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Abstract 
This exploratory paper uses three topics to investigate the phonetic categorization behavior of the Neural 

Network model of bidirectional phonetics and phonology ‘BiPhon-NN’ by Paul Boersma (2021). The 

first topic looks at the long-term progress of the Perceptual Magnet Effect. Using the PME as a tool to 

define phonetic categorization, the model shows a robust initial categorization of auditory inputs. The 

magnetism toward the mean of the auditory input decreases until it reaches an equilibrium at a distance 

slightly closer to the prototype than the input value. Introducing a second language triggers the model 

to adjust existing categories to the new inputs until the model reaches a new equilibrium. Testing the 

network at this point with its native vowel inventory shows that the model has lost the original categories 

and will have to re-train to assign the native inputs correctly. The model thus shows that phonetic 

categories are flexible and adjust to recent inputs.  
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1 Introduction 

Modeling natural events can help increase understanding and give insight into important 

aspects, thus help further develop tools to improve our interaction with the event. Take an example 

of the well-known modeling technique of cellular automata (first developed in the 1940s by 

Stanislaw Ulam), which uses a 2-dimensional grid to represent natural events. One of its early 

applications was to portray a forest with all its complexities and many unknown facets. The cellular 

automata made it possible to better understand the way fire spreads, and as a result, the model 

contributed to saving forests and lives. This model has continuously developed as more influences 

on the spread of fires became known, becoming increasingly realistic in its representation of 

actuality (Bendicenti et al. 2002; Ghisu et al. 2015; Alexandridis et al. 2011).  

Although many linguistic phenomena have been observed and researched, numerous 

factors remain unknown. While we have much knowledge of superficial linguistic behavior, many 

uncertainties in human linguistic capabilities stem from a relatively small understanding of the 

human brain, the central processor that allows us to learn, teach, process, and produce. However, 

it is unclear how it is capable of that. 

In an attempt to model human language production and perception using Optimality Theory, 

Boersma (2011) made a bidirectional model of phonology. This model was meant to handle 'all' 

phonological (and related) phenomena while staying minimalistic. Starting from the Phonetic 

representation (the sound) in figure 1, a listener walks up through different steps and ends up with 

a meaning; the speaker travels down the figure, from an intended meaning to the articulation 

(phonetic representation). The two intermediate levels influence the potential change from one end 

to the other. 

 
Figure 1. Bidirectional phonology and phonetics (Boersma 2019) 
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The above model makes use of existing phonological categories. Boersma sought to further 

develop the bidirectional phonetics and phonology model (BiPhon) using neural networks. In 

doing so, he could possibly show how the phonological categories emerge via distributional 

learning, using an 'Inoutstar' algorithm (Boersma, Benders & Seinhorst 2020) or Hebbian learning  

(Boersma 2019). Neural networks can be preferred over often better performing Artificial 

Intelligence techniques, as neural nets grant us the ability to observe and measure all the inner 

workings and thus increase our understanding. 

Like the original BiPhon model, the neural network version was made under the 

assumption that phonological systems are emergent. This means that phonological features 

gradually develop by bottom-up and top-down processing of phonetics and morphology. The 

features thus emerge through repeated production and perception tasks affecting the category edges. 

A neural network, if functioning realistically, could supply more tools for the discussion of whether 

phonological categories are emergent or innate. 

 

2 Neural networks and phonetic categories 

In a subsequent version of the neural network adaptation of BiPhon (henceforth: BiPhon-

NN), Boersma, Chládková & Benders (2021) simulate the perception and production of a limited 

number of sound–meaning pairs using a Hebbian learning algorithm in a deep Restricted 

Boltzmann Machine (dRBM). 

It uses a layer of 49 nodes representing the basilar membrane on the same layer as five 

nodes that represent the meaning. There are two so-called hidden layers between the two surface 

layers instead of the standard single layer. Hence the need for the added term "deep" to the RBM. 

The word 'Restricted' refers to the lack of connections between nodes within the same layer.  

 

 
Figure 2. A graphical representation of the BiPhon-NN model (Boersma, Chládková & Benders 2021) 
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The left 'slab' of the bottom layer in figure 2 represents the basilar membrane and shows 

the Equivalent Rectangular Bandwidth (ERB) values, ranging from 4.0 to 28.0 ERB. The bottom 

right nodes represent the semantic correlates. The model can simulate perception when nodes on 

the basilar membrane x are activated; the activation spreads to the 'hidden' middle layer l, then to 

the hidden top layer m, and finally back down via the middle layer to the meaning layer x (as well 

as back to the left slab). In a trained network, this activation spreading will end up activating the 

correct meaning layer node depending on the input value on the basilar membrane. The activation 

direction is reversed to simulate production, starting at the meaning layer going to the basilar 

membrane layer. 

Training the network is done in multiple steps, and those are carefully explained in section 

3. For now, it is important to explain that the network is trained by either inputting auditory values 

or inputting a meaning or a sound–meaning pair, all befitting a toy language (consisting of five 

vowels). Then the input activations spread through the network and after which the network adjusts 

the weights (the connection between nodes) and biases (regulating the sensitivity of the node to 

activate). For example, when training the network with the vowel ‘a’, the values for ‘a’ are 

normally distributed with a standard deviation of 1 ERB. The mean values for the perceptual vowel 

height (F1) and perceptual vowel backness (F2) are 13 and 19 ERB, respectively. Thus an ‘a’ with 

values 14 and 20 ERB is inserted into the network less often than one with 13 and 19 ERB. This 

distribution is done to simulate real-life auditory input as a perceived sound can be influenced by, 

e.g., adjacent sounds, speaker-specific variation, or even environmental noise.  

2.1 Categorical perception in BiPhon-NN 

When training the system using only sound inputs, Boersma et al. (2019; 2021) found a 

difference in the activations of the nodes on the ERB layer after letting the network spread the 

activation via the hidden layers and echoing back to the ERB layer. The bidirectionality of the 

network causes any activation to return to the original layer after an input. When the activation 

spreads back to the layer where the sample input originated, the activated nodes, or their level of 

activation, can differ from the original input. This 'echo' appears to have different values from the 

initial input, especially when the input values were peripheral regarding the trained vowel 

distribution. In their paper, Boersma et al. show this by an original input 'a' (14 and 18 ERB), 

returning an echo with an activation on 13 and 19 ERB, i.e., the mean of the training distribution 

of 'a'.  
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The authors identified this as the Perceptual Magnet Effect (Kuhl 1991). This effect is 

where perceptual space is 'warped' around phonetic categories. Acoustic patterns are perceived 

closer together when they are near phonetic category centers (native language prototypes) than 

when equally spaced patterns are further away from the prototypes. This allows the listener to 

group a large degree of variation in incoming sounds under one umbrella. Language-specific 

behavior in the Perceptual Magnet Effect (PME) has been shown by its absence in newborn infants 

(Polka 1995). However,  the PME arises from six months of age (Kuhl 1991). Exploring the 

existence of a perceptual magnet effect in adults can be problematic and deserves its own section. 

Several approaches are explored in section 2.2. 

Some argue that phonological categories are formed due to innate categorical knowledge 

(Kuhl 1995). But Guenther and Gjaja's (1996) proposed an emergent nature in which continuous 

auditory representations play a significant role. They used a neural map model to show the 

perceptual magnet effect. The inputs for their network did not include any featural information or 

labeling on the distributed sounds during training. Their model showed a skewed perception of 

peripheral inputs toward native language prototypes, and they concluded that categorization is 

caused by a statistical distribution of native language prototypes during infancy. Similar to 

Guenther and Gjaja, Boersma attributed the activation difference of the echo in his BiPhon-NN 

model to the distributional learning methodology of the auditory samples. His network was 

initialized as a blank state without any linguistic labels on the auditory inputs. Assuming 

phonological categories are emergent, the artificial network is then comparable to a newborn 

human.  

2.2 Categorical perception in adults 

The BiPhon-NN might thus accurately simulate the emergence of phonological categories 

from a newborn to an infant. However, Boersma et al. (2021) observed a change in the network 

after 10.000 training steps where the echo no longer differed from the category-peripheral inputs. 

The question then arises, "Is the disappearance of the PME reflective of adult human behavior?". 

If adults can more easily distinguish diverse auditory inputs that are category-peripheral than more 

central inputs, then PME is not necessarily caused by a perceptual disability. Assuming 

phonological categories are emergent, adults will already have formed such categories and could 

now be (subconsciously) classifying auditory inputs into these categories. Furthermore, if one 

argues that a listener is physically no longer able to perceive such variations, this posits some 

challenges in second language acquisition. If auditory information is perceived in an altered 
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manner due to the listener's native language, how do they learn to perceive or even develop new 

phonetic contrasts? For this reason, the present paper focuses on phonetic categorization by only 

looking at auditory processes removed from any semantic information. 

Studying second language learners' ability to attain phonetic contrasts absent in their native 

language(s) is a way to investigate this problem. One option is to explore the ability to split a native 

category into two separate non-native categories. Ylinen et al. (2010) wanted to know whether 

non-native contrasts could be acquired through phonetic training. They looked at both speech 

production behavior and electrophysiological data (specifically MMN responses). The 

participants' MMN responses showed that before training, they mostly used duration changes to 

distinguish the non-native categories, namely the difference between /i/ and /ɪ/. After training, the 

physiological data showed that the participants had enhanced preattention to the spectral 

differences. Therefore, adult learners are able to shift existing categories.  

Boersma (2021) was able to see the PME in his network while not using semantic data. 

Similar to Guenther and Gjaja, the network can be continuously trained using only auditory data. 

Thus it is possible to constantly identify the level of the PME without any potential semantic 

interference, hence measure the level of categorization in the network even at an adult-like state. 

2.3 Native Category Retention 

Categorization differences can thus be seen during infancy, where initial categories emerge 

depending on the native linguistic environment. At a later stage, when humans learn a second 

language, it is possible to see the native categories adapt to suit the new language. A third and final 

stage that can be used to measure the efficacy of BiPhon-NN to mirror human behavior is native 

category retention or attrition.  

Category retention refers to the ability to recognize auditory differences of the native 

language by speakers that have been fully submerged in a second language. First language attrition 

appears clearly in production and comprehension (Nicoladis & Grabois 2002). While researching 

phonological L1 attrition of adopted Korean children, Ventureyra, Pallier & Yoo (2004) found that 

native language phonology was severely attritted. Within their study, the participants had been 

entirely severed from their native languages after their adoption. If phonological categories emerge 

from phonetic information, this finding would imply a degradation of the perceptibility of the 

native language. Other studies show some retention of phonetic perception, potentially due to 

phonetic overlap in the native and second language or an incomplete separation from the native 

language (Oh et al. 2003; Au et al. 2002; Werker et al. 1981). 
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2.4 Goal of the study 

This paper compares the behavior of BiPhon-NN to human behavior as found by previous 

studies regarding categorical perception. The paper shows how large the distance is between the 

echo and the original values, thus visualizing the Perceptual Magnet Effect at various stages of the 

network's training. If we equate the initialized blank slate of the network to a newborn infant, we 

can make the first comparison. The network is expected to initially show little shifting of input 

values. The distance between the values of the echo and the input is likely to increase at subsequent 

steps in the network's training until it reaches an equilibrium state.  

The second comparison is then the reaction to being introduced to a second language. The 

network will be trained with inputs belonging to a new language. The difference between the echo 

distance and the input distance is expected to be large while the network is just starting its training. 

The new inputs will be assigned to native categories that lie further away and will therefore not be 

returned closer to the L2 prototypical values. As the training continues, it is expected the distance 

will decrease until it reaches a new equilibrium. 

The level of retention of the native categories is the final comparison made. Since the 

network employs an algorithm that causes unlearning of unused connections (see chapter 3.5), it 

is expected to show greater first language attrition when there is less overlap between the first and 

second languages. These three topics will help further determine if the network can mirror human 

behavior of phonetic categorization accurately. 

