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Introduction 

Modelling experimental data and results with neural networks remains a relatively unexplored area of              
linguistic research, and is a particularly attractive method for its biological plausibility. Some areas in               
which neural networks have been applied successfully are in modeling auditory dispersion and category              
formation (Boersma, Benders & Seinhorst, 2020). This paper will attempt to model results from Plunkett,               
Hu, and Cohen (2008), which demonstrated that, for infants, category creation based on visual stimuli can                
be disrupted in the presence of incongruous spoken labels. In their study, 10-month olds were presented                
with line drawings (figure 1) of an imaginary creature with corresponding features in four of five                
experiments; e.g. spread ears would predict a short tail and vice versa. This was the narrow condition, in                  
which the statistical distribution of the drawings led to the formation of two distinct categories of figures                 
by the infants, each with diametrically opposed features: 1111 and 5555. The narrow continuum invites               
the participant to form two categories because the four leftmost drawings of figure 1’s narrow condition                
each have bunched ears, large tails, long necks, and short legs which sits in contrast to the right four                   
figures, which tend to have longer legs, shorter necks, smaller tails, and spread ears. Category formation                
was measured via the infants’ novel looking preference. The broad condition was used only in a single                 
experiment as a control. In the broad condition, the values of the legs and tail predicted opposing values                  
for the neck and ears. Likewise, neck and ear values predicted opposing leg and tail values. For example,                  
in the first figure of the broad condition, 1155, the values of 1 for the legs(1 = short legs) and tail (1= thin                       
tail) predict values of 5 for the neck (5 = long neck) and ears (5 = spread ears). This pattern of distribution                      
led the infants to form a single, general category: 3333, which can be observed by noting that there is less                    
consistency within the broad condition creatures than within the narrow condition creatures. When spoken              
labels were introduced to the narrow condition stimuli, it had a disruptive and overriding effect on visual                 
category formation. When two spoken labels were congruous with the visual category cues, there was no                
change in category formation. However, when a single spoken label was given for all figures, the infants                 
formed only a single category, as in the broad condition control experiment. When two labels were                
assigned at random, no category formation occurred.  

 
                    ​Figure 1: Broad and narrow condition line drawings (Plunkett et al., 2008). 

 
A bimodal, parallel, neural network would be needed to model the effect shown by Plunkett et al.                 

(2008). Similar models have already been constructed that can model the McGurk effect, which shows the                
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opposite effect: an overriding influence of the visual input over the audible input when presented               
simultaneously (McGurk & MacDonald, 1976). At this point, there seems to be two dominant approaches               
to bimodal modeling: Boltzmann machines and self-organizing map (SOM) networks. 

SOM networks map inputs into two dimensional space without supervision based on patterns             
found within the data. One such network constructed by Gustaffson, Jantvik & Paplinski (2014) generated               
SOMs based on visual and auditory similarity of spoken segments. Video recordings of spoken segments               
were grouped into equivalence classes before being mapped together onto a grid of nodes, the SOM ​—                 
three equivalence classes were created: labiodental, bilabial, and open mouth segments. The auditory cues              
underwent a similar process, but similarity was determined by mel-frequency cepstrum measurements, a             
measure of spectral power. The network itself featured parallel inputs for each modality which then fed                
into an output. The output provided a partial input to the auditory modality via a feedback loop. When an                   
auditory /ba/ and visual /ga/ were supplied as inputs, /da/ was the likely bimodal winner due to its visual                   
similarity to /ga/ and its auditory similarity to /ba/, as indicated on the SOMs. This network was able to                   
reliably reproduce the McGurk effect from bimodal visual-audio inputs. 

As a testament to the efficacy of the SOM approach, Plunkett et al. (2008) was successfully                
modeled using two SOM networks (Gliozzi, V., Mayor, J., Hu, J., & Plunkett, K. 2008). In this follow-up                  
research, one of the networks had a single SOM that mapped both visual and audio cues; the other                  
network featured three SOMs: visual, acoustic, and bimodal. Infant looking time was realized as “a               
function of the quantisation error.” Their models were able to recreate infant looking time for each of the                  
five experiments of Plunkett et al. (2008, p 401). Interestingly, the authors also note that after further                 
training the model with stimuli from experiment five (two visual categories and a single spoken label)                
results in a transient effect: eventually the model rejects the label in favor of the two visual categories.                  
This has interesting implications for infants ​— ​they may exhibit similar transient categorization behavior.              
Additionally, the shift in perception from single category to two categories could allow for their model to                 
represent hierarchies of categorization. 

