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Abstract 

It is not controversial that the framework of neural networks can be used to replicate human 

cognitive abilities. In this thesis, the aspect of time is added to a neural network called a restricted deep 

Boltzmann machine, in order to replicate the human ability to recognize diphthongs. This is done with the 

use of distributional learning, a learning method used by children when acquiring the sounds of their first 

language. Different sequences of sound, either containing the same sounds, e.g. /au/-/ua/, or two 

completely different sounds, e.g. /au/-/ie/, are able to be distinguished. The network in this study makes 

use of a holistic model in which two representations of basilar membranes are present in the neural 

network. Secondly, a lexicon is added to the network to test for the machine’s ability to distinguish 

between sounds. With this addition, the neural network is able to retain emerged phonological categories 

without the categories eventually disappearing. Not only is the model able to derive the correct lexical 

output from the sound input, the network is also able to derive the sound output from the lexical input. The 

sound level reveals the corresponding prototype diphthong learned from the input distribution, 

demonstrating its categorical behavior and the perceptual magnet effect. As the network works 

bidirectionally, this study further supports the theory of bidirectional phonology and phonetics, where both 

bottom-up and top-down processing follow the same constraints.   
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1. Introduction 

Already before the age of 1, children learn to distinguish the important vowel sounds of their own 

language through the use of distributional learning and, as a result, stop hearing differences that are 

important in other languages of the world (Schure, Junge & Boersma, 2016; Dupoux, 2018; McMurray, 

Horst, Toscano & Samuelson, 2009; Maye, Werker & Gerken, 2002; Maye & Gerken, 2000). To further 

analyze how children learn and create phonological categories based on this distributional learning, we can 

apply artificial neural networks (Boersma, Benders & Seinhorst, 2018). These neural networks allow for 

bidirectional phonology and phonetic processing while also being able to model the evolution and 

acquisition of the phonology and phonetics (Boersma, 2011). The bidirectional model allows for both 

bottom-up processing as well as top-down processing. This means that from an auditory form it is possible 

to move up to the underlying form, as well as moving back down from the underlying form to the auditory 

form, demonstrating its bidirectionality across different levels of representation. Neural networks can be 

trained using different types of learning such as through the inoutstar algorithm (Boersma, Benders & 

Seinhorst, 2018) or the Hebbian algorithm, the latter of which is used in deep Boltzmann machines 

(Boersma, 2019). For this thesis, a restricted deep Boltzmann machine was chosen for its ability to create 

phonological categories (Boersma, 2019). A more thorough explanation will be provided in a later section 

of this thesis.  

In Boersma’s 2019 paper, it has been shown that the restricted deep Boltzmann machine is able to create 

phonological categories by using auditory distributional learning. This model demonstrates the perceptual 

magnet effect (Kuhl, 1991), where speech sounds are categorized, though the model fails with too much or 

too little training. With too little training, the network has not yet received enough input to create the 

different categories and considers them to be the same input. With too much training, the network imitates 

the actual input, which means the network no longer shows categorical behavior. Moreover, this network 

lacks the representation of time. While the aspect of time has been successfully added to other Recurrent 

Neural Networks with the use of Long Short-Term Memory (commonly known as LSTM) (Hochreiter & 

Schmidhuber, 1997) and is used in Automatic Speech Recognition programs, it has not yet been added to 

the deep Boltzmann machine models in which researchers attempt to replicate the cognitive behavior of 

humans. This thesis aims to add the aspect of time to a restricted deep Boltzmann machine with a lexicon 

included for sound–meaning pairs. Subsequently, it should be possible for the deep Boltzmann machine to 

recognize and differentiate between sequences of sound that use the same sounds in a different order. 

Moreover, it should be able to distinguish different sounds entirely while attaching the correct sequence of 

sounds to a word in the lexicon. Furthermore it is interesting to see how the addition of time influences the 

machine’s ability to reflect categorical behavior. Finally, exploring the limitations of the model by removing 
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meaning may help to better understand how phonological categories emerge. In section 2, the deep 

Boltzmann machine and its functionality, as used in this thesis, is explained. In the third section, the network 

structure is described and broken down into the different steps the model goes through. Section 4 of this 

thesis demonstrates the results of the different language environments that were tested within the neural 

network. The final sections, section 5 and 6, contains the discussion and conclusion respectively.  

2. Deep Boltzmann machine 

A deep Boltzmann machine is a type of stochastic recurrent neural network. Stochastic means that there 

are random variations in the neural network; in the case of the deep Boltzmann machine, the random 

variation can be found in the activation chance of the neuron. For example, if the weight between neuron A 

and neuron B is 0.7 and the activation of neuron A is 1, then this means there is a 70% chance that neuron 

A will fire to neuron B. A recurrent neural network is a type of artificial neural network that allows for 

bottom-up processing, as well as top-down processing. This means that the neural network can process from 

the input nodes up to the output nodes, but also from the output nodes, back down to the input nodes.   

Restricted deep Boltzmann machines differ from deep Boltzmann machines in that they do not connect 

within layers, but only move up and down the different layers. In regular Boltzmann machines, neurons are 

able to influence each other either by activating or by inhibiting one another across levels or anywhere on 

the same level. The computational aspect of the regular Boltzmann machine is therefore very complex and 

would be required for very complex phenomena. However, in this thesis, a restricted deep Boltzmann 

machine will suffice and will be used for the sake of calculation simplicity.  

3. The Network Structure  

Diphthongs in and of themselves require the aspect of time. Without time, there is no change in sound 

and thus no diphthong can be created. In the neural model used in this thesis, a type of holistic model is used 

to represent time, in which there are two representations of basilar membranes that both interact with a 

representation of a lexicon simultaneously. In this case, the first basilar membrane represents the start of the 

diphthong, and the second the end of the diphthong. This holistic model differs from a type of sequential 

input model. The sequential model is a more realistic model that receives one input at a time and stores the 

previous one to create a chain of inputs until it can attach meaning to the sound input, similarly to the 

TRACE model (McClelland & Elman, 1986). Instead, when using a holistic model, the neural network uses 

two phoneme inputs simultaneously and recognizes them as diphthongs. This recognition means that the 

network can distinguish between sequences of sounds that contain the same phonemes but are in a different 

order. For example, the network can distinguish the difference between the sequence of the vowel /u/ 
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followed by /i/ as the diphthong /ui/ and not as /iu/; and conversely, the sequence /i/ followed by /u/ is 

recognized as /iu/, not /ui/.  

As mentioned in the paragraph above, this present study uses two representations of basilar membranes. 

By using a representation of the basilar membrane, the model represents human auditory processing more 

closely than without. This differs from models that use auditory distance instead, such as some self-

organizing map networks (Kohonen, 1982; Guenther & Gjaja, 1996; Salminen, Tiitinen & May, 2009), or 

SOM-networks for short. By using a representation of the basilar membrane, the present study attempts to 

create a speech recognition program that more closely replicates human cognitive abilities in an attempt to 

better understand how sound is processed in the brain.  

Activities:          Parameters: 

 

zm            cm 

 

            vlm 

 

yl            bl 

 

            ukl 

 

xk            ak 

 

 

 

       Figure 1 deep Boltzmann Machine after 10,000 inputs. 

Figure 1 shows three different levels of nodes. The activity of each node is shown with black or grey 

circles. The black circles show positive activity whereas the grey circles show negative activity. The lowest 

level of nodes (x) represents three different types of so-called slabs. The first and second slab, running from 

node 1 to node 30, and from node 31 to 60 respectively, each represent the basilar membrane, and are two 

separate auditory-phonetic continua. As these slabs are representations of the basilar membrane, the first 

two slabs are marked every 5 ERB starting at 5 up to 25 ERB in figure 1, just below the bottom level. ERB 

stands for Equivalent Rectangular Bandwidth and is a measurement used for human hearing. The low 

frequencies are located on the left side of the slab, whereas the high frequencies are located on the right side 

of the slab. The third slab contains “words” that have meaning. In this case, diphthongs are given their own 

meaning node as if they were a word in the lexicon that can be recognized by the listener. Using the 5 vowels 

/a/, /e/, /i/, /o/ and /u/, the total number of possible words is 25 including combinations such as /aa/. 

Combinations of the same vowels are referred to as elongated or long vowels, as these are technically not 

diphthongs. With 25 total possible words, which means that the lexicon is complete, the meaning slab 

contains 25 nodes. The activities of the lowest level of nodes are defined as (xk) where k runs from 1 to K 
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where K is a variable total number of nodes between 60 and 85, depending on the number of meanings 

included in the network. In a network that contains no meaning at all, K = 60 as this is equal to the number 

of auditory nodes. In a network containing a full lexicon, K = 85, as there are 25 extra meaning nodes on 

top of the 60 auditory nodes.  

While other models often refer to the lowest level as the “input level”, it may be misleading for the 

model used in this thesis to call it that. When trained, the model should be able to determine the activities 

on the meaning slab based on input from the basilar membrane slabs. Vice versa, the model should also be 

able to determine the expected sound on the basilar membrane slabs based on the meaning slab. This creates 

the bidirectional nature of the model, as is desired. Considering that both the slabs containing the 

representation of the basilar membrane and the meaning slab are on the same level, we could potentially say 

that this level is both the input and the output level for each category. For lack of a better term, this input 

and output level shall be referred to as the bottom level as it is the bottom level of the visual representation 

of the model in figure 1.  

The second level (y) has activities (yl) with l from 1 to L = 50, meaning there are a total of 50 nodes on 

the middle level. Finally the third, top level (z) has activities (zm) with m running from from 1 to M = 20, 

meaning there are a total of 20 nodes on the top level. These two upper levels are levels that contain hidden, 

binary nodes, meaning they contain nodes that can either be on or off. The middle and top levels represent 

a type of long-term memory for the network.  

Each level in the model contains biases, which are a type of offset that is an extra input to neurons, with 

its own connection weight. Biases control when the neuron activates and are a constant to a function. For 

example, a bias represents b in the simple function f(x) = ax + b. In this thesis, we define the biases of our 

neural network per level. The bottom level has biases (ak), the middle level (bl) and the top level has biases 

(cm).  

Evidently, these different levels are required to interact with each other. The bottom level is connected 

to the middle level with weights (ukl) and the middle level is connected to the top level with weights (vlm). 

In figure 1 both black and white connections are visible between the nodes. The black nodes indicate a 

positive connection between two nodes. On the other hand, white connections mean a negative connection 

between two nodes. Thus if a node is activated, with a positive weight, the node it is connected to is more 

likely to activate, and vice versa with a negative weight, it is less likely to activate. A positive weight is 

called excitatory and a negative weight is called inhibitory. 

