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Abstract

Every sound in a language can be categorized by a number of articulatory features.
These features can be combined in various ways to represent the sound systems of human
languages, some of which may be harder to learn than others. A number of tools have
been proposed in order to measure the complexity of such systems, among which are feature
economy and logical complexity. The feature economy of a phoneme inventory is obtained by
dividing the number of phonemes in that language by the total possible number of phonemes
– considering all contrasts that the language uses in its phoneme space. Logical complexity
is calculated by counting the number of literals in a minimal formula that describes all the
phonemes from a language. This thesis examines the plosive inventories of 317 languages
from all over the world, in order to determine whether feature economy or logical complexity
is a better predictor for the distribution of plosive inventories across languages. When a
certain sound is absent in a language, but all features that make up that sound are used in
different combinations for other sounds in the language, we call the missing sound a gap.
Our analysis shows that more than half of the examined languages have no gaps in their
plosive inventories. Furthermore, we conclude that logical complexity is a better predictor
for the distribution of plosive inventories than feature economy. This conclusion holds even
when we take the relatedness of languages within a family into account.
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CHAPTER 1

Introduction

Language learning has been a hot topic ever since the Tower of Babel divided mankind – or, in
more accurate scientific terms, ever since Homo sapiens started speaking millions of years ago1.
At the end of 2020, the popular language learning platform Duolingo had around 40 million
monthly active users from every single country in the world2. But while learning a new language
has become more accessible than ever, there still is a lot to be discovered about how and why
languages evolve. And although it is impossible to go back in time and research long gone
languages, we can learn a thing or two by taking a closer look at the languages that are spoken
in the world today.

This thesis examines 317 languages from all across the world, many of which are still spoken
today, while some others have gone extinct. We employ two different measures to describe their
complexity, and we aim to determine which one of those measures most accurately predicts the
distribution of plosives in languages across the world.

Chapter 2 explains some of the important terminology used throughout this text and intro-
duces the notions of feature economy and logical complexity. Chapter 3 outlines the research
method used in our typological study. Chapter 4 describes the results from the analysis of our 317
languages. In Chapter 5 we draw some careful conclusions and discuss some possible concerns.
The two appendices show the results of the study in more detailed graphs and tables.

1Balter, M. (2015). Human language may have evolved to help our ancestors make tools. Science (American
Association for the Advancement of Science). https://doi.org/10.1126/science.aaa6332.

2Cindy Blanco (2020). 2020 Duolingo Language Report: Global Overview. https://blog.duolingo.com/

global-language-report-2020.

7

https://doi.org/10.1126/science.aaa6332
https://blog.duolingo.com/global-language-report-2020
https://blog.duolingo.com/global-language-report-2020


8



CHAPTER 2

Feature economy and logical complexity

2.1 Terminology

Every language consists of phonemes, which can be described using a set of articulatory features.
For example, we may describe the English sound [b] as a bilabial voiced plosive. The main
information source for this thesis, Maddieson (1984), uses these articulatory features to place
all phonemes of a language into a grid, with the rows and columns representing the different
features. Table 2.1 and 2.2 show the consonant grids for German and Tigre, an Afro-Asiatic
language spoken in Eritrea.

To begin with, I will explain some of the terminology that will be used frequently throughout
this text. First of all, the phoneme space of a language is the size of the complete grid, that
is, the product of the number of rows and columns. We can see that German has a phoneme
space of 12x9, and Tigre has a phoneme space of 15x11. Note that the grids differ per language:
a distinctive feature in one language may not be of any importance in another language. The
phoneme inventory of a language is the number of feature combinations that the language actually
uses; thus, the total number of phonemes in a language. Tigre apparently has a phoneme
inventory size of 27, while the size of the German phoneme inventory is 22.

