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In this dissertation, we investigate the hypothesis that a domain-general statistical 
learning mechanism supports the acquisition of language, both in its spoken and 
in its written form. Such a statistical learning mechanism allows for the learning 
of abstract patterns and rules based on the statistical properties of the input (i.e. 
language). Our investigation includes two separable lines of research: (1) the study 
of the correlation between individual differences in statistical learning ability and 
scores on grammar and literacy, and (2) the study of group differences between 
Dutch-speaking children with and without dyslexia. Moreover, it applies both 
experimental and meta-analytical techniques.
	
Taken together, the results presented in this dissertation do not provide evidence 
for (or against) a link between a domain-general statistical learning ability and the 
acquisition of language and literacy skills. Therefore, it cannot be excluded that the 
relationship between statistical learning and language and literacy acquisition may 
be less strong than hypothesized. Furthermore, individuals with dyslexia likely do 
not have a domain-general, extensive deficit in statistical learning. More research 
in the form of large-scale and pre-registered studies, as well as meta-analyses, 
is needed in order to reach definitive conclusions regarding the contribution of 
(domain-general) statistical learning ability to the acquisition of language and 
literacy skills, both in typical and in impaired populations. 
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Chapter 1 
General introduction 

 

 

 

As adults, we are fascinated by children’s relatively quick and seemingly effortless 
acquisition of their mother tongue. Before children start primary school at the 
age of four, they know approximately 1,500 words and are able to combine these 
words to produce full sentences. Naturally, their linguistic skills will continue to 
develop, but this early stage of language acquisition is remarkable given the fact 
that 4-year-old children are often still unable to complete “simple” tasks such as 
tying their shoe laces. One of the fundamental questions in the field of linguistics, 
therefore, is how children are such efficient language learners, despite the 
complexity of language itself and in absence of explicit instruction. Put more 
broadly, how children learn patterns and regularities in the world around them is 
a long-standing question. Central to this question is the innateness debate: are 
(linguistic) patterns and regularities learned purely through exposure or is such 
learning supported by some form of innate knowledge? The traditional nativist 
(or “knowledge-driven”) account presupposes that innate and domain-specific 
knowledge is needed for language acquisition. This is usually referred to as 
Universal Grammar (UG; e.g. Chomsky, 1986; 1995). In contrast, input-driven 
accounts argue that domain-specific innate knowledge is unnecessary for 
language acquisition. Instead, acquisition is shaped by mere exposure to language 
and the employment of domain-general cognitive abilities (e.g. Tomasello, 2003). 
More specifically, through repeated exposure to the distributional properties of 
language, and a domain-general ability to (implicitly) track these distributional 
statistics across time and space (Frost, Armstrong, Siegelman, & Christiansen, 
2015), children are thought to infer the abstract patterns and rules of their native 
language. This ability to learn from distributional statistics is often referred to as 
“statistical learning”, a term first introduced by Saffran, Newport and Aslin 
(1996), and is argued to play an important role in language and literacy acquisition 
(e.g. Aslin & Newport, 2014; Romberg & Saffran, 2010; Treiman, 2018).  
 Although language acquisition occurs rapidly and with relative ease for 
most children, large individual differences in the speed and ease of acquisition 
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exist. At the lower end of the spectrum, between 3 to 10 percent of the general 
population is diagnosed with developmental language disorder (DLD) or 
developmental dyslexia (henceforth “dyslexia”; Leonard, 2014; Miles, 2004; 
Siegel, 2006). Whereas DLD is characterized by spoken (or signed) language 
deficits (Leonard, 2014), dyslexia is associated with deficits in the development 
of written language (i.e. technical reading and spelling; Snowling, 2001). In both 
cases, these problems occur despite normal intelligence, normal academic and 
social opportunities and in absence of sensory or neurological impairments (e.g. 
DSM-V, 2013; Snowling, 2000). Since spoken language ability and literacy skills 
are crucial to an individual’s social and academic success, children with DLD and 
dyslexia are vulnerable to social and/or academic problems (e.g. Conti-Ramsden, 
Durkin, Toseeb, Botting, & Pickles, 2018; Humphrey & Mullins, 2002).  

Over the past decades, various accounts have been put forward to 
explain these language-based disorders. Generally speaking, theories of DLD 
have focussed on problems with language processing (e.g. working memory; 
Archibald & Gathercole, 2006) or on specific problems in the area of grammar 
(Leonard, 2014), while dyslexia has often been explained through underlying 
problems in the area of phonology and phonological memory (e.g. de Bree, 2007; 
Ramus, 2003), even though non-linguistic explanations have also been put 
forward, such as visual problems and a specific problem in mapping letters to 
speech sounds (e.g. Froyen, Willems, & Blomert, 2011; Stein & Walsh, 1997). It 
is important to note that there is considerable overlap in the symptoms of the 
two disorders: many children with DLD experience problems with (technical) 
reading and spelling, and children with dyslexia have been shown to be delayed 
in spoken language development (e.g. Durkin, Fraser, & Conti-Ramsden, 2010; 
McArthur, Hogben, Edwards, Heath, & Mengler, 2000; Snowling & Melby-
Lervåg, 2016). Moreover, comorbidity between DLD and dyslexia is high 
(Bernthal, Bankson, & Flipsen, 2009; Catts, Adlof, Hogan, & Weismer, 2005). 
These facts have led some researchers to view dyslexia and DLD as resulting 
from the same underlying problem, namely a domain-general learning deficit 
(Fawcett & Nicolson, 2019; Nicolson & Fawcett, 2007; 2011; Ullman 2004; 
Ullman & Pierpont, 2005; Ullman, Sayako Earle, Walenski, & Janacsek, 2019). 
This domain-general learning deficit is conceptualized as a problem with 
procedural learning, i.e. the learning of deterministic and/or probabilistic 
associations between adjacent or nonadjacent stimuli through repeated practice 
and training, which is thought to be an automatic and implicit process (Janacsek 
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& Nemeth, 2012; Ullman et al., 2019). Statistical learning is assumed to rely on 
the same brain structures that support procedural learning (i.e. the basal ganglia; 
Ullman et al., 2019) and has been argued to be a form of procedural learning (Qi, 
Sanchez Araujo, Georgan, Gabrieli, & Arciuli, 2019; Steacy et al., 2019). Since 
there is evidence that statistical learning plays a (perhaps critical) role in language 
acquisition, it is not surprising that a deficit in this type of learning is 
hypothesized to cause the language problems observed in children with DLD or 
dyslexia. An important outstanding question is how the differences between the 
two language-based disorders can be explained under the assumption of a 
common underlying statistical learning deficit (e.g. primary problems in written 
language in dyslexia and primary problems in spoken language in DLD), although 
this question will not be addressed in the present dissertation (see e.g. Bishop & 
Snowling, 2004). 
 This dissertation investigates the hypothesized relationship between 
statistical learning and spoken and written language acquisition using two 
approaches. The first of these is an individual differences approach: if statistical 
learning is related to language acquisition, one would expect to find correlations 
between individual language outcomes (e.g. grammar, technical reading, and 
spelling) and measures of statistical learning ability. The second approach is the 
comparison between impaired and unimpaired individuals: if the language 
difficulties observed in developmental disorders can be explained through an 
underlying problem with statistical learning, one would expect to find group 
differences between individuals with and without a diagnosis of DLD or dyslexia 
on statistical learning tasks. The studies presented in this dissertation are part of 
a project investigating both developmental disorders, but the focus here lies 
exclusively on children with dyslexia. The results regarding children with DLD 
are reported elsewhere (Lammertink, Boersma, Wijnen, & Rispens, 2019a; 2019b; 
2020). Thus, the following sections discuss the role statistical learning may play 
in language and literacy acquisition (§1.1), and describe what is known about 
statistical learning in dyslexia (§1.2). Finally, §1.3 provides an overview of this 
dissertation’s contents and an outline of its chapters.  
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1.1 Statistical learning and (written) language acquisition 
 

In relation to language and literacy acquisition, statistical learning tasks often 
target the ability to track sequential statistics (Romberg & Saffran, 2010). These 
sequential statistics are typically conceptualized through transitional probabilities 
(TPs): a TP is the probability of event t given the previous event t-1. The ability 
to track TPs has been argued to play a role at many levels of natural languages: 
the segmentation of fluent speech into words, the detection of dependencies and 
other co-occurrences in sentences, and the acquisition of the language’s writing 
system. For example, the TP between syllables that form a word is higher than 
the TP between syllables that cross a word boundary (e.g. in the utterance “pretty 
baby”, the TPs from pre to ty and from ba to by are higher than the TP from ty to 
ba; Saffran et al., 1996). One of the first statistical learning experiment, in which 
infants were exposed to an artificial language in which TPs between syllables were 
manipulated, showed that infants are sensitive to TP structure and are able to 
subsequently discriminate sequences of syllables with high TPs between syllables 
(i.e. syllables that co-occur with a high frequency; “words”) from sequences with 
low TPs between syllables (i.e. syllables that co-occur with a low frequency; 
“partwords”; Saffran et al., 1996). These findings show, firstly, that infants can 
track the statistical information in an artificial speech stream. Secondly, they 
support the possibility that infants use a statistical learning mechanism to detect 
word boundaries in real-life language acquisition. Following this study, statistical 
learning experiments have expanded to investigate the potential of this domain-
general learning mechanism across multiple levels of linguistic structure. More 
remote relationships between linguistic elements, such as the relationship 
between auxiliaries and inflections on the main verb (e.g. is walking or has played), 
may also be supported by a general learning mechanism that allows individuals 
to track these more remote co-occurrences (i.e. nonadjacent dependencies; 
Gómez, 2002).  

Most relevant to the present dissertation, which focusses on individuals 
with dyslexia, is the relationship between statistical learning and literacy 
acquisition. Orthography, besides being a stream of visual elements, is of course 
a representation of the sounds of spoken language (Treiman, 2018). Learning to 
read and spell in alphabetic languages therefore depends on the process of linking 
orthographic units (i.e. graphemes) with phonological units (i.e. phonemes). In 
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other words, literacy acquisition starts with learning which letters correspond to 
which sounds and vice versa (grapheme–phoneme mappings). Just as spoken 
language, these grapheme–phoneme mappings are known to exhibit many 
statistical regularities: the pronunciation of a single letter may depend on co-
occurring letters. For example, the letter <c> is pronounced as a /k/ when 
followed by the letter <a> as in can’t, while it is pronounced as an /s/ when it is 
followed by an <e> as in cent. Similarly, statistical patterns exist purely at the level 
of the orthography: some combinations of letters occur more frequently than 
others. For example, the doubling of consonants is more common before <ick> 
spellings as in gimmick than before <ic> spellings as in mimic (Samara, Singh, & 
Wonnacott, 2019). Although some of these grapheme–phoneme associations 
and spelling rules are highly regular and can be taught explicitly, others are more 
inconsistent and difficult to state explicitly. For this reason, implicit learning 
processes are thought to be involved in learning to read and spell (e.g. Sperling, 
Lu, & Manis, 2004; Treiman, 2018; Arciuli, 2018).  

In summary, a mechanism that allows for the detection of statistical 
patterns (e.g. patterns of co-occurrences of syllables, verb inflection, and 
phoneme–grapheme correspondences) is hypothesized to facilitate the 
acquisition of structure in language, both in its spoken and in its written form. 
Although experiments usually target one level of learning (e.g. syllables or words), 
language learners in the real world may use this domain-general learning 
mechanism to track all kinds of regularities in the world around them 
simultaneously. Thus, statistical learning may contribute not only to detecting the 
frequencies and co-occurrences of speech sounds, syllables and words, but also 
to detecting regularities in the context of a linguistic utterance, such as physical 
objects in the surroundings and social cues such as a speaker’s eye gaze (Romberg 
& Saffran, 2010). 
 In line with the hypothesized relationship between statistical learning on 
the one hand and language and literacy acquisition on the other hand, empirical 
studies have yielded evidence of the positive correlation between measures of 
statistical learning ability and measures of language and literacy skills. 
Performance in different statistical learning paradigms (e.g. visuo-motoric serial 
reaction time [SRT], visual statistical learning [VSL], artificial grammar learning 
[AGL], auditory statistical learning [ASL], and auditory nonadjacent dependency 
learning [NADL] tasks) has been shown to relate to levels of ability in various 
components of spoken and written language. In English-speaking adults, 
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individual differences in statistical learning performance have been shown to 
correlate not only with their comprehension of complex sentences (e.g. 
containing relative clauses; Misyak, Christiansen, & Tomblin, 2010; Misyak & 
Christiansen, 2012), but also with word reading (Arciuli & Simpson, 2012) and 
reading Hebrew as a second language (Frost, Siegelman, Narkiss, & Afek, 2013). 
Similarly, the SRT performance of English-speaking typically developing (TD) 
children has been found to relate to their reaction times (RTs) on a sentence–
picture matching task, taken as a measure of grammatical processing (Clark & 
Lum, 2017), and to the proportion of passive sentences produced in a syntactic 
priming experiment (Kidd, 2012). In a study adopting the VSL paradigm, 
children’s statistical learning ability was found to correlate with their 
comprehension of passive sentences and sentences that contain object relative 
clauses, as measured through accuracy on a sentence-picture matching task (Kidd 
& Arciuli, 2016). Regarding literacy skills, positive correlations in child 
participants have been reported when looking at the relationship between 
statistical learning and the reading of individual words (VSL paradigm: Arciuli & 
Simpson, 2012; SRT paradigm: Hung et al., 2019) and between ASL and sentence 
reading (Qi et al., 2019). 

While the abovementioned results are promising, a number of studies 
have yielded null results regarding correlations between statistical learning tasks 
and language performance. In 2012, Lum and Kidd did not find a significant 
correlation between children’s SRT performance and their accuracy on an 
elicitation test of the past tense. West, Vadillo, Shanks, and Hulme (2018) 
reported null results regarding the correlation between an SRT task and measures 
of literacy skills (i.e. spelling and word reading) in a large sample of English-
speaking TD children. In a similar fashion, Schmalz, Moll, Mulatti, and Schulte-
Körne (2019) found no evidence for (or against) a relationship between two 
statistical learning tasks and both word and nonword reading fluency in a sample 
of German-speaking adults, and Clark and Lum (2017) found no evidence for a 
relationship between SRT performance and word and nonword reading in 
children with and without DLD. This mixed pattern of findings in the field (i.e. 
some studies find evidence of correlations, while other studies do not) has led 
researchers to question the strength of the relationship between statistical 
learning and the performance on tasks that assess language and literacy skills (e.g. 
Schmalz et al., 2019). Moreover, these findings have raised doubt about our 
ability to assess this relationship reliably, especially in child participants (e.g. 
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Arnon, 2019a; 2019b; Kidd, Donnelly, & Christiansen, 2017; West et al., 2018). 
Methodological differences may also help explain the existence of mixed 
findings; if the true effect is small, it may only appear under certain 
methodological conditions (e.g. Elleman, Steacy, & Compton, 2019; Schmalz et 
al., 2019). These methodological differences may relate to the choice of statistical 
learning task, as different paradigms are known to target different types of 
structure (e.g. adjacent, nonadajcent) in different modalities (e.g. visuo-motor, 
visual, auditory). Individual experiments also vary on a large number of other 
methodological parameters (e.g. type of stimuli, length of exposure, instruction, 
measure of learning, etc.). Therefore, researchers have emphasized the need for 
studies that use a range of statistical learning tasks within a large sample of 
participants (Arciuli & Conway, 2018; West et al., 2018). It is also important to 
note that performance on statistical learning tasks is thought to be related to an 
individual’s ability to maintain attention and to store information in (short-term, 
working and long-term) memory (e.g. Arciuli, 2017), and most previous studies 
have not considered these potential cognitive confounds (but see Qi et al., 2019; 
von Koss Torkildsen, Arciuli, & Wie, 2019). Furthermore, studies on the 
relationship between statistical learning and literacy skills have largely focussed 
on reading. Thereby, they have disregarded spelling, despite its theorized link 
with statistical learning (Treiman, 2018). The studies presented in this dissertation 
add to this body of research and aim to assess the relationship between statistical 
learning ability and performance on language and literacy skills using a range of 
statistical learning tasks that span different structure types and modalities while 
controlling for the abovementioned cognitive factors (see §1.3 for more detail). 

 
1.2 Statistical learning and dyslexia 
 

As mentioned previously, a deficit in the area of procedural learning has been 
hypothesized to be the underlying cause for dyslexia (e.g. Nicolson & Fawcett, 
2007; Ullman, 2004), which has since then been extended to include problems 
with statistical learning (e.g. Gabay et al., 2015; Ullman et al., 2019). As statistical 
learning is assumed to play a critical role in the acquisition of grapheme–
phoneme associations in typical development, a statistical learning deficit in 
dyslexia may cause less developed and less automatic grapheme–phoneme 
associations, which in turn may result in their difficulties in learning to read and 
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write. Besides providing an explanation for the observed literacy problems in 
dyslexia, a statistical learning deficit may account for a range of additional 
symptoms associated with dyslexia, including difficulties in other domains of 
language, such as inflectional morphology (e.g. Joanisse, Manis, Keating, & 
Seidenberg, 2000; Rispens & Been, 2007) and syntax (e.g. Reggiani, 2010; 
Robertson & Joanisse, 2010), but also in non-linguistic skills such as motor 
functioning (e.g. Ramus, Pidgeon, & Frith, 2003). 
 A number of studies report evidence of poor statistical learning abilities 
in individuals with dyslexia as compared to individuals without, providing 
support for the hypothesized statistical learning deficit in dyslexia. This holds for 
investigations of performance using a range of statistical learning tasks, including 
the SRT task (e.g. Jiménez-Fernández, Vaquero, Jiménez, & Defior, 2011; Vicari, 
Marotta, Menghini, Molinari, & Petrosini, 2003), ASL task (Gabay, Thiessen, & 
Holt, 2015), VSL task (Sigurdardottir, Danielsdottir, Gudmundsdottir, 
Hjartarson, Thorarinsdottir, & Kristjánsson, 2017; Singh, Walk, & Conway, 
2018), and AGL task (e.g. Pavlidou & Williams, 2014). However, as previously 
described for correlational studies in TD participants (§1.1), mixed findings exist 
regarding the statistical learning performance of individuals with dyslexia. Non-
significant results regarding the difference in performance between participants 
with and without dyslexia have been reported by studies adopting the SRT task 
(e.g. Kelly, Griffiths, & Frith, 2002), AGL task (e.g. Rüsseler, Gerth, & Münthe, 
2006) and the NADL task (Kerkhoff, de Bree, & Wijnen, 2017). For this reason, 
Lum, Ullman, and Conti-Ramsden (2013) conducted a meta-analysis of 14 
previously published studies that investigated the statistical learning performance 
of individuals with and without dyslexia, focusing on the SRT task. Their findings 
suggest that, on average, individuals with dyslexia are poorer learners on the SRT 
task when compared to age-matched individuals without dyslexia (weighted 
average effect size = .449, p < .001). Although SRT and AGL tasks have been 
extensively used to examine the hypothesized (domain-general) statistical 
learning deficit in dyslexia, less is known about other measures of statistical 
learning ability, such as VSL and NADL tasks. The present dissertation employs 
three distinct statistical learning paradigms to thoroughly test the hypothesized 
(domain-general) statistical learning deficit in a large sample of children with and 
without dyslexia. 
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1.3 This dissertation 
 

The current dissertation builds on previous work and investigates the relationship 
between statistical learning and (spoken and written) language acquisition in 
children with and without dyslexia. The key hypotheses are that (1) individual 
differences in statistical learning ability are related to language and literacy 
performance, and (2) children with dyslexia perform more poorly on statistical 
learning tasks than their TD peers. Three experimental tasks that tap into 
different aspects of statistical learning ability were developed in order to test these 
hypotheses in a comprehensive way. Moreover, language and literacy abilities 
were tested at multiple levels, including not only (technical) reading and spelling 
but also inflectional morphology and syntax, and the studies presented in this 
dissertation were controlled for cognitive factors known to influence either 
statistical learning performance (e.g. attention, working memory) or linguistic 
performance (e.g. phonological memory, rapid automatized naming, vocabulary). 
In doing so, we aimed to examine the relationship between statistical learning on 
the one hand and language performance and/or dyslexia on the other hand 
independently of these potentially confounding factors. In the following sections, 
some important considerations when measuring children’s statistical learning 
abilities are discussed (§1.3.1), followed by a presentation of the contents of this 
dissertation (§1.3.2). 
 

1.3.1 Measuring statistical learning ability 
 

Because statistical learning is assumed to be a domain-general learning 
mechanism, and this domain-general ability is hypothesized to play a role in the 
acquisition of language and literacy skills and (hence) in explaining dyslexia, the 
statistical learning tasks employed in the present dissertation span a range of 
modalities. Furthermore, they were constructed so that they target the learning 
of different types of statistical structures and use a combination of explicit and 
implicit measures of learning, in order to obtain a broad picture of children’s 
statistical learning ability. The three statistical learning paradigms that are utilized 
in this dissertation (SRT, VSL, auditory NADL [A-NADL]) are described below. 
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The classical SRT task assesses the visuo-motoric learning of a repeated 
sequence (Nissen & Bullemer, 1987). A visual stimulus is repeatedly presented in 
one of four marked locations on a screen and without the participants’ 
knowledge, the visual stimulus appears according to a pre-determined 10-item 
sequence (e.g. 4, 2, 3, 1, 2, 4, 3, 1, 4, 3, where numbers 1–4 correspond to the 
four marked locations on the screen). Meanwhile, participants are required to 
respond to the stimuli by pressing on buttons that correspond to their location 
on the screen. Sensitivity to this type of structured input is measured as a 
participant’s increase in RTs when the visual stimulus no longer follows the 
sequence, but is instead presented in random locations. As the visual stimulus no 
longer appears in a fixed order, its appearance is no longer predictable, resulting 
in an increase in RTs. In the second paradigm, the VSL task, participants are 
exposed to a continuous stream of visual stimuli that, unbeknownst to them, is 
structured into groups of three stimuli (i.e. triplets; Saffran et al., 1996). In such 
a structure, the occurrence of the second and third elements of a triplet is 
predictable based on the first element, while the occurrence of the first element 
of the following triplet is unpredictable. For example, within the triplet ABC, B 
always follows A and C always follows B, but the triplet ABC in the stream of 
stimuli may be followed by a range of other triplets (e.g. DEF, GHI or JKL). 
Finally, the A-NADL task targets participants’ learning of nonadjacent 
relationships in auditory input, while ignoring an intervening stimulus (e.g. in the 
string aXb, a predicts b and X is a variable intervening stimulus). In other words, 
whereas the adjacent relationships (i.e. from a to X and from X to b) are 
unpredictable, the nonadjacent relationship (from a to b) is predictable. In a 
typical VSL or A-NADL task, participants are tested on their sensitivity to the 
statistical structure subsequent to exposure. Learning is then reflected by 
participants’ ability to distinguish test items that adhere to the statistical structure 
(i.e. VSL: an existing triplet such as the triplet ABC; A-NADL: an aXb item) from 
test items that do not. Thus, the three tasks presented here span three 
distinguishable modalities: the SRT task is visuo-motoric, the VSL task is visual, 
and the A-NADL is an auditory task. The same holds for the type of structures 
targeted by the three tasks: although all can be defined as statistical in nature, the 
SRT contains a repeatedly presented sequence of 10 items, the VSL presents four 
triplets in a random order, and the structure of the A-NADL is nonadjacent.  

Beside spanning different modalities and statistical structure types, 
learning in the three statistical learning tasks is measured through a combination 



General introduction 
 
      

 
 
 
 
 
 
 

11 

of post-hoc explicit decision-making measures (i.e. “offline” measures) and 
measures that assess learning as it unfolds through collecting RTs to individual 
stimuli (i.e. “online” measures). Performance on tasks such as the VSL and A-
NADL is conventionally assessed using offline measures, but the use of these 
measures has been questioned in recent years (e.g. Christiansen, 2019; Frost, 
Armstrong, & Christiansen, 2019; Kidd et al., 2017; Siegelman, Bogaerts & Frost, 
2017; Siegelman & Frost, 2015). There are three main reasons to question the 
use of offline measures: (1) they inform researchers only about the outcome of 
the learning process, not about the learning process itself; (2) the learning process 
is assumed to be (largely) implicit, and online measures are likely to better reflect 
this implicit learning ability than explicit offline ones; and (3) the initial stages of 
the statistical learning process, i.e. the real-time encoding of the stimuli and the 
patterns, is not captured by offline measures (e.g. Batterink & Paller, 2017). 
Therefore, in all three tasks, we measured sensitivity to the statistical structure 
through RTs during exposure. The hypothesis when using these online measures 
is that participants who are sensitive to the statistical structure process 
predictable input faster than unpredictable input (Siegelman, Bogaerts, 
Kronenfeld & Frost, 2018). This idea is based on the SRT task, which is 
traditionally assessed through an online RT measure as explained above. To 
enable the collection of meaningful online RT data in the SRT and A-NADL 
tasks, the presentation of structured input is followed by a block of unstructured 
stimuli (i.e. stimuli are presented semi-randomly). Following the abovementioned 
hypothesis, RTs in the block of unstructured input are expected to be slower 
than RTs in the surrounding structured blocks (see López-Barroso, Cucurell, 
Rodríguez-Fornells & de Diego-Balaguer, 2016, for a similar approach to 
measuring the A-NADL task online with adult participants). In the VSL, RTs to 
individual stimuli are collected through a self-paced design (Siegelman et al., 
2018), and RTs to unpredictable elements within triplets (i.e. element 1; A in the 
triplet ABC) are hypothesized to be processed slower than predictable elements 
(i.e. elements 2 and 3 within triplets; B and C in the triplet ABC). In addition to 
these online measures, the resulting knowledge about the statistical structure is 
assessed through offline measures in the VSL and A-NADL tasks.  

To summarize, the three statistical learning tasks described here were 
created to provide a comprehensive view of children’s statistical learning abilities 
by targeting different types of statistical structures in a range of modalities, and 
by using both on- and offline measures of learning. They were used to investigate 
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(1) the relationship between individual differences in learning ability and 
linguistic performance, and (2) potential group differences between participants 
with and without dyslexia. 
 

1.3.2 Outline of dissertation chapters 

 
This dissertation contains six further chapters. Chapter 2 is dedicated to 
examining the usefulness of an online RT-based measure to assess VSL 
performance in child participants (van Witteloostuijn, Lammertink, Boersma, 
Wijnen, & Rispens, 2019). Although a similar online measure has been shown to 
be sensitive to learning in adults (Siegelman et al., 2018), its suitability for use 
with child participants was previously unknown. 
 Chapters 3 and 4 target our second hypothesis regarding the statistical 
learning performance of children with dyslexia as compared to TD children. As 
discussed in §1.2, previous studies showed a mixed pattern of findings: some 
studies found significant differences in performance between participants with 
and without dyslexia, while others reported null results. For this reason, prior to 
commencing our experimental study of children with and without dyslexia, a 
meta-analysis was conducted (van Witteloostuijn, Boersma, Wijnen, & Rispens, 
2017, see chapter 3). This meta-analysis included evidence from 13 published and 
unpublished studies on a measure of statistical learning (the visual AGL task) in 
participants with and without dyslexia. The main research question was whether 
the accumulated data would provide evidence for statistical learning problems in 
individuals with dyslexia. In similar vein, the statistical learning tasks as described 
under §1.3.1 are employed in chapter 4 (van Witteloostuijn, Boersma, Wijnen, & 
Rispens, 2019) to investigate the same research question: do children with 
dyslexia show poorer performance on statistical learning? If the results of 
chapters 3 and 4 indicate poorer performance in individuals with dyslexia on a 
range of statistical learning tasks, these findings will support the hypothesized 
(domain-general) statistical learning deficit in individuals with dyslexia (or, put 
more broadly, the procedural learning deficit; Nicolson & Fawcett, 2007; 2011; 
2019; Ullman 2004; Ullman & Pierpont, 2005; Ullman et al., 2019). 
 The first hypothesis introduced in this dissertation, i.e. that individual 
differences in statistical learning are related to language and literacy performance, 
is investigated in chapters 5 and 6 (van Witteloostuijn, Boersma, Wijnen, & 
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Rispens, under review; van Witteloostuijn, Boersma, Wijnen, & Rispens, 
submitted). While chapter 5 focuses on the relationship between tasks that assess 
statistical learning in the visual domain (SRT and VSL) and literacy skills, chapter 
6 examines the contribution of the SRT and A-NADL tasks to inflectional 
morphology and syntax. As explained previously, these chapters consider 
participant-level variables that may confound the hypothesized relationship (e.g. 
sustained attention, short-term and working memory, phonological processing). 
If a (domain-general) statistical learning ability supports the acquisition of 
language and literacy skills as hypothesized, we expect to find indications of this 
relationship in chapters 5 and 6.  

The final chapter (chapter 7) recapitulates the findings of chapters 2–6 
in relation to the two main hypotheses introduced here, followed by a discussion 
of the implications of the studies presented in this dissertation, and ending with 
the conclusions. 
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Chapter 2 
An online measure of visual statistical learning* 

 
 
 
Abstract 
 
Purpose: Visual statistical learning (VSL) was traditionally tested through offline 
two-alternative forced choice (2-AFC) questions. More recently, online reaction 
time (RT) measures and alternative offline question types have been developed 
to target learning during exposure and to increase sensitivity to individual 
differences in adults (Siegelman et al., 2017a; 2018). We assessed the usefulness 
of these measures for investigating VSL in early-school-aged children. 
Secondarily, we examined the effect of introducing a cover task, potentially 
affecting attention, on children’s VSL performance. 

Methods: 53 children (aged 5 – 8) performed a self-paced VSL task, in 
which participants determine the presentation speed and RTs to each stimulus 
are recorded. Half of the participants performed a cover task. Subsequently, 
participants completed 2-AFC (“choose correct triplet”) and 3-AFC (“fill blank 
to complete triplet”) offline questions. 

Results and conclusions: RTs were significantly longer for unpredictable 
than predictable stimuli, so we conclude that early-school-aged children are 
sensitive to the statistical structure during exposure, and that the RT task can 
measure that. We found no evidence as to whether children can perform above 
chance on offline 2-AFC or 3-AFC questions, or whether the cover task affects 
children’s VSL performance. These results show the feasibility of using an online 
RT task when assessing VSL in early-school-aged children. This task therefore 
seems suitable for future studies that aim to investigate VSL across development 
or in clinical populations, perhaps together with behavioral tasks. 

                                                
 
* This chapter is a slightly modified version of a published article: van Witteloostuijn, M.T.G., 
Lammertink, I.L., Boersma, P.P.G., Wijnen, F.N.K., & Rispens, J.E. (2019). Assessing visual 
statistical learning in early-school-aged children: The usefulness of an online reaction time 
measure. Frontiers in Psychology, 10, Article 2051. 
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2.1  Introduction 
 
Research into statistical learning has shown that infants, adults, and children are 
able to detect statistical structure in sequences of stimuli in the world around 
them (e.g. Arciuli & Simpson, 2011; 2012; Fiser & Aslin, 2002; Saffran et al., 
1996). Extracting statistical properties from the input is thought to be an implicit 
process (Perruchet & Pacton, 2006) and has been observed in both the auditory 
(e.g. Saffran et al., 1996) and visual modalities (e.g. Conway, Pisoni, Anaya, 
Karpicke, & Henning 2011; Kirkham, Slemmer, & Johnson, 2002), which has led 
to the suggestion that statistical learning is a domain-general learning mechanism 
(see Frost et al., 2015, for a review). Statistical learning has been put forward as 
an essential mechanism in language acquisition, which is supported by findings 
that have established relationships between an individual’s capacity for this type 
of learning and his/her language and literacy proficiency (e.g. Arciuli & Simpson, 
2012; Evans, Saffran, & Robe-Torres, 2009). 
 In the typical statistical learning paradigm, as originally employed by 
Saffran et al. (1996), participants are exposed to a continuous stream of visual or 
auditory stimuli (the familiarization phase). Without the participants’ knowledge, 
the stimulus sequences are divided into triplets of co-occurring elements (e.g. the 
continuous string bidakupadotigolabu is a concatenation of three-syllable 
chunks/triplets bidaku, padoti, and golabu). The order in which these triplets occur 
is free. Hence, transitional probabilities (TPs) are structured such that TPs from 
one syllable to the next are higher for stimuli within a triplet (e.g. daku) than for 
those that span a triplet boundary (e.g. kupa). It is crucial that during the 
familiarization phase, participants are not instructed to learn or memorize the 
input: they either listen passively or perform a cover task that is unrelated to the 
statistical regularities presented to them (e.g. Arciuli & Simpson, 2011). Under 
these task conditions, it is assumed that the learning process is implicit.  
 Participants were traditionally tested on their newly acquired knowledge 
of the TP structure in an offline test phase, subsequent to the familiarization phase. 
Such an offline test traditionally employed two-alternative forced-choice (2-AFC) 
questions, in which participants are presented with one group of three-syllable 
stimuli that co-occurred frequently during familiarization (e.g. the probable 
“word” bidaku) and one group of three-syllable stimuli that did not co-occur 
frequently (e.g. the less probable “nonword” dakupa). Whereas for infants the 
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offline test phase consists of collecting listening or looking, which are used to 
infer a preference for either familiar (word) or unfamiliar (nonword) items, adults 
and children can be asked explicitly which of the two patterns of stimuli are more 
familiar. In the latter case, above-chance performance on the group level is taken 
as evidence that participants have learned the contrast between the two patterns 
of stimuli, taken to reflect sensitivity to the TP structure presented to them during 
the familiarization phase. Bertels and colleagues (2012; 2015) show that both 
adults and 9- to 12-year-old children who reach above-chance performance on 
an offline test phase had some degree of explicit knowledge of the TP structure 
as evidenced by confidence ratings (i.e. more confident in correct than incorrect 
items). Thus, although the learning process itself may be implicit, the resulting 
knowledge may (to some degree) be explicit. 
 The suitability of using offline 2-AFC questions for measuring statistical 
learning has been questioned, especially for use in an individual differences 
approach (e.g. Kidd et al., 2017; Siegelman, Bogaerts, & Frost, 2017a; Siegelman 
& Frost, 2015). Furthermore, Siegelman et al. (2018) argue that offline measures 
inform us about the learning outcome, but do not reveal anything about the learning 
process during the familiarization phase. Conceivably, different individuals or 
different populations achieve similar offline performance, but these similar 
performances may be the result of differing learning trajectories during 
familiarization (Siegelman et al., 2018). Moreover, the term “statistical learning” 
implies a temporal component: the assumption is that participants become 
increasingly responsive to the statistical structure during exposure. As explained 
by Batterink and Paller (2017), the initial stages of statistical learning involve the 
encoding of the stimuli, which gradually transforms from the encoding of 
individual stimuli (e.g. syllables such as bi, da, and ku) to the encoding of larger 
co-occurring units (e.g. words such as bidaku). This development across time 
indicates increased sensitivity to the structure of the sequence. Analogously, 
learning during familiarization will increasingly allow participants to predict 
upcoming stimuli, resulting in faster reaction times (RTs) to predictable stimuli 
as compared to unpredictable stimuli (Siegelman et al., 2018). This idea is based 
on the serial reaction time (SRT) task (Nissen & Bullemer, 1987), which measures 
participants’ implicit learning of a visuo-motoric sequence as the increase in RT 
when participants move from structured to unstructured, and thus from 
predictable to unpredictable, input.  
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 Recent studies have employed the above-mentioned ideas about online 
learning in novel measures of statistical learning with adult participants, providing 
insight into the initial and central stages of learning in adult learners, which are 
not tapped by offline measures (e.g. Franco, Gaillard, Cleeremans, & 
Destrebecqz, 2015; Gómez, Bion, & Mehler, 2011; Karuza, Farmer, Fine, Smith, 
& Jaeger, 2014; Misyak et al., 2010; Siegelman et al., 2018). The main aim of the 
present study is to extend these recent findings to child participants and to 
investigate the effectiveness of such an online measure with early-school-aged 
children, as previous studies employing online measures have focused on adult 
participants. Although several studies have shown children’s sensitivity to 
statistical structure in visual stimuli (e.g. Arciuli & Simpson, 2011; 2012; Conway 
et al., 2011), studies combining the use of on- and offline measures during such 
a task are scarce (but see Qi et al., 2018). Therefore, we adopt an online RT 
measure of the visual statistical learning (VSL) paradigm, as developed by 
Siegelman and colleagues (2018), and assessed children’s learning through this 
measure. The development of online measures is especially important for studies 
investigating statistical learning in early-school-aged children due to the fact that 
the traditional 2-AFC questions require explicit decision-making, a skill that 
young children have difficulties with (Bialystok, 1986). Children’s performance 
on 2-AFC questions in VSL tasks is known to increase between the ages of 5 and 
12 (Arciuli & Simpson, 2011; Raviv & Arnon, 2017; Shufaniya & Arnon, 2018). 
For this reason, solely using 2-AFC questions to assess early-school-aged 
children’s performance may not provide a complete picture of their statistical 
learning abilities. In addition to the (implicit) online RT measure, we used two 
distinct (explicit) offline question types (2-AFC and 3-AFC) to investigate the 
usefulness of these measures with early-school-aged children. In the 3-AFC 
questions, participants do not choose the correct answer out of two as in 
traditional 2-AFC tasks, but complete a pattern by choosing the missing stimulus 
out of three alternatives (see e.g. Bertels et al., 2012; 2015; Siegelman et al., 
2017a). Although this question type requires the participant to make an explicit 
judgment just as the 2-AFC questions, we hope that the 3-AFC questions are 
more intuitive for children and may therefore better reflect their statistical 
learning abilities. Before turning to our methodology and results, we will present 
an overview of previous studies that have adopted online measures of statistical 
learning. 
 



An online measure of visual statistical learning    19 
 
 

 
 
 
 
 
 
 

2.1.1 Online measures of statistical learning 
 
The most well-known task tapping statistical learning abilities through an online 
measure is the SRT task (Nissen & Bullemer, 1987). Whereas the SRT is 
informative regarding the domain of visuo-motoric sequence learning, the fine 
motor skills implied in this task make it less suitable for use with certain 
participant groups known to have less developed fine motor skills (e.g. 
participants with specific language impairment and/or dyslexia; Hill, 2001; 
Ramus et al., 2003). Moreover, learning in the SRT task likely partially reflects 
sensitivity to a repeated sequence of movements, rather than pure sensitivity to 
statistical structure in (visual) stimuli (see e.g. Robertson, 2007; West, Clayton, 
Shanks, & Hulme, 2019). Tasks that have been employed to investigate other 
types of statistical learning have largely focused on the use of offline measures of 
learning (e.g. VSL, artificial grammar learning, and nonadjacent dependency 
learning tasks). To further our understanding of the online statistical learning 
process, both behavioral methods such as RTs and neurophysiological methods 
such as Electroencephalography (EEG) have been proposed as suitable online 
methods of investigating the learning trajectory of these alternative statistical 
learning tasks. Although EEG has successfully been used to study SRT and 
artificial grammar learning tasks (for a review see Daltrozzo & Conway, 2014), 
and has recently been applied to an auditory statistical learning task similar to the 
one described above (Batterink & Paller, 2017), we focus here on behavioral 
methods employing RT-based measures of learning.  
 In 2010, Misyak et al. developed an online measure of statistical learning 
that combined exposure to an artificial grammar containing nonadjacent 
dependencies with features of the classic SRT task. The grammar consisted of 
strings of the form aXb, where element a predicts element b (i.e. the nonadjacent 
dependency) and element X is variable. Adult participants were exposed to an 
auditory speech stream that adhered to the grammar, while seeing a grid of six 
nonwords presented on a computer screen. Participants were required to 
simultaneously listen to the speech stream and click on the corresponding 
nonwords in the grid. Results showed that participants were faster to respond to 
nonwords in predictable positions (i.e. element b in the aXb structure) than in 
unpredictable positions (i.e. element a in the aXb structure). Similar to results 
from the SRT task, this effect of RT on position disappeared in a subsequent trial 
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block where the nonadjacent dependencies present in preceding blocks were 
violated. These results reflect participants’ sensitivity to the distinction between 
predictable and unpredictable elements within the speech stream. Note, however, 
that this method is not suitable for use with early-school-aged children as it 
requires advanced literacy skills and is not suited for testing statistical learning in 
the visual modality. 
 Another proposed online method that uses RTs to investigate the 
trajectory of auditory statistical learning is asking participants to detect clicks 
within the speech stream whilst recording the RTs to this click detection task 
(Gómez et al., 2011). By presenting clicks both within and between words in the 
speech stream, Gómez et al. (2011) showed that participants were faster to 
respond to clicks between words than within words. They argued that these 
findings are due to participants’ expectations based on the TP structure in the 
stream (i.e. within words TPs are high and thus participants expect the following 
syllables, which is not the case between words), thereby reflecting sensitivity to 
the TP structure.  

In 2018, an online target detection task was used in two statistical 
learning tasks: one in the auditory and one in the visual domain (Qi et al., 2018). 
Participants were exposed to a stream of stimuli, which were organized into 
triplets (Saffran et al., 1996). In this TP structure, the occurrence of elements 2 
and 3 within triplets are predictable, whereas element 1 within triplets is 
unpredictable (e.g. in the triplet ABC, elements B and C are predictable after the 
presentation of A, but the first element of the subsequent triplet, e.g. D in the 
triplet DEF, is unpredictable since the presentation order varies between triplets). 
The target task held that participants were required to respond with a button 
press to one out of twelve stimuli presented to them. The target was always the 
third stimulus in a group of three and was thus a predictable stimulus. The results 
showed a decrease in RTs in detecting the targets in the visual, but not auditory 
modality, in both adult and child (mean age = 12;2) participants, which was taken 
to reflect statistical learning in the visual task. In this experimental set-up, 
however, nothing is known about the RTs to non-target trials (i.e. the first and 
second stimulus in each group of three). It could be the case that a similar 
acceleration in RTs would appear for these stimuli, which would indicate 
accommodation to the task in general (i.e. a practice effect) instead of sensitivity 
to the TP structure during the learning process. 
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 Finally, and most relevant to the present study, two recent studies have 
applied the self-paced reading method to statistical learning in the visual domain 
(Karuza et al., 2014; Siegelman et al., 2018). This approach allows participants to 
control the rate of exposure during familiarization by letting them press a button 
each time they want to proceed to the following stimulus. In this paradigm, RTs 
to each individual stimulus are recorded, allowing for the direct comparison of 
RTs to predictable versus unpredictable stimuli. Karuza et al. (2014) tested adult 
participants on a visual self-paced nonadjacent artificial grammar learning task 
containing strings of the form aXb and showed that predictable elements yielded 
shorter RTs than unpredictable elements, thus corroborating the findings by 
Misyak et al. (2010). Similarly, Siegelman et al. (2018) assessed learning in the 
visual triplet learning task. In line with previous findings, and following their 
predictions, results show that adults respond slower to unpredictable stimuli 
(element 1 within triplets) than predictable stimuli (elements 2 and 3 within 
triplets). The question of whether a similar RT measure of VSL could be 
employed in child research is yet unanswered. 
 In sum, previous studies have shown that online measures are an 
important tool to study learning during the familiarization phase of statistical 
learning experiments and provide additional insights into an individual’s 
performance. In the present study we therefore aim to investigate whether RTs 
to individual stimuli during familiarization, as introduced by Karuza et al. (2014) 
and Siegelman et al. (2018), could be used to assess learning in early-school-aged 
children (perhaps in addition to traditional offline measures). There are several 
important differences between children and adults that should be taken into 
account in the assessment of their behavior, one of them being the control of 
attention. Young children are immature with respect to attentional control as 
compared to adults (Garon, Bryson, & Smith, 2008). Since attention is a critical 
component of statistical learning (Arciuli, 2017; Baker, Olson, & Behrmann, 
2004; Toro, Sinnett, & Soto-Faraco, 2005), a secondary aim was to find out 
whether a cover task that attracts children’s attention to the VSL task (responding 
to a deviating visual stimulus) influences their learning performance. Although 
cover tasks have been used in VSL experiments with children and adults to 
ensure that participants’ attention is targeted to the stimulus stream (e.g. Arciuli 
& Simpson, 2011), the effect of the presence (or absence) of a cover task on 
learning performance in VSL tasks has not yet been investigated. 
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2.1.2 The current study 
 
To test whether online measures of statistical learning are a useful method to 
investigate learning in child participants, we conducted a study of children’s 
performance on a statistical learning task containing both online and offline 
measures. Our main aim was to test whether the online RT measure introduced 
by Siegelman et al. (2018) is able to assess statistical learning in early-school-aged 
children by employing a child-adapted version of their self-paced VSL task and 
could thus be used in addition to more traditional offline measures. The offline 
test phase consisted of two parts: next to the conventional 2-AFC questions, we 
included 3-AFC questions in which children were required to complete triplets 
by choosing one out of three possible stimuli (Bertels et al., 2012; 2015; 
Siegelman et al., 2017a). Our secondary aim was to assess the effect of a cover 
task on children’s learning in the self-paced visual statistical learning task. Half 
of the participants completed the self-paced VSL task with cover task (Arciuli & 
Simpson, 2011), while the other half completed the same experiment without 
cover task. Therefore, our analyses of the self-paced VSL task were aimed to 
answer the following research questions: 
 

1) Can we use the online RT measure of the self-paced VSL task to assess 
learning in early-school-aged children? 

2) Can we use the offline test performance of the self-paced VSL task to 
assess learning in early-school-aged children? 

3) Do children who receive a cover task during the self-paced VSL task 
perform differently on the on- and offline measures of learning than 
children who do not perform a cover task?  

 
If early-school-aged children are sensitive to the TP structure of the stimulus 
sequence presented to them in the self-paced VSL task, we expect them to 
respond more slowly to unpredictable elements (i.e. element 1 of a triplet) than 
to predictable elements within triplets (i.e. elements 2 and 3), in line with the 
results obtained with adults (Siegelman et al., 2018). Furthermore, learning in the 
online measure could be reflected in an interaction between the difference in RT 
to unpredictable versus predictable elements and the effect of time, since learning 
is likely to develop during the task. Regarding the second research question, if 



An online measure of visual statistical learning    23 
 
 

 
 
 
 
 
 
 

early-school-aged children are sensitive to the TP structure of the stimulus stream 
and are able to express this knowledge in an offline testing situation, we expect 
them to perform above chance-level on these question types (i.e. proportion 
correct above 1/2 in 2-AFC questions and above 1/3 in 3-AFC questions). As for 
the effect of a cover task on learning outcomes, we hypothesize that the cover 
task increases the attention paid to the task, thereby having a positive influence 
on learning. However, since Franco et al. (2015) found that paying attention to 
deviating stimuli in the form of a click detection task impaired (offline) 
performance, it could also be the case that performing the cover task is 
detrimental to learning. 

Finally, the relationship between performance on the three measures of 
learning used in the present study (online RT, offline 2-AFC, and offline 3-AFC) 
was examined as part of our exploratory analyses. If it is the case that all measures 
of learning represent the same underlying construct (i.e. children’s sensitivity to 
the TP structure), we expect to find correlations between all measures. However, 
we may encounter some difficulties measuring children’s sensitivity to the TP 
structure in offline measures, as offline performance may rely on alternate 
processes such as explicit decision making. Therefore, this may result in the 
absence of a correlation between the online and offline measures. Alternatively, 
low correlations between on- and offline measures could be the result of 
differential underlying components of statistical learning (e.g. online measures 
may reflect implicit learning processes whereas offline measures may tap into 
more explicit knowledge; see e.g. Bertels et al., 2012; 2015; Siegelman, Bogaerts, 
Christiansen, & Frost, 2017b).  

 
2.2  Materials and methods 
 
2.2.1 Participants  
 
Dutch-speaking typically developing children were recruited from grade 1 and 2 
in four primary schools located in four different provinces of the Netherlands. 
From the original sample of 54 children, one child was excluded due to 
equipment failure. Thus, the final sample consisted of 53 participants (26 girls, 
27 boys) aged between 5;9 and 8;7 (age in years; months, M = 7;3, SD = 0;6). 
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Fourteen participants attended grade 1, the remaining 29 participants were in 
grade 2. Twenty-five children (12 girls, 13 boys; mean age = 7;2, SD = 0;5) 
performed the VSL task without cover task, while the other 28 (14 girls, 14 boys; 
mean age = 7;3, SD = 0;7) performed the task with cover task. All participants 
were native speakers of Dutch, had no hearing problems, and no diagnosis of 
developmental dyslexia, language impairments, AD(H)D or autism according to 
teacher’s reports. The ethical committee of the Faculty of Humanities of 
the University of Amsterdam approved the present study in 2016. Compliant 
with the regulations of the ethical committee, parents and/or legal guardians of 
the children attending grades 1 and 2 in the participating schools were informed 
about the research project through a newsletter and had the possibility to retract 
permission of including their child in the study up until 8 days after testing (i.e. 
passive consent). 
 
2.2.2 Materials and design 
 
The VSL task consisted of a familiarization phase and a subsequent offline test 
phase as is typical for statistical learning tasks. The structure of the current VSL 
task was similar to that used in several previous studies (e.g. Arciuli & Simpson, 
2011; 2012). The task consisted of twelve visual stimuli that could be described 
as aliens, which were organized into four groups of three (i.e. triplets). These four 
triplets are referred to as ABC, DEF, GHI, and JKL (see Appendix A). 
 