The name “restricted deep Boltzmann machine” is somewhat deceiving in that it suggests being a single 

type of neural network. In reality, there are differences between networks that fall under this same name. In 

the neural network used for this thesis, the network will go through different consecutive phases for the 

training procedure. First, in the initial settling phase the network will be set up. Secondly, the network will 
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start its learning process in the Hebbian learning phase. In the third phase, the network will go through the 

dreaming phase. Finally, the network will be updated with the anti-Hebbian learning phase. As this model 

is based on Boersma’s model, the following mathematical equations are the same as in Boersma’s 2019 

paper.  

3.1. The initial settling phase  

Before even starting the initial settling phase, the network is given an input on the bottom level. In the 

initial settling phase, the activity of the nodes at the bottom level (xk) are “clamped”, meaning they are held 

at a constant at the activity with which the network was provided. The activity on the bottom level spreads 

up to the middle level (yl) for all l from 1 to L, starting with the activities (zm) at 0.  

(1) 𝑦𝑙  ←  𝜎(𝑏𝑙 + ∑ 𝑥𝑘𝑢𝑘𝑙
𝐾
𝑘=1  + ∑ vlmzm

M
m=1 ), 

where σ() is monotonic and nonlinear, thus either entirely increasing or entirely decreasing. In (2) the 

standard logistic function is shown.  

(2) 𝜎(𝑥) ≔ 1/(1 + exp(−𝑥)) 

After the activities of (yl) have been calculated, the activities of the top level (zm) are computed in a 

similar way as (yl) is computed, where the activities are calculated for all m from 1 to M. Unlike the middle 

layer, the top level is not connected to the clamped bottom level, and is not directly influenced the activities.  

(3) 𝑧𝑚  ←  𝜎(𝑐𝑚 +  ∑ 𝑦𝑙𝑣𝑙𝑚)𝐿
𝑙=1  

Then (1) through to (3) are repeated 10 times while the actitvities (xk) remain clamped. This resonance 

deterministically brings the network to a relatively stable state. Once this equilibrium state is reached, the 

network can move on to the Hebbian learning phase.  

3.2. The Hebbian learning phase 

In the Hebbian learning phase, the network increases the weight of any positive connection between 

two active nodes, thus strengthening their connection. This results in both nodes being active at the same 

time more frequently. Moreover, the node that is active receives a higher bias, making it even more likely 

to be active in the future. Using a learning rate of 0.001 assigned to η, we arrive at the following functions.  

(4) 𝑎𝑘 ← 𝑎𝑘 +  𝜂𝑥𝑘 

(5) 𝑏𝑙 ← 𝑏𝑙 +  𝜂𝑦𝑙 

(6) 𝑐𝑚 ← 𝑐𝑚 +  𝜂𝑧𝑚 

(7) 𝑢𝑘𝑙 ← 𝑢𝑘𝑙 + 𝜂𝑥𝑘𝑦𝑙 

(8) 𝑣𝑙𝑚 ← 𝑣𝑙𝑚 +  𝜂𝑦𝑙𝑧𝑚 
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3.3. The dreaming phase  

After the Hebbian learning phase, we arrive at the dreaming phase. During this phase the model will 

create its own pattern, similar to dreaming. In this phase, the bottom level (xk) can be influenced by the 

middle level (yl), meaning that the bottom level is no longer clamped. From this follows function (9).  

(9) 𝑥𝑘  ← 𝑎𝑘 +  ∑ 𝑢𝑘𝑙𝑦𝑙
𝐿
𝑙=1  

After that, for (zm) and (yl) new values are computed stochastically, the top level before the middle level.  

(10) 𝑧𝑚 ~ ℬ (𝜎(𝑐𝑚 + ∑ 𝑦𝑙𝑣𝑙𝑚)𝐿
𝑙=1 ) 

(11) 𝑦𝑙  ~ ℬ (𝜎(𝑏𝑙 + ∑ 𝑥𝑘𝑢𝑘𝑙 + ∑ 𝑣𝑙𝑚𝑧𝑚
𝑀
𝑚=1 )𝐾

𝑘=1 ) 

In these two formulas Ɓ( ) represents a Bernoulli deviate. This Bernoulli distribution leads to a binary 

option, 0 or 1. For example, if the sigmoid function derived from formula (10) shows us a result of 0.7, then 

the Bernoulli function will give us an output (zm) of 0 or 1 with a probability of  0.7 of (zm) being 1. Then 

the formulas (9) through to (11), similarly to the in the settling phase, are repeated 10 times. Unlike the 

initial settling phase, however, formulas (10) and (11) contain a randomized algorithm. The random 

variation combined with the initial real inputs ensures that, ultimately, the distribution of possible activation 

patterns are faithfully sampled by all possible activation patterns in the network.  

3.4. The anti-Hebbian learning phase  

Finally, the anti-Hebbian learning phase is the same as the Hebbian learning, except rather than the 

weights getting strengthened and biases increasing, the weights are generally weakened and the biases are 

decreased, unless the weights were negative to begin with. When weights and biases are negative, then they 

are strengthened and increased respectively. This anti-Hebbian learning phase is required so that the weights 

between neurons do not infinitely grow larger.  

(12) 𝑎𝑘 ← 𝑎𝑘 −  𝜂𝑥𝑘 

(13) 𝑏𝑙 ← 𝑏𝑙 −  𝜂𝑦𝑙 

(14) 𝑐𝑚 ← 𝑐𝑚 −  𝜂𝑧𝑚 

(15) 𝑢𝑘𝑙 ← 𝑢𝑘𝑙 − 𝜂𝑥𝑘𝑦𝑙 

(16) 𝑣𝑙𝑚 ← 𝑣𝑙𝑚 −  𝜂𝑦𝑙𝑧𝑚 

3.5 Distributional learning 

As mentioned previously, the first two slabs on the bottom level running from node 1 to node 30 and 

from node 31 to node 60 respectively, are representations of the basilar membrane. On each slab, the input 

continuum ranges from the first node which corresponds to the lowest basilar frequency and to the last 
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node which corresponds to the highest basilar frequency per slab. To create a vowel, two inputs are 

required per slab. The two inputs represent the F1 and F2 values of a vowel. In total, four inputs are 

required for both slabs in order to create the diphthong. For each vowel used in the model, in this case /a/, 

/e/, /i/, /o/, and /u/, there is an equal probability (0.2) of one being randomly chosen as the input vowel.  

Table 1 mean ERB values per vowel 

Vowels  a e i o u  

mean ERB F1 13 10 7 10 7 

mean ERB F2 19 22 25 16 13 

 

From the mean F1 and F2 of the chosen vowels, the F1 and F2 values are sampled in ERB from a 

secondary script provided in the appendix, in which the mean ERB values per vowel are predetermined. In 

Table 1, the F1 and F2 in ERB are given per vowel. These F1 and F2 values in ERB are sampled with a 

standard deviation of σ = 0.9 ERB. This results in the following formula where w = 1.5 is the half-width of 

the Gaussian peak on the basilar membrane: 

(17) 𝑥𝑘 = 5 𝑒
−

1

2
 (

𝑘−𝐹1

𝑤
)

2

+ 𝑒
−

1

2
 (

𝑘−𝐹2

𝑤
)

2

− 0.5 

 

Figure 2 Input distribution of the 5 vowels /a/, /e/, /i/, /o/, and /u/ 

In figure 2, the input distribution of the vowels /a/, /e/, /i/, /o/, and /u/ are shown on a two-dimensional 

plane. The vertical axis shows the F1 in ERB, the horizontal shows the F2 in ERB. The ellipses are at a 

relative height of 10% on each distribution. From left to right the vowels corresponding to each point on 
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the graph are /i/, /e/, /a/, /o/, and finally /u/. As can be seen in figure 2, there are areas in which vowels 

overlap.  

4. Simulations of 5 different languages: language description and results 

As there are different possible numbers of meaning nodes in slab 3, multiple test runs have been 

carried out to analyze the differences between different number of meaning nodes. In the following 

sections, 5 different results will be shown. The results differ from each other in that the number of 

meanings differ between the sections. We can compare this to different sections resembling different 

language environments, similarly to how English differs from French and how both of these two 

languages differ from Japanese.  

 In the first section of the results, a language environment including all possible meaning nodes 

will be described. While this is unrealistic for natural languages, this language environment shows all 

possible effects and combinations thereof without worrying about possible gaps. In the second section, all 

elongated vowels are removed from the meaning slab to create a gap. This means that ‘aa’, ‘ee’, ‘ii’, ‘oo’, 

and ‘uu’ are no longer in the list. This language environment was used as there are languages that make no 

distinction between short and long vowels. The third language environment contains 5 randomly chosen 

gaps. This environment was created to see what would happen when the gaps are not correlated to one 

another. Finally, the fourth language environment lacks the vowel /a/ in any position, and the fifth 

language environment lacks the vowel /u/ in any position. These environments have been made to 

compare the results in their similarity to other vowels.   

 

4.1 All-meanings language  

In the first language of the neural network, all possible “meanings” were included in the lexicon. In 

other words, all possible combinations of the five vowels /a/, /e/, /i/, /o/ and /u/ combined into diphthongs 

(e.g. /au/) or combined into elongated vowels (e.g. /aa/) had a node on the meaning slab at the bottom level. 

This means there are 25 nodes in total on the meaning slab. Let’s say the neural network received 30,000 

inputs, each meaning on the meaning slab has been activated approximately 30,000/25 = 1,200 times and 

each vowel on each sound slab has been activated 30,000/5= 6000 times. For both slabs that would mean 

that all vowels are activated 6000*2 = 12.000 times in total. The network starts off with the initial settling 

phase as described in section 3.1 before moving on to the different learning stages described in section 3.2 

to 3.4. The first learning phase is the Hebbian learning phase, in which any connection between two neurons 

is strengthened and the weight is increased. Following the Hebbian learning phase is the dreaming phase, in 

which the network stochastically resonates 10 times without the initial input being clamped anymore. Finally 
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the network goes through the anti-Hebbian learning phase, in which the connection between two neurons is 

weakened in case of a positive connection, or strengthened in case of a negative connection.  

In the first testing phase, from sound to meaning, the user chooses a sound either through a keyboard 

input or mouse click on each of the two slabs. For example, the user chooses the diphthong /ui/. This input 

is clamped on the bottom level. Then the input is resonated through the middle and top level of the network 

until it reaches a near equilibrium state. After reaching this near equilibrium state, the network activity on 

the middle level is resonated down towards the meaning slab on the bottom level. The sound slabs on the 

bottom level remain clamped and unchanged. Then the activity on the middle level and meaning slab is 

resonated until the network reaches a state of equilibrium again. 

