

University of Amsterdam
BA Thesis Linguistics

THE ADDITION OF TIME TO A
RESTRICTED DEEP BOLTZMANN
MACHINE USING A HOLISTIC
MODEL, AND THE MACHINE’S
ABILITY TO DISTINGUISH BETWEEN
DIFFERENT SEQUENCES OF
SOUNDS

26 June

2020

Angelica van Beemdelust 11238720
Supervisor: Paul Boersma

Abstract

It is not controversial that the framework of neural networks can be used to replicate human

cognitive abilities. In this thesis, the aspect of time is added to a neural network called a restricted deep

Boltzmann machine, in order to replicate the human ability to recognize diphthongs. This is done with the

use of distributional learning, a learning method used by children when acquiring the sounds of their first

language. Different sequences of sound, either containing the same sounds, e.g. /au/-/ua/, or two

completely different sounds, e.g. /au/-/ie/, are able to be distinguished. The network in this study makes

use of a holistic model in which two representations of basilar membranes are present in the neural

network. Secondly, a lexicon is added to the network to test for the machine’s ability to distinguish

between sounds. With this addition, the neural network is able to retain emerged phonological categories

without the categories eventually disappearing. Not only is the model able to derive the correct lexical

output from the sound input, the network is also able to derive the sound output from the lexical input. The

sound level reveals the corresponding prototype diphthong learned from the input distribution,

demonstrating its categorical behavior and the perceptual magnet effect. As the network works

bidirectionally, this study further supports the theory of bidirectional phonology and phonetics, where both

bottom-up and top-down processing follow the same constraints.

Table of contents

1. Introduction ... - 1 -

2. Deep Boltzmann machine ... - 2 -

3. The Network Structure ... - 2 -

3.1. The initial settling phase ... - 5 -

3.2. The Hebbian learning phase ... - 5 -

3.3. The dreaming phase .. - 6 -

3.4. The anti-Hebbian learning phase ... - 6 -

3.5 Distributional learning .. - 6 -

4. Simulations of 5 different languages: language description and results - 8 -

4.1 All meanings language .. - 8 -

4.2 Short vowel language .. - 13 -

4.3 Random gap language ... - 14 -

4.4 a-less language ... - 15 -

4.5 u-less language ... - 15 -

5. Discussion ... - 16 -

6. Conclusion .. - 17 -

7. References .. - 18 -

Appendices ... - 19 -

Appendix 1: Main script ... - 19 -

Appendix 2: Diphthong script .. - 34 -

Appendix 3: Demo script .. - 37 -

- 1 -

1. Introduction

Already before the age of 1, children learn to distinguish the important vowel sounds of their own

language through the use of distributional learning and, as a result, stop hearing differences that are

important in other languages of the world (Schure, Junge & Boersma, 2016; Dupoux, 2018; McMurray,

Horst, Toscano & Samuelson, 2009; Maye, Werker & Gerken, 2002; Maye & Gerken, 2000). To further

analyze how children learn and create phonological categories based on this distributional learning, we can

apply artificial neural networks (Boersma, Benders & Seinhorst, 2018). These neural networks allow for

bidirectional phonology and phonetic processing while also being able to model the evolution and

acquisition of the phonology and phonetics (Boersma, 2011). The bidirectional model allows for both

bottom-up processing as well as top-down processing. This means that from an auditory form it is possible

to move up to the underlying form, as well as moving back down from the underlying form to the auditory

form, demonstrating its bidirectionality across different levels of representation. Neural networks can be

trained using different types of learning such as through the inoutstar algorithm (Boersma, Benders &

Seinhorst, 2018) or the Hebbian algorithm, the latter of which is used in deep Boltzmann machines

(Boersma, 2019). For this thesis, a restricted deep Boltzmann machine was chosen for its ability to create

phonological categories (Boersma, 2019). A more thorough explanation will be provided in a later section

of this thesis.

In Boersma’s 2019 paper, it has been shown that the restricted deep Boltzmann machine is able to create

phonological categories by using auditory distributional learning. This model demonstrates the perceptual

magnet effect (Kuhl, 1991), where speech sounds are categorized, though the model fails with too much or

too little training. With too little training, the network has not yet received enough input to create the

different categories and considers them to be the same input. With too much training, the network imitates

the actual input, which means the network no longer shows categorical behavior. Moreover, this network

lacks the representation of time. While the aspect of time has been successfully added to other Recurrent

Neural Networks with the use of Long Short-Term Memory (commonly known as LSTM) (Hochreiter &

Schmidhuber, 1997) and is used in Automatic Speech Recognition programs, it has not yet been added to

the deep Boltzmann machine models in which researchers attempt to replicate the cognitive behavior of

humans. This thesis aims to add the aspect of time to a restricted deep Boltzmann machine with a lexicon

included for sound–meaning pairs. Subsequently, it should be possible for the deep Boltzmann machine to

recognize and differentiate between sequences of sound that use the same sounds in a different order.

Moreover, it should be able to distinguish different sounds entirely while attaching the correct sequence of

sounds to a word in the lexicon. Furthermore it is interesting to see how the addition of time influences the

machine’s ability to reflect categorical behavior. Finally, exploring the limitations of the model by removing

- 2 -

meaning may help to better understand how phonological categories emerge. In section 2, the deep

Boltzmann machine and its functionality, as used in this thesis, is explained. In the third section, the network

structure is described and broken down into the different steps the model goes through. Section 4 of this

thesis demonstrates the results of the different language environments that were tested within the neural

network. The final sections, section 5 and 6, contains the discussion and conclusion respectively.

2. Deep Boltzmann machine

A deep Boltzmann machine is a type of stochastic recurrent neural network. Stochastic means that there

are random variations in the neural network; in the case of the deep Boltzmann machine, the random

variation can be found in the activation chance of the neuron. For example, if the weight between neuron A

and neuron B is 0.7 and the activation of neuron A is 1, then this means there is a 70% chance that neuron

A will fire to neuron B. A recurrent neural network is a type of artificial neural network that allows for

bottom-up processing, as well as top-down processing. This means that the neural network can process from

the input nodes up to the output nodes, but also from the output nodes, back down to the input nodes.

Restricted deep Boltzmann machines differ from deep Boltzmann machines in that they do not connect

within layers, but only move up and down the different layers. In regular Boltzmann machines, neurons are

able to influence each other either by activating or by inhibiting one another across levels or anywhere on

the same level. The computational aspect of the regular Boltzmann machine is therefore very complex and

would be required for very complex phenomena. However, in this thesis, a restricted deep Boltzmann

machine will suffice and will be used for the sake of calculation simplicity.

3. The Network Structure

Diphthongs in and of themselves require the aspect of time. Without time, there is no change in sound

and thus no diphthong can be created. In the neural model used in this thesis, a type of holistic model is used

to represent time, in which there are two representations of basilar membranes that both interact with a

representation of a lexicon simultaneously. In this case, the first basilar membrane represents the start of the

diphthong, and the second the end of the diphthong. This holistic model differs from a type of sequential

input model. The sequential model is a more realistic model that receives one input at a time and stores the

previous one to create a chain of inputs until it can attach meaning to the sound input, similarly to the

TRACE model (McClelland & Elman, 1986). Instead, when using a holistic model, the neural network uses

two phoneme inputs simultaneously and recognizes them as diphthongs. This recognition means that the

network can distinguish between sequences of sounds that contain the same phonemes but are in a different

order. For example, the network can distinguish the difference between the sequence of the vowel /u/

- 3 -

followed by /i/ as the diphthong /ui/ and not as /iu/; and conversely, the sequence /i/ followed by /u/ is

recognized as /iu/, not /ui/.

As mentioned in the paragraph above, this present study uses two representations of basilar membranes.

By using a representation of the basilar membrane, the model represents human auditory processing more

closely than without. This differs from models that use auditory distance instead, such as some self-

organizing map networks (Kohonen, 1982; Guenther & Gjaja, 1996; Salminen, Tiitinen & May, 2009), or

SOM-networks for short. By using a representation of the basilar membrane, the present study attempts to

create a speech recognition program that more closely replicates human cognitive abilities in an attempt to

better understand how sound is processed in the brain.

Activities: Parameters:

zm cm

 vlm

yl bl

 ukl

xk ak

 Figure 1 deep Boltzmann Machine after 10,000 inputs.

Figure 1 shows three different levels of nodes. The activity of each node is shown with black or grey

circles. The black circles show positive activity whereas the grey circles show negative activity. The lowest

level of nodes (x) represents three different types of so-called slabs. The first and second slab, running from

node 1 to node 30, and from node 31 to 60 respectively, each represent the basilar membrane, and are two

separate auditory-phonetic continua. As these slabs are representations of the basilar membrane, the first

two slabs are marked every 5 ERB starting at 5 up to 25 ERB in figure 1, just below the bottom level. ERB

stands for Equivalent Rectangular Bandwidth and is a measurement used for human hearing. The low

frequencies are located on the left side of the slab, whereas the high frequencies are located on the right side

of the slab. The third slab contains “words” that have meaning. In this case, diphthongs are given their own

meaning node as if they were a word in the lexicon that can be recognized by the listener. Using the 5 vowels

/a/, /e/, /i/, /o/ and /u/, the total number of possible words is 25 including combinations such as /aa/.

Combinations of the same vowels are referred to as elongated or long vowels, as these are technically not

diphthongs. With 25 total possible words, which means that the lexicon is complete, the meaning slab

contains 25 nodes. The activities of the lowest level of nodes are defined as (xk) where k runs from 1 to K

- 4 -

where K is a variable total number of nodes between 60 and 85, depending on the number of meanings

included in the network. In a network that contains no meaning at all, K = 60 as this is equal to the number

of auditory nodes. In a network containing a full lexicon, K = 85, as there are 25 extra meaning nodes on

top of the 60 auditory nodes.

While other models often refer to the lowest level as the “input level”, it may be misleading for the

model used in this thesis to call it that. When trained, the model should be able to determine the activities

on the meaning slab based on input from the basilar membrane slabs. Vice versa, the model should also be

able to determine the expected sound on the basilar membrane slabs based on the meaning slab. This creates

the bidirectional nature of the model, as is desired. Considering that both the slabs containing the

representation of the basilar membrane and the meaning slab are on the same level, we could potentially say

that this level is both the input and the output level for each category. For lack of a better term, this input

and output level shall be referred to as the bottom level as it is the bottom level of the visual representation

of the model in figure 1.

The second level (y) has activities (yl) with l from 1 to L = 50, meaning there are a total of 50 nodes on

the middle level. Finally the third, top level (z) has activities (zm) with m running from from 1 to M = 20,

meaning there are a total of 20 nodes on the top level. These two upper levels are levels that contain hidden,

binary nodes, meaning they contain nodes that can either be on or off. The middle and top levels represent

a type of long-term memory for the network.