In the upcoming chapter (chapter 3), the algorithms that make up the network's training are 

explained. Chapter 4 focuses on implementing the measuring tools on the basilar membrane layer 

to show the perceptual magnet over time. Chapter 5 Inspects the flexibility of categorization in the 

network by looking at the PME changes when switching the language the network is trained with. 

In chapter 6, a similar investigation will be done but focusing on native category retention or 

attrition. Finally, in section 7, the findings of sections 4, 5, and 6 are discussed and compared to 

observational data of human behavior. This section will also state the model's current deficiencies 

and potential improvements in future research. 

 

3 Training the network 

Opposed to the network introduced in chapter 2, the network utilized in this paper will not 

use a meaning layer. Similar to Boersma (2019), the Perceptual Magnet Effect is explored only via 

auditory information.  
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Figure 3. BiPhon-NN (no meaning layer) 

As seen in figure 3, the network has an auditory layer consisting of 49 nodes representing 

a continuum of 4 to 28 ERB (in steps of 0.5 ERB). The middle and top hidden layers consist of 50 

and 20 nodes, respectively. All nodes are initialized with a bias of 0. Every node on a layer is 

connected to each node on the adjacent layer(s), however not connected to nodes on the same layer. 

All connections are initialized with a weight of 0.  

From this initial state, the network is trained. One training step consists of four phases and 

starts by setting the activations of all nodes to 0. Then, one piece of data is applied to the network 

by choosing a random vowel and picking the corresponding F1 and F2 values from its distribution.  

3.1 Auditory input 

As explained in chapter 2, the F1 and F2 values are randomly taken from a normal 

distribution with a standard deviation of 1.0 ERB. Table 1 gives an overview of the mean values 

for each input vowel. These values correspond to the toy language in Boersma (2021).  

Table 1. Input vowels mean F1 and F2 ERB values 

Input 

(=utterance) 

Mean F1 

(ERB) 

Mean F2 

(ERB) 

a 13 19 

e 10 22 

i 7 25 

o 10 16 
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u 7 13 

 

After the F1 and F2 values are determined, the activation on the basilar membrane layer 

(𝑘𝑘) is calculated for every node. The activation is not limited to one node, but neighboring nodes 

are activated to a lesser degree following a gaussian distribution with a standard deviation of 0.68 

ERB. This distributed activation causes the basilar membrane to show two bumps of activation. 

Figure 4 shows an example of an input picked from the potential values of ‘a’. 

 
Figure 4. Example auditory ‘i’ input 

 

Figure 4 displays the two formants of the input by the larger red dots representing positive 

excitation. The blue dots signify nodes that are inhibited, i.e., have a negative activation. The size 

of the dots corresponds to the degree of excitation or inhibition.  

3.2 Settling phase 

The first phase of the learning step starts when the input has been transformed into basilar 

membrane activities 𝑥𝑥𝑘𝑘 , where 𝑘𝑘  runs from 1 to 𝐾𝐾  and 𝐾𝐾  is the maximum number of input 

nodes (49). The hidden middle and top layers excitations are set to 0, which corresponds to 

activations of 0.5. The bottom-layer activations do not change (remain clamped) during this phase. 

The activation is then spread to the middle layer from both the bottom and the top layer. The 

activation of a node on the middle layer 𝑦𝑦𝑙𝑙, where 𝑙𝑙 goes from 1 to 𝐿𝐿 where 𝐿𝐿 is the maximum 

number of nodes of the middle layer (50), is calculated via the following formula (1): 

𝑦𝑦𝑙𝑙 → 𝜎𝜎 �𝑏𝑏1 + � 𝑥𝑥𝑘𝑘𝑢𝑢𝑘𝑘𝑘𝑘
𝐾𝐾

𝑘𝑘=1
+  � 𝑧𝑧𝑚𝑚𝑣𝑣𝑙𝑙𝑙𝑙

𝑀𝑀

𝑚𝑚=1
�  (1) 

 The section between parentheses calculates the excitation of a middle layer node. This 

contains three parts separated by addition markers. The first part is only 𝑏𝑏1, which refers to the 

bias of the current node. The second part starts with the summation symbol that shows that the 

multiplication of 𝑥𝑥𝑘𝑘 by 𝑢𝑢𝑘𝑘𝑘𝑘 is done for each node and connection. Here, 𝑥𝑥𝑘𝑘 refers to the activation 

of the bottom layer node, and 𝑢𝑢𝑘𝑘𝑘𝑘 refers to the weight of the connection between the node on the 

bottom layer and the current node on the middle layer. The weight and activation are thus 
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multiplied and summed for every possible connected node from the bottom layer. The final part in 

the formula is identical to the second part but referring to the top layer nodes (𝑧𝑧𝑚𝑚) and connections 

(𝑣𝑣𝑙𝑙𝑚𝑚) using  𝑚𝑚 for nodes on the top layer from 1 to 𝑀𝑀 (20).   

The excitation calculated above is then transformed using a sigmoid function shown by 𝜎𝜎, 

into the nodes' activations. This 𝜎𝜎-function takes the excitation (a limitless positive or negative 

number) and converts it to fit a number between 0 and 1. A negative excitation is transformed to a 

value between 0 and 0.5, and a positive excitation takes a value between 0.5 and 1. Formula (2) 

shows the formula for the sigmoid: 

𝜎𝜎(𝑥𝑥) ∶=
1

1 + exp(−𝑥𝑥) (2) 

The formula (1) spreads the activations on the bottom and top layers to the middle layer. 

Following this step, the activations will be spread from the middle layer to the top layer using the 

formula in (3): 

𝑧𝑧𝑚𝑚 → 𝜎𝜎 �𝑏𝑏𝑚𝑚 +  � 𝑦𝑦𝑙𝑙𝑣𝑣𝑙𝑙𝑙𝑙
𝐿𝐿

𝑙𝑙=1
�  (3) 

Steps (1) and (3) are repeated ten times to let the network reach a near-balanced state in the 

middle and top layers. The initial settling phase is complete after these ten repetitions, and the 

system will continue with the second phase. 

3.3 Hebbian learning phase 

During the Hebbian learning phase, the network will adjust the biases of all nodes and the 

weights of all connections. The current activation of a node controls the change in the node's bias. 

The bias is strengthened if the node is active and is modified via the following formulae: 

𝑎𝑎𝑘𝑘  ← 𝑎𝑎𝑘𝑘 + η𝑥𝑥𝑘𝑘 (4) 

𝑏𝑏𝑙𝑙  ← 𝑏𝑏𝑙𝑙 + η𝑦𝑦𝑙𝑙 (5) 

𝑐𝑐𝑚𝑚  ← 𝑐𝑐𝑚𝑚 + η𝑧𝑧𝑚𝑚 (6) 

These formulae, one for each layer of nodes, mean that a node's bias is increased by the 

learning rate (𝜂𝜂), a fixed scalar of 0.001, multiplied by the activation of the same node. For 

example: if a node's current bias is 0.2 and its current activation is 0.6, then its new bias will be 



PHONETIC CATEGORY EMERGENCE AND ADAPTATION IN BIPHON-NN 14 

0.2 + 0.001 ∙ 0.6 =  0.2006 , increasing the node's future activity when receiving an identical 

input.  

Connections are strengthened when both attached nodes are active, following Hebb's law: 

"neurons that fire together, wire together.".  The connections are changed as follows: 

𝑢𝑢𝑘𝑘𝑘𝑘  ← 𝑢𝑢𝑘𝑘𝑘𝑘 + η𝑥𝑥𝑘𝑘𝑦𝑦𝑙𝑙 (7) 

𝑣𝑣𝑙𝑙𝑙𝑙  ← 𝑣𝑣𝑙𝑙𝑙𝑙 + η𝑦𝑦𝑙𝑙𝑧𝑧𝑚𝑚 (8) 

Here, the weight of a current connection is increased by adding to it the learning rate 

multiplied by the activity of each of the two connected nodes. The higher the activity of each node, 

the larger the increase in the connection's weight. If the connections weight starts at a value of 1 

and is connected to nodes with an activation of 0.6 and 0.7, the new weight would become 1 +

(0.001 ∙ 0.6 ∙  0.7) = 1.00042. 

If an unlearning phase does not counteract this learning phase, the weights and biases can 

increase indefinitely. The subsequent two phases are introduced to remedy this, where some of 

what the system has learned is stochastically unlearned. 

3.4 Dreaming Phase  

Via the dreaming phase, the network will introduce a level of stochasticity. The activity of 

the network during this step is no longer directly based on a predetermined input. First, the activity 

in the previous step on the middle layer will be spread to the bottom layer. Following a similar 

formula as in (1) and (3) but specified for the bottom layer and not using a sigmoid function: 

𝑥𝑥𝑘𝑘  ←  𝑎𝑎𝑘𝑘 +  � 𝑢𝑢𝑘𝑘𝑘𝑘𝑦𝑦𝑙𝑙
𝐿𝐿

𝑙𝑙=1
 (9) 

𝑎𝑎𝑘𝑘 represents the bias on the basilar membrane node 𝑘𝑘. The connections 𝑢𝑢𝑘𝑘𝑘𝑘 are thus used 

to spread the activity from the middle to the bottom layers and back up as in (1). This shows the 

bidirectionality in the system by using the same connections for bottom-up and top-down 

processing.  

The next step in this phase shows the stochasticity of the network. Similar to (3) and (1), 

the activity is spread to the top layer and middle layer respectively, ten times in a row, with one 

adjustment: 

𝑧𝑧𝑚𝑚 ~ 𝛽𝛽  �𝜎𝜎 �𝑏𝑏𝑚𝑚 + � 𝑦𝑦𝑙𝑙𝑣𝑣𝑙𝑙𝑙𝑙
𝐿𝐿

𝑙𝑙=1
��  (10) 



PHONETIC CATEGORY EMERGENCE AND ADAPTATION IN BIPHON-NN 15 

𝑦𝑦𝑙𝑙 ~ 𝛽𝛽 �𝜎𝜎 �𝑏𝑏1 + � 𝑥𝑥𝑘𝑘𝑢𝑢𝑘𝑘𝑘𝑘
𝐾𝐾

𝑘𝑘=1
+  � 𝑧𝑧𝑚𝑚𝑣𝑣𝑙𝑙𝑙𝑙

𝑀𝑀

𝑚𝑚=1
��  (11) 

In (10) and (11), a Bernoulli distribution 𝛽𝛽 modifies the result given by the original formula 

explained in (1) and (3). This equation sets the node's activation randomly to 1 or zero, with a 

higher chance to be 1 if the outcome of the sigmoid is above 0.5. Remember, the sigmoid function 

forces the activation to be between 0 and 1. If the sigmoid produces a value of 0.7, there is a 70% 

chance of the node’s activation to be 1.  

3.5 Anti-Hebbian learning 

After stochastically controlling the activation of the middle and top layer nodes, the 

network unlearns some of what it has learned. This unlearning follows the same methodology as 

the learning in the Hebbian learning phase. The greatest unlearning takes place on (or between) 

active nodes. As the current activity of the nodes is randomly assigned, the unlearning has a level 

of stochasticity as well.  

𝑎𝑎𝑘𝑘  ← 𝑎𝑎𝑘𝑘 − η𝑥𝑥𝑘𝑘 (12) 

𝑏𝑏𝑙𝑙  ← 𝑏𝑏𝑙𝑙 − η𝑦𝑦𝑙𝑙 (13) 

𝑐𝑐𝑚𝑚  ← 𝑐𝑐𝑚𝑚 − η𝑧𝑧𝑚𝑚 (14) 

𝑢𝑢𝑘𝑘𝑘𝑘  ← 𝑢𝑢𝑘𝑘𝑘𝑘 − η𝑥𝑥𝑘𝑘𝑦𝑦𝑙𝑙 (15) 

𝑣𝑣𝑙𝑙𝑙𝑙  ← 𝑣𝑣𝑙𝑙𝑙𝑙 − η𝑦𝑦𝑙𝑙𝑧𝑧𝑚𝑚 (16) 

To sum up, one learning step follows a spreading of the activation on the basilar membrane 

to the middle and top layers via (1) and (3) ten times, then applies a learning algorithm by 

computing the new weights and biases using (4) through (8). In the dreaming phase, the network 

first unclamps the bottom level activation and spreads the middle layer activation to it (9). Then it 

randomly spreads activation via (10) and (11). Steps (9), (10), and (11) are repeated ten times. 

