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Abstract

Dispersion theoretic analyses on sound change predict that small contrasts

are likely to either merge into one category or become more dispersed diachron-

ically. Previous research on adaptive dispersion is mostly done on vowel inven-

tories. The current study makes an attempt at examining the change in the

acoustic and auditory dispersion of Dutch voiceless sibilants, which are acous-

tically and perceptually similar to each other. Acoustic data was collected from

two age groups of native speakers. Mixed-effect linear regression, spectral prin-

cipal component analysis, as well as decision tree and random forest modeling

were adopted. Results show that the two age groups investigated in the current

study do differ how they contrast the two sibilants according to some metrics

but not according to others.
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1 Introduction

1.1 Topic and Goals

Since the 1970s, and as early as Passy (1891) and Roudet (1910), many schol-

ars (e.g. Liljencrants & Lindblom, 1972; Lindblom, MacNeilage, & Studdert-

Kennedy, 1983; Disner, 1983; Maddieson & Disner, 1984; Vallée, 1994; Flemming,

1995 et seq.; Schwartz, Boë, Vallée, & Abry, 1997 et seq.; Boersma, 1998 et seq.;

Boersma & Hamann, 2008; Hauser, 2017; etc.) have looked at the universal

trends of phoneme inventories more or less within the framework of dispersion

theory. Most of the previous work has been in the realm of vowel inventories

with the exception of e.g. Schwartz, Boë, Badin, and Sawallis (2012) and Hauser

(2017) on stop consonants, and Boersma and Hamann (2008) ’s computational

simulations on sibilants. Among them, most are concerned with synchronic dis-

tributions except for Boersma and Hamann (2008) although their model did

not include language-specific articulatory learning, and the learning algorithm

in Boersma and Hamann (2008)’s simulation is to some extent supervised in

such a way that it was provided in the algorithm that the input is to be classi-

fied into two categories, while in reality newborns do not receive such instruction

when acquiring phonemic inventories. Additionally, the model has not yet been

tested on real-world data in any specific language, to my best knowledge.

The current study makes an attempt at investigating diachronic changes

in the acoustic and auditory dispersion of voiceless sibilants in Dutch. Dutch

sibilants were chosen as the subject of investigation because unlike in other

languages such as German and English that also have two voiceless sibilants,

the two voiceless sibilants in Dutch seem to be very much articulatorily and

perceptually similar to the extent that arguments about their phonemic status

have repeated been raised. Hence, there is a possibility that the two sibilants

are either becoming more dispersed or gradually merging into one category

diachronically. It is also worth looking into whether the generalizations and

predictions made by previous work apply to the Dutch voiceless sibilants.

1.2 Outline

The outline of the current thesis is as follows: the first section describes the

topic and goals of the current study and lays out a map of the paper. The

second section provides some relevant background information about the acous-

tics and articulation, as well as the inventories of voiceless sibilants. The third

1



section serves as a general overview of sound change and adaptive dispersion.

Section Four tries to define a phonetic space for the Dutch voiceless sibilants.

The penultimate section describes the experiment and the analyses. The sixth

and final section discusses the implications and limitations of the results and

speculates on possible future research.

2 Some Phonetics and Phonology of Voiceless

Sibilants

In this section, I briefly sketch out some relevant background information in

some aspects of the phonetics and phonology of sibilants, especially voiceless

sibilants, that are relevant to the current study.

2.1 The Articulation and Acoustics of Voiceless Sibilants

Sibilants are a subset of fricatives. Articulatorily, fricatives are described/defined

by (Ladefoged & Johnson, 2011, p.14) as two articulators approximating closely

and producing a partially obstructed airstream which ends up being turbulent.

According to Ladefoged and Johnson (2011), there are two ways to produce

said “turbulent airflow”: it could be because the air is passing through a narrow

constriction such as that between the upper teeth and the lower lip in the

production of [f], or more intensely; it could be that the air first passes through

a narrow gap of the aforementioned kind at the same time being speeded up,

and was subsequently directed towards a sharp edge, such as the edge of the

teeth, as in the production of the English [s]. Conventionally, the latter kind is

categorized as sibilants, described by Ladefoged and Maddieson (1996, p.138) as

“produced by the high-velocity jet of air formed at a narrow constriction going

on to strike the edge of some obstruction such as the teeth”.

Acosutically, energy in fricatives are randomly distributed in terms of fre-

quency ranges, and sibilants have more acoustic energy at a higher pitch than

the other fricatives (Ladefoged & Johnson, 2011). For instance, [S] will have a

lower pitch than [s] for to two reasons: that the articulatory airstream in [S] has

a lower velocity due to the less constriction in the vocal apparatus, and that the

added lip-rounding involved in the production of [S] lengthens the vocal tract.

Fricatives and sibilants could, of course, also be sub-divided by voicing, but

since the current work only studies the voiceless fricatives, the focus will not be
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put on voicing or voiced fricatives. The same goes for fricatives whose place of

articulation is not alveolar, palato-alveolar, or alveolo-palatal.

According to Hughes and Halle (1956, p.308-309), the most useful measure-

ment found to distinguish [s] and [S] in English was “the energy in dB in the

band from 4200 cps to 10 kc subtracted from the energy in dB in the band from

720 to 10kcps”. Similarly, Strevens (1960) investigated isolated and lengthened

voiceless fricatives, including some of which that would usually only occur in

para-linguistic communication of English speakers, and described [s] as having

its lowest frequency “almost always above 3500 cps” whereas for [S] the lowest

frequency “varies between 1600 and 2500 cps”.

Olive, Greenwood, and Coleman (1993) observed that in American English,

/s/ shows the greatest concentration of energy above 3700Hz and /S/ has its

highest energy concentration between 1700Hz and 4500Hz, and that since the

palato-alveolar /S/ is articulated close to the velum, a velar pinch may be ex-

pected for some vowels where the second and third formants approach each

other, as it usually happens immediately before and after velar consonants when

the tongue approaches the back of the mouth. Besides the influence of the sibi-

lant on the surrounding vowels, they also noted that the vowel that follows the

sibilant has some effect on the acoustics of the fricative. From their descriptions

of the spectrograms, in both /s/ and /S/ the lower edge of the frication fre-

quency is dependent on the F2 of the following vowel, and since palato-alveolars

are the most constrained in their distribution of formant values (indicating that

the tongue has less freedom to prepare for the following sound), the fricative

region of the palato-alveolars does not extend as far into the lower frequency

as it did for the alveolars. But Olive et al. (1993) did not provide specific val-

ues. F2 transitions are also included as one of the factors in Flemming (2018)’s

prediction of markedness in sibilant inventories.

In a less language-specific study, Boersma and Hamann (2008) states that

sibilants in a language can often be ordered along a continuum of the spectral

center of gravity or the spectral mean which, articulatorily, correlates to front-

ness of the tongue and to the frontness of the place of articulation. But they did

also mention that auditory dispersion by means other than Center of Gravity is

possible for sibilants, although without exploring said possibilities further. This

is indeed confirmed in, e.g., Kochetov (2017), where he found that the anterior

[s] can be palatalized to [sj] with only minimal reduction in Center of Gravity,

especially at the midpoint and offset of the frication and in female speakers.
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2.2 Voiceless Sibilants in Dutch

The literature on Dutch1 phonology is not in agreement on the phonemic status

of the palatal sibilant /C/, which is sometimes also transcribed as /S/2.

Mees and Collins (1982, p.6) describes that the sequence /sj/ is realized as an

alveolo-palatal fricative [C] in Standard Dutch (Algemeen Beschaafd Nederlands,

or ABN for short), and that it differs from the /S/ in English, French, or German

in that there is no labialization in the Dutch [C]. According to Mees and Collins

(1982), the occurrence of the <sj> sequence is restricted only to loanwords and

forms resulting in assimilation, hence did not merit a phonemic status in their

analysis. They do acknowledge that there are arguments for regarding /sj/ as an

additional phoneme /C/. However, the example they give of such an argument is

a comparison of English and Dutch pronunciations in an English pronunciation

guide for Dutch speakers by Gussenhoven and Broeders (1976), which is more

of a phonetic comparison between the sounds in English and Dutch than a

phonemic description.

In a description of Dutch phonology, Booij (1999, p.7) listed /s/ as the sole

voiceless sibilant in the Dutch consonant inventory and analyzes [S, Z, c, ñ] as

/s,z,t,n/ palatalized before /j/, and the postalveolar fricatives that occur in

loan-words such as chique [Sik] and jury [Zy:ri] as “phonologically, combinations

of /s, z/ and /j/ with the fricatives realized as the postalveolar allophones”.

Nooteboom and Cohen (1984, p.22) listed /S/ as a separate phoneme in

Dutch consonants on the basis that there exist minimal pairs distinguishing

/s/ from /S/. Similarly, Schatz (1986) also treated both /s/ and /S/ as sibilant

phonemes in Standard Dutch, and in a feature matrix distinguished the two by

various features (see Table 1). However, she did point out that the SPE feature

distributed [dist] might be redundant for Dutch consonants because laminals

and apicals in Dutch have different places of articulation. According to Schatz

(1986), in “plat Amsterdams”, or Broad Amsterdam Speech, before a word

boundary or morpheme boundary, [s] is often palatalized when preceded by the

short vowels /A/, /E/, /0/, or /I/, and also when it is at an initial position in

a word or a morpheme. However, participant 13 in the current study, who was

born and raised in Amsterdam and has lived in Amsterdam all his life, does have

a distance of 1358 Hz between the CoG of his two voiceless sibilants, which is

even slightly higher than the mean CoG distance of 1347 Hz between /s/ and

1The Dutch language discussed here is limited to the Dutch spoken in the Netherlands.
2This non-/s/ voiceless Dutch sibilant will be transcribed as /C/ instead of /S/ throughout

this text due to its palatalized nature and the frontness in its place of articulation.
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Feature /s/ /S/
[high] - +
[mid] + -
[ant] + -
[dist] - +

Table 1: Feature matrix for Dutch consonants /s/ and /S/, adapted from Schatz
(1986)

/C/ among all young participants. This is possibly also affected by sociolinguistic

reasons (see e.g. Faddegon (1951) and Schatz (1986) for more details).

Evers, Reetz, and Lahiri (1998) compared acoustic characteristics of sibilants

between languages where /s/ and /S/ are separate phonemes and languages in

which the [s] and [S] are allophonic. Dutch was included in the languages that

they examined, and the Dutch sibilants [s] and [S] were treated as allophones

with [s] as the “default consonant” (p.351). Their results show that although the

boundary values may vary, the same metric is equally efficient at distinguishing

the two phones regardless of their phonemic status. As such, whether [s] and

[S] are allophones of the same phoneme or two separate phonemes should not

affect the topic at hand and therefore, will not be a major concern of the current

study.

In terms of comparing the Dutch sibilants to sibilants in other languages,

apart from the phonemic status of /C/ mentioned at the beginning of this section,

the /s/, as well as /z/, in Dutch is also “far less articulatorily tense comparing

to their counterparts in German, French, and English” and produced with more

lip protrusion. In contrast, the Dutch /C/ is generally produced with no lip-

protrusion (Mees & Collins, 1982). The lip-protrusion and the lack of tenseness

in [s] lower its CoG while the palatalization and lack of lip-protrusion raise

the CoG in [C], making the two sibilants acoustically closer. Figures 1 and 2

show the spectrograms of the [s] and [S] produced by a native speaker of British

English (Received Pronunciation)3 and the [s] and [C] produced by one of the

participants in this study.

3Extracted from BBC Learning English (https://www.youtube.com/watch?v=htmkbIboG9Q)
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(a) /s/ in English seek (b) /S/ in English sheep

Figure 1: /s/ and /S/ in English

(a) /s/ in Dutch depressie (b) /C/ in Dutch sjiek

Figure 2: /s/ and /C/ in Dutch

2.3 Sibilant Inventories

The sibilants [s] and [S] are rather common in consonant inventories. Of the 317

languages that Maddieson and Disner (1984) investigated, about 83% of them

have at least one anterior (dental or alveolar) /s/ (Maddieson & Disner, 1984,

p.44). They concluded that /*s/ (referring to all types of s-sounds with unspec-

ified dental or alveolar place) is the most common fricative, appearing in 88.5%

of the languages that have fricatives and that /s/ is the most common mem-

ber of the group /*s/. The next most frequent fricative after /*s/, according to

Maddieson and Disner (1984), is the voiceless palato-alveolar sibilant /S/. Schatz

(1986, p.77) also mentioned that [s] is “reasonably frequent” in the Dutch speech

she collected, at the frequency of 35 times in a five-minute stretch of speech. In a

study on markedness of sibilant inventories, Flemming (2018) showed that /s/ is

the least marked sibilant, and that in two-sibilant inventories, [s, ù] is maximally

distinct, [s, S] minimizes effort, and that [s, C] only occurs when the weighted
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ranking Intensity Frequency of Occurrence
1 ç “s”
2 S S
3 x f
4 s x
5 X X
6 f F
7 T T
8 F ç

Table 2: Ranking of fricatives by intensity and frequency of occurrence, adapted
from Maddieson (1984)

F2 transition distance is high (when the assigned weight for the contribution of

F2 transitions is larger than 0.87, in a component-weighting scheme similar to

Schwartz et al. (1997)). The markedness of [s, ù], [s, S] and [s, C] pairings were

not compared in Flemming (2018) since the former two are considered CoG-

only contrasts (with zero weighted F2 distance difference) and [s, C] is already

harmonically bounded by [s, ù] and [s, S] with the existence of “wF2=0” (i.e.

when no weight was assigned to the contribution of F2 transitions). The expla-

nation proposed by Maddieson and Disner (1984) for /s/ being the least marked

sibilant is that languages possibly prefer saliency and that sounds that are more

frequent in the inventories across languages are the ones with more acoustic

energy, entailing good transmission properties. In this regard, Maddieson and

Disner (1984, p. 50) compared the intensity rankings of fricatives as measured

in Strevens (1960) to the frequency (i.e., rate of occurrence, not frequency in the

sense of vocal fold vibrations per second) rankings of the fricatives (see Table

2). The results did not seem to indicate much correlation between intensity and

the frequency of occurrence4.

Earlier theories of inventory typology include Quantal Theory, markedness

theory, and dispersion theory. Quantal theory has been criticized to have made

incorrect predictions such as [E] being unstable, and the existence of universally

preferred hot spots (see e.g., Carré, 1996; Disner, 1983; Livijn, 2000). Tradi-

tional markedness theory has faced the objection that it merely “formalizes the

attested facts, rather than explaining them in terms of constraints on human

4However, note that according to Maddieson and Disner (1984, p.50), intensity readings in
this table were “obtained and divided by subglottal air-pressure readings for the same tokens
obtained using a nasal catheter inserted into the esophagus. From this procedure, a rank-order
of intensity per unit air-pressure was obtained”.
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articulation, perception, and processing” (Vaux & Samuels, 2015). Dispersion

theory takes a more functional approach and incorporates factors like articula-

tory effort and perceptual contrast, and proposes principles of e.g., minimizing

articulatory effort, maximizing perceptual contrasts, etc..

Building on Liljencrants and Lindblom (1972) on vowel inventories which

focused more on perception rather than production, Lindblom and Maddieson

(1988) mentioned that different from vowel inventories, more articulatory factors

need to be considered in addition to perceptual distinction in consonant inven-

tories, and stated that “consonant inventories tend to evolve so as to achieve

maximal perceptual distinctiveness at minimum articulatory cost”. Lindblom et

al. (1983) proposed that languages are self-organizing systems and that phoneme

inventories are emergent from the interaction of subsystems such as certain pho-

netic tendencies over time. The constraints used for speakers in Lindblom et al.

(1983)’s simulations were “sensory discriminability” and “preference for ‘less

extreme’ articulation”; the listener-based constraints used were “perceptual dis-

tance” and “perceptual salience” (ibid, p.191).

Similarly, Flemming (2017) described a three-way conflict of constraints,

namely among “maximize contrast”, “maximizing distinctiveness”, and “effort-

minimization”. “maximize contrast” refers to the preference of a higher num-

ber of contrasting sounds in the inventory. “Maximizing distinctiveness”, as a

distinctive constraint, favors more distinct contrasts, and “effort-minimization”

penalizes articulatory effort. Among the three (types of) constraints, maximize

contrast conflicts with maximizing distinctiveness since the space (hence the

possible places and manners of articulation) in the oral cavity is limited, and

fitting more contrastive sounds into the same limited space would result in

less sharp distinctions between sounds. Additionally, effort-minimization con-

flicts with both maximize contrast and “maximizing distinctiveness” in such

a way that the latter two constraints necessitate auditorily and articulatorily

peripheral sounds which are difficult to realize without violating some effort-

minimization constraints.