Each level in the model contains biases, which are a type of offset that is an extra input to neurons, with

its own connection weight. Biases control when the neuron activates and are a constant to a function. For

example, a bias represents b in the simple function f(x) = ax + b. In this thesis, we define the biases of our

neural network per level. The bottom level has biases (ak), the middle level (bl) and the top level has biases

(cm).

Evidently, these different levels are required to interact with each other. The bottom level is connected

to the middle level with weights (ukl) and the middle level is connected to the top level with weights (vlm).

In figure 1 both black and white connections are visible between the nodes. The black nodes indicate a

positive connection between two nodes. On the other hand, white connections mean a negative connection

between two nodes. Thus if a node is activated, with a positive weight, the node it is connected to is more

likely to activate, and vice versa with a negative weight, it is less likely to activate. A positive weight is

called excitatory and a negative weight is called inhibitory.

The name “restricted deep Boltzmann machine” is somewhat deceiving in that it suggests being a single

type of neural network. In reality, there are differences between networks that fall under this same name. In

the neural network used for this thesis, the network will go through different consecutive phases for the

training procedure. First, in the initial settling phase the network will be set up. Secondly, the network will

- 5 -

start its learning process in the Hebbian learning phase. In the third phase, the network will go through the

dreaming phase. Finally, the network will be updated with the anti-Hebbian learning phase. As this model

is based on Boersma’s model, the following mathematical equations are the same as in Boersma’s 2019

paper.

3.1. The initial settling phase

Before even starting the initial settling phase, the network is given an input on the bottom level. In the

initial settling phase, the activity of the nodes at the bottom level (xk) are “clamped”, meaning they are held

at a constant at the activity with which the network was provided. The activity on the bottom level spreads

up to the middle level (yl) for all l from 1 to L, starting with the activities (zm) at 0.

(1) 𝑦𝑙 ← 𝜎(𝑏𝑙 + ∑ 𝑥𝑘𝑢𝑘𝑙
𝐾
𝑘=1 + ∑ vlmzm

M
m=1),

where σ() is monotonic and nonlinear, thus either entirely increasing or entirely decreasing. In (2) the

standard logistic function is shown.

(2) 𝜎(𝑥) ≔ 1/(1 + exp(−𝑥))

After the activities of (yl) have been calculated, the activities of the top level (zm) are computed in a

similar way as (yl) is computed, where the activities are calculated for all m from 1 to M. Unlike the middle

layer, the top level is not connected to the clamped bottom level, and is not directly influenced the activities.

(3) 𝑧𝑚 ← 𝜎(𝑐𝑚 + ∑ 𝑦𝑙𝑣𝑙𝑚)𝐿
𝑙=1

Then (1) through to (3) are repeated 10 times while the actitvities (xk) remain clamped. This resonance

deterministically brings the network to a relatively stable state. Once this equilibrium state is reached, the

network can move on to the Hebbian learning phase.

3.2. The Hebbian learning phase

In the Hebbian learning phase, the network increases the weight of any positive connection between

two active nodes, thus strengthening their connection. This results in both nodes being active at the same

time more frequently. Moreover, the node that is active receives a higher bias, making it even more likely

to be active in the future. Using a learning rate of 0.001 assigned to η, we arrive at the following functions.

(4) 𝑎𝑘 ← 𝑎𝑘 + 𝜂𝑥𝑘

(5) 𝑏𝑙 ← 𝑏𝑙 + 𝜂𝑦𝑙

(6) 𝑐𝑚 ← 𝑐𝑚 + 𝜂𝑧𝑚

(7) 𝑢𝑘𝑙 ← 𝑢𝑘𝑙 + 𝜂𝑥𝑘𝑦𝑙

(8) 𝑣𝑙𝑚 ← 𝑣𝑙𝑚 + 𝜂𝑦𝑙𝑧𝑚

- 6 -

3.3. The dreaming phase

After the Hebbian learning phase, we arrive at the dreaming phase. During this phase the model will

create its own pattern, similar to dreaming. In this phase, the bottom level (xk) can be influenced by the

middle level (yl), meaning that the bottom level is no longer clamped. From this follows function (9).

(9) 𝑥𝑘 ← 𝑎𝑘 + ∑ 𝑢𝑘𝑙𝑦𝑙
𝐿
𝑙=1

After that, for (zm) and (yl) new values are computed stochastically, the top level before the middle level.

(10) 𝑧𝑚 ~ ℬ (𝜎(𝑐𝑚 + ∑ 𝑦𝑙𝑣𝑙𝑚)𝐿
𝑙=1)

(11) 𝑦𝑙 ~ ℬ (𝜎(𝑏𝑙 + ∑ 𝑥𝑘𝑢𝑘𝑙 + ∑ 𝑣𝑙𝑚𝑧𝑚
𝑀
𝑚=1)𝐾

𝑘=1)

In these two formulas Ɓ() represents a Bernoulli deviate. This Bernoulli distribution leads to a binary

option, 0 or 1. For example, if the sigmoid function derived from formula (10) shows us a result of 0.7, then

the Bernoulli function will give us an output (zm) of 0 or 1 with a probability of 0.7 of (zm) being 1. Then

the formulas (9) through to (11), similarly to the in the settling phase, are repeated 10 times. Unlike the

initial settling phase, however, formulas (10) and (11) contain a randomized algorithm. The random

variation combined with the initial real inputs ensures that, ultimately, the distribution of possible activation

patterns are faithfully sampled by all possible activation patterns in the network.

3.4. The anti-Hebbian learning phase

Finally, the anti-Hebbian learning phase is the same as the Hebbian learning, except rather than the

weights getting strengthened and biases increasing, the weights are generally weakened and the biases are

decreased, unless the weights were negative to begin with. When weights and biases are negative, then they

are strengthened and increased respectively. This anti-Hebbian learning phase is required so that the weights

between neurons do not infinitely grow larger.

(12) 𝑎𝑘 ← 𝑎𝑘 − 𝜂𝑥𝑘

(13) 𝑏𝑙 ← 𝑏𝑙 − 𝜂𝑦𝑙

(14) 𝑐𝑚 ← 𝑐𝑚 − 𝜂𝑧𝑚

(15) 𝑢𝑘𝑙 ← 𝑢𝑘𝑙 − 𝜂𝑥𝑘𝑦𝑙

(16) 𝑣𝑙𝑚 ← 𝑣𝑙𝑚 − 𝜂𝑦𝑙𝑧𝑚

3.5 Distributional learning

As mentioned previously, the first two slabs on the bottom level running from node 1 to node 30 and

from node 31 to node 60 respectively, are representations of the basilar membrane. On each slab, the input

continuum ranges from the first node which corresponds to the lowest basilar frequency and to the last

- 7 -

node which corresponds to the highest basilar frequency per slab. To create a vowel, two inputs are

required per slab. The two inputs represent the F1 and F2 values of a vowel. In total, four inputs are

required for both slabs in order to create the diphthong. For each vowel used in the model, in this case /a/,

/e/, /i/, /o/, and /u/, there is an equal probability (0.2) of one being randomly chosen as the input vowel.

Table 1 mean ERB values per vowel

Vowels a e i o u

mean ERB F1 13 10 7 10 7

mean ERB F2 19 22 25 16 13

From the mean F1 and F2 of the chosen vowels, the F1 and F2 values are sampled in ERB from a

secondary script provided in the appendix, in which the mean ERB values per vowel are predetermined. In

Table 1, the F1 and F2 in ERB are given per vowel. These F1 and F2 values in ERB are sampled with a

standard deviation of σ = 0.9 ERB. This results in the following formula where w = 1.5 is the half-width of

the Gaussian peak on the basilar membrane:

(17) 𝑥𝑘 = 5 𝑒
−

1

2
 (

𝑘−𝐹1

𝑤
)

2

+ 𝑒
−

1

2
 (

𝑘−𝐹2

𝑤
)

2

− 0.5

Figure 2 Input distribution of the 5 vowels /a/, /e/, /i/, /o/, and /u/

In figure 2, the input distribution of the vowels /a/, /e/, /i/, /o/, and /u/ are shown on a two-dimensional

plane. The vertical axis shows the F1 in ERB, the horizontal shows the F2 in ERB. The ellipses are at a

relative height of 10% on each distribution. From left to right the vowels corresponding to each point on

- 8 -

the graph are /i/, /e/, /a/, /o/, and finally /u/. As can be seen in figure 2, there are areas in which vowels

overlap.

4. Simulations of 5 different languages: language description and results

As there are different possible numbers of meaning nodes in slab 3, multiple test runs have been

carried out to analyze the differences between different number of meaning nodes. In the following

sections, 5 different results will be shown. The results differ from each other in that the number of

meanings differ between the sections. We can compare this to different sections resembling different

language environments, similarly to how English differs from French and how both of these two

languages differ from Japanese.

 In the first section of the results, a language environment including all possible meaning nodes

will be described. While this is unrealistic for natural languages, this language environment shows all

possible effects and combinations thereof without worrying about possible gaps. In the second section, all

elongated vowels are removed from the meaning slab to create a gap. This means that ‘aa’, ‘ee’, ‘ii’, ‘oo’,

and ‘uu’ are no longer in the list. This language environment was used as there are languages that make no

distinction between short and long vowels. The third language environment contains 5 randomly chosen

gaps. This environment was created to see what would happen when the gaps are not correlated to one

another. Finally, the fourth language environment lacks the vowel /a/ in any position, and the fifth

language environment lacks the vowel /u/ in any position. These environments have been made to

compare the results in their similarity to other vowels.

4.1 All-meanings language

In the first language of the neural network, all possible “meanings” were included in the lexicon. In

other words, all possible combinations of the five vowels /a/, /e/, /i/, /o/ and /u/ combined into diphthongs

(e.g. /au/) or combined into elongated vowels (e.g. /aa/) had a node on the meaning slab at the bottom level.

This means there are 25 nodes in total on the meaning slab. Let’s say the neural network received 30,000

inputs, each meaning on the meaning slab has been activated approximately 30,000/25 = 1,200 times and

each vowel on each sound slab has been activated 30,000/5= 6000 times. For both slabs that would mean

that all vowels are activated 6000*2 = 12.000 times in total. The network starts off with the initial settling

phase as described in section 3.1 before moving on to the different learning stages described in section 3.2

to 3.4. The first learning phase is the Hebbian learning phase, in which any connection between two neurons

is strengthened and the weight is increased. Following the Hebbian learning phase is the dreaming phase, in

which the network stochastically resonates 10 times without the initial input being clamped anymore. Finally

- 9 -

the network goes through the anti-Hebbian learning phase, in which the connection between two neurons is

weakened in case of a positive connection, or strengthened in case of a negative connection.