Finally, the system unlearns a bit of what it has learned using anti-Hebbian learning by applying 

(12) through (16). 

 

4 Network behavior 

Now that the learning methodology of the network is explained, we can look at the 

network's behavior at different points in its training. When the network receives an input, we can 

let the network process the signal and set activations on the middle and top layers. Finally, the 
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network returns a new signal based on the activations in those hidden layers to the basilar 

membrane layer. The new activations of the echo might be different from the original input and, 

according to Boersma et al. (2021), show the perceptual magnet effect.  

In the following paragraphs, it is first explained what inputs will be used for all tests. Then 

it is described how the perceptual magnet effect can be seen in the current network. Following that, 

before showing the perceptual magnet effect at increasing training steps, a singular value needs to 

be found that can accurately describe the perceptual magnet effect. 

4.1 Experiment input selection 

As described in chapter 3.1, the network is trained with inputs taken from a normal 

distribution with a mean corresponding to the vowel prototype.  The frequency distribution of the 

vowel data creates zones in the network, in which highly frequent inputs define the center of the 

zone. 

 
Figure 5. Category creation in the network 

When plotting the first and second formants in a graph, this results in the zones shown in 

figure 5, where black areas signify frequent inputs and grey areas infrequent. The further away 

from the center, the less frequent a value is inserted (inputted into the network) during the 

network’s training. Giving the network a test input far from the center can cause the network to 

assign these values to any of the vowel categories generated or to no categories and, in turn, give 

inconclusive results.  

For this reason, a fixed distance from the zone’s center was chosen for the input vowel 

formants, where the likelihood of the network having trained with this input is high. The F1 and 

F2 values were selected by choosing a random point on a circle around the center of the category. 
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The radius of this circle was set at 2 Standard deviations of the distribution of values the system 

was trained with (see chapter 3.1). Thus all inputs are 2 ERB removed from the prototype values. 

4.2 The difference in echo and input activations 

At 2000 training steps, the network shows a change in activity on the basilar membrane 

layer between the input and the echo. Figures 6 shows the input activations (upper layer) and echo 

activations (lower layer) for each of the five input vowels. For this visual, the input values were 

chosen following the explanations in the previous paragraph. 

 
Figure 6. Input and echo activation on the basilar membrane 

At 2000 training steps, we can see that the activation bumps of the echo are shifted slightly 

toward the closest vowel prototypes. This is especially clear in the vowels /a e i/, yet much less so 

with /o/ and /u/. The difference could be caused by these vowels sharing formant values with the 

other vowels. The network then might 'think' a different vowel was inserted, like with [u] being 

partially returned as [i] by having a third activation bump on a value corresponding to the F2 of /i/. 

It is possible to visualize the activation difference over many more inputs by plotting the 

two highest (most pronounced) bumps on a graph1. The first bump on the basilar membrane would 

be the first formant, and the second bump the second formant. These two formants together form 

 
 
1 The returned formants were estimated by finding the two highest local maxima in a list of 

activation values, smoothed via ‘cubic spline’ interpolation, on the basilar membrane nodes. 
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coordinates to a two-dimensional plane. Between the two points, one for the input coordinates and 

one for the echo coordinates, it is then possible to draw a line that shows the drift of the echo 

activation from the input.  

In figure 7, we can see such lines for a total of 200 inputs for each vowel. The inputs are 

all picked from the outer edge of the circular shape (see 4.1). Thus the circle's edge corresponds to 

the input activation values, and on the other end of the line are the echo's activations.    

  
Figure 7. Drift lines, at 2000 training steps 

There are two main characteristics in figure 7. First, most drift lines go from the circle 

periphery to its center, meaning the network perceives the vowel as more central than the input 

was. However, the second characteristic is that some lines travel to the center of a circle that it did 

not start on. These inputs get 'confused', potentially due to a lack of training, and jump to a different 

category. This was also seen in figure 6, where [u] is returned as [i]. The other category jumps 

present are mainly between /o/ and /e/, which share F1 values, and between /u/ and /a/. These latter 

jumps might seem random at first glance, but /u/ and /a/ both have an activation bump close to 14 

ERB. For /u/, this is the value corresponding to the first formant, while for /a/, it is the second 

formant.  

4.3 Input/echo distance 

It is impractical to use many figures in a row like the one in figure 5 to show the network's 

behavior over an increasing number of training steps. Therefore, it is necessary to come to a single 
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number to represent drift. This number can then be calculated at different training steps and 

visualized. 

When plotting the formants for both the input and the echo in a similar way to figure 5, it 

is possible to draw a line between those coordinates and those of the prototype mean instead of to 

each other. The length of those lines reflects the distance the peaks are removed from the prototype 

formants. For example, if an input with an F1 of 14.79 ERB and an F2 of 19.87 ERB is inserted, 

the Euclidean distance from this input to the prototype center of /a/ is approximately 2 ERB. By 

doing the same for the formant values of the echo, we have two scalar numbers that can be 

visualized. These values will be referred to as simply: 'input distance' and 'echo distance'. 

4.4 Network behavior 

Having all the needed definitions and data, it is now possible to show the network's 

behavior over an increasing number of training steps. Figure 8 shows the median2 of the distances 

of 1000 random inputs. The blue line shows these input distances, which are all 2 ERB removed 

from the prototype center. The distance calculation is done every 500 training steps until the 

network has been trained for 250000 steps. 

 
Figure 8. Echo and input distance values 

 
 
2 Comparison between results using the median and mean distance of 1000 inputs, showed that the 

network settles at the same value. The median is a better representation of the drift lines in fig 7 and is thus 
preferable. A downside is that slight changes get overshadowed, more on this in chapter 5. 
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The orange line represents the echo distance and starts out large. This is likely caused by 

the untrained state of the network, causing it to return an almost random activation. The random 

activations are often interpreted as category jumps that end up at a large distance from the original 

input prototype, severely affecting the overall result.3 The network sees steep progress where the 

distance decreases until it reaches a minimum of approximately 0.4 ERB. The echo distance then 

starts increasing again, however, never ending up larger than the input. 

The network seems to reach an equilibrium state at 50000 training steps. At that point, the 

average echo distance is only slightly less than the input distance, varying between 1.70 to 1.80 

ERB. To ensure this small value could still be attributed to the Perceptual Magnet Effect, we have 

to inspect the directions in which the echoes drift. Recreating figure 7, but now using the system 

at 50000 training steps, will help clarify the network's behavior.  

 
Figure 9. Drift lines at 50000 steps 

Figure 9 shows that the slightly lower distance in the network's equilibrium state is an 

accurate depiction of the behavior of the network. A clear difference between this figure and the 

one from figure 7, where the network was trained only 2000 steps, is that the drift lines are a lot 

shorter. This is because the network has returned the input with a similar activation or has 'accepted' 

 
 
3 Category jumps are taken into account, as ignoring them could cause in distance values falsely 

suggesting a very strong magnet effect at early stages in the network’s training 
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the input as it was. This could indicate that the network perceives values on one side of the category 

edge as different from those on the opposite side. 

Albeit slightly, the echo is generally closer to the prototype center than the input was. An 

exception to this is the lines that move toward a different category center than to which the input 

was assigned. These deviants only appear when their F1 or F2 values are close to a neighboring 

category prototype. The artifacts rarely happen on the outer edges of /i/, /a/, and /u/.  

On the outer edges of the two vowels with the most remote formant values, /i/ and /u/, the 

test inputs drift more inward than inputs on the inner edges. Further indications for a more balanced 

dispersion of vowel categories can be found where the vowel prototype categories are close. Most 

notably, inputs on the left edge of /a/, the bottom left edge of /o/, and the bottom edge of /e/ drift 

more inwards than the other edges. This spreads apart the returned activations from one another. 

The returned categories might thus be pushed further apart, which adheres to the 'Dispersion 

Theory' (Liljencrants & Lindblom 1972). According to this theory, sounds with larger contrastive 

features are preferred over more sounds that are very similar. The network seems to fit the theory 

by having a larger variety of formant values make up the center of the category. On the other hand, 

the network can distinguish different inputs from the same category, which does not follow 

previous human studies where humans were less able to distinguish sounds that belong to one 

category.  

 

5 Categorical flexibility of Biphon-NN 

Further steps need to be taken to explore and compare the artificial network to humans, 

and this can be done by studying how the network reacts to a merging or splitting of categories. 

As explained in chapter 2.2, studies have shown that humans can adapt to new auditory inputs that 

do not follow their existing categorical structure. Humans can adjust their current categories to fit 

the layout of the new inputs of a new language.  

By giving the network a new set of vowels and retraining the network with that set, we can 

examine if and how the network adapts to the new inputs. Keep in mind, as this network does not 

incorporate semantic data, the results might not perfectly represent real-world data. In reality, 

learning a second language cannot be done purely auditorily; therefore, categories made or altered 

when learning a second language could be influenced by semantic data. 

This chapter will examine the network's reaction to a category split and a category merger. 

Before delving into the split, we will need to train the network with a four-vowel system detailed 
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in chapter 5.1. The performance of the network with a four-vowel input is then compared to the 

original five-vowel input. Following that comparison, the reaction to split will be analyzed. Finally, 

the chapter will finish by comparing the reaction to a merger. 

5.1 New input vowels - Four vowel language 

The first step is to create a language with four input vowels, where two of the five-vowel 

language vowels are merged. The network will be trained exactly the same as explained in chapter 

3. 

 

Input 
(=utterance) 

Mean F1 
(ERB) 

Mean F2 
(ERB) 

a 13 19 

ɪ 8.5 23.5 

o 10 16 

u 7 13 
Table 2. Input vowels mean F1 and F2 ERB values 

The vowel /ɪ/ is now added to the set in place of /i/ and /e/. Table two shows the formant 

values paired with this new vowel which lie between the original /e/ and /i/. Note that the IPA 

symbol, /ɪ/, is chosen somewhat arbitrarily; the formant values are leading. The network will again 

be trained by picking a random vowel from the above table and then picking an F1 and F2 from a 

normal distribution with a standard deviation of 1 ERB.  

5.2 Four vowel system network 

Analyzing the behavior with a four-vowel system is done similarly to chapter 4.1, namely 

by looking at the drift lines at 2000 steps and the distance to the prototype center up to 250000 

steps.  
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Figure 10. Drift lines, four-vowel system, 2000 steps 

The network is performing similarly to when it was trained with five separate vowels. 

Overall, the drift lines are directed from the circle's edge toward the prototype center. However, 

the network seems to show a slightly more substantial perceptual magnet effect than when the 

network is trained with five vowels. This could be caused by a larger distance between the different 

categories, causing the neighboring inputs to interfere less with the categorization.  

 
Figure 11. Input and echo distance, four-vowel input 
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Figure 12. Drift lines, four-vowel system, 50000 steps 

Figures 11 and 12 also illustrate similar results to when the network is trained with five vowels. 

In addition, the figures show how the inputs are returned closer to the prototype. Even over many 

training steps, the network shows comparable results for the distance values.  

Since the network is behaving as expected with a four-vowel input, it is possible to look at the 

effect of introducing a split after training the system with four vowels up to an equilibrium state 

(at 50000 steps). 

5.3 Network behavior – category split 

The system is trained initially with only four vowels and then needs to learn five vowels 

by splitting one category into two. In this setting, the network has not yet trained with inputs that 

belong to the new vowel values, /i/ and /e/ but did not belong to /ɪ/. Such inputs would be expected 

to be assigned either to other existing nearby categories or drift randomly. We would expect a spike 

in echo distance when the network switches its training data due to the random drifts and 

assignments.  