Table 2.1: The German consonant inventory. Adapted from Maddieson (1984).

b
il

ab
ia

l

la
b

io
-d

en
ta

l

d
en

ta
l/

al
ve

ol
ar

al
ve

ol
ar

p
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at
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ve
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ar

p
al

at
al

ve
la

r

u
v
u

la
r

va
ri

ab
le

p
la

ce

voiceless aspirated plosive ph th kh

voiced plosive b d g
voiceless sibilant affricate ts
voiceless nonsibilant affricate pf
voiceless nonsibilant fricative f x h
voiced nonsibilant fricative v
voiceless sibilant fricative s S
voiced sibilant fricative z Z
voiced nasal m n N
voiced trill ö
voiced lateral approximant l
voiced central approximant j
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Table 2.2: The Tigre consonant inventory. Adapted from Maddieson (1984).

b
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ia
l-

ve
la

r

voiceless plosive t” k P
voiced plosive b d” g
voiceless ejective stop t”’ k’
voiceless sibilant affricate tS
voiced sibilant affricate dZ
voiceless sibilant ejective affricate ts’ tS’
voiceless nonsibilant fricative f è h
voiced nonsibilant fricative Q
voiceless sibilant fricative s S
voiced sibilant fricative z Z
voiceless sibilant ejective fricative s’
voiced nasal m n”
voiced trill r
voiced lateral approximant l
voiced central approximant j w

Our typological research only focuses on the plosives of a language. Table 2.3 shows the
plosive grids for German and Tigre, with the glottal stop (P) left out. The reason for this choice
is explained in the Method section. We now see that the size of the plosive space of Tigre is
6, and the size of its plosive inventory is 5. The empty cell in the top left corner is called a
gap, and because of this gap, we say that Tigre is irregular. The plosive space of German is
completely filled, so both the plosive space and the plosive inventory have size 6. Because the
German language fully employs its plosive space, we say that German is regular. Note that we
consider only plosives in this research, and therefore, we might refer to the plosive space and
plosive inventory of a language by phoneme space and phoneme inventory, respectively.

Table 2.3: The plosive inventories of German (a) and Tigre (b).

ph th kh

b d g

(a)

t” k

b d” g

(b)

2.2 Inventory types

Shepard, Hovland, and Jenkins (1961) conducted a study investigating the learnability of different
patterns of feature combinations. Their visual stimuli consisted of three distinct features (shape,
size, and color), which could each take on two different values, thus creating a three-dimensional
stimulus space (Figure 2.1a). Every possible combination of four stimuli belongs to one of six
types, as shown in Figure 2.1b. Shepard et al. found that some types are significantly easier to
learn than others. The order of difficulty is I < II < [III, IV, V] < VI, where I is the easiest to
learn, VI is the hardest, and III, IV, and V have approximately the same difficulty.
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(a) (b)

Figure 2.1: (a) The stimulus space that can be constructed from the three binary features. (b)
Every combination of four different stimuli can be rotated or reflected to match one of these six
types. Reprinted from Shepard, Hovland, and Jenkins (1961).

Seinhorst (2016) conducted a similar experiment to discover the differences in learnability
between different phoneme grid types. He used six hand shapes which can be placed in a
2x3 grid, to mimic a basic plosive space such as that of German and Tigre. The stimuli sets
consisted of either 3, 4, 5, or 6 stimuli, since most languages with a plosive space of 6 have a
plosive inventory of 3 to 6 phonemes (Seinhorst 2017). These combinations of stimuli all belong
to one of the eight inventory types shown in Figure 2.2.

In Seinhorst’s experiment, each participant saw a subset of the six possible hand shapes, and
each hand shape was shown multiple times. After all stimuli were presented, the participants were
asked to indicate which hand shapes they had seen. Interestingly, participants never omitted
hand shapes that they had indeed seen, but they did incorrectly indicate hand shapes that
were not part of the subset shown. Put differently: no participant created an extra gap in the
inventory, but almost 15% of the participants filled one or more gaps that were present in their
subset. This observation leads us to think that more regular inventory types are easier to learn.

Figure 2.2: Each combination of 3, 4, 5, or 6 stimuli in a 2x3 stimulus space matches one of these
eight types. Reprinted from Seinhorst (2016).

2.3 Feature economy

The question arises whether the bias to fill gaps rather than create them will be reflected in the
way languages change over time. Martinet (in Clements 2003) showed that gaps indeed tend to
disappear, either because they get filled up, or because another phoneme evolves in such a way
that the gap is no longer part of the phoneme space.

As opposed to this diachronic approach, our typological research focusses on the synchronic
analysis of inventory types. From the results of Shepard et al. and Martinet, we predict that
inventory types which are less complex regarding their gaps will be more prevalent in languages
across the world. If we want to be able to predict the prevalence of different inventory types, we
need a tool to measure their complexity. In the past decades many tools have been proposed:
Clements lists for example parsimony, symmetry, pattern congruity, representational economy,
and feature economy. He argues that the latter seems to be the most accurate measure of
complexity.