In the first testing phase, from sound to meaning, the user chooses a sound either through a keyboard

input or mouse click on each of the two slabs. For example, the user chooses the diphthong /ui/. This input

is clamped on the bottom level. Then the input is resonated through the middle and top level of the network

until it reaches a near equilibrium state. After reaching this near equilibrium state, the network activity on

the middle level is resonated down towards the meaning slab on the bottom level. The sound slabs on the

bottom level remain clamped and unchanged. Then the activity on the middle level and meaning slab is

resonated until the network reaches a state of equilibrium again.

Figure 3 shows the neural network and its activities on the different levels. The first slab on the bottom

level shows a low F1 and high F2, corresponding to the vowel /i/. The second slab shows a low F1 and low

F2, corresponding to vowel /u/. Therefore, the sound slabs show the diphthong [[iu]]. On the third slab, the

meaning slab, the most activated node is ‘iu’.

Table 2 activation list of all meaning nodes.

Final -a Activation Final -e Activation Final -i Activation Final -o Activation Final -u Activation

‘aa’ -0.367 ‘ae’ -0.512 ‘ai’ -0.152 ‘ao’ -0.365 ‘au’ 0.381

‘ea’ -0.204 ‘ee’ -0.394 ‘ei’ -0.259 ‘eo’ -0.466 ‘eu’ 0.493

‘ia’ 0.656 ‘ie’ 0.550 ‘ii’ 0.841 ‘io’ 0.858 ‘iu’ 1.635

‘oa’ -0.289 ‘oe’ -0.412 ‘oi’ -0.637 ‘oo’ -0.383 ‘ou’ 0.386

‘ua’ -0.060 ‘ue’ -0.756 ‘ui’ -0.373 ‘uo’ -0.790 ‘uu’ 0.623

Figure 3 Neural network test from sound to meaning of diphthong /au/ after 30,000 inputs.

- 10 -

Table 3 positive activations for meaning nodes starting with i- and meaning nodes ending with -u

Meaning node i- Activation Meaning node -u Activation

‘ia’ 0.656 ‘au’ 0.381

‘ie’ 0.550 ‘eu’ 0.493

‘ii’ 0.841 ‘iu’ 1.635

‘io’ 0.858 ‘ou’ 0.386

‘iu’ 1.635 ‘uu’ 0.623

As figure 3 shows, the initial input [[iu]] on the sound slabs corresponds to the meaning node ‘iu’, which

is the most activated node on the meaning slab with an activation of 1.635 as can be seen in table 2 and 3.

Other nodes with a positive activity are presented in table 3 for better visualization. The nodes that are

activated all have a vowel in common with the actual sound input. Either the first part of the diphthong is

the same, here the first vowel i-, or the second part of the diphthong is the same, here the vowel -u. All other

nodes that are not related to the sound input show a negative activity as presented in table 2. This includes

the node ‘ui’ with an activation of -0.373. So while the meaning node ‘iu’ was the most activated, the

meaning node ‘ui’ is not activated at all, further proving the network is able to distinguish between different

sequences of sounds despite approximately the same sounds being used. While only one example is

demonstrated here, the same effects are found for all other diphthongs and long vowels. The network also

functions when trained 3,000 times, however the differences in activations are significantly smaller with

this amount of training.

The second test is from meaning to sound. This is to demonstrate the possibility of bidirectionality in

the neural network. In figure 4 shown below, the meaning input given by the user is ‘eo’. Similarly to how

meaning was derived from sound, sound is derived from meaning through resonance until the network

reaches near equilibrium states.

Figure 4 the neural network from meaning 'eo' to sound after 30,000 inputs.

- 11 -

Earlier in table 1, we saw that the mean ERB of vowel /e/ was F1 = 10 and F2 = 22, and the mean ERB

of vowel /o/ was F1 = 10 and F2 = 16. In figure 4, similar results are shown. The two areas of activations

on the first slab are approximately at 10 to 11 ERB for F1, and 22 to 23 ERB for F2, corresponding to the

vowel /e/. The areas of activations for the second slab are approximately at 10 to 11 ERB for F1 and 16

ERB for F2, corresponding to the vowel /o/. We can conclude that the sound derived from the meaning node

‘eo’ does indeed correspond to the sound [[eo]], thus demonstrating the machine’s ability to not only move

bottom-up, but also top-down. This adheres to the bidirectional model of phonology and phonetics as

suggested by Boersma (2011). It should be noted that although the diphthongs and vowels on the bottom

slab were written between slashes in this paper, which corresponds to the surface form in the bidirectional

model, they more closely represent the auditory form, which is written in double brackets.

Unlike Boersma’s 2019 network, this neural network retains its categorical behavior even when trained

30,000 times. This is because the network does not only have sound input to rely on, but it also contains the

meaning of the sounds. The meaning appears to be a placeholder for the categorical behavior of the neural

network.

Using the neural model, we can compare the different diphthongs and determine how similar they are

to one another by creating a matrix. This is done with cosine similarity. First we find the norm of vector ai

and bi from for i from 1 to n, where n is the number of dimensions, in this case n = 25 as there are 25 meaning

nodes.

(18) 𝐴𝑖 =
𝑎𝑖

√∑ 𝑎𝑗
2𝑛

𝑗=1

(19) 𝐵𝑖 =
𝑏𝑖

√∑ 𝑏𝑗
2𝑛

𝑗=1

This leaves the length of A and B at 1. The cosine similarity is equal to the inner product or dot product

of vector Ai and Bi.

(20) 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠 (𝜃) = ∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1 ,

where θ is the angle between vector Ai and Bi. When the vectors Ai and Bi are the identical, the cosine

similarity is equal to 1 whereas if Ai and Bi are perpendicular to each other, the cosine similarity is equal to

0. This leaves us with a matrix full of numbers between 0 and 1. For clarity, we multiply the numbers in the

matrix by 100 and round them to produce whole number values. This leaves us with a matrix with a range

of values from 0 to 100 where 0 means there is no resemblance between Ai and Bi at all and a score of 100

means Ai and Bi are identical. In other words, the sounds produced are the same as one another. The

following matrix is a result of a network that has received 30,000 inputs and is well-trained.

- 12 -

Table 4 Similarity of Sounds Matrix

From this matrix there are a few things worth noting, starting with the elongated vowels as a base. The

matrix shows that /uu/ is both similar to /ii/ and /aa/. Both of these long vowels have a score of 76 when

compared to /uu/. For /ii/, the similarity is unsurprising, as both /u/ and /i/ are high vowels and, as a result,

have a similar F1. However, for /aa/ and /uu/ the similarity may be more remarkable. /a/ is a front open

unrounded vowel whereas /u/ is a closed back rounded vowel. Even if we were to consider /a/ a central

 aa ea ia oa ua ae ee ie oe ue ai ei ii oi ui ao eo io oo uo au eu iu ou uu

aa 100 84 75 79 90 81 67 65 60 69 78 66 57 60 67 82 70 64 62 74 87 75 67 68 76

ea 84 100 81 88 84 67 80 65 72 64 63 78 59 69 60 64 80 64 70 65 75 87 69 76 70

ia 75 81 100 79 82 62 69 80 66 67 60 61 79 60 65 60 64 80 64 66 65 71 89 67 71

oa 79 88 79 100 79 61 72 61 81 61 63 72 60 80 61 61 70 64 82 59 73 81 70 88 68

ua 90 84 82 79 100 69 62 66 58 77 68 64 64 59 77 69 67 69 60 81 80 74 74 67 87

ae 81 67 62 61 69 100 84 82 79 87 78 65 58 60 66 90 74 70 69 79 78 64 58 59 68

ee 67 80 69 72 62 84 100 85 91 81 62 77 64 71 58 73 87 76 81 71 65 76 64 71 61

ie 65 65 80 61 66 82 85 100 79 85 65 63 78 61 68 72 72 88 69 75 61 61 76 60 66

oe 60 72 66 81 58 79 91 79 100 79 62 71 62 80 59 67 77 70 90 65 61 69 61 80 59

ue 69 64 67 61 77 87 81 85 79 100 65 61 65 60 74 76 71 75 68 87 68 61 64 61 77

ai 78 63 60 63 68 78 62 65 62 65 100 84 79 82 89 75 59 60 59 63 88 75 71 74 80

ei 66 78 61 72 64 65 77 63 71 61 84 100 81 91 82 61 75 60 68 59 78 91 72 83 77

ii 57 59 79 60 64 58 64 78 62 65 79 81 100 79 87 56 59 76 59 62 66 72 91 71 76

oi 60 69 60 80 59 60 71 61 80 60 82 91 79 100 81 56 65 59 78 54 73 82 71 92 72

ui 67 60 65 61 77 66 58 68 59 74 89 82 87 81 100 62 56 66 56 72 80 73 78 73 90

ao 82 64 60 61 69 90 73 72 67 76 75 61 56 56 62 100 83 80 77 87 74 60 55 56 65

eo 70 80 64 70 67 74 87 72 77 71 59 75 59 65 56 83 100 83 87 84 62 74 58 65 59

io 64 64 80 64 69 70 76 88 70 75 60 60 76 59 66 80 83 100 80 86 55 60 75 58 64

oo 62 70 64 82 60 69 81 69 90 68 59 68 59 78 56 77 87 80 100 75 58 67 58 77 55

uo 74 65 66 59 81 79 71 75 65 87 63 59 62 54 72 87 84 86 75 100 66 58 62 54 75

au 87 75 65 73 80 78 65 61 61 68 88 78 66 73 80 74 62 55 58 66 100 87 76 81 90

eu 75 87 71 81 74 64 76 61 69 61 75 91 72 82 73 60 74 60 67 58 87 100 82 89 83

iu 67 69 89 70 74 58 64 76 61 64 71 72 91 71 78 55 58 75 58 62 76 82 100 78 89

ou 68 76 67 88 67 59 71 60 80 61 74 83 71 92 73 56 65 58 77 54 81 89 78 100 80

uu 76 70 71 68 87 68 61 66 59 77 80 77 76 72 90 65 59 64 55 75 90 83 89 80 100

- 13 -

vowel due to its height, rather than a front vowel, it does not explain the similarities between the two vowels.

It is possible that the correlation is derived from the similarity of the F2 of /u/ and F1 of /a/. The similarity

in elongated vowels are translated into the diphthongs as well. /uu/ is close to /au/ (90) and /ua/ (87) as well

as /iu/ (89) and /ui/ (90).