Figures 13, 14, and 15 give the drift lines at 50000, 52000, and 100000 steps (in total). In 

figure 13, the network has not yet been trained with the new vowel system, but its behavior is 

tested when the new vowels are inserted. We can see that the unaffected vowels (/a/, /o/, and /u/) 

are treated identically as in figure 12. 
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Figure 13. Drift lines, 4-vowel to 5-vowel split, 0 (+50000) steps 

In figure 13, where the system has not yet trained with the new data, the inputs belonging 

to the new vowels are returned as closer to the originally trained set. Many of the /i/-inputs are 

even returned as if belonging to a completely different category. This follows expectations, as the 

network has not yet had a chance to adjust its weights and biases to these new inputs. 

 
Figure 14. Drift lines, 4-vowel to 5-vowel split, 2000 (+50000) steps 
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Figure 15. Drift lines, 4-vowel to 5-vowel split, 50000 (+50000) steps 

The effect of training becomes evident in figure 13, where after even just 2000 training 

steps, these 'misinterpretations' no longer appear. In figures 13 and 14, the drift lines again show a 

preference for a smaller yet dispersed inventory, yet not identical to the native five-vowel network 

at 50000 steps (figure 9). The main difference between the two figures is the lines that drift away 

from the prototype center on vowel categories that remained the same after the split. An example 

is the inputs at the upper edge of /o/. These inputs are returned further away from the center, which 

is not the case in figure 9. 

  
Figure 16. Input and echo distance,  4-vowel to 5-vowel split 

Figure 15 shows that the distance to the prototype center remains stable even over many 

training steps. Interestingly, the figure does not show a spike in distance after switching the input 
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system. The category jumps in figure 12, where /i/ inputs are returned as belonging to /u/ or the 

larger lines pointing toward the old /ɪ/, do not seem to affect the average distance.4 This could 

mean these large drifts are infrequent. It could also be that the unaffected vowels (/u/, /o/, and /a/) 

hide any changes by forming a stable average. By ignoring these vowels, it is possible to inspect 

the distance values for only the affected vowels. Figure 17 first shows the distances for only /ɪ/ 

inputs and, after the switch, distances for both /i/ and /e/. 

 
Figure 17. Input and echo distance,  4-vowel to 5-vowel split, relevant vowels  

The figure shows a very slight change in distance when looking at only the affected vowels. 

As this change may be incidental or insignificant, it is necessary to repeat the calculation numerous 

times and compare the results to the same calculations done with a five-vowel trained network. 

Thus, the average echo distance for /i/ and /e/ inputs were tested with a solely five-vowel 

trained network and a four-vowel trained network at 50000 steps. The significance was tested by 

repeating the test 200 times, simulating 200 learners for each vowel system (totaling 400 learners). 

The echo distance of vowels /i/ and /e/ in a network trained with five vowels  [M = 1.910 , SD =  

0.048] was higher than the distance when training the network with four vowels [M =  1.896 , SD 

= 0.043], as the independent-sample t-test showed (p = 0.002). 

 
 
4 The distance calculations were also done while taking the mean difference instead of the median 

distance since a mean is more easily affected by such extreme values. However, a similar lack in change 
was observed and thus the paper continues with using the median for reasons explained in footnote 2 
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This slight difference can be explained by looking at figure 12. There we see the drift lines 

when a four-vowel trained network is tested with five vowels. In addition, we see large lines on 

the left side of /i/ that drift toward the original /ɪ/ prototype center, causing the average distance to 

the new categories to be smaller. 

5.4 Network behavior – category merger 

We have now only seen how the network deals when we introduce a split, separating one 

existing category into two. This created inputs that the network had not yet been trained with. 

When we initiate a merger, melding two existing categories into one, we ask the network to adjust 

the categorization of inputs it is already familiar with. By reversing the order of vowel system 

inputs, we can simulate a merger. In this section, the same steps are taken to investigate the 

network's behavior. Figures 16, 17, and 18 give the drift lines at 50000, 52000, and 100000 steps 

(in total). 

 
Figure 18. Drift lines, 5-vowel to 4-vowel merger – 50000 steps 

In figure 18, we can immediately see a substantial difference compared to the split in the 

previous section. Unlike figure 12, no category jumps from the newly created category inputs /ɪ/ 

are present, and the overall drift is shorter. A straightforward explanation is that many new inputs 

would not need to drift much to fit into the original categories. Inputs that show the most drift in 

the new category are the ones on the left-bottom and the right-top of /ɪ/. These drift diagonally 

toward the original prototype centers, as they would have been very peripheral of the original 

distribution and would thus have the need to drift to fit into the categories. 
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Figure 19. Drift lines, 5-vowel to 4-vowel merger – 52000 steps 

 
Figure 20. Drift lines, 5-vowel to 4-vowel merger, 100000 steps 

Figure 19 starts showing slight categorization for /ɪ/, compared to 16, as the lines now all point 

more toward the new merged category center. Finally, in figure 20, the drift lines round /ɪ/ are 

slightly shorter, showing the same trend as at the beginning of the network's training.  
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Figure 21. Echo and input distance, 5-vowel to 4-vowel merger 

Figure 21 investigates whether the network shows changes after a longer training period after 

training with the new vowel system. Similar to figure 17, it only shows the distances for the vowels 

that change (/i/ and /e/, and /ɪ/). However, the network seems to have immediately reached an 

equilibrium state. Furthermore, it shows no spikes in drift like it does at the start of the network's 

learning (when all weights and biases are still 0). Statistics show that the echo distance of vowel 

/ɪ/ in a network trained with four vowels  [M = 1.843 , SD =  0.063] was lower than the distance 

when training the network with five vowels [M =  1.984 , SD = 0.048], as the independent-sample 

t-test showed (p < 0.001).  

When looking back at figure 18, the top left inputs of /ɪ/ drift toward the old categories centers 

of /i/ and /e/. This outward drift causes the distance of a five-vowel trained network tested with 

four vowels to be higher than when the network is trained with four vowels. Then the drift lines 

point toward the /ɪ/ prototype.  

 

6 Native Category Retention in BiPhon-NN 

The third level at which the network can be compared to human behavior is the retention 

of original categories. This chapter investigates to what degree the native categories are maintained 

after full submersion into the second language.  

6.1 Retention after a split 

For the first scenario, the network is trained with the four-vowel inventory. After 50000 

steps, the split occurs (see chapter 5.3), and after another 50000 steps, the network switches back 

to the initial inventory.  
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Figure 22. Echo and input distance, 4-vowel to 5-vowel to 4-vowel  

Figure 22 shows little to no change in overall distance values. This indicates that the 

network has no problem with the switch back to the original input. Further details cannot be taken 

from this figure; hence we have to inspect the drift lines. Figure 23 shows the drift lines of the 

original 4-vowel inputs. At this time, the network has started its training with the four vowels, then 

split to the 5-vowel system and trained that for 0 steps.  

 
Figure 23. Drift lines, return to 4-vowel after split, 0 steps 

The drift lines around the native /ɪ/ do not generally drift toward from the prototype center 

of /ɪ/, but either toward the second language categories /i/ and /e/ or barely drift at all. This suggests 

that the network has ˈunlearnedˈ to assign these values to the native /ɪ/ category. Continuing to 
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train the network with the native inventory results in it re-categorizing the inputs reasonably 

quickly, as shown in figures 24 and 25. 

 
Figure 24. Drift lines, return to 4-vowel after split, 2000 steps 

 
Figure 25. Drift lines, return to 4-vowel after split, 50000 steps 

In the two figures, we see the network initially reverting to assign inputs from the native 

language to the native language categories as its training continues. To test whether the original 

categories are retained, the distance to /ɪ/ was measured at 100000 steps with a network that was 

only trained with four vowels (like a monolingual speaker). This was then compared to the distance 
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in a network initially trained with four vowels, then continued to train with five vowels (similar to 

the adopted children in Ventureyra, Pallier & Yoo 2004).  

The echo distance of vowel /ɪ/ in a fully four-vowel trained network [M = 1.825 , SD =  

0.062] was lower than the distance when training the network with four and then five vowels [M 

=  1.908 , SD = 0.064], as the independent-sample t-test showed (p < 0.001). This result can be 

interpreted as the same 'unlearning' of the native categories, as seen in figure 22. 

6.2 Retention after a merger 

In the second scenario, we look at the retention of native categories after a merger. This 

can be meaningful since there might occur more unlearning than with a split, as the more peripheral 

native /i/ inputs are not inserted during the second language training. The relevant connection for 

/i/ inputs will likely be weakened more than other connections. 

Figure 26 shows the distances for the vowels undergoing changes throughout the network's 

learning.  

 
Figure 26. Echo and input distance, 5-vowel to 4-vowel to 5-vowel  

Once again, any change in distance caused by the vowel system switch is not apparent via 

this graph. Since the critical details are likely lost, we turn to the visuals showing the drift lines. 

The following three figures show the network's behavior after it has trained with its native system 

for 50000 steps, following 50000 steps in the second vowel system. Figure 27 shows the behavior 

immediately after, figure 28 after 2000 steps of training in the native system, and finally, figure 29 

after another 50000 steps.  
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Figure 27. Drift lines, return to 5-vowel after merger, 0 steps 

 
Figure 28. Drift lines, return to 5-vowel after merger, 2000 steps 
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Figure 29. Drift lines, return to 5-vowel after merger, 50000 steps 

The figures all look very similar to those made when the network undergoes a split (without 

prior training). From these figures alone, it seems like the network does indeed unlearn the native 

categories that are then re-learned. This is supported by comparing the distance values of the native 

categories of a solely native inventory-trained network to one that has switched to the second 

language. The echo distance of vowels /i/ and /e/ in a fully five-vowel trained network [M = 1.966 , 

SD = 0.064] was greater than the distance when training the network with five and then four vowels 

[M = 1.925  , SD = 0.060], as the independent-sample t-test showed (p < 0.001). Although the echo 

distance here is greater, it still shows a category loss as explained in chapter 5.3.5 

 

7 Discussion 

This paper attempted to deliver further insights into the validity of BiPhon-NN as a model 

of human phonological behavior. Boersma et al. (2021) showed that in BiPhon-NN, the emergence 

of phonological categories is based on phonetic and semantic similarities between utterances. The 

present paper further explored the validity of the network by comparing it to multiple human 

studies that focus on phonological behavior via the perceptual magnet effect, phonetic distinction 

in second language learners, and native category retention. This chapter will discuss the findings 

in each of these comparisons and suggest further considerations and research. 

 
 
5 It is counterintuitive that between a merger or a split the difference in distance infer different 

conclusions. This is another example why the present’s paper’s representation of PME might not be ideal. 
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7.1 Perceptual magnet effect 

Chapter 4 was built upon the foundation laid by Boersma et al. (2021), where they showed 

that the activation on the auditory layer returned by the network varied from the input activation. 

In a trained network, the activation peaks (interpreted as formants) of a returned activation were 

closer to the mean prototype value the network was trained with than peripheral inputs. Similar 

results were found in the present paper, from where further analysis was done over a larger number 

of training steps. What was seen here is that the average distance of 0.5 ERB from the prototype 

at approximately 2000 training steps6 increases to a stable distance between 1.75 and 1.9 ERB. 

Though slightly, the network shows that the inputs are returned more category inward. 

This result could be interpreted as the network showing a slight perceptual magnet effect, 

where peripheral inputs are perceived as more category-central than the actual input. The 

perceptual magnet effect also states that category-central sounds are perceived as being the same 

vowel. However, the network does not return identical activations for all inputs within one vowel 

category. This means the network does not process these inputs as if being the same.  

To further analyze the categorical behavior, the present paper turned to phonetic distinction 

by human second language learners. However, future research might need to focus on this problem. 

By comparing testing inputs that lie within trained distributions to inputs that lie outside of the 

training distributions, the results could better reflect the original definition by Kuhl (1991). 

Whether a small echo distance in the stable state of the BiPhon-NN represents the PME 

remains unclear. As the adult perceptual magnet effect cannot easily be attributed to a pure 

perceptual cause, it is hard to identify whether the relatively low distance values are comparable 

to the adult PME. Future research might want to explore the effect of a semantic layer in BiPhon-

NN on distance values over many training steps. Suppose the categorization is affected by the 

presence of semantic information. In that case, this could support the view that adult phonological 

categorization is not purely phonetic but that the perception of speech sounds depends on inferring 

category membership using exemplars stored in memory (or in this network possibly the hidden 

layers) (Lacerda 1995). 