11



The principle of feature economy states that “languages tend to maximize the combinatory
possibilities of features across the inventory of speech sounds: features used once in a system tend
to be used again” (Clements 2003, p. 287). If we apply this to the plosive spaces of German and
Tigre in Table 2.3, we see that Tigre has a lower feature economy than German, because Tigre
uses the bilabial feature only once. To be able to compare different feature economies accurately,
we adopt the following calculation in this thesis: we divide the inventory size of a language by
its space size, resulting in a number between 0 and 1, where a higher number represents a higher
feature economy. The feature economy of German is then 1.00, while the feature economy of
Tigre is 5/6 = 0.83.

2.4 Logical complexity

Another measure that might be of interest to us is Boolean complexity, which we will refer to as
logical complexity. Feldman (2000) showed that this measure accurately predicts the outcome of
the 1961 Shepard et al. experiment, and was thereby the first to adequately explain those results.

Table 2.4 repeats the plosive spaces of German and Tigre as introduced in Table 2.3, but now
with letters indicating the rows and columns. The top left cell is thus denoted by ab and the cell
next to it by ab’. The plosive inventory of Tigre can be described by the the formula ab’ + ab”
+ a’b + a’b’ + a’b”. This is called the disjunctive normal form of the Tigre plosive space. This
disjunctive normal form can be collapsed into a minimal formula. Since Tigre uses all plosives
in the second row, we can replace a’b + a’b’ + a’b” with just a’. In the same way, the second
and third column can be denoted by b’ and b” respectively. The minimal formula a’ + b’ + b”
thus captures all and only those plosives that belong to Tigre’s plosive inventory. Since German
uses all cells in its plosive space, we say that its minimal formula is A, which stands for ’all’.

Table 2.4: The plosive inventories of German (a) and Tigre (b), with letters indicating the rows
and columns.

b b’ b”

a ph th kh

a’ b d g

(a)

b b’ b”

a t” k

a’ b d” g

(b)

The logical complexity of an inventory type is the number of literals in its minimal formula.
Since the minimal formula for the German plosive inventory consists of one literal, A, its logical
complexity is 1. The plosive inventory of Tigre has just one gap, but because of that its minimal
formula contains three literals, giving Tigre a logical complexity of 3. A higher number thus
represents a more complex inventory type.

We now have two possible measures for system complexity, but which one predicts the preva-
lence of inventory types best? No comparison of these two measures seems to have been carried
out in past typological research. Therefore, the main question this thesis seeks to answer is
whether feature economy or logical complexity is a better predictor for the prevalence of differ-
ent inventory types in the languages across the world.

12



CHAPTER 3

Research method

3.1 The sample

As Maddieson (1984) points out, it is impossible to draw a truly random sample from the
population of all languages. First of all, there are many languages in the world about which we
have no data, or at most incomplete and inadequate data. Most of these languages are non-
western, which makes it almost impossible to get rid of the western bias when drawing a sample.
Second, “languages of the world” is not a clearly defined population. Languages are subject to
change: new languages emerge, others evolve or go extinct. There is not, and will never be, a
satisfactory definition of what precisely a language is.

Because the boundaries of our population are unclear, and a lot of members cannot be part of
the sample due to lack of information, there is no good basis for drawing a truly random sample.
Our research therefore includes all 317 languages documented in Maddieson, but great care must
be taken when drawing conclusions from this sample.

3.2 Analyzing plosive inventories

While there are many different types of phonemes, one thing that all languages in our sample have
in common is that they use plosives. Therefore, this research focuses only on plosive inventories.
For every language, we listed the features that are necessary to create a grid that fits all plosives
of that particular language. We chose to divide these features into four categories:

• The features that make up the laryngeal system of the language: voiced, voiceless, aspi-
rated, laryngealized, prenasalized, et cetera;

• The places of articulation: labial, dental, alveolar, retroflex, palato-alveolar, palatal, velar,
and uvular;

• The secondary articulatory features, if distinctive: labialized, palatalized, pharyngealized;

• Any other distinctive features (which turned out to be only the distinction between long
and short phonemes).

