Equation 1 through 6 were provided by Paul Boersma after several attempts
by the author
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3.1.2Dreaming phase

Now that the initialization phase is complete, the model can dream. In
the dreaming phase, the network receives no external input and any
activity within the network starts from possible activity ai at time t. As
stated previously, the resting rate of 3 Hz allows for a 0.3% activation
of a node, so any activity within the network during this phase starts
from the 0.3% chance of firing. When the presynaptic node fires to
the postsynaptic node, the membrane potential of the postsynaptic
node, pj, increases. However, this increase in membrane potential does
not necessarily mean that the postsynaptic node j will fire; it merely
increases the odds of firing by the weight, wij.

The membrane potential exponentially decreases over time with-
out input as if the potential leaks away. The membrane potential re-
turns to its resting state of 0, leading to the resting firing rate of 3
Hz. The membrane potential is reduced by a factor of e after approxi-
mately 11 ms (Gjorgjieva et al. 2011), expressed as τleak. This activa-
tion spreading is presented in equation (3).

(3) p j(t + d t) =
�

p j(t) +
∑

i

ai(t)wi j(t)
�

e−
d t
τleak

It is possible that the membrane potential increases significantly
within one sample when many presynaptic nodes fire upon the same
node j. However, a node can only fire a limited number of times within
a certain time frame. Fast-spiking neurons in the human neo-cortex
are estimated at a maximal firing rate of approximately 190 to 640
Hz (Wang et al. 2016) and in our network, the maximum firing rate,
fmax, is set to 600 Hz. To account for the refractory period of a neuron,
a period of time during which the neuron cannot fire, the firing rate
and membrane potential reset to the resting rate each time the node
fires. Thus, the firing rate fj is calculated as follows (4):

(4) f j(t + d t) = fmin + ( fmax − fmin)(1− a j(t)) tanh
p j(t + d t)

fmax

Due to the possibility of the membrane potential being higher than the
firing rate, a soft bound is placed on the firing rate. The membrane

[ 11 ]



Angelica van Beemdelust

potential can possibly be higher than the firing rate. The hyperbolic
tangent tanh places a soft bound on the firing rate, but allows for the
membrane potential to increase past the maximum firing rate.

3.1.3 Learning within dreaming phase

Themodel can dream, but in order to learn, the weights between nodes
will need to change as a result of LTP and LTD. To know whether a
node has fired recently, so that learning may occur, a memory trace,
m, is required. This trace decays exponentially over a period of 20 ms
(Bi and Poo 1998; Song et al. 2000). The forgetting cause as well as
the learning rate is described in Equation (5):

(5) mi(t + d t) =

¨
1, if ai(t) = 1

mi(t)e− d t
τhist

, if ai(t) = 0

Remembering the last moment of firing, the weight adjustments be-
tween nodes can now be calculated in which the memory trace is the
learning rate. The equation for learning is shown here (6):

wi j(t + d t) =max(wmin,min(wi j(t) +mi(t)a j(t)−m j(t)ai(t), wmax))(6)
To avoid an infinite increase or decrease of weights, a hard boundary
is set. In this model, the wmin is set at 0.001 Hz, and wmax is set at
60 Hz, similarly to the minimum and maximum of the initialization
phase. In short, equation (6) states that when node i fired before node
j, the weight wij increases (LTP), but when node j fires before node i,
weight wij decreases instead (LTD).

3.1.4 Analysis

To test the model, the network was given one second, or 1000
frames to dream. The results are shown in Figure 5. In this figure,
nodes that are colored red are nodes that have an activity of 1, while
nodes that are white have an activity of 0. Moreover, the size of a node
is representative of its firing rate. The larger the node, the greater the
firing rate.

Compared to the network at t = 0 shown in Figure 4, a number
of weights, represented by the black lines, have changed as a result of
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Figure 5:
STDP-model 1
after one second
of dreaming

the dreaming phase. Closely connected clusters of nodes produced the
largest magnitude of weight changes in the network. Central nodes
with many connections exhibit thicker lines, stronger weights, to-
ward the central node, whereas the connections exhibit thinner lines,
weaker weights, away from the central node. An example of this be-
havior can be seen in Figure 5 with the connection between node m
and node n. When the presynaptic node m fires, the weight to the
postsynaptic node n is strong, which means node m has a strong in-
fluence on the membrane potential and subsequent firing rate of node
n. Conversely, when, what is now a presynaptic node, node n fires,
the weight to postsynaptic node m is weak, which means that node
n has a weaker influence on the membrane potential and subsequent
firing rate of node m. In short, when node m fires, the membrane
potential of node n is significantly increased, whereas if node n fires,
the membrane potential of node m is only marginally increased. As a
result, a causal relationship between node n and node m is created.
The influence is unidirectional: node m likely causes node n to fire,
but the same cannot be said for the inverse.

The key observation from this STDP network is that the weight of
a connection becomes inversely proportional to the firing rate of the
presynaptic node; as the firing rate of the presynaptic node increases,
the influence on the postsynaptic node decreases. The more frequently
a node fires, the smaller the impact of each firing is on the postsynaptic
node.
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While the network demonstrates its ability to learn from the ac-
tivity in the dreaming state, there is no external input or output in this
version of the model, which means that the network does not learn in
a manner that input results in output; instead, the network strength-
ens or weakens connections. Whether the STDP model is capable of
learning from input and producing output from said input is tested in
section 4.

4 STDP MODEL 2

This section is structured similarly to section 3. First, the network
structure is presented in section 4.1, which includes a description and
explanation of the initialization phase (section 4.1.1), the dreaming
phase (section 4.1.2) and the learning phase (section 4.1.3). In sec-
tion 4.2, two different simulations with each two different trials are
analyzed. The first simulation includes a network with only excita-
tory nodes, similarly to STDP model 1. The second simulation includes
a network with not only excitatory nodes, but also inhibitory nodes.
Both simulations are described in section 4.2.1 and 4.2.2, respectively.

4.1 Network structure

To test the bidirectionality of the network as required by the BiPhon-
NN model, the neural network contains two explicit representation
levels of the grammar model, shown in figure 6. Similarly to previous
BiPhon-NN models (Beemdelust (2020); Boersma et al. (2020)), start-
ing with the bottom-up processing, this model starts from the input at
the auditory form and travels through several layers to the output at
the meaning level. Vice versa, using top-down processing, the model
starts the input at the semantic representation and travels down to-
wards the output of the articulatory form. The STDP-model used in
this thesis is a deep neural network, in which the neural network con-
tains one or multiple hidden layers between the input and output lay-
ers. The intermediate steps such as morphemes, underlying form, and
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Figure 6: The structure of STDP model 2

surface form, are not explicitly represented in the model, but instead
are represented in the hidden layers (see Figure 6).

This network contains 4 levels of nodes: the top level, z, with
activities zn, where n runs from 1 to N = 20, is a hidden layer. The
second level down, level y, with activities ym, where m runs from 1 to
M= 50 and is another, larger hidden layer. The next two levels, level
x with activities xl, and level v, with activities vk, are separated into
two parts. The left part of the network is the auditory representation as
indicated by aud, whereas the right part of the network is the meaning
representation, mean. The third level down, level x with activities xl,
where l runs from 1 to L = 99, consists of 49 nodes on xaud and 50
nodes on xmean. The fourth and final level down, level v with activities
vk, runs from 1 to K= 54, where vaud is equal to the number of nodes
on xaud , 49 nodes, and vmean consists of the remaining 5 nodes.

Starting with the auditory section of the network, xaud represents
a basilar membrane or haircells in the inner ear, which transforms an
auditory signal into an electrical one to the brain. xaud is the inter-
nal input level for the network that receives external input from level
vaud . vaud represents an external input of sound in ERB, Equivalent
Rectangular Bandwidth, a measurement used for human auditory per-
ception. vaud is only an external representation and thus will never
produce output. This means that without external influence on the
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network, the nodes on vaud will never activate through activation of
the connected nodes. While the network does not possess an articula-
tory form, the representation of the basilar membrane xaud may be a
simplification of the articulatory output.

Finally, the meaning section of the network consists of levels
xmean and vmean. xmean is similar to z and y in that it does not explic-
itly reflect a particular level in the BiPhon grammar model and instead
acts like a hidden layer. xmean is an intermediate step to avoid a signif-
icant difference in number of nodes between level y and vmean. As was
observed from the first STDP model in section 3.1.4, a large discrep-
ancy in number of nodes may lead to an uneven firing frequency and
may undesirably influence the learning phase of the network. Lastly,
each of the nodes k on vmean represents the meaning of the vowel
written below the node.