 

 
 
6 This change might be explained that the network adequately models the perceptual magnet effect 

in children. However, potentially unlike children, it continues to categorize purely based on auditory 
perception, whereas adult might start using semantic data or the emerged phonological categories. 
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7.2 Categorical flexibility 

By introducing a new vowel system to a network that has already been trained, the network 

could be compared to a human second language learner. Humans can adjust existing categories 

created by their native language to adhere to the contrasts found in the new language. The network 

shows a similar category inward movement of auditory layer activations after training with the 

new vowel system. Thus, the network can adjust its weights and biases to ensure the new inputs 

are returned as if belonging to new categories. 

When recreating a split, creating two categories from auditory values that initially 

represented the same vowel, we can see that the network first assigns new inputs to the old category. 

This allocation follows existing human studies where participants have trouble perceiving a 

difference between two vowels in the new language when these represent only one vowel in their 

native language (Ylinen, 2010; McAllister, 2007;). In BiPhon-NN, this 'confusion' is short-lived, 

as, after only 2000 steps, the largest deviants had disappeared, and the network had started to assign 

the inputs to the new categories. Future research might be wise to inspect if the learning speed of 

the second language categorization is compatible with human findings. 

When simulating a merger of categories, the network shows some initial confusion where 

the inputs still drift towards the native vowel categories. The confusion is less apparent than with 

a split, as the native vowel category enveloped most of the inputs of the new vowel system. The 

network could adequately mirror human experience as the loss of contrast is empirically easier to 

deal with than creation.  

Following the Speech Learning Model (Flege, 1995), second language learners will have 

increasingly more difficulty perceiving phonetic contrasts the more similar the involved sounds 

are to their native language. Learning completely novel contrasts would then be easier. In the 

present paper, only the first scenario was modeled using Biphon-NN. The two 'languages' the 

network was trained with shared three vowels, and the remaining vowel(s) shared formant values. 

The network had to learn the new contrast but did not show any difficulty in doing so. The 

difference in difficulty as proposed by SLM could be investigated by letting the network learn a 

completely new vowel that is separated from all existing vowels. Caution should be exerted when 

deciding on such a new vowel. If the new vowel shared formant values with other vowels, this 

might affect the learnability. Situations as those explained in chapter 5.3, where /u/ and /a/ were 

confused due to overlapping first and second formant values, could distort results if not taken into 

account.  
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The difficulty of learning new phonetic or phonological contrasts does not only depend on 

the native and the target language. It also depends on the type of contrast needed to be learned. 

Sensitivity to perceptual differences can also be found within different native or non-native sounds 

(Best & Tyler 2007). For example, McAllister (2007) saw a relative inability of Swedish learners 

to attain the English /s/-/z/ contrast. Instead, they started to utilize several strategies to distinguish 

the sounds. Compare this to Ylinen's study explained in chapter 2.2, where the participants 

achieved spectral distinction between the non-native sounds /i/ and /ɪ/. The voicing contrast 

between /s/ and /z/ might be more challenging to attain than a difference in formant value between 

/i/ and /ɪ/. To further explore the network’s validity, it might be necessary first to expand the 

network to process more sounds (or more different features like duration or pitch). This would 

make it possible to explore how different types of contrast can be attained at varying levels of 

success. 

Up to this point in the paper, the distance between the echo activation and the prototype 

was used to portray the categorization of the network over time (see figure 8). This chapter makes 

it apparent that the distance calculation might not show small yet essential details of the network's 

behavior. Drift lines that indicate a level of confusion do not show up in the echo distance graphs. 

The values plotted in such graphs represent the average distance between the prototype mean and 

the echo. Even echoes that were closer to or further from the prototype were lost in this calculation. 

Going forward, a better representation of 'drift over time' would need to be found. Overall, the 

current calculation gives a decent initial intuition; however, for detailed inspection, one needs to 

refer to the visual drift lines (like figure 7).   

7.3 Native Category Retention 

The human capability for maintaining native language phonetic contrasts was found in 

studies investigating the performance of adopted children. Two main distinctions were made in 

these studies. First, they looked at children whose native language had similarities with their 

adopted language or continued to be moderately exposed to their native language. Second, children 

who had to learn a vastly different language or were entirely separated from their native language.  

The first situation was simulated in BiPhon-NN, and the results were comparable though 

not identical. The network was initially trained in the vowel system with four vowels. Then it was 

introduced to a five vowel system where one of the native vowels was split into two new categories. 

At the end of two sets of 50000 training steps, the network was inserted with the values from the 

native vowel distributions. The echoes the network returned for these vowels did not immediately 
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drift toward the native prototype values. The inability to instantly assign the native sounds to their 

native categories follows the assumption that the native categories have degraded (Werker & Tees 

1981). However, after little training in the native system, the echoes showed activations closer to 

the native language prototypes. Furthermore, the speed at which the network seems to stabilize 

when returning to the native system suggests the original categories were not fully unlearned. The 

network's visual state at 2000 steps more resembled a stable solely 4-vowel trained network (at 

50000 steps) than one at 2000 steps (figures 7, 9, and 28).    

The network’s seeming incapability of fully retaining older categories seems compatible 

with Best’s Perceptual Assimilation Model (Best 1994; Best 1995). This model proposes that 

second language sound contrasts are classified into new native or non-native categories when the 

new sounds are perceived as speech sounds. Whether the new sound can be assimilated into the 

existing language depends on whether they are categorized as native or non-native. As the present 

paper uses second language sounds that can be assimilated, the network might not create a new 

category. This could explain why the network needs training in the native language after being 

trained in a second language before assigning native sounds correctly. 

  

 

8 Conclusion 

By looking at various human studies on first and second language acquisition and 

comparing those to the behavior of the neural network model BiPhon-NN (Boersma, 2021), this 

paper attempts to assess the validity of the network. The findings are three-part. First, the 

bidirectional network shows a discrepancy between perceived inputs and returned echoes. Whether 

this discrepancy can be seen as an apparent perceptual magnet effect remains unclear. However, it 

is a sound measurement of phonetic categorization when one assumes that categories emerge 

through distributional learning. By looking at second language training, it seems as though the 

network adheres to human behavior by adjusting existing categories to assign a second language’s 

vowel inventory correctly. Native category retention is then used to show the network does not 

create a new set of categories for each language but shifts existing ones to fit the non-native sounds. 
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Appendices 

1 BiPhon-NN - dRBM and learning codes  

 

1.1 Main network code 
# import my own codes 
from learning_phases import one_learning_step 
from setup_input import input_vowels, network_setup 
from graphs import show_full_network 
# import standard packages 
import matplotlib.pyplot as plt 
 
# setup the network and set the number of trainingsteps 
new_nodes_connections = network_setup() 
training_steps = 2000 
 
# training steps 
for _ in range(training_steps): 
    new_nodes_connections[0] = input_vowels(new_nodes_connections[0], 'five') 
    new_nodes_connections = one_learning_step(new_nodes_connections[0], 
new_nodes_connections[1]) 
 
# show (and save) graph 
graph = show_full_network(new_nodes_connections[0], new_nodes_connections[1]) 
plt.tight_layout() 
graph.set_size_inches(9.2, 5) 
graph.savefig('pdfs/network_figure.pdf', dpi=600) 
plt.show() 

 

1.2 Network setup 
####################################################### 
# Create all nodes and connections using numpy arrays # 
####################################################### 
# import standard packages 
import numpy as np 
 
def network_setup(): 
    """ This function returns an list containing all nodes and connections  
            and their activation, bias, weights and coordinates  
     
    Parameters: 
    ---------- 
     
 
    Returns: 
    -------- 
    nodes_connections: an list containing two lists for nodes and connections 
            each with an array of data for each layer 
     
    """ 
 
    # For each nodelayer, create four values per node 
    inp_nodes = np.full((4,49), 0.0) 
    mid_nodes = np.full((4,50), 0.0) 
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    top_nodes = np.full((4,20), 0.0) 
 
    # for each node set the final two values as the coordinates (for graphing 
purposes) 
    for i in range(49): 
        inp_nodes[2,i] = i+4    # x-axis 
        inp_nodes[3,i] = 2      # y-axis 
    for i in range(50): 
        mid_nodes[2,i] = i*1+3.5 
        mid_nodes[3,i] = 5 
    for i in range(20): 
        top_nodes[2,i] = i*2.3+6 
        top_nodes[3,i] = 8 
 
    # combine all node arrays into one list 
    all_nodes = [inp_nodes, mid_nodes, top_nodes] 
 
    # Setup the connections for all nodes in a matrix 
    inp_mid_connections = np.zeros((49,50)) 
    mid_top_connections = np.zeros((50,20)) 
     
    # Also combine in a list 
    all_connections = [inp_mid_connections, mid_top_connections] 
 
    # Combine all nodes and connections in another list 
    nodes_connections = [all_nodes, all_connections] 
 
    return nodes_connections 

 

1.3 Input vowels 
# import standard packages 
import random 
import numpy as np 
 
def input_vowels(new_nodes, vowel_system): 
    """ This function chooses a random input sound and changes the  
        activations on the input layer accordingly 
         
        Parameters: 
        ---------- 
        new_nodes: an array containing the node activations and biases  
        vowel_system: a string stating the needed amount of vowels 
         
        Returns: 
        -------- 
        new_nodes: an array containing the node activations and biases  
         
    """ 
    # Set up parameters 
    erb = np.linspace(4,28,49) 
    bump_width = 0.68 
 
    # Choose vowel system and pick a random sound from the inventory 
    if vowel_system == 'five': 
        sounds = ['a', 'e', 'i', 'o', 'u'] 
    else: 
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        sounds = ['a', 'ei', 'o', 'u'] 
    step_input = random.choice(sounds) 
 
    # Find the formant values dependent on the picked vowel 
    if step_input == 'a': 
        f1 = np.random.normal(13,1) 
        f2 = np.random.normal(19,1) 
    elif step_input == 'e': 
        f1 = np.random.normal(10,1) 
        f2 = np.random.normal(22,1) 
    elif step_input == 'ei': 
        f1 = np.random.normal(8.5,1) 
        f2 = np.random.normal(23.5,1) 
    elif step_input == 'i': 
        f1 = np.random.normal(7,1) 
        f2 = np.random.normal(25,1) 
    elif step_input == 'o': 
        f1 = np.random.normal(10,1) 
        f2 = np.random.normal(16,1) 
    elif step_input == 'u': 
        f1 = np.random.normal(7,1) 
        f2 = np.random.normal(13,1) 
 
    # Calculate the activities of the node on the auditory layer 
    activity = 5.0 * (np.exp(-(erb-f1)**2/(2*bump_width**2)) + np.exp(-(erb-
f2)**2/(2*bump_width**2))) - 0.5 
     
    # Set the new activitions for all layers (input decides erb, rest is 0.5) 
    new_nodes[0][0,:] = activity 
    new_nodes[1][0,:] = 0.0 
    new_nodes[2][0,:] = 0.0 
 
    return new_nodes 

 

1.4 One learning step 
#### The full learning step 
# import my own codes 
from learning_phases.phases.dreaming import spread_to_inp 
from .phases import settling_phase, hebbian_learning_nodes, 
hebbian_learning_connections, dreaming_phase 
from .phases import anti_hebbian_learning_nodes, 
anti_hebbian_learning_connections 
 
def one_learning_step(new_nodes, new_connections): 
    """ This function goes through all learning steps and adjusts 
        the network's values. finally it returns the entire network 
        of nodes and connections new values 
     
    Parameters: 
    ----------  
    new_nodes: an array containing the node activations and biases  
 
    new_connections: an array containing all weights for all connections 
 
 
    Returns: 
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    -------- 
    new_nodes_connections: a list containing the node array and 
        connections array, all with the new values after one entire  
        training step  
     