As stated in the previous chapter, we chose to leave the glottal stop (P) out of our analysis.
A glottal stop is produced by a complete closure of the glottis, the space between the vocal folds
(Ladefoged and Disner 2012). Because the vocal folds need to be able to vibrate in order to
produce a voiced sound, the voiced glottal stop has been judged impossible by the International
Phonetic Association1. Including that phoneme in the analysis would thus leave many languages

1IPA Chart, http://www.internationalphoneticassociation.org/content/ipa-chart, available under a
Creative Commons Attribution-Sharealike 3.0 Unported License. Copyright © 2018 International Phonetic As-
sociation.
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Table 3.1: Laryngeal features on a continuum (a) versus in a grid (b).

voiced voiceless voiceless aspirated

(a)

voiced voiceless
X voiceless aspirated

(b)

with a gap that could never be filled. The same goes for pharyngeal plosives. While the voiceless
pharyngeal plosive is extremely rare – and in our sample only found in Iraqw – it is physically
possible, whereas the voiced pharyngeal plosive is not, according to the International Phonetic
Association. We have therefore left the Iraqw pharyngeal voiceless plosive out of the analysis.

While analyzing our sample of languages, we encountered a problem concerning laryngeal
systems. If a language has voiced, voiceless and voiceless aspirated plosives, should that be
considered a continuum (Table 3.1a) or a two-by-two grid with a gap at the place of the X
(Table 3.1b)? This issue arose not only with aspiration, but also with features that are harder
to place on a continuum. For example: Selepet, a language of the Indo-Pacific family, has only
voiced prenasalized and voiceless aspirated plosives. Treating this system as a continuum does
not seem right, since nasalization and aspiration are not two sides of the same coin. Treating
the system as a two-by-two grid with two empty cells would imply that this language is highly
uneconomical in filling its phoneme space. Since neither of these approaches seems justified, we
chose to treat every feature within the laryngeal system of a language as a separate entity, not
connected to the other features by a continuum or a grid. This approach provides us with more
flexibility while analyzing laryngeal systems.

After determining which features the plosive inventory of a language employs, we listed the
size of the plosive space and the size of the inventory. We then calculated both the feature
economy and the logical complexity of each language.

3.3 Calculating feature economy

As an example, let us consider the plosive system of Siona, a Tucanoan language spoken in
Colombia and Ecuador. Table 3.2 shows the 8 plosives that Siona employs. The laryngeal
system consists of two features: voiceless and laryngealized voiceless. Upon closer inspection it
becomes clear that the five columns are made up of only four different places of articulation:
bilabial, dental, retroflex and velar. The velar column can be divided into “plain” and labialized
plosives. Thus, Siona distinguishes two secondary articulatory features. We can now conclude
that every place of articulation has space for 2 laryngeal features x 2 secondary features = 4
plosives. Since Siona has 4 places of articulation, its total space size is 4 x 4 = 16, even though
Siona has only 8 plosives. This means that Siona has a feature economy of 8 / 16 = 0.50. Table
3.3 shows the complete plosive space of the Siona language.

Table 3.2: The plosive inventory of Siona. Adapted from Maddieson (1984).

b
il

ab
ia

l

d
en

ta
l

re
tr

ofl
ex

ve
la

r

ve
la

r
la

b
ia

li
ze

d

voiceless plosive p t” k kw

laryngealized voiceless plosive p
˜

ú
˜

k
˜

k
˜
w
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Table 3.3: The complete plosive space of Siona.

b
il

ab
ia

l
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b
ia
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d

voiceless plosive p t” k kw

laryngealized voiceless plosive p
˜

ú
˜

k
˜

k
˜
w

3.4 Calculating logical complexity

To calculate the logical complexity of the Siona language we place its phonemes in a grid, just
as we did with German and Tigre in the previous chapter (Figure 2.4). The main difference
between Siona on one hand and German and Tigre on the other, is that the Siona plosive space
is three-dimensional rather than two-dimensional. We must accordingly place the Siona plosives
in a three-dimensional grid (Figure 3.1). The node containing [p

˜
] in Figure 3.1 can be denoted

by abc, and the node containing [kw] by a’’’b’c’. The disjunctive normal form of Siona is then
abc + abc’ + a’bc’ + a’’bc + a’’’bc + a’’’b’c + a’’’bc’ + a’’’b’c’. Because Siona uses all its velar
plosives, we can replace a’’’bc + a’’’b’c + a’’’bc’ + a’’’b’c’ by simply a’’’. Similarly, because
Siona uses both bilabial plain plosives, we can replace abc + abc’ by ab. This gives the minimal
formula ab + a’bc’ + a’’bc + a’’’. The logical complexity of a language is equal to the number
of literals (that is, every a, b, and c) in its minimal formula, thus the logical complexity of Siona
is 9.

p
˜

ú
˜

k
˜

p t” k

k
˜
w

kw

a

b

c

Figure 3.1: A three-dimensional visualization of the Siona plosive system.