Figure 3 shows the neural network and its activities on the different levels. The first slab on the bottom 

level shows a low F1 and high F2, corresponding to the vowel /i/. The second slab shows a low F1 and low 

F2, corresponding to vowel /u/. Therefore, the sound slabs show the diphthong [[iu]]. On the third slab, the 

meaning slab, the most activated node is ‘iu’.  

Table 2 activation list of all meaning nodes.  

Final -a Activation Final -e Activation  Final -i Activation Final -o Activation  Final -u Activation 

‘aa’ -0.367 ‘ae’ -0.512 ‘ai’ -0.152 ‘ao’ -0.365 ‘au’ 0.381 

‘ea’ -0.204 ‘ee’ -0.394 ‘ei’ -0.259 ‘eo’ -0.466 ‘eu’ 0.493 

‘ia’ 0.656 ‘ie’ 0.550 ‘ii’ 0.841 ‘io’ 0.858 ‘iu’ 1.635 

‘oa’ -0.289 ‘oe’ -0.412 ‘oi’ -0.637 ‘oo’ -0.383 ‘ou’ 0.386 

‘ua’ -0.060 ‘ue’ -0.756 ‘ui’ -0.373 ‘uo’  -0.790 ‘uu’ 0.623 

 

Figure 3 Neural network test from sound to meaning of diphthong /au/ after 30,000 inputs.  
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Table 3 positive activations for meaning nodes starting with i- and meaning nodes ending with -u 

Meaning node i- Activation Meaning node -u Activation 

‘ia’ 0.656 ‘au’ 0.381 

‘ie’ 0.550 ‘eu’ 0.493 

‘ii’ 0.841 ‘iu’ 1.635 

‘io’ 0.858 ‘ou’ 0.386 

‘iu’ 1.635 ‘uu’ 0.623 

 

As figure 3 shows, the initial input [[iu]] on the sound slabs corresponds to the meaning node ‘iu’, which 

is the most activated node on the meaning slab with an activation of 1.635 as can be seen in table 2 and 3. 

Other nodes with a positive activity are presented in table 3 for better visualization. The nodes that are 

activated all have a vowel in common with the actual sound input. Either the first part of the diphthong is 

the same, here the first vowel i-, or the second part of the diphthong is the same, here the vowel -u. All other 

nodes that are not related to the sound input show a negative activity as presented in table 2. This includes 

the node ‘ui’ with an activation of -0.373. So while the meaning node ‘iu’ was the most activated, the 

meaning node ‘ui’ is not activated at all, further proving the network is able to distinguish between different 

sequences of sounds despite approximately the same sounds being used. While only one example is 

demonstrated here, the same effects are found for all other diphthongs and long vowels. The network also 

functions when trained 3,000 times, however the differences in activations are significantly smaller with 

this amount of training.  

The second test is from meaning to sound. This is to demonstrate the possibility of bidirectionality in 

the neural network. In figure 4 shown below, the meaning input given by the user is ‘eo’. Similarly to how 

meaning was derived from sound, sound is derived from meaning through resonance until the network 

reaches near equilibrium states.  

Figure 4 the neural network from meaning 'eo' to sound after 30,000 inputs. 
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Earlier in table 1, we saw that the mean ERB of vowel /e/ was F1 = 10 and F2 = 22, and the mean ERB 

of vowel /o/ was F1 = 10 and F2 = 16. In figure 4, similar results are shown. The two areas of activations 

on the first slab are approximately at 10 to 11 ERB for F1, and 22 to 23 ERB for F2, corresponding to the 

vowel /e/. The areas of activations for the second slab are approximately at 10 to 11 ERB for F1 and 16 

ERB for F2, corresponding to the vowel /o/. We can conclude that the sound derived from the meaning node 

‘eo’ does indeed correspond to the sound [[eo]], thus demonstrating the machine’s ability to not only move 

bottom-up, but also top-down. This adheres to the bidirectional model of phonology and phonetics as 

suggested by Boersma (2011). It should be noted that although the diphthongs and vowels on the bottom 

slab were written between slashes in this paper, which corresponds to the surface form in the bidirectional 

model, they more closely represent the auditory form, which is written in double brackets. 

Unlike Boersma’s 2019 network, this neural network retains its categorical behavior even when trained 

30,000 times. This is because the network does not only have sound input to rely on, but it also contains the 

meaning of the sounds. The meaning appears to be a placeholder for the categorical behavior of the neural 

network.  

Using the neural model, we can compare the different diphthongs and determine how similar they are 

to one another by creating a matrix. This is done with cosine similarity. First we find the norm of vector ai 

and bi from for i from 1 to n, where n is the number of dimensions, in this case n = 25 as there are 25 meaning 

nodes.  

(18) 𝐴𝑖 =
𝑎𝑖

√∑ 𝑎𝑗
2𝑛

𝑗=1

  

(19) 𝐵𝑖 =
𝑏𝑖

√∑ 𝑏𝑗
2𝑛

𝑗=1

 

This leaves the length of A and B at 1. The cosine similarity is equal to the inner product or dot product 

of vector Ai and Bi.  

(20) 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑐𝑜𝑠 (𝜃)  =  ∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1 , 

where θ is the angle between vector Ai and Bi. When the vectors Ai and Bi are the identical, the cosine 

similarity is equal to 1 whereas if Ai and Bi are perpendicular to each other, the cosine similarity is equal to 

0. This leaves us with a matrix full of numbers between 0 and 1. For clarity, we multiply the numbers in the 

matrix by 100 and round them to produce whole number values. This leaves us with a matrix with a range 

of values from 0 to 100 where 0 means there is no resemblance between Ai and Bi at all and a score of 100 

means Ai and Bi are identical. In other words, the sounds produced are the same as one another.  The 

following matrix is a result of a network that has received 30,000 inputs and is well-trained.   



- 12 - 

 

Table 4 Similarity of Sounds Matrix 

 

From this matrix there are a few things worth noting, starting with the elongated vowels as a base. The 

matrix shows that /uu/ is both similar to /ii/ and /aa/. Both of these long vowels have a score of 76 when 

compared to /uu/. For /ii/, the similarity is unsurprising, as both /u/ and /i/ are high vowels and, as a result, 

have a similar F1. However, for /aa/ and /uu/ the similarity may be more remarkable. /a/ is a front open 

unrounded vowel whereas /u/ is a closed back rounded vowel. Even if we were to consider /a/ a central 

 aa ea ia oa ua ae ee ie oe ue ai ei ii oi ui ao eo io oo uo au eu iu ou uu 

aa 100 84 75 79 90 81 67 65 60 69 78 66 57 60 67 82 70 64 62 74 87 75 67 68 76 

ea 84 100 81 88 84 67 80 65 72 64 63 78 59 69 60 64 80 64 70 65 75 87 69 76 70 

ia 75 81 100 79 82 62 69 80 66 67 60 61 79 60 65 60 64 80 64 66 65 71 89 67 71 

oa 79 88 79 100 79 61 72 61 81 61 63 72 60 80 61 61 70 64 82 59 73 81 70 88 68 

ua 90 84 82 79 100 69 62 66 58 77 68 64 64 59 77 69 67 69 60 81 80 74 74 67 87 

ae 81 67 62 61 69 100 84 82 79 87 78 65 58 60 66 90 74 70 69 79 78 64 58 59 68 

ee 67 80 69 72 62 84 100 85 91 81 62 77 64 71 58 73 87 76 81 71 65 76 64 71 61 

ie 65 65 80 61 66 82 85 100 79 85 65 63 78 61 68 72 72 88 69 75 61 61 76 60 66 

oe 60 72 66 81 58 79 91 79 100 79 62 71 62 80 59 67 77 70 90 65 61 69 61 80 59 

ue 69 64 67 61 77 87 81 85 79 100 65 61 65 60 74 76 71 75 68 87 68 61 64 61 77 

ai 78 63 60 63 68 78 62 65 62 65 100 84 79 82 89 75 59 60 59 63 88 75 71 74 80 

ei 66 78 61 72 64 65 77 63 71 61 84 100 81 91 82 61 75 60 68 59 78 91 72 83 77 

ii 57 59 79 60 64 58 64 78 62 65 79 81 100 79 87 56 59 76 59 62 66 72 91 71 76 

oi 60 69 60 80 59 60 71 61 80 60 82 91 79 100 81 56 65 59 78 54 73 82 71 92 72 

ui 67 60 65 61 77 66 58 68 59 74 89 82 87 81 100 62 56 66 56 72 80 73 78 73 90 

ao 82 64 60 61 69 90 73 72 67 76 75 61 56 56 62 100 83 80 77 87 74 60 55 56 65 

eo 70 80 64 70 67 74 87 72 77 71 59 75 59 65 56 83 100 83 87 84 62 74 58 65 59 

io 64 64 80 64 69 70 76 88 70 75 60 60 76 59 66 80 83 100 80 86 55 60 75 58 64 

oo 62 70 64 82 60 69 81 69 90 68 59 68 59 78 56 77 87 80 100 75 58 67 58 77 55 

uo 74 65 66 59 81 79 71 75 65 87 63 59 62 54 72 87 84 86 75 100 66 58 62 54 75 

au 87 75 65 73 80 78 65 61 61 68 88 78 66 73 80 74 62 55 58 66 100 87 76 81 90 

eu 75 87 71 81 74 64 76 61 69 61 75 91 72 82 73 60 74 60 67 58 87 100 82 89 83 

iu 67 69 89 70 74 58 64 76 61 64 71 72 91 71 78 55 58 75 58 62 76 82 100 78 89 

ou 68 76 67 88 67 59 71 60 80 61 74 83 71 92 73 56 65 58 77 54 81 89 78 100 80 

uu 76 70 71 68 87 68 61 66 59 77 80 77 76 72 90 65 59 64 55 75 90 83 89 80 100 
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vowel due to its height, rather than a front vowel, it does not explain the similarities between the two vowels. 

It is possible that the correlation is derived from the similarity of the F2 of /u/ and F1 of /a/. The similarity 

in elongated vowels are translated into the diphthongs as well. /uu/ is close to /au/ (90) and /ua/ (87) as well 

as /iu/ (89) and /ui/ (90).  

Next, the matrix shows close similarity of /ee/ and /oo/ with a score of 81. This is likely because these 

vowels share the same vowel height at close-mid level and, similarly to /i/ and /u/, share a similar F1. The 

diphthongs once again reflect this similarity where /ee/ is close to /oe/ (91) and /eo/(87), and /oo/ close to 

/oe/(90) and /eo/ (87).   

