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ABSTRACT 
Giving reliable feedback on speech production is difficult: many different factors have to be taken into 
account. In this project, a tool was made to give feedback on the English /ɛ/–/æ/ contrast. This 
resulted in an extensive (but by no means exhaustive) overview of the different factors that should be 
taken into account for making a speech production feedback system. First, an LDA model was used to 
find the most important features for categorization of /ɛ/ and /æ/. These features, the mean F1 and F2 
over the whole duration of the vowel, were then used to create the tool. The tool was tested for its 
accuracy by comparing its feedback on productions of words with /ɛ/ and /æ/ by Dutch natives to 
ratings on those productions by native English listeners. The results were ambiguous: correlations 
between the tool’s feedback and the native English listeners’ ratings were moderate for /æ/, but they 
were low or even negative for /ɛ/. However, the native English listeners also rated productions by 
English natives, and unexpected results were found. Native English listeners rated productions of /ɛ/ 
by English natives often as wrong, i.e. they perceived intended /ɛ/’s as /æ/. This raises the question 
whether the listeners might have adapted their identification boundary between /ɛ/ and /æ/ according 
to the Dutch speakers’ boundary. It definitely calls into question the suitability of native ratings as a 
form of feedback, or even as a measure of acoustic correctness. In the discussion section, some 
recommendations for improvement of the current tool as well as suggestions for further research are 
given. 
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I. INTRODUCTION 
In this research project, a tool for online feedback on vowel production was developed in the computer 
program Praat (Boersma & Weenink, 2016), and its functionality was tested. The tool will be used in a 
later project to analyze and give feedback on productions of the English /ɛ/–/æ/ contrast by Dutch 
natives, who are being trained to perceive and produce this contrast.  

A. Context of the research 
This research is part of the EarOpener project at the Donders Institute in Nijmegen. One of the aims of 
this project is to investigate the interaction between speech production and perception for L2 learners. 
These two domains are often studied independently, although they seem to be used and developed in 
interaction (Franken et al., 2015; Baese-Berk, 2010, McQueen, 2005). However, the exact nature of 
this interaction is not clear yet. It is sometimes claimed that one needs perceptual discrimination 
abilities, to guide the “sensorimotor learning of L2 sounds” (Flege, 1995: 238). Others claim that there 
is no or only moderate correlation between perception and production and therefore reject the idea 
that perception comes first (Kartushina, 2015). The project addresses the question of how the 
development of perceptual discrimination abilities for a non-native sound contrast affects the 
pronunciation of this contrast, and the other way around.  

It is known that participants can be trained to learn to perceive a non-native vowel contrast, by 
exposure to high-variability stimuli (e.g. Logan et al., 1994). Previous research has shown that giving 
feedback on performance during these training phases helps perceptual learning. Moreover, it is 
known that feedback on production can improve performance (Neri et al., 2008; Lie-Lahuerta 2011). It 
has been suggested that exposing participants to these high variability trainings supports the 
development of abstract phonological categories (Sadakata & McQueen, 2013). The question 
remains, however, whether these abstract categories are shared for perception and production. This 
question could be addressed by investigating learning in three different cases: (1) participants receive 
feedback on perception; (2) participants receive feedback on production; (3) participants receive 
feedback on both perception and production (EarOpener Project description). For this, a tool is 
needed that can do an online analysis of the produced utterances, that can give immediate feedback 
to the participants as to whether or not their pronunciation was correct. 