2.2.2.1 Familiarization phase 

 
During familiarization, each alien was presented individually on the screen of a 
Surface 3 tablet with touch screen. Unbeknownst to the participant, each alien 
was part of a triplet that always occurred in the same order (i.e. in the triplet ABC, 
B always followed A and C always followed B). The four triplets were presented 
24 times each, divided into four blocks comprising 6 repetitions per triplet. Four 
blocks were created so that children could take a short break in between blocks, 
which aimed to help them stay focused on the task. This resulted in a total of 96 
triplets and 288 presentations of individual aliens. Two lists of randomized orders 
of presentation were created to control for potential effects of order of 
presentation. This randomization was constrained in two ways: (1) the same 
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triplet was not allowed to appear twice in a row (e.g. ABC, ABC was forbidden), 
and (2) pairs of triplets were not repeated (e.g. ABC, JKL, ABC, JKL was 
forbidden) (Arciuli & Simpson, 2011; Turk-Browne, Jungé, & Scholl, 2005). As 
a consequence, elements 2 and 3 of a triplet are fully predictable (with TP = 1 
for one alien, and TP = 0 for the remaining 11, henceforth “predictable 
elements”), whereas element 1 of a triplet is less predictable (TP ≈ 0.4 for three 
aliens, TP = 0 for the remaining 9, henceforth “unpredictable elements”). Thus, 
TPs within triplets are high (from element 1 to element 2 and from element 2 to 
element 3), whereas TPs between triplets are low (from element 3 of triplet i to 
element 1 of triplet i + 1). Figure 2.1 illustrates the TP structure of the VSL task. 
 Importantly, a novel addition to the present VSL experiment was the use 
of an online RT measure during the familiarization phase. Following Siegelman 
and colleagues (2018), participants determined the speed of presentation of each 
individual alien themselves by pressing the space bar every time they wanted to 
proceed to the next stimulus. After each press on the space bar, the following 
stimulus appeared after 200 milliseconds. Due to time constraints during testing, 
presentation proceeded to the next stimulus when participants did not respond 
within 10 seconds and these trials were not included in the analyses. RTs for each 
space bar press were recorded for all participants and served as the online 
measure of statistical learning, which was used to investigate the effects of 
learning during the familiarization phase. The RTs to each individual alien were 
used as an online measure of learning, as it was hypothesized that, if early-school-
aged children are sensitive to the TP structure, RTs to unpredictable elements 
(i.e. element 1 within triplets) would be slower than RTs to predictable elements 
(i.e. elements 2 and 3 within triplets; see Siegelman et al., 2018). 

In order to investigate whether including a cover task in the VSL 
influenced participants’ online and/or offline performance, half of the 
participants received a version of the VSL that included a cover task during the 
familiarization phase (Arciuli & Simpson, 2011; 2012). In the version of the 
experiment without cover task, the familiarization phase consisted of the 
continuous presentation of individual aliens that, unknown to the participant, 
adhered to the TP structure. In the version of the experiment with cover task, a 
deviant stimulus (the “intruder alien”) was presented four times per block at 
random positions in between triplets (i.e. preceding 16.7% of all triplets in a 
block) and participants were required to press the intruder alien on the 
touchscreen to proceed. This intruder alien was always the same visual stimulus 
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that was not part of the set of 12 stimuli that were used to form the triplets. 
Importantly, the deviant stimulus was presented in random positions in the 
sequence, but only between – and thus not within – triplets. RTs to the triplet 
following the presentation of the intruder alien were not included in the analysis 
of the online measure of statistical learning, as these were likely to deviate from 
the overall RTs. 
 

 
Figure 2.1. VSL task structure during familiarization. An illustration of the VSL stimuli 
and the triplet and TP structure. 
 
2.2.2.2 Offline test phase 

 
After the familiarization phase, participants were tested on their knowledge of 
the triplets presented to them (the “base triplets”) in an offline test phase that 
consisted of 40 multiple-choice questions. Using the aliens of the four base 
triplets, four new triplets were created that had never appeared during 
familiarization (the “foil triplets”). These foil triplets did not violate the position 
of the stimuli in the base triplets (e.g. a stimulus that appeared in the first position 
in the base triplet, also appeared in the first position of a foil triplet) and are 
referred to as AEI, DHL, GKC, and JBF. Whereas the TPs between aliens within 
the base triplets were 1, the foil triplets were constructed from pairs of aliens that 
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had a TP of 0 during training. The test phase contained two parts, both 
containing multiple choice questions: (1) 24 2-AFC trials in which participants 
were asked to pick the familiar pattern (“pattern recognition” trials, chance level 
= 1/2), and (2) 16 3-AFC trials that required the participants to complete a 
missing stimulus in a pattern (“pattern completion” trials, chance level = 1/3). 
Figure 2.2 provides examples of a 2-AFC and 3-AFC test items.  
 

         
Figure 2.2. VSL offline test phase examples. Left: a 2-AFC test item. Right: a 3-AFC test 
item. 

 
Test items either tested complete triplets (pattern recognition: N = 8, 

pattern completion: N = 8) or pairs within each triplet (pattern recognition: N = 
16, pattern completion: N = 8) in order to include items that had differing 
properties and levels of difficulty (see Siegelman et al., 2017a). Each base triplet 
(e.g. ABC) is tested twice: in one trial it is contrasted with a foil triplet that does 
not contain any of the same elements (e.g. DHL) and in one trial with a foil triplet 
that contains one of the same elements (e.g. GKC). The same holds for each pair 
within base triplets (e.g. AB is contrasted with DH and JB). The frequency of foil 
triplets, pairs and single aliens was controlled for (see Appendix B for a complete 
overview of test items). Additionally, the position of the correct answer on the 
screen was controlled for and, as in the familiarization phase, two lists of 
randomized orders of presentation were created. Since foil triplets and pairs 
occurred equally frequently in the offline test phase as the base triplets and pairs, 
participants were not able to continue to learn during the 2-AFC questions as the 
opportunity to learn during testing would be equal for both base and foil triplets 
(Arciuli & Simpson, 2011; 2012). In all trials, possible answers were presented 
simultaneously on the screen and participants were instructed to choose the 
answer that was correct by pressing the screen. Instructions and a practice item 
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preceded both test phases. During the instructions and practice items, 
participants were encouraged to guess in case they were not certain of the correct 
answer.  
 
2.2.2.3 Exit questionnaire 

 
Following the offline test phase, half of the participants completed an exit 
questionnaire aimed at gaining insight into their explicit awareness of the TP 
structure. Consequently, information concerning explicit awareness of the VSL 
is available for half of the participants. The remainder of the participants 
completed a similar questionnaire about an auditory nonadjacent dependency 
learning (A-NADL) task, the results of which are described elsewhere as this task 
was not tested as part of the research questions of the present study (see §2.2.3 
on the procedure of the present study, and see Lammertink, van Witteloostuijn, 
Boersma, Wijnen, and Rispens, 2019, for a discussion of the A-NADL results). 
 While some of the questions probed the strategies participants used, 
others directly asked whether participants had any explicit knowledge of the TP 
structure. For example, questions asked what participants were focused on 
during familiarization (i.e. were they focusing on the order? Or were they focused 
on catching the intruder in the case of receiving the version of the experiment 
with the cover task?), and on what strategy they applied during the test phase 
(e.g. did they know the answers or were they guessing?). Questions aimed at 
explicit knowledge of the TP structure included the question whether children 
noticed that the aliens stood together in groups and whether they could indicate 
how many aliens stood together in these groups. 
 
2.2.3 Procedure 
 
Each participant performed three tasks: the VSL task, a spelling test, and an A-
NADL task. As mentioned, the latter tasks were not tested as part of the research 
questions of this article and are therefore not presented here (but see 
Lammertink, van Witteloostuijn et al., 2019).  
 The order of the tasks was controlled: half of the participants performed 
the VSL before the A-NADL and the other half vice versa. Additionally, half of 
the participants that received the VSL as their first task performed the version 
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with the cover task and the other half completed the version without the cover 
task. The same holds for those participants that received the VSL as the last task. 
Finally, two random orders of appearance were created to which participants 
were randomly assigned. The spelling task was always administered between the 
VSL and A-NADL tasks. In total, this resulted in a list of eight orders to which 
participants were randomly assigned. As mentioned in §2.2.2.3, once participants 
had completed all tasks, they were asked several questions probing their explicit 
awareness of the structure of the last task (VSL or A-NADL) they performed.  
 Prior to the familiarization phase of the self-paced VSL, participants 
were informed that they would see aliens standing in line one at a time and that 
they were waiting to go home in a space ship. They were instructed to send each 
alien home by pressing the space bar and were informed that the next alien 
standing in line would appear automatically. Importantly, they were told that 
some of the aliens really like each other and would stand in line together. 
Participants were instructed to watch each alien closely and to pay attention to 
the order of the aliens, because they would receive questions about this later 
(these instructions were in line with those provided in studies by Siegelman and 
colleagues, personal communication). Following these instructions, participants 
would practice the task during a practice phase containing 12 randomly ordered 
aliens in order to familiarize them with the procedure. The aliens included in the 
practice phase were different stimuli than those used in the familiarization phase. 
In the version of the VSL with cover task, participants received additional 
instructions regarding the intruder alien. The intruder alien was depicted on the 
screen and participants were told that this was an intruder alien that was not 
allowed on the spaceship. When participants saw this intruder alien, they would 
have to scare it away by touching it on the screen. This was followed by an 
additional practice round of 12 randomly ordered aliens and 3 randomly placed 
intruder aliens, during which participants were instructed to pay attention to the 
order of the aliens and to scare away the intruder aliens. Before completing the 
offline test phase, children were reminded of the fact that some aliens liked each 
other and stood in line together and were told they would receive some questions 
about this. An overview of the original Dutch instructions, with English glosses, 
is given in Appendix C.  
 The VSL task lasted approximately 10 minutes in total, depending on 
individual reaction times to the aliens in the familiarization phase and the 
subsequent multiple-choice questions. In between blocks of the familiarization 
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phase, participants had a break in which they could choose a sticker for their 
diploma. In the version of the task with the cover task, feedback was given on 
the number of times the participant caught the intruder alien. The exit 
questionnaire lasted approximately 3 minutes.   
 Children were individually tested in a quiet room at their school in a test 
session that lasted approximately 60 minutes. Each participant received stickers 
on a diploma as a reward for their participation. The VSL task was programmed 
and ran using E-prime 2.0 software (Psychology Software Tools, 2012; 
Schneider, Eschman, & Zuccolotto, 2012) on a Surface 3 tablet with touchscreen 
and keyboard. Instructions were recorded by a female native speaker of Dutch 
and played over headphones (Sennheiser HD 201). 
 
2.2.4 Scoring and analysis 
 
For more detail on our on- and offline analyses and the model outcomes, you 
can access the raw data, R Markdown and/or HTML files through the following 
link to our project page on the Open Science Framework (OSF): 
https://osf.io/ej32s/. 
  
2.2.4.1 Online reaction time data 

 
Prior to analysis, unreliable measurements were removed from the raw RT data. 
As mentioned, RTs to the triplet following the appearance of the intruder alien 
in the cover task were removed, as these reaction times are likely to deviate from 
the other responses (16.7% of the data for children who performed the task with 
detection cover task). For similar reasons, responses to the first triplet of each of 
the four blocks of the experiment were excluded from analysis (4.2% of data). 
Finally, responses faster than 50 milliseconds were removed from the dataset as 
these reflect cases in which the participant pressed the space bar without 
processing the stimulus (2.1% of data; element 1: N = 89, element 2: N = 106, 
element 3: N = 86). 
 Following pre-processing of raw RTs, the online RT data were analyzed 
using linear mixed effect models by applying the lme4 package (Version 1.1-13; 
Bates, Maechler, Bolker, & Walker, 2015) for R software (R Core Team, 2019). 
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The dependent variable was the RT to each individual alien and was fitted as a 
function of the within-participant predictors Element (element 1, element 2, and 
element 3 within triplets) and Time (repetitions 1 – 24 of the triplets, which was 
centered and scaled), and Cover (yes or no cover task) as the between-
participants predictor. Since the age of children varied between 5;9 and 8;7, Age 
(centered and scaled) was entered as an exploratory between-participants 
predictor. The two random orders of the task were also entered into the model 
to take away any variance associated with this contrast (Random Order 1 and 
Random Order 2). The model contained the maximal random effect structure 
that did not result in (near-)perfect correlations between the random effects (see 
Barr, Levy, Scheepers, & Tily, 2013) and contained by-subject and by-item1 
random intercepts and by-subject random slopes for Element and Time2 and by-
item random slopes for Cover. Age was not entered as by-subject random slopes, 
since this predictor naturally correlates perfectly with the by-subject intercepts. 
Note that the lme4 package provides t-values for linear mixed effect models. 
Confidence intervals (CIs) and the associated p-values were calculated through 
the “profile” function (lme4 package) and a “get.p.value” formula created for this 
purpose (see OSF).  
 
2.2.4.2 Offline accuracy data 

 
Responses on the offline test phase were coded as 1 (correct) or 0 (incorrect) for 
both the 2-AFC pattern recognition questions (maximum score = 24 correct) 
and the 3-AFC pattern completion questions (maximum score = 16 correct). 
Results are presented as the proportion of questions answered correctly, ranging 
from 0 to 1, such that chance level for the 2-AFC questions is 1/2 and for the 3-
AFC questions is 1/3. None of the responses in the offline test phase were 
removed from analysis.  

                                                
 
1 Item in the online model refers to the 12 individual aliens used in the experiment. 
2 The by-subject random slopes for the interaction between Element and Time were removed 
from the model, as these random slopes correlated perfectly with the by-subject intercepts 
indicating that the model was overparameterized. Removing these random slopes was 
licensed, since the interaction between Element and Time was not significant. Removal did 
not decrease the fit of the model (χ2 = 1.333, df = 11, p = .9998) or change its main outcomes. 
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 Offline accuracy data were analyzed using generalized linear mixed 
effects models for the 2-AFC and 3-AFC questions separately. The dependent 
variable was the accuracy of each test item (coded as 1 or 0) and was fitted as a 
function of Cover (yes or no cover task), Random Order (1 or 2) and Age 
(centered and scaled) as the between-participants predictors. The models 
contained by-subject random intercepts. The effect of cover task or age is 
interpreted as significant if the CI of the log odds does not contain zero.  
 
2.2.4.3 Relationship between on- and offline measures 

 
In order to investigate the relationships between the three measures used in the 
present study, we ran exploratory correlational analyses using the “cor.test” 
function with Pearson method in R. For the online RT measure, an individual 
measure of learning was calculated for each participant such that response times 
to predictable elements were subtracted from RTs to unpredictable elements (RT 
Element 1 – [RT Element 2 + RT Element 3 / 2]; see Siegelman et al., 2018). 
Positive individual RT difference scores thus indicate sensitivity to the TP 
structure, as these indicate faster responses to predictable than to unpredictable 
elements. For the offline measures, raw accuracy scores on the 2-AFC and 3-
AFC questions were used in correlational analyses. 
 

2.3 Results 
 
We will first focus on the online RT measure in §2.3.1, followed by the results of 
the offline accuracy in §2.3.2. These sections will present confirmatory results, 
which answer our research questions, and subsequently address several 
exploratory results obtained through our linear mixed-effects analysis. Additional 
exploratory analyses, i.e. investigations of correlations between the different 
measures, are presented in §2.3.3. The exploratory results describe either 
unexpected findings or findings for which no prior hypotheses were constructed 
(cf. Wagenmakers, Wetzels, Borsboom, Maas, & Kievit, 2012). The results 
regarding the exit questionnaire are of a purely descriptive nature and are 
presented in §2.3.4. 



An online measure of visual statistical learning    33 
 
 

 
 
 
 
 
 
 

 Importantly, as we used multiple measures in assessing our research 
questions, all CIs aimed at answering our research questions were Bonferroni-
corrected for multiple testing. Thus, CIs were separately adjusted for effects 
pertaining to evidence of online learning (research question 1), offline learning 
(research question 2), and the effect of the presence or absence of the cover task 
(research question 3). To keep the overall false detection rate at 0.05, statistical 
significance for confirmatory effects regarding research question 1 was 
determined using 97.5% CIs (i.e. the CI corresponding to a false detection rate 
of 0.05/2 = 0.025), since two outcomes could provide evidence regarding online 
learning (i.e. the difference in RTs between predictable and unpredictable 
elements and this difference in RTs in interaction with Time). Similarly, 97.5% 
CIs were used for research question 2, since two distinct offline measures were 
used in the present study (2-AFC and 3-AFC questions). Finally, significance 
regarding research question 3 was determined using 98.75% CIs (i.e. the CI 
corresponding to a false detection rate of 0.05/4 = 0.0125), since all four 
measures could provide an answer regarding the effect of a cover task on 
learning. For exploratory results we report 95% CIs. 

Supplementary analyses were run including the order of the tasks (VSL 
or A-NADL first) as a predictor in our models, as requested by an anonymous 
reviewer (see OSF for files containing the supplementary analyses). Task order 
was found not to interact with the on- and offline measures of learning (all t and 
z values < 1.8). Therefore, we collapse the results from the two testing orders in 
our presentation of the results. 
 
2.3.1 Online reaction time data 
 
2.3.1.1 Online reaction time data: confirmatory results 

 
In order to answer the first research question of whether children are sensitive 
to the TP structure present during familiarization, we ran the linear mixed effect 
model as explained in §2.2.4.1. The effect that is crucial to answering this research 
question is whether participants responded differently to unpredictable elements 
(Element 1) than predictable elements (Element 2 and 3) within triplets. Thus, 
the three levels of the within-participant predictor Element were coded into 
orthogonal contrasts such that the first contrast (“Element 1 vs. Elements 2 and 
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3”, with Element 1 coded as - 2/3 and Elements 2 and 3 coded as + 1/3) estimated 
how much the RTs to predictable element 1 within triplets across the task differ 
from the mean RTs to unpredictable elements 2 and 3, which will allow us to 
answer our research question. The second contrast of the predictor Element 
estimated how much the RTs to element 2 differed from the RTs to element 3 
(i.e. the two unpredictable elements, with Element 2 coded as - 1/2 and Element 
3 coded as + 1/2), the results of which are described under §2.3.1.2 explaining 
our exploratory findings. The secondary effect that could answer our first 
research question is the interaction between the difference in RT to predictable 
versus unpredictable elements and Time (i.e. repetitions of triplets in the 
experiment), as an increase in the difference between predictable and 
unpredictable elements by time would indicate increasing responsivity to the TP 
structure across the experiment. Our second research question regarding the 
effect of the cover task was tested through interactions between the effect of the 
orthogonally contrast-coded predictor Cover (with no cover coded as - 1/2 and 
cover coded as + 1/2) and the abovementioned effects of learning (i.e. the two-
way interaction between Cover and the contrast “Element 1 vs. Elements 2 and 
3” or the three-way interaction with the contrasts “Element 1 vs. Elements 2 and 
3” and Time). 
 The model was first run on raw RTs, but the resulting model’s residuals 
were non-normally distributed. Thus, we attempted using log-transformed RTs 
and normalized RTs to improve the data’s suitability for analysis using linear 
mixed effects models. Normalization was performed by sorting all N 
observations in increasing order, then replacing each observation by the (r – 0.5) 
/ N quantile of the normal distribution, where r is the ranking number of the 
observation; we consequently obtain values that can be interpreted as optimally 
distributed z-values. Through inspections of Quantile–Quantile (“QQ”) plots of 
the model’s residuals, it was decided that normalized RT data resulted in the best 
approximation of normally distributed residuals (for more detail: see the R 
markdown and/or HTML file containing all analyses on the OSF). For this 
reason, analyses were run on normalized RT data and the model estimates are 
expressed as changes in z-values (Δz) from one level of the predictor to the next.  
 Figure 2.3 presents the normalized RTs to elements 1, 2 and 3 within 
triplets over the four blocks of the experiment. Note that the normalized RTs in 
Figure 2.3 are averaged over blocks, which deviates from the way the analysis 
was conducted (i.e. on normalized RTs and using a continuous Time predictor 
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as explained in §2.2.4.1). As hypothesized, analysis of normalized RTs reveals 
that RTs to the unpredictable element 1 within triplets are significantly longer 
than the mean RT to both predictable elements 2 and 3 (Δz = -0.058, SE = 0.022, 
t = -2.605, 97.5% CI = [-0.114 … -0.002], p = .021), reflecting that early-school-
aged children are sensitive to the TP structure presented in the VSL task. The 
model estimate of the interaction with Time was not significantly different from 
zero (Δz = -0.004, SE = 0.011, t = -0.328, 97.5% CI = [-0.028 … +0.021], p = 
.74). An overview of all model estimates is presented in Table 2.1. The same 
model was run on raw and log-RT data, resulting in similar t-values for the effect 
of unpredictable element 1 versus both predictable elements 2 and 3 (t = -2.074 
and t = -2.590 respectively). Thus, the reported effect of the predictability of 
elements within triplets on RTs is stable across models. We did not find evidence 
for the effect of Element changing over the time course of the task. Figure 2.4 
and Figure 2.5 provide more information regarding the time course of the 
experiment: Figure 2.4 plots the normalized RTs for unpredictable (Element 1) 
and predictable (Element 2 and 3) stimuli across repetitions of triplets (1–24), 
while Figure 2.5 plots the online measure of learning (i.e. difference score: 
normalized RT Element 1 – mean normalized RT Element 2 and 3) across 
repetitions of triplets (based on Figure 3 in Siegelman et al., 2018; p. 702). 
 Our secondary research question pertains to the effect of cover task: do 
early-school-aged children who receive the self-paced VSL task with a cover task 
respond differently from children who perform the task without a cover task? 
Whether the version of the task made a difference in participants’ sensitivity to 
the TP structure is reflected in the interaction between the between-subjects 
predictor Cover and the first Element contrast (“Element 1 vs. Elements 2 and 
3”). This interaction model estimate did not significantly differ from zero (Δz = 
0.021, SE = 0.023, t = +0.940, 98.75% CI = [-0.036 … +0.079], p = .35). Equally, 
the three-way-interaction with Time also did not differ significantly from zero 
(Δz = -0.003, SE = 0.022, t = -0.156, 98.75% CI = [-0.057 … +0.051], p = .88). 
We therefore have no evidence that early-school-aged children perform the 
online RT task with a cover task differently than the version without a cover task. 
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Figure 2.3. Descriptive results of the online RT data per block. Mean normalized RT 
(+/- 1 SE) to element 1 (unpredictable) and to elements 2 and 3 (predictable elements) 
are plotted per block of the experiment. 
 

 
 

Figure 2.4. Descriptive results of the online RT data per repetition. Mean normalized 
RT (+/- 1 SE) to unpredictable elements (element 1) and predictable elements (average 
of elements 2 and 3) are plotted per repetition of triplets during the experiment. 
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Figure 2.5. Descriptive results of the online RT data as a difference score. Mean 
normalized RT to unpredictable elements (element 1) minus mean normalized RT to 
predictable elements (average of elements 2 and 3) plotted per repetition of triplets during 
the experiment. 
 
2.3.1.2 Online reaction time data: exploratory results 

 
Besides allowing us to answer our research questions, the RT model provides 
some interesting exploratory results that are also evident in the normalized RTs 
presented in Figures 2.3, 2.4 and 2.5. Firstly, related to the TP structure of the 
task, we found that RTs to predictable element 2 within triplets were shorter than 
RTs to predictable element 3 within triplets, an effect that almost reaches 
significance (Δz = 0.053, SE = 0.026, t = +2.056, 95% CI = [-0.002 … +0.108], 
p = .058). If this effect were real, this would mean that the difference between 
elements 1 and 2 is greater than the difference between elements 1 and 3, which 
may tell us that children predict element 2 more easily than element 3, although 
both element 2 and element 3 have a TP of 1 (see §2.2.2.1). As requested by an 
anonymous reviewer, an additional figure was created plotting the time course of 
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the experiment as in Figure 2.5 but excluding element 3 (i.e. normalized RT 
element 1 – normalized RT element 2; see supplementary materials on our OSF 
project page and see Appendix D).  
 
Table 2.1. Fixed effects of the online normalized RT model, reporting on 13004 
observations by 53 participants across 12 items (i.e. aliens). 

 
 

Estimate  
(Δz) 

 

Standard Error  
(SE) 

 

t-value 

(Intercept) -0.002 0.098 -0.019 
El1 vs. El2 and 3* -0.058 0.022 -2.605 
El2 vs. El3 +0.053 0.026 +2.056 
Time* -0.146 0.028 -5.184 
Cover -0.142 0.195 -0.726 
Age +0.269 0.105 +2.563 
El1 vs. El2 and 3 : Time -0.003 0.011 -0.328 
El2 vs. El3 : Time +0.002 0.013 +0.125 
El1 vs. El2 and 3 : Cover +0.021 0.023 +0.940 
El2 vs. El3 : Cover -0.014 0.027 -0.508 
El1 vs. El2 and 3 : Age -0.012 0.012 -0.949 
El2 vs. El3 : Age +0.010 0.014 +0.718 
El1 vs. El2 and 3 : Time : Cover -0.003 0.022 -0.156 
El2 vs. El3 : Time : Cover +0.027 0.025 +1.090 
El1 vs. El2 and 3 : Time : Age +0.004 0.012 +0.375 
El2 vs. El3 : Time : Age +0.009 0.013 +0.688 

Note. Model estimates that differ significantly from zero are indicated with an asterisk (*); 
those that differ marginally significantly from zero are indicated with a cross (†). El = 
Element. Estimates that were used to answer the research question are marked in bold; 
those explained under exploratory results are marked in italics. 

 
Secondly, we see that RTs overall, thus ignoring effects of TP structure, 

significantly decrease as a function of Time (Δz = -0.146, SE = 0.028, t = -5.184, 
95% CI = [-0.203 … -0.090], p = 3.11×10-06). This effect of time on RTs is to be 
expected, as participants respond faster overall as a result of them adapting to 
the task and needing less time to process each individual stimulus. Finally, 
regarding the exploratory between-participants predictor Age (ranging between 
5;9 and 8;7), the model shows that older children had significantly slower RTs 
overall (Δz = 0.269, SE = 0.105, t = 2.563, 95% CI = [+0.131 … +0.481], p = 
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.0052), likely due to the fact that the older children in our sample have more 
developed academic skills and are therefore better at focusing on the task at hand. 
More importantly, however, we find no significant interactions between 
participants’ age and the difference in RTs to predictable versus unpredictable 
stimuli or a three-way interaction between age, predictability and time (Δz = -
0.012, SE = 0.029, t = -0.949, 95% CI = [-0.036 … +0.012], p = .34, and Δz = 
.004, SE = 0.012, t = 0.375, 95% CI = [-0.018 … +0.027], p = .71 respectively). 
 
2.3.2 Offline accuracy data 
 
2.3.2.1 Offline accuracy data: confirmatory results 

 
Following the familiarization phase, participants performed an offline test phase 
consisting both of pattern recognition (2-AFC, N = 24) trials and pattern 
completion (3-AFC, N = 16) trials. Descriptive statistics show that participants 
scored between .250 and .750 correct on 2-AFC trials (M = .514, SD = .11) and 
between .060 and .880 correct on subsequent 3-AFC trials (M = .381, SD = .18). 
Figure 2.6 shows the descriptive individual and group results on the offline 
accuracy data for both question types.  
 The generalized linear mixed effects models were run on the accuracy 
data as explained in §2.2.4.2. The first research question was whether children 
can learn the TP structure presented in the VSL task, as measured by their 
accuracy on the offline test phase. In order to answer this question, we examined 
whether participants’ accuracy exceeded chance level (i.e. exceeded 1/2 on 2-AFC 
and/or 1/3 on 3-AFC questions). The 2-AFC and 3-AFC model estimated that 
participants scored .015 and .037 above chance level respectively (2-AFC: 
probability intercept = .516, 3-AFC: probability intercept = .376). In both cases, 
this performance was found to not differ significantly from chance, as the 
correctness probability CIs included the task’s chance probabilities (2-AFC: 
97.5% CI = [+.480 … +.551], p = .31, and 3-AFC: 97.5% CI = [+.319 … +.429], 
p = .095). Hence, we find no evidence of above-chance performance in early-
school-aged children on either 2-AFC or 3-AFC questions. 
 Related to our secondary research question regarding the effect of the 
cover task, no significant effect of cover task was found on either of the offline 
measures (2-AFC: odds ratio estimate = 0.927, 98.75% odds CI = [0.673 … 
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1.274], p = .54, and 3-AFC: odds = 1.140, 98.75% CI = [0.673 … 1.945], p = 
.52). Similar to our findings in the online RT measure, we cannot conclude that 
early-school-aged children perform the self-paced VSL with a cover task 
differently than the task without a cover task. 
 

 
Figure 2.6. Descriptive results of the offline accuracy data. Left: distribution of scores 
for the 2-AFC questions (chance level = 1/2). Right: distribution of scores for the 3-AFC 
(chance level = 1/3) questions. Dots indicate individual mean accuracy scores; black lines 
represent overall group means. 
 
2.3.2.2 Offline accuracy data: exploratory results 
 
The offline models provide us with exploratory findings regarding the effect of 
age on performance. No significant effect of age was found on either of the 
offline measures (2-AFC: odds ratio estimate = +0.097, 95% CI = [-0.037 … 
+0.233], p = .15, and 3-AFC: odds ratio estimate = +0.131, 95% CI = [-0.103 … 
+0.373], p = .27). Again, in line with our findings in the online model, we find 
no evidence that age influences the performance of early-school-aged (between 
5;9 and 8;7 years of age) children’s performance on the self-paced VSL used in 
the present study. 
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2.3.3 Relationship between on- and offline measures 
 
As mentioned in §2.2.4.3, we explored the relationship between on- and offline 
measures used in the present study. Since we found no effects of time on our 
online RT measure, the individual RT measure of learning was calculated using 
the normalized RTs to all stimuli presented during the experiment (normalized 
RT Element 1 – [normalized RT Element 2 + normalized RT Element 3 / 2]).  

The results show that the two offline accuracy measures correlate 
significantly with one another (r = .274, t[51] = 2.031, p = .048), and neither of 
the offline accuracy measures correlate significantly with the online RT measure 
(2-AFC: r = .188, t[51] = 1.367, p = .178, and 3-AFC: r = .157, t[51] = 1.139, p 
= .26). 
 
2.3.4 Exit questionnaire 
 
Subsequent to the offline test phase, half of the participants received a short exit 
questionnaire (N = 24, mean age = 7;4). During familiarization, most children 
reported paying attention to the aliens’ features (e.g. the color or the number of 
eyes, N = 11) or to the intruder when performing the VSL with cover task (N = 
6). Five children did not give a clear answer, while the final two claimed to have 
paid attention to the order in which the aliens appeared. When asked whether 
children noticed that the aliens continuously appeared in the same groups, the 
majority of participants responded “no” (N = 14), whereas five participants said 
they did notice the order but could not explain any of the groups when shown 
pictures of the aliens. Only one participant could recall a single correct triplet and 
the four remaining children recalled incorrect (or foil) triplets. Most children said 
they had to guess the answers (N = 11) during the offline test phase, while others 
reported having memorized the correct answers (N = 4), or “just knowing” them 
(N = 7). The remaining two children were unable to answer this question. Finally, 
a large number of children thought groups of aliens consisted of either two or 
three aliens (N = 11), which reflects the use of both pairs and triplet items in the 
offline test phase. The other thirteen children either reported all groups consisted 
of two (N = 3), three (N = 6) or four (N = 1) aliens, two to four aliens (N = 1) 
or had no idea (N = 2). To summarize, the exit questionnaire did not provide 
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evidence of explicit strategies during familiarization or of explicit, verbalizable 
knowledge of the TP structure as a result of the experiment as a whole. 
 

2.4  Discussion 
 
In the present study, we aimed to test whether a self-paced VSL task using an 
online RT measure (in addition to traditional offline questions) is a useful method 
to investigate statistical learning in early-school-aged children. Previous work by 
Siegelman and colleagues (2018) has shown the suitability of such a measure for 
adults, but no study to date has replicated their findings with child participants. 
In accordance with our hypothesis, results revealed that children between 5;9 and 
8;7 years old were sensitive to the TP structure during familiarization as reflected 
by slower RTs to unpredictable (element 1) versus predictable elements (elements 
2 and 3) within triplets. We did not find evidence of an influence of the time 
course of the experiment on this sensitivity to predictable versus unpredictable 
stimuli. The reported effect of predictability is in line with previous studies with 
adult participants showing faster responses to predictable than unpredictable 
elements in statistical learning tasks, argued to reflect a difference in processing 
speed between predictable and unpredictable stimuli (Karuza et al., 2014; Misyak 
et al., 2010; Siegelman et al., 2018). The lack of an interaction with time is 
supported by other studies reporting that learning takes place early on during 
exposure (e.g. Hedenius et al., 2013). Similarly, in their investigation of the self-
paced VSL with adults, Siegelman et al. (2018) report significant learning as early 
as after 7 repetitions of triplets. Importantly, this study demonstrates that early-
school-aged children show similar sensitivity to predictability during exposure to 
an statistical learning task. Additionally, the online measure provides information 
that goes beyond the traditional offline 2-AFC (and 3-AFC) questions, for which 
we did not find evidence of above chance-level performance. So, while the offline 
accuracy data do not provide conclusive evidence for sensitivity to TP structure 
in early-school-aged children, the online RT measure does. This finding 
highlights the importance of using online measures (possibly in addition to 
offline measures) when investigating statistical learning in children. Moreover, 
the fact that the online RT measure of the self-paced VSL task has now been 
shown to be sensitive to children’s learning abilities allows future studies to 
compare performance across development using the same task. 
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 The data presented here could not determine whether 5- to 8-year-old 
children exceed chance level on the 2-AFC questions. We cannot reject the 
possibility that the failure of the 2-AFC (and 3-AFC) task could simply be due to 
chance (the design does not make it possible to directly compare the sensitivities 
of the three tasks). However, the failure could also be due to low sensitivity of 
the task when used with young children, which leads to difficulties in reliably 
measuring learning using the 2-AFC task in this population. Since the CI of the 
learning effect on the 2-AFC task ranged from .480 to .551, and the upper bound 
is thus only a performance of .551, we can cautiously conclude that if a learning 
effect on 2-AFC questions exists in early-school-aged children, it is a very small 
effect. Additionally, we found no improvement with age in this younger age 
group. These difficulties with assessing the VSL abilities of young children 
through the 2-AFC task have been reported before in the literature. In studies 
that employ a similar VSL task structure as presented here, significantly above-
chance learning has been reported in children (Arciuli & Simpson, 2011; 2012). 
However, whereas children in Arciuli and Simpson (2011) were aged between 5;6 
and 12;6 (M = 9;5), and between 5;10 and 12;5 (M = 9;1) in their 2012 study, 
children in our study were tested within the lower spectrum of their age ranges 
(i.e. between 5;9 and 8;7, M = 7;3). In their investigations of the effect of 
participant- and task-related variables on learning performance in a multiple 
linear regression analysis, Arciuli and Simpson (2011) found that VSL abilities 
develop between ages 5 and 12: learning performance on the 2-AFC task 
increased with age. These findings have been replicated in two other samples of 
children between 5 and 12 years of age, revealing higher mean performance on 
2-AFC questions of a VSL task as a function of age (Raviv & Arnon, 2017; 
Shufaniya & Arnon, 2018). Although these findings may be interpreted as 
development of VSL abilities in these age groups, they may in fact reflect the 
difficulties of measuring children’s abilities using offline measures (or, alternatively 
stated, they may reflect the development of the ability to make judgments 
involved in offline measures). This is what our results suggest, since we find 
evidence of sensitivity to the VSL structure in our online RT measure but no 
evidence of learning in our offline measures. Our results therefore underline the 
difficulties in using offline questions with early-school-aged children and 
underline the importance of using different measures in children, especially in 
younger age groups, to tap into their sensitivity to structure in statistical learning 
tasks. Early-school-aged children, as opposed to adults (and infants), may be 
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more likely to develop incorrect strategies when answering offline questions (e.g. 
focusing on the visual features of the stimuli, as we saw from the exit 
questionnaire) and are likely more susceptible to distractions during a complex 
task such as answering 2- and 3-AFC questions. Future research investigating 
(the development of) VSL in children could apply the online RT measure of 
learning as proposed here (in addition to offline measures) to obtain a more 
complete picture of children’s statistical learning abilities. 
 The secondary aim of this study was to assess the effect of a cover task 
on children’s performance in the self-paced VSL. Although we hypothesized that 
the inclusion of a cover task should attract children’s attention to the task, 
thereby enhancing performance, we did not find any evidence of a positive effect 
of including a cover task on the offline or online performance of children. 
Additionally, whereas Franco et al.’s (2015) study reported that paying attention 
to a deviating stimulus during familiarization impaired adult participants’ offline 
performance, we do not find evidence for a detrimental effect of our cover task 
on children’s VSL performance either. Based on our findings, we cannot 
conclude whether early-school-aged children are affected by the presence or 
absence of the cover task in a VSL task as the one reported on here. Note that, 
although the cover task was designed to ensure children’s attention to the VSL 
task (see also Arciuli & Simpson, 2011), it may be the case that it did not affect 
children’s attention overall and therefore no evidence of an effect on VSL 
performance was found. Future studies that aim to investigate the potential effect 
of a cover task on VSL performance should include an independent measure of 
attention payed to the task overall to control for this possibility. 
 Finally, we explored the relationships between the on- and offline 
measures of learning used in the present study, revealing a relationship between 
children’s performance on the two distinct offline question types as expected. 
We found no evidence of a relationship between the online RT measure of 
learning and offline performance on either 2-AFC or 3-AFC questions. This lack 
of correlation between online and offline statistical learning measures has been 
reported before (e.g. Franco et al., 2015; Misyak et al., 2010) and has several 
possible explanations. Firstly, although both online and offline measures are 
assumed to measure statistical learning in general, they may tap into different 
stages or different aspects of the learning process. Whereas online measures 
assess participants’ (implicit) sensitivity to the TP structure as it is presented to 
them, offline measures evaluate participants’ ability to make explicit judgments 
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about stimuli subsequent to exposure (e.g. Franco et al. 2015; Siegelman et al. 
2018). Therefore, performance on these two separable processes may not be 
related to one another. As mentioned by Misyak et al. (2010), the online measure 
is a more implicit and indirect measure of learning, while the offline measure is 
more explicit and direct. The two types of measures may therefore be 
“functionally dissociable” (Cohen et al., 1990; Destrebecqz & Cleeremans, 2001; 
Willingham, Nissen, & Bullemer, 1989). This lack of correlation makes even 
more sense in the current context of early-school-aged children, since young 
children are known to have difficulties with explicit decision making (Bialystok, 
1986). This may have resulted in the lack of evidence of above-chance 
performance observed in the present study, which in turn may hinder the 
investigation of the relationship between the different measures of learning in 
the self-paced VSL task. Offline measures that are more sensitive to the learning 
outcome of young children need to be developed in order to further explore 
these relationships in child participants. For example, more indirect and implicit 
offline measures as developed by Bertels et al. (2012; 2015) may be suitable for 
future research with early-school-aged children. 

Although the current results regarding the online measure of learning in 
the self-paced VSL are very promising, we see some room for improvement. 
Importantly, the observed effect of predictability on children’s response times 
was small and the difference in response times to predictable and unpredictable 
stimuli varied greatly between individuals. Moreover, we found no evidence of 
learning developing over time (i.e. an interaction between the measure of learning 
and the time course of the experiment, expressed as repetitions of triplets). Such 
an effect of time on learning would be expected theoretically, since it is assumed 
that participants become increasingly sensitive to the statistical structure as 
exposure enfolds (e.g. Batterink & Paller, 2017; Siegelman et al., 2018). While the 
online RT measure appears suitable for group analyses as presented in the current 
study, the methodology may need to be improved on in order to apply it in an 
individual differences approach or to investigate the time course of learning in 
more detail. As suggested by Siegelman et al. (2018), the presented behavioral 
methods may be used in combination with neurobiological methods such as 
EEG in order to gain more insight into the online learning process of individuals. 
Furthermore, methodological changes to the current design may improve the 
sensitivity of measuring learning online and may allow for closer inspections of 
the time course of learning. For example, the lack of an interaction between 
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learning and time in the present study may be the result of the introduction of 
blocks in the experiment or of participants’ lack of attention to the task towards 
the end. While these blocks were introduced in order to keep children’s attention 
and motivation to the task, they may have hampered the measurement of the 
online time course of learning by interrupting the continuous learning process. 
Additionally, children might need further encouragement to continuously pay 
attention to the stream of stimuli in this type of statistical learning tasks.  

Recently, attention has been paid to the nature of the learning 
mechanisms underlying performance on statistical learning tasks (e.g. Siegelman, 
Bogaerts, Armstrong, & Frost, 2019). Learning in tasks such as the VSL 
presented here could be the result of sensitivity to local TPs (i.e. between pairs 
of stimuli) or may alternatively follow from sensitivity to more global TP patterns 
(i.e. “chunks” or triplets; see Siegelman et al., 2019, for a discussion). In their 
study of adult participants, Siegelman et al. (2019) show that participants apply 
both types of learning, and the reliance on one or the other differs across 
participants. As can be gleaned from Figure 2.3 and the p-value of 0.058 reported 
in §2.3.1.1, the results from the present study may suggest a larger difference 
between element 1 as compared to element 2 than as compared to element 3 
within triplets, which may be indicative of larger sensitivity to local than to global 
TPs (i.e. pairs versus triplets) in child participants. Please note that this is highly 
speculative, since the present study was not set up to differentiate between these 
two learning mechanisms. However, this line of research opens up avenues for 
further investigations of the interplay between differing learning mechanisms, 
both in adult and in child participants. Moreover, the online RT measure of 
learning is a tool that is potentially useful in such explorations (see also Siegelman 
et al., 2019). 

In sum, the present study underlines the importance of developing novel 
sensitive measures of statistical learning appropriate for child research and 
looking beyond traditional offline questions when investigating statistical 
learning in (early-school-aged) children. Online measures cannot only reveal 
sensitivity to statistical regularities during familiarization that offline questions 
cannot, but also have the potential to inform us about the learning trajectories of 
participants in different statistical learning tasks, although further research is 
needed to reach this goal. The RT measure of learning presented here provides 
an implicit, online measure that can detect sensitivity to TP structure during 
exposure. The self-paced VSL has thus been shown to be a useful tool in 
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assessing learning in children and could be further developed and adapted for 
future studies investigating developmental patterns of VSL or for use in clinical 
populations (perhaps besides more traditional offline measures). For example, a 
number of studies have shown impairments in the area of statistical learning in 
individuals with developmental language disorder (DLD) and dyslexia (see e.g. 
Evans et al., 2009; Gabay, Thiessen, & Holt, 2015). Online measures could 
provide further information regarding the differences in performance between 
such populations and their neurotypical peers. Future research could investigate 
the use of the self-paced VSL for an individual differences approach by exploring 
the relationship between the online sensitivity to TP structure of individual 
participants and their performance on language measures.
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Chapter 3 
Visual AGL in dyslexia: A meta-analysis* 

 

 
 
Abstract 
 
Purpose: Literacy impairments in dyslexia have been hypothesized to be (partly) 
due to an implicit learning deficit. However, studies of implicit3 visual artificial 
grammar learning (AGL) have often yielded null results. The aim of this study is 
to weigh the evidence collected thus far by performing a meta-analysis of studies 
on implicit visual AGL in dyslexia.  

Methods: Thirteen studies were selected through a systematic literature 
search, representing data from 255 participants with dyslexia and 292 control 
participants (mean age range: 8.5 to 36.8 years old).  

Results and conclusions: If the 13 selected studies constitute a random 
sample, individuals with dyslexia perform worse on average than non-dyslexic 
individuals (average weighted effect size = 0.46, 95% CI [0.14 … 0.77], p = .008), 
with a larger effect in children than in adults (p = .041; average weighted effect 
sizes 0.71 [sig.] versus 0.16 [non-sig.]). However, the presence of a publication 
bias indicates the existence of missing studies that may well null the effect. While 
the studies under investigation demonstrate that implicit visual AGL is impaired 
in dyslexia (more so in children than in adults, if in adults at all), the detected 
publication bias suggests that the effect might in fact be zero. 
 

                                                
 
* This chapter is a slightly modified version of a published article: van Witteloostuijn, M.T.G., 
Boersma, P.P.G., Wijnen, F.N.K., & Rispens, J.E. (2017). Visual artificial grammar learning 
in dyslexia: A meta-analysis. Research in Developmental Disabilities, 70, 126–137. 
3 The learning process targeted by the visual AGL is referred to as “statistical learning” 
throughout the rest of this dissertation (see e.g. Frost et al., 2019, for motivation why the 
concept of statistical learning stretches to include AGL paradigms). However, the original 
publication of chapter 3 used the term “implicit learning” and this was left unchanged in this 
chapter. 
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3.1 Introduction 
 
Individuals with dyslexia have severe and persistent difficulties with learning to 
read and spell. These difficulties occur despite normal intelligence, adequate 
educational and socio-economic opportunities, and in absence of sensory or 
neurological impairment (DSM-IV, 2000).4 A generally accepted hypothesis is 
that the persistent difficulties with written language result from a core deficit in 
phonological processing and, specifically, phonological awareness (see Melby-
Lervåg, Lyster, & Hulme, 2012 for a meta-analysis). Phonological awareness is 
the ability to detect and manipulate phonological segments of words 
(Shankweiler et al., 1995) and is related to the ability to map letters to sounds, 
which in turn affects the ability to learn to read and spell. Individuals with 
dyslexia also experience difficulties in other areas of language. Subtle problems 
have been reported in the area of inflectional morphology (e.g. pluralization and 
tense marking: Joanisse et al., 2000; subject-verb agreement: Rispens & Been, 
2007; Rispens, Roeleven, & Koster, 2004) and syntax (relative clauses: Mann, 
Shankweiler, & Smith, 1984; Stein, Cairns, & Zurif, 1984, passive sentences: 
Stein, Cairns, & Zurif, 1984; binding: Waltzman & Cairns, 2000). Additionally, 
dyslexia is associated with a range of non-linguistic cognitive dysfunctions, 
including impairments in visual and auditory processing (Stein & Walsh, 1997; 
Tallal, 2004), attention (Facoetti, Paganoni, & Lorusso, 2000), motor functioning 
(Ramus et al., 2003), and verbal working memory (Gathercole et al., 2006; 
Gathercole & Baddeley, 1990; Swanson & Jerman, 2007). 

Several theories have attempted to define the underlying deficit that 
accounts for the range of problems experienced by individuals with dyslexia. One 
recent approach is explaining dyslexia as the result of a problem with implicit 
learning (see Nicolson & Fawcett, 2007; Ullman & Pierpont, 2005). The term 
implicit learning refers to the process through which humans extract rules and 
regularities from visual and auditory sequences available in the environment. 
Importantly, this happens in absence of awareness.  
 

                                                
 
4 Note that in the fifth version of the DSM (DSM-V, 2013), dyslexia is included under the 
umbrella term “Specific Learning Disorder”. 
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3.1.1 Implicit learning and literacy acquisition 
 
Many studies have related implicit learning abilities to different aspects of 
language acquisition: the ability to segment words from continuous speech 
(Saffran et al., 1996), the acquisition of phonological categories and phonotactics 
(Nicolson & Fawcett, 2007; Wijnen, 2013), vocabulary acquisition (Evans et al., 
2009; Yu, 2008), and more general language processing (e.g. passives: Kidd, 2012; 
relative clauses: Misyak et al., 2010). Most important to the present discussion is 
the relationship between implicit learning and the acquisition of literacy skills, as 
these are the skills most affected in individuals with dyslexia. Learning to read 
and spell involves the mapping between letters and sounds (grapheme-to-
phoneme mapping), which requires phonological awareness and knowledge of 
the orthographic system. This mapping, and the writing system in general, 
comprises many regularities. For example, a single letter (e.g. <c>) can map onto 
several phonemes (e.g. /k/, /s/). Whether the letter <c> is realized as a /k/ or 
an /s/, depends on co-occurring letters (e.g. the letter <c> followed by the letter 
<a> generally results in the realization of the phoneme /k/ as in can’t, but in the 
phoneme /s/ when followed by an <e> as in cent). In other words, the writing 
system consists of a “set of correlations that determine the possible co-
occurrences of letter sequences, which eventually result in establishing 
orthographic representations” (Frost et al., 2013, p. 2). Although some of these 
regularities in written language are taught explicitly, it seems plausible that 
children’s literacy acquisition is aided by implicit learning through exposure to 
written language.  
 Previous research has suggested a link between implicit learning and 
literacy skills in the typically developing (TD) population (e.g. Apfelbaum, 
Hazeltine, & McMurray, 2013; Arciuli & Cupples, 2006; Arciuli & Simpson, 2012; 
Frost et al., 2013; Pacton, Fayol, & Perruchet, 2005; Spencer, Kaschak, Jones, & 
Lonigan, 2014). For example, TD children apply orthographic regularities in 
pseudo-word spelling (e.g. in French, /εt/ is more often written as <ette> after 
–v than after –f), which reflects their implicit knowledge of single letters and letter 
combinations (Pacton et al., 2005). Similarly, Pacton and colleagues (2001) show 
that French-speaking TD children are sensitive to the orthographic constraints 
of the positions of double consonants (e.g. xevvu is more acceptable than xxevu). 
Additionally, correlational studies have established a link between performance 
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on implicit learning tasks and reading in English (Arciuli and Simpson, 2012), 
reading in Hebrew as a second language (Frost et al., 2013), and a variety of 
literacy-related skills including oral language, vocabulary and phonological 
processing (Spencer et al., 2014). Using a linear regression analysis, Ise, Arnoldi, 
Bartling, and Schulte-Körne (2012) showed that children’s performance on a 
visual artificial grammar learning (AGL) task, a measure of implicit learning 
which will be explained in more detail below, predicts their performance on a 
spelling task. Together, the abovementioned studies suggest there is a 
relationship between implicit learning and (the acquisition of) literacy skills in 
typical populations. 
 