Another contemporary approach to neural modeling is to use a Boltzmann machine. Boltzmann             
machines consist of layers of connected nodes whose activation probabilities are stochastically            
determined by statistical distributions within the input data. Ngiam, Khosla, Kim, Nam, Lee, and Ng               
(2011) demonstrate the usefulness of Boltzmann machines for modeling bimodal inputs. Using a             
video-only auto-encoder consisting of input nodes, hidden layers, and a reconstructed output, they were              
able to supply a visual input and reliably recreate both a visual and audio output. Their bimodal                 
auto-encoder worked similarly, except it could receive audio or visual data as inputs, but was somewhat                
less reliable in its reconstructions. This model was also able to reproduce the McGurk effect. Visual /ga/                 
and auditory /ba/ inputs often resulted in the model perceiving /da/, despite /da/ not being in the input data                   
set. This study, and those following it, provide proof of concept that Boltzmann machines can model                
bimodal inputs. 

While Plunkett et. al (2008) has been modeled with a SOM network, it has not yet been modeled                  
with a Boltzmann machine. Thus, this study will attempt to construct a bimodal Boltzmann machine to                
model the results of Plunkett et. al (2008). More specifically, a restricted deep Boltzmann machine will be                 
constructed based on a modified version of Boersma’s (2019) network for modeling emergent category              
formation. As with that network, this too will be constructed with the speech processing and analysis                
software Praat (Boersma & Weenink, 2020). 
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Methods 
A three-layered network consisting of 42 input nodes, 50 intermediary nodes, and 40 output nodes was                
constructed. Each node of the input layer, with its respective activation (​x​k​, where ​x ​represents the activity                 
level and ​k is the index specifying an individual node), is connected to each node of the intermediate layer                   
(​y​l​) by a weighted connection (​u​kl​). Again, each intermediate layer node possesses an individual activation               
level. The intermediate level is also connected (​v​lm​) to each output layer node, again with every output                 
layer node having its own activity level (​z​m​). The values of ​k​, ​l​, and ​m range from 1 to the number of                      
nodes in their respective level. Furthermore, each node layer has its own bias, represented by a​k ​for the                  
input layer, ​b​l ​for the middle layer, and ​c​m ​for the output layer. A positive bias value adds to the activity                     
level of the affected node, increasing the likelihood of activation. Inversely, a negative bias is subtractive                
and decreases the likelihood of activation. Node connections exist only between layers, and never within a                
layer. The network is bidirectional ​— data moves between node layers; values in one layer will affect the                  
values of the other layers during the period between the initial input and the final output (Boersma, 2019).                  
Training the network occurs in four stages: initial settling, Hebbian learning, dreaming, and anti-Hebbian              
learning.  

 
        Figure 2: A visual representation of the entire network.  
 
Initial settling 
The activity of the middle layer (​y​l​) ​is determined by holding the activities of the input (​x​k​) and output                   
nodes (​z​m​) constant, and allowing activities to spread to the middle layer. Here, ​k ​and ​m represent the                  
activation of a single node in the input and output respectively while ​K and ​M are the total number of                    
nodes in the input and output layers, 42 and 40 respectively. This is shown in the following equation. In                   
this instance, ​represents the standard logistic function, and the output of is a probability representing  σ           σ      
the likelihood of node ​l​ being activated 

 
After this, the network resonates until it reaches a near-final state. Resonation generates activation              

values for every node in the output layer (​z​m​) while still holding input layer activities (​x​k​) constant. Here, ​l                   
represents the activation of a single node in the middle layer while ​L ​represents the total of the middle                   
layer nodes, 50. 
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This entire process of initial settling is repeated ten times to bring the network to a state of near                   

equilibrium (Boersma, 2019). 
 
Hebbian Learning 
In the Hebbian stage, biases (​a​k​, b​l​, c​m​) and all existing connections between active nodes are strengthened                 
(​u​kl​, ​v​lm​) to ensure that co-activated nodes associate with each other and fire together. Here, represents               η   
the learning rate of 0.001 (Boersma, 2019).  

 
Dreaming 
Next, the network stochastically generates patterns. During the initial settling phase, following a single              
input into the input layer, an activity for the intermediate layer (​y​l​) is calculated. Then ​y​l ​is used to                   
calculate activities in the input layer (​x​k​) Next, the output layer (​z​m​) is stochastically determined. This                
stochasticity is achieved through the use of a deviate of the random Bernoulli function ( ). Finally, the               Ɓ    
new activities of the input and output layers are used to stochastically recalculate the intermediate layer.                
The dreaming sequence repeated ten times (Boersma, 2019).  

 
Anti-Hebbian Learning 
The anti-Hebbian stage weakens all connections and biases.  