While this network has 4 levels of nodes, it also consists of 3 lev-
els of connection weights connecting each level, shown in Figure 6 by
the black lines connecting each level. The weights connecting level
z and y are collectively called q with weight qmn being the particular
weight between nodem and node n. As the weights in the STDP-model
are asymmetrical by nature of the LTP and LTD, a distinction is made
to demonstrate in which direction the node fires. For every node n
on z, there is a connection to node m on y called qdown

mn . In this case,
all the nodes n on level z are presynaptic nodes and all the nodes m
on level y are postsynaptic nodes. Conversely, for every node m to
each node n, the weight is called qup

mn where nodes m are presynaptic
nodes and nodes n are postsynaptic nodes. Therefore, all nodes are
pre- and postsynaptic depending on the direction of the spike from a
node. For example, weight qdown

1,3 is the weight from presynaptic node
z3 to postsynaptic node y1, while qup

1,3 is from presynaptic node y1 to
postsynaptic node z3. The same weight symmetry of qup

mn and qdown
mn ex-

ists between levels y and x called rlm. rdown
lm represents all connections

from level y to level x, and vice versa, rup
lm represents all connections

from levels x to y.
The weights between xaud and vaud as well as the weights be-

tween xmean and vmean are collectively called s, with skl being a partic-
ular weight between node k and l. Weights s function differently than
weights q and r in that weights s do not change and remain clamped
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regardless of node activation. The auditory weights saud are unidirec-
tional from vaud to xaud for the reason that the external auditory in-
put of vaud will never produce output and, thus, will never activate
as a result of the activity of the model. Not every node k on level v is
connected to every node l on level x. Each node k is connected to a
minimum of 3 and a maximum of 5 nearby nodes on xl, the weights
for which are calculated using the probability density function as a
model for the distribution of weights as shown in Equation (7).

(7) skl =
wmax

σ
p

2π
e− 1

2 (
k−l
σ )

2

wherewmax is set to 500 Hertz in the initalization phase of this network
andσ is equivalent to one node, 1. By using this function, it is possible
to approximate the shape of a normal distribution in the set of weights,
which represents the resonance of the basilar membrane.

For example, if node k = 20 on vaud (vaud
20 ) fires, then node l

= 20 on xaud (xaud
20 ) receives that signal maximally according to the

set maximum weight in the initialization phase, in this case 500 Hz,
meaning an actual weight of 500p

2π
, or approximately 200 Hz. Node xaud

19

and node xaud
20 also receive the signal from vaud

20 but the weights be-
tween these nodes, so weights saud

20,19 and saud
20,21 are reduced by a factor

of 500p
2π

e− 1
2 , approximately 78 Hz. Node l = 18 and l = 22 on x re-

ceive the weakest input as the weights saud
20,18 and saud

20,22 are reduced by
a factor of 500p

2π
e−2, approximately 172 Hz. Node l= 17 and node l=

23 on x are too far away from node k = 20 and thus do not connect.
For node k = 1 and k = 49, only 3 nodes on level x are connected,
namely l= 1, 2 and 3 and l= 47, 48 and 49, respectively, as a result
of the peripheral position. For nodes k = 2 and k = 48, the number
of connections is increased by one to respectively l = 1, 2, 3 and 4,
and l= 46, 47, 48 and 49.

The weights of smean
kl , as opposed to saud

kl , are not unidirectional,
and signals can travel from xmean to vmean and vice versa, from vmean

to xmean. Unlike weights q and r, however, the weights are identical in
both directions. Thus, a descriptive difference between smean−up

kl and
smean−down
kl is redundant and the weights are merely referred to as smean

kl .
The weights smean

kl between vmean and xmean are calculated using the
same calculation as for the auditory weights, equation 7, with a wmax
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of 500 Hz at the peak of the bell curve and σ equivalent to two nodes.
For each node k on level vmean, there are 10 connections to the nearby
nodes l on level xmean and unlike saud

kl , the weights for smean
kl do not

overlap, meaning every 10 nodes on level xmean are connected to only
one node k on level vmean. Therefore, nodes x l for l = 50, ..., 9 are
connected to v50, nodes x l for l = 60, ..., 69 are connected to v51, and
so on.

4.1.1 Initialization phase

Similarly to STDP model 1, each node is set at a resting firing rate of
fmin = 3 Hz, except for the external input nodes, which do not fire
stochastically, similarly to if the resting firing rate would be set to
fmin = 0 Hz. The same equation, equation 1, is used to calculate the
probability of firing. For the four sets weights of q and r, each weight
is set to 3 Hz as the starting weight, akin to the resting firing rate. As
mentioned previously, for saud

kl , the peak is set to wmax = 500 Hz and
for smean

kl , wmax = 500 Hz.

4.1.2 Dreaming phase

The dreaming phase of STDP model 2 is the same as in STDP model 1.
All nodes, except for the external input vaud

k , can activate and may lead
to the network dreaming. The calculations for the dreaming phase are
the same as described in equations 2 and 3 in section 3.1.2.

4.1.3 Learning phase

As in STDP 1, the second STDP network adjusts weight as a result of
a memory trace, m. The same forgetting cause, equation (4), and the
same learning equation, equation (5), are used in this model. The STDP
model 2 uses different minimum and maximum weights set for each
of the two trial simulations that are described in the analysis section
of STDP 2, section 4.2. The first simulation (see 4.2.1), which uses
only excitatory nodes, has a wmin of 0.001 Hz and wmax of 60 Hz akin
to the hard boundaries in STDP 1. The second simulation (see 4.2.2)
worked with both excitatory and inhibitory weights, setting wmin to
-60 Hz and keeping wmax the same at 60 Hz. When introducing the
inhibitory nodes, a limit was placed on the firing rate fi so that the
firing rate could never be lower than 0. Various other trials were run
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Vowels a e i o u
mean ERB F1 13 10 7 10 7
mean ERB F2 19 22 25 16 13

Table 1:
The mean ERB
values per vowel

with different weight boundaries but the results were consistent across
all trials.

Now that the network can dream and adjust weights, it is given
an input to learn from. During the learning phase, the network hears
one of five vowels, /a/, /e/, /i/, /o/ or /u/ randomly selected with an
equal probability (0.2). For each vowel, the mean F1 and F2 of a male
speaker in ERB are predetermined and shown in Table 1.

From the mean values, an input vowel is sampled, using a Gaus-
sian distribution with a standard deviation of σ= 1 ERB and a mean
of F1 and F2 for the corresponding vowel. The resultant sampled F1
and F2 are then rounded to select and activate a single node each on
vaud

k to account for the finite number of nodes as opposed to a more
continuous range.

When two nodes on level vaud , representing the F1 and F2 of one
of the five vowels, are activated, the node on vmean

k that corresponds
to that particular vowel is also activated for a duration of approxi-
mately 240 samples, equal to 240 ms, the mean duration of a vowel
in American English (House 1961). For example, if the vowel /a/ is
activated on level vaud , then 'a' on level vmean is activated at the same
time. After that, the network is exposed to another vowel for the same
duration. This learning step is repeated 100 to 1000 times. Therefore,
240 samples multiplied by 100 to 1000 repetitions results in approxi-
mately 24,000-240,000 samples during which the network is learning,
of which one fifth, roughly 4,800-48,000 samples, are for each vowel.

4.2Analysis

This section is divided into two parts: section 4.2.1 presents a model
containing only excitatory weights whereas the model in section 4.2.2
is not restricted to excitatory weights, but also includes inhibitory
weights.
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Figure 7: The STDP model with only excitatory nodes after 1000 learning steps.

4.2.1 Excitatory weights only

For this analysis, only excitatory weights were used, as the weight
ranged from the minimum weight wmin = 0.001 Hz to the maximum
weight wmax = 60 Hz, thus keeping the weight ranges comparable to
those in STDP model 1. The model was given 1000 learning steps of
240 ms each and the resultant network is presented in Figure 7.

As in Figure 5, in Figure 7 nodes that are red are nodes with an
activity of 1, while nodes that are white have an activity of 0. The
size of a node demonstrates the firing rate of that node; the larger the
node, the greater the firing rate.

In Figure 7, the weights are unevenly distributed from one node
to another node, regardless of level. It is most obvious at weights q, as
all weights qdown

mn are strong as demonstrated by the thick lines. On the
other hand, all weights qup

mn are weak, as presented by the thin lines.
It can be concluded that top level z is, for the most part, minimally

influenced by the activity from level y as a result of the weak weights
qup

mn. The membrane potential and, subsequently, the firing rate of all
nodes n on level z do not notably increase. Conversely, nodes m on
level y are easily influenced by the nodes on level z as a result of
the strong weights qdown

mn , thus the membrane potential and the fir-
ing rate of all nodes m on level y increase more drastically. Based on
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XXXXXXXXXXinput
output 'a' 'e' 'i' 'o' 'u'

/a/ 55 57 61 52 54
/e/ 54 47 53 61 63
/i/ 56 53 61 56 52
/o/ 55 52 57 54 52
/u/ 54 52 57 61 55

Table 2:
Number of spikes
per meaning
output (column)
for each auditory
input (row) in
trial 1.

the previous observation from STDP model 1 in section 3.1.4, it can
be generalized that nodes m fire more frequently than nodes n. Such
results are to be expected, as level y receives more input from level
x and thus has an increased chance of firing due to the increase in
membrane potential.

The weights r between levels y and x are more variable. Nev-
ertheless, a pattern of anti-bidirectional weights arose. Most if not all
weights rdown

lm are weak from ym to xaud
l whereas weights rup

lm are strong
from ym to xmean

l . These weights imply that all nodes m on y fire more
frequently than nodes x l for l = 1, ..., 49, but less frequently than
nodes x l for l = 50, ..., 99.