3.1.2 Implicit learning in dyslexia 
 
A number of studies have investigated the hypothesis that individuals with 
dyslexia have problems with implicit learning, which affect their literacy skills. 
Several tasks have been deployed to investigate implicit learning skills in dyslexia. 
Examples include the serial reaction time (SRT) task (e.g. Deroost, Zeischka, 
Coomans, Bouazza, Depessemier, & Soetens, 2010; Menghini et al., 2010; Vicari 
et al., 2005), the alternating SRT task (Hedenius et al., 2013), as well as visual 
AGL tasks (e.g. Ise et al., 2012; Pothos & Kirk, 2004; Rüsseler et al., 2006). 
Although both the SRT and AGL paradigm are methods used to investigate 
implicit learning, the type of structure learned in each paradigm differs (greatly). 
Whereas the SRT measures a motoric response to visual sequences and is 
stimulus-bound (i.e. no generalization rule can be abstracted from the sequence), 
the visual AGL measures rule learning from visual input. While numerous studies 
report implicit learning difficulties in individuals with dyslexia (e.g. Du & Kelly, 
2013; Ise et al., 2012; Jiménez-Fernández et al., 2011; Vicari et al., 2005), others 
do not find evidence for such a deficit (e.g. Deroost et al., 2010; Menghini et al., 
2010; Pothos & Kirk, 2004; Rüsseler et al., 2006).  

Because of these mixed results, Lum et al. (2013) performed a meta-
analysis on 14 studies that investigated implicit learning in individuals with 
dyslexia using the SRT paradigm. Their results show that implicit sequence 
learning, as measured by the SRT task, is significantly poorer in people with 
dyslexia than in non-dyslexic controls (average weighted effect size 0.45, p < 
.001). Thus, these results indicate a deficit in implicit visuo-motor learning in 
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dyslexia. In the current study we investigate whether individuals with 
developmental dyslexia are also affected in visual artificial grammar learning. If 
individuals with dyslexia have difficulties with implicit learning across the board, 
group differences should be found using both the SRT and AGL paradigms. 
However, it could also be the case that poor performance by individuals with 
dyslexia on the SRT task is due to a specific motor learning deficiency, as dyslexia 
has previously been associated with motor problems (e.g. Fawcett & Nicolson, 
1995; Ramus, 2003; Ramus et al., 2003). In that case, one would not necessarily 
also expect difficulties in the area of visual AGL learning.  
 
3.1.3 Visual AGL in dyslexia 
 
Visual AGL refers to an experimental design that investigates participants’ ability 
to implicitly learn rules from mere exposure to sequences of visual stimuli 
generated by these rules. First introduced by Reber (1967), the visual AGL 
paradigm involves structured sequences that can be presented as letters or 
abstract shapes. In visual AGL tasks, sequences are generated on the basis of a 
(finite state) grammar that determines which stimuli can and cannot succeed one 
another (Figure 3.1). In the example depicted in Figure 3.1, from the node S2, the 
sequence can proceed either to S4 (a triangle) or S5 (a diamond), but not back to 
S1. 
 The AGL task typically consists of two phases: a training and a test 
phase. In the training phase, participants are exposed to a set of structured 
sequences. Importantly, in the implicit version of the AGL task that is explored 
in the current meta-analysis, participants are not informed about the presence of 
the structural rules in the input. The exposure during the training phase can be 
either passive (i.e. participants are merely exposed to stimuli) or active (i.e. 
participants are instructed to memorize strings of stimuli and repeat them 
afterwards).  
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Figure 3.1. An illustration of a grammar used in AGL experiments (after Laasonen et 
al., 2014; original grammar by Abrams & Reber, 1988) to generate grammatical sequences 
(e.g. triangle, square, triangle, circle or square, diamond, square) and ungrammatical 
sequences (e.g. triangle, diamond, circle, diamond or square, triangle, square). 
 

At the beginning of the test phase, participants are often informed that 
certain rules guided the presentation of stimuli during the training phase. 
Subsequently, they are tested on their ability to distinguish sequences that adhere 
to the artificial grammar (grammatical strings) from sequences that do not 
(ungrammatical strings). Typically, recognition of grammatical strings is tested 
within a grammaticality judgment task in which participants are requested to 
specify whether single strings are grammatical or ungrammatical. Other studies 
adopt a two-alternative forced choice paradigm, where participants are presented 
with two strings, one grammatical and one ungrammatical, and have to indicate 
which of the two strings belongs to the grammar. Performance above chance 
level (50%) during the test phase is taken as evidence that participants have 
learned the rules of the underlying grammar.  
 Several studies using the visual AGL paradigm have reported learning 
deficits in dyslexia among adults (Laasonen et al., 2014; Kahta & Schiff, 2016) or 
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children (Ise et al., 2012; Pavlidou, Williams, & Kelly, 2009; Pavlidou & Williams, 
2014). In each of these studies, this deficit is reflected by significantly lower 
accuracy scores in the group of individuals with dyslexia as compared to a control 
group. Several other studies failed to show a significant effect of dyslexia in 
children (Nigro, Jiménez-Fernández, Simpson, & Defior, 2016) or adults (Pothos 
& Kirk, 2004; Rüsseler et al., 2006). These differences in degrees of significance 
might be due to chance (i.e. sampling error), because no direct statistical 
comparisons were ever made between the studies. However, differences in group 
effects might also reflect genuine differences between the studies. Here we will 
speculate on several factors that may help explain such genuine differences 
between individual studies.  
 Firstly, the age of the participants may influence the results of individual 
studies, as several studies have reported that implicit learning improved with age 
in typical populations (e.g. Arciuli & Simpson, 2011; Maybery, Taylor, & O'Brien-
Malone, 1995, but see Jost, Conway, Purdy, & Hendricks, 2011). In a meta-
analysis investigating SRT performance, Lum and colleagues (2013) found 
smaller differences between participants with and without dyslexia for studies 
involving adult as opposed to child participants when certain sequences of stimuli 
were used (second-order sequences) or when the exposure phase was longer. 
However, no previous studies have examined the developmental trajectory of 
AGL in individuals with dyslexia.  
 Secondly, the use of either linguistic or non-linguistic stimuli may 
influence the difficulty of the task, especially for participants with dyslexia. 
Linguistic stimuli include visually presented letters (e.g. Ise et al., 2012; Nigro et 
al., 2016; Rüsseler et al., 2006), whereas non-linguistic experiments have used 
abstract shapes (e.g. Laasonen et al., 2014; Nigro et al., 2016; Pavlidou et al., 2009; 
Pothos & Kirk, 2004). The results are mixed: several studies report impaired 
learning within a AGL task involving linguistic stimuli (i.e. letters, e.g. Ise et al., 
2012; Samara, 2013), while others do not find evidence for an effect of dyslexia 
(e.g. Nigro et al., 2016; Rüsseler et al., 2006). Similarly, studies have yielded mixed 
results in AGL tasks with non-linguistic stimuli such as abstract shapes (evidence 
for learning deficits: Laasonen et al., 2014; Pavlidou, Kelly, & Williams, 2010; 
Pavlidou & Williams, 2014, no evidence for learning deficits: Nigro et al., 2016; 
Pothos & Kirk, 2004).  
 Thirdly, the training method potentially affects participants’ 
performance. As mentioned, the training phase generally includes one of two 
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possible methods: passive exposure (Du, 2013; Laasonen et al., 2014; Nigro et 
al., 2016) or active memorization (e.g. Ise et al., 2012; Rüsseler et al., 2006; 
Samara, 2013). Active training may lead to better learning, as participants are 
more focused on the stimuli. Whether the observed differences in results 
between the studies are genuine or due to chance is one of the questions that the 
present paper tries to address. 

Thus, mixed results exist for the visual AGL paradigm: whereas several 
studies report significant differences between participants with and without 
dyslexia (e.g. Laasonen et al., 2014; Ise et al., 2012), others do not (Rüsseler et al., 
2006; Nigro et al., 2016). Schmalz, Altoè, and Mulatti (2017) conducted a meta-
analysis on a subset of studies investigating visual AGL in dyslexia. They report 
significantly poorer performance by participants with dyslexia (average weighted 
effect size 0.47). However, at the same time they are careful in their interpretation 
and state “[…] publication bias and questionable research practices result in an 
inflated effect size” (p. 9). As no meta-regression analysis was performed, the 
authors could not quantitatively explain the differences in effect size between 
studies. 

The primary aim of the present meta-analysis is to extend the findings 
by Schmalz and colleagues (2017) to a larger set of (unpublished) studies and 
determine whether the accumulated evidence indicates a difference in 
performance on visual AGL between individuals with and without dyslexia. By 
doing a systematic literature search and by including a number of unpublished 
studies, we want to provide a more complete update on the strength of the 
evidence regarding the association between dyslexia and a deficiency in visual 
artificial grammar learning. Additionally, we aim to investigate the effect of 
certain methodological variables through a meta-regression analysis. These 
variables include the age of participants and the nature and complexity of the 
task used, which potentially help explain heterogeneity in results of individual 
studies. Factors included in the analysis are (a) age (adult or child participants), 
(b) stimulus type (letters or abstract shapes), and (c) type of training method 
(passive exposure or active memorization).  
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3.2  Method 
 
3.2.1 Literature search 
 
We identified studies published up until September 2016 through searches in 
PubMed, PsycInfo, ERIC, MEDLINE, CINAHL, and LLBA databases. 
Additionally, the OATD database was searched for unpublished work in the 
form of theses and dissertations. A complete overview of keywords used for each 
of the databases can be found in Appendix E. In addition to database searches, 
references of included articles were reviewed. Finally, the CogDevSoc and 
LinguistList mailing lists were used to inquire whether subscribers knew of 
unpublished data (deadline response: September 2016).  
 
3.2.2 Study selection 
 
Figure 3.2 depicts the selection of studies according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in a flow 
diagram (Moher, Liberati, Tetzlaff, & Altman, 2009). Out of all 229 records 
found, 143 duplicates were removed. Subsequently, one researcher examined the 
abstracts of 86 unique studies. Studies had to fulfill several selection criteria for 
inclusion in the present meta-analysis. First, only studies that had administered a 
visual AGL task were considered. The main reason for a focus on visual AGL 
studies is to eliminate modality as a possible cause of heterogeneity in results. 
Second, the experiment had to address implicit learning, i.e. participants were not 
to be informed of the presence of rules in the input. Third, studies had to include 
two groups of participants, one group of individuals with dyslexia and one group 
of non-dyslexic controls. 
 Fifty-six records were removed after screening the title and abstract 
because they did not meet the abovementioned selection criteria. An additional 
19 records were removed from the sample on the basis of full-article screening, 
thus leaving eleven records for inclusion in the present review and meta-analysis. 
Two out of the eleven records (Ise et al., 2012; Nigro et al., 2016) involved two 
experiments with distinct participant groups that were included separately in the 
present meta-analysis, resulting in 13 individual effect size calculations. For the 
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remainder of the present meta-analysis, we will refer to the number of individual 
effect size calculations as the number of studies included (13). A second 
researcher performed identical database searches and assessed all abstracts and 
full texts. For 28 out of 30 full-text studies the reviewers independently came to 
the same conclusions regarding inclusion in the present meta-analysis (high inter-
rater reliability: Cohen’s kappa = .851). Consensus on the remaining two records 
was reached through discussion of the contents.  
 Note that articles did not have to have been published in peer-reviewed 
journals in order to be included in our meta-analysis. This means that conference 
papers or posters, unpublished results and dissertations could be included in the 
final sample (under the category “other” in Figure 3.2). This was done to 
minimize the possibility of a publication bias. 10 out of 12 records in this category 
were found through the OATD database (Open Access Theses and Dissertations), of 
which 2 are included in the final sample (Samara, 2013; Du, 2013). The other two 
were discovered through personal communication with authors or were 
presented at the Interdisciplinary Advances in Statistical Learning conference (2015, 
San Sebastian).5 At the time of analysis, two out of thirteen individual effect sizes 
included in the present meta-analysis were unpublished.  
 
 

                                                
 
5 This resulted in the inclusion of a poster presentation by Kahta and Schiff, which was later 
published in 2016 and was thus later also found through the systematic literature search. 
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Figure 3.2. PRISMA flow diagram depicting the selection of studies. 
Note. The category “other” includes the OATD dissertation database, presentations at 
conferences, and personal communication. Data overlap: 2 studies that overlapped in 
data included one bachelor’s thesis that contained the same data as a second bachelor’s 
thesis, while the other was Pavlidou’s (2010) dissertation of which data was published 
elsewhere and included in the present meta-analysis. 
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3.2.3 Data extraction and effect size calculations 
 
The standard measure of learning in an AGL task is the percentage of correct 
responses (i.e. overall accuracy) during the test phase of the experiment. 
Therefore, the method for comparing the performance of two groups on an 
AGL task is to test whether the overall accuracy differs between the study and 
the control group. In order to calculate a single effect size for each of the included 
individual studies, the mean, standard deviation (SD) and sample size of each of 
the study groups were extracted from the article. If these data were not available 
from studies themselves, we asked the authors to supply these. Authors provided 
these data in three cases (Ise et al., 2012; Laasonen et al., 2014; Samara, 2013), 
which allowed us to calculate single effect sizes for each individual study. 

Calculations were made based on raw data for Rüsseler et al. (2006). For 
the study by Kahta & Schiff (2016) the mean and 95% confidence interval (CI) 
had to be gleaned from figures. This was done using DigitizeIt digitizer software 
(available from http://www.digitizeit.de/). Next, 95% CIs were converted into 
SDs according to Eq. (1), which assumes that authors had computed the CIs with 
the help of the t-distribution. Additionally, the studies by Du (2013), Kahta and 
Schiff (2016) and Samara (2013) did not report the means and SD of the 
participants’ average accuracy scores, but separately the means and SDs (or 95% 
CIs in the case of Kahta & Schiff, 2016) of the participants’ percentages 
of correctly accepted and incorrectly accepted test items (i.e. endorsement rates), 
which we used to calculate the means and SDs of the average accuracy scores. In 
the absence of data on the correlation (over the participants) between percentage 
of correctly accepted and correctly rejected test items, and in the absence of good 
evidence from the literature about what a typical correlation could be, we had to 
make a conservative estimate of the SD of the participants’ average percentages. 
If the correlation is 0, then the variance of the average is smaller than each of the 
reported variances. If the correlation is 1, then the variance of the average is a 
weighted average of the two reported variances. The conservative choice for the 
estimation is therefore to assume that the correlation is 1, so that our estimate of 
the SD of the average of the acceptance and rejection scores is given by (2), where 
n1 is the number of correct test items, n2 is the number of incorrect test items, 
SD1 is the observed standard deviation of the correctly accepted percentage, and 
SD2 is the observed standard deviation of the correctly rejected percentage.  
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 (1)	SD	= √𝑛 	× ())*+	,-.-/0,12*+	,-.-/
/_4+-/	[607]6

	 (2)	SDaverage	= ?(6A07)CDAEF(6E07)CDEE

6AF	6E0G
	

 
For the study by Pothos and Kirk (2004), the SDs had to be gleaned from their 
Figure 4 (p. 71). Additionally, the mean age of participants was not available, but 
since participants were (under)graduates, most aged between 18 and 30, this 
study was classified as a study involving adult participants. Appendix F presents 
an overview of the extracted data that was used for effect size calculation for 
each included study. Tables 3.1 and 3.2 summarize characteristics of the sample 
and experimental design of the 13 studies included in the present meta-analysis. 
 Following data extraction procedures, a single effect size was computed 
for each individual study, using the compute.es package (Del Re, 2014) for R 
software (R Core Team, 2019). In the present meta-analysis, Hedges’ g effect size7 
and 95% CIs summarize the results from each individual study. Positive Hedges’ 
g values indicate that the control group reached higher accuracy levels on the 
AGL task compared to the group of individuals with dyslexia, whereas negative 
values indicate the opposite. The 95% CI provides an estimate of the precision 
of the study’s effect size: the larger the CI, the poorer the precision. A 
combination of the metafor (Viechtbauer, 2010) and meta packages (Schwarzer, 
2012) for R software was used to convert the computed individual effect sizes 
and variances to an average weighted effect size8 and variance across studies. 

For more detail on our meta-analysis and meta-regression techniques, 
you can access the summarized data, R Markdown and HTML files through our 
project page on the Open Science Framework (OSF): https://osf.io/6qaws/. 
  

                                                
 
6 For large n, t_crit [n-1] is close to 1.96. 
7 Hedges’ g is a variation of Cohen’s d that corrects for biases due to small sample sizes 
(Hedges, 1981). 
8 A standardized effect size was used as opposed to a raw mean difference score, because the 
raw mean difference scores and pooled SDs of individual studies showed large deviations 
from the overall raw mean difference score (Bond, Wiitala, & Richard, 2003). 
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3.3  Results 
 
3.3.1 AGL in dyslexia  
 
Our first goal was to elucidate whether, combining the results from 13 previous 
studies, individuals with dyslexia perform different from their TD peers on visual 
AGL tasks. To this end, the effect sizes of all 13 individual studies were combined 
into a single average weighted effect size using a random-effects model (Hedges 
& Olkin, 1985). Random-effects models, as opposed to fixed-effect models, 
allow for variation in true effect sizes between independent studies (Borenstein, 
Higgins, & Rothstein, 2009). The model was run using the “rma.uni” function in 
the metafor package with the restricted maximum likelihood (REML) method and 
the adjustment by Knapp and Hartung (2003) for finite numbers of degrees of 
freedom. Effect sizes for individual studies and the overall average weighted 
effect size are presented in Figure 3.3. Performance was measured as the overall 
accuracy score in the test phase of the AGL experiment. Effect sizes ranged from 
-0.68 to 1.37, with only one effect size in the negative direction (Pothos & Kirk, 
2004). All other studies report a lower accuracy level for the group of participants 
with dyslexia than for the control group. Importantly, as mentioned, some of the 
individual studies report significant differences, whereas others do not. The 
meta-analysis reveals that, grouping over 13 studies and despite the negative-
estimate study, participants with dyslexia performed significantly worse than 
control participants (average weighted effect size = 0.46, 95% CI [0.14 … 0.77], 
p = .008). Looking at studies involving either child or adult participants 
separately, we find that the average weighted effect size for child studies is 
significant (N = 7, average weighted effect size = 0.71, 95% CI [0.36 … 1.07], p 
< .001), whereas it is not for adult studies (N = 6, average weighted effect size = 
0.16, 95% CI [-0.36 … +0.69], p = .461). Before investigating whether the 
observed difference between the adult effect (0.16) and the child effect 
(0.71) reflects a genuine decreasing difference between dyslexic and non-dyslexic 
people as a function of age, we inspect the possibility of publication bias.
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3.3.2 Publication bias 
 
To verify the interpretability of the abovementioned findings, we examined the 
possibility of publication bias in our collected sample of studies. This was initially 
done through examining a standard funnel plot, which plots the standard error 
(a measure of study precision) against the effect sizes of the individual studies 
(Figure 3.4, on the left). Generally speaking, in the absence of publication bias, 
studies should be symmetrically distributed around the average weighted effect 
size. This distribution takes a funnel shape configuration: studies with high 
precision are closer to the average weighted effect size, whereas lower precision 
studies are symmetrically scattered around the average weighted effect size. A 
linear regression analysis (Egger et al., 1997), using the “metabias” function 
(Schwarzer, 2012), formally tested the presence of publication bias. It turned out 
that effect sizes were significantly asymmetrically distributed, skewing to the 
lower right corner, indicating the presence of a publication bias in our sample 
(t[11] = 4.014, p = .002). 
 To evaluate the effect of the publication bias in our sample we 
approximated what the effect size might be in absence of this bias, using Duval 
and Tweedie’s (2000) trim and fill method (“trimfill” function in the metaphor 
package using the L0 estimator for the number of missing studies). Importantly, 
the trim and fill method can be used to investigate how sensitive the observed 
effect is to the presence of potential missing studies, but is not meant as a way to 
calculate the actual values of missing studies (Duval & Tweedie, 2000; Duval, 
2005). By using small studies on the positive side of the funnel plot to impute 
missing studies on the negative side, the trim and fill method estimated that 
five studies reporting negative findings are missing in our present sample 
(Figure 3.4, on the right). When these five imputed missing studies are added to 
our dataset of 13 studies, the estimated effect size is considerably reduced and 
is no longer significantly different from zero (average weighted effect size = 0.20, 
95% CI [-0.11 … +0.50], p = .205). Note, however, that the trim and fill analysis 
is known to be a somewhat conservative method for adjusting for publication 
bias (Peters, Sutton, Jones, Abrams, & Rushton, 2007; Schwarzer, Carpenter, & 
Rücker, 2010) and the creation of imputed studies can be heavily influenced by a 
single deviant study, such as the study by Pothos & Kirk (2004) in our sample 
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(e.g. Borenstein et al., 2009, p. 286).9 Additionally, this method of adjusting 
results for publication bias makes the assumption that the asymmetry observed 
in the funnel plot is caused exclusively by publication bias, while another possible 
cause for funnel plot asymmetry is heterogeneity between studies (Mavridis & 
Salanti, 2014). Finally, we cannot be certain that the computed missing studies 
would indeed have been found in the absence of such a bias (Mavridis & Salanti, 
2014). Nonetheless, the results of the present meta-analysis on our selected 13 
studies are likely to be overly optimistic in the direction of the existence of the 
main effect, as the effect can well be nulled by unpublished findings. 
 
3.3.3 Heterogeneity in findings and meta-regression 
 
The second aim of the present study was to explore several factors that may help 
account for the heterogeneity (between-studies variability) that appears to be 
present across different studies investigating AGL in participants with dyslexia. 
Although the main outcome of the present meta-analysis is probably influenced 
by the observed publication bias, such a bias is less likely to affect meta-
regression analyses, which consider secondary effects.  
 Cochran’s Q-test for heterogeneity was significant (Q[12] = 41.07, p < 
.001, I2 = 71% [0.49 … 0.83]). This result allows us to reject the null hypothesis 
that all the studies share a common true effect size. As can be seen in Figure 3.3, 
it appears that some factors may influence the effect size of individual studies. 
As mentioned, the average weighted effect size for child studies is larger than for 
adult studies (0.71 for child studies vs. 0.16 for adult studies). Thus, we decided 
to explore the effect of several potential moderator variables on the effect sizes 
of individual studies through meta-regression analysis.  
 

                                                
 
9 There exist alternatives to using the L0 method. Using the R0 estimator instead of L0, we 
find zero missing studies in the present sample, while applying the Copas selection model 
(Copas 1999; Copas & Shi, 2000) converges to a fully negative CI. Both of these 
alternative results are due to the presence of the single large study that reports a negative 
effect (Pothos & Kirk, 2004). The R0 estimate must be incorrect given the significance of 
the linear regression analysis, and the Copas result must be incorrect because the other 
12 included studies show effects in the positive direction. 
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Table 3.3. Results from meta-regression analyses exploring the effect of 
participant and methodological factors on effect sizes of individual studies 

 

Moderator 
 

 

R 2 
 

Qmodel 

 

df 
 

p 
1: Age 35% 5.35 1 .041* 
2: Training method 1% 1.02 1 .333 
3: Stimulus type 0% 0.02 1 .903 
4: Age × training method 21% 1.75 3 .659 
5: Age × stimulus type 27% 1.94 3 .364 
6: Training method × stimulus type 3% 1.04 3 .192 

Note. R2 = the proportion of the total heterogeneity between studies accounted for by 
the moderator; Qmodel is the statistic for testing whether the moderator accounts for some 
of the heterogeneity between studies; p is the significance for Qmodel being greater than df. 
* p < .05 
 
 In preparation for the meta-regression analysis, all three binary 
moderator variables were centered, i.e. coded as: (a) age - 1/2 (child) versus + 1/2 
(adult), (b) type of stimulus - 1/2 (abstract shapes) versus + 1/2 (letters), and (c) 
type of training - 1/2 (passive exposure) versus + 1/2 (active memorization). 
Random-effects model meta-regression was used to explore the potential value 
of these factors in explaining variance in effect size between studies. Since the 
three moderators are correlated, we first tested each of three main effects 
individually in a separate meta-regression model (Table 3.3). Additionally, we 
tested each of the three interaction effects individually, in a separate model that 
included the two relevant main effects (also in Table 3.3). None of the interaction 
effects turned out to significantly affect the effect sizes of individual studies, so 
we did not attempt to construct any more complicated models. As shown in 
Table 3.3, the only model that reaches significance in explaining variance between 
individual studies is model 1: the main effect of age. This model fits 35% of the 
heterogeneity (which is greater than 0% with p = .041). When studies had adult 
participants, as opposed to child participants, effect sizes were smaller, reflecting 
a smaller difference between participants with and without dyslexia. None of the 
other main or interaction effects were found to significantly fit the heterogeneity 
between studies. To the extent to which a p-value of .041 can be considered 
statistically significant in this exploration of six possible effects (without 
correction for multiple testing), we can conclude that the difference between the 
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observed adult and child effect sizes (0.16 and 0.71) indeed reflects a genuine 
difference between the two ages in the population. 
 

3.4 Discussion  
 
In the present study, we used meta-analysis and meta-regression to quantitatively 
review previous research on visual AGL in dyslexia. Our first goal was to 
elucidate whether the combined findings of thirteen previous studies provide 
evidence for a difference in visual AGL between individuals with and without 
dyslexia. The average weighted effect size computed from these individual visual 
AGL studies, reflecting results from 255 participants with dyslexia and 292 
control participants, was found to be moderate and statistically significant. If our 
13 selected studies were a sample randomly drawn from an imagined infinite set 
of possible studies, this finding would indicate that, overall, non-dyslexic people 
outperform people with dyslexia on visual AGL. Our results would then 
corroborate the earlier analysis in Schmalz et al. (2017) and strengthen these 
findings by involving a larger sample of studies (13 instead of 9). Taken together 
with the meta-analysis of SRT studies by Lum et al. (2013), these 
results would suggest a general implicit learning deficit in individuals with 
dyslexia. 
 Importantly, however, it seems plausible that these results have been 
influenced by a publication bias in the field of artificial grammar learning in 
dyslexia (see Schmalz et al., 2017). After conservatively controlling for 
publication bias, the computed effect size was no longer significant, and the 
results of the main effect of the present meta-analysis should therefore be 
regarded as unreliable. Large-scale future studies are needed to confirm the 
presence of a difference in performance on visual AGL between participants with 
and without dyslexia. 
 Extending the previously published meta-analysis by Schmalz et al. 
(2017) further, the present study aimed to explain the heterogeneity in results of 
individual studies by investigating the effect of certain methodological variables 
through a meta-regression analysis. This analysis revealed that the only 
moderator that (moderately, i.e. without correction for multiple tests) reached 
significance was the main effect of age: there were smaller differences between 
dyslexia and control groups for those studies that involved adult participants as 
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opposed to child participants. This is an indication that the implicit learning 
deficit might be more pronounced in children with dyslexia than in adults with 
dyslexia, since similar effects of age have been found in the meta-analysis 
investigating implicit learning in individuals with dyslexia using the SRT task 
(Lum, et al., 2013). In line with the interpretation of their results, a possible 
explanation is that adults make use of compensatory processes (e.g. visual 
processing, pattern recognition, attentional resources, declarative memory) that 
enhance performance on visual AGL tasks. Another potential explanation for 
the age effect lies in the selection of participants. Whereas most studies with adult 
participants involved university students, child studies selected their participants 
from a broader population of primary school children. The performance of 
university students with dyslexia may not be representative of the whole 
population of adults with dyslexia, as these high-achieving individuals with 
dyslexia may have more developed compensatory mechanisms. This in turn may 
result in a smaller difference between the performance of adults with and without 
dyslexia. We want to note that this effect of age should be interpreted with 
caution, as it seems to be largely driven by one study that reports better 
performance in adults with dyslexia than in controls (Pothos & Kirk, 2004, g =   
-0.68). Thus, future research should examine the possibility of an age effect in 
visual AGL in dyslexia in further detail by selecting adult participants with 
dyslexia from all educational levels and comparing them to children on the same 
visual AGL task. 
 Although the present meta-analysis suggests that visual artificial 
grammar learning might be poorer in dyslexia relative to non-dyslexic individuals 
overall, these results cannot address the issue of causality between implicit 
statistical learning and literacy skills in this population. Future longitudinal studies 
are needed to investigate the potential causal link between implicit statistical 
learning and literacy skills in individuals with and without dyslexia.  
 Additionally, several factors that could influence the effect sizes of 
individual studies were not included in the present meta-analysis due to the 
relatively small number of studies. One such factor is the complexity of the 
underlying grammar. The level of complexity potentially plays a role in whether 
participants are able to learn the underlying structure. In fact, a recent meta-
analysis of AGL studies with typical populations showed that, indeed, there is a 
significant correlation between grammar complexity and learners’ task 
performance (Schiff & Katan, 2014). Also related to the difficulty of the task at 
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hand are factors such as the length of the sequences and the amount of exposure 
to these sequences. Whereas some studies use a fixed sequence length of 4 (Nigro 
et al., 2016), 5 (Ise et al., 2012), or 7 (Samara, 2013), other studies use sequences 
of varying lengths (between 2 and 6 (e.g. Pothos & Kirk, 2004; Pavlidou & 
Williams, 2014), 4 and 7 (Rüsseler et al., 2006) or 6 and 8 (Du, 2013) individual 
items). Similarly, whereas some studies include only 69 instances of a grammatical 
string (e.g. Laasonen et al., 2014; Pavlidou et al., 2009), others include as many as 
108 instances (Nigro et al., 2016). Another factor worth investigating is the 
severity of dyslexia in individual participants, as this may be related to the severity 
of the deficit in implicit statistical learning. Finally, the modality (visual versus 
auditory) in which the stimuli are presented may affect the learnability of the 
grammar for individuals with dyslexia. Future research should investigate the 
potential effect of the abovementioned factors to gain further understanding of 
what types of methodological characteristics increase or decrease an AGL task’s 
learnability for individuals with and without dyslexia.



 

Chapter 4 
Statistical learning in dyslexia across three paradigms* 

 
 
 
Abstract 
 
Purpose: Statistical learning difficulties have been suggested to contribute to the 
linguistic and non-linguistic problems observed in children with dyslexia. Indeed, 
studies have demonstrated that children with dyslexia have problems with 
statistical learning, but the extent of the problems is unclear. We aimed to 
examine the performance of children with and without dyslexia across three 
distinct paradigms using both on- and offline measures, thereby tapping into 
different aspects of statistical learning.  

Methods: 100 children with and without dyslexia (aged 8-11, 50 per group) 
completed three statistical learning tasks: serial reaction time (SRT), visual 
statistical learning (VSL), and auditory nonadjacent dependency learning (A-
NADL). Learning was measured through online reaction times during exposure 
in all tasks, and through offline questions in the VSL and A-NADL tasks.  

Results and conclusions: We find significant learning effects in all three 
statistical learning tasks. From this we conclude that, collapsing over groups, 
children are sensitive to the statistical structures presented in the SRT, VSL and 
A-NADL tasks. No significant interactions were found between the measures of 
learning and with group (i.e. dyslexia versus control) in any of the tasks, so we 
cannot conclude whether or not children with dyslexia perform differently on 
the statistical learning tasks than their typically developing peers. These results 
are discussed in light of the proposed statistical learning deficit in dyslexia. 

 

                                                
 
* This chapter is a slightly modified version of a published article: van Witteloostuijn, M.T.G., 
Boersma, P.P.G., Wijnen, F.N.K., & Rispens, J.E. (2019). Statistical learning abilities of 
children with dyslexia across three experimental paradigms. PLoS ONE, 14(8), Article 
e0220041. 
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4.1 Introduction 
 
Dyslexia is one of the most common learning disabilities and is characterized by 
specific difficulties in learning to read and write despite normal intelligence, 
schooling and socio-economic opportunities and in absence of other 
impairments (e.g. sensory or neurological impairments; Snowling, 2000). These 
difficulties in the acquisition of literacy skills are typically associated with 
problems in related abilities including phonological awareness, lexical retrieval, 
and verbal short-term memory (e.g. Gathercole, Alloway, Willis, & Adams, 2006; 
Melby-Lervåg et al., 2012; Ramus et al., 2003). For this reason, the predominant 
view of dyslexia is that the concomitant reading and writing problems stem from 
an underlying problem in the processing of phonological information (e.g. 
Ramus et al., 2003; Snowling, 2001). However, deficits in individuals with 
dyslexia may include other domains of language (e.g. inflectional morphology and 
syntax; Rispens & Been, 2007; Waltzman & Cairns, 2000) and non-linguistic 
cognitive skills such as visual and auditory processing (Stein & Walsh, 1997; 
Tallal, 2004), attention (Facoetti et al., 2000) and motor functioning (Ramus, 
2003; Ramus et al., 2003).  

Due to this wide range of observed difficulties, it has been suggested that 
dyslexia is associated with a domain-general learning deficit rather than a deficit 
that is specific to the processing of phonological material (e.g. Nicolson & 
Fawcett, 2007; 2011). This domain-general learning mechanism is often referred 
to as statistical learning: the ability to extract statistical regularities from sensory 
input (Frost et al., 2015), which is assumed to be a largely implicit process (e.g. 
Perruchet & Pacton, 2006). Importantly, statistical learning is put forward as a 
key ability involved in the acquisition of language and literacy skills as it aids the 
discovery of the many rules and regularities that are present in spoken and written 
language (e.g. Arciuli, 2017). In line with this reasoning and the hypothesized 
statistical learning deficit in dyslexia, evidence shows that statistical learning 
abilities are related to literacy skills in typical populations. For example, 
performance on tasks that assess statistical learning abilities has been shown to 
positively correlate with reading in adults and children (Arciuli & Simpson, 2012) 
and reading in a second language in adults (Frost et al., 2013). Similarly, children 
with dyslexia have been shown to perform worse on tasks assessing statistical 
learning abilities such as the serial reaction time (SRT), auditory statistical 
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learning (ASL) and artificial grammar learning (AGL) tasks (e.g. SRT: Jiménez-
Fernández et al., 2011; Vicari, Marotta, Menghini, Molinari, & Petrosini, 2003; 
ASL: Gabay et al., 2015; AGL: Pavlidou & Williams, 2014). However, others find 
no evidence of such an effect (e.g. SRT: Rüsseler et al., 2006; AGL: Rüsseler et 
al., 2006, Inácio et al., 2018; cued reaction time task: Roodenrys & Dunn, 2008). 
Literature reviews and meta-analyses have been conducted to investigate the 
overall group effect in statistical learning studies and have reported significantly 
poorer performance by individuals with dyslexia as compared to those without 
dyslexia on both the SRT (Lum et al., 2013) and the AGL overall, although the 
effect on the AGL may be inflated due to publication bias in the field (Schmalz 
et al., 2017; van Witteloostuijn et al., 2017, see chapter 3). 
 The current study aims to investigate to what extent children with 
dyslexia experience difficulties in the area of statistical learning and to extend 
recent findings to other statistical learning paradigms. It is important to study 
children specifically to clarify whether statistical learning principles could 
potentially be used to improve treatment and clinical outcomes for individuals 
with dyslexia (see e.g. Plante & Gómez, 2018, on the clinical relevance of 
statistical learning to children with developmental language disorder [DLD]). 
Since the hypothesized statistical learning deficit has been claimed to be 
independent of the domain and modality in which statistical learning is tested, 
children with dyslexia should experience difficulties across tasks tapping into SL 
abilities. Therefore, we assess children’s statistical learning performance in a 
range of statistical learning tasks that have previously been shown to be sensitive 
to learning in (typical) child populations and that span a number of 
methodological variations of statistical learning tasks (e.g. modality, the type of 
statistical structure to be learned, online and offline measures): SRT, visual 
statistical learning (VSL), and auditory nonadjacent dependency learning (A-
NADL) tasks. By measuring statistical learning across different experimental 
paradigms using both online (SRT, VSL, A-NADL) and offline (VSL, A-NADL) 
measures, and by considering the potential differences in related cognitive 
abilities including memory and attention, we hope to provide a comprehensive 
study of statistical learning abilities in children with dyslexia when compared to 
a control group of age-matched children. Before turning to the methodology of 
the present study, the following sections present an overview of previous studies 
investigating statistical learning in dyslexia through the SRT, VSL and A-NADL 
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paradigms. Subsequently, we discuss several methodological considerations that 
our design takes into account. 
 
4.1.1 Serial reaction time paradigm 
 
The SRT task measures visuo-motoric sequence learning by exposing 
participants to a single visual stimulus that repeatedly appears in one of several 
locations on a computer screen (Nissen & Bullemer, 1987). Without the 
participants’ knowledge, the stimulus follows a predetermined order (i.e. 
sequence) over three or four locations. During exposure, participants are 
required to make motor responses that correspond to the locations of the 
individual stimuli on the screen. As the task unfolds, participants (implicitly) learn 
the repeated sequence of visual stimuli (locations in array), motor movements, 
or both, on the basis of the probabilities associated with the sequence. In other 
words, they learn the probability of the appearance of the stimulus in a given 
location on the basis of the locations of the previous trials. After participants 
have been repeatedly exposed to the sequence, they are unknowingly presented 
with a block of randomly ordered trials. An increase in reaction times (RTs) from 
predictable (i.e. sequences) to unpredictable (i.e. random) input during exposure 
is taken as evidence of sensitivity to the sequence presented to them (Nissen & 
Bullemer, 1987). A range of studies has demonstrated learning in the SRT both 
in typical adults and in typically developing (TD) children as young as 4 years of 
age (e.g. Kidd, 2012; Lum, Kidd, Davis, & Conti-Ramsden, 2010). 
 The SRT task has frequently been used as a measure of statistical learning 
when investigating group differences between participants with and without 
dyslexia, both in adult (e.g. Laasonen et al., 2014; Menghini et al., 2010) and child 
populations (e.g. Deroost et al., 2010; Waber et al., 2003). The difference in 
sensitivity to SRT structure between participants with and without dyslexia was 
statistically significant in some studies (e.g. Bussy et al., 2011; He & Tong, 2017, 
the latter with 40 exposures) but not in others (e.g. He & Tong, 2017; Kelly et 
al., 2002; Staels & Van den Broek, 2017, the first with 180 exposures). Lum et al. 
(2013) performed a meta-analysis of 14 such SRT studies involving both adults 
and children and showed that on average, non-dyslexic people outperform 
people with dyslexia (weighted average effect size = .449; p < .001). To 
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summarize, the SRT task is known to be sensitive to learning in child populations 
and has been shown to differentiate between people with and without dyslexia. 
 
4.1.2 Visual statistical learning paradigm 
 
VSL is a paradigm that assesses the capacity for statistical learning by exposing 
participants to a continuous stream of visual stimuli such as abstract shapes (e.g. 
Turk-Browne et al., 2005) or cartoonlike figures (e.g. Arciuli & Simpson, 2011; 
2012). Unbeknownst to the participants, the stimuli in a VSL task are grouped 
together in groups of two (i.e. pairs) or three (i.e. triplets) that always appear 
together. This task is an adaptation of an auditory task that assesses word 
segmentation, introduced by Saffran et al. (1996). Thus, in the VSL, the 
probability of one stimulus following the preceding one differs per trial: while 
the second (and third) stimulus within a pair (and triplet) is predictable, the first 
stimulus of the next group is unpredictable. Following repeated exposure to the 
structured stimuli, a test phase assesses the participants’ ability to distinguish 
previously seen groups of stimuli from groups of stimuli that did not co-occur 
frequently during exposure. By applying this experimental paradigm, it has been 
shown that not only adults show sensitivity to this type of statistical structure 
(Arciuli & Simpson, 2012; Siegelman & Frost, 2015; Turk-Browne et al., 2005), 
but also school-aged children (Arciuli & Simpson, 2011; 2012; Raviv & Arnon, 
2017), as well as infants when tested in a preferential looking time paradigm (e.g. 
Kirkham et al., 2002). Similar results have been reported for studies involving 
auditory stimuli including syllables (e.g. Saffran et al., 1996) or non-verbal stimuli 
such as tones (e.g. Saffran, Johnson, Aslin, & Newport, 1999). 
 Relevant to the present investigation, only two previous studies have 
examined the statistical learning abilities of participants with dyslexia using a 
variant of the VSL task (Sigurdardottir et al., 2017; Singh et al., 2018). In the 
study by Sigurdardottir et al. (2017), the exposure phase comprised twelve 
abstract visual shapes that were divided into six pairs of co-occurring stimuli, and 
participants were subsequently tested in a two-alternative forced-choice (2-AFC) 
test phase consisting of 72 trials. The results show that adult participants with 
dyslexia reached lower accuracy levels in the test phase than the control group in 
the VSL task (68% vs. 78% respectively). The second study investigated the 
event-related potential (ERP) correlates of statistical learning in children with and 
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without dyslexia using a visual task (Singh et al., 2018). During the task, children 
were continuously exposed to series of colored circles and were required to 
respond to a target color through a button press. Although RT data revealed no 
difference between children with and without dyslexia (N = 8 and 12 
respectively), ERP data reveal indications of learning in the control group, but 
not in participants with dyslexia. Although these studies suggest poorer 
sensitivity to VSL structures in participants with dyslexia as compared to control 
participants, no study to date has applied the standard “triplet” paradigm (e.g. 
Arciuli & Simpson, 2011; 2012; Siegelman & Frost, 2015) to children with 
dyslexia. Moreover, no data regarding explicit judgments of VSL structure is 
available on children with dyslexia. 
 
4.1.3 Nonadjacent dependency learning paradigm 
 
Gómez (2002) aimed to test learning of a different type of structure: nonadjacent 
dependencies in the auditory domain (i.e. A-NADL). In this type of structure, 
participants learn relationships between nonadjacent elements, ignoring variable 
intervening elements; for instance, in the string aXb, a predicts b and X is a 
variable intervening element. This experimental design relates to nonadjacent 
dependencies found in natural language, such as those in inflectional morphology 
(e.g. is eating, has eaten, where the auxiliary predicts the inflectional morpheme 
regardless of the intervening verb; Grama, Kerkhoff, & Wijnen, 2016; Gómez, 
2002). Not only adults, but also infants at age 1;6 were sensitive to such 
nonadjacent dependencies through mere exposure when 24 intervening X-
elements are used. This is reflected by differences in responses when, after the 
exposure phase, they are confronted with strings that adhere to the aXb grammar 
as opposed to strings that do not (e.g. aXc; Gómez, 2002). However, not much 
is known about the performance of school-aged children on tasks involving 
nonadjacent relationships. One previous study has investigated A-NADL in 
children using the Gómez (2002) design and reports above-chance performance 
on grammatical items in TD children, suggesting sensitivity to the A-NADL 
structure (Iao, Ng, Wong, & Lee, 2017). 

The same paradigm was used to investigate sensitivity to nonadjacent 
dependencies in relation to dyslexia. Kerkhoff et al. (2013) tested infants with 
and without a family risk of dyslexia around the age of 1;6 on a slightly adapted 
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version of the A-NADL task containing two nonadjacent dependencies of the 
type aXb. In the subsequent test phase that consisted of 8 trials, results revealed 
a significant interaction between grammaticality and risk group: infants without 
family risk are sensitive to the A-NADL structure (i.e. they listen longer to 
ungrammatical than grammatical strings), while infants at risk of dyslexia were 
less sensitive, if at all. A follow-up study from the same lab examined NADL in 
the auditory and visual domain in Dutch-speaking adults with and without 
dyslexia (Kerkhoff, de Bree, & Wijnen, 2017): participants were tested on two 
versions of the auditory experiment containing either test sentences with familiar 
X-elements or test sentences with novel X-elements that aimed to test 
generalization of the rule. On average, participants were more likely to accept 
(i.e. endorse) grammatical than ungrammatical sentences in both conditions, 
reflecting sensitivity to the nonadjacent dependency rule, but no interaction was 
detected between this measure of learning and group. Similar results are reported 
for NADL by adults in the visual domain. To summarize, differences in 
sensitivity to the A-NADL structure were found in infants with and without risk 
of developing dyslexia, and the results for adults are inconclusive. To our 
knowledge, no reports of school-aged children with dyslexia on tasks assessing 
(A-)NADL have been published. 
 
4.1.4 The current study 
 
A number of methodological considerations become apparent from previous 
literature that are relevant for our investigation of statistical learning in dyslexia. 
Firstly, and perhaps most importantly, the majority of studies has focused on 
infant and adult participants. Whereas the SRT and AGL tasks have been used 
in child populations with and without dyslexia, studies employing alternative 
paradigms such as the VSL and A-NADL have not been used to investigate 
statistical learning in school-aged children with dyslexia.  

Secondly, although statistical learning is thought to be a domain-general 
learning mechanism, task parameters and participant characteristics are likely to 
influence the magnitude of the learning effect found in individual studies (Frost 
et al., 2015; Siegelman & Frost, 2015). Researchers have previously emphasized 
the importance of using a range of statistical learning measures within a single 
sample when investigating the hypothesized statistical learning deficit in children, 
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as opposed to using only one statistical learning paradigm as is common in most 
studies (Arciuli & Conway, 2018; West et al., 2017).  
 Thirdly, VSL and A-NADL tasks have commonly used offline measures 
to assess learning after exposure. While these measures inform us about the 
outcome of the learning process, they do not inform us about the learning process 
itself (Kidd et al., 2017; Misyak et al., 2010; Siegelman et al., 2017b; 2018). 
Recently, two studies have introduced child-friendly VSL (van Witteloostuijn, 
Lammertink, et al., 2019, see chapter 2) and A-NADL (Lammertink, van 
Witteloostuijn et al., 2019) tasks that include online measures of learning adapted 
from previous studies with adult participants (López-Barroso et al., 2016; 
Siegelman et al., 2018). These online measures reflect participants’ sensitivity to 
statistical regularities during exposure to the stimuli and may provide further 
insights into the potential differences in performance between children with and 
without dyslexia when used in addition to the more traditional offline measures. 

Finally, studies have shown that performance in statistical learning tasks 
is affected by cognitive abilities such as attention (e.g. Baker et al., 2004; Toro et 
al., 2005). Arciuli (2017) has argued that statistical learning is not only related to 
attention but may also partly rely on (short-term, working and long-term) 
memory (see also Arciuli & Simpson, 2011; Janacsek & Nemeth, 2015; Lum, 
Conti-Ramsden, Page, & Ullman, 2012). Important to the present discussion is 
the fact that individuals with dyslexia have difficulties in the area of attention (e.g. 
Bosse, Tainturier, & Valdois, 2007; Buchholz & Davies, 2005) and short-term 
and working memory (e.g. Cowan et al., 2017).  

The present study aims to address the abovementioned methodological 
considerations by assessing the performance of children with and without 
dyslexia on three different experimental paradigms using a range of online (SRT, 
VSL and A-NADL) and offline (VSL and A-NADL) measures. In doing so, we 
want to provide a comprehensive study in which we investigate to what extent 
children with dyslexia have difficulty in statistical learning. In all analyses, we 
address two research questions:  
 

1. Do we find evidence of sensitivity to the statistical structure in the SRT, 
VSL and A-NADL tasks in children overall? 

2. Do we find evidence of a difference in performance on the SRT, VSL 
and A-NADL tasks between children with and without dyslexia?  
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If children with dyslexia experience general difficulties with statistical learning, 
we expect to find group differences across the different tasks tapping into 
statistical learning regardless of the characteristics of the task (e.g. domain, 
modality or type of structure to be learned). By running subsequent exploratory 
analyses that control for sustained attention and visual and auditory short-term 
and working memory, we take into account the possibility that potential group 
differences in statistical learning are due to underlying differences in these 
cognitive abilities (i.e. do children with dyslexia experience problems with 
statistical learning independent of potential difficulties with sustained attention 
and shot-term and working memory?). Thus, the present study will shed light on 
the mechanisms underlying the reading problems experienced by individuals with 
dyslexia: could a domain-general deficit in statistical learning contribute to these 
problems? 
 