B. Previous studies on speech production feedback and their limits 
In the last years, there have been some attempts to give feedback on non-native productions through 
a speech recognition tool. The most recent paper on this topic is by Kartushina and colleagues (2015). 
This paper gives an extensive overview of the research on speech production feedback. Most of the 
studies that are mentioned provide some sort of visual feedback. This feedback can be either based 
on information about the position and dynamics of the articulators (direct feedback), or based on 
acoustic analysis of the produced sound (indirect feedback). In the current project, the focus was on 
indirect feedback. Another example is the Fix Your Vowels (FYV) method (Lie-Lahuerta, 2011), which 
is a method especially designed with a training purpose: it is designed to teach students to pronounce 
Spanish vowels. 
 Most studies that deal with speech production feedback aim at finding out whether the 
feedback has a significant effect on the quality of non-natives’ productions. As long as the tool has the 
outcome that students/participants indeed show improvement in production, the tool succeeds, at least 
for practical application (e.g. FYV). However, the exact nature of the feedback is not tested. This 
means that, even though the tool might improve non-natives’ performance, it is possible that the 
feedback is given on dimensions that are not optimally relevant for the perception of the contrast. On 
the other hand, it is the question how the tools should be tested: native speakers are notoriously 
known for their inconsistency in rating productions (Kartushina et al., 2015). 
 The studies mentioned in Kartushina et al. (2015) differ greatly in terms of behavioral 
improvements as well as in terms of the methods of the studies. Feedback systems are different, and 
different acoustic measures are used. There thus seems to be inconsistency in the features that are 
used to base the feedback on, which means that some studies might give feedback based on features 
that are not so relevant in speech perception, or they leave out important features. For example, most 
methods do not take into account the effect of coarticulation. Coarticulation is the phenomenon that 
the spectral quality of a sound is influenced by surrounding sounds (Stevens & House,1963). It is also 
known that, regardless of whether the actual sound quality changes, vowel perception is influenced by 
neighboring spectral content (Holt et al., 2000), and that computer recognition of vowels works better if 
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it takes coarticulation into account (Nearey, 1989). In previous studies, coarticulation is either not 
taken into account (e.g. FYV), or vowels in isolation are used to simply avoid the issue (e.g. 
Kartushina et al. 2015). In the current project, the effect of coarticulation on the categorization of the 
vowels by the computer will be assessed, to see whether it would be beneficial to add a measure of 
coarticulation to the tool. 

Therefore, the focus of this research project was not to find behavioral effects; instead, it aims 
at creating a tool of which the performance is known and tested. 

D. The English /ɛ/–/æ/ contrast for Dutch speakers 
Learning to speak a second language phonologically fluently, i.e. without a foreign accent, is 
notoriously difficult for late (after puberty) language learners (Escudero, 2005). This is because infants 
from 6-8 months on learn to specialize to the sound system of their native language(s), which means 
that they loose the ability to discriminate sound contrasts that are not relevant in their native language 
(Kuhl, 2004).  

The English /ɛ/–/æ/ contrast is known to be a difficult contrast for Dutch speakers (e.g. Flege 
et al., 1997). This is because Dutch does not have the /ɛ/–/æ/ contrast, and both vowels are close to 
the Dutch /ɛ/ (Deterding, 1997; Adank et al., 2004). The L2LP model of Escudero (2005) describes this 
relationship as new: the second language (in this case English) has a contrast that the first language 
(Dutch) does not have, and both members of this contrast are perceptually close to one sound in the 
first language (in this case the Dutch /ɛ/). Therefore, both sounds will be perceived and produced as 
this native sound. 

E. Current research: aim and overview 
The aim of this project was to develop and test a tool that can do reliable online vowel analysis and 
give visual feedback on the productions of the English /ɛ/–/æ/ contrast by Dutch natives. This paper 
gives a description of this process, and therefore gives an overview of the different factors that should 
be taken into account while developing a tool that is meant to give non-native speakers feedback on 
their production.  
 Since there are many possible way to calculate the acoustic quality of a vowel, one of the first 
steps is to find the most accurate way of formant analysis for English /ɛ/–/æ/ contrast. For this, a 
dataset of productions of the two vowels by English natives was analyzed, and an extensive linear 
discriminant analysis (LDA) was carried out on a set of utterances produced by 10 native speakers. 
Finding out which type of formant analysis is the most effective should give future researchers a 
guideline as to which analysis to use in experiments where feedback on speech production is needed. 
In Section II, the LDA analysis and the making of the tool are described. Section III discusses the 
experiment that was carried out to test the functionality of the tool. In Section IV, the sections II and III 
are discussed, and some suggestions for further research are given. Finally, Section V summarizes 
the findings. 
 