 
Once the network reaches a stable state, the connection weights and the biases for the input level                 

nodes are updated again in a second, identical anti-Hebbian stage (Boersma, 2019). 
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The Input Layer 
The input layer was divided into four slabs of 10 consecutive nodes each to represent the visual inputs,                  
with the remaining two nodes representing the binary spoken labels. The first slab, nodes 1 through 10,                 
represent the legs of Plunkett et al.’s (2008) creatures. Nodes 1 and 2 correspond with Plunkett’s number                 
1, the shortest legs, nodes 3 and 4 correspond with number 2, for slightly less short legs, and so on until                     
nodes 9 and 10, which represent Plunket number 5 — the longest legs (fig. 1) . The mean values of the                     
input data were centered on two peaks: the first at node 2.5 and the second at node 8.5. A peak width of 3                       
nodes and a standard deviation of 1 node ensured that the first peak covered nodes 1 to 4, Plunkett’s                   
numbers 1 and 2. Likewise, the second peak was distributed over nodes 7 to 10, accounting for Plunkett’s                  
values of 4 and 5. This configuration of the distributional peaks allows the network to account for                 
variability of the input while still distinguishing between two groups necessary for category formation.              
Each of the other three slabs featured identical architecture and accounted for the tails, neck, and ears of                  
the creature, with node numbers adjusted accordingly. A drawing of the first visual input slab is shown in                  
figure 3. 
 

Figure 3: The first 10 visual input nodes of the network, representing the legs of Plunkett et al.’s (2008) creatures.  
 

Nodes 41 and 42 represent the binary labels assigned to the creatures in experiments 3, 4, and 5 of                   
Plunket et al. (2008). When no labels are present, these nodes are not activated at all. In experiments                  
where labelling is present, they are activated with a greater activation strength than the nodes of the visual                  
input slabs to represent the dominating influence of the audible inputs over the visual inputs. Unlike in the                  
visual slabs, no input variability was present in the label nodes. 

After the network has been trained on the input data, it is tested by passing a prototypical input in                   
sequence with small intervals through the entirety of the input layer, and allowing the network to                
deterministically resonate. Then the state of the input layer is drawn. These drawings showing the end                
state of the input layer are the network’s outputs. 
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Experiment 1: Broad condition 
In the original experiment’s broad condition, a leg value of 1 or 2 would predict an ear value of 5 or 4                      
respectively. Inversely, an ear value of 1 or 2 would predict a respective leg value of 5 or 4. Thus, in the                      
network, the input activations in the leg and ear slabs were anti-correlated with each other for this                 
experiment. For each network input, a random selection is made between the low mean and the high mean                  
for the slab. If the low mean was chosen for the legs slab, then a high mean would be selected for the ears                       
slab. If the high leg mean was selected for the input, then a low mean input would be provided for the                     
ears. An identical relationship to the one just described exists between the tails and necks within the                 
original experiment, and the model. This relationship is illustrated in figure 4, which shows the four major                 
permutations of the input node layer for the broad condition stimuli. The two nodes representing spoken                
labels were not used in this condition.  
 
                      Legs                              Tails     Necks   Ears             Labels 

 

 

 

 

 
Figure 4: The four major input permutations of the broad condition.  

 

Experiment 2: Narrow condition 
The narrow condition differs from the broad condition only in that all four visual input features are                 
correlated with one another. A randomly selected low mean input for the first slab, the legs, will lead to                   
low mean inputs for the ears, tails, and neck for that given learning cycle. An example, along with                  
potential input variability, is shown in figure 5. A randomly chosen high mean input for the legs slab will                   
deterministically result in all other visual input slabs having high mean inputs. See figure 6 for an                 
example. This mirrors the line drawings in figure 1, which led to the formation of two distinct categories                  
when the infants were presented with the narrow condition stimuli. There, each creature has feature values                
that are either entirely low, 1 or 2, or entirely high, 3 or 4. 
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                      Legs                              Tails     Necks   Ears             Labels 

 

 

 
Figure 5: Input layer activation patterns for the narrow condition’s first archetype. The three images show possible input                  
variability that could occur in three separate learning cycles.  
 
                      Legs                              Tails     Necks   Ears             Labels 

 
Figure 6: Input layer activation patterns for the narrow condition’s second archetype with examples of possible variability. 
 

Experiment 3: Narrow condition with congruent labels 
The visual inputs, represented by the first 40 nodes, were identical to experiment 2. Nodes 41 and 42, the                   
nodes representing the binary labels, were utilized in this experiment. The binary label nodes were               
activated in the same correlational manner as the visual inputs in the narrow condition. If the lower mean                  
value was randomly selected for the leg slab, then node 41 was activated for that input (fig. 7).                  
Conversely, if the higher mean was selected for the leg slab, then node 42 was activated (fig. 8). In                   
simpler terms, when the network generated an input like that on the left side of the narrow condition                  
continuum (fig. 1), node 41 was activated. Node 42 was activated when the network generated an input                 
like that on the right half of figure 1’s narrow continuum. This mirrors Plunkett et al.’s (2008) experiment                  
where the spoken category labels given to the children corresponded with the visual categories that the                
children formed on the basis of the stimuli (fig. 1). 
 
                      Legs                              Tails     Necks   Ears             Labels 

 
Figure 7: Possible input layer activation patterns for the narrow condition’s first archetype with a matching label. 
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                      Legs                              Tails     Necks   Ears             Labels 

 
Figure 8: Possible input layer activation patterns for the narrow condition’s second archetype with a matching label. 
 