However, articulatory effort has been criticized as being difficult to measure

(e.g. Stevens, 1980; Ohala, 1993, p.260), and dispersion theory has been under-

cut by the existence of vowel inventories such as that of Wari’ (MacEachern,

Kern, & Ladefoged, 1997, p.4-8). Additionally, more recent work (e.g. Schwartz

et al., 2012; Hauser, 2017) tends to show that dispersion theory cannot fully

explain stop consonant inventories in terms of place of articulation, though, ar-

guably, Hauser (2017)’s metrics were only based on acoustic measurements and
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did not explicitly address the role of auditory perception, by e.g., taking into

account that F1 is perceptually more salient than F2 (see, e.g., Diehl, Lindblom,

& Creeger, 2003).

Nonetheless, it is true for vowel inventories that the system is easier to ac-

quire as well as to process when vowels are acoustically well-dispersed, for the

reason that they are easier to discriminate. This creates an evolutionary ten-

dency for languages to find themselves with such more dispersed inventories

(Joanisse & Seidenberg, 1998, p.335). Additionally, evidence such as the Hy-

perspace Effect (Johnson, Flemming, & Wright, 1993; Johnson, 2000), and that

infant-directed speech tend to have more extreme vowel qualities (Kuhl et al.,

1997) provide some tentative support for the notion that a more dispersed sys-

tem reduces perceptual confusion and is thus more learnable and more likely to

remain stable diachronically. Vaux and Samuels (2015)’s model also supports

the hypothesis that more dispersed inventories are more easily learnable.

3 Diachronic Change in Inventories

3.1 Sound Change

Ohala (1993, 243-247) described the process of sound change as when (syn-

chronic) variation in production is hypo-corrected (where new categories are

created) or hyper-corrected (where one phone is perceived as another existing

phone) by the perceiver. In other words, there exist a fair amount of acceptable

variation in production between speakers, and such variation within what is

considered by the listener as the same category is acceptable. Hence utterances

within the acceptable variation range are perceived as the same sound. Hypo-

correction is when enough individuals start producing outliers, and the outliers

do not get corrected by e.g., puzzlement or amusement from an interlocutor, re-

sulting in the phonetic perturbations getting “phonologized”. Hyper-correction,

on the contrary, is when the listener implements a correction when the pho-

netic/auditory input was actually what was intended by the speaker (i.e., when

no correction was needed). It is worth noting that the mechanism of sound

change, according to Ohala (1993), is not teleological. Besides categorizing it as

non-teleological, this account of sound change also ascribes the “locus of con-

trol” primarily to the listener’s side and locates the mechanism centrally in the
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phonetic domain.5

3.2 Adaptive Dispersion

Adaptive dispersion, according to the definition by Johnson (2000, p.181), refers

to “the hypothesis that the distinctive sounds of a language tend to be posi-

tioned in phonetic space so as to maximize perceptual contrast”. Some scholars

(e.g. Liljencrants & Lindblom, 1972; Boersma, 1998) also consider the interac-

tion between production and perception constraints.6 This can be traced back to

Martinet (1955, p.62)’s prediction of the general mechanism of the evolution of

sound systems “Les unités distinctives, les phonèmes qui coexistent, tendront à

utiliser au mieux les latitudes que leur offrent les organes dits de parole; ils ten-

dront à être aussi distants de leurs voisins qu’il est loisible pour eux de l’être tout

en restant facile à articuler et facile à percevoir”. From the previous sections, it

can be predicted that the less optimally dispersed sound inventories (i.e., inven-

tories where the perceptual distances between phonemes are not wide enough

to maintain perceptual distinctiveness, or where the articulations of phonemes,

e.g., in terms of manner, place, or both, are more extreme than necessary) are

less likely to remain stable and more likely to become more optimally dispersed

diachronically and that languages may apply diverse phonological processes to

avoid a perceptually weak contrast. This has been observed in several attested

sound changes, e.g., in Korak (Bright 1978), where the contrast between the

sibilants [s”] and [s„] (the former described as “a very far-forward apico-dental

sound” and the latter as an “apico-alveolar”, and further identified as “a re-

tracted ess”) was enhanced in younger speakers by pronouncing the former as

an interdental [T]; the voicing-only contrast between /g/ and /k/ was enhanced

in Arabic by fronting and affricating /g/, in Japanese by nasalizing /g/, in low

German by spirantizing /g/, and in Czech, Slovak, and Ukrainian by both spi-

rantizing and pharyngealizing /g/ (Boersma, 1998, summarized in Li, 2017).

However, to quantify the auditory dispersion in consonants, or sibilants to be

more precise, in a less impressionistic manner, an auditory (or at least acoustic)

space might be needed.

Instead of making only post-hoc guesses of causes and mechanisms, the cur-

rent study makes an attempt to investigate whether the diachronic change in

5See Hamann (2009) for a counter-argument, and see Fruehwald (2017) for more details
on how phonologization could happen simultaneously with the onset of phonetic changes.

6Flemming (2002) stresses that “articulatory representations have no bearing on distinc-
tiveness”.
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the acoustic and auditory dispersion of the Dutch voiceless sibilants is in con-

sistency with the predictions made in previous work. A small contrast, such as

that between the Dutch [s] and [C], is likely to become more dispersed after even

one generation, according to Boersma and Hamann (2008). If also taking into

account the fact that infants are not provided with the number of categories

of the input they receive during first language acquisition, in a case like the

Dutch voiceless sibilants where the two categories are too close or even overlap

to certain extent, the infant acquiring the phoneme inventory might establish

only one category instead of two. In this regard, a merger could also occur. The

current study hypothesizes that the two sounds would become more dispersed

rather than merge. The reason being that mergers happen as a way to enhance

contrast, namely, when a merger happens, which usually locates somewhere in

the middle of the auditory range between the two categories (assuming it is a

merger of two categories) that are merged, the auditory distance between the

merged sound and the remaining categories become larger than the pre-merger

state (Becker-Kristal, 2010)7. Thus, though non-teleological, a merger is more

likely to happen if there are other neighboring categories. Given that there are

no other voiceless sibilants than /s/ and /C/ in the Dutch consonant inventory

to increase contrast from, if /s/ and /C/ were to merge into one category, the

condition does not fit with that which would enhance contrast.

4 A Phonetic Space for Voiceless Sibilants

As all dispersion models assume a phonetic space whereby phonetic distances

are measured, in this section, I describe the acoustic measurements adopted as

an attempt to define a phonetic space for voiceless sibilants, and give some brief

justifications of the choices made.

4.1 Possible Dimensions

The literature has different metrics for differentiating fricatives acoustically.

Ladefoged and Johnson (2011) mentioned multiple possibilities to distinguish

7This observation is likely limited to mergers that enhance contrasts, as was stated in
Becker-Kristal (2010). Labov (1994, p.321) did mention that mergers which are the results
of chain shifting, as well as mergers caused by social stigma or prestige, do not always show
such intermediate forms but instead rather have “the same mean value of one of the members
of the merger, but with an enlarged class membership” sometimes. However, the potential
merger under discussion here is not the result of chain shifting, and the current thesis does
not focus on the socio-linguistic factors, though it is possible that they play a role (see §2.2).
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fricatives such as voicing, articulatory gestures, tongue shape (tongue grooved

v.s. tongue flat), and concluded that a better way is to separate them into groups

on a purely auditory basis, for instance, according to the loudness in high pitches,

which distinguishes the sibilants from non-sibilant fricatives, but they did not

go into detail about the acoustic or auditory measurements that would separate

one sibilant from another. Hayward (2014) listed frequency of main spectral

peak, diffuse-compact (e.g. [f] and [T] being more diffuse, and [S] more compact),

and slope of the overall spectrum ([S] rises steeply to its peak and [s] rises

more gradually) to distinguish fricatives. She also mentioned that the spectra

of English fricatives vary considerably from speaker to speaker and that at

least for English, it seemed appropriate to describe fricative spectra by category

in terms of the above perspectives rather than in terms of specific formant

frequencies as in vowels. Also for the fricatives in English, Jongman, Wayland,

and Wong (2000) found that acoustic properties such as spectral peak location,

spectral moments (mean, variance, skewness, kurtosis), normalized amplitude,

normalized duration, F2 onset frequency, and relative amplitude, are all relevant

and are all robust enough in distinguishing /s/ and /S/.

In Bolla and Varga (1981)’s observation, palatalized fricatives in Russian

have a higher intensity than non-palatalized fricatives. But Bolla and Varga

(1981)’s results were only based on one (male) speaker. In a similar study on

Russian fricatives, Kochetov and Radǐsić (2009) did not find intensity useful in

distinguishing palatalized fricatives from their non-palatalized counterparts.

In a more recent Optimality Theoretic typological study, Kokkelmans (2019)

showed that “distributedness” is one possible dimension to implement auditory

dispersion in sibilant inventories.

Other factors such as lexical frequency can also influence dispersion (see e.g.,

Lindblom, 1996; Van Son, Beinum, & Pols, 1998; Bybee, 2003).

In sum, a phonetic space (as dispersion theory models usually adopt) for

fricatives is far less established than the vowel space. Since the present study

focuses on voiceless sibilants, I will opt for measurements that are more relevant

for sibilants or fricatives in general.

4.2 Two-Dimensional Mapping

As was mentioned in Section 4.1, previous studies categorized fricatives by dif-

ferent metrics such as spectral peak location, frequency of main spectral peak,

spectral center of gravity, diffuse-compact-ness, slope of the overall spectrum,
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spectral moments, F2 onset frequency, intensity, and duration, etc.

Among the above, spectral center of gravity contains information including

spectral peak location and the frontness of the place of articulation, and audito-

rily correlates to the listener’s averaging of frequency and intensity components

of a speech-like signal (Fagelson & Thibodeau, 1994). Additionally, according

to Gordon, Barthmaier, and Sands (2002)’s cross-linguistic study of the acous-

tics of voiceless fricatives in seven languages, “gravity center frequencies robustly

differentiated many of the fricatives in the examined languages” (p. 29). Diffuse-

compact and distributedness could roughly translate to the width of the spectral

peak acoustically, since more distributed sounds have more filtering in the vocal

tract thus leading to engergy spreading out over a wider range of frequencies

and consequently a wider peak or even multiple “diffuse” peaks (Johnson, 2011;

Stevens, 2000).

Considering that factors such as the slope of the overall spectrum, spectral

peak location, and frequency of the main spectral peak are partially represented

by the spectral center of gravity and that spectral center of gravity alone is

often robust enough in differentiating different fricatives (Gordon et al., 2002),

the present study uses a two-dimensional space of spectral center of gravity and

width of the spectral peak as an acoustic space for the sibilants in question.

5 Data Collection

5.1 Participants

Native speakers of Dutch of two age groups were recruited mainly from the

University of Amsterdam and were paid for their participation. One group aged

between 19 and 27 (5 female, 3 male, mean age = 23.38, standard deviation =

2.20). See Appendix A for an anonymized list of participant age and gender. All

participants in this age group were students at the University of Amsterdam,

and none of them studied linguistics. The other group aged between 61 to 75 (8

female, 2 male, mean age = 67.60, standard deviation = 4.32), mostly consisting

of professors and staff members from the University of Amsterdam, none of

whom specialized in phonetics or phonology. All participants had been raised

in monolingual households with native Dutch-speaking parents. All participants

reported to have no abnormalities in their vision or speech 8.

8Hearing was not specifically included in the pre-recording screening, since the task only
involved reading the displayed sentences aloud (see §5.2). Nonetheless, the hearing of all
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5.2 Material and Design

A list of 113 Dutch sentences was constructed (see Appendix B for the full

list9). The sentences contained 33 tokens of /s/, and 26 tokens of /C/10. Fifty-

four sentences containing neither of the two target sibilants served as fillers. All

but the utterance-final target sibilants were situated in intervocalic positions

and stressed syllables. Among the /s/ tokens, 10 were word-initial, 7 were word-

medial, and 17 were word-final. Among the /C/tokens, 13 were word-initial, 7

were word-medial, and 6 were word-final11.

The interactive interface was written in E-Prime. The aforementioned list of

sentences was randomized for each participant. A trial sentence with multiple

sibilants built in (“this is a sentence that I am reading aloud to help set up

the recording devices”) was shown as an example to familiarize the participant

with the procedure, as well as to help the experimenter adjust the gain constant

of the microphone while the participant was reading the trial sentence aloud.

The participant was then prompted to press a key to start the experiment. The

prompting speed after this point was controlled by each participant by pressing

a key after they finish reading each item out loud. The recording started each

time the participant pressed a key to show a sentence, and stopped when the

participant pressed the key to indicate that they had finished reading and that

the next sentence should be shown. 50 ms of delay was added as a buffer after

the pressing of the key. Each chunk of recording was labeled automatically with

the index of the sentence from the stimuli list and then concatenated by the

sequence of the list so that the sequence of the sentences was identical in each

final product without being influenced by the randomization of the stimuli at

the time of the recording.

The recordings were done in a soundproof studio in the Speech Lab at the

University of Amsterdam, using a Sennheiser MKH105T microphone and a pre-

amplifier designed and built by the lab technicians at the Speech Lab. The

subjects were recorded one by one in a seated position. They were each in-

structed to keep a constant distance of 20 cm between their mouth and the

microphone, and the screen on which the stimuli were displayed was adjusted

participants was at a level to be able to communicate in English (their second language) with
the experimenter with no difficulties at all.

9I thank Paul Boersma for being my Dutch informant in creating this list.
10There were instances where the participant pronounced the words jus and jam as [Zy] and

[ZEm] respectively. Such tokens were not used in the analysis.
11Some stimuli contained more than one sibilant in more than one positions, e.g. cynisch

has both word-initial /s/ and word-final /s/.
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to their desired height and distance. To reduce the effect of read speech and

to preserve naturalness to some extent, participants were instructed to first

look at the sentence and then read it out loud as if the sentence was part of a

conversation. Prior to the recording, participants were informed in the consent

form that the purpose of the recording was to collect natural speech samples

of Dutch phrases. Each participant filled out a post-test questionnaire after the

recording (see Appendix C) to gather information about the speaker’s language

background, including their age, profession, birthplace, cities and towns that

they lived in in the Netherlands and abroad for over 6 months, whether they

were raised in a monolingual household, and their second language(s). The post-

test questionnaire also asked each participant for their speculations about the

topic of the study in order to exclude the results from participants who might

have guessed the targets and hyper-articulated during the recording. None of

the participants guessed correctly or even close.

5.3 Acoustic Analysis

Acoustic measurements are done in Praat (Boersma & Weenink, 2020). All

the relevant sections (i.e., the target sibilants and their surrounding vowels)

in the recordings were segmented by hand. Annotation was automated by a

Praat script that fills in the TextGrid annotations of the underlyingly identical

segments in different recordings (e.g., the /C/’s in all the koosjer tokens in

the recordings of different speakers). The script ignores the instances where

the pronunciation does not match the intended sibilant (e.g., when jus was

pronounced as [Zy]) which were not segmented in the TextGrids to begin with,

therefore not annotated or extracted for measurements12 (see Appendix D for

the script).

For more precise calculation of the spectral center of gravity and the spectral

standard deviation of the sibilants, the sibilants were segmented in such a way

that as little formant transition as possible was included, as is shown in Figure

3, where part of the very beginning of /C/ in pistache was intentionally left

out to avoid the influence of voicing, and in Figure 4, where the transition into

and out of /s/ in tussen was left out. For this reason, in addition to the fact

that participants varied in speaking rate, the durations of the sibilants were not

measured. Each relevant part (i.e., every annotated sibilant segment in every

recording) was extracted with a rectangular window shape. Each of the 916

12I thank Dirk Jan Vet for the technical support and scripting help.
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Figure 3: Spectrogram of “pistache” in the stimulus “Doe mij maar pistache”
with dashed lines marking the duration segmented for and annotated as /C/

extracted tokens was subjected to spectral analysis and passed through a stop

Hann Band filter from the frequency of 0 Hz to 550 Hz13, with 50 Hz smoothing.

The spectral center of gravity (CoG) was measured from each of the spectra.

The width of the spectral peak was measured as the spectral standard deviation

(power = 2).

See Appendix G for the full results of the acoustic measurements.

Figure 5 shows a scatter plot of sibilants produced by the speakers aged

between 19 and 27, with /C/ marked by red circles, and /s/ marked by blue

plus signs, and one sigma ellipses numbered in the center by participant ID.

The scatter plot of the speakers aged between 61 and 75 is shown in Figure

6. Without much statistical analysis, one can already see that there is more

overlapping between the two sibilants in the group aged between 61 and 75. The

only overlapping of /C/ and /s/ in the younger group occurs between different

speakers (i.e. the /C/ of Participant 11 overlaps with both the /s/ produced

by Participant 10 and slightly with the /s/ produced by Participant 15), but

13Even though all segments under investigation were voiceless, considering that one of the
measurements used would be the spectral center of gravity, the filter was still applied as a
second guard besides segmentation to avoid the influence of voicing from surrounding vowels.
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Figure 4: Spectrogram of “tussen” in the stimulus “Kom er maar tussen” with
dashed lines marking the duration segmented for and annotated as /s/

never within speakers. Additionally, there is more variance in spectral standard

deviation in the older group as well as more within-category variation in general

in the older group.