Now that we are able to calculate both the feature economy and the logical complexity of
every language, we can analyze the suitability of both measures. The next chapter presents
the results of this analysis. Appendix A contains the feature economy and logical complexity
calculations for all 317 languages in our sample.
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CHAPTER 4

Analysis and results

4.1 Regularity

Let us first take a look at the distribution of regular and irregular languages in our sample. As
defined in Chapter 2, a regular language fully employs its phoneme space. Thus, every language
with a phoneme inventory the same size as its phoneme space is considered regular – note that
we measure regularity with regard to plosives only. Out of the 317 languages in our sample, a
small majority of 176 languages (55.5%) is regular, as opposed to 141 irregular languages.

Table 4.1 shows all attested combinations of space sizes and inventory sizes, with gray cells
representing regular languages. The exceptionless regularity of the languages with some of the
smallest plosive spaces (2, 3, and 5) is unavoidable, since a prime number cannot form a grid with
more than one row. Put differently, a smaller inventory size would in these cases automatically
result in a smaller space size. In contrast, the regularity of languages with space size 4 is not
imperative. We expected that most languages with space size 4 would be made up of a two-
by-two grid, leaving the possibility for an inventory size of 3, but it turns out that there are
no languages with two-by-two grids in our sample. Apparently, languages tend to use all three
major articulation places (labial, coronal and dorsal). Only five languages in our entire sample
have a plosive inventory with just two places of articulation.

Table 4.1: Each cell contains the number of languages with a certain combination of space size
(column) en inventory size (row). A gray cell indicates a regular combination, i.e. a combination
where the space size and inventory size are equal.

2 3 4 5 6 8 9 10 12 15 16 18 20 24 27 30 32 36 48 Sum
2 1 1
3 19 1 20
4 18 15 1 34
5 3 19 3 2 2 29
6 83 9 1 1 3 1 98
7 10 2 1 6 1 20
8 29 6 1 11 1 1 49
9 8 4 3 3 2 1 21
10 5 2 1 1 1 10
11 4 1 1 6
12 6 1 2 2 2 1 14
13 2 2
14 1 1 2
15 1 1
16 3 1 4
17 1 1 2
18 1 1 2
20 1 1
24 1 1

Sum 1 19 18 3 118 51 19 12 38 2 14 5 5 5 2 1 2 1 1
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Figure 4.1 shows that bigger spaces also tend to have more phonemes. That seems like a
rather obvious observation: a two by two space must have at least two phonemes, while a six by
six space has at least six – and most likely more. Figure 4.2 (on the next page) shows that the
mean feature economy decreases as the space size increases. A bigger space size thus corresponds
to a bigger inventory size, but the correlation is not linear: if two space sizes differ by a factor
two, the size of their inventories will on average differ by less than a factor two. The line in
Figure 4.1 shows that a space size of 10 corresponds to a mean inventory size of approximately
7.5. Doubling the space size does not double the inventory size: the mean inventory size for a
space size of 20 is less than 15.

Whereas the mean feature economy decreases as the space size increases, the logical com-
plexity increases whenever the space size increases (Figure 4.3). Feature economy and logical
complexity thus seem to be inversely proportional to each other. The next section will explore
the correlation between feature economy and logical complexity further.

Figure 4.1: Languages with larger plosive spaces generally have larger plosive inventories too.
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Figure 4.2: When the space size increases, the mean feature economy decreases.

Figure 4.3: When the space size increases, the mean logical complexity increases as well.
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4.2 Feature economy versus logical complexity

Figure 4.4 depicts the relationship between feature economy and logical complexity. Every
language that fully uses its plosive space has both a feature economy and a logical complexity of
1. We see that a lower feature economy generally corresponds to a higher logical complexity, but
the correlation does not seem to be very strong. Consider for example the three languages with
the lowest feature economy (< 0.40): their logical complexities range from the highest logical
complexity in the sample (24) to a fairly low logical complexity of just 6. Thus, while both
measures are correlated, they clearly measure different things.