It is logical that the firing rate of nodes xmean
l is higher than the

firing rate of nodes m on level y as the meaning input from vmean
k

should increase the firing rate of nodes lmean directly, whereas level
y is not directly connected to the input and relies on xmean

l for input.
For xaud

l , the imbalance is flipped because only a select few nodes are
activated at a time and do not receive any input from vaud

k unless given
external input during the learning phase. This leads to nodes ym firing
more frequently than xaud

l . However, this imbalance of firing rate may
affect the network's ability to form more balanced connections.

To test the network, as an auditory input, each vowel was active
for 240 ms, during which the spikes of the meaning nodes vmean

k were
counted. If the network successfully learned, then a given input /a/
on vaud

k should lead to frequent activation of output node v50, or node
'a' on vmean

k and little activation of the other meaning nodes, 'e', 'i',
'o' or 'u'. Similarly, a given input /i/ on vaud

k should lead to frequent
activation of output node v52, node 'i' on vmean

k , and little activation of
the remaining meaning nodes. The results are presented in Table 2.

No significant difference was found across any of the correspond-
ing pairs. For example, if the network were to have successfully
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Figure 8: The STDP model with only excitatory nodes after 1000 learning steps
with textitwmax of smean

kl = 200 Hz.

learned, the counted spikes for input /a/ to output 'a' should be sig-
nificantly higher than for the other output nodes but Table 2 shows
55 spikes for /a/ to 'a', which is lower than both 'e' and 'i' with 57 and
61, respectively. Similarly, no significant difference was found for the
rest of the input and output pairs.

As this trial did not show desired effects, the imbalance in firing
rate was accounted for by reducing the maximum weight of the con-
nection smean

kl from 500 Hz to 200 Hz. Increasing the weights for saud
kl

produced little to no effect on generating a more balanced division
of weights r from and to xaud

l and was thus kept the same. Figure 8
presents the network with the described changes.

In the second trial, from level xmean to level y approximately half
of weights rup

lm were strong and half of them were weak and the oppo-
site was true for rdown

lm . Of nodes xl for l= 50, ..., 59, exactly 5 nodes
are notably affected by level y due to strong weights of rdown

lm and 5
nodes are affected little by y due to weak weights of rdown

lm . However,
for nodes xl for l = 60, ..., 69, 6 nodes are strongly affected by y, and
4 nodes are not. For nodes xl for l = 70, ..., 79, this division is 7 to 3,
xl for l = 80, ..., 89 is 5 to 5, and finally xl for l = 90, ..., 99 is 4 to
6. Although the division is not perfect, it is far more equal than in the
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XXXXXXXXXXinput
output 'a' 'e' 'i' 'o' 'u'

/a/ 31 40 36 32 26
/e/ 30 37 41 33 32
/i/ 32 36 44 31 34
/o/ 31 34 39 29 29
/u/ 30 41 38 34 29

Table 3:
Number of spikes
per meaning
output (column)
for each auditory
input (row) in
trial 2.

previous trial. The same test as in the last trial was run. The results
are shown in Table 3.

As in trial 1, no significant differences across any of the corre-
sponding pairs were found. The input /a/ does not lead to an output
'a' as intended. Nevertheless, the results in trial 2 are different from
trial 1. The frequency of spikes is reduced in comparison to trial 1,
which is a result of the weaker weights on smean

kl . The column for out-
put 'i' shows a greater number of spikes on average (39.6) than the
column for output 'u' (30). The reason for this difference in spike fre-
quency is that for nodes l= 70, ..., 79, corresponding to the meaning
'i', 7 of the 10 weights rup

lm were strong, while for nodes l= 90, ..., 99,
corresponding to the meaning 'u', only 4 out of the 10 weights rup

lm were
strong. As a result, the activity of nodes m on level y had a stronger
effect on the meaning node corresponding to 'i' than on 'u' due to the
weights.

The analysis shows that excitatory weights by themselves are not
enough. In the following section, section 4.2.2, inhibitory nodes were
added to the network with the intention of the network learning suc-
cessfully.

4.2.2Inhibitory & excitatory weights

For this analysis, both excitatory and inhibitory weights were in-
cluded. The weight ranged from the minimum weight wmin = -60.0
Hz and to the maximum weight wmax = 60 Hz. As stated previously,
the firing rate was limited so that it could never be lower than 0. Var-
ious other trials were run with different weight boundaries, but the
results were consistent across all trials. As in section 4.2.1, the model
was given 1000 learning steps of 240 ms each. Two trials were run;
the first one ran with smean

kl = 500 Hz, the second with smean
kl = 200

Hz. The network in the first trial is presented in Figure 9.
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Figure 9: The STDP model with excitatory and inhibitory nodes after 1000 learn-
ing steps in trial 1.

Inhibitory weights are represented by white lines, whereas exci-
tatory weights are drawn in black. Starting with weights q, a similar
pattern is found as with the excitatory nodes only, although in this
case, the weight distribution is not as homogeneous as before. Weights
qdown

mn are mostly excitatory, and weights qup
mn are both inhibitory and

excitatory but consist of more inhibitory nodes than qdown
mn . There is

also more variability within nodes than in the excitatory model. For
example, z1 consists of both inhibitory and excitatory weights as op-
posed to solely inhibitory or excitatory weights per node. It can be
concluded that the nodes ym fire more frequently than nodes zn but
the difference between the firing rate from both these levels is not
nearly as great as in the excitatory model.

An explanation for this change can be found in weights r. Weights
rup

lm are mostly inhibitory, most notably from x l for l = 50, ..., 99.
The inhibitory weights reduce the firing rate of nodes ym, which in
turn leads to a more even firing rate distribution of nodes ym and zn.
Weights rdown

lm , on the other hand, are mostly excitatory. When a node
ym fires, the membrane potential and firing rate of nodes xl increases.
However, it is known from the weights that nodes xl fire more fre-
quently than nodes ym, and nodes ym are subsequently suppressed by
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XXXXXXXXXXinput
output 'a' 'e' 'i' 'o' 'u'

/a/ 21 21 27 14 19
/e/ 19 18 29 11 20
/i/ 24 27 25 15 19
/o/ 14 28 21 14 19
/u/ 20 25 12 20 15

Table 4:
Number of spikes
per meaning
output (column)
for each auditory
input (row) in
trial 1.

the reduction in membrane potential. As a result, the connection be-
tween the various levels is obstructed. Nevertheless, the same test from
the excitatory model was performed to see whether this obstruction
affected the firing rate and learnability of input to output. The results
are shown in Table 4.

As in the excitatory model, there is no significant connection be-
tween the input and output of the network. Input /a/ does not lead to
an increased number of spikes of meaning 'a' compared to the other
meaning nodes as would be expected in a model that successfully
learned. The same lack of correlation is found across the other nodes.
The number of spikes within 240 ms in the model of both inhibitory
and excitatory nodes is notably fewer, with an average of approxi-
mately 20 spikes, than in the excitatory model, with an average of
approximately 55 spikes. The explanation for this difference is that
nodes ym hardly fire and thus do not increase the firing rate of nodes
xl. Instead, the spiking activity is mostly a result of xmean

l and vmean
k

interacting with one another.
As trial 2 for the excitatory model led to different results than

trial 1, a second trial using the same method to balance the firing rate
was applied. wmax of smean

kl was reduced from 500 Hz to 200 Hz. The
resultant network is shown in Figure 10.

For weights q, there is little difference between trial 1 and trial 2.
While weights rup

lm are still for the majority inhibitory, there is a more
even distribution with rdown

lm . rdown
lm contains more inhibitory weights

than before, but there are still more excitatory weights than inhibitory
ones. For the inhibitory nodes, balancing the firing rate of nodes across
levels requires a different approach. Once again, an auditory input was
given and the number of spikes on the output of the meaning nodes
was counted to test whether the network successfully learned with the
applied changes. The results are presented in Table 5.
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Figure 10: The STDPmodel with excitatory and inhibitory nodes after 1000 learn-
ing steps in trial 2.

Table 5:
Number of spikes

per meaning
output (column)
for each auditory
input (row) in

trial 2.

XXXXXXXXXXinput
output 'a' 'e' 'i' 'o' 'u'

/a/ 6 11 8 8 10
/e/ 6 10 4 8 8
/i/ 6 3 6 2 2
/o/ 7 8 5 6 2
/u/ 4 3 7 5 7
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Similar to the previous trials, no correlation was found between
the auditory input and meaning output. In comparison to trial 1 of
the inhibitory and excitatory network, the number of spikes has de-
creased. Trial 1 had an average number of approximately 20 spikes in
a 240 ms interval, whereas for this trial, the number of spikes aver-
aged approximately 6 per 240 ms. The difference is unsurprising on
the grounds that weights smean

kl are weaker in trial 2 and the number
of spikes reduces as the influence from one level to another dimin-
ishes. Despite the weight changes made in smean

kl , the network was still
unable to learn as hoped.