In a slightly different scheme, Figures 7 and 8 show the ellipses of the sibilants

produced by each participant in the two groups, assigning each participant with

an ellipsis of a different color, with the sibilants marked in the center of each

ellipsis. It can be seen from Figure 7 that the ellipses of the same colors never

collide in the younger group. Whereas in the older group, the ellipses of the same

colors are located much closer, as is shown in Figure 8. One of the colors has

visible overlapping, and several others are very much closer together, indicating

the overlapping of CoG and spectral standard deviation of the two sibilants

produced by the older group. There is also a fair amount of between-speaker

overlapping between the two sibilants in Figure 8. For instance, the black /C/

locates completely within the blue /s/, and the CoG range of the green /C/

is entirely within the CoG range of the red /s/. Moreover, in the older group,

some /C/’s are even higher in CoG compared to the /s/’s produced by a different

speaker of the same group.
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Figure 5: Scatter plot of the sibilants produced by younger speakers

Figure 6: Scatter plot of the sibilants produced by older speakers

5.3.1 Linear Mixed-Effects Models

The data was analyzed in R (R Core Team, 2020) using linear mixed-effects

models. Age Group and Sibilant, as well as the height, rounding, and frontness

of the succeeding vowel were the fixed effects that were modeled. The Index

of the stimulus token and Participant ID were included as random effects. The

height of the succeeding vowel was coded as a ternary predictor, with /Œ/, /au/,

/a/, /ai/, /ã/ coded as “low”, /O/, /I/, /o/, /@/, /@~/,/au/ coded as “mid”,

and /i/, /u/, /y/ coded as “high”. Rounding was coded as a binary predictor.

Frontness was coded as a ternary predictor, with /Œ/, /au/, /a/, /ai/, /I/, /i/,

/ã/, /y/ as “front”, /@/ as mid, and /O/, /o/, /u/, /Ä/ as “back”. All levels of
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Figure 7: Ellipses of the sibilants produced by younger speakers, with each
participant in one color

all contrasts are both orthogonal to each other and orthogonal to the intercept.

See Appendix E for the formula and coding of contrasts and predictors.

The same sets of fixed effects and random effects were used in the two mod-

els, one with CoG as the dependent variable, and one with the width of the

spectral peak as the dependent variable.

CoG

Results show that without taking Age into consideration, the spectral center

of gravity is, on average, 1546.18 Hz higher in /s/ than in /C/ (95% confidence

interval = 1272.588 Hz .. 1818.093 Hz; t = 9.981) among all the Dutch speakers

who participated. This fits the general expectation. The estimated mean for

the interaction effect of AgeGroup and Sibilant is 391.03 Hz, meaning the CoG

difference between the two sibilants is 391.03 Hz higher in the younger group

than the older group on average. The effect is not significant (95% confidence

interval = -44.039 Hz .. 829.662 Hz; t= 1.723). In other words, from the data

collected in this study alone, we cannot conclude that the CoG difference (on

the Hertz scale) between the two sibilants /s/ and /C/ is significantly different

between the two age groups.

Width of Spectral Peak

The same fixed and random effects as in the CoG analysis were modeled as a

function of the width of the spectral peak, with the same contrasts coding used

in the linear regression model for CoG (see Appendix E for the formula and the
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Figure 8: Ellipses of the sibilants produced by older speakers, with each partic-
ipant in one color

contrast coding scheme). Results show that the difference of spectral standard

deviation between the sibilants /s/ and /C/ of the participants in the younger

group is 389.80 Hz wider than that of the older group, which is statistically

significant (95% confidence interval = 75.491 Hz .. 705.519 Hz; t = 2.331).

5.3.2 Spectral Principal Component Analysis

Although considered important by many (e.g., Flemming, 2018; Olive et al.,

1993), formant transitions are not considered in the present study, due to the

difficulty to control for different vowels that surround the sibilants in the stimuli.

Additionally, even though formant transitions can be a prominent cue in per-

ception, formant trajectories are not easily detectable in fricative signals, and

therefore might not be as useful as spectral information for classifying fricatives,

especially when retroflexion is involved, as is pointed out in Hamann (2003) and

shown in Harris (1954).

For a more in-detail comparison and description of the between-sibilants

acoustic difference between the two age groups, a spectral principal component

analysis was conducted. The purpose of adopting spectral principal analysis is to

take into account the spectral shape as a reflection of the characteristic energy

difference between frequencies in the two sibilants, as was suggested in Evers et

al. (1998). The pre-processing of the acoustic signal for the spectral component

analysis is described as follows. A long-term average spectrum (LTAS) analysis

was performed on each of the relevant segments. Each LTAS was computed with
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a bin width of 250 Hz and a frequency range of 550-10000 Hz. The energy in

each of the 38 250-Hz-bins of each LTAS of each of the 916 relevant tokens was

calculated.

Pooled Data

A principal component analysis was run on both sibilants produced by both age

groups. Figure 9 shows the eigenvalues of each of the principal components on

a scree plot.

Figure 9: Scree plot of the first 10 components

Figures 10 to 13 show eigenvectors 1 to 4. As was explained above, the

elements on the x-axis represent frequency bins with a width of 250 Hz, and

the y-axis indicates energy in the corresponding bins. The first eigenvector has

no zero crossings, indicating that it differentiates the sounds by loudness only.

This distinction is irrelevant for the purpose of investigating spectral shape.

Figure 10: Eigenvector 1 of all speakers and both sibilants

The second eigenvector has one zero-crossing near bin 14, which shows that
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eigenvector 2 is an indication of whether the energy level is on average higher

in the frequency range below or above 550 Hz + 14 ∗ 250 Hz = 4050 Hz. This

is slightly lower than the threshold of 4.2k Hz in Hughes and Halle (1956),

mentioned in §2.1.

Figure 11: Eigenvector 2 of all speakers and both sibilants

Eigenvector 3 has three zero-crossings, indicating that it differentiates the

spectra between energy in three frequency ranges, namely bin 8 to bin 16 (i.e.

550 Hz + 8 ∗ 250 Hz = 2550 Hz to 550 Hz + 16 ∗ 250 Hz = 4550 Hz), bin 17 -

bin 29 (i.e. 550 Hz + 17 ∗ 250 Hz = 4800 Hz to 550 Hz + 29 ∗ 250 Hz = 7800

Hz), as well as above bin 30 (i.e. 550 Hz + 30 ∗ 250 Hz = 8050 Hz).

Figure 12: Eigenvector 3 of all speakers and both sibilants

The fourth eigenvector reflects the variation of energy in more specific parts

of the spectra.

Thus, the second and third principal components together account for the

main differences. Figure 14 is the sibilants plotted according to their principal

component scores of the second and third principal components. The marks

“sy”, “Cy”, “so” “Co” represents data points of [s]’s and [C]’s produced by
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Figure 13: Eigenvector 4 of all speakers and both sibilants

“y”ounger and “o”lder speakers among the participants, respectively. It can

be seen from the scatter plot that there is some overlap between the 1 SD el-

lipses of “Co” and “so”, but a wide gap between the edges of the “Cy” and “sy”

ellipses, denoting that the acoustic distance between the two sibilants is indeed

wider in the younger generation.

Figure 14: Two sibilants produced by two age groups, plotted according to the
principal component scores of the second and third principal components
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Age Group Data

To better compare how the two age groups differ in the way they differentiate

the two sibilants in production, one separate principal component analysis was

run for each age group. Figures 15a and 15b show the scree plots of the younger

group and the scree plot of the older group, respectively.

(a) Scree plot of the younger group data (b) Scree plot of the older group data

Figure 15: Scree plots for the age group data

Figures 16a and 16b show the first eigenvector from the spectral principal

component analysis of the two age groups. Figures 17 and 18 show the second

eigenvector of the two age groups, respectively.

(a) Eigenvector 1 of the younger group (b) Eigenvector 1 for the older group

Figure 16: Eigenvector 1 for the age group data

There is no fundamental difference in the first two eigenvectors between age

groups, except that there is some distance in bin 13 (550 Hz + 13 ∗ 250 Hz =

3800 Hz). Looking at each of the two age groups separately, the younger group

has a zero crossing at a frequency range slightly higher than bin 14, and the

older group has a zero crossing at bin 13. In other words, the younger group

distinguish the two sibilants by whether the energy level is on average higher

in the frequency range below or above bin 14 (550 Hz + 14*250 Hz = 4020

Hz), while for the older group, the threshold is slightly above bin 13 (550 Hz +

13*250 Hz = 3800 Hz).

It can be seen in the third eigenvectors (shown in Figures 19 and 20) that
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Figure 17: Eigenvector 2 of both sibilants produced by the younger group

Figure 18: Eigenvector 2 of both sibilants produced by the older group

Figure 19: Eigenvector 3 of both sibilants produced by the younger group

the younger group has a prominent peak between bin 9 to bin 16 (i.e. 550 Hz

+ 9*250 Hz = 2800 Hz to 550 Hz + 16*250 Hz = 4550 Hz) marked by two

zero crossings, and a valley between bin 16 and bin 27 (i.e. 550 Hz + 16*250

Hz = 4550 Hz to 550 Hz + 27*250 Hz = 7300 Hz), while the peak in the older
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Figure 20: Eigenvector 3 of both sibilants produced by the older group

Figure 21: Eigenvector 4 of both sibilants produced by the younger group

Figure 22: Eigenvector 4 of both sibilants produced by the older group

group is less sharp and more prolonged, between bin 9 to bin 23 (i.e. 550 Hz +

9*250 Hz = 2800 Hz to 550 Hz + 23*250 Hz = 6300 Hz), in addition to a valley

between bin 5 and bin 9 (i.e. 550 Hz + 5*250 Hz = 1800 Hz to 550 Hz + 9*250

Hz = 2800 Hz). That is, the younger group differentiates the two sibilants by
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the energy difference between the frequency ranges of 550 to 2800 Hz, 2800 to

4550 Hz, 4500 to 7300 Hz, and above 7300 Hz; the older group differentiates the

two sibilants by the energy differences between the ranges of 1800 to 2800 Hz,

2800 Hz to 6300 Hz, and above 6300 Hz.

Additionally, the most prominent contrast in energy between the two sibi-

lants is between the points of bin 6 and bin 14 (i.e., energy at 2050 Hz and

energy at 4050 Hz) for the older group, while for the younger group the contrast

is between the points of bin 12 and bin 20 (i.e., energy at 3550 Hz and energy

at 5550 Hz) for the two sibilants.

From the principal component analyses above, it is clear that in production,

the two age groups differentiate the two sibilants in different ways. Namely, the

frequency range(s) where the main difference resides are different between the

two age groups.

As principal components 2 and 3 are the two components that should dif-

ferentiate the two sibilants the best besides principal component 1, which is

irrelevant for spectral shape, I now scatter plot each token of /s/ and /C/ in

each age group by their eigenvalues in the second and third principal components

in Figures 23 and 24.

Figure 23: Both sibilants produced by the younger group plotted by their PC
scores in principal components 2 and 3

The second and third principal components are the two principal components

with the highest eigenvalues that are of interest in this study for both age

groups. It can be seen from the scatter plots that the second principal component

of the younger group can mostly separate the two sibilants. However, for the
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Figure 24: Both sibilants produced by the older group plotted by their PC scores
in principal components 2 and 3

older participants, even by looking at the two group-specifically most important

principal components, neither of them classify the two sibilants very well.

5.3.3 Random Forests

Since principal component analyses have the drawback of being subject to over-

fitting, and its result becomes difficult to interpret once the eigenvectors fluc-

tuate, modeling by decision trees and random forests were done on the spectra.

Decision tree learning is a supervised learning approach that has the benefit

of, e.g., being able to handle collinearity in the data, having built-in feature

selection, as well as producing more easily interpretable outcomes. Random de-

cision forests correct the single decision trees’ over-fitting to the training set

by training a multitude of trees and using bootstrap aggregation in selecting

the training set for each tree and then using a random subset of features when

training each tree, before averaging across all trees that are trained to get a final

model. In other words, each tree in the forest is trained on randomly re-sampled

data, with a random subset of all the features, therefore producing a model that

is less susceptible to over-fitting.

The spectra of each group were randomly divided into two parts: one training

set (80%) and one test set (20%). The same long-term average spectra and the

same frequency bins used for the principal component analyses were used for

the decision tree training. The energy in each frequency bin was used as input.
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The frequency bins were treated as parameters, and the sibilants corresponding

to the spectra were used as labels. A total of 500 trees were trained for each age

group, and a random forest was grown for each age group by feature-bagging to

reduce over-fitting. See Appendix F for the R code used for training the trees

and forests).

A random forest model was fitted for each age group, Figures 25a and 25b

show the difference in the ranking of frequency bins between two age groups.

Tables 3 and 4 are the confusion matrices of the forests for each age group

respectively.

Reference

Prediction C s

C 40 1

s 0 53

Table 3: Confusion matrix for the younger participants

Reference

Prediction C s

C 41 1

s 2 45

Table 4: Confusion matrix for the older participants

The rankings of parameter importance show that the two age groups indeed

used different rankings of frequency bins to distinguish the two sibilants. Ad-

ditionally, the out-of-bag error rate for the older group is always higher than

that of the younger group (the test accuracy of the random forests models for

the older and younger groups are 0.987 and 0.989, respectively, and the Area

Under Curve evaluated with the test sets of the older and younger groups in

the random forest models are 0.985 and 0.998, respectively), indicating that the

sibilants produced by the older age group are more difficult to classify, providing

tentative support for the hypothesis that the two sibilants are more merged for

the older speakers.
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(a) Importance of frequency bins for younger speakers

(b) Importance of frequency bins for older speakers

Figure 25: Importance ranking of frequency bins used by two age groups to
distinguish /s/ and /C/
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5.4 Auditory Estimations

In consideration of the potential role that perception plays in the dispersion-

theoretic non-teleological diachronic changes (e.g. Flemming, 1995 and Boersma,

1998 both explicitly point out that the dispersion concerns auditory distance

as opposed to acoustic distance), perception studies are also needed to fully

understand a phonemic system.

Due to the limit of time and scope of the current project, I chose to con-

vert the acoustic measurements into a psychoacoustically relatively appropriate

estimation in order to indirectly examine the dispersion auditorily. To do so,

I convert the measurement of Center of Gravity from the Hertz scale to the

ERB scale, since the ERB scale corresponds to a good agreement to the “di-

rect physical audio filter bandwidths defined in terms of place along the basilar

membrane, in the frequency interval [400 Hz, 6500 Hz]” in humans (Greenwood,

1990, p.2601, in Smith & Abel, 1999, p.705; see, also, Moore, 1986, p.146, for

the function, and Moore, 1986, Fig. 6, for the frequency restriction). The spec-

tral standard deviation is not directly convertible into the ERB scale due to the

non-linear nature of the ERB scale and the linearity of the Hertz scale, as well

as the fact that the spectral standard deviation is a distance measure rather

than a point value. For an estimation, I take the center of gravity, which is the

mean frequency weighted by spectral power, convert the value from Hz to ERB

(CoG Erb). I then convert the value of one standard deviation of the CoG from

Hertz to ERB (SD Erb). Next, I add one standard deviation in Erb to the mean

in Erb to get the upper bound, and subtract one standard deviation in Erb to

the mean in Erb to get the lower bound. Lastly, I divide the difference between

the upper bound and the lower bound by 2. The formula14 below illustrates the

process:

StdevErb = 0.5∗[hertzToErb(CoG+.CoG SD)−hertzToErb(CoG−CoG SD)]

Linear Mixed-Effects Models

The same fixed and random effects as in the acoustic analyses were modeled

as a function of CoG in ERB and the spectral standard deviation in ERB,

respectively. Contrast coding also remained the same as the acoustic analyses

(See Appendix E for the R script and full results in detail).

Results show that the CoG difference (on the ERB scale) between the two

14In the format of the Praat scripting language.
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sibilants is 0.69 Erb larger in the older group than in the younger group of speak-

ers who participated in the recording, which is not significant (95% confidence

interval = -0.246 Erb .. 1.640 Erb; t = 1.387). The difference of the width of

spectral peak (on the ERB scale) between the two sibilants /s/ and /C/ is 0.65

Erb wider in the older group than in the younger group, which is not significant

(95% confidence interval = 0.653 .. 0.444; t = 1.470).

Caveat

The residuals in the linear models are not normally distributed in the linear

regression model for the width of the peak both on the Hertz scale and the

ERB scale (termed as StdevHz, and StdevErb in the analyses above), neither

were they Gaussian in the linear regression model for the CoG on ERB scale

(CoGErb). Only the residuals of CoGHz are normally distributed. Hence the

robustness of the relevant models might be affected. Due to the shape of the

data, step-wise model comparison was also not implementable.