Let us now consider the frequency of the different feature economies and logical complexities
found in the sample. Figure 4.5 (on the next page) plots the frequency of all attested feature
economies; Figure 4.6 does the same for logical complexity. Both distributions seem to follow
some kind of power law, but a trend line can be fitted much more closely on the distribution of
logical complexities (R2 = 0.9185) than on the feature economy distribution (R2 = 0.1649).

Now why would we want our frequency distributions to follow a power law? In other words,
why would a measure that closely follows a power law be a better predictor of real-world plosive
inventories? It turns out that power laws are found across many fields of study, both in social
and natural sciences. To support this claim, let us take a look at some examples.

Perhaps the most well-known example of a power law within the field of linguistics is Zipf’s
law (Zipf 1949). This empirical law states that word frequencies in natural language utterances
follow a power law, where the most frequent word in a corpus is used approximately twice as
often as the second most frequent word, three times as often as the third most frequent word,
and so on. A more recent observation of a linguistics-related power law is made by Abrams and
Strogatz (2003), who showed that the declining number of speakers of endangered languages over
the years generally follows a power law.

Figure 4.4: The correlation between logical complexity and feature economy. The size of a circle
corresponds to the number of languages with that specific combination of feature economy and
logical complexity. Generally speaking, a higher feature economy corresponds to a lower logical
complexity.

20



Figure 4.5: The frequency of all feature economies found in the sample, plotted on a horizontally
and vertically logarithmic scale.

Figure 4.6: The frequency of all logical complexities found in the sample, plotted on a horizontally
and vertically logarithmic scale.
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Power laws are not only found in the field of linguistics, but in many other social sciences as
well. For example, the distribution of wealth in society follows a power law (Levy and Solomon
1997), as does the distribution of firm sizes in the United States (Axtell 2001), of war sizes and
casualties (Cederman 2003), of the number of criminal acts committed by individuals (Cook,
Ormerod, and Cooper 2004), and many more. The same phenomenon can be observed within
the natural sciences, where, among other things, the severity of earthquakes, financial crashes,
and premature human births follow power laws (Sornette 2002).

Many aspects of human behavior, human characteristics, and natural phenomena thus seem
to follow some sort of power law. While this is no proof that the complexity of plosive inven-
tories should exhibit a similar pattern, the well-fitting power law in the distribution of logical
complexities does fit in neatly with the widely observed collection of power law patterns within
the social and natural sciences. This leads us to the tentative belief that logical complexity may
be a better predictor of real-world plosive distributions than feature economy.

4.3 Language families

Before we draw any conclusions, we must consider another relevant aspect of our data set.
The languages from our sample are not isolated. Instead, many languages have evolved from
the same ancestor and may have therefore influenced each other widely. As a result, we can
divide languages into language families of varying sizes. We adopt the division of languages into
families as proposed by Maddieson (1984). Our data set contains three isolates: Ainu, Basque
and Burushaski. Northern Amerindian is with 51 languages the biggest family in the data set.

The implication of this relatedness is that languages within a family may have certain features
not because those features have some kind of advantage to the speakers, but because those
languages have evolved from a mutual ancestor with that feature. We must take relatedness into
account before we can conclude which of our measures most accurately predicts the direction in
which languages may evolve.

Appendix B contains a graph for each of the twenty language families in our sample. Every
graph shows the distribution of feature economy and logical complexity in that family. Fig-
ures 4.7 and 4.8 (on the next page) contain the graphs for the two largest language families
in our sample: Northern Amerindian and Southern Amerindian, respectively. Of the Northern
Amerindian languages, 29.4% is regular regarding their plosive inventories; 54.1% of the South-
ern Amerindian languages is regular. Recall that regular plosive inventories are found in 55.5%
of the languages in our sample. Looking at the graphs in Appendix B, we can see that every
family with more than two languages contains both regular and irregular languages; their irreg-
ular languages have various complexity values, regardless of whether we measure complexity by
feature economy or by logical complexity; the Paleo-Siberian family has the lowest concentration
of regular languages (25.0%), and the highest concentration of regular languages (89.5%) is found
within the Australian languages.
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Figure 4.7: The distribution of feature economy and logical complexity in Northern Amerindian
languages.