Experiment 4: Narrow condition with a single label 
In experiment 4, label node 41 was activated for every input while label node 42 was never activated                  
(figs. 9 and 10). Experiment 4 was identical to experiment 3 in all other aspects. In Plunkett et al. (2008),                    
a single, unchanging, spoken label was given to every stimuli.  
 
                      Legs                              Tails     Necks   Ears             Labels 

  

 
Figure 9: Potential input layer activation patterns for the narrow condition’s first archetype with a single, unchanging label for                   
each input. 
 
                      Legs                              Tails     Necks   Ears             Labels 

 

 
Figure 10: Potential input layer activation patterns for the narrow condition’s second archetype with a single, unchanging label                  
for each input. 
 
Experiment 5: Narrow condition with random labels 
One of the two binary label nodes were randomly activated during each input sequence (figs. 11 and 12).                  
Otherwise, experiment 5 was identical to experiments 3 and 4. The original study gave the children one of                  
the two labels at random for each stimuli, with no correlation between the visual stimuli and the label that                   
was given (Plunkett et al., 2008). 
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                      Legs                              Tails     Necks   Ears             Labels 
 

 

 
Figure 11: Input layer activation pattern for the narrow condition’s first archetype with a single, random label for each input. 
Each label had an equal probability of being the sole activated label node for a given input sequence. 
 
                      Legs                              Tails     Necks   Ears             Labels 

 
Figure 12: Input layer activation pattern for the narrow condition’s second archetype with a single, random label for each input. 
Each label had an equal probability of being the sole activated label node for a given input sequence. 
 

Results 
Testing the Network 
The outputs from the experiments are shown in the following subsections (figs. 16 - 20). The Y axis,                  
ranging from 1 to 42, represents the nodes of the input layer, while the X axis represents the sequential                   
activation of individual input layer nodes. The leftmost point on the X axis is the activation of the first                   
node and the rightmost point shows the activation of the 42nd input node. Darkened areas indicate high                 
levels of activation, while white space indicates an absence, or trace levels, of node activity. These                
darkened regions of activation are also representative of category formation within a given input slab, and                
the network as a whole. Each output image represents the state of the input layer.  

Figure 13 shows the input sweep, where each node is scanned in a gradient sequence subdivided                
into 407 steps. These 407 steps are actually 407 prototypical inputs given at evenly spaced intervals along                 
the input layer. Each of the network’s output plots (figs. 13-20) can therefore be subdivided into 407                 
vertical columns, with each column representing a testing input that activates a small slice of the input                 
layer. Since each prototypical test input occurs at a certain place along the input continuum, associated                
nodes within that vertical slice will be activated as well. These patterns of activation were learned during                 
the training phase. While this is happening, the middle and upper layers are allowed to activate freely.                 
The network is then allowed to resonate deterministically and reflect upon the prototypical inputs before               
generating an output. Mid and output layer nodes that co-activate with the input nodes are activated as                 
well, but are not relevant for demonstrating categorization, so they are omitted from the generated output                
drawings. This procedure tests the network’s learning of the training inputs. In figure 13’s sweep,               
resonance has yet to occur, therefore the training patterns, with their activations and co-activations of               
associated nodes, have no bearing on this output and only the sequential activation of input layer nodes is                  
shown. Examples of post resonance outputs can be seen in figures 14 - 20. 
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If too many training inputs are given, the network’s output (fig. 14) begins to resemble the input                 
sweep of figure 13, as seen in the jagged diagonal activation band running from node 1 to 42. Again,                   
these outputs show the state of the input layer. Figure 14, and the remaining outputs in the results section                   
(figs. 15 - 20) are post-resonance outputs where the network has been allowed to reflect upon the                 
prototypical inputs in the testing phase. In figure 14, categorical behavior has broken down and the                
network is beginning to unlearn categories. To see this contrast, notice that categorical behavior can be                
seen clearly in figure 18 where there is distinct movement along the central diagonal showing the                
sequential activation of each input node and its correlates, and by the dark checkered boxes along this                 
diagonal which remain distinct from each other, and do not merge. This is not so in figure 14 where there                    
is a meshing of feedback from the visual prototypical test inputs. Eventually, with enough inputs, the                
network’s output will come to nearly match the form of the input sweep (fig. 13).  

 

 
Figure 13: Input sweep with zero training inputs 

 
 

 
Figure 14: Output of the narrow condition with congruent labels after 30,000 inputs 
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If there are too few inputs then category formation cannot occur. Figure 15 shows the network 
after only 30 inputs. We can see that the network is registering the various entities of the inputs, but 
without drawing the correlations necessary to form categories. All experimental outputs (figs. 16 - 20) 
were the result of 3,000 inputs, although stable categorization does occur in as few as 400 inputs. 