6 Discussion

The results from linear regression models in the current study, robustness aside,

are inconclusive. Among the four dependent variables, only one showed a signif-

icant difference, namely the width of the spectral peak of the sibilants between

age groups.

It is plausible that any generalization could be violated within a small sub-

group and still holds true at population level, and since the participants from the

current study come from rather limited socio-economic classes (i.e., university

students and professors), more participants from more diverse backgrounds are

needed for a more valid conclusion.

Despite the inconclusive results from the linear regression models, spectral

analyses lend some support for a difference in the way that the two age groups

differentiate the two sibilants in production. Random forest modeling confirms

the difference.

Nevertheless, there are still some variables that were not well-controlled in

the current study. For instance, there might be different degrees of reduction

happening in different stimulus items, depending on the word frequency (Bybee,

2003), and neighborhood density (e.g., Goldrick, Vaughn, & Murphy, 2013; Fox,

Reilly, & Blumstein, 2015), and sound change is very often first observed to
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take place in high-frequency words of a language (Phillips, 1984; Morley, 2019).

This can be improved by assigning a Word Frequency Score to each of the

relevant words in each target stimulus and controlling for the effect of word

frequency in the linear mixed-effect models. Additionally, the within-category

variance in each sibilant was not well-incorporated in the current study. It might

be worth investigating whether there are changes in within-category variance

across generations, by e.g. the Jeffreys-Matsushita distance.

Counter-arguments can be made that such changes found in the current

study might not necessarily be explained by adaptive dispersion, but rather by

factors such as increased exposure to second languages such as English (where

the acoustic/auditory distance between the two sibilants are further) in the

younger generation. This is admittedly possible, and previous longitudinal re-

search has shown phonetic change (VOT, F0) occurring in the first language

as early as two weeks into a second language class (Chang, 2010). However,

the same increased exposure is arguably also happening in the older generation

at the same time instead of only affecting one of the two sub-populations. It

might be worth further investigation to look into the difference of phonemic

status of the two sibilants across generations, by, e.g., wug-testing and exam-

ining loanword adaptation involving the two sibilants across generations. One

other aspect that may be of interest is the acoustic and auditory distance for

different generations to consider two sibilants as different.

More importantly, in order to shed light on the (a)symmetry of production

and perception, it is interesting to find out whether younger and older listeners

also use different auditory cues to distinguish the two sibilants, in the same way

as they do in production (see §5.3.2), as recent studies (e.g. Luthra, Correia,

Kleinschmidt, Mesite, & Myers, 2020) even claim that acoustic information does

not play any role at all in the perception of the /s/-/S/ contrast.
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Kochetov, A., & Radǐsić, M. (2009). Latent consonant harmony in Russian:

Experimental evidence for agreement by correspondence. In Proceedings

of FASL (Vol. 17, pp. 111–130).

Kokkelmans, J. (2019). A typological model of sibilant inventories and the

principles which shape them. In The 27th Manchester Phonology Meet-

ing. Poster. Retrieved from http://www.lel.ed.ac.uk/mfm/27mfm-prog

.pdf

Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova,

E. V., Ryskina, V. L., . . . Lacerda, F. (1997). Cross-language analysis

of phonetic units in language addressed to infants. Science, 277 (5326),

684–686.

Labov, W. (1994). Principles of linguistic change: Volume 1: Internal factors.

Blackwell.

Ladefoged, P., & Johnson, K. (2011). A course in phonetics. Wadsworth,

Cengage.

Ladefoged, P., & Maddieson, I. (1996). The sounds of the world’s languages.

Blackwell.

Li, M. (2017). Sibilant contrast: Perception, production, and sound change (PhD

dissertation). University of Kansas.

Liljencrants, J., & Lindblom, B. (1972). Numerical simulation of vowel quality

systems: The role of perceptual contrast. Language, 48 (4), 839–862.

Lindblom, B. (1996). Role of articulation in speech perception: Clues from

36

http://www.lel.ed.ac.uk/mfm/27mfm-prog.pdf
http://www.lel.ed.ac.uk/mfm/27mfm-prog.pdf


production. The Journal of the Acoustical Aociety of America, 99 (3),

1683–1692.

Lindblom, B., MacNeilage, P., & Studdert-Kennedy, M. (1983). Self-organizing

processes and the explanation of phonological universals. Linguistics,

21 (1), 181–204.

Lindblom, B., & Maddieson, I. (1988). Phonetic universals in consonant systems.

In L. M. Hyman, V. Fromkin, & C. N. Li (Eds.), Language, speech, and

mind: Studies in honour of victoria a. fromkin (pp. 62–78). Taylor &

Francis.

Livijn, P. (2000). Acoustic distribution of vowels in differently sized inventories–

hot spots or adaptive dispersion. Phonetic Experimental Research, Insti-

tute of Linguistics, University of Stockholm (PERILUS), 11 .

Luthra, S., Correia, J. M., Kleinschmidt, D. F., Mesite, L., & Myers, E. B.

(2020). Lexical information guides retuning of neural patterns in percep-

tual learning for speech. Journal of Cognitive Neuroscience, 1–12.

MacEachern, M., Kern, B., & Ladefoged, P. (1997). Wari’ pho-

netic structures. Journal of Amazonian Languages, 1 , 3–28. Re-

trieved from http://etnolinguistica.wdfiles.com/local--files/

artigo%3Amaceachern-1997/maceachern et al 1997 wari.pdf

Maddieson, I., & Disner, S. F. (1984). Patterns of sounds. Cambridge University

Press.

Martinet, A. (1955). Economie des changements phonétiques. Francke, Bern.

Mees, I., & Collins, B. (1982). A phonetic description of the consonant system of

Standard Dutch (abn). Journal of the International Phonetic Association,

12 (1), 2–12.

Moore, B. (1986). Parallels between frequency selectivity measured psychophys-

ically and in cochlear mechanics. Scand. Audiol. Suppl. 25, 139-152., 25 .

Morley, R. (2019). Sound structure and sound change: A modeling approach.

Language Science Press. Retrieved from https://books.google.nl/

books?id=Uci5DwAAQBAJ

Nooteboom, S. G., & Cohen, A. (1984). Spreken en verstaan: een nieuwe

inleiding tot de experimentele fonetiek. Van Gorcum.

Ohala, J. J. (1993). The phonetics of sound change. In C. Jones (Ed.), Historical

linguistics: Problems and perspectives (pp. 237–278). London: Longman.

Olive, J. P., Greenwood, A., & Coleman, J. (1993). Acoustics of American

English speech: a dynamic approach. Springer Science & Business Media.

37

http://etnolinguistica.wdfiles.com/local--files/artigo%3Amaceachern-1997/maceachern_et_al_1997_wari.pdf
http://etnolinguistica.wdfiles.com/local--files/artigo%3Amaceachern-1997/maceachern_et_al_1997_wari.pdf
https://books.google.nl/books?id=Uci5DwAAQBAJ
https://books.google.nl/books?id=Uci5DwAAQBAJ


Passy, P. E. (1891). Étude sur les changements phonétiques et leurs caractères
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A Participant Statistics

Participant ID Age Group Gender

1 66 o f

2 66 o f

4 68 o f

5 75 o m

6 61 o f

7 73 o f

8 71 o f

9 67 o f

10 19 y m

11 23 y f

12 24 y f

13 24 y m

14 66 o m

15 23 y f

17 23 y f

17 63 o f

18 24 y f

19 27 y m

Table 5: Age and gender of the participants
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B List of Stimuli

40



 
Sentence RecIndex 
ik voel me somber 1 
ik voel me blij 2 
dat doen we samen 3 
dat doen we apart 4 
ik zoek de suiker 5 
ik zoek de melk 6 
je vindt me saai 7 
je vindt me leuk 8 
dat is mijn saldo 9 
dit is mijn rondje 10 
ik wil de saus 11 
ik wil de mayonaise 12 
ik wil de jus 13 
ik wil de boter 14 
doe mij maar sinas 15 
doe mij maar cola 16 
wat doe je cynisch 17 
wat doe je raar 18 
daar komt de sint 19 
daar komt een klant 20 
dat gaan we sussen 21 
dat gaat ons lukken 22 
ik voel me sjofel 23 
ik vind je jofel 24 
wat ben je sjiek 25 
wat ben je lief 26 
help me maar sjouwen 27 
help me maar bouwen 28 
een mooie sjaal 29 
een mooie trui 30 
doe mij maar Chinees 31 
doe mij maar friet 32 
dan gaan we sjoelen 33 
dan gaan we dammen 34 
ze zat te sjansen 35 
ze zat te kijken 36 
je loopt te sjokken 37 
je loopt te hinken 38 
doe mij maar jam 39 
doe mij maar honing 40 
ik zie de machine 41 



ik zie de fabriek 42 
ik lees de brochure 43 
ik lees de folder 44 
daar loopt je meisje 45 
daar loopt je vriend 46 
ik wil een flesje 47 
ik wil een beker 48 
da's niet zo koosjer 49 
da's niet zo handig 50 
knibbel knabbel knuisje 51 
pief paf poef 52 
ik pak een glaasje 53 
ik pak een kopje 54 
je bent het haasje 55 
jij bent af 56 
de gele hesjes 57 
het groene hart 58 
ik ga me douchen 59 
ik ga me scheren 60 
ik zal je missen 61 
ik zal je bellen 62 
in een depressie 63 
in een deuk 64 
wij vrouwen eisen 65 
wij willen brood 66 
ga lekker vissen 67 
ga lekker tukken 68 
ga je wassen 69 
ga maar lopen 70 
kom er maar tussen 71 
kom er maar bij 72 
dat gaan we sussen 73 
ik wil de saus 74 
ik ga onder de douche 75 
ik ga in bad 76 
ik loop naar de crèche 77 
loop naar de maan 78 
ze komen voor de hasj 79 
ze komen voor de bollen 80 
je maakt me boos 81 
je maakt me blij 82 
ik sta op het ijs 83 
ik sta op de brug 84 



je bent niet goed wijs 85 
je bent niet goed snik 86 
ik ga naar huis 87 
ik ga naar bed 88 
ik hang voor de buis 89 
ik zit in de keuken 90 
ik loop in het bos 91 
ik loop door de duinen 92 
een mooie poes 93 
een mooie hond 94 
doe mij maar kaas 95 
doe mij maar ham 96 
een rotte kies 97 
een gat in mijn tand 98 
ik lig in het gras 99 
ik lig op de grond 100 
een mooie bloes 101 
een mooi hemd 102 
kom naar de les 103 
kom naar de fuif 104 
het is hier niet pluis 105 
ik vind het hier eng 106 
doe mij maar pistache 107 
doe mij maar vanille 108 
ze plakt aan het pluche 109 
ze zit in de kamer 110 
doe mij maar sinas 111 
wat doe je cynisch 112 
doe mij maar Chinees 113 
 



C Post Test Questionnaire
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Phrases in Dutch Subject# 1

Post-Test Questionnaire

Thank you for participating in our experiment. In order to interpret the results as best as we can, we would
like you to answer the questions below. Your data will be kept confidential, and we will make sure that no
information will be revealed in ways that it could be traced back to you.

Personal Information
First Name:

Last Name:

Age:

Gender:

Profession:

Geographical Background
Birth Place:

In which cities in the Netherlands have you lived and for how long:
City 1, length of time:

City 2, length of time:

City 3, length of time:

City 4, length of time:

How long you have lived(if longer than 6 months) outside of the Netherlands, and where:

Language Background
Were you brought up in a monolingual home?

2 Yes 2 No
If ”no”, please indicate your native languages other than Dutch:

Have you learned any second languages?For example in school, university, from friends etc.? For
each language, please indicate the name and level of proficiency:(see next page)



Phrases in Dutch Subject# 2

Language 1:

Proficiency: 2 Near-Native
2 Fluent
2 Intermediate
2 Beginner

Language 2:

Proficiency: 2 Near-Native
2 Fluent
2 Intermediate
2 Beginner

Language 3:

Proficiency: 2 Near-Native
2 Fluent
2 Intermediate
2 Beginner

The Experiment
Please indicate below what you think this experiment was about:

Thank you for your participation!



D Praat Script for Acoustic Measurements
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path$ = "Result" 
 
binNames$ = "" 
for ibin from 1 to 38 

binNames$ += " bin" + string$ (ibin) 
endfor 
result = Create Table with column names: "Result", 0, "Subject Age Index IPA Sibilant 
CoG Stdev Position Vp Vf CoGErb StdevErb" + binNames$ 
resultPtr = 0 
 
dl = Create Strings as directory list: "directoryList", path$ 
dl_nos = Get number of strings 
for dir from 1 to dl_nos 

selectObject: dl 
dirName$ = Get string: dir 
@AnalyzeFolder (dirName$) 

endfor 
 
procedure AnalyzeFolder (.dirName$) 
   

.r = Read from file: path$ + "/" + .dirName$ + "/" + .dirName$ + ".wav" 

.tg = Read from file: path$ + "/" + .dirName$ + "/" + .dirName$ + ".TextGrid" 
 

.dt = Down to Table: "no", 6, "yes", "no" 
Rename: "Full" 
.exName = Extract rows where column (text): "tier", "is equal to", "Name" 
.exName_nor = Get number of rows 
Rename: "Name" 

 
for .i to .exName_nor 

selectObject: .exName 
.tmin = Get value: .i, "tmin" 
.tmax = Get value: .i, "tmax" 

   
selectObject: .r 
.snd2 = Extract part: .tmin, .tmax, "rectangular", 1, "no" 
.duration = Get total duration 
.midTime = .duration/2 
selectObject: .tg 
.tg2 = Extract part: .tmin, .tmax, "no" 

   
.interval = Get interval at time: 1, .midTime 
.name$ = Get label of interval: 1, .interval 
.interval = Get interval at time: 2, .midTime 
.subject$ = Get label of interval: 2, .interval 
.interval = Get interval at time: 3, .midTime 
.index = Get label of interval: 3, .interval 

   
.dt2 = Down to Table: "no", 6, "yes", "no" 
Rename: "Sentence" 



.ipa = nowarn Extract rows where column (text): "tier", "is equal to", 
"IPA" 

.ipa_nor = Get number of rows 
for .row to .ipa_nor 

selectObject: .ipa 
.tmin2 = Get value: .row, "tmin" 
.tmax2 = Get value: .row, "tmax" 
.ipa$ = Get value: .row, "text" 

   
selectObject: .snd2 
.snd3 = Extract part: .tmin2, .tmax2, "rectangular", 1, "no"   
Rename: "IPA" 
.spec = To Spectrum: "yes" 
Filter (stop Hann band): 0, 550, 50 
.cog = Get centre of gravity: 2 
.stdev = Get standard deviation: 2 
.ltas = To Ltas: 250 

 
selectObject: result 
if index (.ipa$, "s") 

sibilant$ = "s" 
elsif index (.ipa$, "ɕ" ) 

sibilant$ = "ɕ" 
else 

exitScript: "Found neither an s nor a ɕ in text ", .ipa$, 
"in interval", .interval, "of TextGrid", .tg2, "." 

endif 
 

v1$ = left$ (.ipa$, index (.ipa$, sibilant$) - 1) 
v2$ = right$(.ipa$, length(.ipa$) - index (.ipa$, sibilant$)) 
if v2$ = "" 

position$ = "final" 
elsif index (v2$, "ə") or .ipa$ = "ɛsi" 

position$ = "medial" 
else 

position$ = "initial" 
endif 

 
selectObject: result 
Append row 
resultPtr += 1 
Set string value: resultPtr, "Subject", .subject$ 
Set numeric value: resultPtr, "Index", .index 
Set string value: resultPtr, "CoG", fixed$ (.cog, 0) 
Set string value: resultPtr, "Stdev", fixed$ (.stdev, 0) 
Set string value: resultPtr, "IPA", .ipa$ 
Set string value: resultPtr, "Vp", v1$ 
Set string value: resultPtr, "Sibilant", sibilant$ 
Set string value: resultPtr, "Vf", v2$ 
Set string value: resultPtr, "Position", position$ 



Set string value: resultPtr, "CoGErb", fixed$(hertzToErb(.cog), 0) 
Set string value: resultPtr, "StdevErb", 

fixed$(0.5*(hertzToErb(.cog + .stdev)- hertzToErb(.cog - .stdev)), 0) 
for ibin to 38 

Set numeric value: resultPtr, "bin" + string$ (ibin), 
object [.ltas, ibin + 2] 

endfor 
selectObject: .snd3, .spec, .ltas 
Remove 

endfor 
selectObject: .snd2, .tg2, .dt2, .ipa 
Remove 

endfor 
selectObject: result 
Formula: "Age", ~ if self ["Subject"] <= 9 or self ["Subject"] = 14 or self 