5DISCUSSION

Two types of STDP models were created. The first model, STDP model
1, tested the network's ability to fire and adjust weights according to
the timing between these spikes of pre- and postsynaptic nodes us-
ing excitatory connections. This model was successful in that nodes
that fired more frequently had a reduced influence on nodes that fired
fewer times. Conversely, nodes that fired more sparingly would have a
greater effect on nodes that fired more often. Nodes that fired approx-
imately the same number of times would result in balanced weight
to and fro. However, this model did not include input or output and
any activity occurring in the network was induced through a dreaming
state.

The second model, STDP 2, was made to include input and out-
put so that the model could learn from the input to produce the cor-
rect output. The input and output consisted of a representation of
the basilar membrane that activated nodes based on incoming vowel
sounds and meaning representations of the presented vowel sounds.
The first simulation using the STDP model 2 was restricted to exci-
tatory weights and in this simulation two trials were run. The first
trial showed an imbalance in firing rate as a result of the input dur-
ing learning process and the given input did not result in a desired
output showing successful learning. To account for this imbalance of
firing, a second trial was run with reduced weights on the meaning
layer. While the firing rates were now relatively equal, the model was
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still incapable of learning the correct output given an input. For this
reason, a second simulation of this model was performed in which not
only excitatory, but also inhibitory weights existed. The first trial of
the second simulation demonstrated similar results as the first trial
in the first simulation; The difference in firing rate between the in-
put levels and the hidden layers was too great for a balanced weight
distribution and, once again, the network did not correlate the input
with the correct output. For trial 2, the same weight adjustments were
executed. In this simulation, however, the firing rates did not equalize
as well as they did in simulation 1. In congruence with the previous
trials, this trial, too, led to an unsuccessful network unable to provide
the correct output for the input.

In previous BiPhon-NN models, inhibitory and excitatory weights
were sufficient for a model to learn properly but the STDP-model is
unsuccessful in doing so. This can mean that the STDP-model may re-
quire more parameters to function as desired and one such parameter
may be a difference in memory leaks. In this study, the memory leak
was the same for both LTP and LTD regardless of whether the weight
was inhibitory or excitatory. However, a distinction between LTP and
LTD, and between inhibitory and excitatory weights has been observed
in various studies (Abbott and Nelson 2000; Caporale and Dan 1973;
Sjöström and Gerstner 2010) and it may be beneficial to the STDP-
network to implement such distinctions. A second parameter may be
the type of stimulation. Studies on biological STDP observed a differ-
ence in LTP and LTD depending on high- or low-frequency stimulation
(Caporale and Dan 1973) and have previously also been implemented
in STDP-models (Sjöström and Gerstner 2010). Covering two or even
three different types of stimulation in a model may result in a more
balanced and accurate network. The final parameter provided here
may be a new learning strategy: triplet learning. Triplet learning has
led to models that are more accurate to observations from biological
neurons than those based purely on pair-based learning (Gjorgjieva
et al. 2011; Pfister and Gerstner 2005; Sjöström and Gerstner 2010)
and may be a suitable parameter to include for future improvements.

While the STDP-model created for this thesis to test BiPhon-NN
was unsuccessful in learning, it does not mean the STDP-model is not
a viable network for BiPhon-NN. There is a myriad of STDP structures,
which may still succeed in demonstrating bidirectionality in phonetics
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and phonology and, as such, it may be interesting to further delve into
more complex STDP models than the one presented in this paper.

6CONCLUSION

It was the goal of this thesis to create a more biologically accurate
BiPhon-NN model than previous BiPhon-NN models by including a
temporal aspect to the network. To do so, the spike-timing depen-
dent plasiticity (STDP) model was selected. Two separate models were
made with the first model demonstrated the network's ability to adapt
weights from presynaptic to postsynaptic nodes depending on themost
recent activity within the network as if the model were dreaming. The
second model included a source of input from which the model could
learn in unsupervised conditions to produce the appropriate output.
Various simulations were run, but in none of the trials was the model
able to successfully learn from the input to form the correct output.
The anti-bidirectional nature of the STDP-model did not allow for ap-
propriate balancing of weights. It is a possibility that the simplified
network model requires more parameters to function as desired. Such
parameters may include triplet learning, distinguishing between high-
and low frequency stimulation, or varying the leaking time in mem-
ory and/or the membrane potential by differentiating between exci-
tatory and inhibitory nodes. However, if these parameters were to be
implemented and the STDP-model is still unable to produce output
as desired with the given input, then perhaps the STDP-model is not
suitable for BiPhon-NN and another model could be implemented to
include the aspect of time in BiPhon-NN structures.
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APPENDICES
Appendix 1: STDP-model 1 script

1 # Praat script STDP_model.praat
2 # Angelica van Beemdelust
3 # March−May 2022
4 # last update: 23−05−2022
5
6 demoWindowTitle: ”STDP−model”
7 demoShow()
8 demo Times
9 demo Font size: 14

10
11 # set up
12 t = 0
13 dt = 0.001 ; in s
14 numberOfNodes = 200
15 radius = 3.0 ; in mm
16 minFiringRate = 3 ; in Hertz (So there is at least some

activity, not a dead brain)
17 minDist = 7.5 ; in mm
18 maxDist = 25.0 ; in mm
19 maxFiringRate = 600 ; in Hz
20 minWeight = 0.001 ; in Hz
21 maxWeight = 60 ; in Hz
22 excitatoryDecayTime = 0.011 ; in s
23 memHistDecayTime = 0.020 ; in s (Bi & Poo, 1998, p. 10464)
24 excitatoryLeak = exp(−dt/excitatoryDecayTime)
25 memHistLeak = exp(−dt/memHistDecayTime)
26 inhibitoryDecayTime = 0.020 ; in s
27
28 windowWidth = demo Horizontal world coordinates to mm: 1.0
29 windowHeight = demo Vertical world coordinates to mm: 1.0
30
31 # initialize arrays & matrices
32 nodeHasFiredArray# = zero# (numberOfNodes)
33 x_pos# = zero# (numberOfNodes)
34 y_pos# = zero# (numberOfNodes)
35 weights## = zero## (numberOfNodes, numberOfNodes)
36 nodePotentialArray# = zero# (numberOfNodes)
37 memoryFiringArray# = zero# (numberOfNodes)
38
39 @createNodeArray
40 @createWeightMatrix
41 @createFireRateArray
42 @drawInitialWeight
43



44 label start
45 demo Erase all
46 demo Select inner viewport: 0, 100, 0, 100
47 demo Axes: 0, windowWidth, 0, windowHeight
48 demo Paint rectangle: ”silver”, 0, windowWidth, 0,

windowHeight
49 t += dt
50 @learnAndDrawWeight
51
52 # update firing rate + decay at beginning of cycle
53 for nn to numberOfNodes
54 if nodeHasFiredArray# [nn]
55 nodePotentialArray# [nn] = minFiringRate
56 else
57 sumOfi = 0
58 for i to numberOfNodes
59 if nn <> i
60 sumOfi += nodeHasFiredArray# [i] * weights## [i, nn]
61 endif
62 endfor
63 nodePotentialArray# [nn] = (nodePotentialArray# [nn] +

sumOfi) * excitatoryLeak ; (formules: 15 −activation
spreading)

64 endif
65 endfor
66
67 # check if fired and draw nodes
68 for nn to numberOfNodes
69 nodeHasFiredArray# [nn] = randomBernoulli((minFiringRate +

(maxFiringRate − minFiringRate) * tanh(nodePotentialArray#
[nn]/maxFiringRate) * (1−nodeHasFiredArray# [nn])) * dt) ;
(formules: sampling 16 & 17)

70 @updateMemLeak: nn
71 memoryFiringArray# [nn] = mem_n
72 @drawNode: x_pos# [nn], y_pos#[nn], nodeHasFiredArray# [nn],

nodePotentialArray# [nn]
73 endfor
74
75 demoPeekInput ()
76 if demoKey$ () = ”q”
77 exitScript ()
78 endif
79 if demoKey$ () = ”f”
80 nodePotentialArray# [25] = 10000
81 endif
82
83 if demoKey$ () = ”p”
84 wait = 1
85 while wait = 1



86 demoWaitForInput()
87 if demoKey$ () = ”i”
88 appendInfoLine: t
89 elsif demoKey$ () = ”p”
90 wait = 0
91 endif
92 endwhile
93 endif
94
95 goto start
96
97 # procedure drawing nodes
98 procedure drawNode (.x, .y, .active, .p)
99 demo Paint circle (mm): if .active then ”red” else ”white”

fi, .x, .y, .p/100 + 2*radius
100 demo Line width: 5.0
101 demo Draw circle (mm): .x, .y, .p/100 + 2*radius
102 endproc
103
104 # procedure drawing weights and arrows
105 procedure drawInitialWeight
106 i = 1
107 for i to numberOfNodes − 1
108 j = i + 1
109 for j to numberOfNodes
110 midx = (x_pos# [i] + x_pos# [j])/2
111 midy = (y_pos# [i] + y_pos# [j])/2
112 @getDistance: x_pos# [i], y_pos# [i], x_pos# [j], y_pos#