 

 
Figure 15: Output of the narrow condition with congruent labels after 30 inputs 

 
Very faintly shaded categorization bands and the stretching of categorization bands on the right              

edge of the output visualizations, seen most clearly in figure 16 below, are remnants from the stochastic                 
patterns generated during the dreaming phase. 
 
Experiment 1: Broad condition 
The dark bands in figure 16 replicate the conditions of Plunkett et al’s (2008) broad condition. Slab 1                  
(nodes 1-10), representing the creature’s legs in the visual inputs, and slab 2 (nodes 11-20), which                
represents the tails, are independent of each other. Thus, an activation of nodes 1-5, very short or short                  
legs, will activate simultaneously with nodes 11-15 (a small or very small tail) or 16-20 (a large or very                   
large tail), with no influence of one slab upon the other. The first slab of visual input nodes is                   
anti-correlated with the nodes of slab 4 (nodes 31-40), which represents the ears. An activation of nodes                 
1-5, or short legs, will always activate nodes 36-40 — very spread ears or spread ears. Following the same                   
logic, an activation of nodes 6-10 will invariably activate nodes 31-35; i.e. long legs will always predict                 
bunched ears. The same anti-correlational relationship exists between slabs 2 and 3 (neck length). An               
activation in the region of nodes 11-15, a small tail, will activate nodes 26-30, a long neck. An activation                   
of nodes 16-20, a large tail, predicts an activation of nodes 21-25, a short neck. The network’s output                  
aligns with the features of the broad condition drawings (fig. 1), which led the infant participants to form                  
a single general category centered on Plunkett values 3333. The empty space at the top of figure 3 are                   
nodes 41 and 42, the binary spoken labels. Labels were not used in experiment 1 or 2, so there are no                     
activations in that region.  
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                         Figure 16: Broad condition output 
 
Experiment 2: Narrow condition 
The network conditions for the narrow condition were mechanically similar to experiment 1, except the               
activations in each slab were correlated with the first slab, nodes 1 to 10. If slab 1 received an input in                     
nodes 1 to 5, the other slabs received inputs in their respective lower halves. In plain terms, a visual input                    
of a creature with short legs would generate a small tail, a short neck, and bunched ears for the other                    
features. A visual input of long legs would create a creature with long legs, a large tail, a long neck, and                     
spread ears. This relationship is clearly shown in the output (fig. 17). At any given time, only the first or                    
the second half of the nodes in every visual input slab are activated. In Plunkett et al.’s (2008) experiment,                   
every narrow condition creature had Plunkett feature values that were all 1 or 2 (a dark band in the first                    

five nodes of a slab), or which       
were all 4 or 5 (a dark band in         
the last five nodes of a slab),       
leading the infants to form     
two perceptual categories.   
This network adequately   
replicates their input and    
generates two sets of    
categories, as seen by the two      
differing patterns in the    
columns of figure 17. The first      
category, shown in the    
leftmost column and every    
second column thereafter,   
represents a short legged,    
small tailed, short necked, and     
bunched eared creature. The    
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second category, present in the second column from the left and every second column thereafter,               
represents a long legged, large tailed, long necked, and spread eared creature. These match exactly with                
the two perceptual categories from Plunket et al.’s experiment (fig. 1). 
 
Experiment 3: Narrow condition with congruent labels 
The results of experiment 3 (fig. 18) were identical to experiment 2 for the 40 visual input nodes.                  
Experiment 3 introduced the binary spoken labels, represented by nodes 41 and 42. In this experiment, the                 
binary labels followed the same activation pattern as the visual input nodes, which produced the same                
checkerboard pattern in nodes 41 and 42 that was present in the 40 visual nodes. In this instance, there is                    
no difference between the perception of visual categories and the perception of audible categories,              
matching the findings of Plunkett et al. (2008). The activation band is intentionally darker for the label                 
nodes because they were programmed to receive higher activity levels than the visual nodes in order to                 

mimic the overriding effects of     
the spoke inputs upon the     
visual inputs. The label nodes     
received activations valued at    
5.0 while the visual input nodes      
received activation values of    
4.5 at their respective peaks.     
This is in line with the results       
of Plunkett et al. (2008), which      
found that congruent spoken    
labels had no impact on visual      
category formation in the infant     
test subjects.  
 
 
 

 Figure 18: Narrow condition with congruent labels output 

 
Experiment 4: Narrow condition with a single label 
Experiment 4, the output of which is shown in figure 19, was identical to experiment 3 except that a                   
single binary spoken label node was activated for every input. This is shown by the dark activation band                  
at node 41 extending across the entire width of the x-axis. The activity level in node 41 is greater than the                     
activity levels in the 40 visual input nodes, indicating that the single category from the spoken label is the                   
preferred output. Plunket et al.’s (2008) findings that a single spoken label led to a single category,                 
despite presence of two visual categories, were not replicated here because the presence of the single label                 
node had no discernible influence on the output of the 40 visual input nodes.  
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                         Figure 19: Narrow condition with a single label output 

 
Experiment 5: Narrow condition with random labels 
The fifth experiment, with the output shown in figure 20, was nearly identical to experiments 3 and 4. In                   
experiment 5, one randomly selected label was activated for each visual input. This produced a thick,                
continuous activation band in nodes 41 and 42 with no discernible pattern of activation. Plunkett et al.                 
(2008) found that random label assignments interfered with the infant’s perception of categories, and led               
to the infants forming no categories. As in experiment 4, the activations of the label nodes had no                  
influence on the outputs of the 40 visual nodes, and thus the results from Plunkett et al. (2008) were not                    
replicated.  
 