["Subject"] = 16 then 0 else 1 fi 
 

selectObject: .dt, .exName 
Remove 

endproc 
 



E R Script for Linear Models

(Some identical R warnings ommitted.)
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Statistical Analysis
Xinyu Zhang
Participants and Stimuli stats:

participants:

#filtering out younger speakers
library(dplyr)

##  
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats': 
##  
##     filter, lag

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union

participants <- read.csv("participants.csv") 
young <- participants%>% 
  #count(Group == "y") 
  filter(Group == "y") 
young

##   ID Age Group Gender 
## 1 10  19     y      m 
## 2 11  23     y      f 
## 3 12  24     y      f 
## 4 13  24     y      m 
## 5 15  23     y      f 
## 6 17  23     y      f 
## 7 18  24     y      f 
## 8 19  27     y      m

#arranging Age by ascending order for min and max 
young%>% 
  arrange(Age)

##   ID Age Group Gender 
## 1 10  19     y      m 
## 2 11  23     y      f 
## 3 15  23     y      f 
## 4 17  23     y      f 
## 5 12  24     y      f 
## 6 13  24     y      m 
## 7 18  24     y      f 
## 8 19  27     y      m



#mu & sigma 
mean(young$Age)

## [1] 23.375

sd(young$Age)

## [1] 2.199838

#counting female 
young%>% 
  filter(Gender == "f")

##   ID Age Group Gender 
## 1 11  23     y      f 
## 2 12  24     y      f 
## 3 15  23     y      f 
## 4 17  23     y      f 
## 5 18  24     y      f

#counting male 
young%>% 
  filter(Gender == "m")

##   ID Age Group Gender 
## 1 10  19     y      m 
## 2 13  24     y      m 
## 3 19  27     y      m

#filtering out older speakers & count total number 
participants <- read.csv("participants.csv") 
old <- participants%>% 
  filter(Group == "o") 
old

##    ID Age Group Gender 
## 1   1  66     o      f 
## 2   2  66     o      f 
## 3   4  68     o      f 
## 4   5  75     o      m 
## 5   6  61     o      f 
## 6   7  73     o      f 
## 7   8  71     o      f 
## 8   9  67     o      f 
## 9  14  66     o      m 
## 10 17  63     o      f



#arranging age by ascending order for min and max 
old%>% 
  arrange(Age)

##    ID Age Group Gender 
## 1   6  61     o      f 
## 2  17  63     o      f 
## 3   1  66     o      f 
## 4   2  66     o      f 
## 5  14  66     o      m 
## 6   9  67     o      f 
## 7   4  68     o      f 
## 8   8  71     o      f 
## 9   7  73     o      f 
## 10  5  75     o      m

#mu and sigma 
mean(old$Age)

## [1] 67.6

sd(old$Age)

## [1] 4.325634

#counting females 
old%>% 
  filter(Gender == "f")

##   ID Age Group Gender 
## 1  1  66     o      f 
## 2  2  66     o      f 
## 3  4  68     o      f 
## 4  6  61     o      f 
## 5  7  73     o      f 
## 6  8  71     o      f 
## 7  9  67     o      f 
## 8 17  63     o      f

#counting males 
old%>% 
  filter(Gender == "m")

##   ID Age Group Gender 
## 1  5  75     o      m 
## 2 14  66     o      m

Stimuli Stats:



library(dplyr) 
fulltable <- read.csv("ResultswSlope.csv") 
#selecting subject 4 for description of stimulus becaues it is used as the model to a
utomate all the rest 
subject4 <-fulltable%>% 
  filter(Subject == 4) 
subject4%>% 
  count(Sibilant == "s", Position == "initial")

##   Sibilant == "s" Position == "initial"  n 
## 1           FALSE                 FALSE 12 
## 2           FALSE                  TRUE 13 
## 3            TRUE                 FALSE 25 
## 4            TRUE                  TRUE 10

subject4%>% 
  count(Sibilant == "s", Position == "medial")

##   Sibilant == "s" Position == "medial"  n 
## 1           FALSE                FALSE 18 
## 2           FALSE                 TRUE  7 
## 3            TRUE                FALSE 28 
## 4            TRUE                 TRUE  7

subject4%>% 
  count(Sibilant == "s", Position == "final")

##   Sibilant == "s" Position == "final"  n 
## 1           FALSE               FALSE 20 
## 2           FALSE                TRUE  5 
## 3            TRUE               FALSE 17 
## 4            TRUE                TRUE 18

subject4%>% 
  count(Sibilant == "ɕ", Position == "initial")

##   Sibilant == "ɕ" Position == "initial"  n 
## 1           FALSE                 FALSE 25 
## 2           FALSE                  TRUE 10 
## 3            TRUE                 FALSE 12 
## 4            TRUE                  TRUE 13

subject4%>% 
  count(Sibilant == "ɕ", Position == "medial")

##   Sibilant == "ɕ" Position == "medial"  n 
## 1           FALSE                FALSE 28 
## 2           FALSE                 TRUE  7 
## 3            TRUE                FALSE 18 
## 4            TRUE                 TRUE  7



subject4%>% 
  count(Sibilant == "ɕ", Position == "final")

##   Sibilant == "ɕ" Position == "final"  n 
## 1           FALSE               FALSE 17 
## 2           FALSE                TRUE 18 
## 3            TRUE               FALSE 20 
## 4            TRUE                TRUE  5

Acoustic Analysis:

fulltable <- read.csv("ResultswSlope.csv") 
library(dplyr) 
nobins<-fulltable %>% 
  select(Subject, Age, Index, IPA, Sibilant, CoG, Stdev,Position, Vp, Vf, CoGErb,Stde
vErb) 
 
nobins$Sibilant <- as.factor(nobins$Sibilant) 
 
nobins$Age <- as.factor(nobins$Age) 
#saving the csv: 
write.csv(nobins, file = "nobins.csv")

coding for features in vowels, and contrasts:



library(dplyr) 
 
#high-low only contrast 
erbs <- read.csv("ResultswSlope.csv") 
hrxf <- erbs %>%mutate( 
    heightP = case_when( 
    Vp == "ɛin" ~"h", 
    Vp == "y"~"h", 
    Vp == "i" ~ "h", 
    Vp == "u" ~"h", 
    Vp == "ɛi" ~"h", 
    Vp == "ɶy" ~"h", 
    Vp == "au"~"h", #"a" w/ a hat but not distinguished because of font in R 
    Vp == "ei"~"l", 
    Vp == "ou" ~"m", 
    Vp == "ə" ~ "m", 
    Vp == "ɔ" ~ "m", 
    Vp == "ɛ" ~ "m", 
    Vp == "aɹ" ~ "l", #"a" w/ a hat but not distinguished because of font in R 
    Vp == "a" ~ "l" #"a" w/ a hat but not distinguished because of font in R 
    ) 
    ) 
hrxf$heightP <- as.factor(hrxf$heightP) 
 
 
hrxf <- hrxf %>%mutate( 
    heightF = case_when( 
    Vf == "ɶy" ~"l", 
    Vf == "ɔ" ~ "m", 
    Vf == "a" ~ "l", #"a" w/ a hat but not distinguished because of font in R 
    Vf == "ai" ~ "l", #"a" w/ a hat but not distinguished because of font in R 
    Vf == "ɪ" ~ "m", 
    Vf == "o" ~ "m", 
    Vf == "i" ~ "h", 
    Vf == "u" ~ "h", 
    Vf == "ã" ~ "l",  #"a" w/ a hat but not distinguished because of font in R 
    Vf == "y"~"h", 
    Vf == "ə" ~ "m", 
   Vf == "ɚ" ~ "m", 
    Vf == "au" ~ "m" #"a" w/ a hat but not distinguished because of font in R 
    ) 
    ) 
 
hrxf$heightF <- as.factor(hrxf$heightF) 
 
#contrast for preceding vowel 
contrast1 <- cbind (c(0.5, -0.5, 0), c(-1/3, -1/3, +2/3))#h,l,m 
colnames(contrast1) <- c("+h-l", "-hl+m") 
contrasts(hrxf$heightP) <- contrast1 
 
 
#contrast for the following vowel 
contrast2 <- cbind(c(0.5, -0.5, 0), c(-1/3, -1/3, +2/3))#h,l,m 
colnames(contrast2) <- c("+h-l", "-hl+m") 
contrasts(hrxf$heightF) <- contrast2 
 
 



hrxf <- hrxf %>%mutate( 
roundingP = case_when(Vp == "ɔ" ~ "r", 
                     Vp == "ou" ~ "r", 
                     Vp == "ɶy" ~ "r", 
                     Vp == "u" ~ "r", 
                     Vp == "y" ~ "r", 
                     Vp == "au" ~ "r", #"a" w/ a hat but not distinguished because of 
font in R 
                     TRUE ~ "nr") 
                     ) 
 
hrxf$roundingP <- as.factor(hrxf$roundingP) 
 
 
hrxf <- hrxf %>%mutate( 
roundingF = case_when(Vf == "ɔ" ~ "r", 
                      Vf == "ɶy" ~ "r", 
                      Vf == "o" ~ "r", 
                      Vf == "u" ~ "r", 
                      Vf == "y" ~ "r", 
                      TRUE ~ "nr") 
                      ) 
 
hrxf$roundingF <- as.factor(hrxf$roundingF) 
 
 
hrxf <- hrxf %>%mutate( 
rhoticityP = case_when(  
  Vp == "aɹ" ~ "x", #"a" w/ a hat but not distinguished because of font in R 
  TRUE ~ "nx" 
) 
) 
 
hrxf$rhoticityP <- as.factor(hrxf$rhoticityP) 
 
hrxf <- hrxf %>%mutate( 
rhoticityF = case_when( 
  Vf == "ɚ" ~ "x",  
  TRUE ~ "nx" 
) 
) 
 
hrxf$rhoticityF <- as.factor(hrxf$rhoticityF) 
 
#frontness of preceeding vowel 
hrxf <- hrxf %>%mutate( 
frtP = case_when(  
  Vf == "ɔ" ~ "b", 
  Vf == "ou" ~ "b", 
  Vf == "u" ~ "b", 
  Vf == "au" ~ "b", 
  Vf == "ə" ~ "m", 
  TRUE ~ "f" 
) 
) 
 
hrxf$frtnsP <- as.factor(hrxf$frtP) 
 



#frontness of following vowel 
hrxf <- hrxf %>%mutate( 
frtF = case_when(  
  Vf == "ə" ~ "m", 
  Vf == "ɔ" ~ "b", 
  Vf == "o" ~ "b", 
  Vf == "u" ~ "b", 
  Vf == "ɚ" ~ "b", 
  TRUE ~ "f" 
) 
) 
 
hrxf$frtnsF <- as.factor(hrxf$frtF) 
 
 
library(lme4)

## Loading required package: Matrix



#contrast coding for the rounding of the preceeding vowel 
contrast3 <- cbind (c(+0.5, -0.5)) 
colnames (contrast3) <- c("+nr-r") 
contrasts(hrxf$roundingP) <- contrast3 
 
#contrast coding for the rounding of the following vowel 
contrast4 <- cbind (c(+0.5, -0.5)) 
colnames (contrast4) <- c("+nr-r") 
contrasts(hrxf$roundingF) <- contrast4 
 
#contrast coding for the rhoticity of the preceeding vowel 
contrast5 <- cbind (c(+0.5, -0.5)) 
colnames (contrast5) <- c("+nx-x") 
contrasts(hrxf$rhoticityP) <- contrast5 
 
#contrast coding for the rhoticity of the following vowel 
contrast6 <- cbind (c(+0.5, -0.5)) 
colnames (contrast6) <- c("+nx-x") 
contrasts(hrxf$rhoticityF) <- contrast6 
 
#contrast coding for the frontness of the preceeding vowel, using the schwa as the re
ference level 
contrast7 <- cbind (c(-0.5, +0.5, 0), c(-1/3, -1/3, +2/3))#b,f,m 
colnames (contrast7) <- c("-b+f", "-bf+m") 
contrasts(hrxf$frtnsP) <- contrast7 
 
#contrast coding for the frontness of the following vowel, using the schwa as the ref
erence level 
contrast8 <-  cbind (c(-0.5, +0.5, 0), c(-1/3, -1/3, +2/3))#b,f,m 
colnames (contrast8) <- c("-b+f", "-bf+m") 
contrasts(hrxf$frtnsF) <- contrast8 
 
#contrast coding for position, using the medials as the reference level  
hrxf$Position <- as.factor(hrxf$Position) 
contrast9 <- cbind(c(0, -0.5, +0.5),c(2/3, -1/3, -1/3))#f,i,m 
colnames (contrast9) <- c("-i+m", "+f-im") 
contrasts(hrxf$Position) <- contrast9 
 
#contrast coding for Sibilants
#hrxf$Sibilant <- as.factor(hrxf$Sibilant) 
contrast10 <- cbind(c(-0.5, +0.5)) 
colnames(contrast10) <- c("-ɕ+s") 
contrasts(hrxf$Sibilant) <- contrast10 
 
#contrast coding for Age 
hrxf$Age <- as.factor(hrxf$Age) 
contrast11 <- cbind(c(-0.5, +0.5))#0,1 
colnames(contrast11 ) <- c("-0+1") 
contrasts(hrxf$Age) <- contrast11 
 
all <- hrxf %>% mutate( 
Gender = case_when( 
  Subject == "10" ~ "M", 
  Subject == "13" ~ "M", 
  Subject == "19" ~ "M", 
  Subject == "5" ~ "M", 
  Subject == "14" ~ "M", 



  TRUE ~ "F") 
) 
#contrast coding for Gender 
all$Gender <- as.factor(all$Gender) 
contrast12 <- cbind(c(0.5, -0.5)) #F,M 
colnames(contrast12) <- c("+F-M") 
contrasts(all$Gender) <- contrast12 
 
#checking whether ɕ is treated as alphabetically preceding s 
contrasts(hrxf$Sibilant)

##   -ɕ+s 
## ɕ -0.5 
## s  0.5

write.csv(all, file = "forPraat.csv")

modelCoGErb <- lmer(CoGErb ~ Age*heightF*roundingF*frtnsF*rhoticityF*Sibilant + (Sibi
lant | Subject) + (Sibilant|Index), data = all, REML = TRUE, na.action = "na.omit")

## fixed-effect model matrix is rank deficient so dropping 116 columns / coefficients

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : 
## Model failed to converge with max|grad| = 0.0160721 (tol = 0.002, component 1)

summary(modelCoGErb)



## Linear mixed model fit by REML ['lmerMod'] 
## Formula: CoGErb ~ Age * heightF * roundingF * frtnsF * rhoticityF * Sibilant +   
##     (Sibilant | Subject) + (Sibilant | Index) 
##    Data: all 
##  
## REML criterion at convergence: 1291.6 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.8071 -0.6009  0.0639  0.6696  3.1470  
##  
## Random effects: 
##  Groups   Name         Variance Std.Dev. Corr  
##  Index    (Intercept)  0.01401  0.1184         
##           Sibilant-ɕ+s 0.04357  0.2087   -0.51 
##  Subject  (Intercept)  0.75358  0.8681         
##           Sibilant-ɕ+s 0.47182  0.6869   -0.69 
##  Residual              0.50463  0.7104         
## Number of obs: 551, groups:  Index, 35; Subject, 16 
##  
## Fixed effects: 
##                                     Estimate Std. Error t value 
## (Intercept)                         27.31405    0.36030  75.810 
## Age-0+1                             -0.51926    0.61370  -0.846 
## heightF+h-l                          0.05857    0.18139   0.323 
## heightF-hl+m                         0.19154    0.21068   0.909 
## roundingF+nr-r                       0.38800    0.25076   1.547 
## frtnsF-b+f                          -0.50929    0.50364  -1.011 
## frtnsF-bf+m                         -1.18799    0.50980  -2.330 
## rhoticityF+nx-x                      1.45602    0.63451   2.295 
## Sibilant-ɕ+s                         2.44834    0.29015   8.438 
## Age-0+1:heightF+h-l                 -0.27244    0.29128  -0.935 
## Age-0+1:heightF-hl+m                -0.33572    0.31510  -1.065 
## Age-0+1:roundingF+nr-r               0.32456    0.38795   0.837 
## heightF+h-l:roundingF+nr-r          -0.08816    0.33947  -0.260 
## heightF-hl+m:roundingF+nr-r          0.89695    0.79821   1.124 
## Age-0+1:frtnsF-b+f                  -1.10920    0.76850  -1.443 
## Age-0+1:frtnsF-bf+m                 -1.00448    0.80252  -1.252 
## Age-0+1:rhoticityF+nx-x              1.53292    0.95237   1.610 
## Age-0+1:Sibilant-ɕ+s                 0.69369    0.50025   1.387 
## heightF+h-l:Sibilant-ɕ+s            -0.47424    0.27792  -1.706 
## heightF-hl+m:Sibilant-ɕ+s           -0.64965    0.58013  -1.120 
## roundingF+nr-r:Sibilant-ɕ+s          0.27191    0.34571   0.787 
## frtnsF-b+f:Sibilant-ɕ+s             -0.87703    0.94297  -0.930 
## Age-0+1:heightF+h-l:roundingF+nr-r   0.82026    0.58434   1.404 
## Age-0+1:heightF-hl+m:roundingF+nr-r  1.77855    1.20050   1.482 
## Age-0+1:heightF+h-l:Sibilant-ɕ+s     0.11514    0.41972   0.274 
## Age-0+1:heightF-hl+m:Sibilant-ɕ+s   -0.86785    0.88861  -0.977 
## Age-0+1:roundingF+nr-r:Sibilant-ɕ+s  0.28064    0.54333   0.517 
## Age-0+1:frtnsF-b+f:Sibilant-ɕ+s     -1.52921    1.46547  -1.043