4.2 Materials and methods 
 
4.2.1 Participants 
 
Participants in the present study were tested as part of a larger study that 
investigates statistical learning and its relationship with language skills in children 
with dyslexia, children with DLD and TD children. Ten out of 60 participants 
with a prior formal diagnosis of dyslexia were excluded because they did not meet 
our pre-determined inclusion criterion of scoring an average of 6 or less (the 10th 
percentile) on word reading and nonword reading. Similarly, 4 out of 54 children 
in the TD group were removed for not meeting our inclusion criterion of scoring 
an average of 8 or more (the 25th percentile). Consequently, the final sample 
consisted of 50 children with dyslexia (26 girls, 24 boys, age range 8;4 – 11;2, M 
= 9;10) and 50 age-matched TD children (24 girls, 26 boys, age range 8;3 – 11;2, 
M = 9;8). None of the children had diagnoses of (additional) developmental 
disorders and all children were native speakers of Dutch (at least one parent 
spoke Dutch at home) and were reported to have IQ levels within the normal 
range of the general population. Group characteristics, including raw and 
standardized scores on several background measures, are presented in Table 4.1. 
It is important to note here that the TD group partly overlaps with studies 
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investigating statistical learning and its relationship with language in children with 
DLD (Lammertink et al., 2019a; 2019b; 2020). 
 Children with dyslexia were recruited through treatment centers in 
Amsterdam (N = 25) and Amersfoort (N = 10) and through parent support 
groups on Facebook (N = 11). Four children with dyslexia were tested along with 
the control group in four schools across the province of Noord-Holland in the 
Netherlands. The ethical committee of the Faculty of Humanities of the 
University of Amsterdam approved the protocol for the present study in 2016. 
All parents and/or legal guardians of participants were informed about the 
project through a newsletter. Compliant with the regulations of the ethical 
committee, informed consent was obtained from the parents and/or legal 
guardians of children with dyslexia prior to testing (active consent). For the 
control group, schools and teachers consented to participation, and parents 
and/or legal guardians could retract permission of including their child up to 8 
days following testing (passive consent).  
 To compare the group of participants with dyslexia with their TD peers 
on the range of included background measures, we fitted linear models on the 
raw data using the “lm” function for R software (R Core Team, 2019). No 
significant differences were found between the chronological ages of the groups 
(t = 0.839, p = .40), the groups’ socio-economic status (SES; t = 0.173, p = .86) 
or non-verbal reasoning (t = -0.041, p = .97). SES scores were obtained from the 
Netherlands Institute for Social Research (NISR) on the basis of children’s home or 
school postal codes depending on the testing location. These SES scores were 
calculated by the NISR in 2017 and indicate the social status of a given 
neighborhood in comparison to other neighborhoods in the Netherlands (open 
source data that can be accessed through the NISR website). Non-verbal 
reasoning was assessed through Raven’s Standard Progressive Matrices (Raven & 
Raven, 2003). We also measured children’s reading of single Dutch words (Een 
Minuut Test; Brus & Voeten, 1972) and pseudo-words (Klepel; van den Bos, 
Spelberg, Scheepsma, & de Vries, 1994), their spelling (Schoolvaardigheidstoets 
Spelling; Braams & de Vos, 2015) and their rapid automatized naming (RAN) of 
pictures and letters (Continu Benoemen en Woorden Lezen; van den Bos & Lutje 
Spelberg, 2007). In line with expectations, analyses show that children with 
dyslexia performed significantly more poorly than the TD children on all 
measures assessing literacy skills (reading words: t = -13.83, p = 9×10-25, reading 
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pseudo-words: t = -16.75, p = 1.7×10-30, spelling: t = -11.42, p = 9.4×10-20, RAN 
pictures and letters: t = -4.985, p = 2.7×10-6 and t = -5.421, p = 4.3×10-7 
respectively). 
 We assessed cognitive abilities that are often associated with statistical 
learning and that may differ between our groups of participants with and without 
dyslexia: short-term and working memory and attention (see Table 4.1). Short-
term and working memory were tested in the auditory domain with the forward 
and backward digit span tasks from the Dutch version of the Clinical Evaluation 
of Language Fundamentals (CELF; Kort, Schittekatte, & Compaan, 2008) and using 
forward and backward versions of the dot matrix task in the visuospatial domain 
(Alloway, 2012). Note that, for the dot matrix task, standardized scores are 
unavailable and data is based on 49 children with dyslexia, due to missing data 
for one participant as a result of equipment failure. Sustained attention was 
measured through the Score! subtest of the Dutch Test of Everyday Attention for 
Children (TEA-Ch; Schittekatte, Groenvynck, Fontaine, & Dekker, 2007). In this 
task, children perform 10 items that contain between 9 and 15 target sounds that 
are presented at varied intervals. Their task is to silently count the target sounds, 
reflecting the child’s ability to maintain attention over time. The digit span 
backward and dot matrix forward and backward did not reveal significant 
differences between participants with and without dyslexia (digit span backward: 
t = -1.257, p = .21, dot matrix forward: t = -0.667, p = .51, dot matrix backward: 
t = -1.248, p = .22). Digit span forward performance (i.e. verbal short-term 
memory) was significantly poorer in participants with dyslexia as compared to 
their TD peers (t = -5.36, p = 5.5×10-7). The groups differed marginally 
significantly in sustained attention (t = -1.939, p = .055). Given these findings, 
we explore whether adding the digit span forward and sustained attention scores 
to our models influences our findings regarding statistical learning performance 
(see §4.2.6 on scoring and analysis).  
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Table 4.1. Minimum, maximum and mean (SD) raw and standardized scores on 
background, memory and sustained attention measures. 

 
 

Dyslexia (N = 50) 
 

Control (N = 50) 
Raw Standardized Raw Standardized 

Age 8;4 – 11;2 
9;10 (0;9) 

N/A 8;3 – 11;2 
9;8 (0;10) 

N/A 

SES -3.31 – 2.09 
0.2 (1.2) 

N/A -1.28 – 1.41 
0.2 (1.1) 

N/A 

Nonverbal reasoninga 23 – 49 
37.2 (6.6) 

7 – 95 
55.7 (25.0) 

16 – 55 
37.3 (8.1) 

6 – 98 
60.1 (28.1) 

Reading wordsb 8 – 59 
34.1 (11.7) 

1 – 7 
3.3 (2.1) 

44 – 92 
66.3 (11.6) 

7 – 15 
10.5 (2.2) 

Reading pseudo-wordsb 8 – 39 
22.0 (8.0) 

1 – 7 
4.4 (1.6) 

33 – 89 
61.0 (14.4) 

7 – 15 
11.1 (2.2) 

Spellinga 0 – 17 
8.4 (4.6) 

0 – 71 
11.8 (13.7) 

9 – 27 
18.6 (4.7) 

6 – 95 
49.9 (24.7) 

RAN picturesb 35 – 80 
53.2 (10.2) 

2 – 14 
7.7 (2.7) 

30 – 63 
44.1 (7.3) 

5 – 16 
10.7 (2.8) 

RAN lettersb 23 – 79 
36.1 (10.4) 

1 – 12 
5.4 (2.7) 

18 – 46 
27.2 (5.5) 

3 – 16 
9.6 (3.1) 

Sustained attentionb 1 – 10 
7.0 (2.5) 

1 – 13 
7.4 (3.3) 

3 – 10 
7.8 (1.8) 

3 – 14 
9.1 (3.0) 

Digit span forwardb 4 – 11 
7.3 (1.5) 

1 – 13 
7.7 (2.6) 

6 – 12 
8.9 (1.5) 

5 – 15 
10.7 (2.9) 

Digit span backwardb 2 – 7 
4.2 (1.1) 

1 – 14 
9.0 (2.5) 

2 – 8 
4.5 (1.5) 

4 – 16 
10.0 (3.2) 

Dot matrix forward 15 – 35 
25.1 (4.7) 

N/A 13 – 34 
25.7 (5.1) 

N/A 

Dot matrix backward 8 – 35 
22.9 (5.0) 

N/A 15 – 34 
24.1 (4.9) 

N/A 

Note. Raw scores: number correct on the Raven (max = 60), number words and pseudo-
words read correctly within 1 minute and 2 minutes respectively, number of words 
spelled correctly (max = 30), number of seconds spent on the task in case of the RAN 
(i.e. higher score = lower performance), number correct on sustained attention (max = 
10), digit span (max = 16), and dot matrix (max = 36). Standardized scores: a percentile 
scores (norm = 50) or b norm scores (norm = 10).  
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Figure 4.1. SRT task, set up of the experiment. Left: a yellow smiley appeared in one of 
four marked locations on a tablet screen. Right: participants were required to press the 
corresponding buttons on a gamepad controller. 
 
4.2.2 SRT task 
 
A visual stimulus (yellow smiley face) repeatedly appeared in one out of four 
marked locations on a black background presented on a tablet screen. 
Participants were instructed to press corresponding buttons on a gamepad as 
quickly and accurately as possible and practiced the task in 28 trials (see Figure 
4.1). Each instance of the visual stimulus was visible until a response was given, 
with a 250 milliseconds interval before the next instance of the stimulus 
appeared. Participants had a maximum of 3 seconds to respond before the task 
would move on to the next instantiation of the stimulus automatically.  

Unbeknownst to the participant, the stream of stimuli was divided into 
seven underlying blocks. The first block contained 20 random trials. Blocks 2 
through 5 and block 7 contained structured input that consisted of six repetitions 
of a 10-item sequence (i.e. sequence blocks, 60 trials each). The sequence 
consisted of a constant order of locations (quadrants) in which the visual stimulus 
appeared (quadrants 4, 2, 3, 1, 2, 4, 3, 1, 4, 3). In disruption block 6, the 
appearances of the stimulus no longer followed the sequence, but was presented 
in random order (i.e. 60 random trials). Both accuracy and RT to each stimulus 
presentation were recorded. If learning takes place in the SRT task, RTs to 
predictable input averaged over sequence blocks 5 and 7 are expected to be 
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shorter than RTs to unpredictable input in the intervening disruption block 
(Nissen & Bullemer, 1987). The SRT task in the present study did not include an 
explicit offline test phase. 
 
4.2.3 VSL task 
 
4.2.3.1 VSL task: online exposure phase 
 
In the VSL task, visual stimuli were presented one at a time in the middle of a 
tablet screen. Without the participants’ knowledge, stimuli appeared in the same 
four groups of three (i.e. triplets; ABC, DEF, GHI, and JKL). The exposure 
phase of the VSL task is divided into four blocks containing six repetitions per 
triplet, resulting in 24 repetitions of each triplet. Following previous studies 
adopting a similar structure (Arciuli & Simpson, 2011; 2012; Turk-Browne et al., 
2005), triplets could not appear twice in a row and pairs of triplets could not be 
repeated (i.e. sequences such as ABC, ABC or ABC, JKL, ABC, JKL could not 
occur). The VSL structure can be expressed in terms of predictability through 
the TPs (the probability of event i+1 given event i): given the occurrence of 
element A, the TP to element B is 1 and the same holds for element C given 
element B. The TP when crossing a triplet boundary is low. Thus, whereas 
elements 2 and 3 within triplets (e.g. stimuli B and C in the triplet ABC) are 
completely predictable, the first element of the following triplet (e.g. stimulus D 
of the triplet DEF) is less predictable.  
 The self-paced nature of the task entails that participants responded to 
each individual stimulus by pressing the space bar, upon which the next stimulus 
appeared after 200 milliseconds (Siegelman et al., 2018; van Witteloostuijn, 
Lammertink et al., 2019, see chapter 2). We recorded RTs to individual stimuli, 
which were used as an online measure of learning. If learning takes place, RTs to 
predictable stimuli (i.e. elements 2 and 3 within triplets) are expected to be shorter 
than RTs to unpredictable stimuli (i.e. element 1 within triplets). Thus, learning 
in the online phase of the VSL is reflected by a difference in RTs to predictable 
as compared to unpredictable stimuli, since sensitivity to the statistical structure 
is hypothesized to result in faster processing of predictable stimuli (as in the SRT 
task). 
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 As part of the cover task, three stimuli per block were presented twice 
in succession (i.e. 12 repetitions in total; Arciuli & Simpson, 2011; 2012). In the 
event of a repeated stimulus, participants were required to respond by tapping 
the alien on the touch screen. Each triplet contained a double stimulus three 
times throughout the exposure phase, all three elements within the triplet once 
(e.g. the triplet ABC occurs once as AABC, ABBC, and ABCC). In each block, 
three distinct triplets contained a double stimulus in random positions of the 
stream of stimuli, again all three element positions within triplets once (e.g. 
AABC, DEEF, GHII). 
 
4.2.3.2 VSL task: offline test phase 
 
To test participants on their acquired knowledge of the triplet structure, they 
were tested in an offline test phase subsequent to exposure that consisted of 40 
multiple-choice questions. Using the same set of 12 stimuli as used in the 
familiarization phase, four foil triplets were created (AEI, DHL, GKC, and JBF, 
all with TPs of 0 within triplets). Participants first received three-alternative 
forced choice (3-AFC) questions in which they were asked to complete a missing 
shape (N = 16, chance level = 1/3) and subsequently questions in which they 
were required to pick the more familiar pattern out of two options (2-AFC; N = 
24, chance level = 1/2). Test items either tested complete triplets (3-AFC: N = 8, 
2-AFC: N = 8) or pairs within triplets (3-AFC: N = 8, 2-AFC: N = 16). Learning 
in the VSL test phase is evidenced by above-chance performance, since above-
chance performance reflects participants’ ability to explicitly judge which patterns 
belong to the statistical structure in the VSL task. 
 
4.2.3.3 VSL task: procedures 
 
Importantly, the effect of single stimuli or triplets and the effect of the order of 
appearance during familiarization and testing were counter-balanced: two sets of 
triplets (and foil triplets) were created using the same set of 12 stimuli, and two 
random orders of the presentations of triplets during exposure and testing were 
created. This resulted in four versions of the experiment, to which participants 
were randomly assigned. 
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 Before the exposure phase, participants performed two practice phases 
consisting of an alternative set of stimuli. In the first practice phase, participants 
practiced sending home the aliens by pressing the space bar (N = 16). In the 
second part, children were instructed to pay attention to double stimuli and 
instructed to tap the touch screen in these cases (N = 18, 3 double stimuli). 
Importantly, children were instructed to pay attention to the aliens and were 
informed that some of the aliens liked each other and stood in line together. In 
between the four blocks of the experiment, participants received stickers for a 
diploma and were stimulated to pay attention to the aliens. Prior to each of the 
two parts of the offline test phase, participants received instructions and a 
practice trial during which they were encouraged to make a guess in case they 
were unsure of the correct response. 
 
4.2.4 A-NADL task 
 
4.2.4.1 A-NADL task: online exposure phase 
 
Children were exposed to an artificial language that, unbeknownst to them, 
contained two nonadjacent dependencies in 80% of the trials: tep X lut and sot X 
mip, where tep predicted lut and sot predicted mip and the variable intervening X-
element always consisted of two syllables (e.g. wadim, N = 24; e.g. Gómez, 2002). 
The remaining 20% of the trials were filler trials that deviated from the two 
nonadjacent dependencies. These trials can be described as fXf trials and 
resembled the aXb nonadjacent dependency structure: the elements in the f 
positions consisted of one-syllable nonwords (N = 24) and were separated by the 
same X-elements used in the nonadjacent dependencies. Appendix G presents 
an overview of all X- and f-elements used in the present experiment (adapted 
from Lammertink et al., 2019a, Table 2, p. 12). In filler trials, however, the first 
f-element did not predict the second f-element. Each trial in the A-NADL thus 
consisted of three elements and was between 2067 and 2908 milliseconds long 
(M = 2415 milliseconds) with an interval of 250 milliseconds between elements. 
All stimuli used in the A-NADL were created in accordance with Dutch 
phonotactic constraints, followed a natural Dutch sentence prosody (e.g. het meisje 
loopt, the girl walks), and were recorded by a female native speaker of Dutch. 
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  The task consisted of a total of 270 trials divided into five blocks: four 
blocks containing the nonadjacent dependency rules and fillers (rule blocks 1 – 3 
and 5) and one intervening block in which the strings did not contain the 
nonadjacent dependency rules (disruption block 4). Forty-eight trials in each of 
the rule blocks contained the two nonadjacent dependencies (24 times tep X lut 
and 24 times sot X mip) in addition to 12 fillers, resulting in a total of 60 trials per 
rule block. Both nonadjacent dependencies were presented in combination with 
each X-element once in each block and thus repeated four times during the 
exposure phase (i.e. 96 exposures to each nonadjacent dependency). The 
disruption block contained 30 trials in which the rule structure was disrupted: 
trials were of the structure f X lut and f X mip, so that the occurrences of lut and 
mip were no longer predictable (N = 12 each). The remaining six trials were filler 
items. Combinations of filler elements (f) and X-elements were unique and only 
appeared once across the duration of the exposure phase (N = 54). 
 Importantly, the online measure of learning was a word-monitoring task 
that required participants to attend to the speech stream and track the occurrence 
of a “target” (i.e. a specific nonword) and respond as quickly as possible by 
pressing a button on an external button box (Lammertink, van Witteloostuijn et 
al., 2019; López-Barroso et al, 2016). The target was always the predictable b 
element of one of the two nonadjacent dependencies (i.e. lut or mip) and 
participants were randomly assigned to one of two experiment versions (version 
1: target = lut, version 2: target = mip). Predictable element b of the unattended 
nonadjacent dependency will henceforth be referred to as the “nontarget” 
(version 1: nontarget = mip, version 2: nontarget = lut). When the trial contained 
the target, participants were required to press the green button, while they were 
required to press the red button when the trial did not contain the target. For 
example, in version 1 of the experiment, where lut was the target, participants 
had to press the green button when trials contained the target word lut (rule 
blocks: tep X lut, disruption block: f X lut) and press the red button when trials 
contained the nontarget word mip (rule blocks: sot X mip, disruption block: f X 
mip) or contained neither lut or mip as was the case in filler items. Children had 
1500 milliseconds to respond to each trial before the experiment moved on to 
the next trial automatically. Accuracy and RT were recorded for each individual 
trial. 

As in the SRT and VSL tasks, learning in the online measure of the A-
NADL is defined as the difference in RTs between predictable and unpredictable 
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input. The target and non-target words were predictable during rule blocks (they 
were always preceded by the corresponding a element as in tep X lut and sot X 
mip) but were no longer predictable in the disruption block (they were no longer 
preceded by the a element but by a variable f element as in f X lut and f X mip). 
Thus, mimicking the structure of the SRT task, learning in the A-NADL task is 
evidenced by shorter RTs to both target and nontarget trials in rule blocks 3 and 
5 as opposed to the intervening disruption block.  
 
4.2.4.2 A-NADL task: offline test phase 
 
Participants were tested on their acquired knowledge of the nonadjacent 
structure through an offline grammaticality judgment task (GJT; N = 16). They 
were required to indicate whether they had previously heard each string by saying 
either “yes” (endorsement) or “no” (rejection). Eight items were grammatical 
strings (e.g. sot densim mip) and eight were ungrammatical strings where the 
nonadjacent dependency structure was disrupted (e.g. sot filka lut). Similarly, eight 
strings contained familiar X-elements used during exposure and eight strings 
contained novel X-elements that were only used during the test phase. Two 
additional items that contained three X-elements (i.e. XXX) functioned as filler 
items and were not included in the analyses. If learning in the test phase of the 
A-NADL is successful, we expect to find a higher proportion of endorsements 
as opposed to rejections to grammatical strings than to ungrammatical strings. A 
visual representation of the on- and offline phases of the A-NADL used in the 
present study is provided in Appendix H (adapted from Lammertink et al., 2019a, 
Figure 1, p. 12). 
 
4.2.4.3 A-NADL task: procedure 
 
There were two counterbalancing variables in the A-NADL: children either 
received a version of the task where the target was lut or the target was mip and 
the location of the green and red buttons on the external button box were 
counter-balanced. Participants were randomly assigned to the four versions of 
the experiment. 
 Participants were seated behind a tablet and held the button box in their 
hands, using both thumbs to press the buttons. The auditory stimuli were played 
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through headphones. The word-monitoring task was framed as a game in which 
the participant helped a monkey to pick bananas. Children were told that they 
would hear three-word sentences and had to press the green button when they 
heard the target and the red button when they did not. In accurate trials, the 
monkey was rewarded with a banana. Children were instructed to pay attention 
to all three words in the sentences, since they would receive questions at the end. 
A practice phase containing six items preceded the start of the experiment, which 
was repeated until they reached a score of 4 out of 6 correct (for which they had 
to master the motorics and press in time). During the exposure phase, the 
experiment was broken up into short blocks containing 30 trials each. Following 
these blocks, children received feedback on the number of bananas they picked 
and received a sticker for their diploma. Subsequent to exposure, the 
experimenter instructed the participant that they would hear sentences one at a 
time and to indicate whether they had heard the sentence before or not. Two 
practice items preceded the GJT and children were encouraged to guess if they 
were uncertain of the answer. 
 
4.2.5 General procedure 
 
All statistical learning tasks were programmed and ran using E-prime 2.0 
software (Psychology Software Tools, 2012; Schneider et al., 2012) on a Windows 
Surface 3 tablet with touchscreen and keyboard. Auditory instructions (and 
stimuli in the case of the A-NADL) were played over Sennheiser HD 201 
headphones. Additional materials included the gamepad used in the SRT task 
(Trust wired gamepad GXT540) and the external button box used in the A-
NADL task. 
 As mentioned previously, participants in the present study were tested 
as part of a larger study. Children were tested individually by an experimenter in 
a quiet room either at home or at school. Testing lasted approximately three 
hours, divided over three testing sessions that lasted around an hour. In each of 
these sessions, one of the statistical learning tasks was administered along with 
three or four of our linguistic or cognitive measures (each of these was measured 
only once). The order of the sessions (and the order of tasks within sessions) was 
counter-balanced: six testing orders were created to which participants were 
assigned randomly. Thus, the order of the statistical learning tasks (order 1: A-
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NADL, SRT, VSL; order 2: SRT, VSL, A-NADL; order 3: VSL, A-NADL, SRT), 
as well as the linguistic and cognitive measures, was semi-randomized. Each child 
was rewarded for their participation with stickers on a diploma and a small 
present after completing the three sessions. 
 
4.2.6 Scoring and analyses 
 
Online RT data of the SRT, VSL and A-NADL tasks was analyzed with linear 
mixed effects models that were built using the lme4 package (version 1.1-13; Bates 
et al., 2014) for R software. Similarly, the lme4 package for R was used to build 
generalized linear mixed effects models for the offline accuracy data in the VSL 
and A-NADL tasks. Wherever possible, a confidence interval (CI) was computed 
by the profile method (stats package version 3.5.2 for R software; R Development 
Core Team, 2008), and a corresponding p-value was obtained by interpolation 
among the profiles for different CI criteria (e.g. a p-value of .03 was concluded if 
one of the edges of the 97 percent CI was zero; see “get.p.value” function on the 
open science framework [OSF]; link provided below). In the A-NADL offline 
measure, some CIs were computed using Wald’s approximation for CI’s and p-
values are obtained from the model output. This was only done when (1) the 
profile method failed to provide CIs, and (2) we did not want to further decrease 
the random effects structure, and (3) the result was non-significant.  

For all analyses, continuous predictors were centered and scaled, while 
categorical predictors were coded into orthogonal contrasts. Group is always 
orthogonally coded such that the control group is marked as - 1/2 and the dyslexia 
group is marked as + 1/2. Therefore, the effect of group is always interpreted as 
the change in effect when moving from the control group to the group of 
participants with dyslexia (see Table 4.2 for an overview of all orthogonally coded 
categorical predictors per statistical learning task and following sections for 
further explanation). In line with Barr et al. (2013), models contained the maximal 
random effect structure, unless this resulted in a failure to fit the model or in 
(near-)perfect correlations between the random effects in which case reductions 
were performed that are explicitly justified in the text. Raw data and R Markdown 
and html files detailing all analyses of the SRT, VSL and NADL tasks can be 
accessed through the following link to our OSF project page: 
https://osf.io/t8scv/. 
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For online RT measures, analyses were first run on the raw data. 
However, in all three tasks, this resulted in non-normally distributed residuals of 
the linear mixed effects models as evidenced by their Quantile–Quantile (“QQ”) 
plots. Therefore, we decided to use a rank order transformation, which is a 
principled non-arbitrary way to reduce the effect of outliers and to reduce 
skewness in the distribution of the residuals (see Baguley, 2012, p. 354–358). The 
commonly used log-transformation was not appropriate due to the presence of 
negative RTs. The rank-order transformation was done by ranking the N pieces 
of pooled data from 1 to N, then computing the inverse cumulative Gaussian 
distribution (with the following formula in R: qnorm[(ranking-0.5)/N]); the 
model estimates hereby come to represent differences in z-values (Δz; e.g. the 
main effect of a binary predictor is given by the change in z-value from one level 
to the other). 

As part of our exploratory analyses, we compute additional models for 
each of our statistical learning measures to investigate the effect of adding 
sustained attention and verbal short-term memory as continuous predictors; the 
fit of each of these models is compared statistically to the model without these 
two measures. At the request of reviewers, children’s chronological age was 
added as an exploratory (continuous) predictor in all models. This was done to 
reduce variance and to examine whether age interacts with the measures of 
learning in the statistical learning measures (relating to research question one) 
and group (relating to research question two). Only significant findings regarding 
the exploratory effect of age are included in the results section. The subsequent 
sections provide further details regarding the pre-processing of the data and the 
analyses of the three statistical learning tasks. 
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Table 4.2. Orthogonal contrast coding of categorical predictors in the SRT, 
VSL and A-NADL tasks. 

 

 
 

Predictor 
 

 

Contrast coding 
 

Purpose 

SRT Block (Bl) 1: Bl 6 = - 2/3, Bl 5 and 7 = + 1/3 
2: Bl 5 = - 1/2, Bl 7 = + 1/2 

RQ 1 
Exploratory 

 Group TD = - 1/2, DD = + 1/2  RQ 2 
VSL Element (El) 1: El 1 = - 2/3, El 2 and 3 = + 1/3 

2: El 2 = - 1/2, El 3 = + 1/2 
RQ 1 
Exploratory 

 Group TD = - 1/2, DD = + 1/2  RQ 2 
 Triplet Set (TS) TS A = - 1/2, TS B = + 1/2 Exploratory 
 Random Order (RO) RO 1 = - 1/2, RO 2 = + 1/2 Exploratory 
A-NADL Block (Bl) 1: Bl 4 = - 2/3, Bl 3 and 5 = + 1/3 

2: Bl 3 = - 1/2, Bl 5 = + 1/2 
RQ 1 
Exploratory 

 Grammatical No = - 1/2, Yes = + 1/2 RQ 1 
 Group TD = - 1/2, DD = + 1/2  RQ 2 
 Generalization No = - 1/2, Yes = + 1/2 Exploratory 
 Target Type Target = - 1/2, Non-target = + 1/2 Exploratory 
 Experiment Version Lut = - 1/2, Mip = + 1/2 Exploratory 

Note. RQ = research question: RQ 1 pertains to the overall learning effect, while RQ 2 
regards the effect of group (dyslexia versus control) when looked at in interaction with 
the effect of learning overall. Exploratory predictors and contrasts are included either 
because predictors are counter-balancing factors or because predictors need to be 
orthogonally coded (i.e. in the case of predictors with two contrast codings).  
 
4.2.6.1 SRT task 
 
The first block of the SRT, containing 20 random presentations of stimuli, was 
removed from analysis. Furthermore, incorrect responses and trials in which no 
response was given were removed from the data file (5.9% data loss).  

The linear mixed effects model was run using normalized RTs as the 
dependent variable. Since online sensitivity to the sequence in the SRT task is 
measured as the difference in RTs to predictable versus unpredictable input, our 
analysis contrasted RTs in sequence blocks with RTs in the intervening 
disruption block that contained random input in order to answer research 
question one (i.e. within-participant predictor Block: block 5 and 7 vs. block 6). 
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The categorical predictor Block was orthogonally coded into two contrasts: the 
effect of learning (i.e. random block 6 coded as - 2/3 vs. sequence blocks 5 and 7 
coded as + 1/3 each, thereby comparing random block 6 to the average of 
sequence blocks 5 and 7) and the contrast between the two sequence blocks 
(block 5 vs. block 7 coded as - 1/2 and + 1/2 respectively). Further predictors in 
the model included the between-participants predictors Group (control versus 
dyslexia) and Age. To answer our second research question, we looked at the 
interaction between the first level of Block and Group. The model included by-
subject random intercepts and by-subject random slopes for Block. 
 
4.2.6.2 VSL task 
 
Our scoring and analysis procedures of the online RT measure followed those 
by van Witteloostuijn, Lammertink et al. (2019, see chapter 2). The RTs to the 
first triplet in each block of the experiment were removed (4.2% data loss). This 
was done because these responses are likely to deviate from participants’ normal 
patterns. Additionally, RTs shorter than 50 milliseconds were removed from the 
dataset, as these were assumed to reflect cases in which the participant did not 
process the stimulus (0.2% data loss).  
 Sensitivity to the structure is measured as the difference in RT to 
unpredictable versus predictable elements within triplets; this sensitivity may 
depend on time (research question one). Thus, the model fitted normalized RTs 
as a function of the within-participant predictors Element (element 1, 2 and 3 
within triplets) and Time (repetitions 1-24 of triplets). The categorical predictor 
Element was orthogonally coded into two contrasts: the effect of learning (i.e. 
element 1 coded as - 2/3 vs. element 2 and 3 coded as + 1/3 each), and the contrast 
between the two predictable elements (element 2 coded as - 1/2 and element 3 
coded as + 1/2). The interaction between the effect of learning (i.e. the first level 
of Element) and the between-participant predictor Group (control versus 
dyslexia), and its three-way interaction with Group and Time were of interest to 
our second research question. Two counter-balancing factors were included in 
the model as within-participant predictors (Triplet Set A and B coded as - 1/2 and 
+ 1/2 respectively and Random Order version 1 and 2 also coded as - 1/2 and      
+ 1/2 respectively). Finally, the model contained the exploratory between-
participants predictor Age. The random effect structure included by-subject and 
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by-item intercepts, as well as by-subject random slopes for Element and Time 
and the interaction between the two. The individual aliens used in the experiment 
(N = 12) were used for the random intercepts for item. By-item random slopes 
for group were removed, since these resulted in a perfect correlation between the 
random intercept for item and the by-item random slopes for group (i.e. the 
model was overparameterized). This removal did not result in a decrease in the 
fit of the model (χ2 = 0.0655, df = 2, p = .968). In order to compute the CIs and 
p-values of the final model, the interaction between Element and Time, which 
was non-significant, was removed from the random effects structure. 
 In the offline test phase, responses were coded as either correct or 
incorrect (i.e. 1 or 0). Accuracy is expressed as the proportion of correct 
responses, such that chance levels are 1/3 and 1/2 for the 3-AFC and 2-AFC 
questions respectively. No accuracy data was removed prior to running the 
generalized linear mixed effects models. 

Two models were constructed to analyze the 3-AFC and 2-AFC accuracy 
data separately. To answer our first research question as to whether learning took 
place, we examined whether the proportion of accurate responses exceeded 
chance level, which is reflected in the intercept of the generalized linear mixed 
effects models (if performance is significantly above chance level, the CI does 
not contain the chance level probability associated with that task). As for the 
second research question, the model contained the between-participants 
predictor Group (control versus dyslexia). Following the structure of the online 
VSL model, the offline models further contained the orthogonally coded Triplet 
Set and Random Order as within-participant predictors, Age as an exploratory 
between-participants predictor and by-subject intercepts. 
 
4.2.6.3 A-NADL task 
 
We largely followed Lammertink, van Witteloostuijn et al. (2019) in our analysis 
of the online RT measure of the A-NADL task. Filler trials (20% of trials) and 
incorrect responses and cases in which no response was given (7.6% of target 
and non-target trials) were removed prior to analysis.  
 As in the SRT task, learning during the exposure phase of the A-NADL 
is assessed as the difference between RTs to predictable input in rule blocks and 
RTs to pseudo-random input in the disruption block (research question one). 
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Therefore, in order to find out whether we find evidence of learning during 
exposure, the linear mixed effects model fitted normalized RTs as a function of 
the within-participant predictor Block (i.e. rule blocks 3 and 5 versus disruption 
block 4). Block was orthogonally coded into two contrasts: the effect of learning 
(i.e. disruption block 4 coded as - 2/3 vs. rule blocks 3 and 5 coded as + 1/3 each) 
and the contrast between the two rule blocks (block 3 vs. block 5 coded as - 1/2 
and + 1/2 respectively). The second research question, which pertains to the 
effect of group, was investigated through the interaction between our measure 
of learning and the between-participant predictor Group (control versus 
dyslexia). Several other predictors are considered, since these may influence the 
findings of the model. These included the within-participants predictor Target 
Type (i.e. target or non-target, coded as - 1/2 and + 1/2 respectively) and the 
between-participants counter-balancing factor Experiment Version (i.e. 
attending to lut coded as - 1/2 vs. mip coded as + 1/2). Finally, Age was included 
in the model as an exploratory between-participants predictor. The random 
effects structure included by-subject and by-item random intercepts and by-
subject random slopes for Block and Target Type and by-item random slopes for 
Experiment Version. The random effect of item refers to the individual X-
elements used in the familiarization phase of the A-NADL (N = 24). By-item 
random slopes for group and the interaction between experiment version and 
group were removed. Similarly, by-subject random slopes for the interaction 
between Block and Target Type were removed. This was done because these 
resulted in near-perfect correlations, which means that the model was 
overparameterized. This removal did not result in a decrease in the fit of the 
model (χ2 = 8.178, df = 18, p = .98). 
 The offline measure of the A-NADL task consisted of yes/no responses 
to individual items in the GJT, which were coded as 1 (endorsements) or 0 
(rejections). The data that served as input to the generalized linear mixed effects 
model was thus the proportion of endorsements versus rejections (i.e. 
endorsement rates). No data was removed prior to analysis of the offline GJT. 
 Importantly, whether an item is endorsed or rejected does not yet inform 
us about learning, since accuracy depends on the grammaticality of the item (i.e. 
whether the item adheres to the A-NADL structure or not). To assess whether 
children showed evidence of learning in the offline measure of the A-NADL 
(research question one), the model estimated the within-participants effect of 
Grammaticality (grammatical vs. ungrammatical items orthogonally coded as + 
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1/2 and - 1/2 respectively) on endorsement rates. The interaction between 
Grammaticality and Group would provide evidence of a potential difference in 
performance between children with and without dyslexia (research question two). 
Since test items either tested familiar X-elements or generalization through novel 
X-elements, the within-participants predictor Generalization (no coded as - 1/2 
vs. yes coded as + 1/2) was included in the model. Finally, following the online 
model of the A-NADL, the offline model contained the between-participant 
counter-balancing predictor Experiment Version and the exploratory between-
participant predictor Age. By-subject and by-item random intercepts and by-
subject random slopes for Grammaticality and Target Type and random slopes 
for Experiment Version were included in the random effects. As in the online 
measure of the A-NADL, the random effect of item refers to the individual X-
elements used in the test phase of the A-NADL (N = 16). By-item random slopes 
for group and the interaction between experiment version and group and by-
subject random slopes for the interaction between Block and Target Type were 
removed due to overparameterization. Importantly, the fit of the model did not 
decline (χ2 = 1.793, df = 11, p = .999). In order to compute the CIs and p-values 
of the final model, the effect of Grammaticality, which was non-significant, was 
removed from the random effects structure. 
 

4.3 Results 
 
We focus on confirmatory analyses aimed at answering our research questions. 
Each time, we separately present results of some of the exploratory analyses, 
which are not related to our research questions but may nevertheless be 
interesting (cf. Wagenmakers et al., 2012). Since multiple measures were used to 
answer our research questions in the VSL and A-NADL tasks, all CIs (and 
associated significance criteria for p-values) of confirmatory results were 
Bonferroni-corrected to keep the overall false detection rate at 0.05. In the VSL, 
we used four measures to assess learning (i.e. two online measures: the effect of 
element and the effect of element in interaction with time, and two offline 
measures: 2-AFC and 3-AFC accuracy) and thus CIs were corrected for 
quadruple testing (CIs thereby correspond to a false detection rate of 0.05 / 4 = 
0.0125 for each effect, i.e. we have 98.75% CIs). CIs were corrected for double 
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testing in the A-NADL (i.e. one online and one offline measure), resulting in 
97.5% CIs. 
 As suggested by reviewers, supplementary analyses were conducted 
including the order of the statistical learning tasks as described in the general 
procedure as an additional predictor (see OSF for R Markdown and html files 
containing supplementary analyses). Since task order did not interact with our 
measures of learning (all t and z values < 1.8) and did not result in three-way 
interactions with our measures of learning and group (all t and z values < 1.8), 
results from the three testing orders were collapsed in subsequent sections that 
describe the results of the SRT, VSL and A-NADL tasks. 
 
4.3.1 SRT task 
 
Overall accuracy for both the TD (M = 93.8%) and dyslexia (M = 94.3%) groups 
was high, indicating that children attended to the task. Figure 4.2 presents the 
mean normalized RTs to accurate trials across the blocks of the SRT task. RTs 
were significantly shorter to structured input in sequence blocks 5 and 7 than to 
random input in disruption block 6 (Δz = -0.276, 95% CI [-0.329 … -0.223], t = 
-10.292, p = 7.5×10-9), indicating an effect of learning the SRT sequence in 
children when collapsing over groups. Group did not significantly influence the 
difference in RT to structured as opposed to unstructured input (Δz = -0.027, 
95% CI [-0.133 … +0.079], t = -0.507, p = .61). In other words, there is no 
evidence for a difference in performance between children with and without 
dyslexia on the SRT task.  

As mentioned, our model provides us with some exploratory findings. 
Firstly, no significant difference is found between RTs in the two structured 
blocks (Δz = +0.055, 95% CI [-0.003 … +0.113], t = 1.881, p = .063). The effect 
of group on the difference in RTs between the two structured blocks also does 
not reach significance (Δz = +0.073, 95% CI [-0.043 … +0.190], t = 1.248, p = 
.21). Although participants with dyslexia responded slightly slower than the 
control group overall, this effect does not reach significance (Δz = +0.102, 95% 
CI [-0.036 … +0.241], t = 1.462, p = .15). Participants’ age was found to influence 
RTs overall, with shorter RTs with increasing age (Δz = +0.102, 95% CI [-0.286 
… +0.1448], t = -6.190, p = 7.5×10-9), but does not interact with the measure of 
learning and/or with group (see OSF). Lastly, adding attention and verbal short-
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term memory to the model does not change the main findings and does not 
significantly improve the model fit (χ2 = 5.410, df = 12, p = .94). 
 

 
 

Figure 4.2. SRT task results. Mean normalized RTs (+/- 1 SE) across blocks for 
participants with dyslexia (top graph; red line) and control participants (bottom graph; 
green line). 
 
4.3.2 VSL task 
 
4.3.2.1 VSL task: online RT measure 
 
Responses to predictable elements were not significantly shorter as compared to 
unpredictable elements overall (Δz = -0.013, 98.75% CI [-0.038 … +0.012], t = 
-1.271, p = .21) and there was no evidence of an effect of time in interaction with 
the online measure of learning (i.e. the difference between predictable and 
unpredictable elements; Δz = -0.002, 98.75% CI [-0.024 … +0.019], t = -0.276, 
p = .78). Thus, we find no evidence of online sensitivity to the statistical structure 
in the VSL task. See Figure 4.3 for the mean normalized RTs to predictable and 
unpredictable elements across repetitions of triplets. The two-way interaction 
between the measure of learning and group (Δz = +0.005, 98.75% CI [-0.038 … 
+0.047], t = 0.265 p = .79) and three-way interaction including time (Δz = 
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+0.024, 98.75% CI [-0.019 … +0.067], t = 1.404, p = .16) were both non-
significant. We have no evidence that children with dyslexia perform the online 
VSL task differently than their TD peers. 
 The first exploratory finding is that participants with dyslexia responded 
slightly slower than participants in the control group, but this was not statistically 
significant (Δz = 0.009, 95% CI [-0.250 … +0.267], t = 0.066, p = .95). Secondly, 
RTs were found to be significantly shorter to element 2 than to element 3 within 
triplets (Δz = 0.045, 95% CI [+0.019 … +0.070], t = 3.501, p = .00057) and this 
effect was significantly larger in alien set A than in alien set B (Δz = -0.190, 95 % 
CI [-0.254 … -0.126], t = -5.889, 4.6×10-9). Note that there is no significant 
interaction between the difference in RTs to predictable elements and group (or 
alien set and group): there is no evidence that children with and without dyslexia 
perform differently with respect to the difference in RTs to predictable elements 
2 and 3 (see OSF). Adding attention and verbal short-term memory to the model 
does not significantly improve the model fit (χ2 = 72.296, df = 96, p = .97) or 
influence the main findings regarding either research question. 
 

 
 

Figure 4.3. VSL task online RT measure results. Mean normalized RTs (+/- 1 SE) to 
predictable (i.e. elements 2 and 3 within triplets; green dashed lines) and unpredictable 
(i.e. element 1; red solid lines) elements across repetitions of triplets during the exposure 
phase for participants with dyslexia (top graph) and control participants (bottom graph). 
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4.3.2.2 VSL task: offline 3-AFC and 2-AFC measures 
 
Figure 4.4 presents the raw data of the offline test phase of the VSL. In our 
models, performance was estimated to be 18% and 15% above chance level in 
the 3-AFC and 2-AFC questions respectively, which was significant in both cases 
(3-AFC: probability estimate = .520, 98.75% CI = [.462 … .579], p = 1.8×10-10; 
2-AFC: probability estimate = .653, 98.75% CI = [.600 … .704], p = 3.0×10-10). 
This means that, collapsing over group, children’s offline performance reveals 
learning in the VSL task. Pertaining to the second aim of our analysis, no 
significant effect of group was found on performance on 3-AFC (odds ratio 
estimate = 1.056, 98.75% CI = [0.659 … 1.695], p = .77) and 2-AFC (odds ratio 
estimate = 1.108, 98.75% CI = [0.701 ... 1.751], p = .57) questions. Hence, there 
is no evidence that children with dyslexia perform the offline VSL tasks 
differently than their TD peers.  

The first exploratory finding that should be noted is a significant 
interaction between alien set and group in the 3-AFC model (odds ratio estimate 
= 2.699, 95% CI = [1.298 ... 5.662], p = .0084): participants with dyslexia 
performed better in alien set B than in alien set A, and the opposite pattern is 
observed in the control group. This interaction does not reach significance in the 
model of 2-AFC performance (odds ratio estimate = 1.839, 95% CI = [0.906 ... 
3.766], p = .091). Once again, adding attention and verbal short-term memory to 
the offline models does not significantly improve the model fit for either 3-AFC 
(χ2 = 18.242, df = 16, p = .31) or 2-AFC (χ2 = 21.884, df = 16, p = .15) questions 
and does not change the main findings of either model. 
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Figure 4.4. VSL offline 3-AFC and 2-AFC measures results. Proportion of correct 
responses on 2-AFC (left, chance level = .500) and 3-AFC questions (right, chance level 
= .333) for participants with dyslexia (top) and control participants (bottom). Dots 
indicate individual scores, while the group mean is indicated using a black asterisk. 

 
4.3.3 A-NADL 
 
4.3.3.1 A-NADL task: online RT measure 
 
Overall accuracy during the online phase of the A-NADL was found to be high 
for both groups (TD: M = 95.5%, DD: M = 89.2%) indicating that participants 
attended to the task. Figure 4.5 presents the mean normalized RTs to targets and 
nontargets across the blocks of the A-NADL experiment. As predicted, RTs in 
rule blocks were significantly shorter than in the disruption block (Δz = -0.159, 
97.5% CI [-0.235 … -0.084], t = -4.796, p = 4.9×10-6). Thus, collapsing over group, 
we find evidence of online sensitivity to the NADL structure. There was no 
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significant interaction between the effect of learning and group (Δz = +0.011, 
97.5% CI [-0.135 … +0.157], t = 0.167, p = .87). In other words, we find no 
evidence of a difference in online sensitivity to the A-NADL task between 
children with and without dyslexia.  

Our model also provides us with an exploratory effect of target type, 
such that RTs were significantly shorter for the stimuli that the participants were 
attending to than those that were unattended (Δz = +0.199, 95% CI [+0.156 … 
+0.242], t = 9.226, p = 2.7×10-15), and experiment version, such that RTs were 
shorter for participants who attended lut than for those that attended mip (Δz = 
+0.176, 95% CI [+0.018 … +0.335], t = 2.197, p = .030). Additionally, target 
type and experiment version interact with one another and with our measure of 
learning (i.e. structured versus disruption blocks) in a three-way interaction (Δz 
= +0.168, 95% CI [+0.014 … +0.322], t = 2.134, p = .033). Thus, we find 
evidence that the effect of learning is enhanced in targets vs. nontargets, 
especially when children received the version of the A-NADL where they were 
instructed to attend lut. Crucially, the main findings regarding our second 
research question are not influenced by these exploratory results: we find no 
significant interactions with the effect of group (see OSF). We found no 
significant difference in RTs to the two rule blocks included in analyses (i.e. rule 
block 3 vs. rule block 5; Δz = +0.056, 95% CI [-0.012 … +0.125], t = 1.624, p = 
.11) and there was no significant interaction between this difference in RTs and 
group (Δz = -0.050, 95% CI [-0.187 … +0.088], t = -0.718, p = .47). There is a 
marginally significant difference between participants with dyslexia and the TD 
participants in their overall RTs, with slower responses in the group of 
participants with dyslexia (Δz = +0.152, 95% CI [-0.002 … +0.307], t = 1.950, p 
= .053). adding attention and verbal short-term memory to the model does not 
significantly improve the model fit (χ2 = 46.271, df = 48, p = .54) and does not 
influence the main findings of the online measure of the A-NADL task. 
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Figure 4.5. A-NADL online RT measure results. Mean normalized RTs (+/- 1 SE) to 
nontarget (i.e. non-attended b-element; red solid line) and target (i.e. attended b-element; 
green dashed line) items across blocks for participants with dyslexia (top graph) and 
participants in the control group (bottom graph). 

 
4.3.3.2 A-NADL task: offline GJT measure 
 
Figure 4.6 presents the raw proportion of items endorsed (i.e. accepted versus 
rejected) for participants with and without dyslexia on both grammatical and 
ungrammatical items in the offline phase of the A-NADL task. The model 
estimated that the effect of grammaticality on endorsement rates did not reach 
significance (odds ratio estimate = 1.123, 97.5% Wald CI = [0.592 ... 2.130], p = 
.68). Hence, we find no evidence of learning in children’s offline performance on 
the A-NADL. As for our second research question, we find no significant 
interaction between the effect of grammaticality and group (odds ratio estimate 
= .760, 97.5% Wald CI = [0.421 ... 1.369], p = .30). Therefore, we find no 
evidence of a difference in performance on the offline measure of the A-NADL 
between children with and without dyslexia.  
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Figure 4.6. A-NADL offline GJT measure results. Proportion of endorsements (i.e. 
proportion of items endorsed as opposed to rejected; chance level = .500) in the GJT for 
grammatical (left) and ungrammatical (right) items of participants with dyslexia (top) and 
control participants (bottom). Dots indicate individual scores, while the group mean is 
indicated using a black asterisk. 
 
 Besides these confirmatory findings, the model revealed a significant yes-
bias in the offline measure of the A-NADL (odds estimate of the intercept = 
1.507, 95% CI = [1.113 ... 2.050], p = .011): children are more likely to endorse 
items as opposed to reject them overall. This effect was significantly larger in the 
group of participants with dyslexia as opposed to the participants in the control 
group (odds ratio estimate = 1.362, 95% CI = [1.016 ... 1.840], p = .039), 
reflecting a larger yes-bias in children with dyslexia than in TD children. 
Secondly, we found that test items that contained a novel X-element were 
endorsed significantly less often than those that contained an X-element which 
had been heard during familiarization (odds ratio estimate = 0.335, 95% CI = 
[0.183 ... 0.608], p = .0012). Again, this effect is significantly larger in participants 
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with dyslexia when compared to the TD participants (odds ratio estimate = 
1.916, 95% CI = [1.113 ... 3.335], p = .019). We conclude that the endorsement 
preference (i.e. yes-bias) for familiar over novel X-elements is greater for children 
with dyslexia than for TD children. Note that these effects do not interact with 
our measures of learning (i.e. grammaticality) or the effect of group and thus do 
not influence the confirmatory results. As for our previous measures of statistical 
learning, the findings regarding the offline measure of the A-NADL are not 
significantly affected by adding sustained attention and short-term memory to 
the model and the fit of the model is not significantly affected (χ2 = 44.369, df = 
32, p = .072). 
 