 
 



 6 

II. CREATING THE TOOL 
This section is structured in the following way. First, the desired functionality of the tool and the 
procedure for making it will be described. Second, the stimuli that were used for the feature analysis 
will be described and discussed. Then, the LDA analysis that was carried out to find the most 
informative features for vowel categorization will be presented and interpreted. Subsequently, the 
segmentation procedure and the analysis of its performance will be discussed. Finally, the working of 
the tool will be described and illustrated. 

A. Aim and procedure 
The aim of the tool is to give feedback on the productions by Dutch natives of a test set of target 
words, which consists of five minimal pairs: fan-fen, ham-hem, jam-gem, man-men and pan-pen. In 
order to do so, first the target word has to be presented, then the utterance has to be recorded, 
segmented and analyzed, and finally, a form of visual feedback has to be presented. 

To make the tool, the following steps were taken. First, productions of the target words by ten 
English natives were recorded1. These utterances were analyzed in order to find the most meaningful 
features for discrimination of the vowels. For this, different LDA models were compared, each of which 
had a different combination of formant measurements as its predictive features. Then, Praat’s inbuilt 
segmentation function was tested against hand-segmented utterances. Finally, the feedback system 
was programmed and designed. 

B. Input stimuli  
Recordings were made of ten native British English speakers (five female and five male), producing 
the target words: fan, fen, ham, hem, jam, gem, man, men, pan and pen. Every speaker pronounced 
the words fan, fen, ham, hem, gem and men 10 times, jam, man, pan and pen were produced 11 
times, and one extra time by speaker 1. This resulted in a total number of 1044 utterances.  

For all utterances the raw sound files of the ten speakers were automatically segmented (see 
Section II.C). Al formants were measured with Praat’s standard formant measuring algorithm, which 
uses Burg’s algorithm (Childers, 1978; Press et al., 1992) to compute the LPC coefficients (Praat 
manual: Boersma, 2010). Praat’s standard gender specific formants ceilings were used: 5000 Hz for 
male voices and 5500 Hz for female voices. F0 was measured with the standard Praat pitch function 
Sound: To Pitch, which uses auto-correlation (Boersma, 1993); small time steps (0.001 seconds), a 
pitch floor of 75 Hz (standard) and a pitch ceiling of 600 Hz (standard) were used. F0, F1, F2 and F3 
were measured for (1) the mean of the whole duration of the vowel, (2) the 20%, 50% and 80% points 
of the vowel duration, (3) the mean of the 0.015 seconds around the 50% point of the vowel duration, 
(4) the mean of 50% of the total vowel duration centered around the 50% point. The measurements 
were checked for obvious formant miscalculations2. Of the 1044 utterances, there were 150 
utterances that fell outside the ‘normal’ range for F0, 39 utterances for F1, and 31 utterances for F2. 
These miscalculations occurred mainly at the 20% and 80% measuring points. For the whole-duration 
measurements, no miscalculations were found for F1 and F2, nor for F0. Since the whole-duration 
formant measurement was used to create the target stimuli (see Section II.D.3), no utterances had to 
be removed because of obvious measurement errors. 

Figure 1 contains the formants (measured over the whole duration of the vowels, in Hertz) of 
all utterances for all ten speakers, grouped for vowel and gender. Figure 1 shows that F1 and F2 are 
slightly lower for males than for females (mean F1 female = 820.11 Hz; mean F1 male = 724.34 Hz; 
mean F2 female = 1705.66 Hz; mean F2 male = 1573.06 Hz). It has been suggested that this effect is 
due to the fact that the vocal tract of men is bigger than the vocal tract of women (Simpson, 2009), 
which makes the resonation space bigger and therefore the formants lower. To assess whether these 
differences are significant, and whether there is a greater effect for F1 or for F2, the values were 
transformed to the ERBs scale (see Section II.F). T-tests showed that the difference for female vs. 
male voices (in ERBs) is significant for F1 (t(1027.1) = -11.54, p < 0.001) as well as for F2 (t(841.4) = -
11.996, p < 0.001). The effect seems to be slightly bigger for F1 than for F2: the female-male ratio of 
the mean F1 is 1.07 (mean F1 female = 13.68 ERBs; mean F1 male = 12.77 ERBs) and female-male 
ratio of the mean F2 is 1.03 (mean F2 female = 19.54 ERBs; mean F2 male = 18.91 ERBs). This 
effect is lower as for example the effect of gender F1 and F2 in Portuguese as found by Escudero and 