##  
## Correlation matrix not shown by default, as p = 28 > 12. 
## Use print(x, correlation=TRUE)  or 
##     vcov(x)        if you need it



##                                           2.5 %      97.5 % 
## .sig01                               0.00000000  0.17068075 
## .sig02                              -1.00000000  1.00000000 
## .sig03                               0.00000000  0.34136151 
## .sig04                               0.60832298  1.15112948 
## .sig05                              -0.88271761 -0.27914044 
## .sig06                               0.45416796  0.92749477 
## .sigma                               0.65929443  0.74543043 
## (Intercept)                         26.68419971 27.90466956 
## Age-0+1                             -1.67847923  0.63513211 
## heightF+h-l                         -0.26613210  0.33061701 
## heightF-hl+m                        -0.16476824  0.51994717 
## roundingF+nr-r                       0.00691897  0.82000538 
## frtnsF-b+f                          -1.37660281  0.25772032 
## frtnsF-bf+m                         -2.05939103 -0.40869779 
## rhoticityF+nx-x                      0.48085538  2.52760047 
## Sibilant-ɕ+s                         1.96092771  2.94739946 
## Age-0+1:heightF+h-l                 -0.83602244  0.29131773 
## Age-0+1:heightF-hl+m                -0.94383913  0.27568367 
## Age-0+1:roundingF+nr-r              -0.42439316  1.07684097 
## heightF+h-l:roundingF+nr-r          -0.59954026  0.53233664 
## heightF-hl+m:roundingF+nr-r         -0.32480989  2.25627647 
## Age-0+1:frtnsF-b+f                  -2.59834227  0.37584107 
## Age-0+1:frtnsF-bf+m                 -2.55930105  0.54622976 
## Age-0+1:rhoticityF+nx-x             -0.30671872  3.37897912 
## Age-0+1:Sibilant-ɕ+s                -0.24618551  1.64000452 
## heightF+h-l:Sibilant-ɕ+s            -0.92345696 -0.02085844 
## heightF-hl+m:Sibilant-ɕ+s           -1.63087852  0.24573043 
## roundingF+nr-r:Sibilant-ɕ+s         -0.25163796  0.89089903 
## frtnsF-b+f:Sibilant-ɕ+s             -2.50319119  0.56889183 
## Age-0+1:heightF+h-l:roundingF+nr-r  -0.31456668  1.94706674 
## Age-0+1:heightF-hl+m:roundingF+nr-r -0.54087431  4.10502848 
## Age-0+1:heightF+h-l:Sibilant-ɕ+s    -0.70122537  0.92313484 
## Age-0+1:heightF-hl+m:Sibilant-ɕ+s   -2.58994201  0.84864633 
## Age-0+1:roundingF+nr-r:Sibilant-ɕ+s -0.77213916  1.33042939 
## Age-0+1:frtnsF-b+f:Sibilant-ɕ+s     -4.36714047  1.30389431

modelStdevErb <- lmer(StdevErb ~ Age*heightF*roundingF*frtnsF*rhoticityF*Sibilant + 
(Sibilant | Subject) + (Sibilant|Index), data = all, REML = TRUE)

## fixed-effect model matrix is rank deficient so dropping 116 columns / coefficients

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : 
## Model failed to converge with max|grad| = 0.0214093 (tol = 0.002, component 1)

summary(modelStdevErb)



## Linear mixed model fit by REML ['lmerMod'] 
## Formula: StdevErb ~ Age * heightF * roundingF * frtnsF * rhoticityF *   
##     Sibilant + (Sibilant | Subject) + (Sibilant | Index) 
##    Data: all 
##  
## REML criterion at convergence: 967.9 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.4418 -0.6159 -0.0852  0.6341  3.5529  
##  
## Random effects: 
##  Groups   Name         Variance Std.Dev. Corr  
##  Index    (Intercept)  0.00843  0.09182        
##           Sibilant-ɕ+s 0.21554  0.46427  -0.95 
##  Subject  (Intercept)  0.04515  0.21249        
##           Sibilant-ɕ+s 0.50487  0.71054  -0.66 
##  Residual              0.27151  0.52107        
## Number of obs: 551, groups:  Index, 35; Subject, 16 
##  
## Fixed effects: 
##                                      Estimate Std. Error t value 
## (Intercept)                          3.889609   0.338173  11.502 
## Age-0+1                             -0.378568   0.335423  -1.129 
## heightF+h-l                          0.006518   0.192221   0.034 
## heightF-hl+m                        -0.058036   0.250735  -0.231 
## roundingF+nr-r                      -0.479657   0.281104  -1.706 
## frtnsF-b+f                          -0.132032   0.578145  -0.228 
## frtnsF-bf+m                          0.108689   0.553248   0.196 
## rhoticityF+nx-x                     -0.817053   0.743353  -1.099 
## Sibilant-ɕ+s                        -1.109329   0.317944  -3.489 
## Age-0+1:heightF+h-l                  0.256755   0.213664   1.202 
## Age-0+1:heightF-hl+m                 0.167635   0.231163   0.725 
## Age-0+1:roundingF+nr-r               0.059524   0.284334   0.209 
## heightF+h-l:roundingF+nr-r           0.011528   0.306441   0.038 
## heightF-hl+m:roundingF+nr-r          0.050227   0.932427   0.054 
## Age-0+1:frtnsF-b+f                  -0.257409   0.563487  -0.457 
## Age-0+1:frtnsF-bf+m                 -0.306065   0.588476  -0.520 
## Age-0+1:rhoticityF+nx-x             -0.200029   0.698151  -0.287 
## Age-0+1:Sibilant-ɕ+s                 0.653116   0.444364   1.470 
## heightF+h-l:Sibilant-ɕ+s             0.329742   0.326793   1.009 
## heightF-hl+m:Sibilant-ɕ+s           -0.078569   0.659438  -0.119 
## roundingF+nr-r:Sibilant-ɕ+s          0.528454   0.381269   1.386 
## frtnsF-b+f:Sibilant-ɕ+s             -0.309544   1.051600  -0.294 
## Age-0+1:heightF+h-l:roundingF+nr-r  -0.312639   0.428620  -0.729 
## Age-0+1:heightF-hl+m:roundingF+nr-r -0.263497   0.880585  -0.299 
## Age-0+1:heightF+h-l:Sibilant-ɕ+s    -0.076150   0.307931  -0.247 
## Age-0+1:heightF-hl+m:Sibilant-ɕ+s   -0.449609   0.651971  -0.690 
## Age-0+1:roundingF+nr-r:Sibilant-ɕ+s -0.155608   0.398662  -0.390 
## Age-0+1:frtnsF-b+f:Sibilant-ɕ+s     -0.972293   1.075209  -0.904

##  
## Correlation matrix not shown by default, as p = 28 > 12. 
## Use print(x, correlation=TRUE)  or 
##     vcov(x)        if you need it



## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit 
## for .sig03: falling back to linear interpolation

##                                           2.5 %      97.5 % 
## .sig01                               0.01223826  0.26139626 
## .sig02                              -1.00000000  0.28504655 
## .sig03                               0.02408719  0.49838851 
## .sig04                               0.12689935  0.31246575 
## .sig05                              -0.90113467 -0.20065906 
## .sig06                               0.47097988  1.00654482 
## .sigma                               0.48373156  0.54879122 
## (Intercept)                          3.35713137  4.46662723 
## Age-0+1                             -1.02665844  0.26760343 
## heightF+h-l                         -0.28973442  0.35476785 
## heightF-hl+m                        -0.45715913  0.37171487 
## roundingF+nr-r                      -0.96841993 -0.04272955 
## frtnsF-b+f                          -1.03330313  0.87979694 
## frtnsF-bf+m                         -0.75292453  1.05822067 
## rhoticityF+nx-x                     -2.09440292  0.35144218 
## Sibilant-ɕ+s                        -1.65784367 -0.57556537 
## Age-0+1:heightF+h-l                 -0.15748311  0.67122704 
## Age-0+1:heightF-hl+m                -0.28131092  0.61528234 
## Age-0+1:roundingF+nr-r              -0.49382231  0.61020694 
## heightF+h-l:roundingF+nr-r          -0.54907473  0.50450010 
## heightF-hl+m:roundingF+nr-r         -1.57546140  1.51006401 
## Age-0+1:frtnsF-b+f                  -1.34980665  0.83568524 
## Age-0+1:frtnsF-bf+m                 -1.45028293  0.83367627 
## Age-0+1:rhoticityF+nx-x             -1.55568188  1.15395890 
## Age-0+1:Sibilant-ɕ+s                -0.20698480  1.50655547 
## heightF+h-l:Sibilant-ɕ+s            -0.20600328  0.86382762 
## heightF-hl+m:Sibilant-ɕ+s           -1.11134819  1.05424718 
## roundingF+nr-r:Sibilant-ɕ+s         -0.17666393  1.11944491 
## frtnsF-b+f:Sibilant-ɕ+s             -1.94871244  1.53279306 
## Age-0+1:heightF+h-l:roundingF+nr-r  -1.14153487  0.52096127 
## Age-0+1:heightF-hl+m:roundingF+nr-r -1.96757143  1.44853682 
## Age-0+1:heightF+h-l:Sibilant-ɕ+s    -0.67121171  0.52314950 
## Age-0+1:heightF-hl+m:Sibilant-ɕ+s   -1.71941801  0.81011290 
## Age-0+1:roundingF+nr-r:Sibilant-ɕ+s -0.92585908  0.62047228 
## Age-0+1:frtnsF-b+f:Sibilant-ɕ+s     -3.06513635  1.10609679

modelCoGHz <- lmer(CoG ~ Age*heightF*roundingF*rhoticityF*Sibilant + (Sibilant | Subj
ect) + (Sibilant|Index), data = all, REML = TRUE)

## fixed-effect model matrix is rank deficient so dropping 24 columns / coefficients

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : 
## Model failed to converge with max|grad| = 0.00285879 (tol = 0.002, component 1)

summary(modelCoGHz)



## Linear mixed model fit by REML ['lmerMod'] 
## Formula: CoG ~ Age * heightF * roundingF * rhoticityF * Sibilant + (Sibilant |   
##     Subject) + (Sibilant | Index) 
##    Data: all 
##  
## REML criterion at convergence: 8002.3 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.3049 -0.5497 -0.0395  0.5762  3.4880  
##  
## Random effects: 
##  Groups   Name         Variance Std.Dev. Corr  
##  Index    (Intercept)    6890    83.01         
##           Sibilant-ɕ+s  42632   206.48   0.85  
##  Subject  (Intercept)  270077   519.69         
##           Sibilant-ɕ+s 110648   332.64   -0.36 
##  Residual              168076   409.97         
## Number of obs: 551, groups:  Index, 35; Subject, 16 
##  
## Fixed effects: 
##                                                 Estimate Std. Error t value 
## (Intercept)                                      4873.76     156.13  31.216 
## Age-0+1                                           -60.13     291.99  -0.206 
## heightF+h-l                                       173.95     176.50   0.986 
## heightF-hl+m                                       78.27     126.25   0.620 
## roundingF+nr-r                                     10.13     119.97   0.084 
## rhoticityF+nx-x                                   107.41     124.43   0.863 
## Sibilant-ɕ+s                                     1546.18     154.91   9.981 
## Age-0+1:heightF+h-l                               141.00     204.34   0.690 
## Age-0+1:heightF-hl+m                               94.29     141.16   0.668 
## Age-0+1:roundingF+nr-r                             14.16     145.33   0.097 
## heightF+h-l:roundingF+nr-r                       -451.49     353.11  -1.279 
## heightF-hl+m:roundingF+nr-r                      -378.33     275.86  -1.371 
## Age-0+1:rhoticityF+nx-x                           168.42     219.43   0.768 
## Age-0+1:Sibilant-ɕ+s                              391.03     226.94   1.723 
## heightF+h-l:Sibilant-ɕ+s                         -452.65     334.47  -1.353 
## heightF-hl+m:Sibilant-ɕ+s                         -74.54     129.86  -0.574 
## roundingF+nr-r:Sibilant-ɕ+s                      -189.23     240.07  -0.788 
## Age-0+1:heightF+h-l:roundingF+nr-r                -50.57     409.02  -0.124 
## Age-0+1:heightF-hl+m:roundingF+nr-r              -153.58     281.96  -0.545 
## Age-0+1:heightF+h-l:Sibilant-ɕ+s                 -428.07     409.47  -1.045 
## Age-0+1:heightF-hl+m:Sibilant-ɕ+s                -104.50     162.15  -0.644 
## Age-0+1:roundingF+nr-r:Sibilant-ɕ+s              -213.13     280.03  -0.761 
## heightF+h-l:roundingF+nr-r:Sibilant-ɕ+s           368.38     668.23   0.551 
## Age-0+1:heightF+h-l:roundingF+nr-r:Sibilant-ɕ+s   948.48     816.45   1.162

##  
## Correlation matrix not shown by default, as p = 24 > 12. 
## Use print(x, correlation=TRUE)  or 
##     vcov(x)        if you need it



## fit warnings: 
## fixed-effect model matrix is rank deficient so dropping 24 columns / coefficients 
## convergence code: 0 
## Model failed to converge with max|grad| = 0.00285879 (tol = 0.002, component 1)

modelStdevHz <- lmer(Stdev ~ Age*heightF*frtnsF*roundingF*rhoticityF*Sibilant + (Sibi
lant | Subject) + (Sibilant|Index), data = all, REML = TRUE, na.action = "na.omit")

## fixed-effect model matrix is rank deficient so dropping 116 columns / coefficients

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : 
## Model failed to converge with max|grad| = 0.00404318 (tol = 0.002, component 1)

summary(modelStdevHz)



## Linear mixed model fit by REML ['lmerMod'] 
## Formula: Stdev ~ Age * heightF * frtnsF * roundingF * rhoticityF * Sibilant +   
##     (Sibilant | Subject) + (Sibilant | Index) 
##    Data: all 
##  
## REML criterion at convergence: 7357.5 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -2.9558 -0.5757 -0.0277  0.6168  4.6154  
##  
## Random effects: 
##  Groups   Name         Variance Std.Dev. Corr  
##  Index    (Intercept)   3016     54.92         
##           Sibilant-ɕ+s  4314     65.68   -0.71 
##  Subject  (Intercept)  43174    207.78         
##           Sibilant-ɕ+s 54112    232.62   -0.11 
##  Residual              54926    234.36         
## Number of obs: 551, groups:  Index, 35; Subject, 16 
##  
## Fixed effects: 
##                                     Estimate Std. Error t value 
## (Intercept)                          2046.37      88.97  23.000 
## Age-0+1                              -245.58     141.14  -1.740 
## heightF+h-l                           300.54     268.06   1.121 
## heightF-hl+m                          132.94     112.49   1.182 
## frtnsF-b+f                             40.60     150.26   0.270 
## frtnsF-bf+m                          -125.58      61.32  -2.048 
## roundingF+nr-r                       -215.50      62.82  -3.430 
## rhoticityF+nx-x                      -215.26     165.96  -1.297 
## Sibilant-ɕ+s                          148.77     102.09   1.457 
## Age-0+1:heightF+h-l                   299.16     359.67   0.832 
## Age-0+1:heightF-hl+m                  132.18     162.83   0.812 
## Age-0+1:frtnsF-b+f                    -76.81     204.30  -0.376 
## Age-0+1:frtnsF-bf+m                  -207.38     101.69  -2.039 
## heightF+h-l:frtnsF-b+f               -564.20     580.99  -0.971 
## Age-0+1:roundingF+nr-r                -76.25      89.92  -0.848 
## heightF+h-l:roundingF+nr-r            -41.51     113.90  -0.364 
## Age-0+1:rhoticityF+nx-x               166.80     209.20   0.797 
## Age-0+1:Sibilant-ɕ+s                  389.80     167.23   2.331 
## heightF+h-l:Sibilant-ɕ+s               29.28     101.26   0.289 
## heightF-hl+m:Sibilant-ɕ+s            -196.43     208.78  -0.941 
## frtnsF-b+f:Sibilant-ɕ+s              -417.24     337.63  -1.236 
## roundingF+nr-r:Sibilant-ɕ+s           178.15     123.95   1.437 
## Age-0+1:heightF+h-l:frtnsF-b+f       -394.91     792.34  -0.498 
## Age-0+1:heightF+h-l:roundingF+nr-r    -29.57     192.79  -0.153 
## Age-0+1:heightF+h-l:Sibilant-ɕ+s      116.51     138.49   0.841 
## Age-0+1:heightF-hl+m:Sibilant-ɕ+s    -421.41     293.33  -1.437 
## Age-0+1:frtnsF-b+f:Sibilant-ɕ+s      -662.53     483.69  -1.370 
## Age-0+1:roundingF+nr-r:Sibilant-ɕ+s   -64.56     179.30  -0.360