    """ 
    # Settling phase 
    new_nodes = settling_phase(new_nodes, new_connections) 
 
    # Hebbian learning phase        
    new_nodes = hebbian_learning_nodes(new_nodes, 0.001) 
    new_connections = hebbian_learning_connections(new_nodes, 
new_connections, 0.001) 
     
    # Dreaming phase 
    new_nodes = dreaming_phase(new_nodes, new_connections) 
     
    # Anti-Hebbian learning 
    new_nodes = anti_hebbian_learning_nodes(new_nodes) 
    new_connections = anti_hebbian_learning_connections(new_nodes, 
new_connections) 
 
    # Combine new nodes and connections data and return 
    new_nodes_connections = [new_nodes, new_connections] 
 
    return new_nodes_connections 

 

1.5 Settling phase 
############################# Settling Phase ############################## 
# import standard packages 
import numpy as np 
 
def settling_phase(new_nodes, new_connections): 
    """ This function calculates the activation on the top and middle layer 
        after spreading from the other layers, 10 times 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
 
    new_connections: an array containing all weights for all connections 
 
 
    Returns: 
    -------- 
    new_nodes_connections: a list containing the node array and, all with  
        the new values after one spreading activations 
     
    """  
    # Spread the activation 10 times 
    for _ in range(9): 
        new_nodes = middle_spread(new_nodes, new_connections) 
        new_nodes = top_spread(new_nodes, new_connections) 
 
    return new_nodes 
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def middle_spread(new_nodes, new_connections): 
    """ This function calculates the activation on the middle layer 
        after spreading from the input and top layers 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
 
    new_connections: an array containing all weights for all connections 
 
 
    Returns: 
    -------- 
    new_nodes_connections: a list containing the node array and, all with  
        the new values after one spreading activations 
     
    """ 
    # bottomup spreading 
    inp_act_weight = np.matmul(new_nodes[0][0,:],new_connections[0])  
     
    # top down spreading 
    top_act_weight = np.matmul(new_connections[1],new_nodes[2][0,:]) 
     
    # store new activations 
    new_nodes[1][0,:] = np.random.binomial(1, 1 / (1 + np.exp(-
(new_nodes[1][1,:] + inp_act_weight + top_act_weight)))) 
 
    return new_nodes 
 
 
def top_spread(new_nodes, new_connections): 
    """ This function calculates the activation on the top layer 
        after spreading from the middle layers 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
 
    new_connections: an array containing all weights for all connections 
 
 
    Returns: 
    -------- 
    new_nodes_connections: a list containing the node array and, all with  
        the new values after one spreading activations 
     
    """ 
    # bottomup spreading 
    mid_act_weight = np.matmul(new_nodes[1][0,:],new_connections[1]) 
     
    # store new activations 
    new_nodes[2][0,:] = np.random.binomial(1, 1 / (1 + np.exp(-
(new_nodes[2][1,:] + mid_act_weight)))) 
     
    return new_nodes 
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1.6 Hebbian Learning 
########################### Hebbian Learning ############################# 
# Calculate node training 
def hebbian_learning_nodes(new_nodes, lr): 
    """ This function calculates the bias changes of all nodes 
     
    Parameters: 
    ---------- 
    new_nodes: a dictionary containing all nodes in the network  
        with their coordinates, activation and bias values 
    lr: a float value for the learning rate 
 
    Returns: 
    -------- 
    nodes_connections: a list of two dictionaries of all nodes and  
        connections with updates values biases and weights respectively 
     
    """ 
    #bias + (lr * act) 
    new_nodes[0][1,:] += lr * new_nodes[0][0,:] 
    new_nodes[1][1,:] += lr * new_nodes[1][0,:] 
    new_nodes[2][1,:] += lr * new_nodes[2][0,:] 
 
    return new_nodes 
 
# Calculate connection training 
def hebbian_learning_connections(new_nodes, new_connections, lr): 
    """ This function calculates the bias changes of all connections 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
    new_connections: an array containing all weights for all connections 
    lr: a float value for the learning rate 
 
    Returns: 
    -------- 
    new_connections: an array containing all weights for all connections 
     
    """ 
    # weight + (lr * act_a * act_b)  
    for i, row in enumerate(new_connections[0]): 
        new_connections[0][i,:] = new_connections[0][i,:] + lr * 
new_nodes[0][0,i] * new_nodes[1][0,:] 
    for i, row in enumerate(new_connections[1]): 
        new_connections[1][i,:] = new_connections[1][i,:] + lr * 
new_nodes[1][0,i] * new_nodes[2][0,:] 
 
    return new_connections 

 

1.7 Dreaming Phase 
####################### Dreaming Phase ############################ 
# import standard packages 
import numpy as np 
 
def dreaming_phase(network_nodes, network_connections): 
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    """ This function calculates the new random binary activation on the  
        middle and top layers after spreading from the other layers, 10 times 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
    new_connections: an array containing all weights for all connections 
 
 
    Returns: 
    -------- 
    new_nodes: an array containing the node activations and biases 
     
    """ 
    new_nodes = network_nodes 
     
    for _ in range(9): 
        new_nodes = spread_to_inp(new_nodes, network_connections) 
        new_nodes = bernoulli_top_spread(new_nodes, network_connections) 
        new_nodes = bernoulli_mid_spread(new_nodes, network_connections) 
 
    return new_nodes 
 
def spread_to_inp(new_nodes, new_connections): 
    """ This function calculates the activation on the input layer nodes 
        after spreading from the middle layer 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
    new_connections: an array containing all weights for all connections 
 
    Returns: 
    -------- 
    new_nodes: an array containing the node activations and biases 
     
    """ 
    mid_act_weight = np.matmul(new_connections[0],new_nodes[1][0,:]) 
    new_nodes[0][0,:] = new_nodes[0][1,:] + mid_act_weight 
 
  
 
    return new_nodes 
 
def bernoulli_top_spread(new_nodes, new_connections): 
    """ This function calculates the new random binary activation on the top 
layer  
        nodes after spreading from the middle layer 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
    new_connections: an array containing all weights for all connections 
 
    Returns: 
    -------- 
    new_nodes: an array containing the node activations and biases 
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    """ 
    # Loop through all nodes on middle layer 
        # bottomup 
    mid_act_weight = np.matmul(new_nodes[1][0,:],new_connections[1]) 
     
    # store new with bernoulli randomness 
    sigmoided_exci = 1 / (1 + np.exp(-(new_nodes[2][1,:] + mid_act_weight))) 
    new_nodes[2][0,:] = np.random.binomial(1, sigmoided_exci) 
     
    return new_nodes 
 
def bernoulli_mid_spread(new_nodes, new_connections): 
    """ This function calculates the new random binary activation on the  
        middle layer nodes after spreading from the bottom and top layer 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
    new_connections: an array containing all weights for all connections 
 
    Returns: 
    -------- 
    new_nodes: an array containing the node activations and biases 
     
    """ 
    # bottomup 
    inp_act_weight = np.matmul(new_nodes[0][0,:],new_connections[0]) 
     
    # top down 
    top_act_weight = np.matmul(new_connections[1],new_nodes[2][0,:]) 
     
    # store new 
    sigmoided_exci = 1 / (1 + np.exp(-(new_nodes[1][1,:] + inp_act_weight + 
top_act_weight))) 
    new_nodes[1][0,:] = np.random.binomial(1, sigmoided_exci) 
     
    return new_nodes 

 

1.8 Anti-Hebbian Learning 
####################### Anti-Hebbian Learning ############################ 
def anti_hebbian_learning_nodes(new_nodes): 
    """ This function calculates the bias changes  
        of all nodes by unlearning the dreaming phase 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
 
    Returns: 
    -------- 
    new_nodes: an array containing the node activations and biases  
     
    """ 
    # Bias changes 
    new_nodes[0][1,:] -= 0.001 * new_nodes[0][0,:] 
    new_nodes[1][1,:] -= 0.001 * new_nodes[1][0,:] 
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    new_nodes[2][1,:] -= 0.001 * new_nodes[2][0,:] 
 
    return new_nodes 
 
def anti_hebbian_learning_connections(new_nodes, new_connections): 
    """ This function calculates the weight changes  
        of all  connections by unlearning the dreaming phase 
     
    Parameters: 
    ---------- 
    new_nodes: an array containing the node activations and biases  
    new_connections: an array containing all weights for all connections 
 
    Returns: 
    -------- 
    new_connections: an array containing all weights for all connections 
     
    """ 
    # Weight changes  
    for i, row in enumerate(new_connections[0]): 
        new_connections[0][i,:] = new_connections[0][i,:] - 0.001 * 
new_nodes[0][0,i] * new_nodes[1][0,:] 
    for i, row in enumerate(new_connections[1]): 
        new_connections[1][i,:] = new_connections[1][i,:] - 0.001 * 
new_nodes[1][0,i] * new_nodes[2][0,:] 
 
    return new_connections 

 

2 Creating the visual drift lines 

2.1 Main code 

This code contains parameters the user can alter to their wishes 

 
# import my own codes 
from learning_phases import one_learning_step 
from setup_input import input_vowels, network_setup 
from echoes import visual_echo 
# import standard packages 
import matplotlib.pyplot as plt 
########################################################################## 
##############  setup parameters to show the visual echoes  ############## 
steps = 50000 
vowels = 'four'          # initial vowel system 
initial_intsteps = 2000  # steps for interval for visual echo display 
change_vowels = 'five'   # if split/merge, set to opposite of vowels 
split_merge = 'split'    # enter: 'split' or 'merge' or 'none4' or 'none5' 
split_merge_steps= 50000     # if no split or merger, set to 0 
split_merge_intsteps = 2000 # steps for interval for visual echo display 
input_type = 'edge'      # state if you'd like random or cat-edge inputs 
returner = True 
########################################################################## 
# setup the network  
new_nodes_connections = network_setup() 
 
# run first round of training 
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for i in range(steps): 
    new_nodes_connections[0] = input_vowels(new_nodes_connections[0], vowels) 
    new_nodes_connections = one_learning_step(new_nodes_connections[0], 
new_nodes_connections[1]) 
     
    # save a figure of the drift lines at the interval step-count 
    if i == initial_intsteps: 
            echo_drift_nodes = visual_echo(new_nodes_connections[0], 
new_nodes_connections[1], vowels, input_type) 
            plt.tight_layout() 
            echo_drift_nodes.set_size_inches(8, 5) 
            echo_drift_nodes.savefig('pdfs/visualecho_'+ split_merge + '_' + 
str(+i) +'.pdf', dpi=600) 
 
# save a figure of the drift lines after first training round 
echo_drift_nodes = visual_echo(new_nodes_connections[0], 
new_nodes_connections[1], vowels, input_type) 
plt.tight_layout() 
echo_drift_nodes.set_size_inches(8, 5) 
echo_drift_nodes.savefig('pdfs/visualecho_'+ split_merge + '_' + str(steps) 
+'.pdf', dpi=600) 
 
# run second training for split or merger test 
if split_merge == 'split' or split_merge == 'merge': 
     
    # save a figure of the drift lines with L2 before training L2 
    echo_drift_nodes = visual_echo(new_nodes_connections[0], 
new_nodes_connections[1], change_vowels, input_type) 
    plt.tight_layout() 
    echo_drift_nodes.set_size_inches(8, 5) 
    echo_drift_nodes.savefig('pdfs/visualecho_'+ split_merge + '_immediate_' 
+ str(steps) +'.pdf', dpi=600) 
     
    # start training in L2 
    for i in range(split_merge_steps): 
        new_nodes_connections[0] = input_vowels(new_nodes_connections[0], 
change_vowels) 
        new_nodes_connections = one_learning_step(new_nodes_connections[0], 
new_nodes_connections[1]) 
         
        # save a figure of the drift lines at the interval step-count 
        if i == split_merge_intsteps: 
            echo_drift_nodes = visual_echo(new_nodes_connections[0], 
new_nodes_connections[1], change_vowels, input_type) 
            plt.tight_layout() 
            echo_drift_nodes.set_size_inches(8, 5) 
            echo_drift_nodes.savefig('pdfs/visualecho_'+ split_merge + '_' + 
str(steps+i) +'.pdf', dpi=600) 
 