[j]
113 if dist < maxDist and dist > minDist
114 demo Line width: weights## [i, j]/10
115 demo Draw line: midx, midy, x_pos# [j], y_pos# [j]
116 demo Line width: weights## [j, i]/10
117 demo Draw line: midx, midy, x_pos# [i], y_pos# [i]
118 # demo Arrow size: max (abs (weights## [i, j])/20, 1)
119 # demo Draw arrow: midx, midy, (midx + x_pos# [j]) / 2,

(midy + y_pos# [j])/2
120 endif
121 endfor
122 endfor
123 endproc
124
125 # procedure learning and drawing weight
126 procedure learnAndDrawWeight
127 i = 1
128 for i to numberOfNodes − 1
129 j = i + 1
130 for j to numberOfNodes
131 if weights## [i,j] <> 0



132 midx = (x_pos# [i] + x_pos# [j])/2
133 midy = (y_pos# [i] + y_pos# [j])/2
134 @weightLearning: i, j
135 @weightLearning: j, i
136 demo Line width: weights## [i, j]/10
137 demo Draw line: midx, midy, x_pos# [j], y_pos# [j]
138 demo Line width: weights## [j, i]/10
139 demo Draw line: midx, midy, x_pos# [i], y_pos# [i]
140 # demo Arrow size: max (abs (weights## [i, j])/20, 1)
141 # demo Draw arrow: midx, midy, (midx+x_pos# [j])/2,

(midy+y_pos# [j])/2
142 # demo Arrow size: max (abs (weights## [j, i])/20, 1)
143 # demo Draw arrow: midx, midy, (midx+x_pos# [i])/2,

(midy+y_pos# [i])/2
144 endif
145 endfor
146 endfor
147 endproc
148
149 # procedure create node array
150 procedure createNodeArray
151 for node to numberOfNodes
152 repeat
153 x_pos# [node] = randomUniform (radius, windowWidth −

radius)
154 y_pos# [node] = randomUniform (radius, windowHeight −

radius)
155 fits = 1
156 for earlierNode to node − 1
157 @getDistance: x_pos# [node], y_pos# [node], x_pos#

[earlierNode], y_pos# [earlierNode]
158 fits = ( fits and dist >= minDist)
159 endfor
160 until fits
161 endfor
162 endproc
163
164 # procedure creating weight matrix
165 procedure createWeightMatrix
166 i = 1
167 for i to numberOfNodes − 1
168 j = i + 1
169 for j to numberOfNodes
170 @getDistance: x_pos# [i], y_pos# [i], x_pos# [j], y_pos#

[j]
171 if dist <= maxDist
172 weights## [i, j] = (maxWeight − minWeight) / (minDist −

maxDist) * (dist − maxDist) + minWeight ; (formules: 10
− connection weights)



173 weights## [j, i] = (maxWeight − minWeight) / (minDist −
maxDist) * (dist − maxDist) + minWeight

174 endif
175 endfor
176 endfor
177 endproc
178
179 # procedure get distance between two nodes
180 procedure getDistance (.x1, .y1, .x2, .y2)
181 dist = sqrt((.x2−.x1)^2 + (.y2 − .y1)^2)
182 endproc
183
184 # procedure creating firing rate array
185 procedure createFireRateArray
186 for i to numberOfNodes
187 nodePotentialArray# [i] = minFiringRate
188 endfor
189 endproc
190
191 # procedure forgetting causes (formules: 19 − forgetting

causes)
192 procedure updateMemLeak (.nn)
193 if nodeHasFiredArray# [.nn]
194 mem_n = 1
195 else
196 mem_n = memoryFiringArray# [.nn] * memHistLeak
197 endif
198 endproc
199
200 # procedure learning through weights
201 procedure weightLearning (.pre_nn, .post_nn)
202 weights## [.pre_nn, .post_nn] = max(minWeight, min(weights##

[.pre_nn, .post_nn] + memoryFiringArray# [.pre_nn] *
nodeHasFiredArray# [.post_nn] − nodeHasFiredArray#
[.pre_nn]*memoryFiringArray# [.post_nn], maxWeight))

203 endproc



Appendix 2: STDP-model 2 script

1 # Praat script STDP_v2.praat
2 # Angelica van Beemdelust
3 # May−Jun 2022
4 # last update: 24−06−2022
5
6 demoWindowTitle: ”STDP−model”
7 demoShow()
8 demo Times
9 demo Font size: 14

10
11 # set up
12 t = 0
13 dt = 0.001 ; in s
14 inputDuration = 0.24 ; in s (House, 1961)
15 radius = 3.0 ; in mm
16 step = 0
17 minFiringRate = 3 ; in Hertz
18 maxFiringRate = 600 ; in Hz
19 minWeight = 0.001 ; in Hz
20 maxWeight = 60 ; in Hz
21 maxExtWeight = 500 ; in Hz
22 maxExtMeanWeight = 500
23 excitatoryDecayTime = 0.011 ; in s
24 memHistDecayTime = 0.020 ; in s (Bi & Poo, 1998, p. 10464)
25 excitatoryLeak = exp(−dt/excitatoryDecayTime)
26 memHistLeak = exp(−dt/memHistDecayTime)
27 inhibitoryDecayTime = 0.020 ; in s
28
29 windowWidth = demo Horizontal world coordinates to mm: 1.0
30 windowHeight = demo Vertical world coordinates to mm: 1.0
31
32 @sound
33 soundDistribution = Create Matrix: ”soundDistribution”, 0.5,

sound.numberOfAuditoryNodes + 0.5,
sound.numberOfAuditoryNodes, 1.0, 1, 1, 1, 1, 1, 1, ~ 0.0

34
35 numberOfMeaningNodes = 50
36 numberOfExtMeaningNodes = 5
37 numberOfExternalInputNodes = sound.numberOfAuditoryNodes
38 numberOfInputNodes = sound.numberOfAuditoryNodes +

numberOfMeaningNodes ; 49
39 numberOfMiddleNodes = 50
40 numberOfTopNodes = 20
41 learningRate = 1
42
43 countFiredArray# = zero# (numberOfExtMeaningNodes)



44 count_active = 0
45 audNode1 = 0
46
47 # Initialization of layers
48 # External layer
49 extInputNodeStopArray# = zero# (numberOfExternalInputNodes)
50 extInputNodeFiredArray# = zero# (numberOfExternalInputNodes)
51 extNodePotentialArray# = zero# (numberOfExternalInputNodes)
52 extMeaningNodeStopArray# = zero# (numberOfExtMeaningNodes)
53 extMeaningNodeFiredArray# = zero# (numberOfExtMeaningNodes)
54 extMeaningNodePotentialArray# = zero#

(numberOfExtMeaningNodes)
55 y_ext = 15
56 x_ext# = from_to_by# (0.5, 45.5,

45/(numberOfExternalInputNodes − 1))
57 x_extM# = from_to_by# (55, 95, 40/(numberOfExtMeaningNodes −

1))
58 weights1_2## = zero## (numberOfExternalInputNodes,

sound.numberOfAuditoryNodes)
59 weights1m_2m## = zero## (numberOfExtMeaningNodes,

numberOfMeaningNodes)
60 weights2m_1m## = zero##

(numberOfMeaningNodes,numberOfExtMeaningNodes)
61 conn1_2## = weights1_2##
62 conn1m_2m## = weights1m_2m##
63
64 # Input layer
65 meaningNodePotentialArray# = zero# (numberOfMeaningNodes)
66 meaningNodeFiredArray# = zero# (numberOfMeaningNodes)
67 meaningNodeStopArray# = zero# (numberOfMeaningNodes)
68 intInputNodeStopArray# = zero# (numberOfInputNodes)
69 intInputNodeFiredArray# = zero# (numberOfInputNodes)
70 intNodePotentialArray# = zero# (numberOfInputNodes)
71 inputMemoryFiringArray# = zero# (numberOfInputNodes)
72 y_bottom = 40
73 x_aud# = from_to_by# (0.5, 45.5,

45/(sound.numberOfAuditoryNodes − 1))
74 x_meaning# = from_to_by# (50.5, 99.5,

49/(numberOfMeaningNodes − 1))
75 x_input# = zero# (numberOfInputNodes)
76 @combineAudMeaningPosition
77 weights2_3## = zero## (numberOfInputNodes,

numberOfMiddleNodes)
78
79 # Middle layer
80 middleNodeFiredArray# = zero# (numberOfMiddleNodes)
81 middleNodePotentialArray# = zero# (numberOfMiddleNodes)
82 middleMemoryFiringArray# = zero# (numberOfMiddleNodes)
83 y_mid = 65



84 x_mid# = from_to_by# (0.5, 99.5, 99/(numberOfMiddleNodes − 1))
85 weights3_2## = zero## (numberOfMiddleNodes,

numberOfInputNodes)
86 weights3_4## = zero## (numberOfMiddleNodes, numberOfTopNodes)
87
88 # Initialize meaning
89 meaning.morpheme$ [1] = ”‘a’”
90 meaning.morpheme$ [2] = ”‘e’”
91 meaning.morpheme$ [3] = ”‘i’”
92 meaning.morpheme$ [4] = ”‘o’”
93 meaning.morpheme$ [5] = ”‘u’”
94
95 # Top layer
96 topNodeFiredArray# = zero# (numberOfTopNodes)
97 topNodePotentialArray# = zero# (numberOfTopNodes)
98 topMemoryFiringArray# = zero# (numberOfTopNodes)
99 y_top = 90