 
                         Figure 20: Narrow condition with random labels output 
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Conclusion and Discussion 
The attempt to replicate the results of each of Plunkett et al.’s (2008) experiments with a restricted                 
Boltzmann machine was only partially successful. The broad condition, narrow condition, and narrow             
condition with congruent labels were successfully modelled. The final two experiments with their novel              
stimuli, the narrow condition with a single label and with a random label, were not successfully modelled.                 
The label nodes and their deviant activation patterns had no influence over the formation of visual                
categories. This model also did not take into account infant looking time, which was accounted for in the                  
successful modelling of Plunkett et al. (2008) by Gliozzi et al. (2008). Gliozzi et al’s (2008) SOM model                  
was also able to incorporate one-shot learning to model the presentation of Plunkett et al.’s (2008) stimuli                 
to the infant participants. One-shot learning has proven to be extremely difficult to achieve with               
Boltzmann machines. For example, this paper’s mechanical Boltzmann machine children require           
approximately 400 inputs to form categories, whereas the human infants required only a single viewing of                
each stimuli.  

Figure 14 is perhaps the most linguistically interesting and plausible of this network’s outputs. If               
we trace the progression of the diagonal testing sweep from beginning to end, we see the visual                 
representations activating the spoken labels, and the visual inputs. In this regard, the network has               
convincingly imitated natural speech, albeit in a simplistic manner. The output of figure 14 is the result of                  
overtraining the network, as mentioned briefly in the results section. Overtraining breaks down the strictly               
defined categories within the network’s code, allowing them to distort, mesh, and merge while retaining               
the same general features of a network that has been trained on a more ​ideal number of training inputs.                   
Once again, this mimics real speakers. As we know, human linguistic categories, whether they be vowel                
sounds, associated lexical items, or anything else, are rarely so neatly delimited. There is often ambiguity                
when we speak that is resolved by context (McGurk & MacDonald, 1976). In that sense, the output of the                   
overtrained network shows these grey areas, both figuratively and literally. Essentially, the network             
described in this paper is a simple brain featuring a rudimentary auditory cortex and a visual cortex, and                  
possesses the ability to categorize a limited set of objects and speech sounds in its environment based on                  
statistical regularities of the input. Functionally, this network is very similar to its immediate predecessor               
created by Boersma (2019), which created vowel categories based on ​vibrations in a simulated basilar               
membrane.  

There are several ways in which this network could be improved. It was previously discussed that                
the network was unable to reproduce Plunkett et al’s (2008) results from the experiments with randomized                
labels and the single label because the visual categorization was not affected by the novel label schemes.                 
A possible solution, suggested by Boersma, is to use three label nodes while maintaining the binary                
labels. The newly added node could freely associate with either label in the hope that it would merge with                   
one and add a greater net activity and then, hopefully, influencing the visual section of the input                 
continuum to organize itself based on the inputs fed to the label nodes, rather than their own nodes.                  
Another solution that could be used independently or in conjunction with the addition of a third label                 
node, is to train the network on other categorization tasks beforehand. The children in Plunkett’s (2008)                
study were 11 months old, with all the language inputs and experience that comes with that. They were                  
not the blank slate, artificial children created by this network to analyze statistical distributions of inputs.                
By giving the network more and diverse categorization tasks beforehand, it may come to more closely                
resemble the categorization behavior of real children. Last, is the problem of one-shot learning. The               
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infants were able to reliably form categories after a single exposure to each line drawing, but the                 
Boltzmann machine requires several hundred inputs for categories to form. If a novel method could be                
devised for one-shot learning in a Boltzmann machine, it would improve the authenticity of the neural                
network’s simulation, and would likely have further and greater implications for the field of machine               
learning. However, at present, there are no suggestions for how to accomplish this.  
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Appendix 
 