    # save a figure of the drift values for the final state of L2 
    echo_drift_nodes = visual_echo(new_nodes_connections[0], 
new_nodes_connections[1], change_vowels, input_type) 
    plt.tight_layout() 
    echo_drift_nodes.set_size_inches(8, 5) 
    echo_drift_nodes.savefig('pdfs/visualecho_'+ split_merge + '_' + 
str(steps+split_merge_steps) +'.pdf', dpi=600) 
 
# Do a third round of training by returning to L1 
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if returner == True: 
     
    # save a figure of the drift lines with L1 before re-training L1 
    echo_drift_nodes = visual_echo(new_nodes_connections[0], 
new_nodes_connections[1], vowels, input_type) 
    plt.tight_layout() 
    echo_drift_nodes.set_size_inches(8, 5) 
    echo_drift_nodes.savefig('pdfs/visualecho_'+ split_merge 
+'_returner_immediate.pdf', dpi=600) 
 
    # start L1 training 
    for i in range(50000): 
        new_nodes_connections[0] = input_vowels(new_nodes_connections[0], 
vowels) 
        new_nodes_connections = one_learning_step(new_nodes_connections[0], 
new_nodes_connections[1]) 
         
        # save a figure of the drift values at the interval step-count 
        if i == split_merge_intsteps: 
            echo_drift_nodes = visual_echo(new_nodes_connections[0], 
new_nodes_connections[1], vowels, input_type) 
            plt.tight_layout() 
            echo_drift_nodes.set_size_inches(8, 5) 
            echo_drift_nodes.savefig('pdfs/visualecho_'+ split_merge 
+'_returner_2000.pdf', dpi=600) 
 
    # save a figure of the drift values for the final state 
    echo_drift_nodes = visual_echo(new_nodes_connections[0], 
new_nodes_connections[1], vowels, input_type) 
    plt.tight_layout() 
    echo_drift_nodes.set_size_inches(8, 5) 
    echo_drift_nodes.savefig('pdfs/visualecho_'+ split_merge 
+'_returner_500000.pdf', dpi=600) 

 

2.2 Visual echo (drift lines) 
# import my own codes 
from .echo_tools import echo_peaks, echo_spread, edge_input_echo, 
random_input_echo 
# import standard packages 
import numpy as np 
import matplotlib.pyplot as plt 
 
def visual_echo(new_nodes, new_connections, vowel_system, input_method): 
    """ This function creates a list of coordinates of the inputs and 
    echoes of 1000 inputs (echo coordinates are found through local maxima) 
     
    Parameters: 
    ----------  
    new_nodes: an array containing the node activations and biases  
    new_connections: an array containing all weights for all connections 
    vowel_system: a string stating the vowelsystem to be used 
    input_method: a string stating a random input or an edge input 
 
 
    Returns: 
    -------- 
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    [av_inp_dist, av_echo_dist]: a list containing median distance to the  
        prototype values from the input coordinates and the echo coordinates 
    """ 
    # set up coordinate lists and the erb values 
    drifts_coord_x = [] 
    drifts_coord_y = [] 
    erb = np.linspace(4,28,49) 
 
    # ensure correct activations on mid and top layer 
    new_nodes[1][0,:] = 0.5 
    new_nodes[2][0,:] = 0.5 
 
    # gather 1000 echoes, 200 per prototype 
    for i in range(1000): 
        if input_method == 'edge': 
            f1f2_act = edge_input_echo(vowel_system, i) 
        else: # if input is required to be completely random 
            f1f2_act = random_input_echo(vowel_system) 
        new_nodes[0][0,:] = f1f2_act[2] 
        f1 = f1f2_act[0] 
        f2 = f1f2_act[1] 
 
        # per input, let activation spread through system 
        new_nodes = echo_spread(new_nodes, new_connections) 
 
        # Interpolate the heights to get more refined peaks 
        echo_f1f2 = echo_peaks(erb, new_nodes) 
        echo_f1 = echo_f1f2[0] 
        echo_f2 = echo_f1f2[1] 
        # append x and y values to the drift lists 
        drifts_coord_x.append((f2, echo_f2)) 
        drifts_coord_y.append((f1, echo_f1)) 
     
    # set new lists to return 
    drift_coords = [drifts_coord_x, drifts_coord_y] 
 
    # Set up the figure and plot data into graph 
    fig, ax = plt.subplots() 
    for i, coord in enumerate(drift_coords[0]): 
        ax.plot(drift_coords[0][i], drift_coords[1][i], '-') 
 
    # invert axes and add axis titles 
    ax.invert_xaxis() 
    ax.invert_yaxis() 
    ax.text(29.5,10, 'F1', ha='center') 
    ax.text(19,17, 'F2', ha='center') 
 
    # Store and return the graph 
    graph = fig 
    return graph 

 

2.3 Input echo (edge or random) 
# import standard package 
import random 
import numpy as np 
from math import pi, cos, sin 
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# For inputs that are at a set distance from prototype 
def edge_input_echo(vowel_system, step): 
    """ This function chooses an input sound from the category edge and 
changes  
        the activations on the input layer accordingly  
         
        Parameters: 
        ---------- 
        vowel_system: a string of 'four' or 'five' (or +'_spec') that states  
            the used vowel system 
        step: a integer containing the number of the current input    
 
         
        Returns: 
        -------- 
        new_nodes: an array containing the node activations and biases  
         
    """ 
    erb = np.linspace(4,28,49) 
    bump_width = 0.68 
    radius = 2 
 
    if vowel_system == 'five': 
        angle = 1.8 * (step % 200) 
         
        if step <= 200: # 'a' 
            f1 = sin(angle)*radius + 13 
            f2 = cos(angle)*radius + 19 
            proto_f1 = 13 
            proto_f2 = 19 
        if 200 < step <= 400: # 'e' 
            f1 = sin(angle)*radius + 10 
            f2 = cos(angle)*radius + 22 
            proto_f1 = 10 
            proto_f2 = 22 
        if 400 < step <= 600: # 'i': 
            f1 = sin(angle)*radius + 7 
            f2 = cos(angle)*radius + 25 
            proto_f1 = 7 
            proto_f2 = 25 
        if 600 < step <= 800: # 'o': 
            f1 = sin(angle)*radius + 10 
            f2 = cos(angle)*radius + 16 
            proto_f1 = 10 
            proto_f2 = 16 
        if 800 < step <= 1000: # 'u': 
            f1 = sin(angle)*radius + 7 
            f2 = cos(angle)*radius + 13 
            proto_f1 = 7 
            proto_f2 = 13 
         
    elif vowel_system == 'four': 
        angle = 1.8 * (step % 250) 
        if step <= 250: # 'a' 
            f1 = sin(angle)*radius + 13 
            f2 = cos(angle)*radius + 19 
            proto_f1 = 13 
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            proto_f2 = 19 
        if 250 < step <= 500: # 'ei' 
            f1 = sin(angle)*radius + 8.5 
            f2 = cos(angle)*radius + 23.5 
            proto_f1 = 8.5 
            proto_f2 = 23.5 
         
        if 500 < step <= 750: # 'o': 
            f1 = sin(angle)*radius + 10 
            f2 = cos(angle)*radius + 16 
            proto_f1 = 10 
            proto_f2 = 16 
 
        if 750 < step <= 1000: # 'u': 
            f1 = sin(angle)*radius + 7 
            f2 = cos(angle)*radius + 13 
            proto_f1 = 7 
            proto_f2 = 13 
 
    # the following two inputs are only used in the distance tests and are 
random 
    elif vowel_system == 'four_spec': 
        angle = random.random() * 2 * pi 
        f1 = sin(angle)*radius + 8.5 
        f2 = cos(angle)*radius + 23.5 
        proto_f1 = 8.5 
        proto_f2 = 23.5 
    elif vowel_system == 'five_spec': 
        sounds = ['a', 'i'] 
        angle = random.random() * 2 * pi 
        step_input = random.choice(sounds) 
        if step_input == 'e': 
            f1 = sin(angle)*radius + 10 
            f2 = cos(angle)*radius + 22 
            proto_f1 = 10 
            proto_f2 = 22 
        elif step_input == 'i': 
            f1 = sin(angle)*radius + 7 
            f2 = cos(angle)*radius + 25 
            proto_f1 = 7 
            proto_f2 = 25 
 
    # calculate the activation of all nodes on the auditory layer 
    activity = 5.0 * (np.exp(-(erb-f1)**2/(2*bump_width**2)) + np.exp(-(erb-
f2)**2/(2*bump_width**2))) - 0.5 
     
    # combine and return all needed variables 
    f1f2_act = [f1,f2,activity, proto_f1, proto_f2] 
    return f1f2_act 
 
 
def random_input_echo(vowel_system): 
    """ This function chooses an random input sound and changes the 
activations  
            on the input layer accordingly 
         
        Parameters: 
        ---------- 
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        new_nodes: an array containing the node activations and biases  
        vowel_system: a string of 'four' or 'five' that states the used vowel 
            system 
         
        Returns: 
        -------- 
        new_nodes: an array containing the node activations and biases  
         
    """ 
    erb = np.linspace(4,28,49) 
    bump_width = 0.68 
 
    if vowel_system == 'five': 
        sounds = ['a', 'e', 'i', 'o', 'u'] 
        step_input = random.choice(sounds) 
    elif vowel_system == 'four': 
        sounds = ['a', 'ei', 'o', 'u'] 
        step_input = random.choice(sounds) 
    elif vowel_system == 'four_spec': 
        sounds = ['ei'] 
        step_input = 'ei' 
    elif vowel_system == 'five_spec': 
        sounds = ['a', 'i'] 
        step_input = random.choice(sounds) 
 
    if step_input == 'a': 
        f1 = np.random.normal(13,0.9) 
        f2 = np.random.normal(19,0.9) 
        proto_f1 = 13 
        proto_f2 = 19 
 
    elif step_input == 'e': 
        f1 = np.random.normal(10,0.9) 
        f2 = np.random.normal(22,0.9) 
        proto_f1 = 10 
        proto_f2 = 22 
 
    elif step_input == 'i': 
        f1 = np.random.normal(7,0.9) 
        f2 = np.random.normal(25,0.9) 
        proto_f1 = 7 
        proto_f2 = 25 
 
    elif step_input == 'o': 
        f1 = np.random.normal(10,0.9) 
        f2 = np.random.normal(16,0.9) 
        proto_f1 = 10 
        proto_f2 = 16 
 
    elif step_input == 'u': 
        f1 = np.random.normal(7,0.9) 
        f2 = np.random.normal(13,0.9) 
        proto_f1 = 7 
        proto_f2 = 13 
 
    activity = 5.0 * (np.exp(-(erb-f1)**2/(2*bump_width**2)) + np.exp(-(erb-
f2)**2/(2*bump_width**2))) - 0.5 
    f1f2_act = [f1,f2,activity, proto_f1, proto_f2] 
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    return f1f2_act 
 
2.4 Echo spread – spreading activations for echoes 
# import standard packages 
import numpy as np 
 
def echo_spread(new_nodes, new_connections): 
    """ This function spreads the activation given through the network 
    from bottom to middle to the top, back to the middle (x10) and then back 
    to the bottom. This activation final state it then returns 
     
    Parameters: 
    ----------  
    new_nodes: an array containing the node activations and biases  
    new_connections: an array containing all weights for all connections 
 
    Returns: 
    -------- 
    new_nodes: an array containing the node activations and biases  
    """ 
    # spread to middle (while top = 0) 
    inp_act_weight = np.matmul(new_nodes[0][0,:],new_connections[0]) 
    top_act_weight = np.matmul(new_connections[1],new_nodes[2][0,:]) 
    new_nodes[1][0,:] = 1 / (1 + np.exp(-(new_nodes[1][1,:] + inp_act_weight 
+ top_act_weight))) 
 
    # echo calculation (from middle to top and bottom, then back to middle) 
    # 10 times 
    for _ in range(9): 
        # top layer 
        mid_act_weight = np.matmul(new_nodes[1][0,:],new_connections[1]) 
        new_nodes[2][0,:] = 1 / (1 + np.exp(-(new_nodes[2][1,:] + 
mid_act_weight))) 
        # spread back to erb-layer 
        mid_act_weight = np.matmul(new_connections[0],new_nodes[1][0,:]) 
        new_nodes[0][0,:] = new_nodes[0][1] + mid_act_weight 
        # back to mid layer  
        inp_act_weight = np.matmul(new_nodes[0][0,:],new_connections[0]) 
        top_act_weight = np.matmul(new_connections[1],new_nodes[2][0,:]) 
        new_nodes[1][0,:] = 1 / (1 + np.exp(-(new_nodes[1][1,:] + 
inp_act_weight + top_act_weight))) 
 
    return new_nodes 
 

2.5 Echo peaks – find echo formants 
# import standard packages 
from scipy.signal import find_peaks 
from scipy import interpolate 
import numpy as np 
 
def echo_peaks(erb, new_nodes): 
    """ This function finds the two highest activations in the ERB layer. 
     