4.4 Discussion 

 
The present study investigated statistical learning in children with dyslexia across 
three different experimental paradigms in a single sample, including the VSL and 
A-NADL paradigms that had not previously been used in child samples with 
dyslexia. We aimed to overcome methodological concerns as discussed in the 
introduction (e.g. Arciuli, 2017; Arciuli & Conway, 2017; West et al., 2017) by 
assessing learning through a range of online and offline measures and by 
controlling for group differences in underlying cognitive skills including memory 
and attention. Across the three statistical learning tasks, we see the same pattern 
of results: we find evidence of learning when we collapse over groups and we 
find no evidence of a difference in performance between children with dyslexia 
and their TD peers. In all analyses, these results remain unchanged after 
controlling for individual differences in short-term memory and sustained 
attention. Similarly, the main findings across all statistical learning measures are 
unaffected by participants’ age. Thus, this study finds no evidence in support of 
(or against) a (domain-general) statistical learning deficit. Thus, our study does 
not lend support for the hypothesis that a statistical learning deficit is the 
underlying cause of the literacy problems experienced by children with dyslexia. 
In the following sections we will elaborate on these findings and their 
implications. 
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4.4.1 Measuring statistical learning in child populations 
 
Although overall the same pattern of results arises such that 8- to 11-year-old 
children show (on- or offline) sensitivity to the statistical structures presented in 
the SRT, VSL and A-NADL tasks, the measures in the present study differed in 
their ability to detect learning in this age group. In the VSL task, children learned 
the structure as indicated by above chance performance on the offline 3-AFC 
and 2-AFC question, but the online measure did not reveal evidence of learning 
during the exposure phase. The fact that the children in the present study show 
offline learning is in line with previous studies that have indicated that, while 
offline tasks are problematic in younger school-aged children, performance 
increases between the ages of 5 and 12 (Arciuli & Simpson, 2011; Raviv & Arnon, 
2017). Thus, for the VSL paradigm, the offline 3-AFC and 2-AFC questions used 
here have been demonstrated to be sensitive to learning in children between 8 
and 11 years of age. However, we failed to replicate studies that suggested the 
added value of using the online RT measure of the self-paced VSL in adults and 
children: participants in these studies responded more slowly to unpredictable 
stimuli than to predictable stimuli (Siegelman et al., 2018; van Witteloostuijn, 
Lammertink et al., 2019, see chapter 2). This failure to replicate could be due to 
small changes in the methodological design but may also be an indication that 
the RT measure of the VSL is not reliable enough to study performance in child 
populations. Since the observed difference in RTs between predictable and 
unpredictable elements across the experiment was deemed small in children 
between 5 and 8 years of age (van Witteloostuijn, Lammertink et al., 2019, see 
chapter 2), this effect may be too small to reliably detect across studies and across 
samples. Future research should further investigate the usefulness of such an 
online measure and/or alternative online measures when studying statistical 
learning through the VSL paradigm in children.  

The A-NADL task revealed the reversed outcome: children were found 
to show online sensitivity to the nonadjacent structure, as indicated by an increase 
in RTs in the disruption block as opposed to RTs in the surrounding rule blocks, 
while there was no evidence that children endorse more grammatical than 
ungrammatical items in the offline test phase. This pattern of findings regarding 
the A-NADL replicates earlier findings in younger TD children by Lammertink, 
van Witteloostuijn et al. (2019), who report online learning but null findings on 



Statistical learning in dyslexia across three paradigms 
 
 

 
 
 
 
 
 
 

109 

2-AFC questions in 5- to 8-year-olds. As suggested there, the insensitivity of 
offline tasks could be due to children’s difficulties with the meta-linguistic nature 
of this type of questions. The offline task used for the A-NADL in the present 
study, the GJT, could contribute to these difficulties, since we have evidence that 
children are more likely to endorse items than to reject them (i.e. yes-bias). 
Additionally, we found evidence that children are more likely to endorse items 
that contain a familiar X-element than an unfamiliar X-element regardless of 
their grammaticality. This suggests that children were focused on the X-element 
when answering “yes” or “no”. More sensitive offline measures need to be 
developed to assess the outcome of the learning process in the A-NADL task by 
children. Importantly, however, the online measure has been shown to be a 
reliable measure of A-NADL in children, as we replicated the learning effect as 
reported by Lammertink, van Witteloostuijn et al. (2019). Therefore, future 
studies investigating A-NADL performance in children could adopt the online 
measure of learning (in addition to offline measures) to detect sensitivity to 
nonadjacent structures in speech during exposure. 
 
4.4.2 Statistical learning in dyslexia 
 
The main aim of the present study was to elucidate the extent of the proposed 
statistical learning difficulties in children with dyslexia. We did not find evidence 
of group differences on any of the on- or offline measures of the SRT, VSL or 
A-NADL tasks. Since these tasks assess statistical learning across domains 
(visuo-motoric, visual and auditory respectively) and across different types of 
statistical structures (fixed sequence, adjacent and nonadjacent dependencies 
respectively), we can conclude that we find no support for (or against) a (domain-
)general statistical learning deficit in dyslexia. 

Of course, a null result is difficult to interpret and can have many 
possible explanations beside the actual absence of the effect in reality and beside 
chance. To ascribe meaning to our findings, we have to show that the effects, if 
they exist at all, are small. Smallness of an effect can be measured by computing 
its maximal standardized effect size, i.e. by dividing the maximum absolute raw 
effect size (the greater absolute bound of the confidence interval) by the residual 
standard deviation of the relevant model. From these post-hoc effect size 
calculations, we obtain a maximal standardized effect size of 0.160/0.893 = 0.18 
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for the online SRT measure, for VSL we get 0.052/0.647 = 0.08, and for the A-
NADL we get 0.168/0.815 = 0.21. Therefore, standardized effect sizes on the 
measures of all three tasks are below or around 0.20 and can therefore be called 
“small” (Cohen, 1988). One potential cause for the smallness of the effects could 
be that the selected subjects do not represent the average child with (or without) 
dyslexia. However, the children with and without dyslexia in the present study 
were carefully selected according to strict in- and exclusion criteria. The groups 
were not seen to differ from one another regarding their age, gender, SES and 
non-verbal reasoning, and the children with dyslexia showed impairments in 
tasks measuring reading, spelling and lexical retrieval as is characteristic of the 
disorder. Similarly, the difficulties with verbal short-term memory and sustained 
attention found in the present study have previously been reported in other 
samples of children with dyslexia (Bosse et al., 2007; Buchholz & Davies, 2005; 
Cowan et al., 2017). These are indications that the group of participants with and 
without dyslexia are representative of the population as a whole. Another 
potential explanation for the smallness of the effects could be that the statistical 
learning tasks used are not suitable to assess the underlying construct of statistical 
learning. However, since we found evidence of learning overall in all three tasks, 
these paradigms are able to detect learning in children in this age group. Although 
the methodologies used to investigate statistical learning in child populations 
should be improved to achieve a full picture of their statistical learning abilities 
(i.e. the online measure in the VSL and offline measure in the A-NADL), the 
methodologies of the present study are sensitive enough to potentially detect 
group differences between participants with and without dyslexia. To summarize, 
it seems likely that 8- to 11-year-old children with dyslexia do not experience 
large problems with SL as assessed through these paradigms when compared to 
age-matched controls. Put more strongly, the results of the present study do not 
agree with the hypothesis that a domain-general deficit in statistical learning 
underlies the literacy problems that we see in individuals with dyslexia. 

Whereas these results may appear unexpected, other studies have also 
reported null results (without discussing the effect size) when investigating 
differences in statistical learning performance between children with and without 
dyslexia on tasks tapping into statistical learning abilities (SRT e.g. Deroost et al., 
2010; Menghini et al., 2010; Staels & Van den Broek, 2017, AGL: e.g. Nigro et 
al., 2016; Rüsseler et al., 2006). Recently, authors have reached similar 
inconclusive results regarding the statistical learning deficit hypothesis of dyslexia 
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in literature reviews and meta-analyses of the SRT and AGL paradigms (Schmalz 
et al., 2017; van Witteloostuijn et al., 2017, see chapter 3), because these studies 
underlined the mixed findings (i.e. some studies report significant group effects, 
while others do not) and established the presence of a publication bias in the 
field. Of course, methodological differences between studies may (partially) 
explain the fact that some studies report significant group effects while others do 
not, especially when the sought-after effect is likely to be small. As also argued 
by Schmalz et al. (2019) and Elleman et al. (2019), the relationship between 
performance on statistical learning tasks and literacy skills (and thus dyslexia) may 
only appear under specific conditions. For example, the type of statistical learning 
task used (e.g. its statistical structure, its modality), but also the selection of 
participant groups (e.g. their age, native language, or cultural differences such as 
differing dyslexia treatments) may influence findings of individual studies. 
Furthermore, West et al. (2017) question the relationship between statistical 
learning abilities and dyslexia (and related language learning impairments) based 
on the poor reliability of the statistical learning tasks used (SRT, Hebb repetition, 
and contextual cueing) and the lack of correlations between the statistical learning 
tasks and performance on tasks assessing language and literacy (see also Schmalz 
et al., 2019). 

To conclude, the mixed pattern of findings in the field, and the smallness 
of the effects found here, suggest that the difference in performance on statistical 
learning tasks between participants with and without dyslexia may be small and 
may only be detected under certain experimental conditions (see also Gabay, 
Schiff, & Vakil, 2012; Henderson & Warmington, 2017, for dissociations 
between different statistical learning tasks). 
 
4.4.3 Directions for future research 
 
Although the present study detected learning in all three statistical learning 
paradigms tested (i.e. SRT, VSL, A-NADL), some measures were shown to be 
less reliable in detecting learning than others (i.e. online learning in the VSL, 
offline learning in the A-NADL). Future studies that aim to investigate statistical 
learning performance in children in general, or the relationship between statistical 
learning and dyslexia more specifically, should aim to develop tasks that are 
increasingly suitable for assessing statistical learning abilities in child participants. 
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Additionally, follow-up research using the SRT task could include an explicit 
offline test phase or consolidation and retention phases in order to gain a 
complete picture of SRT performance in children with and without dyslexia 
(Hedenius et al., 2013; Vicari et al., 2005). This adaptation would also allow for a 
closer comparison with other SL tasks including both on- and offline phases (e.g. 
VSL and A-NADL). 
 Since the potential group effect may be small and susceptible to 
methodological differences between studies, exact replications and large-scale 
(cross-linguistic and/or cross-cultural) studies are needed to elucidate whether 
individuals with dyslexia experience (domain-general) difficulties in the area of 
statistical learning. Future studies could (a priori; Simmons, Nelson, & 
Simonsohn, 2011; Wagenmakers et al., 2012) choose to conduct Bayesian 
analyses in order to potentially find support for the null hypothesis that statistical 
learning abilities in children with and without dyslexia do not differ. As evidence 
accumulates, existing meta-analyses (Lum et al., 2013; Schmalz et al., 2017; van 
Witteloostuijn et al., 2017, see chapter 3) could be updated to include recent and 
future findings to further clarify the clinical relevance of statistical learning in 
relation to dyslexia and could be extended to further investigate the potential 
effects of methodological differences between studies (e.g. type of task used, 
modality tested, and the age or native language of participants). 

 
4.5 Conclusions 
 
This study examined the performance of children with and without dyslexia on 
three experimental paradigms assessing statistical learning abilities. Across the 
SRT, VSL and A-NADL paradigms we find that, taken together, children with 
and without dyslexia are sensitive to the statistical structures presented to them 
and we find no evidence of a difference in performance between the two groups. 
Moreover, the group effects reported on in the present study were found to be 
small. These findings do not support the hypothesis that a domain-general 
statistical learning deficit results in the literary problems that are observed in 
individuals with dyslexia. Although future studies are needed to further 
investigate the direct contribution of statistical learning abilities to literacy 
acquisition, both in typical and impaired populations, the clinical relevance of 
statistical learning in relation to dyslexia is likely to be small. 



 

Chapter 5 
The contribution of statistical learning to literacy skills* 

 
 
 
Abstract 
 
Purpose: Using an individual differences approach in children with and without 
dyslexia, this study investigated the hypothesized relationship between statistical 
learning ability and literacy (reading and spelling) skills.  

Methods: We examined the clinical relevance of statistical learning (serial 
reaction time and visual statistical learning tasks) by controlling for potential 
confounds at the participant-level (e.g. non-verbal reasoning, attention and 
phonological skills including rapid automatized naming and phonological short-
term memory). 100 Dutch-speaking 8- to 11-year-old children with and without 
dyslexia participated (50 per group).  

Results and conclusions: Replicating earlier work, our results demonstrate 
that phonological skills contribute to individual differences in literacy attainment. 
No evidence of a relationship between statistical learning and literacy skills is 
found above and beyond participant-level variables. We propose that the link 
between statistical learning and literacy attainment, and therefore its clinical 
relevance, may be small and strongly influenced by methodological differences 
between studies. Implications for future research are highlighted in the 
discussion. 
 
 
 
 
 

                                                
 
* This chapter is a slightly modified version of a manuscript that is currently under review: 
van Witteloostuijn, M.T.G., Boersma, P.P.G., Wijnen, F.N.K., & Rispens, J.E. (under review 
at Dyslexia). The contribution of individual differences in statistical learning to reading and 
spelling performance in children with and without dyslexia. 
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5.1 Introduction 
 
Reading and spelling skills are crucial for academic success and large individual 
differences in literacy attainment exist, with dyslexia affecting around 3-10% of 
the population (e.g. Miles, 2004; Siegel, 2006). Learning to read involves the 
mapping from letters (i.e. graphemes) to sounds (i.e. phonemes), while spelling 
involves the same mapping in the reversed order. Ideally, the correspondences 
between graphemes and phonemes are one-to-one. In many orthographies, 
however, this mapping is complex: graphemes can refer to multiple phonemes 
and vice versa. For example, the grapheme <c> in English can be expressed 
either as the phoneme /s/ or /k/ depending on its context (e.g. cent versus can’t). 
Although children receive explicit instructions regarding some grapheme–
phoneme correspondence patterns in school, their ability to implicitly detect 
statistical regularities, henceforth “statistical learning”, has been proposed as an 
important underlying learning mechanism. This ability is thought to aid the 
detection of regularities in grapheme–phoneme correspondences when learning 
to read and spell (e.g. Arciuli, 2017; 2018; Arciuli & Simpson, 2012; Frost et al., 
2013; Treiman, 2018). A domain-general learning deficit has been proposed to 
be the underlying problem in individuals with dyslexia (Nicolson & Fawcett, 
2007; 2011); including problems in the area of statistical learning (e.g. Gabay et 
al., 2015). 

One approach to investigating these hypotheses is to correlate 
performance on independent statistical learning measures with literacy scores. 
Studies have used a range of statistical learning tasks, including the visual 
statistical learning (VSL), auditory statistical learning (ASL), and serial reaction 
time (SRT) tasks. Importantly, these tasks all measure participants’ ability to 
implicitly track statistical regularities from input. Consistent with the above-
mentioned proposals, performance on such tasks has been shown to correlate 
with word and sentence reading in English-speaking adults and children (VSL: 
Arciuli & Simpson, 2012; ASL: Qi et al., 2019) and with reading Hebrew as a 
second language in adults (Frost et al., 2013). Replicating Arciuli and Simpson 
(2012), the relationship between VSL performance and reading accuracy was 
shown in Norwegian-speaking children (von Koss Torkildsen et al., 2019) and in 
an additional sample of English-speaking children (Steacy et al. 2019). Findings 
by Hung et al. (2018) confirmed this relationship using the SRT task in a group 
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of English-speaking adolescents. A second approach to studying the relationship 
between statistical learning and literacy attainment is to compare the statistical 
learning performance of children and adults with dyslexia to typically developing 
(TD) peers. In line with the hypothesized statistical learning deficit, several 
studies using a range of statistical learning measures report that individuals with 
dyslexia perform poorly relative to control groups (e.g. adults: Menghini et al., 
2006; Sigurdardottir et al., 2017; children: Gabay et al., 2015; Jiménez-Fernández 
et al., 2011; Singh et al., 2018). 

While these results are promising, other studies challenge the idea of a 
(strong) relationship between statistical learning and literacy skills. For example, 
in a large sample of English-speaking TD children (N = 101), no correlations 
were observed between statistical learning and measures of reading and spelling 
(West et al., 2017). In a follow-up study, the authors report similar findings: once 
attention was controlled for, no evidence for a relationship between statistical 
learning and reading was found (West, Shanks, & Hulme, 2018). Likewise, 
Schmalz et al. (2019) did not find evidence of the relationship between statistical 
learning tasks and reading ability in German-speaking adults. They suggest that 
failures to replicate the correlation between statistical learning and reading are 
possibly due to the use of different measures of statistical learning, since low 
correlations between such measures have been previously reported (e.g. Capel, 
2018; Misyak & Christiansen, 2012; Schmalz et al., 2018; Siegelman & Frost, 
2015). Furthermore, these null findings have led to questions regarding the 
reliability of statistical learning measures (e.g. Siegelman et al., 2017b; West et al., 
2017), especially in use with child participants (Arnon, 2019a; 2019b). A study 
examining the link between learning on the SRT task and a range of language 
skills in English-speaking children with and without developmental language 
disorder (DLD) similarly found no correlation between SRT performance and 
reading words or pseudo-words in either group (Clark & Lum, 2017). Null 
findings also exist regarding statistical learning performance in dyslexia: a number 
of studies did not find evidence for a difference in performance between 
participants with dyslexia and non-impaired controls (adults: e.g. Kelly et al., 
2002; Pothos & Kirk, 2004; children: e.g. Nigro et al., 2016; Staels & Van den 
Broeck, 2017), even when using a range of different statistical learning measures 
within the same pool of participants (adults: Rüsseler et al., 2006; children: van 
Witteloostuijn et al., 2019, see chapter 4). This mixed pattern of findings in the 
field (i.e. some studies reporting significant group effects and other studies 
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finding null results) has prompted literature reviews and meta-analyses in the area 
of statistical learning in dyslexia to determine the overall effect size (Lum et al., 
2013; Schmalz et al., 2017; van Witteloostuijn et al., 2017, see chapter 3). 
Although findings from these meta-analyses suggest that individuals with dyslexia 
may have problems with statistical learning when collapsing over studies, authors 
have raised the issue of a publication bias in the field that likely inflates the 
observed effect size in meta-analyses (Schmalz et al., 2017; van Witteloostuijn et 
al., 2017, see chapter 3).  

Recently, authors have also stressed the need for research combining the 
two approaches – correlational studies and the investigation of statistical learning 
in dyslexia – to further elucidate the relationship between statistical learning and 
literacy skills (Arciuli, 2018; Arciuli & Conway, 2018). To date, several studies 
have indicated that statistical learning performance relates to reading ability in 
participants with and without dyslexia (English adults: Gabay et al., 2015; 
Howard, Howard, Japikse, & Eden, 2006; Icelandic adults: Sigurdardottir et al., 
2017; Hebrew children: Vakil, Lowe, & Goldfus, 2015; Swedish children: 
Hedenius et al. 2013; Dutch children: van der Kleij, Groen, Segers, & Verhoeven, 
2019). However, this finding was not replicated by Nigro, Jiménez-Fernández, 
Simpson and Defior (2015) in a sample of Spanish-speaking children. They argue 
that statistical learning may play a less prominent role in learning to read a shallow 
orthography such as Spanish (i.e. a writing system with a relatively transparent 
grapheme-to-phoneme mapping; but see conflicting results in other more 
transparent orthographies such as Icelandic, Swedish and Dutch by 
Sigurdardottir et al., 2017, Hedenius et al., 2017, and van der Kleij et al., 2019, 
respectively). 

To summarize, although theory suggests a link between statistical 
learning and literacy skills, experimental studies have not been conclusive: while 
some find evidence supporting the existence of such a relationship, others do 
not. Several explanations have been proposed for this mixed pattern of findings, 
including differences in statistical learning tasks used (Schmalz et al., 2019), 
potential confounds at the participant-level (e.g. attention, West et al., 2018), and 
low reliability of statistical learning measures (e.g. Arnon, 2019a; 2019b; 
Siegelman et al., 2017a; West et al., 2017). Interestingly, the majority of studies 
investigating the relationship between statistical learning and literacy skills have 
done so through simple correlations, not considering participant-level variables 
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(i.e. potential confounds) or other known predictors of reading (cf. Qi et al., 2019; 
von Koss-Torkildsen et al., 2019). Furthermore, studies of individual differences 
in statistical learning ability in relation to literacy skills have often not reported 
the reliability of the statistical learning measures used (but see e.g. West et al., 
2017; 2018). Moreover, studies to date have largely focused on reading, thereby 
disregarding spelling despite its theorized link with statistical learning (Treiman, 
2018) and despite the spelling difficulties associated with dyslexia (DSM-V, 
2013). In relation to dyslexia, it is important to elucidate the clinical relevance of 
statistical learning in literacy acquisition (see e.g. Plante & Gómez, 2018, for a 
discussion regarding the clinical relevance of statistical learning for treatment 
applications with DLD), since mixed findings suggests that the true correlation 
may only be small (or may be largely mediated by confounding variables). 
 
5.1.1  The present study 
 
In the present study, we further investigate the relationship between statistical 
learning and literacy in children with and without dyslexia. We hope to do so 
comprehensively and reliably by looking at both reading and spelling 
performance and by using two statistical learning measures that have previously 
been linked to individual differences in literacy skills: the SRT task (e.g. Hedenius 
et al., 2013; Howard et al., 2006; van der Kleij et al., 2019) and VSL task (e.g. 
Arciuli & Simpson, 2012; von Koss Torkildsen et al., 2019). Additionally, we aim 
to account for participant-level characteristics (age, gender, socio-economic 
status [SES], diagnosis), general cognitive skills (non-verbal reasoning, sustained 
attention) and other known predictors of literacy outcomes such as rapid 
automatized naming (RAN), phonological processing and phonological short-
term memory (see e.g. de Bree, Wijnen, & Gerrits, 2009; de Jong & van der Leij, 
1999; Furnes & Samuelsson, 2010; Swanson & Howell, 2001; van Setten, 
Hakvoort, van der Leij, Maurits, & Maassen, 2017; see also Snowling & Melby-
Lervåg, 2016 for a meta-analysis). Finally, we report the split-half reliability of the 
statistical learning measures used in the present study as an indication of their 
internal consistency and reliability (see also e.g. Arnon, 2019a; Siegelman et al., 
2017b). Since the statistical learning measures used in the present study were 
adapted for use with child participants, we hope to find split-half reliability 
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coefficients that approach the psychometric standard of r = .80 (Nunnally & 
Bernstein, 2004; Steiner, 2003). 

Through a regression analysis, we examined the contributions of 
statistical learning and the aforementioned predictors to reading and spelling 
performance, including phonological skills10, in 100 Dutch-speaking school-aged 
children with and without dyslexia. The current study uses a data set that was 
previously published (see van Witteloostuijn et al., 2019, see chapter 4). Whereas 
van Witteloostuijn et al. (2019, see chapter 4) investigated group differences in 
statistical learning abilities, we here focus on the individual differences in 
statistical learning and whether these contribute to variability in literacy 
attainment. Since children were found to be sensitive to the statistical structures 
presented to them in the SRT and VSL tasks overall (see van Witteloostuijn et 
al., 2019, see chapter 4, and see §5.3.1), we expect to find meaningful individual 
differences that may relate to children’s literacy performance. The research 
questions were as follows: 

 
1. Do phonological skills (RAN letters and pictures, nonword repetition 

[NWR] and digit span forward tasks) contribute to literacy performance? 
2. Does statistical learning ability (SRT and VSL tasks) contribute to 

literacy performance? 
 
And, if so, 
 

3. Are the contributions of phonological skills and/or statistical learning 
different for 

a. children with and without dyslexia? 
b. reading and spelling? 

                                                
 
10  RAN, NWR and digit span forward are grouped together under the label “phonological 
skills” for ease of reference. The RAN task requires a complex set of skills: e.g. visual 
recognition, the integration of visual stimuli with stored representations, and the access and 
retrieval of the associated phonological representations (Norton & Wolf, 2012). NWR 
involves existing phonological and lexical representations and phonological short-term 
memory (Rispens & Baker, 2012), while the digit span assesses phonological short-term 
memory (e.g. Bull, Espy, & Wiebe, 2008). 
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Please note that the research questions regarding phonological skills concern a 
“bycatch” of our statistical analysis and are of a purely replicational nature, while 
the research questions regarding statistical learning are the primary focus of the 
present study. 
 

5.2 Methods 
 
5.2.1  Participants 
 
Fifty children with a diagnosis of dyslexia (26 girls, 24 boys, age range 8;4 – 11;2, 
M = 9;10) and 50 age-matched control children (24 girls, 26 boys, age range 8;3 
– 11;2, M = 9;8) in grades three to five participated. Ten additional children with 
dyslexia and 4 additional control children were tested but turned out not to meet 
our pre-determined inclusion criteria (dyslexia: norm score of at most 6 [i.e. 10th 
percentile] on word and pseudo-word reading; control group: norm score of at 
least 8 [i.e. 25th percentile]). All 100 children that participated in the present study 
completed each of the tasks as outlined in §5.2.2. Children with dyslexia were 
recruited through treatment centers and Facebook support groups for parents, 
while children in the control group were recruited through primary schools. All 
parents and children consented to participation prior to testing in accordance 
with the ethical committee of the Faculty of Humanities of the University of 
Amsterdam. All participants were native speakers of Dutch and none were 
diagnosed with (additional) developmental disorders as reported by parents (in 
the case of participants with dyslexia) and teachers (in the case of control 
participants). Note that the sample reported here is identical to the sample 
reported by van Witteloostuijn et al. (2019, see chapter 4), since, as previously 
stated, the current study is a re-analysis of the same sample, but with a different 
focus. Also, the control group partly overlaps with studies investigating statistical 
learning and its relationship with language in children with DLD (Lammertink et 
al., 2019a; 2019b; 2020). 
 Table 5.1 presents descriptive statistics on a number of participant 
characteristics (these descriptive statistics overlap with those presented in van 
Witteloostuijn et al., 2019, see chapter 4). Children with and without dyslexia 
were found not to differ significantly from one another regarding their age (t = 
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0.839, p = .40), SES (t = 0.173, p = .86) and non-verbal reasoning skills (t = 0.041, 
p = .97). Children with dyslexia achieved marginally significantly lower scores 
than their TD peers on sustained attention (t = 1.939, p = .055). These participant 
characteristics are included in our regression analyses as control variables. 
 
Table 5.1. Descriptive statistics of background measures for children with and 
without dyslexia. 

 
 

Dyslexia (N = 50) 
 

Control (N = 50)  

 Raw  Standardized  Raw  Standardized   
Female : Male 26 : 24  24 : 26   
Age 9;10 (0;9) N/A 9;8 (0;10) N/A  
SESa 0.2 (1.2) N/A 0.2 (1.1) N/A  
Nonverbal reasoningb 37.2 (6.6) 55.7 (25.0) 37.3 (8.1) 60.1 (28.1)  
Sustained attentionc 7.0 (2.5) 7.4 (3.3) 7.8 (1.8) 9.1 (3.0)  

Note: a SES was determined on the basis of postal codes through the Netherlands Institute 
for Social Research (NISR), b Nonverbal reasoning was assessed through Raven’s Standard 
Progressive Matrices (Raven & Raven, 2003). Raw and standardized scores on nonverbal 
reasoning represent the number of items answered correctly out of 60 and percentile 
scores (norm = 50) respectively. c Sustained attention was measured using the Score! 
subtest of the Dutch Test of Everyday Attention (TEA-Ch; Schittekatte et al., 2007). Raw 
and standardized scores on sustained attention represent the number of items answered 
correctly out of 10 and norm scores (norm = 10) respectively. 
 
5.2.2  Materials 
 
5.2.2.1 Literacy measures 
 
Children’s technical reading skills were assessed using two tests: the reading of 
single Dutch real words (Brus & Voeten, 1972) and pseudo-words (van den Bos 
et al., 1994). The task was to read (pseudo-)words as quickly and accurately as 
possible from a set list of words in a set amount of time (one minute for words, 
two minutes for pseudo-words) and thus the outcome measure was the number 
of (pseudo-)words read correctly within the time limit. Dutch spelling was 
measured through a dictation test consisting of 6 blocks containing 15 words 
(not including verbs) of increasing difficulty both between and within blocks 
(Braams & de Vos, 2015). Each child completed two blocks depending on their 
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grade in school (i.e. the spelling score is the number of words spelled correctly 
out of 30). Every word was presented orally in a context sentence after which the 
target word was repeated and the child was required to manually write down the 
word according to Dutch spelling.  
 
5.2.2.2 Phonological skills 
 
Firstly, children were tested on two subtests of RAN: one containing letters and 
one containing pictures of common objects (van den Bos & Lutje Spelberg, 
2007). Children were instructed to name the letters or pictures as quickly and 
accurately as possible. Secondly, children’s phonological processing and short-
term memory was assessed through two tasks: a shortened NWR task (NWR-S: 
le Clercq et al., 2017) and a forward digit span task (Kort et al., 2008). In the 
NWR-S, children listened to 22 pre-recorded nonwords and had to repeat them 
as accurately as possible. All nonwords were between three and five syllables long 
and were either phonologically likely or unlikely according to Dutch phonotactic 
probabilities. Children’s responses were recorded and scored as either correct or 
incorrect. In the forward digit span task, children had to repeat sequences of 
digits of increasing length (2-9 digits) in the correct order. Each level of the task 
contained two items; to advance to the next level the child had to answer at least 
one out of two items correctly. Testing was halted once a child answered both 
items within one level incorrectly. 
 
5.2.2.3  Statistical learning 
 
SRT task 
The SRT task used in the present study is identical to the one described by van 
Witteloostuijn et al. (2019, see chapter 4). Participants were exposed to a single 
visual stimulus that repeatedly appeared in one of four locations (quadrants) on 
the tablet screen with a 250 milliseconds interval (Nissen & Bullemer, 1987). 
They were required to respond to the stimulus’ location on the screen by pressing 
one of four corresponding buttons on a game pad controller as quickly and as 
accurately as possible. Without the participants’ knowledge, the SRT task was 
divided into seven blocks. In blocks 2 through 5 and block 7, the stimulus 
followed a predetermined sequence of ten locations (4, 2, 3, 1, 2, 4, 3, 1, 4, 3) 
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which was repeated six times in each block (i.e. 60 trials per block), while the 
stimulus was presented in random order during 60 trials in the intervening block 
6. Block 1 consisted of 20 random trials to accustom participants to the task and 
is not included in analysis. Learning of the statistical structure in the SRT task is 
evidenced by longer reaction times (RTs) to random stimuli (block 6) than to 
structured stimuli in the surrounding sequence blocks (blocks 5 and 7). Individual 
scores on the SRT task were computed by subtracting the mean normalized RT 
to structured input (average of blocks 5 and 7) from the mean normalized RT to 
unstructured input in block 6. 
 
VSL task 
The VSL task used in the present study is identical to the one described by van 
Witteloostuijn et al. (2019, see chapter 4) and was similar in structure and design 
to previous studies by Arciuli and Simpson (2011; 2012). Twelve visual stimuli 
(aliens) were presented one by one on a tablet with touch screen. Unbeknownst 
to the participants, these twelve stimuli repeatedly appeared in the same four 
groups of three (i.e. triplets; ABC, DEF, GHI, JKL). Learning of this triplet 
structure was originally assessed through three measures: an online RT and two 
offline accuracy measures. Since no evidence of learning was found through the 
online RT measure in children with and without dyslexia (van Witteloostuijn et 
al., 2019, see chapter 4), we focus on the offline measures of learning. 
 Prior to the experiment, children were informed that aliens stood in line 
to go home with a space ship and that they would see all of the aliens one by one. 
They were instructed to pay attention to the aliens and were told that some of 
the aliens liked one another and stood in line together. The exposure phase of 
the VSL task contained four separate blocks, each consisting of six occurrences 
of each triplet. The same triplet never appeared twice in a row and triplet pairs 
were never repeated (Arciuli & Simpson, 2011; 2012; Turk-Browne et al., 2005). 
In between blocks, participants received stickers on a diploma. A cover task was 
inserted in the exposure phase to ensure that children paid attention to the 
stimulus stream (Arciuli & Simpson, 2011; 2012). Three individual stimuli per 
block appeared twice in a row and children had to respond to a repeated stimulus 
by pressing the alien on the screen. Each stimulus within each triplet was repeated 
once during the exposure phase (e.g. the triplet ABC occurs once as AABC, 
ABBC, and ABCC) and three distinct triplets contained a repetition in random 
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positions in each of the four blocks, again all three stimulus positions within 
triplets once (e.g. AABC, DEEF, GHII). 
 Subsequent to exposure, children were tested on their knowledge of the 
triplet structure. Using the same set of 12 visual stimuli, four foil triplets (AEI, 
DHL, GKC, JBF) were created for use in the offline test phase that consisted of 
40 multiple-choice questions. 16 three-alternative forced-choice (3-AFC) 
questions in which children had to fill in a missing stimulus (chance level = .333) 
were followed by 24 2-AFC questions in which they had to pick the more familiar 
group of aliens (chance level = .500). Both 3-AFC and 2-AFC question blocks 
were introduced through two practice items during which children were 
encouraged to make a guess when they were uncertain of the correct response. 
Individual scores on the VSL task represent the number of items answered 
correctly out of 16 and 24 on 3-AFC and 2-AFC questions respectively. 
 
5.2.3  General procedure 
 
The SRT and VSL tasks were programmed and run using E-prime 2.0 
(Psychology Software Tools, 2012; Schneider et al., 2012) on a Windows Surface 
3 tablet with touch screen. Pre-recorded auditory instructions (SRT) and stimuli 
(NWR-S) were played over Sennheiser HD 201 headphones. Responses in the 
SRT tasks were given through a Trust wired GXT540 gamepad controller. 
Children’s responses during the reading, RAN and NWR-S tasks were recorded 
using an Olympus DP-211 voice recorder. 
 As previously mentioned in §2.1, children were tested in the context of 
a larger project. An experimenter administered a battery of tasks one-on-one in 
a quiet room either at the child’s home or school. Testing took place in three 
sessions that lasted around an hour each. The statistical learning tasks were tested 
in separate sessions along with a number of other measures. The order of the test 
sessions and the tasks within sessions were counter-balanced: participants were 
randomly assigned to one out of six testing orders.  
 
 
 
 



124    Chapter 5 
 
  
5.2.4  Data scoring and analysis 
 
We performed a linear regression analysis through the “lm” function in R 
software to assess the contribution of a number of predictors in explaining 
individual variation in reading and spelling attainment combined in a single 
model. 95% confidence intervals (CIs) were computed through the “confint” 
function and were used to compare the contribution of predictors to reading 
versus spelling (research question 3b). Predictors in the model included control 
variables (group membership, age, gender, SES, non-verbal reasoning and 
sustained attention), phonological skill measures (RAN letters, RAN pictures, 
NWR-S and digit span forward11) and measures of statistical learning (SRT and 
VSL). Interactions between group and phonological skills and between group 
and statistical learning measures were investigated (research question 3a). 
Significance of individual predictors to reading and spelling combined was 
assessed through the “Manova” function in the car package (version 2.1-5; Fox 
et al., 2012). In order to answer the first two research questions, we conducted 
model comparisons between the full model and models from which (1) 
phonological skill measures and (2) statistical learning measures were removed. 

All raw scores on continuous measures were centered and scaled using 
the “scale” function. Categorical predictors were coded into orthogonal 
contrasts: Gender was coded such that females were marked as -1/2 and males 
were marked as +1/2; Group membership was coded such that the control group 
was marked as -1/2 and the dyslexia group was marked as +1/2. Finally, since 
both reading and VSL were measured through two subtests (reading words and 
pseudo-words; VSL 3-AFC and 2-AFC), the averages of the centered and scaled 

                                                
 
11 Since we were interested in the overall effect of the phonological skill measures, we 
attempted to summarize these four subtests through maximum likelihood factor analysis. We 
aimed to reduce all four subtests to one single factor as a minimum of three variables per 
factor is required (e.g. Tabachnick & Fidell, 2007). However, one factor was deemed 
insufficient (c2 [2] = 13.65, p = .0011). For completion and transparency, we performed 
identical confirmatory regression analyses using the single score obtained through factor 
analysis instead of entering the four phonological skill measures individually (see 
supplementary analyses on the OSF). This alternative approach does not change the main 
outcomes of the model. 
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subtests were used in our analyses. Summary level data and R Markdown and 
html files detailing our analyses are available on the corresponding project page 
on the Open Science Framework (OSF; https://osf.io/dr72a). 

The split-half reliability of the statistical learning tasks was computed 
using Spearman-Brown corrected Pearson correlations (see also Arnon, 2019a; 
Siegelman et al., 2017a). In the SRT task, the split-half reliability was calculated 
for each individual as the correlation between the difference in RT between the 
random stimuli (block 6) and structured stimuli in the surrounding sequence 
blocks (i.e. blocks 5 and 7) in even versus odd trials. This difference in RT was 
obtained from the linear mixed-effects model through the random slopes of the 
relevant predictor (i.e. the difference in RT between random and sequence). 
Similarly, the correlation between the accuracy on even and odd trials in the VSL 
offline test phases (2-AFC and 3-AFC) was used to calculate the split-half 
reliabilities (i.e. the random slopes of the intercept). We would like to refer the 
reader to our OSF project page for more detail regarding the calculations of the 
split-half reliabilities. 
 

5.3  Results 
 
We first provide the descriptive statistics and group comparisons of the outcome 
measures and predictors included in our linear regression analysis in §5.3.1. The 
confirmatory analyses aimed at answering our research questions are 
subsequently presented in §5.3.2. These consist of the linear regression analyses 
and model comparisons. §5.3.3 presents exploratory analyses and findings, which 
do not provide answers to our research questions but may nonetheless be of 
interest (cf. Wagenmakers et al., 2012). Finally, the results regarding the split-half 
reliabilities of our statistical learning measures are provided in §5.3.4. 
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Table 5.2. Descriptive statistics (i.e. means, with SDs within brackets) on 
outcome measures, phonological skills and statistical learning: raw and 
standardized scores per group. 

 
 

Dyslexia (N = 50) 
 

Control (N = 50)  

 Raw  Standardized  Raw  Standardized   
Reading wordsa 34.1 (11.7) 3.3 (2.1) 66.3 (11.6) 10.5 (2.2)  
Reading pseudo-wordsa 22.0 (8.0) 4.4 (1.6) 61.0 (14.4) 11.1 (2.2)  
Spellingb 8.4 (4.6) 11.8 (13.7) 18.6 (4.7) 49.9 (24.7)  
RAN lettersa 36.1 (10.4) 5.4 (2.7) 27.2 (5.5) 9.6 (3.1)  
RAN picturesa 53.2 (10.2) 7.7 (2.7) 44.1 (7.3) 10.7 (2.8)  
NWR-Sc 7.3 (2.7) N/A 9.7 (3.3) N/A  
Digit span forwarda 7.3 (1.5) 7.7 (2.6) 8.9 (1.5) 10.7 (2.9)  
SRTc 0.29 (0.28) N/A 0.27 (0.27) N/A  
VSL 3-AFCcd 8.2 (3.1) N/A 8.2 (3.8) N/A  
VSL 2-AFCcd 15.3 (4.4) N/A 15.0 (4.5) N/A  

Note: Raw scores: reading words and pseudo-words = the number of words read within 
the time limit, spelling = the number of words spelled correctly out of 30, RAN = the 
number of seconds spent on the task (i.e. higher score = lower performance), NWR = 
the number of nonwords repeated correctly out of 22, Digit span forward = the number 
of items answered correctly out of 16, SRT = difference in normalized RTs (RT random 
– RT sequence), VSL = number of items answered correctly out of 16 (3-AFC) and 24 
(2-AFC). Standardized scores represent either a norm scores (norm = 10) or b percentile 
scores (norm = 50). c No standardized scores are present for the NWR-S, SRT and VSL 
tasks. d Chance level on VSL 3-AFC = 1/3 (5.3 items correct out of 16); 2-AFC 1/2 (12 
items correct out of 24). 
 
5.3.1  Descriptive statistics and group comparisons 
 
Table 5.2 contains the descriptive statistics of reading, spelling, phonological 
skills and statistical learning (note once again that these descriptive statistics 
overlap with those presented in van Witteloostuijn et al., 2019, see chapter 4). As 
expected, children with dyslexia performed significantly worse than children in 
the control group on reading (words: t = 13.83, p = 9.1×10-25; pseudo-words: t = 
16.75, p = 1.6×10-30), spelling (t = 11.05, p = 9.4×10-20) and phonological skills 
(RAN letters: t = 5.421, p = 4.3×10-7; RAN pictures: t = 4.985, p = 2.7×10-6; NWR-
S: t = 3.962, p = .00014; digit span forward: t = 5.36, p = 5.5×10-7). Children 
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learned the statistical structures in the SRT and VSL tasks overall and no evidence 
of a difference in performance between children with and without dyslexia was 
found on the statistical learning measures (SRT: Δz = -0.027, p = .61; VSL 3-
AFC odds ratio estimate = 1.001, p = .996; VSL 2-AFC: odds ratio estimate = 
1.076, p = .68; see van Witteloostuijn et al., 2019, see chapter 4). For more detail 
on the analysis of the statistical learning measures, please see the OSF project 
page. 
 
5.3.2  Regression model 
 
The outcomes of the full model are presented in Table 5.3 for reading and 
spelling separately. Our first research question pertained to the contribution of 
phonological skills to literacy skills overall. Also, we were interested to see 
whether its contribution differed between children with and without dyslexia 
(research question 3a). From the “Manova” function results, as presented in 
Table 5.4, we see that only RAN letters is a significant contributor to literacy 
outcomes combined, over and above the other predictors in the model (Wilk’s 
l= .74, F[2,80] = 13.840, p = 6.9×10-6). Additionally, the interaction with Group 
is significant (Wilk’s l= .90, F[2,80] = 4.600, p = .013), such that the effect of 
RAN letters is larger for children with dyslexia than for TD children. The 
interaction between RAN pictures and Group is significant in the same direction 
(Wilk’s l = .92, F[2,80] = 3.453, p = .036). Regarding differences between reading 
and spelling (research question 3b), the effect of RAN letters is significantly larger 
on reading than on spelling since the 95% CIs do not overlap (b = -.28, 95% CI 
[-.42 ... -.15], p = 6.5×10-5 and b = .096, 95% CI [-.13 ... .33], p = .41 respectively). 
Importantly, when we compare the full model to a reduced model where the 
phonological skill measures are removed (RAN letters, RAN pictures, NWR-S 
and digit span forward), we find that this removal results in a significant decrease 
in model fit (F[16,162] = 3.771, p = 6.4×10-6). Thus, taken together, the 
phonological skill measures used in the present study (RAN letters and pictures, 
NWR-S and digit span forward) contribute to children’s literacy performance.  

Secondly, and most importantly, we were interested in the contribution 
of statistical learning to individual differences in literacy attainment (research 
question 2) and potential differences between children with and without dyslexia 
(research question 3a). We see that the main effects of SRT and VSL are non-
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significant overall (Wilk’s l = .97, F[2,80] = 1.164, p = .32 and Wilk’s l = .99, 
F[2,80] = 0.496, p = .61 respectively). The interaction between Group and SRT 
performance approaches significance (Wilk’s l = .94, F[2,80] = 2.330, p = .10). 
Although the interaction between Group and SRT performance is significant for 
spelling (b = .29, 95% CI [.02 ... .57], p = .036) but not for reading (b = .13, 95% 
CI [-.03 ... .29], p = .11), we cannot infer a difference between reading and spelling 
due to overlapping 95% CIs (research question 3b). Comparing the full model to 
a reduced model (where SRT and VSL are removed) does not show a significant 
effect of the removal of statistical learning measures on the model fit (F[8, 162] 
= 1.134, p = .34). In other words, there is no evidence that the SRT and VSL 
measures together contribute to literacy performance in children with and 
without dyslexia (above and beyond our control variables and phonological skill 
measures).  
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Table 5.4. Full linear regression model: outcomes for reading and spelling 
combined (“Manova” function) 

 
 

Pillai’s Trace 
 

F(2, 80) 
 

p 
Control    
Age .925 3.24 .044* 
Gender .995 .21 .81 
SES .998 .09 .91 
Raven .918 3.57 .033* 
Attention .981 .78 .46 
Group .320 84.88 < .001* 
Phonology    
RAN let .743 13.84 < .001* 
RAN pic .968 1.30 .28 
NWR-S .949 2.16 .12 
DSF .987 .52 .60 
SL    
SRT .971 1.16 .32 
VSL .988 .50 .61 
Interactions    
Group*RAN let .897 4.60 .013* 
Group*RAN pic .921 3.45 .036* 
Group*NWR-S .992 .31 .74 
Group*DSF .977 .93 .40 
Group*SRT .945 2.33 .10† 
Group*VSL .985 .60 .55 

Note: RAN let = RAN letters, RAN pic = RAN pictures, DSF = Digit Span Forward. 
Significant findings (p ≤ .05) are indicated using an asterisk (*), while trends (.05 ≤ p ≤ 
.10) are indicated using a cross (†). 
 
5.3.3  Exploratory results 
 
5.3.3.1  Control variables 
 
As expected, Group is a significant predictor for both literacy measures 
combined (Wilk’s l = .32, F[2,80] = 84.876, p = 3.4×10-20), such that children 
with dyslexia achieve lower scores than their TD peers. Similarly, children’s age 
is found to be a significant predictor of literacy performance (Wilk’s l = .93, 
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F[2,80] = 3.237, p = .044). This effect is driven by a significant effect of age on 
reading (b = .092, 95% CI [.01 ... .18], t = 2.130, p = .036), but not spelling (b = 
.014, 95% CI [-.14 ... .16], t = .181 p = .86). This is to be expected, since the 
spelling test used is adapted to children’s grade, whereas the reading test is not. 
The opposite pattern is observed for non-verbal reasoning, which is a significant 
predictor for spelling (b = 0.20, 95% CI [.03 ... .38], t = 2.308, p = .024) but not 
reading (b = .017, 95% CI [-.09 ... .12], t = .324, p = .75). Again, the overall effect 
of non-verbal reasoning on literacy skills combined is found to be significant 
(Wilk’s l = .92, F[2,80] = 3.566, p = .033). 
 
5.3.3.2  Phonological skills 
 
In the full model, only significant effects are found concerning the RAN letters 
subtest, suggesting that the effect of the phonological skill measures may be 
carried largely by RAN letters. Therefore, an exploratory analysis was performed 
to see whether removing the other measures of phonological skills (i.e. RAN 
pictures, NWR-S and digit span forward) would result in a decrease in fit of the 
model. Results reveal that this is not the case, as the model comparison is not 
significant (F[12, 162] = 1.559, p = .11). This means that there is no evidence 
that, taken together, RAN pictures, NWR-S and digit span forward contribute to 
literacy performance above and beyond RAN letters. 
 
5.3.3.3  Statistical learning 
 
Perhaps unexpectedly, we find no evidence that children’s VSL performance 
contributes to literacy scores above and beyond the SRT. To investigate whether 
the VSL may be of value when the SRT is not considered, we ran an identical 
model with the SRT measure removed. However, the effects of the VSL remain 
non-significant both in reading (b = .027, t = .555, p = .58) and in spelling (b = 
-.024, t = -.279, p = .78) and no interactions between VSL and group are found 
for either outcome measure (b = .077, t = .802, p = .43 and b = .19, t = 1.099, p 
= .27 respectively).  

We also want to explore the interaction between Group and SRT, which 
approached significance for reading and spelling combined. For further 
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investigation, we computed Pearson’s correlations between SRT and our literacy 
outcomes (see R markdown and html files for plots). The correlation with 
spelling was found to be non-significant in the control group (r = -.103, p = .48), 
whereas it reached significance in the group of children with dyslexia (r = .372, p 
= .0078). Similar results are observed regarding reading (control group: r = -.229, 
p = .11, dyslexia group: r = .348, p = .013). 
 
5.3.4  Split-half reliability of the statistical learning measures 
 
As explained in §5.2.4, split-half reliabilities were calculated as a measure of the 
internal consistency and reliability of the statistical learning measures used in the 
present study. The split-half reliability for the online measure of learning in the 
SRT task was found to be r = .71, 95% CI [.58, .81]. For the offline measures of 
learning in the VSL task, the split-half reliabilities were r = .70, 95% CI [.55 ... 
.80] and r = .78, 95% CI [.67 ... .85] for 2-AFC and 3-AFC questions respectively. 
Thus, the split-half reliabilities found for the SRT and VSL tasks used in the 
present study approach the psychometric standard of r = .80 (see e.g. Nunnally 
& Bernstein, 1994; Steiner, 2003).  
 

5.4  Discussion 
 
The current study examined the contribution of phonological skills and statistical 
learning ability to individual differences in reading and spelling performance in 
children with and without dyslexia. We aimed to do so whilst controlling for 
potential participant-level confounds including a range of cognitive and 
phonological skills. This was done in order to investigate whether statistical 
learning contributes to reading and spelling above and beyond other potential 
predictors of literacy performance. Our finding that phonological skill measures 
contribute to literacy scores replicates earlier work (e.g. de Jong & van der Leij, 
1999; Swanson & Howell, 2001; Snowling & Melby-Lervåg, 2016). Moreover, its 
contribution appears to be carried mostly by measures of RAN and the effect is 
found to be larger for children with dyslexia than for control participants. 
Regarding the relationship with statistical learning, exploratory simple 
correlations suggest a (weak) association between SRT performance and literacy 
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skills exist in participants with dyslexia. No support for (or against) such a link is 
observed in the control group, or with the VSL task. However, after controlling 
for the aforementioned participant-level variables, we find no evidence that 
statistical learning (SRT and VSL) ability contributes to reading and spelling.12 
Regression analysis did not reveal significant differences regarding this 
relationship between groups (dyslexia versus control) or outcome measures 
(reading versus spelling). Thus, our results are in agreement with other studies 
that do not provide evidence for the relationship between statistical learning and 
literacy skills (e.g. Nigro et al. 2015; West et al. 2017; 2018; Schmalz et al. 2019), 
despite theoretical claims and experimental evidence of the existence of this 
relationship from other studies (e.g. Arciuli, 2018; Arciuli & Simpson, 2012; 
Treiman, 2018; von Koss Torkildsen et al., 2019). Furthermore, our findings 
highlight the importance of controlling for participant-level variables when 
investigating the link between SL and literacy attainment. 