100 x_top# = from_to_by# (0.5, 99.5, 99/(numberOfTopNodes − 1))
101 weights4_3## = zero## (numberOfTopNodes, numberOfMiddleNodes)
102
103 @drawAndInitializeWeights
104 @initalizePotentialArrays
105
106 # Draw network area
107 label start
108 demo Erase all
109 demo Select inner viewport: 10, 90, 10, 90
110 demo Axes: 0, 100, 0, 100
111 demo Paint rectangle: ”silver”, 0, 100, 0, 100
112 t += dt
113 @writeLabels
114
115 @learnAndUpdateWeights
116 @drawAllWeights
117 @updatePotentialAndDecay
118 @fireNodesAndUpdateMem
119 @drawAllNodes
120 #@drawSoundDistribution
121 @writeOutsideLabels
122 @count
123
124 demoPeekInput()
125 if demoKey$ () = ”q”
126 exitScript ()
127 endif
128 # demo pause and wait for user interaction buttons
129 if demoKey$ () = ”p”
130 wait = 1
131 while wait = 1



132 demoWaitForInput()
133 if demoInput (”AEIOU”)
134 clickedVowel = index (”AEIOU”, demoKey$ ())
135 f1_erb = randomGauss (sound.f1_erb# [clickedVowel],

sound.ambientStdev_erb)
136 f2_erb = randomGauss (sound.f2_erb# [clickedVowel],

sound.ambientStdev_erb)
137 f1_erb = round(f1_erb)
138 f2_erb = round(f2_erb)
139 @applySound: f1_erb, f2_erb, 1
140 extInputNodeStopArray# [audNode1] = t + inputDuration
141 extInputNodeStopArray# [audNode2] = t + inputDuration
142 extInputNodeFiredArray# [audNode1] = 1
143 extInputNodeFiredArray# [audNode2] = 1
144 count_active = 1
145 appendInfoLine: clickedVowel
146 wait = 0
147 elsif demoInput (”aeiou”)
148 clickedMeaning = index (”aeiou”, demoKey$ ())
149 extMeaningNodeStopArray# [clickedMeaning] = t +

inputDuration
150 extMeaningNodeFiredArray# [clickedMeaning] = 1
151 wait = 0
152 elsif demoKey$ () = ”l”
153 for ministep to 1000
154 step += 1 ; to track for sound Distribution
155 t += dt
156 @learnAndUpdateWeights
157 @updatePotentialAndDecay
158 @fireNodesAndUpdateMem
159 # set input
160 vowel = randomInteger (1, sound.numberOfVowels)
161 f1_erb = randomGauss (sound.f1_erb# [vowel],

sound.ambientStdev_erb)
162 f2_erb = randomGauss (sound.f2_erb# [vowel],

sound.ambientStdev_erb)
163 f1_erb = round(f1_erb)
164 f2_erb = round(f2_erb)
165 @applySound: f1_erb, f2_erb, 1
166 extMeaningNodeStopArray# [vowel] = t + inputDuration
167 extMeaningNodeFiredArray# [vowel] = 1
168 # update over time in 1 learning step
169 while t < extMeaningNodeStopArray# [vowel ]
170 t += dt
171 @learnAndUpdateWeights
172 @updatePotentialAndDecay
173 @fireNodesAndUpdateMem
174 endwhile
175 # optional wait for previous input to decay



176 # for time to excitatoryDecayTime*1000
177 # t += dt
178 # @learnAndUpdateWeights
179 # @updatePotentialAndDecay
180 # @fireNodesAndUpdateMem
181 # endfor
182 endfor
183 wait = 0
184 elsif demoKey$ () = ”p”
185 wait = 0
186 endif
187 endwhile
188 endif
189
190 goto start
191
192 procedure applySound: .f1_erb, .f2_erb,

.recordSoundDistribution
193 audNode1 = 1 + (.f1_erb − sound.fmin_erb) / sound.erbsPerNode
194 audNode2 = 1 + (.f2_erb − sound.fmin_erb) / sound.erbsPerNode
195 if .recordSoundDistribution
196 select soundDistribution
197 Formula: ~ self + exp (−0.5 * ((col − audNode1) /

sound.auditorySpreading_nodes) ^ 2) + exp (−0.5 * ((col −
audNode2) / sound.auditorySpreading_nodes) ^ 2)

198 endif
199 endproc
200
201 procedure drawSoundDistribution
202 selectObject: soundDistribution
203 demo Yellow
204 demo Select inner viewport: 10, 47, 10, 75
205 demo Line width: 3
206 demo Draw rows: 0.5, sound.numberOfAuditoryNodes + 0.5, 0,

0, 0, step
207 endproc
208
209 # procedure draw & initialize all weights
210 procedure drawAndInitializeWeights
211 @createInputWeightMatrix
212 @createMeaningWeightMatrix
213 @initializeWeight: numberOfInputNodes, numberOfMiddleNodes
214 weights2_3## = weightMatrix##
215 @initializeWeight: numberOfMiddleNodes, numberOfInputNodes
216 weights3_2## = weightMatrix##
217 @initializeWeight: numberOfMiddleNodes, numberOfTopNodes
218 weights3_4## = weightMatrix##
219 @initializeWeight: numberOfTopNodes, numberOfMiddleNodes
220 weights4_3## = weightMatrix##



221 endproc
222
223 # procedure draw all Weights
224 procedure drawAllWeights
225 demo Black
226 @drawInputWeight
227 @drawMeaningWeight
228 @drawWeight: weights2_3##, numberOfInputNodes,

numberOfMiddleNodes, x_input#, y_bottom, x_mid#, y_mid
229 @drawWeight: weights3_2##, numberOfMiddleNodes,

numberOfInputNodes, x_mid#, y_mid, x_input#, y_bottom
230 @drawWeight: weights3_4##, numberOfMiddleNodes,

numberOfTopNodes, x_mid#, y_mid, x_top#, y_top
231 @drawWeight: weights4_3##, numberOfTopNodes,

numberOfMiddleNodes, x_top#, y_top, x_mid#, y_mid
232
233 endproc
234
235 # procedure draw single node
236 procedure drawNode (.x, .y, .active, .p)
237 demo Black
238 demo Paint circle (mm): if .active then ”red” else ”white”

fi, .x, .y, .p/100 + 2*radius
239 demo Line width: 2
240 demo Draw circle (mm): .x, .y, .p/100 + 2*radius
241 endproc
242
243 procedure drawAllNodes
244 for nn to numberOfExternalInputNodes
245 @drawNode: x_ext# [nn], y_ext, extInputNodeFiredArray#

[nn], extNodePotentialArray# [nn]
246 endfor
247
248 for nn to numberOfExtMeaningNodes
249 @drawNode: x_extM# [nn], y_ext, extMeaningNodeFiredArray#

[nn], extMeaningNodePotentialArray# [nn]
250 endfor
251 for nn to numberOfInputNodes
252 if nn <= sound.numberOfAuditoryNodes
253 @drawNode: x_input# [nn], y_bottom,

intInputNodeFiredArray# [nn], intNodePotentialArray# [nn]
254 else
255 @drawNode: x_input# [nn], y_bottom,

intInputNodeFiredArray# [nn], meaningNodePotentialArray#
[nn − sound.numberOfAuditoryNodes]

256 endif
257 endfor
258
259 for nn to numberOfMiddleNodes



260 @drawNode: x_mid# [nn], y_mid, middleNodeFiredArray# [nn],
middleNodePotentialArray# [nn]

261 endfor
262
263 for nn to numberOfTopNodes
264 @drawNode: x_top# [nn], y_top, topNodeFiredArray# [nn],

topNodePotentialArray# [nn]
265 endfor
266 endproc
267
268 procedure createInputWeightMatrix
269 stDev = 1
270 weights1_2## ~ if abs(col − row) <= 2 then (maxExtWeight /

(stDev * sqrt(2 * pi))) * exp(−0.5 * (abs(col − row) /
stDev)^2) else 0 fi

271 conn1_2## ~ if abs(col − row) <= 2 then 1 else 0 fi
272 endproc
273
274 procedure createMeaningWeightMatrix
275 stDev = 2
276 weights1m_2m## ~ if abs((row − 1)* 10 + 5.5 − col) <= 5

then (maxExtMeanWeight / (stDev * sqrt(2 * pi))) * exp(−0.5

* (abs((row − 1) * 10 + 5.5 − col)/ stDev)^2) else 0 fi
277 weights2m_1m## ~ if abs((col − 1) * 10 + 5.5 − row) <= 5

then (maxExtMeanWeight / (stDev * sqrt(2 * pi))) * exp(−0.5

* (abs((col − 1) * 10 + 5.5 − row)/ stDev)^2) else 0 fi
278 conn1m_2m## ~ if abs((row − 1) * 10 + 5.5 − col) <= 5 then