    Parameters: 
    ----------  
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    erb:  
    new_nodes: an array containing the node activations and biases  
 
    Returns: 
    -------- 
    echo_f1f2: a list containing the two highest activaded erb values  
    """ 
    # Interpolate the heights to get more refined peaks 
    f = interpolate.interp1d(erb, new_nodes[0][0,:], kind='cubic') 
    new_erb = np.linspace(4,28,490) 
    new_heights = f(new_erb) 
 
    # get all local maxima 
    local_maxima_ind = find_peaks(new_heights, height=-4) 
    # create lists for height values and erb index 
    heights = local_maxima_ind[1]['peak_heights'] 
    indexes = local_maxima_ind[0] 
     
    # sort both lists to get two maxima heights and erb at the end of the 
list 
    zipped = zip(heights, indexes) 
    sorted_pairs = sorted(zipped) 
    tuples = zip(*sorted_pairs) 
    act_height, index_erb = [ list(tuple) for tuple in  tuples] 
     
    # get two highest peaks and sort by index 
    highest_acts = [index_erb[-1], index_erb[-2]] 
    highest_acts = sorted(highest_acts) 
    # get erb values for two highest maxima 
    echo_f1 = new_erb[highest_acts[0]] 
    echo_f2 = new_erb[highest_acts[1]] 
 
    echo_f1f2 = [echo_f1, echo_f2] 
 
    return echo_f1f2 

 

3 Graphing Distance-to-prototype 

3.1 Main code 

This code contains parameters the user can alter to their wishes 

 
# import my own codes 
from setup_input import input_vowels, network_setup 
from learning_phases import one_learning_step 
from echoes import echo_drift 
# import standard packages 
import matplotlib.pyplot as plt 
########################################################################## 
##########  setup parameters to run the distance calculations  ########### 
steps = 50000 
original_vowels = 'five' 
test_vowel = '_spec'   # if test for specific vowels add: '_spec' 
split_merge = 'merge'  # enter: 'split' or 'merge' or 'none4' or 'none5' 
split_merge_steps= 50000   # if no split or merger, set to 0 
input_type = 'edge'    # state if you'd like random or cat-edge inputs 
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returner = True        # true if you want to test original vowel retention 
########################################################################## 
 
# setting up some variables 
if split_merge == 'split': 
    new_vowels = 'five' 
elif split_merge == 'merge': 
    new_vowels = 'four' 
 
# setup the network  
new_nodes_connections = network_setup() 
 
# set up empty lists of drifts to plot 
inp_drifts = [] 
echo_drifts = [] 
trainingsteps = [] 
 
# Train the network in L1 and collect median distances per 500 steps 
for i in range(steps): 
    new_nodes_connections[0] = input_vowels(new_nodes_connections[0], 
original_vowels) 
    new_nodes_connections = one_learning_step(new_nodes_connections[0], 
new_nodes_connections[1]) 
    if i > 1 and i%500 == 0: 
        echo_drift_nodes = echo_drift(new_nodes_connections[0], 
new_nodes_connections[1], 'five_spec', input_type) 
        inp_drifts.append(echo_drift_nodes[0]) 
        echo_drifts.append(echo_drift_nodes[1]) 
        trainingsteps.append(i) 
 
# Train the network in L2 and collect median distances per 500 steps 
if split_merge == 'merge' or split_merge == 'split': 
    for i in range(split_merge_steps): 
        new_nodes_connections[0] = input_vowels(new_nodes_connections[0], 
'four') 
        new_nodes_connections = one_learning_step(new_nodes_connections[0], 
new_nodes_connections[1]) 
        if i > 1 and i%500 == 0: 
            echo_drift_nodes = echo_drift(new_nodes_connections[0], 
new_nodes_connections[1], 'four_spec', input_type) 
            inp_drifts.append(echo_drift_nodes[0]) 
            echo_drifts.append(echo_drift_nodes[1]) 
            trainingsteps.append(i+split_merge_steps) 
 
# Re-train the network in L1 and collect median distances per 500 steps 
if returner == True: 
    for i in range(50000): 
        new_nodes_connections[0] = input_vowels(new_nodes_connections[0], 
original_vowels) 
        new_nodes_connections = one_learning_step(new_nodes_connections[0], 
new_nodes_connections[1]) 
        if i > 1 and i%500 == 0: 
            echo_drift_nodes = echo_drift(new_nodes_connections[0], 
new_nodes_connections[1], 'five_spec', input_type) 
            inp_drifts.append(echo_drift_nodes[0]) 
            echo_drifts.append(echo_drift_nodes[1]) 
            trainingsteps.append(i+split_merge_steps+50000) 
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# Setup the figure and plot the distances 
fig, ax = plt.subplots() 
ax.plot(trainingsteps, inp_drifts, 'b-',label='Input distance') 
ax.plot(trainingsteps,echo_drifts, 'r-',label='Echo distance') 
ax.text(-10500,2, 'Distance (ERB)', va='center', rotation=90) 
 
# add vertical dotted lines to show vowel system switch 
if split_merge == 'merge' or split_merge == 'split': 
    ax.axvline(steps, 0, 4, c='k', ls='--', label='Vowel sytem switch') 
 
# set axis labels and sizes 
if returner == True: 
    ax.axvline((steps+split_merge_steps), 0, 4, c='k', ls='--') 
    ax.text((steps+split_merge_steps+50000)/2,-0.5, 'Trainingsteps', 
ha='center') 
    plt.axis([0, (steps+split_merge_steps+50000), 0, 4]) 
else: 
    plt.axis([0, (steps+split_merge_steps), 0, 4]) 
    ax.text((steps+split_merge_steps)/2,-0.5, 'Trainingsteps', ha='center') 
 
# add a legend and save (show) the figure 
ax.legend() 
fig.set_size_inches(10, 5) 
if returner == True: 
    fig.savefig('new_pdfs/distance_returner_merge.pdf', dpi=600) 
else:  
    fig.savefig('new_pdfs/distance_'+ split_merge 
+'_'+str(steps+split_merge_steps)+ str(test_vowel) +'.pdf', dpi=600) 
plt.show() 
  
 
3.2 Echo drift (median distance) 
# import my own codes 
from .echo_tools import random_input_echo, edge_input_echo, echo_peaks, 
echo_spread 
# import standard packages 
import numpy as np 
import math 
 
def echo_drift(new_nodes, new_connections, vowel_system, input_method): 
    """ This function calculates the median distance over X inputs from 
    the input(and echo) coordinates to the vowel mean formants. 
     
    Parameters: 
    ----------  
    new_nodes: an array containing the node activations and biases  
    new_connections: an array containing all weights for all connections 
    vowel_system: a string stating the vowel system to be used 
    input_method: a string stating a random input or an edge input 
 
 
    Returns: 
    -------- 
    [av_inp_dist, av_echo_dist]: a list containing median distance to the  
        prototype values from the input coordinates and the echo coordinates 
     
    """ 
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    # set steps depending on code goal 
    if vowel_system == 'five': 
        steps = 1000 
    elif vowel_system == 'four': 
        steps = 800 
    elif vowel_system == 'five_spec': 
        steps = 400 
    elif vowel_system == 'four_spec': 
        steps = 200 
     
    # set up coordinate lists and the erb values 
    inp_dists = [] 
    echo_dists = [] 
    erb = np.linspace(4,28,49) 
 
    # ensure correct activations on mid and top layer 
    new_nodes[1][0,:] = 0.5 
    new_nodes[2][0,:] = 0.5 
 
    # gather X echoes, 200 per prototype 
    for i in range(steps): 
        if input_method == 'edge': 
            f1f2_act = edge_input_echo(vowel_system) 
        else: 
            f1f2_act = random_input_echo(vowel_system) 
         
        new_nodes[0][0,:] = f1f2_act[2] 
        f1 = f1f2_act[0] 
        f2 = f1f2_act[1] 
        proto_f1 = f1f2_act[3] 
        proto_f2 = f1f2_act[4] 
 
        # per input, let activation spread through system 
        new_nodes = echo_spread(new_nodes, new_connections) 
 
        # Find formants of the echo 
        echo_f1f2 = echo_peaks(erb, new_nodes) 
        echo_f1 = echo_f1f2[0] 
        echo_f2 = echo_f1f2[1] 
       
        # get distance from input to prototype, and append 
        input_distance = math.sqrt( (f1 - proto_f1)**2 + (f2 - proto_f2)**2 ) 
        inp_dists.append(input_distance) 
 
        # get distance from echo to prototype, and append 
        echo_distance = math.sqrt( (echo_f1 - proto_f1)**2 + (echo_f2 - 
proto_f2)**2 ) 
        echo_dists.append(echo_distance) 
 
    # find the median of all distances  
    av_inp_dist = np.median(inp_dists) 
    av_echo_dist = np.median(echo_dists) 
 
    return [av_inp_dist, av_echo_dist] 
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4 Codes for statistics 

4.1 Testing “monolingual” to merger/split/retention 

This code contains parameters the user can alter to their wishes 

 
# import my own codes 
from setup_input import input_vowels, network_setup 
from learning_phases import one_learning_step 
from echoes import echo_drift 
# import standard packages 
import csv 
######################################################### 
##########  setup parameters to run the test  ########### 
steps = 50000 
original_vowels = 'five'  # L1 vowels 
l2 = True          # if you want the network to learn an L2 
new_vowels = 'four'     # L2 vowels 
test_vowel = 'five'   # set L2(or L1) vowel 
split_merge_steps= 50000 
########################################################################## 
# setup the network  
new_nodes_connections = network_setup() 
 
# set up empty lists of drifts to plot 
echo_drifts = [] 
 
# repeat calculations for virtual 200 learners 
for i in range(200): 
    # train network in native vowel system 
    for _ in range(steps): 
        new_nodes_connections[0] = input_vowels(new_nodes_connections[0], 
original_vowels) 
        new_nodes_connections = one_learning_step(new_nodes_connections[0], 
new_nodes_connections[1]) 
 
    if l2 == True: 
        # train network in L2 
        for _ in range(split_merge_steps): 
            new_nodes_connections[0] = input_vowels(new_nodes_connections[0], 
new_vowels) 
            new_nodes_connections = 
one_learning_step(new_nodes_connections[0], new_nodes_connections[1]) 
 
    # Get only the median distance between input and echo 
    echo_drift_nodes = echo_drift(new_nodes_connections[0], 
new_nodes_connections[1], test_vowel+'_spec', 'edge') 
    echo_drifts.append([str(echo_drift_nodes[1])]) 
 
# store data in a csv-file 
with open('retention_five_merge.csv', 'w', encoding="ISO-8859-1", newline='') 
as myfile: 
    wr = csv.writer(myfile) 
    wr.writerows(echo_drifts) 
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5 SPSS statistics outputs 

5.1 Split test (chapter 5.3) 

 
5.2 Merger test (chapter 5.4) 

 
5.3 Native retention – after split (chapter 6.1) 
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5.4 Native retention – after merger (chapter 6.2) 
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