The absence of evidence for a (strong) relationship between statistical 
learning and literacy skills in the present study may have a number of 
explanations. Although these null results may simply be due to chance, several 
methodological choices may have influenced the outcomes of the present study. 
Specifically, the statistical learning tasks reported here are not exact replications 
of those employed in previous studies, and we consider a unique range of 
participant-level variables. Although the VSL task is identical in statistical 
structure to the task used in previous studies (Arciuli & Simpson, 2012; Qi et al., 
2019; von Koss Torkildsen et al., 2019), it involves a different set of stimuli and 
a novel online measure of learning during exposure (i.e. the task was self-paced; 
see Siegelman et al. 2018; van Witteloostuijn, Lammertink et al., 2019, see chapter 
2). Similarly, the SRT task resembles tasks used by Hung et al. (2018) and van der 
Kleij et al. (2019), but notable differences include the sequence to be learned (e.g. 
                                                
 
12 Statistical learning may play a more prominent role in pseudo-word reading than in real 
word reading, due to the fact that pseudo-words have not been encountered before and 
therefore readers have to read indirectly through grapheme–phoneme mappings (see e.g. van 
der Kleij et al., 2019). Thus, we performed identical confirmatory regression analyses using 
pseudo-word reading as an outcome measure instead of both reading measures combined (see 
supplementary analyses on the OSF). This alternative analysis provides a similar pattern of 
results. Most importantly, removing the statistical learning measures from the model does not 
significantly decrease the model’s fit (F[8, 162] = 1.244, p = .28). 
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Hung et al., 2018: a 12-item sequence; here: a 10-item sequence), the number of 
exposures (e.g. van der Kleij et al., 2019: 70 exposures to the sequence prior to 
the random block; here: 24 exposures prior to the random block), and the visual 
set-up of the task (e.g. van der Kleij et al., 2019: three locations on the screen 
presented horizontally; here: four locations presented as a quadrant). Following 
Schmalz et al. (2019) and Elleman et al. (2019), we suggest that the mixed pattern 
of findings in the literature examining the association between statistical learning 
and literacy skills is likely (at least partially) due to such methodological choices: 
since the true association may be relatively small (or, in fact, zero), it may only 
appear under certain experimental conditions. These choices could involve the 
type of statistical structure tested (e.g. adjacent versus nonadjacent 
dependencies), the modality of the task (e.g. visual versus auditory), the type of 
task used (e.g. VSL versus SRT), and the type of instruction given to participants 
(i.e. more or less implicit). Furthermore, current statistical learning tasks are 
known to show low correlations amongst each other, which may help explain 
mixed results when investigating the relationship between statistical learning and 
other cognitive or linguistic skills (e.g. Schmalz et al., 2019; Siegelman & Frost, 
2015).  

Another explanation previously put forward is the idea that statistical 
learning may play a less prominent role in more transparent orthographies (such 
as Dutch, as examined here) than English, since grapheme–phoneme 
correspondences in these orthographies are potentially easier to acquire through 
explicit instruction (see e.g. Elleman et al., 2019; Nigro et al., 2015; Schmalz et 
al., 2019). This seems a less likely explanation, since other studies involving (semi-
)transparent orthographies such as Norwegian (von Koss Torkildsen et al., 2019) 
and Icelandic (Sigurdardottir et al., 2017) reported significant associations 
between (visual) statistical learning tasks and reading performance, even after 
considering a range of reading-related abilities (von Koss Torkildsen et al. 2019). 
Moreover, von Koss Torkildsen et al. (2019) report a comparable effect size as 
found for English (Arciuli & Simpson, 2012), which suggests similar influences 
of statistical learning on reading performance in (semi-)transparent and opaque 
orthographies.  

Recently, concerns have been raised about the reliability of statistical 
learning measures (e.g. Kidd et al., 2017; Siegelman et al., 2015; 2017a; West et 
al., 2017; 2018), especially in child participants (Arnon, 2019a; 2019b), which 
limits their appropriateness for studies of individual differences. The statistical 
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learning measures in the present study had split-half reliabilities of r = .71 (SRT) 
and r = .70 and r = .78 (VSL 2-AFC and 3-AFC respectively). Previous reports 
on the reliability of statistical learning measures in children have been less 
promising, with split-half reliabilities between r = -.04 (ASL) and r = .46 and r = 
.59 on a VSL (Arnon, 2019a). In their study of the SRT task, West et al. (2017) 
report split-half reliabilities of between r = .17 and r = .75. Ideally, the reliability 
coefficients of psychological measurements reach the value of r = .80 (see e.g. 
Nunnally & Bernstein, 1994; Steiner, 2003). We could say, therefore, that the 
reliability coefficients of the statistical learning measures used in the present study 
approach psychometric standards, although it is important to emphasize that 
there remains room for improvement.  

In order to clarify the true relationship between statistical learning and 
literacy acquisition, an important aim for future research is to develop statistical 
learning tasks that can be considered reliable, not only regarding split-half 
reliabilities but also test-retest reliabilities, and are therefore suitable for 
examining individual differences (see also e.g. Kidd et al., 2017; Siegelman et al., 
2017a; 2017b). The development of reliable statistical learning measures that are 
suitable for use with child participants is especially important (e.g. Arnon, 2019a; 
2019b). Additionally, the present state of the field stresses the need for (exact) 
replications and large-scale (cross-linguistic) studies, preferably using a fixed set 
of tasks. We would also like to stress the added value of pre-registration and 
registered reports, which could help minimize problems such as a publication 
bias in the field and may thereby clarify the nature of the relationship between 
statistical learning and literacy skills (see also e.g. Schmalz et al., 2017; van 
Witteloostuijn et al., 2017). Theoretical and pedagogical models of reading and 
spelling should be extended to incorporate statistical learning in order to enable 
the formulation of more specific and testable hypotheses for future studies such 
as “at what stage of learning to read and spell is statistical learning of 
importance?” and “what type of statistical learning is most closely associated with 
literacy acquisition?”. With the accumulation of evidence, meta-analytic analyses 
may provide insight into the strength of the relationship between statistical 
learning and literacy skills, which in turn can clarify its relevance for clinical 
practice and potential use in treatment for individuals with dyslexia. Meta-
regression techniques could inform us about potential moderators of the effect 
such as participant characteristics (e.g. age, native orthography) and 
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methodological choices regarding the statistical learning task (e.g. type of 
structure, modality). 

To conclude, the results of the present study fit with the pattern of mixed 
findings in the field more generally: although we find evidence of correlations 
between SRT performance and reading and spelling in children with dyslexia 
(although weak and uncontrolled for potential participant-level confounds), no 
evidence for a relationship between statistical learning and literacy attainment is 
found once we consider participant-level characteristics such as age, non-verbal 
reasoning, attention and phonological skills and when we consider the whole 
sample of children with and without dyslexia. Although these null results may 
simply be due to chance, it may also suggest that the link between statistical 
learning and literacy skills may be less strong than previously hypothesized and 
is likely influenced by methodological choices made in individual studies. 
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Chapter 6 
Individual differences in statistical learning and grammar* 

 
 
 
Abstract 
 
Purpose: Several studies have signalled grammatical difficulties in individuals with 
developmental dyslexia. These difficulties may stem from a phonological deficit 
(e.g. Shankweiler et al. 1995), but may alternatively be explained through a 
domain-general deficit in statistical learning (e.g. Nicolson & Fawcett, 2007). This 
study investigates grammar in children with and without dyslexia, and whether 
phonological memory and/or statistical learning ability contribute to individual 
differences in grammatical performance.  

Methods: We administered the standardized Clinical Evaluation of 
Language Fundamentals (CELF-IV-NL; Kort et al., 2008) “word structure” and 
“recalling sentences” subtests and measures of phonological memory (digit span, 
nonword repetition) and statistical learning (serial reaction time, nonadjacent 
dependency learning) among 8- to 11-year-old children with and without dyslexia 
(N = 50 per group).  

Results and conclusions: Consistent with previous findings, our results show 
difficulties in the area of grammar, since children with dyslexia achieved lower 
scores on CELF (word structure: p = .0027, recalling sentences: p = .053). While 
the two phonological memory measures were found to contribute to individual 
differences in grammatical performance, no evidence for a relationship with 
statistical learning was found. An error analysis revealed errors on irregular 
morphology (e.g. plural and past tense), suggesting problems with lexical 
retrieval. These findings are discussed in light of theoretical accounts of the 
underlying deficit in dyslexia. 

                                                
 
* This chapter is a slightly modified version of a submitted manuscript: van Witteloostuijn, 
M.T.G., Boersma, P.P.G., Wijnen, F.N.K., & Rispens, J.E. (submitted to Applied 
Psycholinguistics). Grammatical difficulties in children with dyslexia: The contributions of 
individual differences in phonological memory and statistical learning. 
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6.1 Introduction 
 
Developmental dyslexia (henceforth “dyslexia”) is a learning disability that is 
characterized by impaired reading and spelling despite normal intelligence and 
educational opportunities, and in absence of sensory impairments (DSM-V, 
2013; Snowling, 2001). Individuals with (a familial risk of) dyslexia are known to 
experience difficulties in the area of phonological skills (Vellutino, Fletcher, 
Snowling, & Scanlon, 2004; see Melby-Lervåg et al., 2012 for a meta-analysis), 
which has led to the predominant view that the literacy impairments in dyslexia 
stem from an underlying phonological deficit. When learning to read and spell, 
children must acquire the correspondences between letters and sounds (i.e. 
graphemes and phonemes). If, however, the processing, storage and/or 
representation of phonological information is impaired, children experience 
difficulties in the acquisition of grapheme–phoneme mappings that in turn result 
in problems with literacy acquisition (e.g. Ramus & Szenkovits, 2008).  

Over time, researchers have uncovered cognitive impairments in 
individuals with (a familial risk of) dyslexia in addition to literacy and 
phonological skills. These (may) involve general skills such as the processing of 
visual and auditory input (e.g. Stein & Walsh, 1997; Tallal, 2004), attention (e.g. 
Facoetti et al., 2000), and motor functioning (e.g. Ramus, 2003), but may also 
extend to language domains other than literacy and phonology, such as 
inflectional morphology and syntax (e.g. Rispens & Been, 2007; Robertson & 
Joanisse, 2010; Scarborough 1990). Together, these observations have led to 
suggestions of a more general learning deficit in dyslexia (Nicolson & Fawcett, 
2007; 2011), i.e. a deficit of the domain-general ability to detect statistical patterns 
in sensory input, including spoken and written language (henceforth “statistical 
learning”; Gabay et al., 2015; Lum et al., 2013). 

The aim of the present study is twofold: (1) to investigate the 
performance of children with and without dyslexia on measures assessing 
inflectional morphology and syntax, and, most importantly, (2) to examine 
whether children’s performance in these domains can be explained by individual 
differences in phonological processing and memory and/or statistical learning 
ability. In doing so, we contribute to the existing literature on grammatical ability 
in children with dyslexia and enhance our understanding of their difficulties in 
this area. Most importantly, we hope to provide novel insights into the underlying 
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cause of the linguistic difficulties observed in dyslexia by investigating two 
opposing theories (i.e. phonological or statistical learning deficit). 
 
6.1.1 Grammatical difficulties in children with dyslexia 
 
Besides pronounced deficiencies in the areas of literacy skills and phonology, 
individuals with (a familial risk of) dyslexia have been shown to experience delays 
in oral language development in early childhood (see Snowling & Melby-Lervåg, 
2016, for a meta-analysis). Studies of spoken language skills in young children 
with a familial risk of dyslexia have shown that they produce shorter sentences 
of lower syntactic complexity and achieve lower vocabulary scores than typically 
developing (TD) children (e.g. van Alphen, de Bree, Gerrits, de Jong, Wilsenach, 
& Wijnen, 2004; Chen, Wijnen, Koster, & Schnack, 2017; Koster, Been, 
Krikhaar, Zwarts, Diepstra, & van Leeuwen, 2005; Lyytinen et al., 2001; Ramus, 
Marshall, Rosen, & van der Lely, 2013; Scarborough, 1990; Snowling & Melby-
Lervåg, 2016). Furthermore, when school-aged children with (a familial risk of) 
dyslexia are compared to their TD peers, they are found to achieve lower scores 
on standardized tests of grammar (e.g. the Clinical Evaluation of Language 
Fundamentals [CELF]; total language score: McArthur et al., 2000; word structure 
subtest: Joanisse et al., 2000; recalling sentences subtest: Ramus et al., 2013; 
Finnish inflectional morphology test: Aro, Eklund, Nurmi, & Poikkeus, 2012; 
Lyytinen et al., 2001, but see e.g. Carroll & Myers, 2010). Similarly, there are 
indications that (pre)school-aged children with (a familial risk of) dyslexia 
perform more poorly on experimental tasks that assess inflectional morphology, 
including pluralization (Joanisse et al., 2000), subject-verb agreement (Jiménez et 
al., 2004; Nash, Hulme, Gooch, & Snowling, 2013; Rispens et al., 2004; Rispens 
& Been, 2007) and past tense formation (de Bree & Kerkhoff, 2010; Joanisse et 
al., 2000; Nash et al., 2013; but see Rispens, de Bree, & Kerkhoff, 2014). The 
same holds for the comprehension of sentences (Robertson & Joanisse, 2010) 
and the correct interpretation (and production) of complex syntactical structures 
such as passive sentences (Reggiani, 2010; Shankweiler et al., 1995), relative 
clauses (Bar-Shalom, Crain, & Shankweiler, 1993; Mann et al., 1984; Shankweiler 
et al., 1995), and referential pronouns (Waltzman & Cairns, 2000).  

Note, however, that null findings regarding the group comparisons with 
age-matched TD children have also been reported in the literature: on 
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standardized tests of grammar (Carroll & Myers, 2010; Ramus et al., 2013) and 
on experimental tasks examining inflectional morphology and syntax (e.g. 
Rispens et al., 2014; Ramus et al., 2013). It is also noteworthy that most studies 
of grammar in dyslexia have focused on pre-school and early-school-aged 
children (i.e. up until the age of 8; but see Ramus et al., 2013; Rispens et al., 2014; 
Robertson & Joanisse, 2010). Thus, the reported difficulties in the area of 
inflectional morphology and syntax in individuals with dyslexia may be restricted 
to specific grammatical processes (or may be described as subtle; see Rispens et 
al., 2014), and not much is known about the persistence of these difficulties into 
later childhood. 

The abovementioned oral language difficulties in children with dyslexia 
are reminiscent of developmental language disorder (DLD; previously known as 
specific language impairment [SLI]; Bishop, Snowling, Thompson, & 
Greenhalgh, 2017), a disorder that is defined by oral language problems and 
pronounced difficulties in the areas of morphology and syntax. Dyslexia and 
DLD are distinct diagnoses that can co-occur within a single child. The 
behavioral overlap between the two disorders is known to be high (e.g. McArthur 
et al., 2000; Catts et al., 2005), which has raised the question whether the two 
disorders should be viewed as distinct or as two points on a single continuum 
(e.g. Bishop & Snowling, 2004). Although we are aware of this line of research, 
we here focus on children with a diagnosis of dyslexia and investigate the nature 
and extent of their grammatical difficulties. 
 
6.1.2 Theories of dyslexia: phonological deficit and statistical 

learning deficit 
 
Theories of the underlying cause of dyslexia should not only account for the 
impairments in the area of reading and spelling, but should also be able to explain 
the abovementioned difficulties with inflectional morphology and syntax. In line 
with the dominant view that dyslexia originates from a deficit in phonological 
skills, grammatical problems in dyslexia have been theorized to be “further 
symptoms of an underlying phonological weakness” (Shankweiler et al., 1995, p. 
149). This idea is supported by evidence that children with dyslexia are especially 
impaired in morpho-phonology – morphological processes that interact with 
phonology (Shankweiler et al., 1995; Rispens et al., 2014). In such processes, the 
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selection between allomorphs depends on the phonological characteristics of the 
stem. For example, the selection of the /t/, /d/ or /id/ allomorph in English 
past tense verb inflection, as in bake – baked, try – tried and bait – baited, depends 
on the final phoneme of the verb (e.g. Joanisse & Seidenberg, 1998; Joanisse et 
al., 2000). Thus, problems with the processing of phonological information, such 
as the verb stem, may affect the acquisition of associated morphological patterns 
(i.e. verb inflection; Joanisse & Seidenberg, 1999). As for difficulties with 
syntactic structures, these have been linked to limitations in phonological short-
term memory in dyslexia (see Melby-Lervåg et al., 2012; Snowling & Melby-
Lervåg, 2016, for meta-analyses): if the processing and storage of phonological 
information is impaired or limited, this is likely to affect syntactical processing of 
spoken language. In support of this idea, Robertson and Joanisse (2010) showed 
that when memory demands are high, children show poorer syntactic processing 
of spoken sentences, and this effect is more pronounced in children with dyslexia 
than in TD children. 

Alternatively, the grammatical difficulties may be explained through an 
underlying deficit in statistical learning ability (Nicolson & Fawcett, 2007; 2011; 
Gabay et al., 2015; Ullman et al., 2019). According to this theory, the grammatical 
problems observed in dyslexia are not the result of a phonological deficit, but 
instead the range of impairments associated with dyslexia follow from a domain-
general deficit in statistical learning. Generally speaking, sensitivity to regularities 
and patterns in the (linguistic) input is thought to support the rule-based aspects 
of language acquisition, including morphology and syntax (e.g. Bannard, Lieven, 
& Tomasello, 2009; Evans et al., 2009; Kidd & Kirjavainen, 2011; Ullman & 
Pierpont, 2005). For example, the acquisition of nonadjacent patterns in 
language, such as the relationship between auxiliaries and inflections on the verb 
(e.g. the boy is running, where the intervening verb may vary), may be supported 
by a mechanism that enables the tracking of their co-occurrence statistics (e.g. 
Goméz, 2002). This hypothesized relationship between statistical learning and 
grammatical performance is supported by research that has shown that 
performance on statistical learning tasks is related to grammatical abilities in TD 
children. Studies have established such relationships between statistical learning 
and syntactic priming (Kidd, 2012), grammatical processing (Clark & Lum, 2017) 
and the comprehension of complex syntactical structures such as passives and 
relative clauses (Kidd & Arciuli, 2016). Likewise, individual differences in the 
statistical learning ability of adults has been shown to correlate with the 
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comprehension of relative clauses (Misyak et al., 2010) and the comprehension 
of written sentences in general (Misyak & Christiansen, 2012). Moreover, studies 
have demonstrated impaired statistical learning in children with DLD, who are 
known to experience grammatical difficulties (see Lammertink et al., 2017, and 
Lum, Conti-Ramsden, Morgan, & Ullman, 2014, for meta-analyses). No studies 
to date have explored the relationship between grammatical performance and 
statistical learning ability in individuals with and without dyslexia. 
 
6.1.3 The current study 
 
In the present study, we tested grammatical abilities of 100 school-aged Dutch-
speaking children with and without dyslexia. This was done using two 
standardized tests of grammar, that target different levels of grammatical 
knowledge: inflectional morphology and syntax (the “word structure” and 
“recalling sentences” subtests of the Dutch version of the CELF [CELF-IV-NL]; 
Kort et al., 2008). Furthermore, we aimed to highlight specific areas of difficulty 
through an analysis of error patterns. Most importantly, we tested two accounts 
of dyslexia that make predictions about the relationship between grammar on the 
one hand and underlying problems in either phonological memory or statistical 
learning ability on the other hand. Thus, we aimed to answer the following three 
research questions: 
 

(1) Do children with dyslexia perform worse than their TD peers on 
grammar as measured with standardized tests (CELF word structure and 
CELF recalling sentences)? 

(2) Do children with dyslexia make different errors than their TD peers on 
the CELF word structure and/or CELF recalling sentences? 

(3) Do phonological memory and/or statistical learning ability contribute to 
individual differences on the CELF word structure and/or CELF 
recalling sentences? And, if so,  

a) is this contribution different for the dyslexia versus the control 
group? 

b) is this contribution different for the CELF word structure 
versus the CELF recalling sentences? 
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In relation to research question 3, we focused on measures of 
phonological memory, since individuals with dyslexia are typically impaired in 
this area (Melby-Lervåg et al. 2012; Snowling & Melby-Lervåg, 2016) and 
phonological memory is theorized to contribute to grammatical abilities (e.g. 
Robertson & Joanisse, 2010). Digit span forward and nonword repetition (NWR) 
tasks were used to assess phonological short-term memory (i.e. immediate recall), 
while the digit span backwards was used as a measure of phonological working 
memory (i.e. the manipulation of phonological information prior to recall; e.g. 
Baddeley, 2012; Alloway, Gathercole, Kirkwood, & Elliott, 2009). Naturally, 
these memory tasks also rely on the processing of phonological information and 
(already established) phonological representations, which is especially true for 
nonword repetition (Rispens & Baker, 2012). 

Statistical learning was tested using two experimental tasks that targeted 
different aspects of the domain-general ability to detect statistical regularities: 
visuo-motor sequence learning (serial reaction time [SRT] task) and the learning 
of auditorily presented nonadjacent dependencies (auditory nonadjacent 
dependency learning [A-NADL] task). Both statistical learning measures have 
previously been related to grammatical performance in children and/or have 
demonstrated impaired learning ability in children with DLD (SRT: e.g. Kidd, 
2012; Clark & Lum, 2017; A-NADL: e.g. Iao et al., 2017; Lammertink et al., 
2019a). Besides phonological memory and statistical learning measures, our 
regression analysis includes other potential sources of variance in grammatical 
performance (children’s age, gender, and socio-economic status [SES], and their 
scores on measures of non-verbal reasoning, vocabulary, and sustained 
attention). 

It is important to note here that any statistical analyses done in order to 
answer research question 2 are exploratory, since the tasks used to measure 
grammatical performance were not designed for error analysis specifically. The 
results from these analyses may further our understanding of the grammatical 
problems associated with dyslexia and may thereby serve to highlight potentially 
interesting directions for future research. Moreover, it should be noted that 
group comparisons regarding statistical learning ability in the present sample 
have already been discussed in detail elsewhere (van Witteloostuijn et al., 2019, 
see chapter 4). 
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6.2 Methods 
 
6.2.1 Participants 
 
The ethical committee of the Faculty of Humanities of the University of 
Amsterdam approved this study. One-hundred 8- to 11-year-old children were 
included in the final sample: 50 children with a prior diagnosis of dyslexia (26 
girls, 24 boys, mean age in years;months = 9;10) and 50 individually age-matched 
TD children composed the control group (24 girls, 26 boys, mean age = 9;8). To 
confirm participation as (non-)dyslexic, word (Een Minuut Test; Brus & Voeten, 
1972) and pseudo-words (Klepel; van den Bos et al., 1994) reading tests were 
administered. All children with dyslexia in the final sample had a maximum norm 
score of 6 (i.e. 10th percentile) on word and pseudo-word reading, while TD 
children had a minimum norm score of 8 (i.e. 25th percentile). Ten additional 
children with dyslexia and four additional TD children did not meet these pre-
determined inclusion criteria regarding their reading scores and were therefore 
excluded from the final sample. Parental (in the case of dyslexia) and teacher (in 
the case of control) reports confirmed that all 100 participants in the final sample 
were native speakers of Dutch and none had diagnoses of (other) developmental 
disorders such as DLD. All participants were able to complete each of the tasks 
included in the present study. Please note that, as previously mentioned, the 
sample described here is identical to the sample described by van Witteloostuijn 
et al. (2019, see chapter 4; under review, see chapter 5), which focusses on group 
comparisons on statistical learning measures. Similarly, the control group partly 
overlaps with studies examining language and statistical learning in children with 
DLD (Lammertink et al., 2019a; 2019b; 2020). These previous reports thus have 
a different focus than this study and there is no overlap in interpretation of the 
data. 
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Table 6.1. Children with and without dyslexia’s mean (and SD) age and SES, and 
results from reading, spelling, nonverbal reasoning, and sustained attention: raw 
and standardized scores. 

 
 

Dyslexia (N = 50) 
 

Control (N = 50)  

 Raw Standardized  Raw  Standardized   
Age 9;10 (0;9) N/A 9;8 (0;10) N/A  
SES 0.2 (1.2) N/A 0.2 (1.1) N/A  
Reading wordsa 34.1 (11.7) 3.3 (2.1) 66.3 (11.6) 10.5 (2.2)  
Reading pseudo-wordsa 22.0 (8.0) 4.4 (1.6) 61.0 (14.4) 11.1 (2.2)  
Spellingb 8.4 (4.6) 11.8 (13.7) 18.6 (4.7) 49.9 (24.7)  
Nonverbal reasoningb 37.2 (6.6) 55.7 (25.0) 37.3 (8.1) 60.1 (28.1)  
Vocabularyb 117.3 (9.7) 54.8 (21.3) 118.0 (9.4) 58.7 (20.6)  
Sustained attentiona 7.0 (2.5) 7.4 (3.3) 7.8 (1.8) 9.1 (3.0)  

Note: Age in years;months. Data regarding SES by postal codes was obtained from the 
Netherlands Institute for Social Research (NISR). Raw scores on reading words (Een minuut 
test, Brus & Voeten, 1972) and pseudo-words (Klepel, van den Bos et al., 1994) represent 
the number of words read within the time limit of 1 and 2 minutes respectively. Raw 
scores on spelling represent the number of words spelled correctly out of 30 in a Dutch 
dictation test (Braams & de Vos, 2015). Nonverbal reasoning was measured using Raven’s 
Standard Progressive Matrices (Raven & Raven, 2003); raw scores represent the number of 
items answered correctly out of 60. The Peabody Picture Vocabulary Test (PPVT-III-NL; 
Dunn et al., 2005) was used as a test of receptive vocabulary; raw scores represent the 
number of items answered correctly out of a maximum of 204 items. Finally, sustained 
attention was assessed by the Score! subtest of the Dutch Test of Everyday Attention (TEA-
Ch; Schittekatte et al., 2007); raw scores represent the number of items answered correctly 
out of 10. Standardized scores represent either a norm scores (norm = 10) or b percentile 
scores (norm = 50). 
 

In line with their diagnosis, children with dyslexia were found to perform 
significantly worse than the TD children on reading words (t = 13.83, p = 9.1×10-

25), reading pseudo-words (t = 16.75, p = 1.6×10-30), and spelling (t = 11.41, p = 
1.1×10-19). No evidence for a difference between the two child groups was found 
regarding their age (t = .839, p = .40), socio-economic status (SES; t = .173, p = 
.86), vocabulary (t = .367, p = .71), or nonverbal reasoning (t = .041, p = .97). 
Children with dyslexia scored lower than TD children on our measure of 
sustained attention, although this effect did not reach significance (t = 1.939, p = 
.055). Table 6.1 above provides more information regarding the measures used 
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and presents their descriptive results (please note that these results overlap with 
those presented in van Witteloostuijn et al., 2019, see chapter 4; under review, 
see chapter 5). Individual differences in age, SES, vocabulary, and nonverbal 
reasoning are included as control predictors in our regression model that 
investigates the contribution of phonological memory and statistical learning 
ability to grammatical performance (research question 3). 
 
6.2.2 Materials 
 
6.2.2.1 Measures of grammatical performance 
 
Children’s grammatical abilities were assessed through two subtests of the Dutch 
version of the standardized CELF (CELF-4-NL; Kort et al., 2008): the CELF 
word structure and CELF recalling sentences subtests. The CELF word structure 
task is set up to measure children’s ability to apply word formation rules (i.e. 
inflectional morphology), while the CELF recalling sentences task aims to test 
children’s ability to listen to and repeat sentences, thereby considering 
grammatical performance at different levels (i.e. morphology, and syntax).  

In the CELF word structure task, children were shown pictures and were 
instructed to finish sentences read out by the experimenter. The task consists of 
30 items that are divided into categories targeting different aspects of 
morphology including pronouns, nouns (i.e. diminutives and plurals), verbs (i.e. 
subject-verb agreement, tense, and compound verbs), and adjectives (i.e. 
comparatives and superlatives). Responses were coded as either correct or 
incorrect, with a maximum score of 30. Children’s scores on the CELF word 
structure task were not converted to standardized (i.e. norm) scores, since norms 
are available up until the age of 8 and our sample consists of 8- to 11-year-old 
children. For this reason, one may expect to find scores close to ceiling 
performance in the current sample, especially in the control group. 

The CELF recalling sentences task required children to repeat sentences 
of increasing length and complexity as dictated by the experimenter. In 
accordance with the CELF manual, 8-year-old children repeated a maximum of 
31 sentences, while children aged 9 years or older were administered a maximum 
of 23 sentences (the first eight sentences were not administered). Responses 
received a score of 3 (0 errors), 2 (1 error), 1 (2 or 3 errors), or 0 (4 or more 
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errors) and testing was discontinued after five consecutive 0 scores. Children’s 
individual score on the CELF recalling sentences task was the total number of 
points awarded to the administered sentences. 
 
6.2.2.2 Measures of phonological memory 
 
Phonological processing and phonological short-term and working memory were 
assessed through two tasks: a digit span task (CELF-4-NL; Kort et al., 2008) and 
a shortened version of a NWR task (NWR-S; le Clercq et al., 2017). Both the 
forward and backward digit span task were administered, in which children were 
required to repeat sequences of digits of increasing length either in the same order 
(forward digit span; 16 items) or in the reversed order (backward digit span; 14 
items). In the NWR-S, 22 pre-recorded nonwords were played one at a time and 
children had to listen carefully and repeat each nonword as accurately as possible. 
Items in the digit span and NWR-S tasks were scored as either correct or 
incorrect. 
 
6.2.2.3 Measures of statistical learning 
 
In the SRT task, a visual stimulus continuously appeared in one of four marked 
locations on a tablet screen. Children were required to press corresponding 
buttons on a gamepad as accurately and as quickly as they could and started with 
a practice block (block 1; 28 trials). Without the participants’ knowledge, stimuli 
were presented following a pre-determined sequence (4, 2, 3, 1, 2, 4, 3, 1, 4, 3) in 
sequence blocks 2–5 and sequence block 7, and was repeated six times per block 
(i.e. 60 trials). In the intervening block (i.e. disruption block 6), the presentation 
of the stimulus no longer followed the sequence, but the order of appearance 
was random for 60 trials. Learning in the SRT task is measured as the increase in 
reaction times (RTs) in disruption block 6 as compared to the surrounding 
sequence blocks. 

In the A-NADL task, children listened to an artificial language and, 
unbeknownst to them, their sensitivity to two nonadjacent dependencies was 
measured. Such nonadjacent dependencies mirror those found in natural 
languages; for example, the morphosyntactic relationship between auxiliaries and 
inflections on the verb in English (e.g. “is walking”, where the is–ing relationship 
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is nonadjacent and the intervening verb may vary). The task was modelled on the 
SRT task and thus contained blocks in which the artificial language adhered to 
these nonadjacent dependency rules (i.e. rule blocks 1–3 and 5) and an 
intervening block in which it no longer followed these rules (i.e. disruption block 
4). Both nonadjacent dependencies tep X lut and sot X mip had an a X b structure, 
where a predicts b and the intervening X was selected from a set of 24 two-
syllable nonwords, and both dependencies were presented 24 times per rule 
block. Besides the items containing the nonadjacent dependency rules, each rule 
block contained 12 filler trials with f1 X f2 structure where f1 does not predict f2 
(f1 and f2 are taken from a set of 24 one-syllable nonwords that do not include tep, 
sot, lut or mip, and X refers to the same set of 24 two-syllable nonwords used in 
the a X b structure). In the intervening disruption block, the occurrence of lut 
and mip was no longer predicted by the a X b rule: in 24 out of 30 trials, lut and 
mip still occurred in the b position, but one of the one-syllable fillers f occurred 
in the a position (i.e. f X b structure). The remaining 6 trials were entire filler 
items (i.e. f1 X f2 structure). Children performed a word-monitoring task in which 
they tracked the occurrence of one of the two predictable nonwords (i.e. the b 
element in the a X b structure). Half of the participants was assigned to lut as a 
target and half to mip. Children were instructed to press a green button when they 
heard the target nonword and to press a red button when they did not hear the 
target nonword (Lammertink, van Witteloostuijn et al., 2019; López-Barroso et 
al., 2016). As in the SRT task, learning in the A-NADL task is reflected by slower 
RTs to input in the disruption block than to rule-governed input in the 
surrounding rule blocks. 

In both statistical learning tasks, accuracy and RTs to each trial were 
recorded. As explained, learning is evidenced by shorter RTs to structured input 
as compared to random input and, therefore, the individual measures of learning 
used in the regression analysis are difference scores (SRT: normalized RT in 
disruption block 6 minus mean normalized RT in sequence blocks 5 and 7, A-
NADL: normalized RT in disruption block 4 minus mean normalized RT in rule 
blocks 3 and 5).  
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6.2.3 General procedure 
 
As mentioned in §6.2.1, children in the present study were tested as part of a 
larger project investigating statistical learning and its relation to language in 
children with and without dyslexia and DLD (van Witteloostuijn et al., 2019, see 
chapter 4; Lammertink et al., 2019a; 2019b; 2020). A test battery including the 
tasks reported on here was administered one-on-one by an experimenter in the 
child’s home or school. The test battery took approximately three hours to 
complete and was divided into three testing sessions. Importantly, each testing 
session consisted of one statistical learning measure, combined with a range of 
background and language measures. The orders between and within sessions 
were counter-balanced; and children were randomly assigned to one out of six 
testing orders. 

The CELF word structure, CELF recalling sentences, PPVT, and digit 
span tasks were dictated by the experimenter. Instructions (SRT, A-NADL) and 
auditory stimuli (A-NADL, NWR-S) in the statistical learning and NWR-S tasks 
were pre-recorded by a native Dutch speaker and were played over Sennheiser 
HD 201 headphones. PPVT images were shown on a Windows Surface 3 tablet. 
The SRT and A-NADL tasks were programmed and administered through E-
prime 2.0 and displayed on the same tablet (Psychology Software Tools, 2012; 
Schneider et al., 2012). Accuracy and RTs in the SRT task were logged using a 
Trust wired GXT540 gamepad controller, while responses to the A-NADL task 
were logged through an external button box. Verbal responses in the CELF word 
structure, CELF recalling sentences and NWR-S tasks were recorded using an 
Olympus DP-211 voice recorder. 
 
6.2.4 Scoring and analysis 
 
The following sections provide details of our method of scoring and analyses 
regarding group comparisons, the error exploration and the regression model. 
All analyses were performed in R software (R core team, 2019); raw (summary-
level) data files and R Markdown and html files containing all analyses reported 
in the present study can be found on our Open Science Framework (OSF) 
project page (https://osf.io/kjctf/). 
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6.2.4.1 Group comparisons 
 
Individual t-tests were run on children’s raw scores on our outcome measures 
(CELF word structure and CELF recalling sentences; research question 1) and 
on the raw scores on the tests assessing phonological memory (digit span and 
NWR-S) in order to investigate whether a difference in performance is observed 
between participants with and without dyslexia. As mentioned, investigations of 
group differences on the statistical learning measures (SRT and A-NADL) were 
already reported on elsewhere (van Witteloostuijn et al., 2019, see chapter 4), and 
are thus not re-analysed here, although these findings are summarized in §6.3.1.  
 
6.2.4.2 Exploratory error explorations 
 
Children’s performance on the CELF word structure and CELF recalling 
sentences was examined in more detail through an error analysis. This allowed 
us to explore whether children with dyslexia make qualitatively different errors 
than their TD peers (research question 2). Since items of the CELF word 
structure are already divided into categories, we inspected the total number of 
errors (and proportion of answers correct) per category (see §6.2.2.1). To explore 
potential differences between children with and without dyslexia in their 
performance on the CELF word structure categories, t-tests were run on the 
number of errors.  

For ease of error analysis, responses to the CELF recalling sentences 
were recoded as either correct or incorrect (instead of 0, 1, 2, or 3; see §6.2.2.1). 
We categorized errors according to a pre-determined scoring schedule. Different 
types of errors were distinguished: errors pertaining to the inflectional 
morphology of verbs (subject-verb agreement, tense, overgeneralization, and 
lexical errors) and nouns (plural, article choice, and lexical errors), and errors with 
the referential use of pronouns (demonstratives). These error categories 
combined will be referred to as “specific errors”. The remaining errors (i.e. errors 
that could not be categorized under specific error categories) were deemed 
“unspecific errors”, which included omissions, additions, replacements and 
displacements of words that we did not analyse further (e.g. uttering a word in a 
different position in the sentence or switching two words). As in the CELF word 
structure analysis, t-tests were run to investigate potential group differences on 
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the number of specific errors in certain categories. Furthermore, to inspect the 
level of syntax, 19 sentences were marked as “syntactically complex”; these 
consisted of passive sentences (N = 6) and sentences containing a subordinate 
clause (N = 13). Moreover, the length of sentences was also considered in our 
analyses of the CELF recalling sentences. The effects of syntactic complexity, 
sentence length and group (dyslexia versus control) were explored using a 
generalized linear mixed effects (GLMER) model built using the lme4 package 
for R (version 1.1-13; Bates et al., 2014). 95% CIs were computed through Wald’s 
approximation for confidence intervals (CIs) and raw sentence length (i.e. 
number of words in target sentence) was centered and scaled by standard 
deviation. The categorical predictors included in the model were sentence 
complexity and group, which were orthogonally contrast-coded. Sentence 
complexity was coded into two contrasts such that the first contrasted simple 
(coded as - 2/3) and complex sentences (passive and subordinate, coded as + 1/3) 
and the second contrasted the two complex sentence types (i.e. passive coded as 
- 1/2 and subordinate coded as + 1/2). The coding of Group was identical to the 
coding reported for the regression model: the control group was coded as - 1/2 
and the dyslexia group as + 1/2. The random effect structure of the model 
contained by-subject intercepts and by-subject random slopes for sentence 
length, sentence complexity and the interaction between sentence length and 
sentence complexity.  

Since testing on the CELF recalling sentences was discontinued after 
five consecutive 0 scores (see §6.2.2.1), it is important to note that testing was 
halted after a similar number of sentences in both participant groups of children 
with and without dyslexia (dyslexia: 29.5 [SD = 2.8], TD: after 30.2 [SD = 2.0]). 
Although a subset of children (i.e. children over the age of 8) did not complete 
sentences 1 through 8, we disregard this in our error analyses since children were 
individually matched on age. Of all 2320 sentences administered to our 100 
participants, 10 sentences resulted in null responses that were categorized as 
missing data and were excluded from analyses (dyslexia: N = 6, control: N = 4). 

 
6.2.4.3 Regression analysis 
 
We set up a linear regression model to examine whether a range of predictors 
contribute to individual differences in performance on our outcome measures of 
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grammar (research question 3). This was done using the “lm” function included 
in R, which modelled grammatical performance by a number of control 
predictors (age, gender, SES, nonverbal reasoning, vocabulary, and attention) and 
predictors relevant to research question 3 (phonological memory: digit span and 
NWR-S, statistical learning: SRT, and A-NADL). Group membership (dyslexia 
versus TD) was added as a predictor in order to assess interactions between 
group and other predictors (research question 3a). The significance of predictors 
to both grammatical measures combined (CELF word structure and recalling 
sentences) was determined through the “Manova” function in the car package for 
R (version 2.1-5; Fox et al., 2012). The effects of phonological memory and of 
statistical learning on grammar performance were investigated by comparing the 
full model to models from which both measures assessing phonological memory 
(digit span and NWR-S) and both statistical learning measures (SRT and A-
NADL) were removed. To compare the contribution of predictors to CELF 
word structure versus CELF recalling sentences (research question 3b), we 
computed 95% CIs using the profile method (“confint” function in R) and 
examined the overlap of 95% CIs of individual predictors for the two measures 
of grammar performance. Importantly, raw scores on continuous outcome 
variables (CELF word structure and CELF recalling sentences) and predictors 
(age, SES, non-verbal reasoning, attention, PPVT, digit span, NWR-S, SRT and 
A-NADL) were centered and scaled. The categorical predictors, i.e. Gender and 
Group, were orthogonally contrast-coded: females were coded as - 1/2 and males 
as + 1/2, and, similarly, the control group was coded as - 1/2 and the dyslexia 
group was coded as + 1/2.  
  

6.3 Results 
  
We present the results regarding our three research questions: the group 
comparisons pertaining to research question 1 are described in §6.3.1, followed 
by the error exploration in §6.3.2 (research question 2), and the regression 
analysis in §6.3.3 (research question 3). While the analyses related to research 
questions 1 and 3 can be viewed as confirmatory, the analyses related to research 
question 2 are exploratory in nature. Additionally, our regression analysis 
provides us with some exploratory findings that may be of interest and are 
reported separately following recommendations by Wagenmakers et al. (2012). 
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As mentioned, files containing all data and analyses presented here can be found 
on our OSF project page (https://osf.io/kjctf/). 
 
6.3.1 Group comparisons 
 
Table 6.2 presents the mean (and SD) scores on the two measures of grammar 
(CELF word structure and CELF recalling sentences), and the phonological 
memory (digit span, NWR-S) and statistical learning (SRT, A-NADL) measures 
included as predictors in our regression model that is discussed in §6.3.3 (see also 
van Witteloostuijn et al., 2019, see chapter 4; under review, see chapter 5). In 
order to answer our first research question, we examined group effects on 
children’s grammatical performance as measured by the CELF word structure 
and recalling sentences subtests. Results reveal that participants with dyslexia 
achieved significantly lower scores on the CELF word structure (t = 3.082, p = 
.0027). The children with dyslexia also achieved lower scores on the CELF 
recalling sentences, but this effect did not reach significance (t = 1.957, p = .053). 
Out of 50 children with dyslexia, 9 received a norm score of 6 (i.e. 10th percentile) 
or lower on the CELF recalling sentences, while 7 out of 50 TD children received 
a norm score of 6 or lower. No norm scores are available for the CELF word 
structure subtest (see §6.2.2.1). 

Furthermore, the children with dyslexia performed significantly worse 
than the TD children on the digit span forward task (t = 5.36, p = 5.5×10-7) and 
the NWR-S (t = 3.962, p = .00014), which both assess phonological processing 
and short-term memory. No evidence of such a difference between participant 
groups was found for the digit span backward that targets phonological 
processing and working memory (t = 1.257, p = .21). Finally, as previously 
published in van Witteloostuijn et al. (2019, see chapter 4), evidence of learning 
was found for both statistical learning measures when looking at children with 
and without dyslexia together. Importantly, however, no evidence of a group 
difference emerged for either the SRT (p = .61) or the A-NADL (p = .87) task.  
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Table 6.2. Mean (and SD) scores on measures of grammar, phonological skills, 
and statistical learning: raw and standardized scores per group. 

 
 

Dyslexia (N = 50) 
 

Control (N = 50)  

 Raw  Standardized  Raw  Standardized   
CELF word structurec 26.9 (1.8) N/A 27.9 (1.3) N/A  
CELF recalling sentencesa 55.2 (10.3) 8.5 (2.2) 59.7 (12.9) 9.9 (2.9)  
Digit span forwarda 7.3 (1.5) 7.7 (2.6) 8.9 (1.5) 10.7 (2.9)  
Digit span backwarda 4.2 (1.1) 9.0 (2.5) 4.5 (1.5) 10.0 (3.2)  
NWR-Sc 7.3 (2.7) N/A 9.7 (3.3) N/A  
SRTc 0.29 (0.28) N/A 0.27 (0.27) N/A  
A-NADLc 0.15 (0.33) N/A 0.17 (0.28) N/A  

Note: Raw scores: CELF word structure = number of items correct out of 30, CELF 
recalling sentences = total score on administered sentences, Digit span = number of 
items answered correctly out of 16 (forward) or 14 (backward), NWR-S = number of 
nonwords repeated correctly out of 22, SRT = difference in normalized RTs (RT 
disruption – RT sequence), A-NADL = difference in normalized RTs (RT disruption – 
RT rule). Standardized scores represent either a norm scores (norm = 10) or b percentile 
scores (norm = 50). c No standardized scores are available for the CELF word structure, 
NWR-S, SRT and A-NADL tasks. 
 
6.3.2 Error exploration 
 
6.3.2.1 Word structure 
 
Overall, the children with dyslexia made an average of 3.1 errors out of 30 (range: 
0–10 errors) and the TD children made 2.1 errors (range: 0–5 errors; see Figure 
6.1). Performance on two categories of the CELF word structure task was found 
to be at ceiling both in participants with and without dyslexia: regular plurals 
(dyslexia: 3 errors, 98.5% accuracy, TD: 1 error, 99.5% accuracy) and past tense 
formation (dyslexia: 3 errors, 98.5% accuracy, TD: 2 errors, 99% accuracy). 
Moreover, on categories eliciting demonstrative and personal pronouns, the 
children with and without dyslexia achieved comparable levels of accuracy 
(demonstrative pronouns: dyslexia 32 errors, 68% accuracy, TD 34 errors, 66% 
accuracy, personal pronouns: dyslexia 26 errors, 87% accuracy, TD: 23 errors, 
88.5% accuracy). The other categories may inform us about different error 
patterns in children with dyslexia as compared to their TD peers, as participants 
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with dyslexia achieve numerically lower accuracy levels. These categories include 
irregular plurals (dyslexia: 17 errors, 91.6% accuracy, TD: 7 errors, 96.5% 
accuracy), diminutives (dyslexia: 18 errors, 92.8% accuracy, TD: 9 errors, 96.4% 
accuracy), compound verbs (dyslexia: 46 errors, 54% accuracy, TD: 28 errors, 
72% accuracy), and comparative superlatives (dyslexia: 10 errors, 96% accuracy, 
TD: 2 error, 99.2% accuracy). The difference in accuracy levels between 
participants with and without dyslexia reaches significance on irregular plurals 
and compound verbs (t = -2.148, p = .034 and t = -3.368, p = .0011 respectively). 
Differences between the children with and without dyslexia do not reach 
significance on diminutives or comparative superlatives (t = -1.718, p = .089 and 
t = -1.871, p = .065 respectively).  

Closer inspection of the error pattern on the irregular plurals (4 items) 
reveals that the children with dyslexia make most errors on the item ei – eieren [ɛi 
– ɛiərə(n)] (‘egg – eggs’; 12 errors), followed by schip – schepen [sxɪp – sxeːpə(n)] 
(‘ship – ships’; 5 errors), and fewest errors are made on koe – koeien [ku – kujə(n)] 
(‘cow – cows’; 2 errors) and glas – glazen [ɣlɑs – ɣlaːzə(n)] (‘glass – glasses’; 2 errors). 
The errors in the TD participants are distributed more equally (koe – koeien: 1 
error, ei – eieren: 2 errors, schip – schepen: 3 errors; glas – glazen: 0 errors). Generally 
speaking, errors on irregular plurals are cases of overgeneralization: participants 
apply the regular plural rules (add /ə(n)/ or /s/) to irregular nouns (i.e. ei – *eien 
*[ɛiə(n)], schip – *schippen *[sxɪpə(n)], glas – *glassen *[ɣlɑsə(n)], koe – *koes *[kus], 
instead of applying the required more complex suffix (/ərə(n)/ as in ei – eieren) or 
alteration of the noun stem (i.e. vowel lengthening as in schip – schepen [sxɪp – sxeːp-
ə(n)] and glas – glazen [ɣlɑs – ɣlaːz-ə(n)], or stem alteration as in koe – koeien [ku – 
kuj-ə(n)].  

Regarding compound verbs, the majority of errors (dyslexia: 40 out of 
46; TD: 27 out of 28) is made on the item wassen af (‘[they are] washing the dishes’) 
and only few errors are made on the item speelt gitaar (‘[he/she] plays the guitar’). 
These errors are cases in which the child fails to separate the two verbal elements, 
such as zij zijn aan het afwassen (‘they are washing the dishes’; this is not 
ungrammatical, but may be an avoidance strategy), and/or cases in which the 
infinitive form of the verb is used (i.e. *zij gitaar spelen [‘she guitar plays’], or *zij 
afwassen [‘they washing the dishes’]).  
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Figure 6.1. Histogram showing the distribution of performance on the CELF word 
structure subtest; children with dyslexia are presented in the top graph, TD children are 
presented in the bottom graph. Each bar represents the number of errors (out of 30 test 
items) of an individual participant. 
 
6.3.2.2 Recalling sentences 
 
In our GLMER model predicting children’s performance on the CELF recalling 
sentences task, we found a significant effect of sentence length: accuracy was 
lower for longer sentences than for shorter sentences (odds ratio estimate = a 
factor of 1.5 per standard deviation, 95% CI = [1.4 … 1.6], p = 3.5×10-35). There 
was also a significant effect of sentence complexity; accuracy was lower for 
sentences that contained a complex syntactical structure as compared to simple 
sentences (odds ratio estimate = 58, 95% CI = [13 … 261], p = 1.1×10-7). As may 
be expected, these two predictors were found to significantly interact with one 
another, indicating that the effect of length on performance is stronger in 
complex sentences than in simple sentences (odds ratio estimate = 1.4, 95% CI 
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= [1.2 … 1.5], p = 7.5×10-6). Furthermore, accuracy was significantly lower on 
sentences containing subordinate clauses as compared to passive sentences (odds 
ratio estimate = 23, 95% CI = [5 … 119], p = .00015) overall and the effect of 
length was found to be significantly stronger for subordinate clauses than for 
passive sentences (odds ratio estimate = 1.5, 95% CI = [1.3 … 1.8], p = 7.9×10-

8). The effect of group in interaction with sentence complexity (odds ratio 
estimate = 1.4, 95% CI = [0.07 … 29], p = .81) or sentence length (odds ratio 
estimate = 1.0, 95% CI = [0.9 … 1.1], p = .87) is non-significant. Similarly, none 
of the three-way interactions with group are found to be significant. Thus, 
performance on the CELF recalling sentences task is influenced by sentence 
length and sentence complexity in children, and we find no evidence of a 
difference in performance between children with and without dyslexia regarding 
the effects of sentence length and sentence complexity. 