Next, the matrix shows close similarity of /ee/ and /oo/ with a score of 81. This is likely because these

vowels share the same vowel height at close-mid level and, similarly to /i/ and /u/, share a similar F1. The

diphthongs once again reflect this similarity where /ee/ is close to /oe/ (91) and /eo/(87), and /oo/ close to

/oe/(90) and /eo/ (87).

Using the matrix, it is also possible to compare different sequences of sound. /ua/-/au/ as well as /ui/-

/iu/ and /eo/-/oe/ are expected to have higher similarity than for example /ei/-/ie/ or /ia/-/ai/ because of the

similarity in vowel quality as discussed earlier in this section. This turns out to be the case. /au/-/ua/ have a

similarity of 80, /ui/-/iu/ a similarity of 78 and /eo/-/oe/ a similarity of 77. /ei/-/ie/ have a similarity of only

63, and /ia/-/ai/ even less with 60. Comparing these last two numbers to unrelated diphthongs such as /ea/-

/io/ and /ou/-/ae/ with a score of 64 and 59 respectively, there is no real difference between different

sequences of sounds and completely different diphthongs. This provides further evidence that the order of

sounds is considered more important by the neural network than the sounds themselves.

4.2 Short vowel language

In this language, all long vowels are removed. This test was run because there are natural languages

without distinction between long and short vowels. When removing the long vowel meaning nodes ‘aa’,

‘ee’, ‘ii’, ‘oo’, and ‘uu’, we are left with 20 meaning nodes. However, it still remains possible for both slabs

to produce two of the same vowels in a row given by the user. For each of the elongated vowels, the neural

network then has to come up with an alternative meaning that would come closest to the perceived sound.

Figure 5 The network with a short vowel language with a sound input of /aa/ after 30,000 inputs.

- 14 -

After training with 30,000 inputs, the network attempts to pick out the meanings containing the vowel

given in the input. In this case, the input is /aa/. However, as can be seen in figure 5, the most activated

meaning node is ‘ua’ with an activation of 1.753. The next highest activation is by ‘ao’ with an activation

of 1.153. In the previous section, we discovered that the similarities between /a/ and /u/ are quite high, thus

explaining why ‘au’ is the most activated meaning node. However, when doing multiple runs, the results

are not always consistent. Sometimes, other meaning nodes are activated by the network. The meaning

nodes that are activated contain /a/ in either first or second position more so than meaning node ‘au’ despite

the latter being the most similar to the input sound /aa/. This variation may be caused by the stochasticity of

the model as well as the slight deviations from the prototype vowel, the most commonly heard vowel that

is at the top of the distribution.

4.3 Random gap language

In this language of the neural network, 5 meaning nodes were removed at random. This was to test the

machine’s behavior when unrelated gaps were found in the language environment. The meaning nodes

that were removed were ‘ea’, ‘eo’, ‘iu’, ‘ue’, and finally ‘uo’. This leaves the neural network with 20

meaning nodes on the bottom level.

Similarly to some test runs in the short vowel language in section 4.2, when the Boltzmann machine

was introduced to the missing meaning on the sound slabs, no clear winner was found in the meaning slab

when the missing inputs were given on the sound slab. The nodes with the same vowel either on slab 1 or

slab 2 were positively activated, but none were activated enough compared to another for there to be a

clear winner. It is possible that over multiple runs, vowels that are similar to one another are more likely

to be the most activated node. For example, with ‘ea’ removed, ‘eu’ may become the most frequently

highest activated node. However, similarly to 4.2, this was not consistent.

Figure 6 The network with a 5 gap language with sound input /ea/ after 30,000 inputs.

- 15 -

4.4 a-less language

In this run of the neural network, instead of removing random meaning nodes or the elongated vowels,

the vowel /a/ was completely removed from meaning. This also means that the network was not trained to

perceive the vowel /a/ and the vowel was not included in the input distribution. This leaves 16 meaning

nodes left on the bottom level.

Earlier in section 4.1, with the similarity matrix, it was established that /u/ and /a/ showed to have some

correlation to each other. While section 4.2 and 4.3 did not consistently demonstrate this correlation, when

the vowel /a/ is completely removed in the meaning, their similarity does end up being visible in the network.

After introducing the network to 30,000 inputs, when being confronted with /aa/ in the sound input as shown

in figure 7, the meaning nodes that are more activated than others are those containing /u/, with ‘uu’ being

the most activated node with an activation of 0.945. All other nodes that do not contain this vowel /u/ have

a negative activation. However, this activity remains minimal, and when the sound input contains /u/ either

on slab 1 or 2, the corresponding nodes are activated much more than when introduced to /a/. Moreover,

even though the network often activates ‘uu’, there is still a chance of the network activating another

meaning node. This is likely a result of the overlap in distributions, as was shown in Figure 2.

4.5 u-less language

Because leaving out the vowel /a/ showed interesting correlation of the similarities between /a/ and /u/,

leaving out the vowel /u/ would be interesting as this vowel is related to both /a/ and /i/. Once again, the

network contained 16 meaning nodes, now excluding the vowel /u/.

Figure 7 The network with an a-less language with sound input /aa/ after 30,000 inputs.

- 16 -

Like Section 4.4, when the network was trained on 30,000 inputs and introduced to /uu/ on the sound

slabs only through user input. In figure 8, the meaning node the most activated is ‘aa’. However, this was

not a consistent result. Over the course of several runs, the meaning nodes that were partially activated were

those that contained the vowel /a/ and those that contained the vowel /i/. Neither vowel showed more

activation than the other and both vowels only showed minimal activation on the meaning nodes compared

to when they were introduced to the corresponding vowels /a/ and /i/.

5. Discussion

This restricted deep Boltzmann machine model was able to distinguish between different sequences of

sound with the addition of time added through a holistic model. This was tested in five different languages

environments. The language containing all possible meanings allowed the machine to distinguish between

all sequences of sound correctly. The following gap languages showed activation of diphthongs similar to

the input, although the network was not able to choose similar inputs consistently. This is likely due to the

overlap of vowel distributions. As the model contained not only sound, but also meaning, it was able to

retain the categorical behavior even after 30,000 inputs, which was not the case for Boersma’s 2019 model.

This is because the network is able to use meaning as a placeholder for the prototype vowel. As a result, it

also modeled the perceptual magnet effect for vowels correctly regardless of being combined into

diphthongs on the meaning slab. Moreover, the neural network follows the bidirectional model for

phonology and phonetics in that the network is able to pick the correct meaning for a given input sound, and

vice versa. However, the model does not capture the different levels proposed. The neural model only works

from the top level meaning (<morphemes>), down to the second to last level, sound ([[auditory form]]),

skipping the intermediate stages of the surface form and underlying form. The addition of time can be used

for future research on modeling human cognitive abilities related to auditory perception. For future research,

Figure 8 The network with an u-less language with sound input /uu/ after 30,000 inputs.

- 17 -

it may be worth looking into not only diphthongs but also triphthongs. Furthermore, it may be interesting to

replicate not only vowels, but also consonants, consonant clusters or combinations of vowels and

consonants. While the holistic model works well for the goal of this research, it fails to represent true human

cognition as it uses multiple basilar membranes that supposedly capture different points in time despite the

input on each slab being given by the user at the same time. Instead a more realistic model would be one in

which some type of memory captures the input at different points in time on the same input slab or level to

finally reach the correct output.

6. Conclusion

For this thesis, the goal was to add the aspect of time to a restricted deep Boltzmann machine. After

this initial goal had been reached, the network was tested in different language environments for its ability

to distinguish between sequences of sounds that either contain the same sounds or different sounds as well

as its ability to create emergent phonological categories. All sequences of sounds were appropriately

distinguished from one another unless the network was introduced to a sound it had not yet been trained

on. In the latter case, the network would choose a sequence from the lexicon that was similar to the input

sound, albeit inconsistently. From the lexicon down to the sound level, the network was able to create the

prototype vowel, which can be compared to a phonological category. As the network works from both

meaning to sound, and from sound to meaning, it is bidirectional, supporting bidirectional phonology and

phonetics. The neural network used in this study directly builds upon the network made by Boersma’s

2019 paper. Although the network does not use memory to include the aspect of time, it more accurately

replicates human perception of sounds than other models that use auditory distance. It may be interesting

to see how this model responds to longer sequences of sounds or sounds other than vowels.

- 18 -

7. References

Boersma, Paul. 2011. A programme for bidirectional phonology and phonetics and their acquisition

and evolution. In Anton Benz & Jason Mattausch (eds.) Bidirectional Optimality Theory. 33–72. John

Benjamins Publishing Company.

Boersma, Paul. 2019. Simulated distributional learning in deep Boltzmann machines leads to the

emergence of discrete categories. ICPhS. 1520-1524.

Boersma, Paul, Titia Benders & Klaas Seinhorst. 2020. Neural network models for phonology and

phonetics. University of Amsterdam. To appear in Journal of Language Modelling.

Dupoux, Emmanuel. 2018. Cognitive science in the era of artificial intelligence: A roadmap for

reverse-engineering the infant language learner. Cognition 173, 43–59.

Guenther, Frank H. & Marin N. Gjaja. 1996. The perceptual magnet effect as an emergent property

of neural map formation. Journal of the Acoustical Society of America. 100(2). 1111-1121.

Hochreiter, Sepp & Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation

9(8). 1735-1780.

Kohonen, Teuvo. 1982. Self-organized formation of topologically correct feature maps. Biological

Cybernetics. 43. 59-69.

Kuhl, Patricia K. 1991. Human adults and human infants show a “perceptual magnet effect” for the

prototypes of speech categories, monkeys do not. Perception and Psycholinguistics 50, 93–107.

Maye, Jessica, & LouAnn Gerken. 2000. Learning phonemes without minimal pairs. In S. Catherine

Howell, Sarah A. Fish & Thea Keith-Lucas (eds.) Proceedings of the 24th Boston University Conference

on Language Development 522–533. Somerville, MA: Cascadilla Press

Maye, Jessica, Janet. F Werker & LouAnn Gerken. 2002. Infant sensitivity to distributional

information can affect phonetic discrimination. Cognition 82, B101–B111.

McClelland, James, Jeffrey Elman. 1986. The TRACE model of speech perception. Cognitive

Psychology 18(1). 1-86.

McMurray, Bob, Jessica S. Horst, Joseph C. Toscano & Larissa K. Samuelson. 2009. Integrating

connectionist learning and dynamical systems processing: case studies in speech and lexical development.

In John Spencer (ed.). Toward a unified theory of development: connectionism and dynamic systems theory

re-considered. 218–249. Oxford University Press.

Salminen, Nelli H., Hannu Tiitinen & Patrick J.C. May. 2009. Modeling the categorical perception

of speech sounds: a step toward biological plausibility. Cognitive, Affective, & Behavioral Neuroscience.