Figure 4.8: The distribution of feature economy and logical complexity in Southern Amerindian
languages.
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CHAPTER 5

Conclusion and discussion

This thesis has sought to answer the question of which complexity measure predicts the distri-
bution of plosive inventories around the world best. We have analyzed the plosive inventories
of 317 languages in order to determine their feature economy and logical complexity. From the
results of this analysis, we have learned that a small majority of the languages in our sample
has a regular plosive inventory. Since plosives only make up a small portion of the phoneme
inventories of most languages, it would be interesting to conduct a similar analysis of the com-
plete phoneme space of the languages in our sample. This would, of course, bring about a whole
new set of challenges, such as affricates and double articulations, how to treat gaps in places of
unpronounceable phonemes, and the large vowel space that cannot be easily split into clearly
defined rows and columns.

From Figures 4.5 and 4.6, we have drawn the preliminary conclusion that logical complexity
seems a better fit to our sample than feature economy. Looking at these figures, we must ask
ourselves the question whether this comparison is fair. Both graphs are plotted in the same
way on the same scale. But there is an important difference between the two: while feature
economy can take on infinitely many values between zero and one, logical complexity can only
have integer values. And even though there is technically no maximum to the possible values of
logical complexity, in practice the highest possible logical complexity value in a spoken language
is confined by the limited number of articulatory features humans have at their disposal. Thus,
while we have found 29 different feature economy values, there are only 15 different values of
logical complexity in our sample. Most importantly, two feature economy values that lie very
close together (e.g. 0.50 and 0.51) would be represented in our graph by two different dots. And
since 0.50 is a way more likely result of the division between a random inventory size and space
size, we see a sort of “spiky” behavior in the graph, where high and low values of feature economy
alternate.

To eliminate the feature economy spikes, we could group values that lie close together and
plot them in a bar chart. This still leaves the questions of which values to group and how broad
to make the bins. Figure 5.1 groups the values in bins of 0.05. In Figure 5.2 the bins are twice
as broad. While the spikes are gone, there is still no ascending line to show that higher feature
economies would be more frequent in our sample. We therefore stick to our earlier observation
that logical complexity seems to fit the data better.

The last question we must answer is whether this conclusion holds when we consider the
relatedness between languages within families. The figures in Appendix B show us that most
families contain a great variety of different feature economies and logical complexities. Seinhorst
(2021) confirms this presumption by calculating the Akaike information criterion (AIC) for both
the feature economy and the logical complexity model. The AIC of the feature economy model
is 252.21, whereas the AIC of the logical complexity model is 230.94. Since the AIC of logical
complexity is so much lower than that of feature economy, the logical complexity model defini-
tively seems to fit the data from our model best. We therefore conclude that logical complexity
better predicts the distribution of plosive inventories in our sample than feature economy does.
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Figure 5.1: The frequency of all feature economies found in the sample, plotted in a bar graph
with bins of 0.05.

Figure 5.2: The frequency of all feature economies found in the sample, plotted in a bar graph
with bins of 0.1.
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APPENDIX A

Calculations

The following twenty pages contain the feature economy and logical complexity calculations for
the 317 languages in Maddieson (1984), in alphabetical order. The tables are structured as
follows:

• Column 1: the name of the language;

• Column 2: the size of the language’s plosive space;

• Column 3: the size of the language’s plosive inventory;

• Column 4: the language’s feature economy;

• Column 5: the disjunctive normal form of the plosive inventory;

• Column 6: the minimal formula that can be derived from the disjunctive normal form;

• Column 7: the language’s logical complexity.
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APPENDIX B

Language families

The graphs in this appendix show the distribution of feature economy and logical complexity per
language family, following the division described in Maddieson (1984). Larger circles denote a
higher number of languages with that specific combination of feature economy and logical com-
plexity. The number between brackets indicates the number of languages our sample contains
from that family.

Afro-Asiatic (21) Ainu (1)

Australian (19) Austro-Asiatic (6)
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Austro-Tai (25) Basque (1)

Burushaski (1) Caucasian (3)

Dravidian (5) Eskimo-Aleut (2)

Indo-European (21) Indo-Pacific (26)
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Khoisan (2) Niger-Kordofanian (31)

Nilo-Saharan (21) Northern Amerindian (51)

Paleo-Siberian (4) Sino-Tibetan (18)

Southern Amerindian (37) Ural-Altaic (22)
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