Using the matrix, it is also possible to compare different sequences of sound. /ua/-/au/ as well as /ui/-

/iu/ and /eo/-/oe/ are expected to have higher similarity than for example /ei/-/ie/ or /ia/-/ai/ because of the 

similarity in vowel quality as discussed earlier in this section. This turns out to be the case. /au/-/ua/ have a 

similarity of 80, /ui/-/iu/ a similarity of 78 and /eo/-/oe/ a similarity of 77. /ei/-/ie/ have a similarity of only 

63, and /ia/-/ai/ even less with 60. Comparing these last two numbers to unrelated diphthongs such as /ea/-

/io/ and /ou/-/ae/ with a score of 64 and 59 respectively, there is no real difference between different 

sequences of sounds and completely different diphthongs. This provides further evidence that the order of 

sounds is considered more important by the neural network than the sounds themselves.  

 

4.2 Short vowel language 

In this language, all long vowels are removed. This test was run because there are natural languages 

without distinction between long and short vowels. When removing the long vowel meaning nodes ‘aa’, 

‘ee’, ‘ii’, ‘oo’, and ‘uu’, we are left with 20 meaning nodes. However, it still remains possible for both slabs 

to produce two of the same vowels in a row given by the user. For each of the elongated vowels, the neural 

network then has to come up with an alternative meaning that would come closest to the perceived sound.  

Figure 5 The network with a short vowel language with a sound input of /aa/ after 30,000 inputs. 
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After training with 30,000 inputs, the network attempts to pick out the meanings containing the vowel 

given in the input. In this case, the input is /aa/. However, as can be seen in figure 5, the most activated 

meaning node is ‘ua’ with an activation of 1.753. The next highest activation is by ‘ao’ with an activation 

of 1.153. In the previous section, we discovered that the similarities between /a/ and /u/ are quite high, thus 

explaining why ‘au’ is the most activated meaning node. However, when doing multiple runs, the results 

are not always consistent. Sometimes, other meaning nodes are activated by the network. The meaning 

nodes that are activated contain /a/ in either first or second position more so than meaning node ‘au’ despite 

the latter being the most similar to the input sound /aa/. This variation may be caused by the stochasticity of 

the model as well as the slight deviations from the prototype vowel, the most commonly heard vowel that 

is at the top of the distribution.   

 

4.3 Random gap language 

In this language of the neural network, 5 meaning nodes were removed at random. This was to test the 

machine’s behavior when unrelated gaps were found in the language environment. The meaning nodes 

that were removed were ‘ea’, ‘eo’, ‘iu’, ‘ue’, and finally ‘uo’. This leaves the neural network with 20 

meaning nodes on the bottom level.  

Similarly to some test runs in the short vowel language in section 4.2, when the Boltzmann machine 

was introduced to the missing meaning on the sound slabs, no clear winner was found in the meaning slab 

when the missing inputs were given on the sound slab. The nodes with the same vowel either on slab 1 or 

slab 2 were positively activated, but none were activated enough compared to another for there to be a 

clear winner. It is possible that over multiple runs,  vowels that are similar to one another are more likely 

to be the most activated node. For example, with ‘ea’ removed, ‘eu’ may become the most frequently 

highest activated node. However, similarly to 4.2, this was not consistent.  

Figure 6 The network with a  5 gap language with sound input /ea/ after 30,000 inputs. 
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4.4 a-less language 

In this run of the neural network, instead of removing random meaning nodes or the elongated vowels, 

the vowel /a/ was completely removed from meaning. This also means that the network was not trained to 

perceive the vowel /a/ and the vowel was not included in the input distribution. This leaves 16 meaning 

nodes left on the bottom level.  

 

Earlier in section 4.1, with the similarity matrix, it was established that /u/ and /a/ showed to have some 

correlation to each other. While section 4.2 and 4.3 did not consistently demonstrate this correlation, when 

the vowel /a/ is completely removed in the meaning, their similarity does end up being visible in the network. 

After introducing the network to 30,000 inputs, when being confronted with /aa/ in the sound input as shown 

in figure 7, the meaning nodes that are more activated than others are those containing /u/, with ‘uu’ being 

the most activated node with an activation of 0.945. All other nodes that do not contain this vowel /u/ have 

a negative activation. However, this activity remains minimal, and when the sound input contains /u/ either 

on slab 1 or 2, the corresponding nodes are activated much more than when introduced to /a/. Moreover, 

even though the network often activates ‘uu’, there is still a chance of the network activating another 

meaning node. This is likely a result of the overlap in distributions, as was shown in Figure 2.  

  

4.5 u-less language  

Because leaving out the vowel /a/ showed interesting correlation of the similarities between /a/ and /u/, 

leaving out the vowel /u/ would be interesting as this vowel is related to both /a/ and /i/. Once again, the 

network contained 16 meaning nodes, now excluding the vowel /u/.  

Figure 7 The network with an a-less language with sound input /aa/ after 30,000 inputs. 
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Like Section 4.4, when the network was trained on 30,000 inputs and introduced to /uu/ on the sound 

slabs only through user input. In figure 8, the meaning node the most activated is ‘aa’. However, this was 

not a consistent result. Over the course of several runs, the meaning nodes that were partially activated were 

those that contained the vowel /a/ and those that contained the vowel /i/. Neither vowel showed more 

activation than the other and both vowels only showed minimal activation on the meaning nodes compared 

to when they were introduced to the corresponding vowels /a/ and /i/.  

 

5. Discussion 

This restricted deep Boltzmann machine model was able to distinguish between different sequences of 

sound with the addition of time added through a holistic model. This was tested in five different languages 

environments. The language containing all possible meanings allowed the machine to distinguish between 

all sequences of sound correctly. The following gap languages showed activation of diphthongs similar to 

the input, although the network was not able to choose similar inputs consistently. This is likely due to the 

overlap of vowel distributions. As the model contained not only sound, but also meaning, it was able to  

retain the categorical behavior even after 30,000 inputs, which was not the case for Boersma’s 2019 model. 

This is because the network is able to use meaning as a placeholder for the prototype vowel. As a result, it 

also modeled the perceptual magnet effect for vowels correctly regardless of being combined into 

diphthongs on the meaning slab. Moreover, the neural network follows the bidirectional model for 

phonology and phonetics in that the network is able to pick the correct meaning for a given input sound, and 

vice versa. However, the model does not capture the different levels proposed. The neural model only works 

from the top level meaning (<morphemes>), down to the second to last level, sound ([[auditory form]]), 

skipping the intermediate stages of the surface form and underlying form. The addition of time can be used 

for future research on modeling human cognitive abilities related to auditory perception. For future research, 

Figure 8 The network with an u-less language with sound input /uu/ after 30,000 inputs. 
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it may be worth looking into not only diphthongs but also triphthongs. Furthermore, it may be interesting to 

replicate not only vowels, but also consonants, consonant clusters or combinations of vowels and 

consonants. While the holistic model works well for the goal of this research, it fails to represent true human 

cognition as it uses multiple basilar membranes that supposedly capture different points in time despite the 

input on each slab being given by the user at the same time. Instead a more realistic model would be one in 

which some type of memory captures the input at different points in time on the same input slab or level to 

finally reach the correct output.  

6. Conclusion  

For this thesis, the goal was to add the aspect of time to a restricted deep Boltzmann machine. After 

this initial goal had been reached, the network was tested in different language environments for its ability 

to distinguish between sequences of sounds that either contain the same sounds or different sounds as well 

as its ability to create emergent phonological categories. All sequences of sounds were appropriately 

distinguished from one another unless the network was introduced to a sound it had not yet been trained 

on. In the latter case, the network would choose a sequence from the lexicon that was similar to the input 

sound, albeit inconsistently. From the lexicon down to the sound level, the network was able to create the 

prototype vowel, which can be compared to a phonological category. As the network works from both 

meaning to sound, and from sound to meaning, it is bidirectional, supporting bidirectional phonology and 

phonetics. The neural network used in this study directly builds upon the network made by Boersma’s 

2019 paper. Although the network does not use memory to include the aspect of time, it more accurately 

replicates human perception of sounds than other models that use auditory distance. It may be interesting 

to see how this model responds to longer sequences of sounds or sounds other than vowels.  
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Appendices 

Appendix 1: Main script  
 
# Praat script simul_dbm_diphthongs.praat 

# Angelica van Beemdelust 06-06-2020 

# Based on script used in Boersma, Paul. 2019. Simulated distributional learning in 

deep Boltzmann machines leads to the emergence of discrete categories. ICPhS.  

 

form Emergence of three vowels 

 word Foreground_colour Yellow 

 word Background_colour Maroon 

 word Button_colour Olive 

 word Font Times 

 natural Font_size 35 

 boolean Include_sound 1 

 boolean Include_meaning 1 

 choice Language: 1 

 button All meanings language 

 button Short vowel language 

 button Random gap language 

 button Fixed gap language 

 button a-less language 

 button u-less language 

endform 

 
demo.foregroundColour$ = foreground_colour$ 

demo.backgroundColour$ = background_colour$ 

demo.buttonColour$ = button_colour$ 

demo.font$ = font$ 

demo.fontSize = font_size 

 

@sound 

 

procedure sound 

 vowels$ = "aeiou" 

 numberOfVowels = length (vowels$) 

 f1_erb# = { 13, 10, 7, 10, 7 } 

 f2_erb# = { 19, 22, 25, 16, 13 } 

 ambientStdev_erb = 1.0 

 auditorySpreading_erb = 0.68 

 numberOfAuditoryNodes = 60 

 numberOfAuditoryNodesPerSlab = 30 

 fmin_erb = 4.0 

 fmax_erb = 28.0 

 erbsPerNode = (fmax_erb - fmin_erb) / (numberOfAuditoryNodesPerSlab - 1) 

 auditorySpreading_nodes = auditorySpreading_erb / erbsPerNode 

endproc  

 

if language$ = "Fixed gap language" 

# create some sort of form within the script to let the user determine which diphthongs 

to leave out. 

beginPause: "Which meaning(s) do you want to remove?" 

 comment: "Any pair combinations of [aeiou], space for separation e.g. 'ea eo iu 

ue uo'" 

 sentence: "fixed gap", "ea eo iu ue uo" 

clicked = endPause: "submit", 1  

writeInfoLine: "Gap(s) in this language: " 

appendInfoLine: fixed_gap$ 

@split (" ", fixed_gap$) 

numberOfRemovedMeanings = split.length 

endif 
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# this procedure is used to split up the sentence input from the user and determine 

which gaps are desired.  

procedure split (sep$, str$) 

 # sep$ = separator (i.e. " ") 

 # str$ = string to separate 

 # sepLength = separator length 

 sepLength = length(sep$)  