9(3). 304-313.

Ter Schure, Sophie, Caroline Junge & Paul Boersma. 2016. Semantics guide infants’ vowel

learning: computational and experimental evidence. Infant Behavior and Development. 43. 44–57.

- 19 -

Appendices

Appendix 1: Main script

Praat script simul_dbm_diphthongs.praat

Angelica van Beemdelust 06-06-2020

Based on script used in Boersma, Paul. 2019. Simulated distributional learning in

deep Boltzmann machines leads to the emergence of discrete categories. ICPhS.

form Emergence of three vowels

 word Foreground_colour Yellow

 word Background_colour Maroon

 word Button_colour Olive

 word Font Times

 natural Font_size 35

 boolean Include_sound 1

 boolean Include_meaning 1

 choice Language: 1

 button All meanings language

 button Short vowel language

 button Random gap language

 button Fixed gap language

 button a-less language

 button u-less language

endform

demo.foregroundColour$ = foreground_colour$

demo.backgroundColour$ = background_colour$

demo.buttonColour$ = button_colour$

demo.font$ = font$

demo.fontSize = font_size

@sound

procedure sound

 vowels$ = "aeiou"

 numberOfVowels = length (vowels$)

 f1_erb# = { 13, 10, 7, 10, 7 }

 f2_erb# = { 19, 22, 25, 16, 13 }

 ambientStdev_erb = 1.0

 auditorySpreading_erb = 0.68

 numberOfAuditoryNodes = 60

 numberOfAuditoryNodesPerSlab = 30

 fmin_erb = 4.0

 fmax_erb = 28.0

 erbsPerNode = (fmax_erb - fmin_erb) / (numberOfAuditoryNodesPerSlab - 1)

 auditorySpreading_nodes = auditorySpreading_erb / erbsPerNode

endproc

if language$ = "Fixed gap language"

create some sort of form within the script to let the user determine which diphthongs

to leave out.

beginPause: "Which meaning(s) do you want to remove?"

 comment: "Any pair combinations of [aeiou], space for separation e.g. 'ea eo iu

ue uo'"

 sentence: "fixed gap", "ea eo iu ue uo"

clicked = endPause: "submit", 1

writeInfoLine: "Gap(s) in this language: "

appendInfoLine: fixed_gap$

@split (" ", fixed_gap$)

numberOfRemovedMeanings = split.length

endif

- 20 -

this procedure is used to split up the sentence input from the user and determine

which gaps are desired.

procedure split (sep$, str$)

 # sep$ = separator (i.e. " ")

 # str$ = string to separate

 # sepLength = separator length

 sepLength = length(sep$)

 .length = 0

 repeat

 stringLength = length(str$)

 sep = index(str$, sep$)

 if sep > 0

 part$ = left$(str$, sep-1)

 str$ = mid$(str$, sep+sepLength, stringLength)

 else

 part$ = str$

 endif

 .length = .length+1

 array$[.length] = part$

 until sep = 0

endproc

#setting up language generator

vowels1$ = "aeiou"

vowels2$ = "aeiou"

all_vowels$ = "aeiou"

#beginning language generator

procedure create_Meaning: vowels1$, vowels2$

 # k is the true index of the meaning

 k = 0

 # magic string for short vowels

 if vowels1$ = "short"

 numberOfVowels1 = length (all_vowels$)

 numberOfVowels2 = length (all_vowels$)

 for i to numberOfVowels2

 for j to numberOfVowels1

 if i <> j

 k += 1

 v1$ = mid$ (all_vowels$, i)

 v2$ = mid$ (all_vowels$, j)

 meaning.morpheme$ [k] = "‘" + v2$ + v1$ + "’"

 endif

 endfor

 endfor

 # magic string for random gap language

 # l is the total number of indices of a complete language

 elif vowels1$ = "gap"

 numberOfVowels1 = length (all_vowels$)

 numberOfVowels2 = length (all_vowels$)

 l = 1

 writeInfoLine: "Gaps in this language:"

 for i to numberOfVowels2

 for j to numberOfVowels1

 # initializing a variable be check if meaning is to be added

 meaningNotRemoved = 1

 for number to size (removed#)

 # validity check for removal of meaning

 if l = removed# [number]

 meaningNotRemoved = meaningNotRemoved * 0

 else

- 21 -

 meaningNotRemoved = meaningNotRemoved * 1

 endif

 endfor

 v1$ = mid$ (all_vowels$, i)

 v2$ = mid$ (all_vowels$, j)

 if meaningNotRemoved

 k += 1

 meaning.morpheme$ [k] = "‘" + v2$ + v1$ + "’"

 else

 gap$ = "‘" + v2$ + v1$ + "’"

 appendInfo: gap$ + ", "

 endif

 l += 1

 endfor

 endfor

 # magic string for fixed gap based on user input language

 elif vowels1$ = "fixed gap"

 numberOfVowels1 = length (all_vowels$)

 numberOfVowels2 = length (all_vowels$)

 l = 1

 for i to numberOfVowels2

 for j to numberOfVowels1

 v1$ = mid$ (all_vowels$, i)

 v2$ = mid$ (all_vowels$, j)

 meaningNotRemoved = 1

 for removedMeaning to numberOfRemovedMeanings

 if array$[removedMeaning] = v2$ + v1$

 meaningNotRemoved = meaningNotRemoved * 0

 else

 meaningNotRemoved = meaningNotRemoved * 1

 endif

 endfor

 if meaningNotRemoved

 k += 1

 meaning.morpheme$ [k] = "‘" + v2$ + v1$ + "’"

 endif

 l += 1

 endfor

 endfor

 else

 numberOfVowels1 = length (vowels1$)

 numberOfVowels2 = length (vowels2$)

 l = 1

 for i to numberOfVowels2

 for j to numberOfVowels1

 k += 1

 v1$ = mid$ (vowels1$, i)

 v2$ = mid$ (vowels2$, j)

 meaning.morpheme$ [k] = "‘" + v2$ + v1$ + "’"

 endfor

 endfor

 endif

meaning.numberOfWords = k

endproc

if language$ = "All meanings language"

already set above.

elsif language$ = "Short vowel language"

 vowels1$ = "short"

elsif language$ = "a-less language"

 vowels1$ = "eiou"

 vowels2$ = "eiou"

elsif language$ = "u-less language"

- 22 -

 vowels1$ = "aeio"

 vowels2$ = "aeio"

elsif language$ = "Random gap language"

 vowels1$ = "gap"

 x = 0

 removed# = zero# (5)

 #set an array of random numbers to randomize which gaps are in the language...

 ...These are indices to be removed from a language that contains all meaning,

thus creating a new language...

 ... so here 5 random meanings are removed from all possible meanings.

 while x <= 4

 n = randomInteger(1,25)

 n_valid = 1

 #forloop guarantees different numbers in array, thus 5 removed meanings

 for number to size (removed#)

 if n <> removed# [number]

 n_valid = n_valid * 1

 else

 n_valid = n_valid * 0

 endif

 endfor

 if n_valid

 x += 1

 removed# [x] = n

 endif

 endwhile

elsif language$ = "Fixed gap language"

 vowels1$ = "fixed gap"

endif

@create_Meaning: vowels1$, vowels2$

#end of language generator

numberOfInputNodes = include_sound * numberOfAuditoryNodes + include_meaning *

meaning.numberOfWords

numberOfMiddleNodes = 50

numberOfTopNodes = 20

learningRate = 0.001

semf.offsetNode = include_sound * numberOfAuditoryNodes

label NETWORK

step = 0

halfwayClickedTwoFormantsSlab1 = 0

halfwayClickedTwoFormantsSlab2 = 0

firstVowel = 1

firstMeaningVowel = 1

procedure learn: .learningRate

 @spreadUp: 1

 @hebbianLearning: .learningRate

 @resonate: 1

 @hebbianLearning: - .learningRate

endproc

procedure spreadUp: .stochastic

 activity3# = zero# (numberOfTopNodes) ; or to random values

 .numberOfMeanFieldEchoes = 10

 for .iecho to .numberOfMeanFieldEchoes

 activity2# = sigmoid# (mul# (activity1#, weight12##) + mul# (weight23##,

activity3#) + bias2#)

 if .stochastic

 activity2# = randomBernoulli# (activity2#)

 endif

- 23 -

 activity3# = sigmoid# (mul# (activity2#, weight23##) + bias3#)

 if .stochastic

 activity3# = randomBernoulli# (activity3#)

 endif

 endfor

endproc

procedure resonate: .stochastic

 .numberOfGibbsEchoes = 10

 for .iecho to .numberOfGibbsEchoes

 activity1# = mul# (weight12##, activity2#) + bias1#

 activity3# = sigmoid# (mul# (activity2#, weight23##) + bias3#)

 if .stochastic

 activity3# = randomBernoulli# (activity3#)

 endif

 activity2# = sigmoid# (mul# (activity1#, weight12##) + mul# (weight23##,

activity3#) + bias2#)

 if .stochastic

 activity2# = randomBernoulli# (activity2#)

 endif

 endfor

endproc

procedure hebbianLearning: .learningRate

 bias1# += .learningRate * activity1#

 bias2# += .learningRate * activity2#

 bias3# += .learningRate * activity3#

 weight12## += .learningRate * outer## (activity1#, activity2#)

 weight23## += .learningRate * outer## (activity2#, activity3#)

endproc

Create history.

soundDistribution = Create Matrix: "soundDistribution",

... 0.5, numberOfAuditoryNodes + 0.5, numberOfAuditoryNodes, 1.0, 1.0, 1, 1, 1, 1, 1, ~

0.0

First level.

activity1# = zero# (numberOfInputNodes)

bias1# = zero# (numberOfInputNodes)

x1# = linear# (0, 100, numberOfInputNodes, 1)

y1 = 42

First layer.

weight12## = zero## (numberOfInputNodes, numberOfMiddleNodes)

Second level.

activity2# = zero# (numberOfMiddleNodes)

bias2# = zero# (numberOfMiddleNodes)

x2# = linear# (0, 100, numberOfMiddleNodes, 1)

y2 = 66

Second layer.

weight23## = zero## (numberOfMiddleNodes, numberOfTopNodes)

- 24 -

Third level.