##  
## Correlation matrix not shown by default, as p = 28 > 12. 
## Use print(x, correlation=TRUE)  or 
##     vcov(x)        if you need it



##                                             2.5 %       97.5 % 
## .sig01                                  0.0000000   65.9510529 
## .sig02                                 -1.0000000    1.0000000 
## .sig03                                  0.0000000  131.9020758 
## .sig04                                139.6176769  290.3354402 
## .sig05                                 -0.5523394    0.3874256 
## .sig06                                148.9611129  332.3548121 
## .sigma                                217.5298606  246.0760567 
## (Intercept)                          1894.9471161 2196.1945465 
## Age-0+1                              -511.4539258   19.9143918 
## heightF+h-l                          -144.3038269  719.5988157 
## heightF-hl+m                          -54.8226516  307.6330711 
## frtnsF-b+f                           -208.5586949  277.1887727 
## frtnsF-bf+m                          -220.2300549  -23.4770969 
## roundingF+nr-r                       -317.7577047 -113.7702679 
## rhoticityF+nx-x                      -478.1404893   59.8139685 
## Sibilant-ɕ+s                          -25.8143634  318.8241547 
## Age-0+1:heightF+h-l                  -394.9209271  997.4679767 
## Age-0+1:heightF-hl+m                 -181.7801086  448.5612286 
## Age-0+1:frtnsF-b+f                   -470.7945317  320.1173321 
## Age-0+1:frtnsF-bf+m                  -405.4814781  -11.8249032 
## heightF+h-l:frtnsF-b+f              -1461.1966603  410.7601344 
## Age-0+1:roundingF+nr-r               -250.5042324   97.5936362 
## heightF+h-l:roundingF+nr-r           -241.3220814  131.8037116 
## Age-0+1:rhoticityF+nx-x              -238.7685533  571.1353774 
## Age-0+1:Sibilant-ɕ+s                   75.4910200  705.5187786 
## heightF+h-l:Sibilant-ɕ+s             -134.4253388  192.9964789 
## heightF-hl+m:Sibilant-ɕ+s            -519.2342870  152.2730036 
## frtnsF-b+f:Sibilant-ɕ+s              -937.7313494  154.7954548 
## roundingF+nr-r:Sibilant-ɕ+s           -38.0232422  369.0190778 
## Age-0+1:heightF+h-l:frtnsF-b+f      -1933.0655823 1134.3301029 
## Age-0+1:heightF+h-l:roundingF+nr-r   -403.0003662  343.4134050 
## Age-0+1:heightF+h-l:Sibilant-ɕ+s     -151.5504892  384.6049086 
## Age-0+1:heightF-hl+m:Sibilant-ɕ+s    -991.3621139  144.1249306 
## Age-0+1:frtnsF-b+f:Sibilant-ɕ+s     -1601.9233725  270.5412084 
## Age-0+1:roundingF+nr-r:Sibilant-ɕ+s  -410.9762384  283.1054229

shapiro.test(residuals(modelCoGHz))

##  
##  Shapiro-Wilk normality test 
##  
## data:  residuals(modelCoGHz) 
## W = 0.9852, p-value = 2.186e-05

shapiro.test(residuals(modelStdevHz))

##  
##  Shapiro-Wilk normality test 
##  
## data:  residuals(modelStdevHz) 
## W = 0.98925, p-value = 0.000459



shapiro.test(residuals(modelCoGErb))

##  
##  Shapiro-Wilk normality test 
##  
## data:  residuals(modelCoGErb) 
## W = 0.99539, p-value = 0.1023

shapiro.test(residuals(modelStdevErb))

##  
##  Shapiro-Wilk normality test 
##  
## data:  residuals(modelStdevErb) 
## W = 0.99025, p-value = 0.001034

#calculating the mean CoG of /s/ in speaker 8
library(dplyr) 
CoG8s <- fulltable%>% 
  filter(Subject == "8", Sibilant == "s")%>% 
    select(CoG)%>% 
    mutate(CoG = as.numeric(CoG)) 
mean(CoG8s$CoG)

## [1] 4607.294

#calculating the mean CoG of /ɕ/ in speaker 8
library(dplyr) 
CoG8ɕ <- fulltable%>% 
  filter(Subject == "8", Sibilant == "ɕ")%>% 
    select(CoG)%>% 
    mutate(CoG = as.numeric(CoG)) 
mean(CoG8ɕ$CoG)

## [1] 3683.696

#calculating the mean CoG of /s/ in speaker 13
library(dplyr) 
CoG13s <- fulltable%>% 
  filter(Subject == "13", Sibilant == "s")%>% 
    select(CoG)%>% 
    mutate(CoG = as.numeric(CoG)) 
mean(CoG13s$CoG)

## [1] 5041.943



#calculating the mean CoG of /ɕ/ in speaker 13
library(dplyr) 
CoG13ɕ <- fulltable%>% 
  filter(Subject == "13", Sibilant == "ɕ")%>% 
    select(CoG)%>% 
    mutate(CoG = as.numeric(CoG)) 
mean(CoG13ɕ$CoG)

## [1] 3292.652

#calculating the mean of CoG of /s/ in younger speakers
library(dplyr) 
CoGYS<- fulltable %>% 
  filter(Age == "1", Sibilant == "s")%>% 
  select(CoG)%>% 
  mutate(CoG = as.numeric(CoG)) 
mean(CoGYS$CoG)

## [1] 5454.341

#calculating the mean of CoG of /ɕ/ in younger speakers
library(dplyr) 
CoGYɕ<- fulltable %>% 
  filter(Age == "1", Sibilant == "ɕ")%>% 
  select(CoG)%>% 
  mutate(CoG = as.numeric(CoG)) 
mean(CoGYɕ$CoG)

## [1] 4107.141
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fulltable <- read.csv("NewResult.csv") 
#head(fulltable)
library(dplyr)

##  
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats': 
##  
##     filter, lag

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union

young <- fulltable %>%  
  filter(Age == 1) %>%  
  dplyr::select(-Subject, -Age, -Index, -IPA, -CoG, -Stdev, -Position, -Vp, -Vf, -CoG
Erb, -StdevErb) 
head(young)



##   Sibilant      bin1      bin2      bin3      bin4      bin5       bin6 
## 1        s -9.052738 -8.556997 -4.870987 -4.218492 -4.850850 -6.4336164 
## 2        s -2.948580 -4.879446 -2.060097 -2.011352  2.026905 -1.1402887 
## 3        s -6.117940 -7.691914 -3.942539 -2.621272 -0.913079  6.7347466 
## 4        s -7.470004 -6.927923 -2.576884 -8.418656 -8.956720 -4.4691433 
## 5        s -3.647721 -7.621700 -4.805937 -9.255555 -1.093329  0.9828912 
## 6        s -5.793275 -5.878609 -1.390356 -4.743696 -5.864162 10.2314562 
##        bin7      bin8      bin9      bin10      bin11      bin12      bin13 
## 1 -9.370378 -7.752136 -8.965112  0.4495370  3.8068596 11.1640723 16.0745454 
## 2 -4.632750 -5.243153 -1.184720  1.5086332  2.6536686  3.3904228  7.8810884 
## 3 -3.460427 -5.391177 -0.934101  4.3435204  0.9056229  3.5931128 10.1739540 
## 4 -7.916696 -6.002341 -8.196552 -0.8540085 -1.5642317 -5.8005777  0.6155142 
## 5 -6.337333 -7.819851 -5.640433 -1.6501971 -2.7620005  0.1089989  4.4720045 
## 6  1.489044 -1.819993 -4.039301  6.2573727  5.6231383  6.8641713  9.4173490 
##       bin14     bin15     bin16     bin17     bin18    bin19     bin20 
## 1 16.547785 14.194455 13.132448 11.870301 11.218071 12.07828  9.152985 
## 2 13.128567 15.637285 13.795315 20.076671 16.624866 16.03775 14.326997 
## 3 14.250188 17.706188 13.647122 13.380362 11.903631 12.47035  8.167565 
## 4  2.981070  8.416862  2.171053  2.837635  6.971331 10.02746  9.496309 
## 5  7.862442 10.683707 13.786008 20.300074 23.024090 17.87379 13.381629 
## 6 11.038473 14.321497 15.186060 17.908704 22.731755 20.47064 19.450198 
##       bin21     bin22     bin23     bin24     bin25     bin26     bin27 
## 1 12.896152  6.998751  8.270279  6.748858  7.035672  8.845540 11.705263 
## 2 14.517203 12.050778  9.508779  9.654701 11.066853 10.855544 10.907322 
## 3  8.935988  7.046180  6.754974  7.694643  6.787817  7.959011  5.268743 
## 4 10.276865  8.726646 10.692209 12.919726  8.616948  7.775069  9.993443 
## 5 16.871098 13.175957 12.240556 12.854929  9.639143  8.937537  9.873585 
## 6 20.236146 14.840057 17.694142 16.608715 14.276433 14.588616 13.873548 
##       bin28     bin29     bin30     bin31     bin32     bin33     bin34 
## 1 13.099344  5.840506  6.105147 10.665144 13.831340 19.000859 16.323290 
## 2  6.748886  9.402706 10.395039  8.402617  9.725059 13.127745 12.165429 
## 3  5.795232  2.518056  6.897152 10.219491  9.305398 11.885174 10.357887 
## 4  8.809584  9.509015  6.250082  7.822943  6.502482  5.431262  2.821759 
## 5 11.527875 11.912453 11.725899 12.562875  9.106247 12.484106  9.748338 
## 6 11.423138 13.023069 12.058883 14.845923 12.886212 13.515536 13.205338 
##       bin35     bin36      bin37      bin38 
## 1 12.727929 13.035199  7.8862157  8.5584810 
## 2  9.993567  9.396044  7.8533025  6.9327306 
## 3  9.125429  7.752784  7.4645417  3.2338963 
## 4 -3.354909 -1.112687 -1.6734236 -0.4542861 
## 5  6.150656  5.909042  0.4569055  2.6961351 
## 6 11.319922  8.375685  7.4774573  2.8314308

old <- fulltable %>%  
  filter(Age == 0) %>%  
  dplyr::select(-Subject, -Age, -Index, -IPA, -CoG, -Stdev, -Position, -Vp, -Vf, -CoG
Erb, -StdevErb) 
head(old)



##   Sibilant        bin1      bin2       bin3       bin4      bin5      bin6 
## 1        s  0.03079822  5.368053  1.3356620  3.8024194  7.638946  8.518428 
## 2        s -1.07993498  4.732777  4.1342010  3.8134596  9.258956  9.534831 
## 3        s -1.89311451  2.843402 -1.0546411  0.8310224 10.217786  8.706969 
## 4        s -2.62480302  3.399465 -3.0490131 -1.1306421  4.636302  5.944460 
## 5        s -1.76925924  2.587684 -0.4604427  1.8163580  6.344636  7.024475 
## 6        ɕ -4.35499190 -4.189306 -2.5512102  3.1702479  9.836333 19.194536 
##         bin7       bin8      bin9     bin10     bin11    bin12     bin13 
## 1  3.9305149  7.1123151 15.230600 17.545210 19.596762 22.25446 22.374452 
## 2  2.7117942  6.1003611  8.216539 11.317408 10.496400 21.12455 25.931900 
## 3  1.3153554  0.7429933  8.701973  9.501857 18.532883 26.15295 28.422889 
## 4  0.6982653  0.2469375  7.000124  8.336731 11.804192 19.63063 25.143991 
## 5  3.1415236  4.8106590  7.773033 10.197163  9.174671 16.51992 19.929402 
## 6 16.6411375 15.8706811 11.708023 11.532916  7.521156  5.11676  6.078382 
##       bin14     bin15     bin16     bin17     bin18     bin19     bin20 
## 1 16.807175 16.849622 19.824146 15.705370 15.731594 17.366291 15.171438 
## 2 23.925333 21.541203 22.652723 23.515866 22.685180 22.588432 17.838364 
## 3 19.400775 19.631410 21.793965 17.189007 16.072513 17.223698 12.740024 
## 4 23.287909 22.252068 23.965798 22.861844 22.989191 19.770836 17.148074 
## 5 19.566929 18.510509 14.033934 19.170929 17.259525 17.562984 12.246112 
## 6  1.008853  7.788682  8.780875  9.029114  5.842555  8.395622  9.309483 
##      bin21    bin22     bin23     bin24    bin25     bin26     bin27      bin28 
## 1 22.50508 22.26885 18.184247 24.981560 25.13370 16.813799 20.099184 21.0763254 
## 2 21.81495 24.60651 20.602070 22.524704 23.01943 16.198076 16.844628 18.6271211 
## 3 20.13430 20.47248 16.252307 16.363761 16.04937  8.279066 11.772129 14.5855535 
## 4 18.70550 19.35043 17.030038 16.664481 18.57928 12.715267 12.068423 17.0858940 
## 5 15.72888 16.38258 12.786221 11.935313 14.18757  9.113775 11.132812 14.3556308 
## 6 17.94750 15.25452  9.562816  9.191713  6.80332 -1.594965  2.154858  0.2669866 
##       bin29     bin30     bin31     bin32     bin33     bin34     bin35 
## 1 17.869202 14.208469  8.541668 10.113432 11.542438  8.343518  9.655772 
## 2 17.947814 21.079367 15.129374 16.850892 13.509220 10.642141 10.924920 
## 3 11.682313  7.478382  7.020007  5.375419  1.836066  3.119932  5.005802 
## 4 15.263576 16.560007 12.458058 10.117296 12.824886  8.218765  8.858684 
## 5 12.349997 14.109316 12.141184  6.679127 10.883913  4.958634  3.895202 
## 6 -4.606697 -7.917246 -6.766860 -4.830006 -4.852801 -7.000025 -6.344956 
##       bin36      bin37      bin38 
## 1 11.739608 10.6788560  7.6120026 
## 2 11.276608 10.1731825  8.1175219 
## 3  3.533633  0.9776531  4.5100433 
## 4  9.822343  7.9448941  6.3261298 
## 5  5.768801  5.0784504  2.3530547 
## 6 -1.665697 -3.6907411 -0.1649988

single tree

library(rpart) 
sibtreeY <- rpart(formula = Sibilant ~ .,  
                 data = young, 
                 method = "class") 
library(rpart.plot) 
rpart.plot(x = sibtreeY, yesno = 2, type = 0, extra = 0)



sibtreeO <- rpart(formula = Sibilant ~ .,  
                 data = old, 
                 method = "class") 
rpart.plot(x = sibtreeO, yesno = 2, type = 0, extra = 0)



Actual training of single trees:

Partitioning:

yn <- nrow(young) 
yn_train = round(0.80*yn) 
#set seed for reproducibility 
set.seed(1830) 
y_train_indices <- sample(1:yn, yn_train) 
y_train <- young[y_train_indices,] 
y_test <- young[-y_train_indices,] 
 
#same for the other age group 
on <- nrow(old) 
on_train = round(0.8*on) 
#set seed for reproducibility 
set.seed(1834) 
#split 
o_train_indices <- sample(1:on, on_train) 
o_train <- old[o_train_indices,] 
o_test <- old[-o_train_indices,]

The models:

y_tree <- rpart(formula = Sibilant ~ .,  
                data = y_train, 
                method = "class") 
y_tree



## n= 377  
##  
## node), split, n, loss, yval, (yprob) 
##       * denotes terminal node 
##  
##  1) root 377 152 s (0.40318302 0.59681698)   
##    2) bin9>=12.1626 96   8 ɕ (0.91666667 0.08333333)   
##      4) bin10>=10.70791 89   3 ɕ (0.96629213 0.03370787) * 
##      5) bin10< 10.70791 7   2 s (0.28571429 0.71428571) * 
##    3) bin9< 12.1626 281  64 s (0.22775801 0.77224199)   
##      6) bin17< 8.561642 111  54 s (0.48648649 0.51351351)   
##       12) bin8>=-3.876849 57   4 ɕ (0.92982456 0.07017544) * 
##       13) bin8< -3.876849 54   1 s (0.01851852 0.98148148) * 
##      7) bin17>=8.561642 170  10 s (0.05882353 0.94117647) *

o_tree <- rpart(formula = Sibilant ~ .,  
                data = o_train, 
                method = "class") 
o_tree