# 
#Paul Boersma and Zackary Gibson (2020) 
# 
 
form Sweep categories in a deep-belief network 
        integer Number_of_data 0 (= input sweep) 
        choice experiment: 3 
                button broad condition 
                button narrow condition 

button narrow condition with congruent labels 
button narrow condition with single label 
button narrow condition with random label 

endform 
 
numberOfInputNodes = 42 
numberOfMiddleNodes = 80 
numberOfOutputNodes = 50 
sigma = 1.0 
peakWidth = 1.5 
learningRate = 0.001 
edge = 2 
numberOfMeanFieldEchoes = 10 
numberOfGibbsEchoes = 10 
semf.offsetNode = 0 
 
numberOfLegs = 2 

legMean [1] = 2.5 
legMean [2] = 8.5 

numberOfTails = 2 
tailMean [1] = 12.5 
tailMean [2] = 18.5 

numberOfNecks = 2 
neckMean [1] = 22.5 
neckMean [2] = 28.5 

numberOfEars = 2 
earMean [1] = 32.5 
earMean [2] = 38.5 

numberOfLabels = 2 
meanLabel [1] = 41.0 
meanLabel [2] = 42.0 
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x# = zero# (numberOfInputNodes) 
y# = zero# (numberOfMiddleNodes) 
z# = zero# (numberOfOutputNodes) 
a# = x# 
b# = y# 
c# = z# 
u## = zero## (numberOfInputNodes, numberOfMiddleNodes) 
v## = zero## (numberOfMiddleNodes, numberOfOutputNodes) 
 
# 
# Spread up 
# 
 
procedure setFourInputs: .formantLegs, .formantTails, .formantNecks, .formantEars 

x# ~ if col >=1 and col <=10 then 5 * exp (-0.5 * ((col - .formantLegs) / peakWidth) ^ 2) - 0.5 
else self fi 

x# ~ if col >=11 and col <=20 then 5 * exp (-0.5 * ((col - .formantTails) / peakWidth) ^ 2) - 0.5 
else self fi 

x# ~ if col >=21 and col <=30 then 5 * exp (-0.5 * ((col - .formantNecks) / peakWidth) ^ 2) - 0.5 
else self fi 

x# ~ if col >=31 and col <=40 then 5 * exp (-0.5 * ((col - .formantEars) / peakWidth) ^ 2) - 0.5 
else self fi 
endproc 
 
procedure setFiveInputs: .formantLegs, .formantTails, .formantNecks, .formantEars, .label 

x# ~ if col >=1 and col <=10 then 5 * exp (-0.5 * ((col - .formantLegs) / peakWidth) ^ 2) - 0.5 
else self fi 

x# ~ if col >=11 and col <=20 then 5 * exp (-0.5 * ((col - .formantTails) / peakWidth) ^ 2) - 0.5 
else self fi 

x# ~ if col >=21 and col <=30 then 5 * exp (-0.5 * ((col - .formantNecks) / peakWidth) ^ 2) - 0.5 
else self fi 

x# ~ if col >=31 and col <=40 then 5 * exp (-0.5 * ((col - .formantEars) / peakWidth) ^ 2) - 0.5 
else self fi 

x# [41] = 0 
x# [42] = 0  
x# [.label] = 5 

endproc 
 
procedure spreadUp 

# GBC2016: 661 
z# = zero# (numberOfOutputNodes)   ; or to random values 
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for iecho to numberOfMeanFieldEchoes 
y# = sigmoid# (mul# (x#, u##) + mul# (v##, z#) + b#) 
z# = sigmoid# (mul# (y#, v##) + c#) 

endfor 
endproc 
 
procedure resonate 

for iecho to numberOfGibbsEchoes 
x# = mul# (u##, y#) + a# 
z# = randomBernoulli# (sigmoid# (mul# (y#, v##) + c#)) 
y# = randomBernoulli# (sigmoid# (mul# (x#, u##) + mul# (v##, z#) + b#)) 

        endfor 
endproc 
 
procedure hebbianLearning: .learningRate 

a# += .learningRate * x# 
b# += .learningRate * y# 
c# += .learningRate * z# 
u## += .learningRate * outer## (x#, y#) 
v## += .learningRate * outer## (y#, z#) 

endproc 
 
procedure antiHebbianLearning: .learningRate 

@hebbianLearning: - .learningRate 
endproc 
 
Erase all 
Font size: 10 
oversampling = 10 
numberOfTimes = (numberOfInputNodes - 5) * oversampling + 1 
image = Create simple Matrix: "inputImage", numberOfInputNodes, numberOfTimes, "0" 
 
procedure drawImage 

Select outer viewport: 0, 3.7, 0, 2.5 
selectObject: image 
Paint image: 0, 0, 0, 0, 0, 0 
One mark left: 1, "yes", "yes", "no", "" 
Marks left every: 1, 5, "yes", "yes", "no" 
if number_of_data = 300 

White 
endif 
Select outer viewport: 0.1, 3.3, 0.1, 2.4 
Text bottom: "yes", "Time \->" 