 .length = 0 

 repeat 

  stringLength = length(str$) 

  sep = index(str$, sep$) 

 if sep > 0 

  part$ = left$(str$, sep-1) 

  str$ = mid$(str$, sep+sepLength, stringLength) 

 else 

  part$ = str$ 

 endif 

 .length = .length+1 

 array$[.length] = part$ 

 until sep = 0 

endproc 

 

#setting up language generator 

vowels1$ = "aeiou" 

vowels2$ = "aeiou"  

all_vowels$ = "aeiou" 

 

 

#beginning language generator 

procedure create_Meaning: vowels1$, vowels2$ 

 # k is the true index of the meaning 

 k = 0 

 # magic string for short vowels   

 if vowels1$ = "short" 

  numberOfVowels1 = length (all_vowels$) 

  numberOfVowels2 = length (all_vowels$) 

  for i to numberOfVowels2 

   for j to numberOfVowels1 

    if i <> j 

     k += 1 

     v1$ = mid$ (all_vowels$, i) 

     v2$ = mid$ (all_vowels$, j) 

     meaning.morpheme$ [k] = "‘" + v2$ + v1$ + "’"  

    endif 

   endfor 

  endfor 

 # magic string for random gap language  

 # l is the total number of indices of a complete language 

 elif vowels1$ = "gap"  

  numberOfVowels1 = length (all_vowels$) 

  numberOfVowels2 = length (all_vowels$) 

  l = 1  

  writeInfoLine: "Gaps in this language:" 

  for i to numberOfVowels2 

   for j to numberOfVowels1 

    # initializing a variable be check if meaning is to be added  

    meaningNotRemoved = 1 

    for number to size (removed#) 

     # validity check for removal of meaning  

     if l = removed# [number] 

      meaningNotRemoved = meaningNotRemoved * 0 

     else  
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      meaningNotRemoved = meaningNotRemoved * 1  

     endif 

    endfor  

    v1$ = mid$ (all_vowels$, i) 

    v2$ = mid$ (all_vowels$, j) 

    if meaningNotRemoved 

     k += 1 

     meaning.morpheme$ [k] = "‘" + v2$ + v1$ + "’" 

    else   

     gap$ = "‘" + v2$ + v1$ + "’" 

     appendInfo: gap$ + ", " 

    endif 

    l += 1  

   endfor  

  endfor  

 # magic string for fixed gap based on user input language  

 elif vowels1$ = "fixed gap" 

  numberOfVowels1 = length (all_vowels$) 

  numberOfVowels2 = length (all_vowels$) 

  l = 1  

  for i to numberOfVowels2 

   for j to numberOfVowels1 

    v1$ = mid$ (all_vowels$, i) 

    v2$ = mid$ (all_vowels$, j) 

    meaningNotRemoved = 1 

    for removedMeaning to numberOfRemovedMeanings 

       if array$[removedMeaning] = v2$ + v1$ 

      meaningNotRemoved = meaningNotRemoved * 0   

     else 

      meaningNotRemoved = meaningNotRemoved * 1 

     endif 

    endfor 

     if meaningNotRemoved 

      k += 1 

      meaning.morpheme$ [k] = "‘" + v2$ + v1$ + "’" 

     endif 

    l += 1  

   endfor  

  endfor  

 else  

  numberOfVowels1 = length (vowels1$) 

  numberOfVowels2 = length (vowels2$) 

  l = 1  

  for i to numberOfVowels2 

   for j to numberOfVowels1 

    k += 1 

    v1$ = mid$ (vowels1$, i) 

    v2$ = mid$ (vowels2$, j) 

    meaning.morpheme$ [k] = "‘" + v2$ + v1$ + "’" 

   endfor 

  endfor 

 endif 

meaning.numberOfWords = k 

endproc 

 

if language$ = "All meanings language" 

# already set above. 

elsif language$ = "Short vowel language"  

 vowels1$ = "short" 

elsif language$ = "a-less language" 

 vowels1$ = "eiou" 

 vowels2$ = "eiou" 

elsif language$ = "u-less language" 
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 vowels1$ = "aeio" 

 vowels2$ = "aeio" 

elsif language$ = "Random gap language" 

 vowels1$ = "gap" 

 x = 0   

 removed# = zero# (5)  

 #set an array of random numbers to randomize which gaps are in the language... 

 ...These are indices to be removed from a language that contains all meaning, 

thus creating a new language...  

 ... so here 5 random meanings are removed from all possible meanings.  

 while x <= 4 

  n = randomInteger(1,25) 

  n_valid = 1  

  #forloop guarantees different numbers in array, thus 5 removed meanings 

  for number to size (removed#) 

   if n <> removed# [number]  

    n_valid = n_valid * 1  

   else  

    n_valid = n_valid * 0 

   endif 

  endfor 

  if n_valid 

   x += 1 

   removed# [x] = n  

  endif 

 endwhile 

elsif language$ = "Fixed gap language" 

  vowels1$ = "fixed gap" 

endif 

@create_Meaning: vowels1$, vowels2$  

#end of language generator 

 

numberOfInputNodes = include_sound * numberOfAuditoryNodes + include_meaning * 

meaning.numberOfWords 

numberOfMiddleNodes = 50 

numberOfTopNodes = 20 

learningRate = 0.001 

 

semf.offsetNode = include_sound * numberOfAuditoryNodes 

 

label NETWORK 

step = 0 

halfwayClickedTwoFormantsSlab1 = 0 

halfwayClickedTwoFormantsSlab2 = 0 

firstVowel = 1 

firstMeaningVowel = 1 

 

procedure learn: .learningRate 

 @spreadUp: 1 

 @hebbianLearning: .learningRate 

 @resonate: 1 

 @hebbianLearning: - .learningRate 

endproc 

 

procedure spreadUp: .stochastic 

 activity3# = zero# (numberOfTopNodes)   ; or to random values 

 .numberOfMeanFieldEchoes = 10 

 for .iecho to .numberOfMeanFieldEchoes 

  activity2# = sigmoid# (mul# (activity1#, weight12##) + mul# (weight23##, 

activity3#) + bias2#) 

  if .stochastic 

   activity2# = randomBernoulli# (activity2#) 

  endif 
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  activity3# = sigmoid# (mul# (activity2#, weight23##) + bias3#) 

  if .stochastic 

   activity3# = randomBernoulli# (activity3#) 

  endif 

 endfor 

endproc 

 

procedure resonate: .stochastic 

 .numberOfGibbsEchoes = 10 

 for .iecho to .numberOfGibbsEchoes 

  activity1# = mul# (weight12##, activity2#) + bias1# 

  activity3# = sigmoid# (mul# (activity2#, weight23##) + bias3#) 

  if .stochastic 

   activity3# = randomBernoulli# (activity3#) 

  endif 

  activity2# = sigmoid# (mul# (activity1#, weight12##) + mul# (weight23##, 

activity3#) + bias2#) 

  if .stochastic 

   activity2# = randomBernoulli# (activity2#) 

  endif 

 endfor 

endproc 

 

procedure hebbianLearning: .learningRate 

 bias1# += .learningRate * activity1# 

 bias2# += .learningRate * activity2# 

 bias3# += .learningRate * activity3# 

 weight12## += .learningRate * outer## (activity1#, activity2#) 

 weight23## += .learningRate * outer## (activity2#, activity3#) 

endproc 

 

# 

# Create history. 

# 

soundDistribution = Create Matrix: "soundDistribution", 

... 0.5, numberOfAuditoryNodes + 0.5, numberOfAuditoryNodes, 1.0, 1.0, 1, 1, 1, 1, 1, ~ 

0.0 

 

# 

# First level. 

# 

activity1# = zero# (numberOfInputNodes) 

bias1# = zero# (numberOfInputNodes) 

x1# = linear# (0, 100, numberOfInputNodes, 1) 

y1 = 42 

 

# 

# First layer. 

# 

weight12## = zero## (numberOfInputNodes, numberOfMiddleNodes) 

 

# 

# Second level. 

# 

activity2# = zero# (numberOfMiddleNodes) 

bias2# = zero# (numberOfMiddleNodes) 

x2# = linear# (0, 100, numberOfMiddleNodes, 1) 

y2 = 66 

 

# 

# Second layer. 

# 

weight23## = zero## (numberOfMiddleNodes, numberOfTopNodes) 
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# 

# Third level. 

# 

activity3# = zero# (numberOfTopNodes) 

bias3# = zero# (numberOfTopNodes) 

x3# = linear# (0, 100, numberOfTopNodes, 1) 

y3 = 90 

 

repeat 

 @demo.erase 

 if include_sound and include_meaning 

  @demo.centredTitle: "Emergence of categories from sound–meaning pairs" 

 elsif include_sound 

  @demo.centredTitle: "Emergence of categories from sound alone" 

 elsif include_meaning 

  @demo.centredTitle: "Emergence of categories from meaning alone" 

 endif 

 # 

 # Draw network area. 

 # 

 demo Select inner viewport: 20, 80, 20, 80 

 demo Axes: 0, 100, 0, 100 

 demo Paint rectangle: "silver", 0, 100, 0, 100 

 for i to numberOfInputNodes 

  for j to numberOfMiddleNodes 

   weight = weight12## [i, j] 

   if weight > 0 

    demo Black 

    demo Line width: weight 

    demo Draw line: x1# [i], y1, x2# [j], y2 

   elsif weight < 0 

    demo White 

    demo Line width: abs (weight) 

    demo Draw line: x1# [i], y1, x2# [j], y2 

   endif 

  endfor 

 endfor 

 for i to numberOfMiddleNodes 

  for j to numberOfTopNodes 

   weight = weight23## [i, j] 

   if weight > 0 

    demo Black 

    demo Line width: weight 

    demo Draw line: x2# [i], y2, x3# [j], y3 

   elsif weight < 0 

    demo White 

    demo Line width: abs (weight) 

    demo Draw line: x2# [i], y2, x3# [j], y3 

   endif 

  endfor 

 endfor 

 demo Black 

 boundaryBetweenAuditoryAndSemanticPart = semf.offsetNode / numberOfInputNodes * 

100 

 if include_sound 

  demo Text special: 0, "left", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "[" 

  demo Text special: 0.025 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "5" 

  demo Text special: 0.125 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "10" 
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  demo Text special: 0.225 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "15" 

  demo Text special: 0.325 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "20" 

  demo Text special: 0.425 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "25" 

  demo Text special: 0.470 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "]" 

  demo Text special: 0.475 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "[" 

  demo Text special: 0.525 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "5" 

  demo Text special: 0.625 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "10" 

  demo Text special: 0.725 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "15" 

  demo Text special: 0.825 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "20" 

  demo Text special: 0.915 * boundaryBetweenAuditoryAndSemanticPart, 

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "25" 