## n= 356  
##  
## node), split, n, loss, yval, (yprob) 
##       * denotes terminal node 
##  
##  1) root 356 141 s (0.39606742 0.60393258)   
##    2) bin9>=16.21045 125  20 ɕ (0.84000000 0.16000000)   
##      4) bin7>=11.45434 108   9 ɕ (0.91666667 0.08333333) * 
##      5) bin7< 11.45434 17   6 s (0.35294118 0.64705882) * 
##    3) bin9< 16.21045 231  36 s (0.15584416 0.84415584)   
##      6) bin15< 12.81072 86  31 s (0.36046512 0.63953488)   
##       12) bin7>=7.709157 38  12 ɕ (0.68421053 0.31578947)   
##         24) bin9>=11.88803 17   0 ɕ (1.00000000 0.00000000) * 
##         25) bin9< 11.88803 21   9 s (0.42857143 0.57142857)   
##           50) bin15< 7.032271 7   0 ɕ (1.00000000 0.00000000) * 
##           51) bin15>=7.032271 14   2 s (0.14285714 0.85714286) * 
##       13) bin7< 7.709157 48   5 s (0.10416667 0.89583333) * 
##      7) bin15>=12.81072 145   5 s (0.03448276 0.96551724) *

Evaluating the trees by computing a confusion matrix:

library(caret)

## Loading required package: lattice

## Loading required package: ggplot2



#generating thee predicted classes: 
class_predictionY <- predict(object = y_tree, 
                            newdata = y_test, 
                            type = "class") 
class_predictionO <- predict(object = o_tree, 
                            newdata = o_test, 
                            type = "class") 
#calculating the confusion matrix for the test set 
confusionMatrix(data = class_predictionY, 
                reference = y_test$Sibilant)

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction  ɕ  s 
##          ɕ 33  2 
##          s  7 52 
##                                           
##                Accuracy : 0.9043          
##                  95% CI : (0.826, 0.9553) 
##     No Information Rate : 0.5745          
##     P-Value [Acc > NIR] : 1.948e-12       
##                                           
##                   Kappa : 0.8009          
##                                           
##  Mcnemar's Test P-Value : 0.1824          
##                                           
##             Sensitivity : 0.8250          
##             Specificity : 0.9630          
##          Pos Pred Value : 0.9429          
##          Neg Pred Value : 0.8814          
##              Prevalence : 0.4255          
##          Detection Rate : 0.3511          
##    Detection Prevalence : 0.3723          
##       Balanced Accuracy : 0.8940          
##                                           
##        'Positive' Class : ɕ               
## 

confusionMatrix(data = class_predictionO, 
                reference = o_test$Sibilant)



## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction  ɕ  s 
##          ɕ 36  4 
##          s  7 42 
##                                            
##                Accuracy : 0.8764           
##                  95% CI : (0.7896, 0.9367) 
##     No Information Rate : 0.5169           
##     P-Value [Acc > NIR] : 6.293e-13        
##                                            
##                   Kappa : 0.752            
##                                            
##  Mcnemar's Test P-Value : 0.5465           
##                                            
##             Sensitivity : 0.8372           
##             Specificity : 0.9130           
##          Pos Pred Value : 0.9000           
##          Neg Pred Value : 0.8571           
##              Prevalence : 0.4831           
##          Detection Rate : 0.4045           
##    Detection Prevalence : 0.4494           
##       Balanced Accuracy : 0.8751           
##                                            
##        'Positive' Class : ɕ                
## 

Bagging:

library(ipred) 
#setting seed for reproducibility 
set.seed(1943) 
y_bag <- bagging(formula = Sibilant ~ .,  
                 data = y_train, 
                 coob = TRUE) 
y_bag

##  
## Bagging classification trees with 25 bootstrap replications  
##  
## Call: bagging.data.frame(formula = Sibilant ~ ., data = y_train, coob = TRUE) 
##  
## Out-of-bag estimate of misclassification error:  0.0477

o_bag <- bagging(formula = Sibilant ~ ., 
                 data = o_train, 
                 coob = TRUE) 
o_bag



##  
## Bagging classification trees with 25 bootstrap replications  
##  
## Call: bagging.data.frame(formula = Sibilant ~ ., data = o_train, coob = TRUE) 
##  
## Out-of-bag estimate of misclassification error:  0.1067

Evaluating the bagged trees:

library(caret) 
#generating thee predicted classes: 
class_predictionYbag <- predict(object = y_bag, 
                            newdata = y_test, 
                            type = "class") 
class_predictionObag <- predict(object = o_bag, 
                            newdata = o_test, 
                            type = "class") 
#calculating the confusion matrix for the test set 
confusionMatrix(data = class_predictionYbag, 
                reference = y_test$Sibilant)

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction  ɕ  s 
##          ɕ 38  2 
##          s  2 52 
##                                            
##                Accuracy : 0.9574           
##                  95% CI : (0.8946, 0.9883) 
##     No Information Rate : 0.5745           
##     P-Value [Acc > NIR] : <2e-16           
##                                            
##                   Kappa : 0.913            
##                                            
##  Mcnemar's Test P-Value : 1                
##                                            
##             Sensitivity : 0.9500           
##             Specificity : 0.9630           
##          Pos Pred Value : 0.9500           
##          Neg Pred Value : 0.9630           
##              Prevalence : 0.4255           
##          Detection Rate : 0.4043           
##    Detection Prevalence : 0.4255           
##       Balanced Accuracy : 0.9565           
##                                            
##        'Positive' Class : ɕ                
## 

confusionMatrix(data = class_predictionObag, 
                reference = o_test$Sibilant)



## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction  ɕ  s 
##          ɕ 41  3 
##          s  2 43 
##                                            
##                Accuracy : 0.9438           
##                  95% CI : (0.8737, 0.9815) 
##     No Information Rate : 0.5169           
##     P-Value [Acc > NIR] : <2e-16           
##                                            
##                   Kappa : 0.8876           
##                                            
##  Mcnemar's Test P-Value : 1                
##                                            
##             Sensitivity : 0.9535           
##             Specificity : 0.9348           
##          Pos Pred Value : 0.9318           
##          Neg Pred Value : 0.9556           
##              Prevalence : 0.4831           
##          Detection Rate : 0.4607           
##    Detection Prevalence : 0.4944           
##       Balanced Accuracy : 0.9441           
##                                            
##        'Positive' Class : ɕ                
## 

^improved upon the single trees.

Calculating the AUC of the bagged trees:

probpredY <- predict(object = y_bag, 
                newdata = y_test, 
                type = "prob") 
probpredO <- predict(object = o_bag, 
                newdata = o_test, 
                type = "prob") 
library(Metrics)

##  
## Attaching package: 'Metrics'

## The following objects are masked from 'package:caret': 
##  
##     precision, recall

auc(actual = ifelse(y_test$Sibilant == "s", 1, 0),  
    predicted = probpredY[,"s"])

## [1] 0.9928241



auc(actual = ifelse(o_test$Sibilant == "s", 1, 0),  
    predicted = probpredO[,"s"])

## [1] 0.983822

^ very close to 1

k-fold cross-validation to reduce variance of estimates:

#specifying the training configuration 
ctrl <- trainControl(method = "cv", #cross validation 
                     number = 5, #number of k in "k-fold" 
                     classProbs = TRUE, 
                     summaryFunction = twoClassSummary)#calculating the ROC curve for 
AUC
#training configuration
#reproducibility 
set.seed(2009) 
ytreebag <- train(Sibilant ~ ., 
                  data = y_train, 
                  method = "treebag", 
                  metric = "ROC", #for AUC 
                  trControl = ctrl) 
ytreebag

## Bagged CART  
##  
## 377 samples 
##  38 predictor 
##   2 classes: 'ɕ', 's'  
##  
## No pre-processing 
## Resampling: Cross-Validated (5 fold)  
## Summary of sample sizes: 301, 302, 301, 302, 302  
## Resampling results: 
##  
##   ROC        Sens       Spec      
##   0.9941099  0.9546237  0.9911111

otreebag <- train(Sibilant ~ ., 
                  data = o_train, 
                  method = "treebag", 
                  metric = "ROC", 
                  trControl = ctrl) 
otreebag



## Bagged CART  
##  
## 356 samples 
##  38 predictor 
##   2 classes: 'ɕ', 's'  
##  
## No pre-processing 
## Resampling: Cross-Validated (5 fold)  
## Summary of sample sizes: 284, 285, 285, 285, 285  
## Resampling results: 
##  
##   ROC        Sens       Spec      
##   0.9551581  0.8431034  0.9488372

#generating predictions 
predbagY <- predict(object = ytreebag, 
                    newdata = y_test, 
                    type = "prob") 
predbagO <- predict(object = otreebag, 
                    newdata = o_test, 
                    type = "prob") 
#computing the AUC 
auc(actual = ifelse(y_test$Sibilant == "s", 1, 0), 
    predicted = predbagY[,"s"]) #young

## [1] 0.9923611

auc(actual = ifelse(o_test$Sibilant == "s", 1, 0), 
    predicted = predbagO[,"s"]) #old

## [1] 0.9843276

Random Forest:

library(randomForest)

## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.

##  
## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2': 
##  
##     margin

## The following object is masked from 'package:dplyr': 
##  
##     combine



set.seed(2029) 
youngForest <- randomForest(formula = Sibilant ~ ., 
                            data = y_train) #sqrt(38)=6.16, default mtry = 6 
youngForest

##  
## Call: 
##  randomForest(formula = Sibilant ~ ., data = y_train)  
##                Type of random forest: classification 
##                      Number of trees: 500 
## No. of variables tried at each split: 6 
##  
##         OOB estimate of  error rate: 2.92% 
## Confusion matrix: 
##     ɕ   s class.error 
## ɕ 146   6  0.03947368 
## s   5 220  0.02222222

oldForest <- randomForest(formula = Sibilant ~ ., 
                          data = o_train) 
oldForest

##  
## Call: 
##  randomForest(formula = Sibilant ~ ., data = o_train)  
##                Type of random forest: classification 
##                      Number of trees: 500 
## No. of variables tried at each split: 6 
##  
##         OOB estimate of  error rate: 5.9% 
## Confusion matrix: 
##     ɕ   s class.error 
## ɕ 126  15  0.10638298 
## s   6 209  0.02790698

errY <- youngForest$err.rate 
errO <- oldForest$err.rate 
plot(youngForest)  
legend(x = "right",  
       legend = colnames(errY), 
       fill = 1:ncol(errY))



plot(oldForest) 
legend(x = "right",  
       legend = colnames(errO), 
       fill = 1:ncol(errO))



yf_pred <- predict(object = youngForest, 
                   newdata = y_test, 
                   type = "class") 
ycm <- confusionMatrix(data = yf_pred, 
                             reference = y_test$Sibilant) 
ycm



## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction  ɕ  s 
##          ɕ 40  1 
##          s  0 53 
##                                            
##                Accuracy : 0.9894           
##                  95% CI : (0.9421, 0.9997) 
##     No Information Rate : 0.5745           
##     P-Value [Acc > NIR] : <2e-16           
##                                            
##                   Kappa : 0.9783           
##                                            
##  Mcnemar's Test P-Value : 1                
##                                            
##             Sensitivity : 1.0000           
##             Specificity : 0.9815           
##          Pos Pred Value : 0.9756           
##          Neg Pred Value : 1.0000           
##              Prevalence : 0.4255           
##          Detection Rate : 0.4255           
##    Detection Prevalence : 0.4362           
##       Balanced Accuracy : 0.9907           
##                                            
##        'Positive' Class : ɕ                
## 

of_pred <- predict(object = oldForest, 
                   newdata = o_test, 
                   type = "class") 
ocm <- confusionMatrix(data = of_pred, 
                       reference = o_test$Sibilant) 
ocm



## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction  ɕ  s 
##          ɕ 41  1 
##          s  2 45 
##                                           
##                Accuracy : 0.9663          
##                  95% CI : (0.9046, 0.993) 
##     No Information Rate : 0.5169          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.9325          
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.9535          
##             Specificity : 0.9783          
##          Pos Pred Value : 0.9762          
##          Neg Pred Value : 0.9574          
##              Prevalence : 0.4831          
##          Detection Rate : 0.4607          
##    Detection Prevalence : 0.4719          
##       Balanced Accuracy : 0.9659          
##                                           
##        'Positive' Class : ɕ               
## 

oob_errY <- errY[nrow(errY), "OOB"] 
oob_errO <- errO[nrow(errO), "OOB"] 
 
#comparing test sets accuracy to OOB accuracy 
paste0("Test Accuracy (younger group): ", ycm$overall[1])

## [1] "Test Accuracy (younger group): 0.98936170212766"

paste0("OOB Accuracy (younger group): ", 1-oob_errY)

## [1] "OOB Accuracy (younger group): 0.970822281167109"

paste0("Test Accuracy (older group): ", ocm$overall[1])

## [1] "Test Accuracy (older group): 0.966292134831461"

paste0("OOB Accuracy (older group): ", 1-oob_errO)

## [1] "OOB Accuracy (older group): 0.941011235955056"

Evaluating test set AUC:



#generating predictions on the test set 
predfrstY <- predict(object = youngForest, 
                     newdata = y_test, 
                     type = "prob") 
auc(actual = ifelse(y_test$Sibilant == "s", 1, 0), 
    predicted = predfrstY[,"s"])

## [1] 0.9976852

predfrstO <- predict(object = oldForest, 
                     newdata = o_test, 
                     type = "prob") 
auc(actual = ifelse(o_test$Sibilant == "s", 1, 0), 
    predicted = predfrstO[,"s"])

## [1] 0.9853387

Importance of bins:

importance(youngForest)



##       MeanDecreaseGini 
## bin1         1.6380489 
## bin2         1.3796836 
## bin3         2.3024663 
## bin4         1.2753666 
## bin5         1.5647548 
## bin6         2.0058502 
## bin7         9.8308005 
## bin8        26.8463727 
## bin9        25.5383454 
## bin10       19.9473681 
## bin11       15.8953911 
## bin12        7.4079618 
## bin13        5.2388464 
## bin14        1.6767303 
## bin15        2.1080205 
## bin16        1.7388535 
## bin17        2.7811341 
## bin18        4.6499822 
## bin19        3.6744119 
## bin20        4.1087982 
## bin21        1.6340413 
## bin22        1.3395234 
## bin23        1.1293322 
## bin24        1.3311670 
## bin25        0.6755835 
## bin26        1.2228560 
## bin27        2.4254639 
## bin28        1.8861379 
## bin29        1.4909992 
## bin30        2.8976410 
## bin31        1.8670790 
## bin32        2.1373712 
## bin33        2.9276755 
## bin34        2.1772970 
## bin35        2.4411565 
## bin36        2.8396451 
## bin37        4.2191296 
## bin38        4.8214350

importance(oldForest)



##       MeanDecreaseGini 
## bin1         2.3017923 
## bin2         2.7118105 
## bin3         2.3399730 
## bin4         3.9826869 
## bin5         4.1123224 
## bin6         5.3333261 
## bin7        21.8883512 
## bin8        26.8176590 
## bin9        26.9679821 
## bin10       14.8008070 
## bin11        3.9264227 
## bin12        2.4751545 
## bin13        1.7319649 
## bin14        1.4303022 
## bin15        2.9315024 
## bin16        2.5822882 
## bin17        3.8637288 
## bin18        2.9835684 
## bin19        1.8948187 
## bin20        1.1127499 
## bin21        1.5873533 
## bin22        1.4883683 
## bin23        1.5093237 
## bin24        1.6983714 
## bin25        1.0736549 
## bin26        1.9340230 
## bin27        1.9283709 
## bin28        1.5414181 
## bin29        1.3231258 
## bin30        2.0241907 
## bin31        1.9299164 
## bin32        2.5981397 
## bin33        2.3295162 
## bin34        3.1588652 
## bin35        2.7201841 
## bin36        2.4618176 
## bin37        1.4880216 
## bin38        0.9524424

Plotting the importance:

varImpPlot(youngForest)



#png(filename="youngForest.png")
#varImpPlot(youngForest)
#dev.off()

^ most relevant bins: 8 >> 9 >> 10 >> 11 >> 7 >> 12

varImpPlot(oldForest)



#png(filename="oldForest.png")
#oForest
#dev.off()

^ most relevant bins 9 >> 8 >> 7 >> 10 >> 6



G Full Results of Acoustic Measurements

184-page file. Downloadable at https://www.fon.hum.uva.nl/archive/
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