21 

Black 
Text left: "yes", "Input node \->" 
Select outer viewport: 0.1, 3.3, 0.3, 2.4 
Remove 

endproc 
 
if number_of_data = 0 

for itime to numberOfTimes 
formant = 1 + edge + (itime - 1) / oversampling 
@spreadUp: formant 
selectObject: image 
Formula: ~ if col = itime then x# [row] else self fi 

endfor 
@drawImage 

        exitScript () 
endif 
 
# 
# Train the network. 
# 
if experiment = 1 

for ipattern to number_of_data 
legs = randomInteger (1, 2) 
tails = randomInteger (1, 2) 
necks = if tails = 1 then 2 else 1 fi 
ears = if legs = 1 then 2 else 1 fi 

 
formantLegs = randomGauss (legMean [legs], sigma) 
formantTails = randomGauss (tailMean [tails], sigma) 
formantNecks = randomGauss (neckMean [necks], sigma) 
formantEars = randomGauss (earMean [ears], sigma) 

 
@setFourInputs: formantLegs, formantTails, formantNecks, formantEars 
@spreadUp 
@hebbianLearning: learningRate 
@resonate 
@antiHebbianLearning: learningRate 
endfor 

endif 
if experiment = 2 

for ipattern to number_of_data 
legs = randomInteger (1, 2) 
tails = if legs = 1 then 1 else 2 fi 
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necks = if legs = 1 then 1 else 2 fi 
ears = if legs = 1 then 1 else 2 fi 

 
formantLegs = randomGauss (legMean [legs], sigma) 
formantTails = randomGauss (tailMean [tails], sigma) 
formantNecks = randomGauss (neckMean [necks], sigma) 
formantEars = randomGauss (earMean [ears], sigma) 

 
@setFourInputs: formantLegs, formantTails, formantNecks, formantEars 
@spreadUp 
@hebbianLearning: learningRate 
@resonate 
@antiHebbianLearning: learningRate 

endfor 
endif 
if experiment = 3 

for ipattern to number_of_data 
legs = randomInteger (1, 2) 
tails = if legs = 1 then 1 else 2 fi 
necks = if legs = 1 then 1 else 2 fi 
ears = if legs = 1 then 1 else 2 fi 

 
formantLegs = randomGauss (legMean [legs], sigma) 
formantTails = randomGauss (tailMean [tails], sigma) 
formantNecks = randomGauss (neckMean [necks], sigma) 
formantEars = randomGauss (earMean [ears], sigma) 
formantCongruentLabel = if legs = 1 then meanLabel [1] else meanLabel [2] fi 

 
@setFiveInputs: formantLegs, formantTails, formantNecks, formantEars, 

formantCongruentLabel 
@spreadUp 
@hebbianLearning: learningRate 
@resonate 
@antiHebbianLearning: learningRate 

endfor 
endif 
if experiment = 4 

for ipattern to number_of_data 
legs = randomInteger (1, 2) 
tails = if legs = 1 then 1 else 2 fi 
necks = if legs = 1 then 1 else 2 fi 
ears = if legs = 1 then 1 else 2 fi 
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formantLegs = randomGauss (legMean [legs], sigma) 
formantTails = randomGauss (tailMean [tails], sigma) 
formantNecks = randomGauss (neckMean [necks], sigma) 
formantEars = randomGauss (earMean [ears], sigma) 
formantSingleLabel = meanLabel [1]  

 
@setFiveInputs: formantLegs, formantTails, formantNecks, formantEars, 

formantSingleLabel 
@spreadUp 
@hebbianLearning: learningRate 
@resonate 
@antiHebbianLearning: learningRate 

endfor 
endif 
if experiment = 5 

for ipattern to number_of_data 
legs = randomInteger (1, 2) 
tails = if legs = 1 then 1 else 2 fi 
necks = if legs = 1 then 1 else 2 fi 
ears = if legs = 1 then 1 else 2 fi 

 
formantLegs = randomGauss (legMean [legs], sigma) 
formantTails = randomGauss (tailMean [tails], sigma) 
formantNecks = randomGauss (neckMean [necks], sigma) 
formantEars = randomGauss (earMean [ears], sigma) 
formantRandomLabel = randomInteger (41.0, 42.0) 

 
@setFiveInputs: formantLegs, formantTails, formantNecks, formantEars, 

formantRandomLabel 
@spreadUp 
@hebbianLearning: learningRate 
@resonate 
@antiHebbianLearning: learningRate 

endfor 
endif 
 
# 
# Test the network. 
# 
for itime to numberOfTimes 

# 
#initializing x 
# 
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formant = 1 + (itime - 1) / (numberOfTimes - 1) * (numberOfInputNodes - 1) 
x# ~ 5* exp (-0.5 * ((col - formant) / peakWidth) ^ 2) - 0.5 
@spreadUp 
for iecho to numberOfGibbsEchoes 

x# = mul# (u##, y#) + a# 
z# = sigmoid# (mul# (y#, v##) + c#) 
y# = sigmoid# (mul# (x#, u##) + mul# (v##, z#) + b#) 

endfor 
selectObject: image 
Formula: ~ if col = itime then x# [row] else self fi 

endfor 
 
@drawImage 
 
 
 
 