activity3# = zero# (numberOfTopNodes)

bias3# = zero# (numberOfTopNodes)

x3# = linear# (0, 100, numberOfTopNodes, 1)

y3 = 90

repeat

 @demo.erase

 if include_sound and include_meaning

 @demo.centredTitle: "Emergence of categories from sound–meaning pairs"

 elsif include_sound

 @demo.centredTitle: "Emergence of categories from sound alone"

 elsif include_meaning

 @demo.centredTitle: "Emergence of categories from meaning alone"

 endif

 #

 # Draw network area.

 #

 demo Select inner viewport: 20, 80, 20, 80

 demo Axes: 0, 100, 0, 100

 demo Paint rectangle: "silver", 0, 100, 0, 100

 for i to numberOfInputNodes

 for j to numberOfMiddleNodes

 weight = weight12## [i, j]

 if weight > 0

 demo Black

 demo Line width: weight

 demo Draw line: x1# [i], y1, x2# [j], y2

 elsif weight < 0

 demo White

 demo Line width: abs (weight)

 demo Draw line: x1# [i], y1, x2# [j], y2

 endif

 endfor

 endfor

 for i to numberOfMiddleNodes

 for j to numberOfTopNodes

 weight = weight23## [i, j]

 if weight > 0

 demo Black

 demo Line width: weight

 demo Draw line: x2# [i], y2, x3# [j], y3

 elsif weight < 0

 demo White

 demo Line width: abs (weight)

 demo Draw line: x2# [i], y2, x3# [j], y3

 endif

 endfor

 endfor

 demo Black

 boundaryBetweenAuditoryAndSemanticPart = semf.offsetNode / numberOfInputNodes *

100

 if include_sound

 demo Text special: 0, "left", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "["

 demo Text special: 0.025 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "5"

 demo Text special: 0.125 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "10"

- 25 -

 demo Text special: 0.225 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "15"

 demo Text special: 0.325 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "20"

 demo Text special: 0.425 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "25"

 demo Text special: 0.470 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "]"

 demo Text special: 0.475 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "["

 demo Text special: 0.525 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "5"

 demo Text special: 0.625 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "10"

 demo Text special: 0.725 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "15"

 demo Text special: 0.825 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "20"

 demo Text special: 0.915 * boundaryBetweenAuditoryAndSemanticPart,

"centre", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "25"

 demo Text special: boundaryBetweenAuditoryAndSemanticPart, "right", 30,

"bottom", demo.font$, demo.fontSize/2.0, "0", "ERB]"

 endif

 if include_meaning

 x# = linear# (boundaryBetweenAuditoryAndSemanticPart, 100,

meaning.numberOfWords, 1)

 for i to meaning.numberOfWords

 demo Text special: x# [i], "right", 37, "half", demo.font$,

demo.fontSize/3.0, "90", meaning.morpheme$ [i]

 endfor

 endif

 demo Line width: 2

 radius = 1.5

 for i to numberOfInputNodes

 input = activity1# [i] / 5

 if input <> 0

 demo Paint circle: if input > 0 then "red" else "blue" fi, x1# [i],

y1, radius * abs (input)

 endif

 demo Draw circle: x1# [i], y1, radius

 endfor

 radius = 1.0

 for i to numberOfMiddleNodes

 demo Paint circle: "red", x2# [i], y2, radius * activity2# [i] + 1e-6

 demo Draw circle: x2# [i], y2, radius

 endfor

 radius = 2.0

 for i to numberOfTopNodes

 demo Paint circle: "red", x3# [i], y3, radius * activity3# [i] + 1e-6

 demo Draw circle: x3# [i], y3, radius

 endfor

 #

 # Draw history.

 #

 selectObject: soundDistribution

 demo Yellow

 demo Line width: 3

 demo Draw rows: 0.5, numberOfInputNodes + 0.5, 0, 0, 0, step * 5

 demo Colour: demo.foregroundColour$

 #

 # Draw buttons.

 #

 demo Line width: 2

- 26 -

 demo Select inner viewport: 0, 100, 0, 100

 demo Axes: 0, 100, 0, 100

 demo Text: 50, "centre", 12, "half", "After " + string$ (step) + if step = 1

then " input." else " inputs." fi

 y1NDC = 20 + 60/100 * y1

 y2NDC = 20 + 60/100 * y2

 y3NDC = 20 + 60/100 * y3

 @demo.button: 14, 18, y1NDC, "1"

 @demo.button: 14, 18, y2NDC, "2"

 @demo.button: 14, 18, y3NDC, "3"

 if include_sound and include_meaning

 @demo.button: 8, 13, y1NDC, "[s]"

 @demo.button: 81, 85, y1NDC, "‘m’"

 endif

 demo Select inner viewport: 0, 100, 0, 100

 @demo.button: 88, 98, 70, "10000↑"

 @demo.button: 88, 98, 60, "1000↑"

 @demo.button: 88, 98, 50, "100↑"

 @demo.button: 88, 98, 40, "10↑"

 @demo.button: 88, 98, 30, "1↑"

 @demo.button: 88, 98, 20, "new"

 #

 # Draw manual.

 #

 y = 0

 if include_sound and include_meaning

 demo Text special: 0, "left", y, "bottom", demo.font$, demo.fontSize/3.0,

"0", "To spread nonstochastically to a level, click 1/2/3, or to spread to sound or

meaning only, click [s] or ‘m’."

 y += 2

 endif

 if include_meaning

 demo Text special: 0, "left", y, "bottom", demo.font$, demo.fontSize/3.0,

"0", "To input meaning, click on one morpheme node, or (to get the composed meaning)

type a/e/i/o/u."

 y += 2

 endif

 if include_sound

 demo Text special: 0, "left", y, "bottom", demo.font$, demo.fontSize/3.0,

"0", "To input a vowel sound, click on two formant nodes, or (to get the category

centre) type A/E/I/O/U."

 endif

 #

 # User interaction loop.

 #

 while demoWaitForInput ()

 if demoClickedIn (88, 98, 20-4, 20+4) or demoInput ("n") ; new

 removeObject: soundDistribution

 goto NETWORK

 elsif demoClickedIn (20, 80, 20, 50)

 demo Select inner viewport: 20, 80, 20, 80

 clickedInputNode = 0.5 + demoX () / 100 * numberOfInputNodes

 clickedInAuditoryPart = (clickedInputNode <= semf.offsetNode + 0.5

)

 if clickedInAuditoryPart

 #Determine in which slab is clicked.

 clickedInSlab1 = (clickedInputNode <=

numberOfAuditoryNodesPerSlab + 0.5)

 if clickedInSlab1

 if halfwayClickedTwoFormantsSlab1

 clickedAuditoryNode = clickedInputNode

 activity1# ~ if col <=

numberOfAuditoryNodesPerSlab

- 27 -

 ... then self + 5 * exp (-0.5 * ((col -

clickedAuditoryNode) / auditorySpreading_nodes) ^ 2) - 0.5

 ... else if col <= numberOfAuditoryNodes

 ... then self

 ... else 0

 ... fi

 ... fi

 clickedFormant2_erb_Slab1 = fmin_erb +

(clickedAuditoryNode - 1) * erbsPerNode

 clickedFormant2_erb_Slab2 = fmin_erb +

(clickedAuditoryNode - 1) * erbsPerNode

 @speak: clickedFormant1_erb_Slab1,

clickedFormant2_erb_Slab1, clickedFormant1_erb_Slab2, clickedFormant2_erb_Slab2

 halfwayClickedTwoFormantsSlab1 = 0

 else

 clickedAuditoryNode = clickedInputNode

 activity1# ~ if col <=

numberOfAuditoryNodesPerSlab

 ... then 5 * exp (-0.5 * ((col -

clickedAuditoryNode) / auditorySpreading_nodes) ^ 2) - 0.5

 ... else if col <= numberOfAuditoryNodes

 ... then self

 ... else 0

 ... fi

 ... fi

 clickedFormant1_erb_Slab1 = fmin_erb +

(clickedAuditoryNode - 1) * erbsPerNode

 clickedFormant1_erb_Slab2 = fmin_erb +

(clickedAuditoryNode - 1) * erbsPerNode

 halfwayClickedTwoFormantsSlab1 = 1

 endif

 else

 if halfwayClickedTwoFormantsSlab2

 clickedAuditoryNode = clickedInputNode

 activity1# ~ if col <=

numberOfAuditoryNodesPerSlab

 ... then self

 ... else if col <= numberOfAuditoryNodes

 ... then self + 5 * exp (-0.5 * ((col -

clickedAuditoryNode) / auditorySpreading_nodes) ^ 2) - 0.5

 ... else 0

 ... fi

 ... fi

 clickedFormant2_erb_Slab2 = fmin_erb +

(clickedAuditoryNode - numberOfAuditoryNodesPerSlab - 1) * erbsPerNode

 @speak: clickedFormant1_erb_Slab1,

clickedFormant2_erb_Slab1, clickedFormant1_erb_Slab2, clickedFormant2_erb_Slab2

 halfwayClickedTwoFormantsSlab2 = 0

 else

 clickedAuditoryNode = clickedInputNode

 activity1# ~ if col <=

numberOfAuditoryNodesPerSlab

 ... then self

 ... else if col <= numberOfAuditoryNodes

 ... then 5 * exp (-0.5 * ((col -

clickedAuditoryNode) / auditorySpreading_nodes) ^ 2) - 0.5

 ... else 0

 ... fi

 ... fi

 clickedFormant1_erb_Slab2 = fmin_erb +

(clickedAuditoryNode - numberOfAuditoryNodesPerSlab - 1) * erbsPerNode

 halfwayClickedTwoFormantsSlab2 = 1

 endif

- 28 -

 endif

 else

 clickedMeaningNode = round (clickedInputNode -

semf.offsetNode)

 activity1# ~ if col <= semf.offsetNode

 ... then 0

 ... else 5 * if col - semf.offsetNode = clickedMeaningNode

then 1.0 else - 1 / (meaning.numberOfWords - 1) fi

 ... fi

 endif

 demo Select inner viewport: 0, 100, 0, 100

 activity2# = zero# (numberOfMiddleNodes)

 activity3# = zero# (numberOfTopNodes)

 goto NETWORK_NEXT

 elsif demoClickedIn (14, 18, y1NDC-4, y1NDC+4) or demoInput ("1")

 activity1# = mul# (weight12##, activity2#) + bias1#

 goto NETWORK_NEXT

 elsif demoClickedIn (14, 18, y2NDC-4, y2NDC+4) or demoInput ("2")

 activity2# = sigmoid# (mul# (activity1#, weight12##) + mul#

(weight23##, activity3#) + bias2#)

 goto NETWORK_NEXT

 elsif demoClickedIn (14, 18, y3NDC-4, y3NDC+4) or demoInput ("3")

 activity3# = sigmoid# (mul# (activity2#, weight23##) + bias3#)

 goto NETWORK_NEXT

 elsif include_meaning and demoClickedIn (8, 13, y1NDC-4, y1NDC+4) or

demoInput ("s")

 activity1_wide# = mul# (weight12##, activity2#) + bias1#

 activity1# ~ if col <= semf.offsetNode then activity1_wide# [col]

else self fi

 goto NETWORK_NEXT

 elsif include_meaning and demoClickedIn (81, 85, y1NDC-4, y1NDC+4) or

demoInput ("m")

 activity1_wide# = mul# (weight12##, activity2#) + bias1#

 activity1# ~ if col <= semf.offsetNode then self else

activity1_wide# [col] fi

 goto NETWORK_NEXT

 elsif demoInput ("AEIOU")

 if include_sound

 if firstVowel

 clickedVowel1 = index ("AEIOU", demoKey$ ())

 f1_erb_slab1 = randomGauss (f1_erb# [clickedVowel1],

ambientStdev_erb)

 f2_erb_slab1 = randomGauss (f2_erb# [clickedVowel1],

ambientStdev_erb)