1 else 0 fi
279 endproc
280
281 # procedure calculating weight
282 procedure calculateWeight: .d
283 stDev = 1 ; one node = 1 stDev
284 calculatedWeight = (maxExtWeight / (stDev * sqrt(2 * pi)))

* exp(−0.5 * (.d / stDev)^2)
285 endproc
286
287 # procedure drawing weights ext−aud
288 procedure drawInputWeight
289 for ext to numberOfExternalInputNodes
290 for aud to sound.numberOfAuditoryNodes
291 if conn1_2## [ext, aud] <> 0
292 demo Line width: weights1_2## [ext, aud]/35
293 demo Draw line: x_ext# [ext], y_ext, x_aud# [aud],

y_bottom
294 endif
295 endfor
296 endfor
297 endproc



298
299 # procedure drawing weights extMeaning−meaning
300 procedure drawMeaningWeight
301 for ext to numberOfExtMeaningNodes
302 for mean to numberOfMeaningNodes
303 if conn1m_2m## [ext, mean] <> 0
304 demo Line width: weights1m_2m## [ext, mean]/10
305 demo Draw line: x_extM# [ext], y_ext, x_meaning#

[mean], y_bottom
306 endif
307 endfor
308 endfor
309 endproc
310
311 # procedure drawing rest of weights
312 procedure drawWeight: .matrix##, .nOfi, .nOfj, .x_posi#,

.y_posi, .x_posj#, .y_posj
313 for i to .nOfi
314 for j to .nOfj
315 weight = .matrix## [i, j]
316 midx = (.x_posi# [i] + .x_posj# [j])/2
317 midy = (.y_posi + .y_posj)/2
318 if weight > 0
319 demo Black
320 demo Line width: .matrix## [i, j]/20
321 demo Draw line: midx, midy, .x_posj# [j], .y_posj
322 elsif weight < 0
323 demo White
324 demo Line width: abs(.matrix## [i, j]/5)
325 demo Draw line: midx, midy, .x_posj# [j], .y_posj
326 endif
327 endfor
328 endfor
329 endproc
330
331 # procedure learning and update weights
332 procedure learnAndUpdateWeights
333 # Input−Mid nodes
334 weights2_3## ~ max(minWeight, min(self +

inputMemoryFiringArray# [row] * middleNodeFiredArray#
[col] − intInputNodeFiredArray# [row] *
middleMemoryFiringArray# [col], maxWeight)) * learningRate

335 weights3_2## ~ max(minWeight, min(self +
middleMemoryFiringArray# [row] * intInputNodeFiredArray#
[col] − middleNodeFiredArray# [row] *
inputMemoryFiringArray# [col], maxWeight)) * learningRate

336
337 # Mid−Top nodes
338 weights3_4## ~ max(minWeight, min(self +



middleMemoryFiringArray# [row] * topNodeFiredArray# [col]
− middleNodeFiredArray# [row] * topMemoryFiringArray#
[col], maxWeight)) * learningRate

339 weights4_3## ~ max(minWeight, min(self +
topMemoryFiringArray# [row] * middleNodeFiredArray# [col]
− topNodeFiredArray# [row] * middleMemoryFiringArray#
[col],maxWeight)) * learningRate

340 endproc
341
342 # procedure initialize rest of weights
343 procedure initializeWeight: .nOfi, .nOfj
344 weightMatrix## = zero## (.nOfi, .nOfj)
345 weightMatrix## ~ 3
346 endproc
347
348 # procedure combine auditory and meaning nodes into single

array
349 procedure combineAudMeaningPosition
350 for i to sound.numberOfAuditoryNodes
351 x_input# [i] = x_aud# [i]
352 endfor
353 for j to numberOfMeaningNodes
354 x_input# [sound.numberOfAuditoryNodes + j] = x_meaning# [j]
355 endfor
356 endproc
357
358 # procedure creating potential rate array
359 procedure createPotentialRateArray: .numberOfNodes
360 nodePotentialArray# = zero# (.numberOfNodes)
361 nodePotentialArray# ~ minFiringRate
362 endproc
363
364 # procedure initialize potential rate array
365 procedure initalizePotentialArrays
366 @createPotentialRateArray: numberOfInputNodes
367 intNodePotentialArray# = nodePotentialArray#
368 @createPotentialRateArray: numberOfExtMeaningNodes
369 extMeaningNodePotentialArray# = nodePotentialArray#
370 @createPotentialRateArray: numberOfMiddleNodes
371 middleNodePotentialArray# = nodePotentialArray#
372 @createPotentialRateArray: numberOfTopNodes
373 topNodePotentialArray# = nodePotentialArray#
374 endproc
375
376 # update potential rate + decay at beginning of cycle
377 procedure updatePotentialAndDecay
378 # update ext meaning nodes
379 meaningNodeFiredArray# ~ intInputNodeFiredArray# [col +

sound.numberOfAuditoryNodes]



380 sumOfBottomNode# = mul# (meaningNodeFiredArray#,
weights2m_1m##)

381 extMeaningNodePotentialArray# ~ if extMeaningNodeFiredArray#
[col] then minFiringRate else (self + sumOfBottomNode#
[col]) * excitatoryLeak fi

382
383 # update input nodes
384 externalInputForBottom# = mul# (mul#

(extInputNodeFiredArray#, weights1_2##), conn1_2##)
385 middleInputForBottom# = mul# (middleNodeFiredArray#,

weights3_2##)
386 sumOfExtMeaning# = mul# (extMeaningNodeFiredArray#,

weights1m_2m##)
387
388 intNodePotentialArray# ~ if col <=

sound.numberOfAuditoryNodes
389 ... then (self + externalInputForBottom# [col] +

middleInputForBottom# [col]) * excitatoryLeak
390 ... else (self) fi
391
392 meaningNodePotentialArray# ~ if intInputNodeFiredArray# [col

+ sound.numberOfAuditoryNodes] then minFiringRate else (self
+ middleInputForBottom# [col + sound.numberOfAuditoryNodes]
+ sumOfExtMeaning# [col]) * excitatoryLeak fi

393
394 intNodePotentialArray# ~ if col >

sound.numberOfAuditoryNodes then meaningNodePotentialArray#
[col − sound.numberOfAuditoryNodes] else self fi

395 intNodePotentialArray# ~ if intInputNodeFiredArray# [col]
then minFiringRate else self fi

396
397 # update middle nodes
398 sumOfMiddleNode# = mul# (intInputNodeFiredArray#,

weights2_3##) + mul# (topNodeFiredArray#, weights4_3##)
399
400 middleNodePotentialArray# ~ if middleNodeFiredArray# [col]

then minFiringRate else (self + sumOfMiddleNode# [col]) *
excitatoryLeak fi

401
402 # update top nodes
403 sumOfTopNode# = mul# (middleNodeFiredArray#, weights3_4##)
404
405 topNodePotentialArray# ~ if topNodeFiredArray# [col] then

minFiringRate else (self + sumOfTopNode# [col]) *
excitatoryLeak fi

406 endproc
407
408 # check if fired and update mem nodes
409 procedure fireNodesAndUpdateMem



410 extMeaningNodeFiredArray# ~ if extMeaningNodeStopArray#
[col] < t then randomBernoulli((minFiringRate +
(maxFiringRate − minFiringRate) *
tanh(extMeaningNodePotentialArray# [col] / maxFiringRate) *
(1 − self)) * dt) else self fi

411
412 # input nodes
413 extInputNodeFiredArray# ~ if extInputNodeStopArray# [col] <

t then 0 else self fi
414
415 intInputNodeFiredArray# ~ randomBernoulli((minFiringRate +

(maxFiringRate − minFiringRate) *
tanh(intNodePotentialArray# [col] / maxFiringRate) * (1 −
self)) * dt)

416
417 inputMemoryFiringArray# ~ if intInputNodeFiredArray# [col]

then 1 else self * memHistLeak fi
418
419 # middle nodes
420 middleNodeFiredArray# ~ randomBernoulli((minFiringRate +

(maxFiringRate − minFiringRate) *
tanh(middleNodePotentialArray# [col]/maxFiringRate) * (1 −
self)) * dt)

421
422 middleMemoryFiringArray# ~ if middleNodeFiredArray# [col]

then 1 else self * memHistLeak fi
423
424 # top nodes
425 topNodeFiredArray# ~ randomBernoulli((minFiringRate +

(maxFiringRate − minFiringRate) *
tanh(topNodePotentialArray# [col]/maxFiringRate) * (1 −
self)) * dt)

426
427 topMemoryFiringArray# ~ if topNodeFiredArray# [col] then 1

else self * memHistLeak fi
428 endproc
429
430 procedure writeLabels
431 demo Black
432 demo Text special: 0, ”left”, 7, ”bottom”, ”Times”, 40, ”0”,

”[”
433 demo Text special: 0.16 * numberOfExternalInputNodes,

”centre”, 7, ”bottom”, ”Times”, 40, ”0”, ”5”
434 demo Text special: 0.32 * numberOfExternalInputNodes,