  demo Text special: boundaryBetweenAuditoryAndSemanticPart,  "right", 30, 

"bottom", demo.font$, demo.fontSize/2.0, "0", "ERB]" 

 endif 

 if include_meaning 

  x# = linear# (boundaryBetweenAuditoryAndSemanticPart, 100, 

meaning.numberOfWords, 1) 

  for i to meaning.numberOfWords 

   demo Text special: x# [i], "right", 37, "half", demo.font$, 

demo.fontSize/3.0, "90", meaning.morpheme$ [i] 

  endfor 

 endif 

 demo Line width: 2 

 radius = 1.5 

 for i to numberOfInputNodes 

  input = activity1# [i] / 5 

  if input <> 0 

   demo Paint circle: if input > 0 then "red" else "blue" fi, x1# [i], 

y1, radius * abs (input) 

  endif 

  demo Draw circle: x1# [i], y1, radius 

 endfor 

 radius = 1.0 

 for i to numberOfMiddleNodes 

  demo Paint circle: "red", x2# [i], y2, radius * activity2# [i] + 1e-6 

  demo Draw circle: x2# [i], y2, radius 

 endfor 

 radius = 2.0 

 for i to numberOfTopNodes 

  demo Paint circle: "red", x3# [i], y3, radius * activity3# [i] + 1e-6 

  demo Draw circle: x3# [i], y3, radius 

 endfor 

 # 

 # Draw history. 

 # 

 selectObject: soundDistribution 

 demo Yellow 

 demo Line width: 3 

 demo Draw rows: 0.5, numberOfInputNodes + 0.5, 0, 0, 0, step * 5 

 demo Colour: demo.foregroundColour$ 

 # 

 # Draw buttons. 

 # 

 demo Line width: 2 
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 demo Select inner viewport: 0, 100, 0, 100 

 demo Axes: 0, 100, 0, 100 

 demo Text: 50, "centre", 12, "half", "After " + string$ (step) + if step = 1 

then " input." else " inputs." fi 

 y1NDC = 20 + 60/100 * y1 

 y2NDC = 20 + 60/100 * y2 

 y3NDC = 20 + 60/100 * y3 

 @demo.button: 14, 18, y1NDC, "1" 

 @demo.button: 14, 18, y2NDC, "2" 

 @demo.button: 14, 18, y3NDC, "3" 

 if include_sound and include_meaning 

  @demo.button: 8, 13, y1NDC, "[s]" 

  @demo.button: 81, 85, y1NDC, "‘m’" 

 endif 

 demo Select inner viewport: 0, 100, 0, 100 

 @demo.button: 88, 98, 70, "10000↑" 

 @demo.button: 88, 98, 60, "1000↑" 

 @demo.button: 88, 98, 50, "100↑" 

 @demo.button: 88, 98, 40, "10↑" 

 @demo.button: 88, 98, 30, "1↑" 

 @demo.button: 88, 98, 20, "new" 

 # 

 # Draw manual. 

 # 

 y = 0 

 if include_sound and include_meaning 

  demo Text special: 0, "left", y, "bottom", demo.font$, demo.fontSize/3.0, 

"0", "To spread nonstochastically to a level, click 1/2/3, or to spread to sound or 

meaning only, click [s] or ‘m’." 

  y += 2 

 endif 

 if include_meaning 

  demo Text special: 0, "left", y, "bottom", demo.font$, demo.fontSize/3.0, 

"0", "To input meaning, click on one morpheme node, or (to get the composed meaning) 

type a/e/i/o/u." 

  y += 2 

 endif 

 if include_sound 

  demo Text special: 0, "left", y, "bottom", demo.font$, demo.fontSize/3.0, 

"0", "To input a vowel sound, click on two formant nodes, or (to get the category 

centre) type A/E/I/O/U." 

 endif 

 # 

 # User interaction loop. 

 # 

 while demoWaitForInput ( ) 

  if demoClickedIn (88, 98, 20-4, 20+4) or demoInput ("n")   ; new 

   removeObject: soundDistribution 

   goto NETWORK 

  elsif demoClickedIn (20, 80, 20, 50) 

   demo Select inner viewport: 20, 80, 20, 80 

   clickedInputNode = 0.5 + demoX ( ) / 100 * numberOfInputNodes 

   clickedInAuditoryPart = ( clickedInputNode <= semf.offsetNode + 0.5 

) 

   if clickedInAuditoryPart 

    #Determine in which slab is clicked. 

    clickedInSlab1 = ( clickedInputNode <= 

numberOfAuditoryNodesPerSlab + 0.5)  

    if clickedInSlab1  

     if halfwayClickedTwoFormantsSlab1 

      clickedAuditoryNode = clickedInputNode 

      activity1# ~ if col <= 

numberOfAuditoryNodesPerSlab 



- 27 - 

 

      ... then self + 5 * exp (-0.5 * ((col - 

clickedAuditoryNode) / auditorySpreading_nodes) ^ 2) - 0.5 

      ... else if col <= numberOfAuditoryNodes 

       ... then self 

       ... else 0 

       ... fi 

      ... fi 

      clickedFormant2_erb_Slab1 = fmin_erb + 

(clickedAuditoryNode - 1) * erbsPerNode 

      clickedFormant2_erb_Slab2 = fmin_erb + 

(clickedAuditoryNode - 1) * erbsPerNode 

      @speak: clickedFormant1_erb_Slab1, 

clickedFormant2_erb_Slab1, clickedFormant1_erb_Slab2, clickedFormant2_erb_Slab2  

      halfwayClickedTwoFormantsSlab1 = 0 

     else 

      clickedAuditoryNode = clickedInputNode 

      activity1# ~ if col <= 

numberOfAuditoryNodesPerSlab 

      ... then 5 * exp (-0.5 * ((col - 

clickedAuditoryNode) / auditorySpreading_nodes) ^ 2) - 0.5 

      ... else if col <= numberOfAuditoryNodes 

       ... then self 

       ... else 0 

       ... fi 

      ... fi 

      clickedFormant1_erb_Slab1 = fmin_erb + 

(clickedAuditoryNode - 1) * erbsPerNode 

      clickedFormant1_erb_Slab2 = fmin_erb + 

(clickedAuditoryNode - 1) * erbsPerNode 

      halfwayClickedTwoFormantsSlab1 = 1 

     endif 

    else 

     if halfwayClickedTwoFormantsSlab2 

      clickedAuditoryNode = clickedInputNode  

      activity1# ~ if col <= 

numberOfAuditoryNodesPerSlab 

      ... then self 

      ... else if col <= numberOfAuditoryNodes  

       ... then self + 5 * exp (-0.5 * ((col - 

clickedAuditoryNode) / auditorySpreading_nodes) ^ 2) - 0.5 

       ... else 0 

       ... fi 

      ... fi  

      clickedFormant2_erb_Slab2 = fmin_erb + 

(clickedAuditoryNode - numberOfAuditoryNodesPerSlab - 1) * erbsPerNode   

      @speak: clickedFormant1_erb_Slab1, 

clickedFormant2_erb_Slab1, clickedFormant1_erb_Slab2, clickedFormant2_erb_Slab2 

      halfwayClickedTwoFormantsSlab2 = 0 

     else 

      clickedAuditoryNode = clickedInputNode  

      activity1# ~ if col <= 

numberOfAuditoryNodesPerSlab  

      ... then self  

      ... else if col <= numberOfAuditoryNodes  

       ... then 5 * exp (-0.5 * ((col - 

clickedAuditoryNode) / auditorySpreading_nodes) ^ 2) - 0.5 

       ... else 0 

       ... fi 

      ... fi 

      clickedFormant1_erb_Slab2 = fmin_erb + 

(clickedAuditoryNode - numberOfAuditoryNodesPerSlab - 1) * erbsPerNode 

      halfwayClickedTwoFormantsSlab2 = 1 

     endif 
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    endif 

   else 

    clickedMeaningNode = round (clickedInputNode - 

semf.offsetNode) 

    activity1# ~ if col <= semf.offsetNode 

    ... then 0 

    ... else 5 * if col - semf.offsetNode = clickedMeaningNode 

then 1.0 else - 1 / (meaning.numberOfWords - 1) fi 

    ... fi 

   endif 

   demo Select inner viewport: 0, 100, 0, 100 

   activity2# = zero# (numberOfMiddleNodes) 

   activity3# = zero# (numberOfTopNodes) 

   goto NETWORK_NEXT 

  elsif demoClickedIn (14, 18, y1NDC-4, y1NDC+4) or demoInput ("1") 

   activity1# = mul# (weight12##, activity2#) + bias1# 

   goto NETWORK_NEXT 

  elsif demoClickedIn (14, 18, y2NDC-4, y2NDC+4) or demoInput ("2") 

   activity2# = sigmoid# (mul# (activity1#, weight12##) + mul# 

(weight23##, activity3#) + bias2#) 

   goto NETWORK_NEXT 

  elsif demoClickedIn (14, 18, y3NDC-4, y3NDC+4) or demoInput ("3") 

   activity3# = sigmoid# (mul# (activity2#, weight23##) + bias3#) 

   goto NETWORK_NEXT 

  elsif include_meaning and demoClickedIn (8, 13, y1NDC-4, y1NDC+4) or 

demoInput ("s") 

   activity1_wide# = mul# (weight12##, activity2#) + bias1# 

   activity1# ~ if col <= semf.offsetNode then activity1_wide# [col] 

else self fi 

   goto NETWORK_NEXT 

  elsif include_meaning and demoClickedIn (81, 85, y1NDC-4, y1NDC+4) or 

demoInput ("m") 

   activity1_wide# = mul# (weight12##, activity2#) + bias1# 

   activity1# ~ if col <= semf.offsetNode then self else 

activity1_wide# [col] fi 

   goto NETWORK_NEXT 

  elsif demoInput ("AEIOU") 

   if include_sound 

    if firstVowel  

     clickedVowel1 = index ("AEIOU", demoKey$ ()) 

     f1_erb_slab1 = randomGauss (f1_erb# [clickedVowel1], 

ambientStdev_erb) 

     f2_erb_slab1 = randomGauss (f2_erb# [clickedVowel1], 

ambientStdev_erb) 

     @cleanInput 

     firstVowel = 0  

    else  

     clickedVowel2 = index ("AEIOU", demoKey$ ()) 

     f1_erb_slab2 = randomGauss (f1_erb# [clickedVowel2], 

ambientStdev_erb) 

     f2_erb_slab2 = randomGauss (f2_erb# [clickedVowel2], 

ambientStdev_erb) 