 @cleanInput

 firstVowel = 0

 else

 clickedVowel2 = index ("AEIOU", demoKey$ ())

 f1_erb_slab2 = randomGauss (f1_erb# [clickedVowel2],

ambientStdev_erb)

 f2_erb_slab2 = randomGauss (f2_erb# [clickedVowel2],

ambientStdev_erb)

 @cleanInput

 @applySound: f1_erb_slab1, f2_erb_slab1,

f1_erb_slab2, f2_erb_slab2, 0

 @spreadUp: 0

 ;@resonate: 0

 @speak: f1_erb_slab1, f2_erb_slab1, f1_erb_slab2,

f2_erb_slab2

 firstVowel = 1

 endif

 endif

 goto NETWORK_NEXT

- 29 -

 elsif demoInput ("aeiou")

 if include_sound

 if firstMeaningVowel

 clickedMeaningVowel1$ = demoKey$ ()

 firstMeaningVowel = 0

 else

 clickedMeaningVowel2$ = demoKey$ ()

 firstMeaningVowel = 1

 clickedMeaning$ = "‘" + clickedMeaningVowel1$ +

clickedMeaningVowel2$ + "’"

 for i to meaning.numberOfWords

 if meaning.morpheme$ [i] = clickedMeaning$

 clickedWord = i

 @cleanInput

 @applyMeaning: clickedWord

 @spreadUp: 0

 ;@resonate: 0

 endif

 endfor

 endif

 endif

 goto NETWORK_NEXT

 # Similarity between sounds

 elsif demoInput ("S")

 similarity## = zero## (meaning.numberOfWords,

meaning.numberOfWords)

 for iword to meaning.numberOfWords

 ivowel_slab1$ = mid$(meaning.morpheme$ [iword], 2)

 ivowel_slab1 = index (vowels$, ivowel_slab1$)

 ivowel_slab2$ = mid$(meaning.morpheme$ [iword], 3)

 ivowel_slab2 = index (vowels$, ivowel_slab2$)

 for jword to meaning.numberOfWords

 jvowel_slab1$ = mid$(meaning.morpheme$ [jword], 2)

 jvowel_slab1 = index (vowels$, jvowel_slab1$)

 jvowel_slab2$ = mid$(meaning.morpheme$ [jword], 3)

 jvowel_slab2 = index (vowels$, jvowel_slab2$)

 @cleanInput

 @applySound: f1_erb# [ivowel_slab1], f2_erb#

[ivowel_slab1], f1_erb# [ivowel_slab2], f2_erb# [ivowel_slab2], 0

 @spreadUp: 0

 @resonate: 0

 activity_ivowel# = activity2#

 @cleanInput

 @applySound: f1_erb# [jvowel_slab1], f2_erb#

[jvowel_slab1], f1_erb# [jvowel_slab2], f2_erb# [jvowel_slab2], 0

 @spreadUp: 0

 @resonate: 0

 activity_jvowel# = activity2#

 similarity = inner (activity_ivowel#,

activity_jvowel#) / norm (activity_ivowel#) / norm (activity_jvowel#)

 similarity## [iword, jword] = round (similarity *

100)

 endfor

 endfor

 writeInfoLine: "Similarity of sounds: ", newline$, similarity##

 # Similarity between meaning morphemes

 elsif demoInput ("M")

 similarity## = zero## (meaning.numberOfWords,

meaning.numberOfWords)

 for iword to meaning.numberOfWords

 for jword to meaning.numberOfWords

 @cleanInput

 @applyMeaning: iword

- 30 -

 @spreadUp: 0

 @resonate: 0

 activity_ivowel# = activity2#

 @cleanInput

 @applyMeaning: jword

 @spreadUp: 0

 @resonate: 0

 activity_jvowel# = activity2#

 similarity = inner (activity_ivowel#,

activity_jvowel#) / norm (activity_ivowel#) / norm (activity_jvowel#)

 similarity## [iword, jword] = round (similarity *

100)

 endfor

 endfor

 writeInfoLine: "Similarity of morphemes: ", newline$, similarity##

 # Find activity of meaning nodes

 elsif demoInput ("N")

 meaning_activity# = zero# (meaning.numberOfWords)

 for meaning_activity from numberOfAuditoryNodes to k

 @cleanInput

 @applyMeaning: meaning_activity

 @spreadUp: 0

 @resonate: 0

 activity_ivowel# = activity1#

 endfor

 writeInfoLine: "Activity of meaning nodes", newline$

 for activity from (numberOfAuditoryNodes + 1) to size (activity1#)

 appendInfo: fixed$ (activity1# [activity], 3) + ", "

 endfor

 # Draw the network in Praat Picture

 elsif demoInput ("D")

 Select inner viewport: 0.5, 11, 0.4, 6

 Axes: 0, 100, 0, 100

 Paint rectangle: "silver", 0, 100, 0, 100

 for i to numberOfInputNodes

 for j to numberOfMiddleNodes

 weight = weight12## [i, j]

 if weight > 0

 Black

 Line width: weight

 Draw line: x1# [i], y1, x2# [j], y2

 elsif weight < 0

 White

 Line width: abs (weight)

 Draw line: x1# [i], y1, x2# [j], y2

 endif

 endfor

 endfor

 for i to numberOfMiddleNodes

 for j to numberOfTopNodes

 weight = weight23## [i, j]

 if weight > 0

 Black

 Line width: weight

 Draw line: x2# [i], y2, x3# [j], y3

 elsif weight < 0

 White

 Line width: abs (weight)

 Draw line: x2# [i], y2, x3# [j], y3

 endif

 endfor

 endfor

 Black

- 31 -

 boundaryBetweenAuditoryAndSemanticPart = semf.offsetNode /

numberOfInputNodes * 100

 if include_sound

 Text special: 0, "left", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "["

 Text special: 0.025 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "5"

 Text special: 0.125 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "10"

 Text special: 0.225 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "15"

 Text special: 0.325 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "20"

 Text special: 0.425 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "25"

 Text special: 0.470 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "]"

 Text special: 0.475 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "["

 Text special: 0.525 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "5"

 Text special: 0.625 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "10"

 Text special: 0.725 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "15"

 Text special: 0.825 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "20"

 Text special: 0.915 *

boundaryBetweenAuditoryAndSemanticPart, "centre", 30, "bottom", demo.font$,

demo.fontSize/2.0, "0", "25"

 Text special: boundaryBetweenAuditoryAndSemanticPart,

"right", 30, "bottom", demo.font$, demo.fontSize/2.0, "0", "ERB]"

 endif

 if include_meaning

 x# = linear# (boundaryBetweenAuditoryAndSemanticPart, 100,

meaning.numberOfWords, 1)

 for i to meaning.numberOfWords

 Text special: x# [i], "right", 37, "half",

demo.font$, demo.fontSize/3.0, "90", meaning.morpheme$ [i]

 endfor

 endif

 Line width: 2

 radius = 1.5

 for i to numberOfInputNodes

 input = activity1# [i] / 5

 if input <> 0

 Paint circle: if input > 0 then "black" else "grey"

fi, x1# [i], y1, radius * abs (input)

 endif

 Draw circle: x1# [i], y1, radius

 endfor

 radius = 1.0

- 32 -

 for i to numberOfMiddleNodes

 Paint circle: "black", x2# [i], y2, radius * activity2# [i]

+ 1e-6

 Draw circle: x2# [i], y2, radius

 endfor

 radius = 2.0

 for i to numberOfTopNodes

 Paint circle: "black", x3# [i], y3, radius * activity3# [i]

+ 1e-6

 Draw circle: x3# [i], y3, radius

 endfor

 elsif demoInput ("F")

 endif

 numberOfSteps =

 ... if demoClickedIn (88, 98, 30-4, 30+4) or demoInput ("↑") then 1 else

 ... if demoClickedIn (88, 98, 40-4, 40+4) then 10 else

 ... if demoClickedIn (88, 98, 50-4, 50+4) then 100 else

 ... if demoClickedIn (88, 98, 60-4, 60+4) then 1000 else

 ... if demoClickedIn (88, 98, 70-4, 70+4) then 10000 else 0 fi fi fi fi

fi

 if numberOfSteps <> 0

 for ministep to abs (numberOfSteps)

 step += 1

 word = randomInteger (1, meaning.numberOfWords)

 vowel_slab1$ = mid$(meaning.morpheme$ [word], 2)

 vowel_slab1 = index (vowels$, vowel_slab1$)

 vowel_slab2$ = mid$(meaning.morpheme$ [word], 3)

 vowel_slab2 = index (vowels$, vowel_slab2$)

 f1_slab1 = randomGauss (f1_erb# [vowel_slab1],

ambientStdev_erb)

 f2_slab1 = randomGauss (f2_erb# [vowel_slab1],

ambientStdev_erb)

 f1_slab2 = randomGauss (f1_erb# [vowel_slab2],

ambientStdev_erb)

 f2_slab2 = randomGauss (f2_erb# [vowel_slab2],

ambientStdev_erb)

 @cleanInput

 if include_sound

 @applySound: f1_slab1, f2_slab1, f1_slab2, f2_slab2,

1

 endif

 if include_meaning

 @applyMeaning: word

 endif

 @learn: learningRate

 if numberOfSteps = 1

 @speak: f1_slab1, f2_slab1, f1_slab2, f2_slab2

 endif

 endfor

 goto NETWORK_NEXT

 endif

 goto NETWORK_END demoInput ("← →")

 endwhile

 label NETWORK_NEXT

until 0

label NETWORK_END

Clean up history.

removeObject: soundDistribution

procedure cleanInput

- 33 -

 activity1# ~ 0.0

endproc

procedure applySound: .f1_erb_slab1, .f2_erb_slab1, .f1_erb_slab2, .f2_erb_slab2,