A total number of 4762 errors (dyslexia: N = 2525, TD: N = 2237) on 
the CELF recalling sentences task were classified into pre-determined categories 
(see §6.2.4.2). Further inspection of these errors reveals that the largest 
proportion of total errors are classified as non-specific: omissions of words 
(dyslexia: 35.5%, TD: 36.4%), replacements, displacements, and switches of 
words (dyslexia: 26.9%, TD: 25.6%), and additions of words (dyslexia: 11.1%, 
TD: 11.9%). Together, these error categories account for approximately 74% of 
all errors made on the CELF recalling sentences task. Both for the children with 
and without dyslexia, non-specific errors involve function words slightly more 
often than content words (dyslexia: 51.2% and 48.8% of non-specific errors 
respectively, TD: 51.9% and 48.1% of non-specific errors respectively). 

As explained in §6.2.4.2, the remaining 26% of errors (dyslexia: N = 671, 
TD: N = 585) were labelled as specific errors and were divided into errors 
pertaining to nouns (plurals, article choice, and lexical selection errors), verbs 
(subject-verb agreement, tense, overgeneralization, and lexical errors), and 
demonstrative pronouns. Table 6.3 presents a summary of these results. Of these 
specific errors, the children with dyslexia made an average of 13.4 errors (range: 
1–24 errors) and the TD children made 11.7 errors (range: 1–26 errors; see Figure 
6.2).  
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Table 6.3. Recalling sentences: numbers of errors in the categories covering 
verb, noun and pronoun errors per group. 

  
 

Dyslexia (N = 50) 
 

TD (N = 50)  

  # Errors # Errors  
Verbs Subject-verb agreement 15 23 38 
 Tense 121 107 228 
 Overgeneralization 13 4 17 
 Lexical 192 192 384 
Nouns Plural 6 7 13 
 Article choice  36 30 66 
 Article choice (definite) 67 41 108 
 Lexical 168 139 307 
Pronouns Demonstrative 53 42 95 
Total  671 585 1256 

 
The largest proportion of specific errors was classified as lexical errors, 

both in the children with dyslexia (verbs: N = 192, nouns: N = 168) and in the 
TD children (verbs: N = 192, nouns: N = 139), corresponding to approximately 
55% of specific errors. Regarding nouns, the children make very few pluralization 
errors (dyslexia: N = 6, TD: N = 7). More errors are made concerning article 
choice: both the choice between indefinite and definite articles (een versus de/het; 
dyslexia: N = 36, TD: N = 30) and between the two definite articles (de versus 
het; dyslexia: N = 67, TD: N = 41). Exploratory t-tests suggest that children with 
dyslexia may make more errors regarding the choice between the two definite 
articles in Dutch (t = 2.039, p = .044). No evidence of a difference between 
groups is found for errors concerning the choice between indefinite and definite 
articles (t = 1.178, p = .24). Secondly, regarding verbal morphology, the children 
made a small number of subject-verb agreement errors (dyslexia: N = 15, TD: N 
= 23) and overgeneralization errors (dyslexia: N = 13, TD: N = 4), whereas tense 
errors are more frequent (dyslexia: N = 121, TD: N = 107). No evidence of a 
difference in performance between children with and without dyslexia is found 
regarding the number of subject-verb agreement errors (t = -0.906, p = .37) and 
tense errors (t = 1.012, p = .31). The children with dyslexia were found to produce 
significantly more verb overgeneralization errors (t = 2.411, p = .019). These are 
instances where children apply the regular Dutch past tense rule (i.e. add /te/) to 
irregular verbs, such as koop – *koopte (correct: kocht; ‘buy – *buyed – bought’). 
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However, please note the low number of errors in this category overall. Lastly, 
no evidence of a difference in performance between children with and without 
dyslexia is found regarding the incorrect use of the demonstrative pronoun 
(dyslexia: N = 53, TD: N = 42; t = 1.559, p = .12). 
 

 
 

Figure 6.2. Histogram showing the distribution of performance on the CELF recalling 
sentences subtest; children with dyslexia are presented in the top graph, TD children are 
presented in the bottom graph. Each bar represents the number of specific errors of an 
individual participant. 
 
6.3.3 Regression analysis 
 
6.3.3.1 Regression analysis: confirmatory findings 
 
In order to answer research question 3, we performed a linear regression analysis 
to investigate the effects of phonological memory (digit span and NWR-S) and 
statistical learning (SRT and A-NADL) on children’s performance on the CELF 
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word structure and recalling sentences subtests. Manova results show that NWR-
S (Wilk’s l= .88, F[2,80] = 5.28, p = .0070) scores significantly affect grammar 
performance (CELF word structure and recalling sentences combined). The 
effects of the digit span forward (Wilk’s l= .96, F[2,80] = 1.89, p = .16) and 
backward (Wilk’s l= .99, F[2,80] = 0.22, p = .81) tasks do not reach significance. 
Importantly, when we compare the full model to a model where the phonological 
memory measures (digit span and NWR-S) are removed, this results in a 
significant decrease in the fit of the model (F[12,162] = 2.80, p = .0017). The 
model provides no evidence of an effect of statistical learning on individual 
differences in performance on the CELF WS and RS (SRT: Wilk’s l= .99, F[2,80] 
= 0.36, p = .70; A-NADL: Wilk’s l= .99, F[2,80] = 0.29, p = .75). Comparing 
the full model to a reduced model where the statistical learning measures (SRT 
and A-NADL) are removed does not reveal a significant difference in fit between 
the models (F[8,162] = 1.04, p = .41). Thus, we can conclude that phonological 
memory skills contribute to the grammatical performance of children with and 
without dyslexia; and we find no evidence for or against the hypothesis that 
statistical learning contributes to children’s grammatical performance. 

Regarding potential differences between children with and without 
dyslexia (research question 3a), the model shows a significant interaction between 
phonological processing and short-term memory, as measured by the NWR-S, 
and group (NWR-S*Group: Wilk’s l= .92, F[2,80] = 3.51, p = .035). To follow 
up on this interaction, we calculated correlations between NWR-S and CELF 
performance separately for both groups. Results show that the correlation 
between nonword repetition and grammatical performance is significant in both 
groups (TD: r = .580, t(48) = 4.934, p = 1.0×10-5; dyslexia: r = .504, t(48) = 4.042, 
p = .00019). No other interactions with group are found to be significant. As for 
potential differences in the contribution to CELF word structure versus recalling 
sentences performance (research question 3b), we cannot conclude that there is 
a difference in effect of the NWR-S due to overlapping 95% CIs (effect NWR-S 
on CELF word structure: b = +.20, 95% CI [-.050 ... +.46], p = +.11; effect 
NWR-S on CELF recalling sentences: b = .28, 95% CI [+.089 ... +.47], p = 
.0044).  
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6.3.3.2 Regression analysis: exploratory findings 
 
Besides enabling us to answer research question 3, the regression model provides 
us with exploratory findings that may be of interest. Firstly, non-verbal reasoning 
(Raven; Wilk’s l= .87, F[2,80] = 6.06, p = .0035) and vocabulary (PPVT; Wilk’s 
l= .81, F[2,80] = 9.28, p = .00024) are found to contribute to CELF word 
structure and recalling sentences performance combined. Secondly, there is no 
evidence that the effect of group membership contributes to children’s 
grammatical performance over and beyond the other predictors included in the 
model (Wilk’s l= .95, F[2,80] = 2.31, p = .11). 

In addition to these findings provided by the model, we here wish to 
further explore the effects of phonological memory and statistical learning on 
grammar performance, since these constructs were measured using multiple 
tests. Firstly, the results described above suggest that the effect of phonological 
memory is largely carried by the NWR-S. This is corroborated by a further 
analysis: removal of digit span forward and backward does not significantly affect 
the fit of the model (F[12,162] = 0.56, p = .81). In other words, the digit span 
tasks do not significantly add to the model above and beyond the NWR-S. 
Similarly, we wish to explore the effect of the A-NADL task on its own, since 
this statistical learning task is considered to model aspects of grammar 
acquisition. Removing the SRT task from the model does not result in a 
significant decrease in fit (F[4,162] = 0.90, p = .46), and the effect of the A-
NADL task on its own remains non-significant (Wilk’s l= .99, F[2,80] = 0.31, p 
= .73). Please note that the effect of the SRT and A-NADL tasks combined also 
did not reach significance (§6.3.3.1). Therefore, we find no evidence for (or 
against) the hypothesis that the A-NADL and the SRT contributes to grammar 
performance in children with and without dyslexia. 
 

6.4 Discussion 
 
The goal of this study was to examine the performance of Dutch-speaking 
school-aged children with and without dyslexia on standardized measures of 
inflectional morphology and syntax. We investigated whether phonological 
memory and statistical learning ability contributed to children’s grammatical 
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performance, in order to shed light on the underlying causes of the linguistic 
difficulties associated with dyslexia. Here, we first discuss the findings concerning 
group and error pattern analyses of tasks assessing inflectional morphology and 
syntax (research questions 1 and 2), followed by a discussion of the contributions 
of phonological memory and statistical learning to children’s grammatical 
performance (research question 3). 
 
6.4.1 Grammatical difficulties in children with dyslexia 
 
In line with previous studies examining the performance of children with dyslexia 
on (standardized) tests of grammar, children with dyslexia in the present study 
achieved lower scores on the CELF word structure subtest that assesses 
inflectional morphology (p = .0027; see also Joanisse et al., 2000) and the CELF 
recalling sentences (p = .053), targeting both morphology and syntax (see also 
Carroll & Myers, 2010). When investigating the effects of a range of predictors 
on grammatical performance, results showed that group membership (i.e. having 
a diagnosis of dyslexia or not) did not contribute to individual differences in 
grammar scores over and beyond other contributors to performance (e.g. 
vocabulary, non-verbal reasoning, nonword repetition and digit span). Together, 
these findings agree with earlier findings that showed that difficulties in the area 
of grammar in individuals with dyslexia exist, but are likely to be subtle (Rispens 
et al., 2014), at least in 8 to 11-year-olds.  

To explore the nature of the observed difficulties within the CELF word 
structure and recalling sentences subtests, we performed a fine-grained analysis 
of children’s error patterns. Here, we highlight the most important findings. 
Firstly, regarding the CELF word structure subtest, no evidence of a difference 
between participant groups was found on the production of diminutives (i.e. 
producing the correct diminutive suffix on nouns as in boom–pje; ‘tree–DIM’ 
[diminutive marker]; see also Boersma, 2018), comparative superlatives (e.g. snel, 
snel–ler, snel–st; ‘fast, fast–er, fast–est’), regular and irregular past tense, or 
pronouns. Recall that accuracy on demonstrative pronouns was low in both 
participant groups (dyslexia 68%, control: 66%): children overuse the common 
demonstrative pronoun die (‘that’) in situations where the neuter pronoun dat 
(‘that’) is required. The overgeneralization of the common gender in Dutch is a 
pattern previously described for TD children (see e.g. Blom, Polišenská, & 
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Weerman, 2008). Interestingly, participants with dyslexia were found to achieve 
scores close to ceiling performance on items targeting regular plurals (98.5% 
accuracy), while accuracy was found to be lower than their TD peers on items 
assessing irregular plurals. Errors on irregular plurals were cases of 
overgeneralization of the regular plural rule. As suggested by Ullman (2001) in 
his declarative/procedural model of language, the use of irregulars is thought to 
be supported by the mental lexicon, while the use of regulars depends on the 
application of structural rules (i.e. grammar). Thus, in the case of irregular plurals, 
instead of retrieving the correct (irregular) plural form from their lexical memory 
(e.g. ei, ei–eren; ‘egg–PL’ [plural marker]), participants with dyslexia were more 
likely to incorrectly apply the regular pluralization rule than TD participants (e.g. 
ei, ei–*en; ‘egg–*PL’). This pattern of findings may suggest a problem with lexical 
retrieval in dyslexia, which is in line with previous studies indicating poor 
performance on tasks assessing lexical retrieval (i.e. rapid automatized naming; 
e.g. Bexkens, van den Wildenberg, & Tijms, 2014). Furthermore, participants 
with dyslexia were outperformed by control participants on separable compound 
verbs. This is an indication of difficulties with production of the correct verb-
second word order in Dutch: the finite verb (i.e. the verb that expresses tense 
and/or agreement) appears in second position (zij wassen af, ‘they wash up’) and, 
thus, the production of an infinite verb in second position is ungrammatical (*zij 
afwassen, *‘they washing up’). Problems related to the verb-second phenomenon 
have previously been observed in children with DLD and are argued to be the 
result of underlying processing and working memory deficits (e.g. Blom, Vasić, 
& de Jong, 2014; de Jong, 1999; Rice & Wexler, 1996; Verhoeven, Steenge, & 
van Balkom, 2011). Moreover, both overregularization and verb-second 
avoidance strategies are known to occur in the language production of younger 
TD children and have been proposed to be the result of weak memory traces 
(e.g. Marcus, Pinker, Ullman, Hollander, Rosen, & Xu, 1992; Wexler, 1994). 
Thus, likewise, the difficulties with these phenomena in older children with 
dyslexia may be partially explained by limitations in the retrieval of lexical 
information. 

Secondly, children’s sentence recall accuracy was lower when sentences 
were longer and/or syntactically more complex. More importantly, there was no 
evidence that these effects of sentence length and syntactic complexity affected 
children with and without dyslexia differently. Thus, although CELF recalling 
sentences performance is influenced by both short-term memory load and 
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syntactic complexity, we find no evidence that this effect is more pronounced in 
children with dyslexia as previously reported by Robertson and Joanisse (2010) 
for sentence comprehension. As for specific error types, the children with 
dyslexia made more definite article selection errors (common de or neuter het) and 
produced more past tense overgeneralization errors (applying the regular 
morphological rule to irregular verbs, e.g. koop–*te; ‘buy–*ed’). As for the 
irregular plural errors in the CELF word structure subtest, these error types 
appear to be lexical in nature. In Dutch, the correct choice between the common 
and neuter article depends on the lexical knowledge of the noun: since Dutch 
noun gender is largely arbitrary, it has to be stored in the mental lexicon for each 
noun separately (e.g. Blom et al., 2008; Orgassa & Weerman, 2008). Thus, we 
find errors suggesting difficulties in lexical retrieval, both in the CELF word 
structure and the CELF recalling sentences subtests. Alternatively, the 
application of regular morphological rules to irregular nouns or verbs might 
result from so-called “hypercorrection” (de Bree, van der Ven, & van der Maas, 
2017). Since dyslexia treatments focus largely on teaching regular morphological 
rules, children with dyslexia may show a tendency to apply these rules, even in 
case of exceptions. However, this explanation cannot account for the lexical 
errors regarding the choice of the correct definite article. 

There are a number of limitations that we would like to point out here. 
Firstly, the exploratory findings presented here should be interpreted with 
caution. Future research needs to further investigate these findings regarding 
differences in error patterns between children with and without dyslexia, to test 
whether the findings reported here are reliable and generalizable. Secondly, the 
CELF word structure subtest may not have been maximally sensitive to 
differences in performance in the current sample due to the fact that it is designed 
to test children between 5 and 8 years of age. Finally, it is worth noting that the 
results presented here are based on few items (e.g. compound verbs in the CELF 
word structure) and/or a low number of errors overall (e.g. overgeneralization 
of the regular past tense in the CELF recalling sentences). Future studies 
comparing children with dyslexia not only to a group of age-matched TD 
children, but also to a group of children with DLD and/or with TD groups 
matched on reading ability, may further our understanding of the extent of 
grammatical difficulties in dyslexia and of the overlap with the problems 
observed in DLD. 
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6.4.2 Contributions to grammar performance in children with 
and without dyslexia 

 
The primary aim of the present study was to establish whether phonological 
memory and statistical learning ability contribute to children’s performance on 
the CELF word structure and recalling sentences subtests (i.e. grammatical 
ability), while controlling for children’s age and SES, and scores on tasks 
measuring their non-verbal reasoning, vocabulary, and attention. We conclude 
that phonological processing and phonological short-term and working memory 
contribute to the grammatical performance of children with and without dyslexia, 
above and beyond other predictors in the model. Thus, the results from our 
regression analysis are congruent with the idea that grammatical problems 
observed in dyslexia may be partially explained by an underlying weakness in the 
area of phonology (e.g. Shankweiler et al, 1995; Joanisse et al., 2000). More 
specifically, problems with the processing and short-term storage of 
phonological information, as measured by nonword repetition and digit span 
tasks, contribute to difficulties in the areas of inflectional morphology and syntax 
(see also Robertson & Joanisse, 2010). The correct processing and memorization 
of verbal material is relevant in both the CELF word structure and recalling 
sentences subtests, since they involve the processing of spoken sentences and 
either completing (CELF word structure) or repeating (CELF recalling 
sentences) these sentences. The link between phonological memory and 
grammar performance in the present study is further supported by the finding 
that children with dyslexia make more errors than TD children on compound 
verbs, which has previously been related to a phonological processing and 
memory limitation in children with DLD (e.g. Blom et al., 2014). Similarly, it is 
in line with the observation that participants were affected by sentence length in 
their performance on the CELF recalling sentences. Taken together, these results 
underline the important role that phonological processing and phonological 
memory play in grammatical performance, and they suggest that the grammatical 
problems observed in dyslexia may stem from an underlying problem in the area 
of phonological processing (e.g. Shankweiler et al., 1995). 
 We could not conclude whether or not statistical learning ability, as 
assessed through SRT and A-NADL tasks, contributes to children’s grammatical 
performance. Although statistical learning has been shown to be impaired in 
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individuals with dyslexia (e.g. Gabay et al., 2015; Lum et al., 2013) and DLD (e.g. 
Lammertink et al., 2017; Lum et al., 2014) and has been related to grammatical 
abilities in TD children (e.g. Clark & Lum, 2017; Kidd, 2012; Kidd & Arciuli, 
2016), our data do not provide evidence for (or against) the relationship between 
statistical learning on the one hand and inflectional morphology and syntax on 
the other hand. While this may seem surprising, other studies of the relationship 
between statistical learning and language performance have similarly reported 
null results (e.g. West et al., 2017). Recently, the reliability of statistical learning 
measures has been questioned, especially in child participants (e.g. Arnon, 2019a; 
West et al., 2017). Measures that are currently used may not be suitable to 
examine the hypothesized relationship with linguistic performance (e.g. Arnon, 
2019b). However, note that the measures used in the present study were reliable 
at detecting learning in child participants with and without dyslexia overall. 
Moreover, as presented in van Witteloostuijn et al. (under review, see chapter 5), 
the split-half reliability of the SRT task in the present sample was r = .71, 95% 
CI = [.58 … .81]. The split-half reliability of the online measure of the A-NADL 
task used in the present study, although not calculated for the present sample, 
was previously reported to be r = .79, 95% CI = [.66 … .87], in a sample of 72 
7- to 10-year-old children with and without DLD (Lammertink et al., 2019a). 
Thus, the split-half reliability coefficients of the statistical learning measures used 
in the present study are relatively high and approach the recommended value of 
r = .80 (see e.g. Nunnally & Bernstein, 1994; Siegelman et al., 2017a; Streiner, 
2003).  

Generally speaking though, and in line with concerns relating to 
reliability, statistical learning measures have been shown to only weakly correlate 
amongst each other (e.g. Schmalz et al., 2019; Siegelman & Frost, 2015), which 
may help explain the mixed results regarding the relationship between statistical 
learning and measures of linguistic performance (i.e. some studies reporting 
significant correlations and others reporting null findings). Of course, these 
factors do not exclude the possibility that statistical learning plays an important 
role in language acquisition and is therefore related to children’s grammatical 
performance, but merely affect our ability to evaluate this link (Arnon, 2019a; 
2019b). More research is needed in order to improve on present methodologies 
of measuring statistical learning and to more reliably evaluate its relationship to 
language. 
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 Finally, we would like to return to lexical storage and/or retrieval as 
potential additional sources of variation in grammatical performance, and of 
grammatical difficulties in dyslexia. Of course, lexical knowledge in general is one 
of the crucial building blocks of the comprehension and production of language, 
and lexical knowledge is affected in children with DLD (see McGregor, 2009, for 
a review). This relationship is also apparent from the present study: children’s 
receptive vocabulary knowledge contributes to their performance on inflectional 
morphology and syntax. More specifically, however, children with dyslexia were 
shown to experience difficulties in irregular plurals (CELF word structure), 
irregular past tense (CELF recalling sentences), and the choice between the 
common and neuter definite article (CELF recalling sentences). We would like 
to speculate that, besides phonological processing and memory, the automatic 
access and retrieval of lexical representations may be impaired in dyslexia (see 
also Bexkens et al., 2014), while the representations themselves may be 
unimpaired. A similar line of reasoning has been suggested regarding the retrieval 
processes of representations of speech sounds and phonology (Boets et al., 2013; 
Griffiths & Snowling, 2001; Ramus & Szenkovits, 2008; Rispens, Baker, & 
Duinmeijer, 2015). If individuals with dyslexia are unable to efficiently retrieve 
lexical representations from long-term memory (e.g. irregular plural or past tense 
forms), they are more likely to apply the regular morphological rule instead (e.g. 
Pinker, 1999), resulting in overgeneralizations as described in the present study.  

In summary, deficits in the area of phonological processing, 
phonological short-term and working memory, as well as lexical retrieval, are 
likely to contribute to the linguistic performance of children with dyslexia, not 
only in the area of literacy skills but also regarding inflectional morphology and 
syntax. These observations fit with suggestions that multiple cognitive deficits 
may help explain the range of behavioral difficulties associated with dyslexia and 
other developmental disorders, as well as the comorbidity between different 
disorders (e.g. Law, Vandermorsten, Ghesquiére & Wouters 2017; Pennington, 
2006). Already in 1999, Wolf and Bowers proposed the double deficit hypothesis: 
impairments in phonology or rapid automatized naming were assumed to cause 
dyslexia, with more severe problems when both phonological and rapid 
automatized naming difficulties were present in a single individual. More research 
is needed to increase our understanding of the exact nature of the underlying 
causes of dyslexia and to shed light on the so-called “risk factors” of developing 
developmental disorders such as dyslexia (Pennington, 2006). Investigations of 
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multiple sources of variance simultaneously, as attempted in the present study, 
may shed light on these open questions.



 

Chapter 7 
General discussion 

 
 
 

A domain-general learning mechanism – i.e. a statistical learning mechanism – is 
thought to contribute to the acquisition of spoken language and literacy skills in 
typical development (e.g. Arciuli & Simpson, 2012; Romberg & Saffran, 2010). 
Additionally, it has been suggested that impairments in the area of statistical 
learning may explain the observed language difficulties in developmental 
disabilities, including dyslexia (e.g. Ullman et al., 2019). Over the past decade, 
these hypotheses have received growing attention, resulting in divergent findings 
(i.e. some studies report evidence for the relationship between statistical learning 
and language, while others yield null results). The current dissertation adds to this 
body of work by investigating the relationship between statistical learning and 
performance on language and literacy measures in children with and without 
dyslexia. It employs three statistical learning tasks that span modalities and 
structure types and it addresses a range of language domains including spoken 
language skills (syntax, inflectional morphology) as well as literacy skills (technical 
reading, spelling). Importantly, the experimental studies reported in the present 
dissertation control for cognitive measures known to relate to statistical learning, 
such as sustained attention and short-term and working memory (see e.g. Arciuli, 
2017, Frost et al., 2019). Moreover, they take into account other variables known 
to predict language and literacy skills (vocabulary and phonological skills), and 
other potential participant-level confounds (e.g. children’s age, socio-economic 
status [SES], gender and non-verbal reasoning ability). In doing so, we aimed to 
(1) provide valuable new evidence regarding the relationship between individual 
differences in statistical learning and language performance in children with and 
without dyslexia, and (2) gain more insight into the nature and the extent of the 
hypothesized statistical learning deficit in dyslexia. In this final chapter, the main 
findings from the preceding chapters are recapitulated and discussed in relation 
to the two main research aims (§7.1 and §7.2 respectively). Subsequently, the 
chapter presents the theoretical and practical implications of the main findings, 
and sketches avenues for future research (§7.3). Finally, a number of conclusions 
are drawn in §7.4. 
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7.1 Statistical learning in relation to individual 
  differences in language and literacy skills 
 
The relationship between individual differences in statistical learning ability on 
the one hand and performance on tasks assessing language and literacy skills were 
investigated in chapters 5 and 6. While chapter 5 focused on the link between 
variation in serial reaction time (SRT) and visual statistical learning (VSL) 
performance and technical reading and spelling skills, chapter 6 examined the 
association of SRT and auditory nonadjacent dependency learning (A-NADL) 
performance with children’s grammar scores. Here, we present the main research 
findings of chapter 5 (§7.1.1) and chapter 6 (§7.1.2), and discuss these findings in 
conjunction in §7.1.3, where we focus on what our results may mean for the 
hypothesized role of statistical learning in the acquisition of language and literacy 
skills (§7.1.3). 
 
7.1.1 Individual differences in literacy skills 
 
Consistent with the hypothesized relationship between statistical learning and 
literacy skills, previous studies have demonstrated positive correlations between 
measures of statistical learning and reading and spelling ability. Further evidence 
comes from studies reporting poor statistical learning in individuals with dyslexia 
(see e.g. Lum et al., 2013, for a meta-analysis, and see §7.2 for further discussion 
of statistical learning in children with dyslexia). Here, we focus on studies of 
individual differences in statistical learning ability and literacy scores. Arciuli and 
Simpson (2012) showed that variation in VSL performance relates to variation in 
word reading abilities, both in English-speaking adult and typically developing 
(TD) child participants. Since then, others have also reported correlations 
between statistical learning measures and sentence reading in English (Qi et al., 
2019), word reading in Norwegian (von Koss Torkildsen et al., 2019), and reading 
Hebrew as a second language (Frost et al., 2013) in TD populations. Whereas 
some of these studies have controlled for age (Arciuli & Simpson, 2012), or age 
and non-verbal intelligence (Qi et al., 2019), the study by von Koss Torkildsen et 
al. (2019) was the first to evaluate the relative contribution of statistical learning 
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while also taking into account other factors known to influence literacy skills (e.g. 
attention, rapid automatized naming [RAN], verbal working memory).  

In chapter 5, we built on these previous studies by looking at two 
measures of statistical learning (VSL and SRT) and by incorporating literacy skills 
other than word reading (i.e. non-word reading and spelling). Moreover, we 
investigated whether statistical learning ability is related to literacy skills over and 
above cognitive abilities known to relate to statistical learning and/or literacy 
skills (i.e. non-verbal reasoning, sustained attention, verbal short-term and 
working memory, and RAN) and other variables at the participant level (i.e. age, 
SES, and gender). Furthermore, our sample consisted of children with a wide 
range of literacy abilities, since both TD children and children with dyslexia were 
included. Finally, we calculated the statistical learning tasks’ reliability by looking 
at their internal reliability and consistency, in view of concerns about the 
reliability of statistical learning measures when used with children (see Arnon, 
2019b, for a review). 
 The regression model presented in chapter 5 yielded no evidence of a 
relationship between statistical learning and literacy skills above and beyond the 
aforementioned participant-level variables. Significant simple correlations were 
found between SRT performance and both spelling (r = .372, p = .0078) and 
reading scores (r = .348, p = .013) in children with dyslexia. This (weak) 
relationship between SRT and literacy skills was no longer significant after 
controlling for other predictors in the model (e.g. age, non-verbal reasoning, 
attention, and phonological skills). Thus, these findings underline the importance 
of considering participant-level variables such as children’s scores on attention, 
non-verbal reasoning and known predictors of reading and spelling (e.g. 
phonological memory) when investigating the (unique) contribution of statistical 
learning to (language and) literacy skills. Furthermore, chapter 5 provides no 
evidence for (or against) the hypothesis that statistical learning ability is related 
to literacy skills in Dutch-speaking 8 to 11-year-olds, which is in line with other 
studies reporting null findings (e.g. Nigro et al., 2015; Schmalz et al., 2019; West 
et al., 2017; 2018).  

Previous reports of null findings have led to concerns about the 
reliability of often used statistical learning measures, especially when used in child 
participants (Arnon 2019a; 2019b, see e.g. Kidd et al., 2017; Siegelman et al., 
2017a; 2017b, for discussions of adult participants). Arnon (2019a) investigated 
whether three common statistical learning measures, including a VSL similar to 
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the one reported on here, captured stable individual differences in child 
participants. Her outcomes were unconvincing: internal consistency as measured 
using split-half reliability varied between r = -.04 (linguistic auditory statistical 
learning [ASL]) and r = .59 (VSL), whereas the test–retest reliabilities varied 
between r = .01 (VSL) and r = .33 (non-linguistic ASL), and all reliability 
measures were concluded to be “well below psychometric standards” (Arnon, 
2019a, p. 7). For this reason, it was important to calculate the reliability of the 
statistical learning measures used in chapter 5. Although we do not have data 
regarding the test–retest reliability, results showed that the internal consistency 
and reliability of the tasks used in the present dissertation approached 
psychometric standards. In the SRT, the split-half reliability coefficient was r = 
.71, 95% CI [.58 ... .81], and the VSL split-half reliability coefficients for the 2-
AFC and 3-AFC questions were r = .70, 95% CI [.55 ... .80] and r = .78, 95% CI 
[.67 ... .85] respectively. Therefore, we believe the results presented here are in 
line with claims that the true effect of statistical learning on the development of 
literacy skills may only be small, and may consequently only surface under certain 
methodological conditions (see also Schmalz et al., 2019; Elleman et al., 2019, 
and §7.1.3 for an elaboration on this mixed pattern of findings in the field, i.e. 
some studies reporting significant correlations and other studies reporting null 
results). Nevertheless, the development of novel statistical learning measures that 
can more reliably assess children’s statistical learning ability is an important aim 
for future research (see §7.3). 
 While the results regarding the relationship between statistical learning 
and literacy attainment were inconclusive, chapter 5 provided us with another 
finding that we would like to reiterate here. Phonological skills, as measured 
through phonological short-term memory (NWR-S and digit span tasks) and 
RAN, were found to relate to literacy scores overall, and this effect was larger in 
participants with dyslexia than in those without (see §7.3 for the theoretical 
implications for theories of dyslexia). These findings replicate those of earlier 
work, which has pointed out the relationship between individual differences in 
phonological skills, such as RAN, and literacy attainment in children (e.g. Furnes 
& Samuelsson, 2010; Papadopoulos, Spanoudis, & Georgiou, 2016; see Araújo, 
Reis, Petersson, & Faísca, 2015 for a meta-analysis of 137 studies). Similarly, tasks 
that assess phonological processing and short-term and working memory, 
including the NWR-S and digit span tasks used in chapter 5, have been found to 
relate to literacy scores (e.g. de Bree et al., 2010; de Jong & van der Leij, 1999). 
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In our study, the effect of phonological skills was largely carried by the effect of 
the RAN letters subtest, which is supported by the meta-analytical finding that 
RAN tasks with letters (or numbers) show higher correlations with reading than 
RAN tasks using pictures (or colors; Araújo et al., 2015). This makes sense, given 
the fact that reading involves the quick processing, retrieval, and articulation of 
grapheme–phoneme correspondences, just like the RAN letters (see also the 
brochure of the Dutch Dyslexia Association [Stichting Dyslexie Nederland]; de Jong 
et al., 2016). Since RAN performance is influenced by a range of underlying 
processes, including attention, knowledge of phonemes and graphemes, memory, 
and articulation (see e.g. Papadopoulos et al., 2016), the exact reason why 
individual differences in RAN relate to literacy scores is unclear (e.g. Kirby, 
Georgiou, Martinussen, & Parrila, 2010). Nevertheless, our results once again 
stress the contribution of phonological skills, and RAN letters in particular, to 
literacy skills in children. 
 In summary, although chapter 5 did not find evidence of a contribution 
of statistical learning ability to children’s literacy scores above and beyond 
participant-level variables such as attention, non-verbal reasoning and age, it did 
replicate earlier findings that stress the important role that phonological skills 
(especially RAN letters) play in the acquisition of literacy skills in children with 
and without dyslexia.  
 
7.1.2 Individual differences in grammatical skills 
 
Statistical learning has been claimed to facilitate not only learning to read and 
spell, but also the development of spoken language. More specifically, statistical 
learning is hypothesized to support the acquisition of rule-based aspects of 
language such as morphology and syntax (e.g. Ullman & Pierpont, 2005; Wijnen, 
2013). In support of this hypothesis, impairments in statistical learning have been 
observed in children with developmental language disorder (DLD), who are 
known to experience difficulties in this area (see e.g. Lammertink et al., 2017; 
Lum et al., 2014, for meta-analyses). Other support comes from correlational 
studies: for example, individual differences in statistical learning ability correlate 
with sentence comprehension in adult speakers (Misyak et al., 2010; Misyak & 
Christiansen, 2012). Studies with child participants have also provided evidence 
for an association between statistical learning and grammatical ability (e.g. 
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passives: Kidd, 2012; object-relative clauses: Kidd & Arciuli, 2016; grammatical 
processing: Clark & Lum, 2017). A range of other studies have reported non-
significant correlations between statistical learning and grammar (e.g. Conti-
Ramsden et al., 2015; Gabriel et al., 2011). Since studies vary widely in their 
methods (e.g. measures of learning, measures of grammar) and in their obtained 
findings (i.e. some report significant relationships and others report null results), 
Hamrick, Lum, & Ullman (2018) conducted a meta-analysis of studies 
investigating the correlation between statistical learning ability, as assessed using 
the SRT task, and a range of grammatical measures in TD children. Collapsing 
over eight experimental studies, they report a significant link between SRT 
performance and grammatical abilities (mean weighted effect = .27, p = .043; but 
see Lammertink et al., 2019b, for opposing findings in a meta-analysis including 
children with and without DLD).  

Chapter 6 follows up on this line of research by investigating the 
hypothesized relationship between statistical learning and grammatical 
performance. It does so elaborately by using two measures of statistical learning 
(SRT and A-NADL), by looking at both inflectional morphology and syntax as 
outcome measures, and by including children with and without a diagnosis of 
dyslexia. Children with dyslexia are an interesting test case, since they may 
experience (subtle) problems in the area of spoken language (see Snowling & 
Melby-Lervåg, 2016, for a meta-analysis of children with a familial risk of 
dyslexia). Different from many previous studies, we controlled for individual 
differences in cognitive abilities known to be related to statistical learning and/or 
grammatical performance, including sustained attention, phonological short-
term and working memory, and vocabulary.  

From our investigation in chapter 6, we could not conclude whether or 
not statistical learning ability, as measured using the SRT and A-NADL tasks, 
contributes to children’s grammatical performance. The studies by West et al. 
(2017; 2018), already discussed with respect to literacy skills, also report null 
correlations between measures of implicit learning (including the SRT task) and 
a standardized measure of grammar. Moreover, they showed that the implicit 
learning tasks used in their studies had poor reliability (SRT split-half reliabilities 
between .17 and .75; West et al., 2017). As briefly mentioned, a recent meta-
analysis by Lammertink et al. (2019b) that included a further 11 studies of the 
relationship between SRT performance and expressive grammatical abilities, 
found no evidence for a positive relationship overall (r = .13, 95% CI [-.038 – 
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+.28]). As argued by Lammertink et al. (2019b), these results may be partially 
explained by the low reliability of statistical learning measures when used with 
child participants (see also Arnon, 2019a; 2019b). However, the split-half 
reliabilities of the statistical learning measures used in the present study 
approached standards for psychometric testing (SRT: r = .71, A-NADL: r = .79 
in a sample of DLD and TD children; see Lammertink et al., 2019a). To 
conclude, the findings in chapter 6 provide no evidence for (or against) the 
hypothesis that individual differences in statistical learning ability relate to 
grammatical skills (see §7.1.3, where we elaborate on possible interpretations of 
these null findings in relation to the hypothesized role statistical learning plays in 
the acquisition of language and literacy skills). 

As described for chapter 5, the regression model in chapter 6 provided 
some results that were unrelated to the relationship between statistical learning 
and grammatical skills that we would nevertheless like to discuss here. We found 
that phonological processing and phonological short-term and working memory 
(i.e. the NWR-S and digit span tasks) are related to individual variation in 
grammatical performance, an effect that was mostly carried by the NWR-S. 
These findings emphasise the important role that phonological processing and 
phonological memory may play in the acquisition of grammar (see also e.g. 
Robertson & Joanisse, 2010). Furthermore, together with the observed 
relationship between phonological skills and literacy outcomes (van 
Witteloostuijn et al., under review, see chapter 5), they suggest that the difficulties 
with written and spoken language experienced by children with dyslexia may be 
(partially) explained by an underlying problem with phonological skills (e.g. 
Shankweiler et al., 1995; see §7.3 for implications of the present findings for 
theories of dyslexia). 
  To summarize, the findings reported in chapter 6 provide no evidence 
for (or against) a relationship between statistical learning and grammatical 
performance in Dutch-speaking children with and without dyslexia. They did, 
however, stress the important role that phonological processing and 
phonological memory may play in grammatical performance. We will now 
present a discussion of the contribution of statistical learning to individual 
differences in (written) language skills overall, after which we will discuss the 
results regarding the statistical learning abilities of children with dyslexia (§7.2). 
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7.1.3 Interim conclusions: individual differences 
 
As we have seen so far, chapters 5 and 6 provide no evidence of the hypothesized 
role that statistical learning plays in the acquisition of language and literacy skills. 
Since the start of this PhD project in May 2015, a number of studies have 
similarly obtained null results regarding the correlation between statistical 
learning and literacy skills, despite the promising findings reported earlier (e.g. 
Arciuli & Simpson, 2012; Frost et al., 2013). Examples include studies that 
examine adult participants (e.g. Schmalz et al., 2019), TD child participants (e.g. 
West et al., 2017; 2018) and child participants with and without dyslexia (Nigro 
et al., 2015), and that employ two types of commonly used statistical learning 
measures: the SRT task (Schmalz et al., 2019; West et al., 2017; 2018) and the 
AGL task (Nigro et al., 2015; Schmalz et al., 2019).  

Recent reviews, as well as the studies in this dissertation, have paid 
attention to these null findings in the field. Arnon (2019b), for example, 
highlights a number of general concerns with relating individual differences in 
performance on statistical learning tasks to variation in (language and) literacy 
attainment that may help explain spurious results in either direction, the largest 
concern being the reliability of statistical learning measures to capture individual 
differences (see e.g. Kidd et al., 2017; Siegelman et al., 2017a; 2017b, for 
discussions of adults). In our statistical learning experiments, we aimed to 
increase our tasks’ reliabilities by including online measures (A-NADL; 
Siegelman et al., 2017b) and by using different types of offline questions (VSL; 
Siegelman et al., 2017a), which resulted in relatively high internal consistency and 
reliability within sessions, with split-half reliabilities varying between .70 (VSL    
2-AFC) and .79 (A-NADL). Note, however, that we have no data on test–retest 
reliability, which is a measure of reliability within individuals, measured between 
sessions (i.e. the correlation between participants’ individual performance on two 
instances of a single measure, usually administered a few weeks or months apart). 
As such, test–retest reliability informs us whether a certain measure captures a 
stable trait of an individual and would provide additional evidence that the 
statistical learning tasks used in the present dissertation can be described as 
reliable measures (Arnon, 2019a). Developing both on- and offline measures of 
statistical learning that can reliably assess individual differences remains a current 
challenge, especially for child participants. The use of (relatively) unreliable 
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measures may help explain the observed fluctuations between studies correlating 
statistical learning performance with language and literacy attainment (see also 
§7.3). 

An additional explanation for the mixed pattern of findings in studies 
investigating the relationship between statistical learning ability and language and 
literacy skills is that the true effect may be small (or zero) and difficult to detect. 
If that is the case, the effect may only be observable under certain methodological 
conditions, which is supported by the suggestion that methodological differences 
between studies may help explain why some studies find evidence of the 
relationship between statistical learning and linguistic performance, while others 
do not (see e.g. Elleman et al., 2019; Schmalz et al., 2019). As indicated in chapter 
5, more specific theoretical and pedagogical models of language and literacy 
acquisition should be formulated with regard to statistical learning. Such models 
should focus on the specific role that statistical learning plays in the process of 
learning to speak, read and spell, and could be guided by questions such as “when 
during development is statistical learning most important?” and “what type of 
statistical structure is most closely related to the structures observed in spoken 
and written language?”. On the basis of this type of models, researchers may 
formulate testable hypotheses that, for example, guide the choice of certain 
statistical learning measures when looking at different components of language 
(see also e.g. Frost et al., 2019; Lammertink et al., 2019b; Siegelman et al., 2017b). 
In doing so, future research may more closely target the methodological 
conditions that may inform us about the nature and the extent of the correlation 
between statistical learning performance and (language and) literacy skills. 

Of course, these concerns do not deny the idea that a human capacity 
for learning statistical structures is an important contributor to the acquisition of 
language and literacy skills, but they do hamper our ability to draw conclusions 
at this point (see also Arnon, 2019b). Moreover, they provide possible avenues 
for future research, which we will get back to in §7.4. 
 

7.2 Statistical learning in dyslexia 
 
Besides studies of individual differences, the present dissertation contains two 
chapters that focus on the statistical learning abilities of children with dyslexia as 
compared to those without. In chapter 3, we reported a meta-analysis of 13 
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previous studies that tested the statistical learning deficit in dyslexia through the 
visual AGL paradigm. In the subsequent chapter, we investigated potential group 
differences (i.e. dyslexia versus control) on three statistical learning tasks that 
varied across domains and the type of statistical structure targeted. Through this 
elaborate investigation of statistical learning in dyslexia, both through meta-
analytical and experimental techniques, we hope to gain insight into the 
hypothesized role that statistical learning plays in the reading and spelling 
problems that are observed in children with dyslexia. In §7.2.1, we first present 
the meta-analytical findings, followed by the experimental findings in §7.2.2, after 
which these results are discussed together in §7.2.3. 
 
7.2.1 Meta-analytical findings: statistical learning in dyslexia 
 
As is the case for other experimental paradigms, studies of the visual AGL 
performance of individuals with dyslexia have yielded a mixed pattern of results: 
while some studies report significant differences between participants with and 
without dyslexia (e.g. Ise et al., 2012; Laasonen et al., 2014), other studies report 
null results (e.g. Nigro et al., 2016; Rüsseler et al., 2006). In 2017, Schmalz et al. 
performed a systematic review of both SRT and AGL studies in dyslexia, and 
concluded that there is “insufficient high-quality data to draw conclusions about 
the presence or absence of an effect” (Schmalz et al., 2017, p.147). We elaborated 
on their review in chapter 3 by (a) including a larger set of (unpublished) studies, 
(b) adding a statistical examination of the possibility of a publication bias in the 
field, and (c) investigating the effect of methodological variables (e.g. age, 
stimulus type, and training method) through a meta-regression technique, 
focusing on the visual AGL paradigm. 

Although the overall average weighted effect size obtained in chapter 3 
was significant (0.46, 95% CI [0.14 … 0.77], p = 0.008), indicating poorer visual 
AGL performance in individuals with dyslexia as compared to control 
participants across 13 studies, these results should be interpreted with caution. 
As reported in §3.3.2, there were indications of a publication bias. When we 
(conservatively) corrected for this publication bias, the estimated effect size was 
considerably reduced and the effect of group on performance no longer reached 
significance (0.20, 95% CI [−0.11 … 0.50], p = 0.205). This means that the initial 
results from our meta-analysis are likely to be overly optimistic, and the effect 
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may well be nulled by unpublished findings that were not included in the analysis. 
These findings highlight the importance of more empirical studies on visual AGL 
performance specifically, and statistical learning abilities more generally, in 
comparisons of individuals with and without dyslexia, before a conclusion can 
be drawn regarding the hypothesized deficit in this area (see also Schmalz et al., 
2017; Van Elk, Matzke, Gronau, Guan, Vandekerckhove, & Wagenmakers, 
2015). Furthermore, the publication bias that we likely observed reflects the 
known problem in psychological research that significant findings are more likely 
to be published than non-significant ones, which may impact both scientific and 
public perception of research outcomes (see also e.g. Ferguson & Brannick, 2012; 
Rosenthal, 1979).  
 
7.2.2 Experimental findings: statistical learning in dyslexia 
 
In an attempt to gain further insight into the hypothesized role that statistical 
learning ability may play in explaining the observed reading and spelling 
difficulties in dyslexia, chapter 4 investigated the performance of school-aged 
children with dyslexia on three statistical learning paradigms other than the visual 
ALG task. As mentioned, we included not only the often-used visuo-motoric 
SRT task, but also introduced two relatively novel tasks: the self-paced VSL task 
and an A-NADL task that also makes use of an online RT measure of learning. 
Additionally, investigations of group differences were controlled for individual 
differences in sustained attention and verbal short-term memory. This was done 
because (a) sustained attention and short-term memory capacity have been 
argued to play an important role in performance on statistical learning tasks (e.g. 
Arciuli, 2017; Arciuli & Simpson, 2011; Baker et al., 2004; Toro et al., 2005), and 
(b) children with dyslexia were found to perform worse on these cognitive 
constructs (see §4.2.1). 
 The results revealed significant learning effects overall (i.e. collapsing 
over participants with and without dyslexia) on the online RT measures of the 
SRT and A-NADL tasks and on the offline accuracy measure of the VSL task. 
However, no significant learning was found for the VSL online RT measure and 
the A-NADL offline accuracy measure, indicating the difficulty of assessing the 
statistical learning abilities of school-aged children (see also e.g. Arnon 2019a; 
2019b; van Witteloostuijn, Lammertink et al., 2019, see chapter 2, and see §7.2.3 
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below for more detail). More importantly, no significant differences between 
children with and without dyslexia were found for any of the on- or offline 
measures of statistical learning. Thus, the experimental findings reported in 
chapter 4 are consistent: although we find evidence that suggests sensitivity to 
the statistical structures in the SRT, VSL and A-NADL tasks by school-aged 
children overall, we find no evidence for (or against) a statistical learning deficit 
in children with dyslexia.  
 
7.2.3 Interim conclusions: group effects 
 
Despite the fact that the findings presented in chapters 3 and 4 are not in line 
with the hypothesized domain-general statistical learning deficit in dyslexia, they 
are consistent: we find no evidence that individuals with dyslexia have difficulties 
with statistical learning measures across our experimental study of three 
paradigms (SRT, VSL, A-NADL), and we find no meta-analytical evidence of 
difficulties with visual AGL once we controlled for the presence of a publication 
bias. Rather, we find evidence of sensitivity to the statistical structures in the SRT, 
VSL, and A-NADL tasks when we look at the group of children with and without 
dyslexia combined, and no evidence of a difference between the two groups. 
Thus, given the fact that (a) participants showed evidence of learning in all three 
experimental tasks in chapter 3, and (b) the standardized effect size of the group 
effect was small for all three experimental tasks in chapter 3, as well as on the 
(for publication bias corrected) meta-analytical results of the visual AGL in 
chapter 4, and (c) the split-half reliabilities of the three experimental tasks were 
found to be relatively high in chapters 5 and 6, the results of the present 
dissertation do not support the hypothesis that individuals with dyslexia exhibit 
a domain-general statistical learning deficit. Since we did not provide evidence of 
such a deficit, this raises doubt about the possibility that a statistical learning 
deficit causes the literacy problems seen in individuals with dyslexia. The 
implications of these results for theories of dyslexia are discussed in §7.3. 
 These findings are in line with other studies that have yielded null results 
(e.g. Deroost et al., 2010; Menghini et al., 2010; Nigro et al., 2016; Rüsseler et al., 
2006; Staels & Van den Broek, 2017). They also support concerns relating to a 
publication bias in the field (e.g. Schmalz et al., 2017; van Witteloostuijn et al., 
2017, see chapter 3), and studies that have questioned (the extent and nature of) 
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the statistical, or procedural, learning deficit hypothesis of dyslexia (see also e.g. 
West et al., 2017; 2018). As discussed in relation to studies of individual 
differences, the results of the present dissertation do not exclude subtler, or 
perhaps more domain-specific, statistical learning difficulties in dyslexia that may 
only surface under certain experimental conditions (e.g. statistical learning of 
certain types of structure or in certain modalities or stimulus types that relate 
more closely to literacy skills). Furthermore, generally speaking, the problem of 
the reliability of statistical learning tasks may also impact the field of statistical 
learning in dyslexia. 
 Besides informing us about the statistical learning abilities of children 
with dyslexia, the results in chapter 4 demonstrate the difficulty of measuring the 
statistical learning abilities of school-aged children. This topic already received 
attention in chapter 2 (van Witteloostuijn, Lammertink et al., 2019), where we 
showed that our online, but not offline, measure of learning was able to capture 
VSL ability in children between 5;9 and 8;7 years old (note that the effect of 
online learning was rather weak with a p-value of .021). Together with the results 
from chapter 4 – i.e. no evidence of learning was observed in the VSL online 
measure and the A-NADL offline measure – the findings in the present 
dissertation underline the importance of developing sensitive measures of 
statistical learning in school-aged children, despite the relatively high split-half 
reliabilities of the measures that did show evidence of learning (VSL offline 
measures, SRT online measure, and A-NADL online measure).  