     @cleanInput 

     @applySound: f1_erb_slab1, f2_erb_slab1, 

f1_erb_slab2, f2_erb_slab2, 0 

     @spreadUp: 0 

     ;@resonate: 0 

     @speak: f1_erb_slab1, f2_erb_slab1, f1_erb_slab2, 

f2_erb_slab2 

     firstVowel = 1 

    endif 

   endif 

   goto NETWORK_NEXT 
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  elsif demoInput ("aeiou") 

   if include_sound 

    if firstMeaningVowel 

     clickedMeaningVowel1$ = demoKey$ () 

     firstMeaningVowel = 0 

    else 

     clickedMeaningVowel2$ = demoKey$ () 

     firstMeaningVowel = 1 

     clickedMeaning$ = "‘" + clickedMeaningVowel1$ + 

clickedMeaningVowel2$ + "’" 

     for i to meaning.numberOfWords  

      if meaning.morpheme$ [i] = clickedMeaning$  

       clickedWord = i 

       @cleanInput 

       @applyMeaning: clickedWord 

       @spreadUp: 0 

       ;@resonate: 0 

      endif 

     endfor 

    endif 

   endif 

   goto NETWORK_NEXT 

   # Similarity between sounds 

  elsif demoInput ("S") 

   similarity## = zero## (meaning.numberOfWords, 

meaning.numberOfWords) 

   for iword to meaning.numberOfWords 

    ivowel_slab1$ = mid$( meaning.morpheme$ [iword], 2)  

    ivowel_slab1 = index (vowels$, ivowel_slab1$) 

    ivowel_slab2$ = mid$( meaning.morpheme$ [iword], 3)  

    ivowel_slab2 = index (vowels$, ivowel_slab2$)  

    for jword to meaning.numberOfWords 

     jvowel_slab1$ = mid$( meaning.morpheme$ [jword], 2)  

     jvowel_slab1 = index (vowels$, jvowel_slab1$) 

     jvowel_slab2$ = mid$( meaning.morpheme$ [jword], 3)  

     jvowel_slab2 = index (vowels$, jvowel_slab2$)  

     @cleanInput 

     @applySound: f1_erb# [ivowel_slab1], f2_erb# 

[ivowel_slab1], f1_erb# [ivowel_slab2], f2_erb# [ivowel_slab2], 0 

     @spreadUp: 0 

    @resonate: 0 

     activity_ivowel# = activity2# 

     @cleanInput 

     @applySound: f1_erb# [jvowel_slab1], f2_erb# 

[jvowel_slab1], f1_erb# [jvowel_slab2], f2_erb# [jvowel_slab2], 0 

     @spreadUp: 0 

    @resonate: 0 

     activity_jvowel# = activity2# 

     similarity = inner (activity_ivowel#, 

activity_jvowel#) / norm (activity_ivowel#) / norm (activity_jvowel#) 

     similarity## [iword, jword] = round (similarity * 

100) 

    endfor 

   endfor 

   writeInfoLine: "Similarity of sounds: ", newline$, similarity## 

   # Similarity between meaning morphemes 

  elsif demoInput ("M") 

   similarity## = zero## (meaning.numberOfWords, 

meaning.numberOfWords) 

   for iword to meaning.numberOfWords 

    for jword to meaning.numberOfWords 

     @cleanInput 

     @applyMeaning: iword 
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     @spreadUp: 0 

    @resonate: 0 

     activity_ivowel# = activity2# 

     @cleanInput 

     @applyMeaning: jword 

     @spreadUp: 0 

    @resonate: 0 

     activity_jvowel# = activity2# 

     similarity = inner (activity_ivowel#, 

activity_jvowel#) / norm (activity_ivowel#) / norm (activity_jvowel#) 

     similarity## [iword, jword] = round (similarity * 

100) 

    endfor 

   endfor 

   writeInfoLine: "Similarity of morphemes: ", newline$, similarity## 

   # Find activity of meaning nodes 

  elsif demoInput ("N") 

   meaning_activity# = zero# (meaning.numberOfWords) 

    for meaning_activity from numberOfAuditoryNodes to k 

    @cleanInput 

    @applyMeaning: meaning_activity 

    @spreadUp: 0 

   @resonate: 0 

    activity_ivowel# = activity1# 

   endfor 

   writeInfoLine: "Activity of meaning nodes", newline$ 

   for activity from (numberOfAuditoryNodes + 1) to size (activity1#) 

     appendInfo: fixed$ (activity1# [activity], 3) + ", " 

   endfor 

   # Draw the network in Praat Picture 

  elsif demoInput ("D") 

   Select inner viewport: 0.5, 11, 0.4, 6 

   Axes: 0, 100, 0, 100 

   Paint rectangle: "silver", 0, 100, 0, 100 

   for i to numberOfInputNodes 

    for j to numberOfMiddleNodes 

     weight = weight12## [i, j] 

     if weight > 0 

      Black 

      Line width: weight 

      Draw line: x1# [i], y1, x2# [j], y2 

     elsif weight < 0 

      White 

      Line width: abs (weight) 

      Draw line: x1# [i], y1, x2# [j], y2 

     endif 

    endfor 

   endfor 

   for i to numberOfMiddleNodes 

    for j to numberOfTopNodes 

     weight = weight23## [i, j] 

     if weight > 0 

      Black 

      Line width: weight 

      Draw line: x2# [i], y2, x3# [j], y3 

     elsif weight < 0 

      White 

      Line width: abs (weight) 

      Draw line: x2# [i], y2, x3# [j], y3 

     endif 

    endfor 

   endfor 

   Black 
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   boundaryBetweenAuditoryAndSemanticPart = semf.offsetNode / 

numberOfInputNodes * 100 

   if include_sound 

    Text special: 0, "left", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "[" 

    Text special: 0.025 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "5" 

    Text special: 0.125 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "10" 

    Text special: 0.225 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "15" 

    Text special: 0.325 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "20" 

    Text special: 0.425 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "25" 

    Text special: 0.470 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "]" 

    Text special: 0.475 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "[" 

    Text special: 0.525 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "5" 

    Text special: 0.625 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "10" 

    Text special: 0.725 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "15" 

    Text special: 0.825 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "20" 

    Text special: 0.915 * 

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$, 

demo.fontSize/2.0, "0", "25" 

    Text special: boundaryBetweenAuditoryAndSemanticPart,  

"right", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "ERB]" 

   endif 

   if include_meaning 

    x# = linear# (boundaryBetweenAuditoryAndSemanticPart, 100, 

meaning.numberOfWords, 1) 

    for i to meaning.numberOfWords 

     Text special: x# [i], "right", 37, "half", 

demo.font$, demo.fontSize/3.0, "90", meaning.morpheme$ [i] 

    endfor 

   endif 

   Line width: 2 

   radius = 1.5 

   for i to numberOfInputNodes 

    input = activity1# [i] / 5 

    if input <> 0 

     Paint circle: if input > 0 then "black" else "grey" 

fi, x1# [i], y1, radius * abs (input) 

    endif 

    Draw circle: x1# [i], y1, radius 

   endfor 

   radius = 1.0 
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   for i to numberOfMiddleNodes 

    Paint circle: "black", x2# [i], y2, radius * activity2# [i] 

+ 1e-6 

    Draw circle: x2# [i], y2, radius 

   endfor 

   radius = 2.0 

   for i to numberOfTopNodes 

    Paint circle: "black", x3# [i], y3, radius * activity3# [i] 

+ 1e-6 

    Draw circle: x3# [i], y3, radius 

   endfor 

  elsif demoInput ("F") 

 

  endif 

  numberOfSteps = 

  ... if demoClickedIn (88, 98, 30-4, 30+4) or demoInput ("↑") then 1 else 

  ... if demoClickedIn (88, 98, 40-4, 40+4) then 10 else 

  ... if demoClickedIn (88, 98, 50-4, 50+4) then 100 else 

  ... if demoClickedIn (88, 98, 60-4, 60+4) then 1000 else 

  ... if demoClickedIn (88, 98, 70-4, 70+4) then 10000 else 0 fi fi fi fi 

fi 

  if numberOfSteps <> 0 

   for ministep to abs (numberOfSteps) 

    step += 1 

    word = randomInteger (1, meaning.numberOfWords) 

    vowel_slab1$ = mid$( meaning.morpheme$ [word], 2)  

    vowel_slab1 = index (vowels$, vowel_slab1$) 

    vowel_slab2$ = mid$( meaning.morpheme$ [word], 3)  

    vowel_slab2 = index (vowels$, vowel_slab2$) 

    f1_slab1 = randomGauss (f1_erb# [vowel_slab1], 

ambientStdev_erb) 

    f2_slab1 = randomGauss (f2_erb# [vowel_slab1], 

ambientStdev_erb) 

    f1_slab2 = randomGauss (f1_erb# [vowel_slab2], 

ambientStdev_erb) 

    f2_slab2 = randomGauss (f2_erb# [vowel_slab2], 

ambientStdev_erb) 

    @cleanInput 

    if include_sound 

     @applySound: f1_slab1, f2_slab1, f1_slab2, f2_slab2, 

1 

    endif 

    if include_meaning 

     @applyMeaning: word 

    endif 

    @learn: learningRate 

    if numberOfSteps = 1 

     @speak: f1_slab1, f2_slab1, f1_slab2, f2_slab2 

    endif 

   endfor 

   goto NETWORK_NEXT 

  endif 

  goto NETWORK_END demoInput ("← →") 

 endwhile 

 label NETWORK_NEXT 

until 0 

label NETWORK_END 

# 

# Clean up history. 

# 

removeObject: soundDistribution 

 

procedure cleanInput 
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 activity1# ~ 0.0 

endproc 

 

procedure applySound: .f1_erb_slab1, .f2_erb_slab1, .f1_erb_slab2, .f2_erb_slab2, 

.recordSoundDistribution 

 .audNode1_slab1 = 1 + (.f1_erb_slab1 - fmin_erb) / erbsPerNode 

 .audNode2_slab1 = 1 + (.f2_erb_slab1 - fmin_erb) / erbsPerNode 

 .audNode1_slab2 = 1 + numberOfAuditoryNodesPerSlab + (.f1_erb_slab2 - fmin_erb) 

/ erbsPerNode 

 .audNode2_slab2 = 1 + numberOfAuditoryNodesPerSlab + (.f2_erb_slab2 - fmin_erb) 