.recordSoundDistribution

 .audNode1_slab1 = 1 + (.f1_erb_slab1 - fmin_erb) / erbsPerNode

 .audNode2_slab1 = 1 + (.f2_erb_slab1 - fmin_erb) / erbsPerNode

 .audNode1_slab2 = 1 + numberOfAuditoryNodesPerSlab + (.f1_erb_slab2 - fmin_erb)

/ erbsPerNode

 .audNode2_slab2 = 1 + numberOfAuditoryNodesPerSlab + (.f2_erb_slab2 - fmin_erb)

/ erbsPerNode

 activity1# ~ if col > numberOfAuditoryNodes then self else

 ... 5 * exp (-0.5 * ((col - .audNode1_slab1) / auditorySpreading_nodes) ^ 2) +

 ... 5 * exp (-0.5 * ((col - .audNode2_slab1) / auditorySpreading_nodes) ^ 2) - 1

+

 ... 5 * exp (-0.5 * ((col - .audNode1_slab2) / auditorySpreading_nodes) ^ 2) +

 ... 5 * exp (-0.5 * ((col - .audNode2_slab2) / auditorySpreading_nodes) ^ 2) - 1

 ... fi

 if .recordSoundDistribution

 select soundDistribution

 Formula: ~ self + activity1# [col] + 2

 endif

endproc

procedure applyMeaning: .word

 activity1# ~ if col <= semf.offsetNode then self else -5 /

(meaning.numberOfWords - 1) fi

 activity1# [semf.offsetNode + .word] = 5

endproc

procedure speak: .f1_erb_slab1, .f2_erb_slab1, .f1_erb_slab2, .f2_erb_slab2

 .f1_Slab1 = erbToHertz (.f1_erb_slab1)

 .f2_Slab1 = erbToHertz (.f2_erb_slab1)

 .f1_Slab2 = erbToHertz (.f1_erb_slab2)

 .f2_Slab2 = erbToHertz (.f2_erb_slab2)

 runScript: "makeDiphthong.praat", .f1_Slab1, .f2_Slab1, .f2_Slab1 + 1000,

.f2_Slab1 + 1900,

f1_Slab2, .f2_Slab2, .f2_Slab2 + 1000, .f2_Slab2 + 1900, 80, 160, 360, 530,

80, 160, 360, 530, 150, 0.5

 asynchronous Play

 plusObject: "KlattGrid kg"

 Remove

endproc

include demo.praatinclude

- 34 -

Appendix 2: Diphthong script

Klatt Grid for basic vowel.

Karin Wanrooij & Paul Boersma, 28 October 2010.

Edited by Angelica van Beemdelust for basic diphthongs.

1. PARAMETERS

form Fill in:

 comment in Hertz:

 real F1_Slab1 400

 real F2_Slab1 1400

 real F3_Slab1 2400

 real F4_Slab1 3400

 real F1_Slab2 400

 real F2_Slab2 1400

 real F3_Slab2 2400

 real F4_Slab2 3400

#bandwidth of formants

 real B1_Slab1 80

 real B2_Slab1 160

 real B3_Slab1 360

 real B4_Slab1 530

 real B1_Slab2 80

 real B2_Slab2 160

 real B3_Slab2 360

 real B4_Slab2 530

 real startF0 150

 comment in seconds:

 real Duration 0.5

endform

startVowel = 0

FOR BASIC KLATT GRID

 nrOfFormants = 10

 nrOfNasalFormants = 0

 nrOfNasalAntiFormants = 0

 # The frication and delta formants below are not used.

 nrOfFricationFormants = 5

 nrOfTrachealFormants = 0

 nrOfTrachealAntiFormants = 0

 nrOfDeltaFormants = 1

FOR PHONATION

 minVoiceAmpl = 35

midVoiceAmpl =

 maxVoiceAmpl = 40

#random variation of the pitch

 flutter = 0.15

#glottal flow

 power1 = 3

 power2 = 4

#open phase of the glottis

 openPhase = 0.7

#collision phase, models last part of flow function with exp. decay?

- 35 -

 colPhase = 0.04

#not sure what this is

 spectralTilt = 10

 # doublePulsing =

 # aspirationAmpl =

 # breathinessAmpl =

FOR VOCAL TRACT + DURATION

See form above

Add extra formants to get a flatter spectrum:

NB: the f5 value is based on a male voice.

#Slab1

f5_Slab1 = f4_Slab1 + 650

f6_Slab1 = f5_Slab1 + 1000

f7_Slab1 = f6_Slab1 + 1000

f8_Slab1 = f7_Slab1 + 1000

f9_Slab1 = f8_Slab1 + 1000

f10_Slab1 = f9_Slab1 + 1000

#Slab2

f5_Slab2 = f4_Slab2 + 650

f6_Slab2 = f5_Slab2 + 1000

f7_Slab2 = f6_Slab2 + 1000

f8_Slab2 = f7_Slab2 + 1000

f9_Slab2 = f8_Slab2 + 1000

f10_Slab2 = f9_Slab2 + 1000

The bandwidth values are based on a male voice.

upBandwidth = 8.5

for i from 5 to nrOfFormants

 b'i'_Slab1 = f'i'_Slab1/upBandwidth

 b'i'_Slab2 = f'i'_Slab2/upBandwidth

endfor

2. CREATE BASIC KLATT GRID.

 kg = Create KlattGrid... kg startVowel duration nrOfFormants nrOfNasalFormants

nrOfNasalAntiFormants nrOfFricationFormants

 ... nrOfTrachealFormants nrOfTrachealAntiFormants nrOfDeltaFormants

 Add oral formant frequency point: 1, duration * 0.3, f1_Slab1

 Add oral formant frequency point: 2, duration * 0.3, f2_Slab1

 Add oral formant frequency point: 1, duration * 0.7, f1_Slab2

 Add oral formant frequency point: 2, duration * 0.7, f2_Slab2

MODIFY PHONATION.

The pitch declines linearly. For other pitch contours: adapt the 'Add pitch

point':

 Add pitch point... startVowel startF0

 Add pitch point... duration ((startF0)*0.75)

The voicing amplitude reaches a maximum at 40% of the duration. For other

amplitude contours: adapt the 'Add voicing amplitude point':

 Add voicing amplitude point... startVowel minVoiceAmpl

 Add voicing amplitude point... (duration*0.4) maxVoiceAmpl

 Add voicing amplitude point... duration minVoiceAmpl

 Add flutter point... startVowel flutter

- 36 -

 Add power1 point... startVowel power1

 Add power2 point... startVowel power2

 Add open phase point... startVowel openPhase

 Add collision phase point... startVowel colPhase

 ;Add spectral tilt point... startVowel spectralTilt

Add double pulsing point... startVowel doublePulsing

Add aspiration amplitude point... startVowel aspirationAmpl

Add breathiness amplitude point... startVowel breathinessAmpl

MODIFY VOCAL TRACT.

FORMANTS 1 - 10 AND BANDWIDTHS 1 - 10:

 for i to nrOfFormants

 Add oral formant frequency point... i startVowel f'i'_Slab1

 Add oral formant bandwidth point... i startVowel b'i'_Slab1

 Add oral formant frequency point... i duration f'i'_Slab2

 Add oral formant bandwidth point... i duration b'i'_Slab2

 endfor

 To Sound

 Rename... vowel

 Fade in... All 0 0.005 n

 Fade out... All duration -0.005 n

 Scale intensity... 70

- 37 -

Appendix 3: Demo script

Praat include file demo.praatinclude

Paul Boersma, 4 April 2014

procedure demo.erase

 demo 'demo.font$'

 demo Font size... demo.fontSize

 demo Select inner viewport... 0 100 0 100

 demo Axes... 0 100 0 100

 demo Erase all

 demo Paint rectangle... 'demo.backgroundColour$' 0 100 0 100

 demo Colour... 'demo.foregroundColour$'

endproc

procedure demo.title .text$

 .width = demo Text width (wc)... '.text$'

 if .width < 45

 demo Text special... 7 left 90 half 'demo.font$' 2*demo.fontSize 0

'.text$'

 else

 demo Text special... 50 centre 90 half 'demo.font$'

2*demo.fontSize*45/.width 0 '.text$'

 endif

 demo.textY = 70

endproc

procedure demo.centredTitle .text$

 .width = demo Text width (wc)... '.text$'

 if .width < 45

 demo Text special... 50 centre 90 half 'demo.font$' 2*demo.fontSize 0

'.text$'

 else

 demo Text special... 50 centre 90 half 'demo.font$'

2*demo.fontSize*45/.width 0 '.text$'

 endif

 demo.textY = 70

endproc

procedure demo.bullet .text$

 demo Text... 10-1.5 centre demo.textY-0.5 half •

 .width = demo Text width (wc)... '.text$'

 if .width < 85

 demo Text... 10 left demo.textY half '.text$'

 else

 demo Text special... 10 left demo.textY half 'demo.font$'

demo.fontSize*85/.width 0 '.text$'

 endif

 demo.textY -= 12

endproc

procedure demo.therefore .text$

 demo Text... 10-2.5 centre demo.textY half ∴
 .width = demo Text width (wc)... '.text$'

 if .width < 85

 demo Text... 10 left demo.textY half '.text$'

 else

- 38 -

 demo Text special... 10 left demo.textY half 'demo.font$'

demo.fontSize*85/.width 0 '.text$'

 endif

 demo.textY -= 12

endproc

procedure demo.text .text$

 demo.textY += 4

 .width = demo Text width (wc)... '.text$'

 if .width < 85

 demo Text... 10 left demo.textY half '.text$'

 else

 demo Text special... 10 left demo.textY half 'demo.font$'

demo.fontSize*85/.width 0 '.text$'

 endif

 demo.textY -= 12

endproc

procedure demo.reference .text$

 demo.textY += 5

 demo Text special... 98 right demo.textY half 'demo.font$' demo.fontSize/1.5 0

'.text$'

 demo.textY -= 9

endproc

procedure demo.source .text$

 demo Text special... 2 left 2 bottom Times demo.fontSize/1.5 0 '.text$'

endproc

procedure demo.button .x1 .x2 .y .text$

 demo Paint rounded rectangle... 'demo.buttonColour$' .x1 .x2 .y-4 .y+4 3

 .width = demo Text width (wc)... '.text$'

 if .width < 0.9 * (.x2 - .x1)

 demo Text... (.x1+.x2)/2 centre .y half '.text$'

 else

 demo Text special... (.x1+.x2)/2 centre .y half 'demo.font$'

demo.fontSize*0.9*(.x2-.x1)/.width 0 '.text$'

 endif

endproc

procedure demo.wait .duration

 Create Sound from formula... silence mono 0 .duration 44100 0

 Play

 Remove

endproc