”centre”, 7, ”bottom”, ”Times”, 40, ”0”, ”10”
435 demo Text special: 0.475 * numberOfExternalInputNodes,

”centre”, 7, ”bottom”, ”Times”, 40, ”0”, ”15”
436 demo Text special: 0.63 * numberOfExternalInputNodes,

”centre”, 7, ”bottom”, ”Times”, 40, ”0”, ”20”



437 demo Text special: 0.79 * numberOfExternalInputNodes,
”centre”, 7, ”bottom”, ”Times”, 40, ”0”, ”25 ”

438 demo Text special: 0.95 * numberOfExternalInputNodes,
”right”, 7, ”bottom”, ”Times”, 40, ”0”, ” ERB]”

439
440 demo Text special: x_extM# [1], ”centre”, 7, ”bottom”,

”Times”, 40, ”0”, ‘”’a”
441 demo Text special: x_extM# [2], ”centre”, 7, ”bottom”,

”Times”, 40, ”0”, ‘”’e”
442 demo Text special: x_extM# [3], ”centre”, 7, ”bottom”,

”Times”, 40, ”0”, ‘”’i”
443 demo Text special: x_extM# [4], ”centre”, 7, ”bottom”,

”Times”, 40, ”0”, ‘”’o”
444 demo Text special: x_extM# [5], ”centre”, 7, ”bottom”,

”Times”, 40, ”0”, ‘”’u”
445 endproc
446
447 procedure writeOutsideLabels
448 demo Select inner viewport: 0, 100, 0, 100
449 demo Axes: 0, 100, 0, 100
450 demo Black
451 demo Text special: 7, ”left”, 80, ”bottom”, ”Times”, 40,

”0”, ”z_n”
452 demo Text special: 7, ”left”, 60, ”bottom”, ”Times”, 40,

”0”, ”y_m”
453 demo Text special: 6, ”left”, 40, ”bottom”, ”Times”, 40,

”0”, ”x_l”
454 demo Text special: 6, ”left”, 40, ”bottom”, ”Times”, 40,

”0”, ”x^^aud^”
455 demo Text special: 6, ”left”, 20, ”bottom”, ”Times”, 40,

”0”, ”v_k”
456 demo Text special: 6, ”left”, 20, ”bottom”, ”Times”, 40,

”0”, ”v^^aud^”
457 demo Text special: 90, ”left”, 40, ”bottom”, ”Times”, 40,

”0”, ”x_l”
458 demo Text special: 90, ”left”, 40, ”bottom”, ”Times”, 40,

”0”, ”x^^mean^”
459 demo Text special: 90, ”left”, 20, ”bottom”, ”Times”, 40,

”0”, ”v^^mean^”
460 demo Text special: 90, ”left”, 20, ”bottom”, ”Times”, 40,

”0”, ”v_k”
461 demo Text special: 4, ”left”, 73, ”bottom”, ”Times”, 30,

”0”, ”q_m_n”
462 demo Text special: 4, ”left”, 73, ”bottom”, ”Times”, 30,

”0”, ”q^^up^”
463 demo Text special: 4, ”left”, 67, ”bottom”, ”Times”, 30,

”0”, ”q_m_n”
464 demo Text special: 4, ”left”, 67, ”bottom”, ”Times”, 30,

”0”, ”q^^down^”



465 demo Text special: 4, ”left”, 53, ”bottom”, ”Times”, 30,
”0”, ”r_l_m”

466 demo Text special: 4, ”left”, 53, ”bottom”, ”Times”, 30,
”0”, ”r^^up^”

467 demo Text special: 4, ”left”, 47, ”bottom”, ”Times”, 30,
”0”, ”r_l_m”

468 demo Text special: 4, ”left”, 47, ”bottom”, ”Times”, 30,
”0”, ”r^^down^”

469 demo Text special: 4, ”left”, 30, ”bottom”, ”Times”, 30,
”0”, ”s_k_l”

470 demo Text special: 4, ”left”, 30, ”bottom”, ”Times”, 30,
”0”, ”s^^aud^”

471 demo Text special: 90, ”left”, 30, ”bottom”, ”Times”, 30,
”0”, ”s_k_l”

472 demo Text special: 90, ”left”, 30, ”bottom”, ”Times”, 30,
”0”, ”s^^mean^”

473 endproc
474
475 procedure count
476 if count_active = 1
477 if extInputNodeFiredArray# [audNode1]
478 countFiredArray# ~ extMeaningNodeFiredArray# [col] +

countFiredArray# [col]
479 else
480 count_active = 0
481 appendInfoLine: countFiredArray#
482 countFiredArray# ~ 0
483 endif
484 endif
485 endproc
486
487 include demo.praatinclude
488 include sound.praatinclude



Appendix 3: Demo script

1 # Praat include file demo.praatinclude
2 # Paul Boersma, 4 April 2014
3
4 procedure demo.erase
5 demo ’demo.font$’
6 demo Font size... demo.fontSize
7 demo Select inner viewport... 0 100 0 100
8 demo Axes... 0 100 0 100
9 demo Erase all

10 demo Paint rectangle... ’demo.backgroundColour$’ 0 100 0 100
11 demo Colour... ’demo.foregroundColour$’
12 endproc
13
14 procedure demo.title .text$
15 .width = demo Text width (wc)... ’.text$’
16 if .width < 45
17 demo Text special... 7 left 90 half ’demo.font$’

2*demo.fontSize 0 ’.text$’
18 else
19 demo Text special... 50 centre 90 half ’demo.font$’

2*demo.fontSize*45/.width 0 ’.text$’
20 endif
21 demo.textY = 70
22 endproc
23
24 procedure demo.centredTitle .text$
25 .width = demo Text width (wc)... ’.text$’
26 if .width < 45
27 demo Text special... 50 centre 90 half ’demo.font$’

2*demo.fontSize 0 ’.text$’
28 else
29 demo Text special... 50 centre 90 half ’demo.font$’

2*demo.fontSize*45/.width 0 ’.text$’
30 endif
31 demo.textY = 70
32 endproc
33
34 procedure demo.bullet .text$
35 demo Text... 10−1.5 centre demo.textY−0.5 half •
36 .width = demo Text width (wc)... ’.text$’
37 if .width < 85
38 demo Text... 10 left demo.textY half ’.text$’
39 else
40 demo Text special... 10 left demo.textY half ’demo.font$’

demo.fontSize*85/.width 0 ’.text$’
41 endif



42 demo.textY −= 12
43 endproc
44
45 procedure demo.therefore .text$
46 demo Text... 10−2.5 centre demo.textY half �
47 .width = demo Text width (wc)... ’.text$’
48 if .width < 85
49 demo Text... 10 left demo.textY half ’.text$’
50 else
51 demo Text special... 10 left demo.textY half ’demo.font$’

demo.fontSize*85/.width 0 ’.text$’
52 endif
53 demo.textY −= 12
54 endproc
55
56 procedure demo.text .text$
57 demo.textY += 4
58 .width = demo Text width (wc)... ’.text$’
59 if .width < 85
60 demo Text... 10 left demo.textY half ’.text$’
61 else
62 demo Text special... 10 left demo.textY half ’demo.font$’

demo.fontSize*85/.width 0 ’.text$’
63 endif
64 demo.textY −= 12
65 endproc
66
67 procedure demo.reference .text$
68 demo.textY += 5
69 demo Text special... 98 right demo.textY half ’demo.font$’

demo.fontSize/1.5 0 ’.text$’
70 demo.textY −= 9
71 endproc
72
73 procedure demo.source .text$
74 demo Text special... 2 left 2 bottom Times demo.fontSize/1.5

0 ’.text$’
75 endproc
76
77 procedure demo.button .x1 .x2 .y .text$
78 demo Paint rounded rectangle... ’demo.buttonColour$’ .x1 .x2

.y−4 .y+4 3
79 .width = demo Text width (wc)... ’.text$’
80 if .width < 0.9 * (.x2 − .x1)
81 demo Text... (.x1+.x2)/2 centre .y half ’.text$’
82 else
83 demo Text special... (.x1+.x2)/2 centre .y half

’demo.font$’ demo.fontSize*0.9*(.x2−.x1)/.width 0 ’.text$’
84 endif



85 endproc
86
87 procedure demo.wait .duration
88 Create Sound from formula... silence mono 0 .duration 44100 0
89 Play
90 Remove
91 endproc



Appendix 4: Sound script

1 # 2019−CJL/sound.praatinclude
2 # Paul Boersma 2020−01−04
3
4 procedure sound
5 .vowels$ = ”aeiou”
6 .numberOfVowels = length (.vowels$)
7 .f1_erb# = { 13, 10, 7, 10, 7 }
8 .f2_erb# = { 19, 22, 25, 16, 13 }
9 .ambientStdev_erb = 1.0

10 .auditorySpreading_erb = 0.68
11 .numberOfAuditoryNodes = 49
12 .fmin_erb = 4.0
13 .fmax_erb = 28.0
14 .erbsPerNode = (.fmax_erb − .fmin_erb) /

(.numberOfAuditoryNodes − 1)
15 .auditorySpreading_nodes = .auditorySpreading_erb /

.erbsPerNode
16 endproc
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