/ erbsPerNode 

 

 activity1# ~ if col > numberOfAuditoryNodes then self else 

 ... 5 * exp (-0.5 * ((col - .audNode1_slab1) / auditorySpreading_nodes) ^ 2) + 

 ... 5 * exp (-0.5 * ((col - .audNode2_slab1) / auditorySpreading_nodes) ^ 2) - 1 

+ 

 ... 5 * exp (-0.5 * ((col - .audNode1_slab2) / auditorySpreading_nodes) ^ 2) +  

 ... 5 * exp (-0.5 * ((col - .audNode2_slab2) / auditorySpreading_nodes) ^ 2) - 1 

 ... fi 

 if .recordSoundDistribution 

  select soundDistribution 

  Formula: ~ self + activity1# [col] + 2 

 endif 

endproc 

 

procedure applyMeaning: .word 

 activity1# ~ if col <= semf.offsetNode then self else -5 / 

(meaning.numberOfWords - 1) fi 

 activity1# [semf.offsetNode + .word] = 5 

endproc 

 

procedure speak: .f1_erb_slab1, .f2_erb_slab1, .f1_erb_slab2, .f2_erb_slab2 

 .f1_Slab1 = erbToHertz (.f1_erb_slab1) 

 .f2_Slab1 = erbToHertz (.f2_erb_slab1) 

 .f1_Slab2 = erbToHertz (.f1_erb_slab2) 

 .f2_Slab2 = erbToHertz (.f2_erb_slab2) 

 runScript: "makeDiphthong.praat", .f1_Slab1, .f2_Slab1, .f2_Slab1 + 1000, 

.f2_Slab1 + 1900,  

 ... .f1_Slab2, .f2_Slab2, .f2_Slab2 + 1000, .f2_Slab2 + 1900, 80, 160, 360, 530, 

80, 160, 360, 530, 150, 0.5 

 asynchronous Play 

 plusObject: "KlattGrid kg" 

 Remove 

endproc 

 

include demo.praatinclude 
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Appendix 2: Diphthong script 
 

# Klatt Grid for basic vowel. 

# Karin Wanrooij & Paul Boersma, 28 October 2010. 

# Edited by Angelica van Beemdelust for basic diphthongs.  

 

# 1. PARAMETERS 

 

form Fill in: 

 comment in Hertz: 

 real F1_Slab1 400 

 real F2_Slab1 1400 

 real F3_Slab1 2400 

 real F4_Slab1 3400 

 real F1_Slab2 400 

 real F2_Slab2 1400 

 real F3_Slab2 2400 

 real F4_Slab2 3400 

#bandwidth of formants 

 real B1_Slab1 80 

 real B2_Slab1 160 

 real B3_Slab1 360 

 real B4_Slab1 530 

 real B1_Slab2 80 

 real B2_Slab2 160 

 real B3_Slab2 360 

 real B4_Slab2 530 

 real startF0 150 

 comment in seconds: 

 real Duration 0.5 

endform 

 

startVowel = 0 

 

# FOR BASIC KLATT GRID 

 nrOfFormants = 10 

 nrOfNasalFormants = 0 

 nrOfNasalAntiFormants = 0 

 # The frication and delta formants below are not used. 

 nrOfFricationFormants = 5 

 nrOfTrachealFormants = 0 

 nrOfTrachealAntiFormants = 0 

 nrOfDeltaFormants = 1 

 

# FOR PHONATION 

 minVoiceAmpl = 35 

# midVoiceAmpl =  

 maxVoiceAmpl = 40 

 

#random variation of the pitch 

 flutter = 0.15 

#glottal flow 

 power1 = 3 

 power2 = 4 

#open phase of the glottis 

 openPhase = 0.7 

#collision phase, models last part of flow function with exp. decay? 
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 colPhase = 0.04 

#not sure what this is 

 spectralTilt = 10 

 # doublePulsing =  

 # aspirationAmpl =  

 # breathinessAmpl = 

 

# FOR VOCAL TRACT + DURATION 

# See form above 

 

# Add extra formants to get a flatter spectrum: 

# NB: the f5 value is based on a male voice. 

#Slab1 

f5_Slab1 = f4_Slab1 + 650 

f6_Slab1 = f5_Slab1 + 1000 

f7_Slab1 = f6_Slab1 + 1000 

f8_Slab1 = f7_Slab1 + 1000 

f9_Slab1 = f8_Slab1 + 1000 

f10_Slab1 = f9_Slab1 + 1000 

 

#Slab2 

f5_Slab2 = f4_Slab2 + 650 

f6_Slab2 = f5_Slab2 + 1000 

f7_Slab2 = f6_Slab2 + 1000 

f8_Slab2 = f7_Slab2 + 1000 

f9_Slab2 = f8_Slab2 + 1000 

f10_Slab2 = f9_Slab2 + 1000 

 

# The bandwidth values are based on a male voice. 

 

upBandwidth = 8.5 

for i from 5 to nrOfFormants 

 b'i'_Slab1 = f'i'_Slab1/upBandwidth 

 b'i'_Slab2 = f'i'_Slab2/upBandwidth 

endfor 

 

# 2. CREATE BASIC KLATT GRID. 

 kg = Create KlattGrid... kg startVowel duration nrOfFormants nrOfNasalFormants 

nrOfNasalAntiFormants nrOfFricationFormants 

 ... nrOfTrachealFormants nrOfTrachealAntiFormants  nrOfDeltaFormants 

  

 Add oral formant frequency point: 1, duration * 0.3, f1_Slab1  

 Add oral formant frequency point: 2, duration * 0.3, f2_Slab1 

 Add oral formant frequency point: 1, duration * 0.7, f1_Slab2  

 Add oral formant frequency point: 2, duration * 0.7, f2_Slab2  

 

# MODIFY PHONATION. 

# The pitch declines linearly. For other pitch contours: adapt the 'Add pitch 

point': 

 Add pitch point... startVowel startF0 

 Add pitch point... duration ((startF0)*0.75) 

 

# The voicing amplitude reaches a maximum at 40% of the duration. For other 

amplitude contours: adapt the 'Add voicing amplitude point': 

 Add voicing amplitude point... startVowel minVoiceAmpl 

 Add voicing amplitude point... (duration*0.4) maxVoiceAmpl  

 Add voicing amplitude point... duration minVoiceAmpl 

 

 Add flutter point... startVowel flutter 
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 Add power1 point... startVowel power1 

 Add power2 point... startVowel power2 

 Add open phase point... startVowel openPhase 

 Add collision phase point... startVowel colPhase 

 ;Add spectral tilt point... startVowel spectralTilt 

 

# Add double pulsing point... startVowel doublePulsing 

# Add aspiration amplitude point... startVowel aspirationAmpl 

# Add breathiness amplitude point... startVowel breathinessAmpl 

 

# MODIFY VOCAL TRACT. 

# FORMANTS 1 - 10 AND BANDWIDTHS 1 - 10: 

 for i to nrOfFormants 

  Add oral formant frequency point... i startVowel f'i'_Slab1 

  Add oral formant bandwidth point... i startVowel b'i'_Slab1 

  Add oral formant frequency point... i duration f'i'_Slab2 

  Add oral formant bandwidth point... i duration b'i'_Slab2 

 endfor   

 

 To Sound 

 Rename... vowel 

 Fade in... All 0 0.005 n 

 Fade out... All duration -0.005 n 

 Scale intensity... 70 
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Appendix 3: Demo script 
 

# Praat include file demo.praatinclude 

# Paul Boersma, 4 April 2014 

 

procedure demo.erase 

 demo 'demo.font$' 

 demo Font size... demo.fontSize 

 demo Select inner viewport... 0 100 0 100 

 demo Axes... 0 100 0 100 

 demo Erase all 

 demo Paint rectangle... 'demo.backgroundColour$' 0 100 0 100 

 demo Colour... 'demo.foregroundColour$' 

endproc 

 

procedure demo.title .text$ 

 .width = demo Text width (wc)... '.text$' 

 if .width < 45 

  demo Text special... 7 left 90 half 'demo.font$' 2*demo.fontSize 0 

'.text$' 

 else 

  demo Text special... 50 centre 90 half 'demo.font$' 

2*demo.fontSize*45/.width 0 '.text$'  

 endif 

 demo.textY = 70 

endproc 

 

procedure demo.centredTitle .text$ 

 .width = demo Text width (wc)... '.text$' 

 if .width < 45 

  demo Text special... 50 centre 90 half 'demo.font$' 2*demo.fontSize 0 

'.text$' 

 else 

  demo Text special... 50 centre 90 half 'demo.font$' 

2*demo.fontSize*45/.width 0 '.text$'  

 endif 

 demo.textY = 70 

endproc 

 

procedure demo.bullet .text$ 

 demo Text... 10-1.5 centre demo.textY-0.5 half • 

 .width = demo Text width (wc)... '.text$' 

 if .width < 85 

  demo Text... 10 left demo.textY half '.text$' 

 else 

  demo Text special... 10 left demo.textY half 'demo.font$' 

demo.fontSize*85/.width 0 '.text$' 

 endif 

 demo.textY -= 12 

endproc 

 

procedure demo.therefore .text$ 

 demo Text... 10-2.5 centre demo.textY half ∴ 
 .width = demo Text width (wc)... '.text$' 

 if .width < 85 

  demo Text... 10 left demo.textY half '.text$' 

 else 
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  demo Text special... 10 left demo.textY half 'demo.font$' 

demo.fontSize*85/.width 0 '.text$' 

 endif 

 demo.textY -= 12 

endproc 

 

procedure demo.text .text$ 

 demo.textY += 4 

 .width = demo Text width (wc)... '.text$' 

 if .width < 85 

  demo Text... 10 left demo.textY half '.text$' 

 else 

  demo Text special... 10 left demo.textY half 'demo.font$' 

demo.fontSize*85/.width 0 '.text$' 

 endif 

 demo.textY -= 12 

endproc 

 

procedure demo.reference .text$ 

 demo.textY += 5 

 demo Text special... 98 right demo.textY half 'demo.font$' demo.fontSize/1.5 0 

'.text$' 

 demo.textY -= 9 

endproc 

 

procedure demo.source .text$ 

 demo Text special... 2 left 2 bottom Times demo.fontSize/1.5 0 '.text$' 

endproc 

 

procedure demo.button .x1 .x2 .y .text$ 

 demo Paint rounded rectangle... 'demo.buttonColour$' .x1 .x2 .y-4 .y+4 3 

 .width = demo Text width (wc)... '.text$' 

 if .width < 0.9 * (.x2 - .x1) 

  demo Text... (.x1+.x2)/2 centre .y half '.text$' 

 else 

  demo Text special... (.x1+.x2)/2 centre .y half 'demo.font$' 

demo.fontSize*0.9*(.x2-.x1)/.width 0 '.text$' 

 endif 

endproc 

 

procedure demo.wait .duration 

 Create Sound from formula... silence mono 0 .duration 44100 0 

 Play 

 Remove 

endproc 

 