The fact that the VSL offline measures did not provide evidence of 
learning in 5- to 8-year-old children (chapter 2), but did provide evidence of 
learning in 8- to 11-year-old children (chapter 4), is indirect evidence that 
performance on offline, explicit decision-making measures increase between the 
ages of 5 and 12 (Arciuli & Simpson, 2011; Arnon & Raviv, 2017). Since the CIs 
of the online effect of learning in the self-paced VSL task (i.e. the difference in 
RTs to predictable and unpredictable stimuli) in the two samples overlap (chapter 
2: CI = [-0.114 … -0.002]; chapter 4: CI = [-0.038 … +0.012]), we can conclude 
on the basis of these results that the online measure does not (yet) reliably 
measure children’s sensitivity to the statistical structure of the VSL task. Likewise, 
the offline measure of the A-NADL was shown to be insensitive to children’s 
ability to track the nonadjacent dependencies in the task (see also Lammertink et 
al., 2019a; Lammertink, van Witteloostuijn et al., 2019). These results stress the 
need for additional sensitive measures of statistical learning in child participants, 
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although they have also demonstrated the usefulness of the SRT, the VSL offline 
and the A-NADL online measures adopted in the present dissertation. 
 
7.3 Implications and directions for future research 
 
As stated at the beginning of this chapter, a domain-general statistical learning 
mechanism has been hypothesized to play a crucial role in the acquisition of 
spoken and written language. This hypothesis has been assessed in two traditional 
types of research: (1) the study of individual differences in statistical learning and 
their relationship with variation in language and literacy scores, and (2) the study 
of the statistical learning performance of children with developmental disorders 
such as dyslexia. These two approaches were combined in the present 
dissertation. Taken together, the findings obtained have led us to question the 
strength of this relationship between statistical learning on the one hand and 
language and literacy skills (and dyslexia) on the other hand. As previously stated, 
however, our findings do not exclude the possibility that such a relationship 
exists, although the association may be subtler and perhaps more domain-specific 
than previously hypothesized. Here, we wish to discuss some implications and 
highlight some directions for future research, before turning to the conclusions 
in §7.4. 
 The first important implication of the studies presented in this 
dissertation is practical in nature. We have shown that the three statistical learning 
measures used in the present dissertation are sensitive to the statistical learning 
abilities of school-aged children. Particularly, the VSL offline test phase, which 
was improved based on suggestions made by Siegelman et al. (2017b), and the 
A-NADL online RT measure as modeled on a previous study with adults by 
López-Barroso (2016, see also Lammertink, van Witteloostuijn et al., 2019) were 
novel measures that were found to capture learning on the group level. Moreover, 
the split-half reliabilities of the measures used in this dissertation approached 
psychometric standards, in contrast to earlier reports of low reliabilities of 
statistical learning measures in children (e.g. West et al., 2017; Arnon, 2019a). 
Thus, these measures are suitable methods for future studies investigating the 
statistical learning abilities of school-aged children, perhaps in relation to other 
cognitive abilities.  
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Nevertheless, the investigations presented in this dissertation also reveal 
some difficulties with assessing statistical learning in children, and highlight the 
need for statistical learning measures that are more sensitive to learning in child 
populations. Specifically, future studies should aim to improve current online 
measures of learning in the VSL task, as well as offline measures of learning in 
case of the A-NADL task, since these measures did not provide evidence of 
learning (van Witteloostuijn et al., 2019, see chapter 4). Moreover, the reliability 
of statistical learning measures for assessing individual differences could be 
further improved, and investigated extensively through test–retest reliability in 
addition to split-half reliability as reported here. Improved measures of statistical 
learning may help clarify the true relationship between statistical learning on the 
one hand, and language and literacy acquisition on the other hand. Moreover, 
they may better inform us about the nature and the extent of the (potential) 
statistical learning problems in language-based developmental disorders, 
including dyslexia. 

Besides stressing the need for the development of more sensitive 
measures of statistical learning, the mixed pattern of findings in the field (i.e. 
some studies reporting significant findings and other studies reporting null 
results) calls for replications and large-scale studies. Further, the use of pre-
registered reports may help minimize some problems in the field, including the 
publication bias as signaled in van Witteloostuijn et al. (2017, see chapter 3). With 
the accumulation of increasingly reliable evidence, the use of meta-analyses may 
eventually allow us to draw conclusions regarding (1) the relationship between 
statistical learning ability and performance on measures of language and literacy 
skills, and (2) the statistical learning abilities of individuals with dyslexia. 

Regarding the language and literacy skills of children with dyslexia, the 
studies in the present dissertation have found deficits not only in the expected 
areas of technical reading, spelling, phonological skills (i.e. phonological 
processing, phonological short-term and working memory) and lexical retrieval 
(i.e. RAN), but also more subtle deficits in inflectional morphology and syntax 
(van Witteloostuijn et al., submitted, see chapter 6). These grammatical problems 
were evidenced by errors with retrieving the correct (irregular) plural and 
(irregular) past tense from the lexicon (e.g. plural: ei, ei–eren; ‘egg–PL’; e.g. past 
tense: koop–*te; ‘buy–*ed’), errors concerning the correct definite article choice 
(i.e. common de or neuter het) and errors regarding word order (i.e. verb second: 
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*zij afwassen, *‘they washing up’). These (exploratory) error pattern findings merit 
future research into the grammatical performance of individuals with dyslexia.  

Scores on phonological processing, phonological short-term and 
working memory, and lexical retrieval were shown to relate to children’s 
performance both on tasks that assess literacy skills (van Witteloostuijn et al., 
under review, see chapter 5) and on tasks that assess grammatical skills (van 
Witteloostuijn et al., submitted, see chapter 6). Thus, future research that intends 
to explore the unique contribution of statistical learning to language and literacy 
acquisition, should control for these constructs that are known to predict 
children’s variability in language and literacy skills (e.g. phonological skills, RAN, 
vocabulary, non-verbal IQ, sustained attention; see also von Koss Torkildsen et 
al., 2019). Similarly, future investigations of the statistical learning abilities of 
individuals with dyslexia should consider these constructs, since dyslexia is 
associated with problems in the areas of phonological skills, attention and 
memory. From the present dissertation, it appears likely that dyslexia is associated 
with multiple cognitive deficits, including impairments in phonology and lexical 
retrieval (see e.g. Law, Vandermorsten, Ghesquiére & Wouters 2017; 
Pennington, 2006; Wolf & Bowers, 1999). More research is needed to increase 
our understanding of the underlying causes of dyslexia, and to point out “risk 
factors” of developing dyslexia (Pennington, 2006). Future studies that 
investigate the underlying deficits in dyslexia should therefore consider multiple 
potential cognitive deficits simultaneously, as was attempted here, to clarify their 
relative contributions to (language and) literacy problems.  
 

7.4 Conclusions 
 
The introduction of this dissertation raised the question “why are children such 
efficient language learners?”, and posited the hypothesis that a domain-general 
learning mechanism – i.e. statistical learning – could explain children’s implicit 
inference of abstract patterns and rules in written and spoken language. What we 
have shown in chapters 2 and 4, is that children indeed have the capacity to pick 
up statistical structures presented to them across domains (i.e. visuo-motoric, 
visual, and auditory) and structure types (i.e. adjacent and nonadjacent 
relationships), and the statistical learning measures used in the present study were 
able to measure this sensitivity. However, chapters 5 and 6 provide no evidence 
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of a direct relationship between performance on these statistical learning tasks 
and children’s scores on tests of reading, spelling, inflectional morphology and 
syntax. Furthermore, chapters 3 and 4 did not provide (convincing, in the case 
of our meta-analytical results in chapter 3) evidence of a domain-general 
statistical learning deficit in individuals with dyslexia. In conclusion, it cannot be 
excluded that the link between statistical learning ability and language and literacy 
acquisition may be less strong than hypothesized and may only surface under 
certain methodological conditions (see also e.g. Schmalz et al., 2019; Elleman et 
al., 2019. These findings, unfortunately, do not bring us closer to unraveling the 
underlying cause of dyslexia. Rather, it appears likely that individuals with 
dyslexia do not experience domain-general, extensive problems with statistical 
learning. Moving forward, large-scale and pre-registered studies, as well as meta-
analyses, are needed to allow us to reach conclusions regarding the contribution 
of (domain-general) statistical learning ability to the acquisition of language and 
literacy skills, both in typical and in impaired populations. 
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Appendix A – Chapter 2, VSL stimuli 
 
Triplet ABC 

 
Triplet DEF  

 
Triplet GHI  

 
Triplet JKL 
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Appendix B – Chapter 2, VSL test items – I 
 

 
2-AFC: pattern recognition 
 
Item Grammatical Ungrammatical Chance Similarity distractor 
1 ABC DHL 50% No 
2 ABC GKC  50% Yes  
3 DEF GKC 50% No 
4 DEF JBF 50% Yes  
5 GHI JBF 50% No 
6 GHI AEI 50% Yes  
7 JKL AEI 50% No 
8 JKL DHL 50% Yes  
9 AB JB 50% Yes  
10 AB DH 50% No 
11 BC BF 50% Yes  
12 BC EI 50% No  
13 DE AE 50% Yes  
14 DE KC 50% No 
15 EF BF 50% Yes  
16 EF GK 50% No 
17 GH DH 50% Yes  
18 GH EI 50% No 
19 HI HL 50% Yes 
20 HI GK 50% No 
21 JK JB 50% Yes  
22 JK HL 50% No 
23 KL KC 50% Yes  
24 KL AE 50% No 
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Appendix B – Chapter 2, VSL test items – II 
 

 
3-AFC: pattern completion 
 
Item Pattern Answer options Chance Position question 

mark 
25 A ? C B, J, H 33% 2 
26 D E ? F, B, C 33% 3 
27 ? H I G, L, A 33% 1 
28 J ? L K, F, E 33% 2 
29 ? B C A, H, G 33% 1 
30 D ? F E, G, B 33% 2 
31 G H ? I, D, L 33% 3 
32 ? K L J, C, E 33% 1 
33 B ? C, E, F 33% 1 
34 ? C B, D, K 33% 2 
35 ? E D, K, J 33% 1 
36 E ? F, G, C 33% 3 
37 G ? H, A, K 33% 2 
38 H ? I, D, L 33% 3 
39 ? K J, I, A 33% 1 
40 K ?  L, H, I 33% 3 
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Appendix C – Chapter 2, VSL instructions 
 
General instructions 
 
Dutch:  Je ziet straks alle aliens die in de rij staan. Je ziet steeds één alien tegelijk. Stuur 

de alien naar huis door op de spatiebalk te drukken. Daarna zie je vanzelf de 
volgende alien in de rij.  

 
English:  You will see all of the aliens standing in the line. You will see one alien 

at a time. Send the alien home by pressing the space bar. Afterwards, 
you will automatically see the next alien standing in the line. 

 
Dutch:  In dit spel vinden sommige aliens elkaar heel leuk. Zij staan bij elkaar in de rij. 

Bekijk elke alien goed en let goed op de volgorde van de aliens, want daarover stel 
ik je later nog wat vragen.  

 
English:  In this game, some aliens really like each other. They stand together in 

line. Watch each alien closely and pay attention to the order of the 
aliens, because I will ask you some questions about this later on. 

 
Cover task instructions 
 
Dutch:  Dit is een indringer! De indringer mag niet mee op het ruimteschip. Als je deze 

indringer ziet, moet je hem wegjagen. Dit doe je door op hem te drukken. Je kan 
gewoon met je vinger op het scherm drukken. Probeer maar! 

 
English:  This is an intruder! The intruder is not allowed to join the others on 

the spaceship. If you see this intruder, you have to scare him away. 
You can do this by touching him on the screen with your finger. Try 
it! 

 
Dutch:   Goed zo! Als je de indringer weggejaagd hebt, gaat het spel verder. 
 
English:   Well done! When you scare away the intruder, the game continues. 
 
Test phase instructions 
 
Dutch:  Nu gaan we nog iets anders doen. Sommige aliens vonden elkaar heel leuk en 

stonden daarom bij elkaar in de rij. Als het goed is, heb jij hierop gelet! Daar krijg 
je nu een paar vragen over. 

 
English:  Now we’re going to do something different. Some aliens really liked 

each other and stood in line together. Did you pay attention to this? 
You will now receive some questions about this.  
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Appendix D – Chapter 2, VSL supplementary figure 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Supplementary figure: Descriptive results of the online RT data: difference score. Mean 
normalized RT to unpredictable element 1 minus mean normalized RT to predictable 
element 2, plotted per repetition of triplets during the experiment (see §3.1.2 of the 
manuscript).  
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Appendix E – Chapter 3, Search terms for databases 

 
Search terms for all databases consisted of two parts associated with the two most 

important selection criteria: a) procedural learning, and b) participants with dyslexia. 

Search terms are presented for each individual database below. 

1. Ovid (used to search PsycInfo, Medline, and ERIC) 

a. (“procedural learning” or “implicit learning” or “artificial grammar 

learning” or “statistical learning”), ti, ab. 

b. (dyslexia or “reading difficulties” or “reading disorder” or “reading 

disability” or “spelling difficulties” or “spelling disorder” or “spelling 

disability”), ti, ab. 

c. a and b. 

2. CINAHL: AB (“procedural learning” or “implicit learning” or “artificial 

grammar learning” or “statistical learning”) AND AB (dyslexia or “reading 

difficulties” or “reading disorder” or “reading disability” or “spelling 

difficulties” or “spelling disorder” or “spelling disability”). 

3. LLBA: ab(“procedural learning” or “implicit learning” or “artificial grammar 

learning” or “statistical learning”) AND ab(dyslexia or “reading difficulties” or 

“reading disorder” or “reading disability” or “spelling difficulties” or “spelling 

disorder” or “spelling disability”). 

4. Pubmed: ((“procedural learning”[Title/Abstract] OR “implicit 

learning”[Title/Abstract] OR “artificial grammar learning”[Title/Abstract] OR 

“statistical learning”[Title/Abstract]) AND (dyslexia[Title/Abstract] OR 

“reading difficulties”[Title/Abstract] OR “reading disorder”[Title/Abstract] 

OR “reading disability”[Title/Abstract] OR “spelling 

difficulties”[Title/Abstract] OR “spelling disorder”[Title/Abstract] OR 

“spelling disability”[Title/Abstract])). 

5. OATD: abstract:( (“procedural learning” OR “implicit learning” OR “artificial 

grammar learning” OR “statistical learning”) AND (dyslexia OR “reading 

difficulties” OR “reading disorder” OR “reading disability” OR “spelling 

difficulties” OR “spelling disorder” OR “spelling disability”). 
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Appendix F – Chapter 3, Extracted data per study – I 
 

Study Data abstracted for effect size calculation 

Du (2013) Means and standard deviations of the percentage of 
grammatical and non-grammatical items endorsed were 
extracted from Table 7 (p. 116). These were later converted 
to a mean and SD of the overall accuracy as described under 
section 2.4. 

Ise et al. (2012) Means and standard deviations of the percentage of correct 
classifications of test items in the consonant-vowel 
condition (experiment a in the present meta-analysis, p. 
1005) and consonant-only condition (experiment b in the 
present meta-analysis, p. 1005) were reported in the text. 

Kahta & Schiff (2016) We extracted means and 95% confidence intervals of the 
percentage of endorsements of grammatical and non-
grammatical test items from Figure 2 (p. 241). This was 
done using DigitizeIt digitizer software. These values were 
later converted to a mean and SD of the overall accuracy as 
described under section 2.4. 

Laasonen et al. (2014) Marja Laasonen provided us with an Excel sheet including 
the means and standard deviations of the overall accuracy 
(in percentage) on the test phase. 

Nigro et al. (2016) Means and standard deviations of the percentage correct on 
the unseena items in the test phase were reported in text 
both for the experiment using abstract shapes (experiment 
a in the present meta-analysis, p. 208-209) and the 
experiment using letters (experiment b in the present meta-
analysis, p. 211). 

Note. a Performance on unseen items, instead of overall performance on seen and unseen 
items, was selected for inclusion in this study, as other studies included only novel, unseen 
items in the test phase. This table continues on the following page. 
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Appendix F – Chapter 3, Extracted data per study – II 
 

Study Data abstracted for effect size calculation 

Pavlidou et al.  
(2009; 2010; 2014) 

The means and standard deviations of the number of 
correct responses in the test phase were provided in the text 
(2009: p. 63, 2010: p. 3292, 2014: p. 1465). These were later 
converted to the means and standard deviations of the 
percentage of correct responses. 

Pothos & Kirk (2004) Means and standard deviations of the average performance 
on the “sequences” test phase were extracted from Figure 4 
(p. 71) using DigitizeIt digitizer software. 

Rüsseler et al. (2006) Table 2 (p. 820) presents the percentage of correct 
classification of test items per individual participant. Means 
and standard deviations were calculated based on these raw 
data. 

Samara (2013) Means and standard deviations of the percentage of low 
chunk strength (non-grammatical) and high chunk strength 
(grammatical) items endorsed by participants were extracted 
from Table 4.2 (p. 143). These were later converted to a 
mean and SD of the overall accuracy as described under 
section 2.4. 
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Appendix G – Chapter 4, A-NADL X- and f-elements 
  

X-elements f-elements 

banip, biespa, dapni, densim, domo, fidang, 

filka, hiftam, kasi, kengel, kubog, loga, 

movig, mulon, naspu, nilbo, palti, pitok, 

plizet, rasek, seetat, tifli, valdo, wadim 

bap, bif, bug, dos, dul, fas, fef, gak, 

gom, hog, huf, jal, jik, keg, ket, kof, 

naf, nit, nup, pem, ves, wop, zim, zuk 
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Appendix H – Chapter 4, A-NADL on- and offline task 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Rule 
blocks 

Child hears: tep 
X lut 

 

Disruption 
block 

Offline Test Phase  

Child presses 
green button  

 

Online Test Phase 

Child hears: 
sot x mip or 

F X F 
 

Child presses 
red button 

 

Child hears: 
F X lut 

 

Child presses 
green button 

 

Child hears: 
F x mip or 

F X F 
 

Child presses red 
button 

 

Child is asked to tell the 
experimenter whether 

(s)he has heard this 
utterance before 

Child hears either 
correct or incorrect 

utterances, e.g: 
tep x lut [correct] 

tep x mip [incorrect] 
sot x mip [correct] 
sot x lut [incorrect] 
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Summary 
Examining the contribution of  statistical learning to 
grammar and literacy acquisition: A study of  Dutch 

children with and without dyslexia 
 

 

 
Children typically acquire their mother tongue relatively quickly and seemingly 
effortlessly. Although their language and literacy skills will continue to develop 
into adulthood, children already know approximately 1,500 words, and are able 
to combine words into sentences, before they begin primary school at the age of 
four. So how do they do it? This dissertation investigated the hypothesis that a 
domain-general learning mechanism supports the acquisition of language, both 
in its spoken and in its written form. Such a domain-general learning mechanism 
allows for the learning of abstract patterns and rules based on the statistical 
properties of the input (i.e. language). This ability to learn from statistical patterns 
in the world around us is known as “statistical learning”, and is thought to be an 
implicit learning mechanism (e.g. Frost, Armstrong, Siegelman, & Christiansen, 
2015; Perruchet & Pacton, 2006; Saffran, Newport, & Aslin, 1996). Moreover, 
statistical learning has been hypothesized to play an important role in the 
acquisition of language and literacy skills. Evidence in support of this 
hypothesized relationship comes from studies that have reported significant 
correlations between performance on tasks that assess statistical learning ability 
on the one hand, and measures of performance on language and literacy skills on 
the other hand (e.g. Arciuli & Simpson, 2012; Frost, Siegelman, Narkiss, & Afek, 
2013; Kidd, 2012; Kidd & Arciuli, 2016; Misyak, Christiansen, & Tomblin, 2010). 
 For some children, however, the acquisition of language and literacy 
skills is not quick and effortless. Between 3 to 10 percent of the general 
population is diagnosed with developmental dyslexia (henceforth “dyslexia”; 
Miles, 2004; Siegel, 2006). Although dyslexia is most commonly characterized by 
difficulties with (technical) reading and spelling, more subtle problems with 
spoken language are also observed. These spoken language difficulties may 
include problems with inflectional morphology (e.g. forming the correct plural 
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or past tense form; de Bree & Kerkhoff, 2014; Joanisse, Manis, Keating, & 
Seidenberg, 2000) and syntax (e.g. word order in complex structures such as 
passives: Reggiani, 2010; Shankweiler et al., 1995). These language and literacy 
deficits are attributed to dyslexia only if they do not stem from low intelligence, 
the absence of academic or social opportunities, or sensory or neurological 
impairments (e.g. DSM-V, 2013). An important aim of dyslexia research is, 
therefore, to investigate the underlying cause for these deficits. This is where 
statistical learning comes in: whereas most previous research has focussed on 
causes for dyslexia in the area of phonology and phonological memory (e.g. de 
Bree, 2007; Ramus, 2003), more recent studies have suggested that a problem 
with a domain-general learning mechanism – i.e. statistical learning – may be the 
underlying cause of dyslexia (e.g. Nicolson & Fawcett, 2007; 2011; Ullman, 2004; 
Ullman, Sayako, Earle, Walenski, & Janacsek, 2019). If, as previously 
hypothesized, statistical learning plays a crucial role in the acquisition of spoken 
and written language in typical development, a deficit in statistical learning may 
result in problems with language and literacy acquisition, as is the case for 
individuals with dyslexia. In line with the view that dyslexia stems from a 
statistical learning deficit, studies have shown that individuals with dyslexia 
perform worse on statistical learning tasks than their typically developing (TD) 
peers (e.g. Gabay, Thiessen, & Holt, 2015; Jiménez-Fernández, Vaquero, 
Jiménez, & Defior, 2011; Lum, Ullman, & Conti-Ramsden, 2013; Pavlidou & 
Williams, 2014).  
 Thus, the hypothesized relationship between statistical learning and 
(language and) literacy skills has been investigated through two separable lines of 
research: (1) the study of the correlation between individual differences in 
statistical learning ability and (language and) literacy scores, and (2) the study of 
group differences between individuals with and without dyslexia. It is important 
to note here that there have also been reports of null results, both in relation to 
individual differences (e.g. Schmalz, Moll, Mulatti, & Schulte-Körne, 2019; West, 
Vadillo, Shanks, & Hulme, 2017), and with repect to group differences (e.g. Kelly, 
Griffiths, & Frith, 2002; Kerkhoff, de Bree, de Klerk, & Wijnen, 2013). This 
mixed pattern of findings in the field (i.e. some studies reporting significant 
results, some reporting null results) has led to questions regarding the strength 
of the relationship between statistical learning and spoken and written language, 
but also to questions relating to our ability to assess this relationship reliably, 
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especially in children (e.g. Arnon, 2019b; Kidd, Donnelly, & Christiansen, 2017; 
Schmalz et al., 2019; West et al., 2017). There is a need for large-scale studies that 
comprehensively and reliably investigate the relationship between statistical 
learning, language and literacy skills, and developmental impairments such as 
dyslexia (e.g. Arciuli & Conway, 2018).  
 The current dissertation aimed to fill this gap and provide valuable 
evidence about the relationship between statistical learning and the acquisition 
of language and literacy skills. We examined the contribution of statistical 
learning to grammar and literacy skills in Dutch-speaking children with and 
without a diagnosis of dyslexia. Importantly, the studies presented in this 
dissertation control for individual variation in cognitive constructs related to 
statistical learning and/or the acquisition of spoken and written language (e.g. 
attention, memory, phonological processing; see e.g. Arciuli, 2017). Furthermore, 
the statistical learning measures used in the present dissertation were developed 
to more reliably assess the statistical learning abilities of school-aged children. In 
the next sections, we elaborate on the methodology used and the results obtained 
in chapters 2 through 6, followed by this dissertation’s conclusions and 
implications for future research. 
 Prior to commencing our experimental studies of the relationship 
between statistical learning and spoken and written language skills, we aimed to 
improve previous statistical learning tasks for use with child participants. In 
chapter 2, we developed a novel, self-paced visual statistical learning (VSL) task, 
which was administered among 53 children between 5 and 8 years of age (van 
Witteloostuijn, Lammertink, Boersma, Wijnen, & Rispens, 2019). Traditionally, 
learning in such tasks is measured through a two-alternative forced choice (2-
AFC) task that is administered after exposure to the VSL structure. This type of 
measures, that take place after the exposure phase, is referred to as “offline” 
measures. The VSL task introduced in chapter 2 is based on a previous study 
with adults and included a novel reaction time (RT) measure. Importantly, this 
RT measure assesses learning during exposure to the VSL structure (i.e. it is an 
“online” measure, Siegelman, Bogaerts, Christiansen, & Frost, 2018). The 
development of online measures is essential, since the reliability of 2-AFC 
questions has been questioned (e.g. Siegelman & Frost, 2015) and offline 
measures do not inform us about the learning process during exposure (e.g. 
Siegelman, Bogaerts, & Frost, 2017). Chapter 2 was the first study to demonstrate 
the usefulness of such an online RT measure in the VSL task among early-school-
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aged children, as was previously demonstrated for adults (Siegelman et al., 2018). 
The subsequent offline test phase showed no evidence of sensitivity to the VSL 
structure in 5- to 8-year-old children. Thus, chapter 2 highlighted the potential 
of online measures of statistical learning, also for use in child participants.  
 Chapters 3 and 4 examined the statistical learning performance of 
individuals with dyslexia: while chapter 3 presented a meta-analysis of previous 
studies using the visual artificial grammar learning (AGL) paradigm (van 
Witteloostuijn, Boersma, Wijnen, & Rispens, 2017), chapter 4 adopted novel 
measures of statistical learning in an experimental study (van Witteloostuijn, 
Boersma, Wijnen, & Rispens, 2019). In our meta-analysis of 13 previous studies 
that looked at the visual AGL performance of individuals with dyslexia, we found 
an effect of group on performance: overall, individuals with dyslexia performed 
worse than TD individuals. However, we also found evidence of a publication 
bias in the field; it seems likely that statistically significant studies were more likely 
to be published than statistically non-significant studies. Once we controlled for 
this publication bias, the effect of group on performance no longer reached 
significance. Thus, our initial result is likely to be overly optimistic; the reported 
difference in visual AGL performance between individuals with and without 
dyslexia may in fact be nulled by unpublished findings.  
 In chapter 4, we adopted three other statistical learning paradigms to gain 
further insight into the question whether individuals with dyslexia experience 
problems in this area. Our sample comprised 50 8- to 11-year-old children with 
a prior diagnosis of dyslexia and 50 individually age-matched control TD 
children. Besides using our novel self-paced VSL task (van Witteloostuijn, 
Lammertink et al., 2019, Chapter 2), we used a novel online measure of learning 
in a so-called “auditory nonadjacent dependency learning” (A-NADL) task 
(Lammertink, van Witteloostuijn, Boersma, Wijnen, & Rispens, 2019) and a more 
traditional visuo-motoric serial reaction time (SRT) task. In doing so, we aimed 
to test statistical learning across domains (visual, auditory, and visuo-motoric) 
and across types of statistical structure (e.g. adjacent and nonadjacent [i.e. more 
distant] structures). Furthermore, we controlled for sustained attention and 
short-term and working memory, since these cognitive capacities are thought to 
relate to statistical learning performance (e.g. Arciuli, 2017; Baker, Olson, & 
Behrmann, 2004) and individuals with dyslexia are known to experience 
problems in these areas (e.g. Bosse, Tainturier, & Valdois, 2007; Cowan et al., 
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2017). Our findings across the three statistical learning tasks were consistent: we 
found evidence of sensitivity to the statistical structures in all measures when 
collapsing over children with and without dyslexia. Also consistently, we found 
no evidence of a difference in performance between children with and without 
dyslexia on the VSL, A-NADL and/or SRT tasks. Therefore, the results of 
chapter 4 (and 3) do not support the hypothesisis that a domain-general statistical 
learning deficit underlies the (language and) literacy problems that we see in 
individuals with dyslexia. 
 Although there was no evidence for (or against) a difference in statistical 
learning performance between children with dyslexia and those without, it could 
still be the case that individual differences in statistical learning ability contribute 
to variation in language and literacy performance. This was hypothesized, since 
(1) children with and without dyslexia were shown to learn in all three tasks, and 
(2) the relationship between statistical learning and (spoken and written) language 
also exists in typical populations. In chapters 5 and 6, we inspected the individual 
differences in statistical learning of our sample of 100 children with and without 
dyslexia combined, and we associated these individual differences with children’s 
performance on tasks that assessed grammatical skills (inflectional morphology 
and syntax; van Witteloostuijn, Boersma, Wijnen, & Rispens, submitted, see 
chapter 6) and literacy attainment (technical reading, spelling; van Witteloostuijn, 
Boersma, Wijnen, & Rispens, under review, see chapter 5). Importantly, we 
calculated the internal consistency and reliability of our statistical learning tasks 
through the split-half reliability measure (see also Arnon, 2019a; Siegelman, 
Bogaerts, Christiansen, & Frost, 2017b), and controlled for a range of 
participant-level variables (e.g. age, attention, memory, phonological processing). 
Again, the results from chapters 5 and 6 are consistent: we find no support for 
(or against) a relationship between statistical learning on the one hand, and 
performance on grammar (inflectional morphology and syntax) and literacy 
(technical reading and spelling) measures on the other hand. The split-half 
reliabilities of our statistical learning measures were found to approach the 
standard for psychometric testing of .80 (ranging between .70 on the VSL offline 
measure and .79 on the A-NADL online measure). Exploratory findings do 
support a link between phonological skills (phonological processing, 
phonological short-term and working memory) and both grammar and literacy 
skills in children with and without dyslexia. Finally, chapter 6 highlighted the 
subtle problems that children with dyslexia experience with grammar. These 
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problems surfaced both in the area of inflectional morphology (e.g. irregular 
plural and past tense formation), and the area of syntax (e.g. verb second word 
order). 
 Taken together, the results presented in this dissertation do not provide 
evidence for (or against) a link between a domain-general statistical learning 
ability and the acquisition of language and literacy skills. These results come from 
two lines of reseach: (1) we found no evidence that individual differences in 
statistical learning contribute to performance on tasks that measure language and 
literacy attainment in children with and without dyslexia, and (2) although 
children, overall, were shown to be sensitive to the statistical structures presented 
to them in our statistical learning tasks, we found no evidence for (or against) a 
difference in performance between children with and without dyslexia. To 
conclude, it cannot be excluded that the relationship between statistical learning 
and language and literacy acquisition may be less strong than hypothesized and 
may only surface when specific methodological choices are made. Furthermore, 
individuals with dyslexia likely do not have a domain-general, extensive deficit in 
statistical learning. More research in the form of large-scale and pre-registered 
studies, as well as meta-analyses, is needed in order to reach definitive 
conclusions regarding the contribution of (domain-general) statistical learning 
ability to the acquisition of language and literacy skills, both in typical and in 
impaired populations. 



 

Samenvatting 
De bijdrage van statistisch leren aan de verwerving van 
grammatica en lees- en spelvaardigheid: Een studie van 

Nederlandse kinderen met en zonder dyslexie 
 
 
 
Kinderen verwerven gewoonlijk hun moedertaal snel en zonder al te veel moeite. 
Hoewel taalvermogen en lees- en schrijfvaardigheid zich blijft ontwikkelen tot in 
de volwassenheid, kennen kinderen al circa 1.500 woorden wanneer ze beginnen 
aan de basisschool op de leeftijd van vier jaar. Daarnaast zijn ze in staat om deze 
woorden te combineren tot grammaticale zinnen zonder dat kinderen dit bewust 
is aangeleerd. Een belangrijke vraag is: hoe doen kinderen dit? Deze dissertatie 
onderzocht de hypothese dat een domeinoverstijgend leermechanisme de ver-
werving van taal ondersteunt, zowel in gesproken als in geschreven vorm. Zo’n 
domeinoverstijgend leermechanisme draagt bij aan het leren van abstracte 
patronen en regels op basis van de statistische eigenschappen van “input” (e.g. 
taal). Deze vaardigheid om statistische patronen in de wereld om ons heen te 
ontdekken wordt “statistisch leren” genoemd (bijvoorbeeld Frost, Armstrong, 
Siegelman, & Christiansen, 2015; Saffran, Newport, & Aslin, 1996). Aangenomen 
wordt dat statistisch leren een impliciet leerproces is, dat plaatsvindt zonder 
bewuste inspanning (Perruchet & Pacton, 2006). Bovendien wordt verondersteld 
dat statistisch leren een belangrijke rol speelt in de verwerving van gesproken en 
geschreven taal. Bewijs voor deze hypothese komt voort uit studies die 
significante correlaties rapporteren tussen (a) de prestaties op taken die het 
statistisch leervermogen meten en (b) scores op taken op het gebied van 
gesproken en geschreven taal (Arciuli & Simpson, 2012; Frost, Siegelman, 
Narkiss, & Afek, 2013; Kidd, 2012; Kidd & Arciuli, 2016; Misyak, Christiansen, 
& Tomblin, 2010). 
 Voor sommige kinderen verloopt de verwerving van gesproken en 
geschreven taal niet snel of moeiteloos. Tussen de 3 en 10 procent van de 
algemene bevolking heeft een diagnose ontwikkelingsdyslexie (hierna “dyslexie”; 
Miles, 2004; Siegel, 2006). Hoewel dyslexie vooral gekenmerkt wordt door 
moeilijkheden met (technisch) lezen en spellen, is gebleken dat mensen met 
dyslexie ook subtiele problemen met gesproken taal hebben. Deze problemen 
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bevinden zich op het gebied van inflectionele morfologie (bijvoorbeeld het 
vormen van de correcte meervoudsvorm of verledentijdsvorm; de Bree & 
Kerkhoff, 2014; Joanisse, Manis, Keating, & Seidenberg, 2000) en syntaxis 
(bijvoorbeeld woordvolgorde in complexe zinnen zoals passieve zinnen; 
Reggiani, 2010; Shankweiler et al., 1995). Deze problemen met gesproken en 
geschreven taal bij mensen met dyslexie komen niet voort uit academische 
(intellectuele) beperkingen, sociale beperkingen, of zintuiglijke of neurologische 
afwijkingen (DSM-V, 2013). Het onderzoeken van de onderliggende oorzaken 
voor het ontstaan van deze problemen is daarom een belangrijk doel van 
wetenschappers op het gebied van dyslexie. Dit is waar statistisch leren in het 
spel komt: terwijl een groot deel van eerder onderzoek zich heeft gericht op 
moeilijkheden op het gebied van fonologie en fonologisch geheugen als 
verklaring voor dyslexie (bijvoorbeeld de Bree, 2007; Ramus, 2003), hebben 
recente studies gesuggereerd dat een stoornis in een domeinoverstijgend 
leermechanisme – oftewel statistisch leren – de onderliggende oorzaak van 
dyslexie zou kunnen zijn (Nicolson & Fawcett, 2007; 2011; Ullman, 2004; 
Ullman, Sayako, Earle, Walenski, & Janacsek, 2019). Als statistisch leren een 
cruciale rol speelt in de verwerving van gesproken en geschreven taal in de 
normale ontwikkeling, dan volgt hieruit de hypothese dat een stoornis in het 
statistisch leermechanisme zou kunnen resulteren in problemen met taal-
verwerving zoals we die zien bij mensen met dyslexie. In overeenstemming met 
deze hypothese hebben diverse studies aangetoond dat mensen met dyslexie 
slechter presteren op statistische leertaken dan leeftijdsgenoten zonder dyslexie 
(bijvoorbeeld Gabay, Thiessen, & Holt, 2015; Jiménez-Fernández, Vaquero, 
Jiménez, & Defior, 2011; Lum, Ullman, & Conti-Ramsden, 2013; Pavlidou & 
Williams, 2014).  
 Het onderzoek naar de veronderstelde relatie tussen statistisch leren en 
(gesproken en geschreven) taal kent twee benaderingen: (1) de studie van 
correlaties tussen individuele verschilllen in statistisch leervermogen en scores op 
taalmaten, en (2) de studie van groepsverschillen tussen mensen met en zonder 
dyslexie. Het is belangrijk om hier op te merken dat er ook studies zijn gedaan 
die nulresultaten hebben gerapporteerd, zowel op het gebied van individuele 
verschillen (bijvoorbeeld Schmalz, Moll, Mulatti, & Schulte-Körne, 2019; West, 
Vadillo, Shanks, & Hulme, 2017), als op het gebied van groepsverschillen 
(bijvoorbeeld Kelly, Griffiths, & Frith, 2002; Kerkhoff, de Bree, de Klerk, & 



    Samenvatting    233 
 
 

 
 
 
 
 
 
 

Wijnen, 2013). Deze verschillende bevindingen (d.w.z. sommige studies rappor-
teren significante resultaten, andere studies rapporteren nulresultaten) hebben 
geleid tot kritsche vragen (bijvoorbeeld Arnon, 2019b; Kidd, Donnelly, & 
Christiansen, 2017; Schmalz et al., 2019; West et al., 2017). Een voorbeeld van 
zo’n vraag is: hoe sterk is de relatie tussen statistisch leren aan de ene kant en 
gesproken en geschreven taal aan de andere kant eigenlijk? Ook: zijn wij wel goed 
in staat om deze relatie betrouwbaar te onderzoeken, met name in kinderen? Er 
is behoefte aan grootschalige studies die de relatie tussen statistisch leren en taal 
onderzoeken op een betrouwbare manier. Daarnaast is er behoefte aan studies 
die dit doen in relatie tot ontwikkelingsstoornissen zoals dyslexie, om zo inzicht 
te verkrijgen in de mogelijke onderliggende oorzaken van hun taalproblemen 
(Arciuli & Conway, 2018).  
 In deze dissertatie hebben we geprobeerd om deze lacunes te vullen en 
bewijsmateriaal te verzamelen over de relatie tussen statistisch leren en de 
verwerving van gesproken en geschreven taal. Wij onderzochten de bijdrage van 
statistisch leren aan grammatica en lees- en spelvaardigheid in Nederlandse 
kinderen met en zonder een dyslexiediagnose. Verder hebben we gecontroleerd 
voor individuele variatie in cognitieve vaardigheden die gerelateerd zijn aan 
statistisch leren en/of aan de verwerving van gesproken en geschreven taal 
(bijvoorbeeld aandacht, geheugen, fonologische verwerking; zie e.g. Arciuli, 
2017). Bovendien zijn in het kader van deze dissertatie nieuwe taken ontwikkeld 
die als doel hadden om op een betrouwbare manier het statistischleervermogen 
van schoolgaande kinderen te meten. In de volgende paragrafen behandelen we 
de toegepaste methodologieën en verkregen resultaten uit hoofdstukken 2 tot en 
met 6, gevolgd door de conclusies en implicaties voor toekomstig onderzoek. 
 Als eerste stelden we onszelf als doel om eerdere statistische leertaken te 
verbeteren en aan te passen voor gebruik met kinderen. In hoofdstuk 2 
ontwikkelden we een nieuwe, “self-paced” visuele statistischleertaak (VSL) en 
namen we deze af bij 53 kinderen tussen de 5 en 8 jaar (van Witteloostuijn, 
Lammertink, Boersma, Wijnen, & Rispens, 2019). Eerdere VSL-studies hebben 
(overwegend) gebruik gemaakt van de zogeheten “two-alternative forced choice” 
(2-AFC) maat, die het statistischleervermogen meet door middel van expliciete 
vragen na blootstelling aan de VSL-structuur. Dit type leermaten, dat afgenomen 
wordt nadat het statistischleerproces is voltooid, wordt “offline” genoemd. De 
VSL-taak die wij in hoofdstuk 2 hebben geïntroduceerd maakt gebruik van een 
nieuwe leermaat op basis van reactietijden (RTs). De taak is gebaseerd op een 
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eerdere studie met volwassenen (Siegelman, Bogaerts, Christiansen, & Frost, 
2018). Het is belangrijk om te vermelden dat deze RTs verzameld worden 
gedurende de blootstelling aan de statistische structuur in de VSL-taak (d.w.z. dit 
is een “online” leermaat). Het ontwikkelen van online maten is essentieel, omdat 
de betrouwbaarheid van de traditionele 2-AFC taken in twijfel wordt getrokken 
(bijvoorbeeld Siegelman & Frost, 2015) en omdat offline maten ons niet 
informeren over het leerproces gedurende de blootstelling aan de statistische 
structuur (bijvoorbeeld Siegelman, Bogaerts, & Frost, 2017). De studie die 
gerapporteerd wordt in hoofdstuk 2 was de eerste die aantoont dat een dergelijke 
online RT-maat in de VSL-taak bruikbaar is onder jonge schoolgaande kinderen: 
de RT-maat detecteerde dus evidentie van leren. De offline testfase, die achteraf 
werd afgenomen, toonde geen bewijs dat 5 tot 8 jaar oude kinderen gevoelig 
waren voor de statistische structuur in de VSL-taak. Kortom, hoofdstuk 2 
benadrukt de potentie van online maten van statistisch leren, ook voor gebruik 
met kinderen. 
 Hoofdstukken 3 en 4 bestudeerden het statistischleervermogen van 
individuen met dyslexie: waar hoofdstuk 3 een meta-analyse bevat over voor-
gaande studies die het visuele “artificial grammar learning” (AGL) paradigma 
toepassen (van Witteloostuijn, Boersma, Wijnen, & Rispens, 2017), bevat 
hoofdstuk 4 een experimentele studie waarin gebruik werd gemaakt van ver-
nieuwde statistischleermaten (van Witteloostuijn, Boersma, Wijnen, & Rispens, 
2019). In onze meta-analyse van 13 eerdere studies die de prestaties van 
individuen met dyslexie onderzochten door middel van de visuele AGL, vonden 
we een effect van groep op prestaties: individuen met dyslexie presteerden 
slechter dan leeftijdsgenoten. We vonden ook bewijs voor een publicatie-bias; 
het lijkt waarschijnlijk dat statistisch significante studies makkelijker gepubliceerd 
worden dan studies die geen statistisch significant resultaat rapporteren. Zodra 
we voor deze publicatiebias controleerden, was het effect van groep op de AGL 
prestaties niet langer significant. Oftewel, onze initiële bevinding is waarschijnlijk 
iets te optimistisch: het gerapporteerde verschil in visuele AGL prestaties tussen 
individuen met en zonder dyslexie zou door het in acht nemen van on-
gepubliceerde studies mogelijk verdwijnen.  
 In hoofdstuk 4 gebruikten we drie andere paradigma’s die statistisch 
leren meten, om verder inzicht te verkrijgen in de problemen die mensen met 
dyslexie mogelijk hebben op dit gebied. Honderd kinderen namen deel aan deze 
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studie: 50 kinderen tussen de 8 en 11 jaar oud met een dyslexiediagnose en 50 
kinderen zonder dyslexie van dezelfde leeftijd. Naast de nieuwe self-paced VSL-
taak (van Witteloostuijn, Lammertink et al., 2019, Chapter 2), gebruikten we een 
nieuwe online maat van leren in een zogeten auditieve “nonadjacent dependency 
learning” (A-NADL) taak (Lammertink, van Witteloostuijn, Boersma, Wijnen, & 
Rispens, 2019) en een meer traditionele visueel-motorische “serial reaction time” 
(SRT) taak. Door deze drie paradigma’s te gebruiken, wilden we statistisch leren 
zo breed mogelijk testen. Niet alleen verschillen de drie taken op het gebied van 
domein (visueel, auditief en visueel-motorisch), ze verschillen ook qua type 
statistische structuur (bijvoorbeeld adjecent en nonadjecent, oftewel naburig en 
meer afgelegen, structuren). Daarnaast controleerden we in onze analyses voor 
individuele verschillen in volgehouden aandacht en in kortetermijn- en 
werkgeheugen, omdat deze cognitieve vaardigheden verband houden met 
prestaties op statistische leertaken (Arciuli, 2017; Baker, Olson, & Behrmann, 
2004). Bovendien is bekend dat individuen met dyslexie moeilijkheden ervaren 
op het gebied van aandacht en geheugen (Bosse, Tainturier, & Valdois, 2007; 
Cowan et al., 2017). Onze bevindingen op de drie statistischleermaten waren 
consistent: we vonden bewijs dat zowel kinderen met als zonder dyslexie gevoelig 
zijn voor de statistische structuren die we ze aanboden. De andere consistente 
bevinding was dat we geen bewijs vonden voor (of tegen) een verschil in 
prestaties tussen kinderen met en zonder dyslexie op de VSL-, A-NADL- en/of 
de SRT-taak. Kortom, de resultaten van hoofdstuk 4 (en 3) ondersteunen niet de 
hypothese dat een domeinoverstijgend statistischleerprobleem de (gesproken- en 
geschreven-) taalproblemen van individuen met dyslexie veroorzaakt. 
 Hoewel we geen bewijs vonden voor (of tegen) een verschil in statistisch-
leervermogen tussen kinderen met en zonder dyslexie, is het nog steeds mogelijk 
dat individuele verschillen in statistisch leren bijdragen aan verschillen in gespro-
ken en geschreven taal. Deze hypothese komt voort uit twee overwegingen: (1) 
hoofdstuk 4 toonde aan dat zowel kinderen met als zonder dyslexie leerden in 
alle drie de taken die statistisch leren meten, en (2) eerder onderzoek heeft laten 
zien dat de relatie tussen statistisch leren en taal ook bestaat in zich normaal 
ontwikkelde populaties. In de hoofdstukken 5 en 6 bestudeerden we de indivi-
duele verschillen in statistisch leren in onze steekproef van honderd kinderen met 
en zonder dyslexie. We onderzochten of deze individuele verschillen ge-
associeerd waren met scores op taken die grammaticale vaardigheden toetsen 
(inflectionele morfologie en syntaxis; van Witteloostuijn, Boersma, Wijnen, & 
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Rispens, submitted, see chapter 6) en met taken die verband houden met 
geschreven taal (technisch lezen en spellen; van Witteloostuijn, Boersma, Wijnen, 
& Rispens, under review, see chapter 5). Daarnaast berekenden we de interne 
consistentie en betrouwbaarheid van onze (nieuwe) statistischleermaten door 
middel van de zogeten “split-half betrouwbaarheid” (zie ook bijvoorbeeld 
Arnon, 2019a; Siegelman, Bogaerts, Christiansen, & Frost, 2017b) en 
controleerden we opnieuw voor een reeks variabelen op het niveau van de 
proefpersoon (bijvoorbeeld leeftijd, aandacht, geheugen, fonologische 
verwerking). Net als besproken voor hoofdstukken 3 en 4 waren de bevindingen 
in hoofdstukken 5 en 6 consistent: we vinden geen bewijs voor (of tegen) de 
veronderstelde relatie tussen statistisch leren aan de ene kant en prestaties op 
grammaticale taken (inflectionele morfologie en syntaxis) en geschreven taal 
(technisch lezen en spellen) aan de andere kant. De split-half betrouwbaarheid 
van de statistischleermaten gebruikt in deze dissertatie benaderden de norm voor 
gestandaardiseerde psychometrische tests van 0,80 en varieerden tussen 0,70 op 
de VSL offline maat en 0,79 op de A-NADL online maat. Exploratieve analyses 
bevestigden dat er een relatie is tussen fonologische vaardigheden (bijvoorbeeld 
fonologische verwerking en fonologisch kortetermijn- en werkgeheugen) en 
zowel grammaticale als lees- en spelvaardigheden in kinderen met en zonder 
dyslexie. Tot slot onderstreepte hoofdstuk 6 de eerdere bevinding dat individuen 
met dyslexie subtiele problemen ervaren op het gebied van grammatica. Deze 
problemen vonden we niet alleen op het gebied van inflectionele morfologie 
(bijvoorbeeld onregelmatige meervoudsvorming en verledentijdsvorming), maar 
ook op het gebied van syntaxis (bijvoorbeeld werkwoordsvolgorde). 
 Als we alle resultaten gepresenteerd in deze dissertatie samennemen, 
voorzien zij ons niet van bewijs voor (of tegen) een link tussen een domeinover-
stijgend statistischleermechanisme en de verwerving van gesproken en ge-
schreven taal. Deze resultaten kwamen voort uit twee verschillende onderzoeks-
lijnen: (1) we vonden geen bewijs dat individuele verschillen in statistisch leren 
bijdragen aan de prestaties op taken die het (gesproken en geschreven) 
taalvermogen testen in kinderen met en zonder dyslexie, en (2) hoewel kinderen 
gevoelig waren voor de statistische patronen die we ze aanboden in de drie 
statistische leertaken, vonden we geen bewijs voor (of tegen) een verschil in 
prestaties tussen kinderen met en zonder dyslexie. We kunnen dus niet uitsluiten 
dat de relatie tussen statistisch leren en taal minder sterk is dan van tevoren 
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verondersteld, waardoor de associatie mogelijk alleen optreedt wanneer 
specifieke methodologische keuzes gemaakt worden. Verder lijkt het op basis van 
onze bevindingen onwaarschijnlijk dat individuen met dyslexie een domein-
overstijgend en uitgebreid probleem hebben met statistisch leren. Meer onder-
zoek in de vorm van grootschalige en pregeregistreerde studies, evenals meta-
analyses, is nodig voordat we definitieve conclusies kunnen trekken wat betreft 
de bijdrage van (domeinoverstijgend) statistischleervermogen aan de verwerving 
van gesproken en geschreven taal, zowel in zich normaal ontwikkelende kinderen 
als in kinderen met ontwikkelingsstoornissen zoals dyslexie.
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