                                                
1 This data-collection was done by Jana Krutwig. 
2 The following ‘normal’ values ranges were used: F0: 75-300 Hz; F1: 300-1200 Hz; F2: 1100-1900 Hz. 
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colleagues (2009). Moreover, Escudero et al. (2009) found a higher ratio for F2 (1.183) than for F1 
(1.170), whereas we found a higher ratio for F1. 

 

 
Figure 1. Vowels for women and men, plotted for F1 and F2 (in Hertz). 

 
 
In Figure 2, the vowel categories for all ten speakers are shown: the left column shows the vowel 
categories for the women; the right column contains the vowel categories for the men. In general, the 
categories of the women seem to be a bit better separable than those of the men. This is consistent 
with previous findings that women speak more clearly than men (Simpson, 2009). Additionally, the 
distributions of the females seem to be spread over a bigger space than the male distributions. The 
finding that females have a larger vowel space than males is known in the literature (Simpson, 2009; 
Hillenbrand et al., 2001 (Figure 5); Escudero et al., 2009; all studies use the Hertz scale). Additionally, 
Figure 2 shows that some speakers mainly use F1 to discriminate the vowels (e.g. speaker 5 and 
speaker 9), whereas other speakers mainly use F2 (e.g. speaker 4 and speaker 7). 
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Figure 2. Vowels categories, plotted for F1 and F2 (in Hertz). 

The left column contains the female speakers, the right column the male speakers. 

 
 

Figure 3. The distributions of the two vowels based on one standard  
error (sigma = 1), for the female speakers (blue) and the male speakers (red). 
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Figure 3 visualizes the distributions of the vowels for males and females for F1 and F2, based on one 
standard error (sigma). In this figure, we can see both above-mentioned observations very clearly: the 
female vowel categories are more separable than the male categories, and take up a larger part of the 
vowel space. 

Finally, the relationship between the start-consonant and F1 and F2 was assessed. Figure 4 
visualizes F1 and F2 of the different speakers, based on the start-consonant and the vowel. For some 
speakers (e.g. speaker 2, speaker 8, speaker 4), there is a clear influence of start-consonant on F1 
and F2, whereas for some other speakers (e.g. speaker 5) this influence is less visible. Over all, it 
seems as if there is an effect from coarticulation on F1 and F2. 
 
 

 
Figure 4. The vowels per speaker for each consonant. 

The left column contains the female speakers, the right column the male speakers. 
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C. Segmentation 
The segmentation was done with Praat’s inbuilt segmentation function. This function uses the sound 
file and a textgrid with the text that is uttered in the sound file.. Praat then uses a speech synthesizer 
of the specified language3 to create a synthesized version of the provided text, which is then lined up 
with the provided sound file. Based on the lining up, the word and phoneme boundaries are placed. 
Because we only use CVC words in this project, segmentation was relatively easy To test how well 
this function works, the raw sound files of the utterances of speaker 5, 6, 7 and 10 were automatically 
segmented, and the results were compared to the results of the hand segmentation. The Pearson 
product-moment correlation coefficient between the duration of the vowels for the automatic 
segmentation and for the hand segmentation was 0.61. The correlation was also computed for the 
separate vowels, i.e. the correlation of the duration of /ɛ/ for the automatic and the hand segmentation, 
and the correlation of the duration of /æ/ for the automatic and the hand segmentation. The correlation 
for /ɛ/ was 0.55, and for /æ/ it was 0.42. Then, the correlation was assessed for all the different 
combinations of the start-consonants (/f/, /h/, /j/, /m/, /p/) and both the two vowels separately and for 
both vowels together. The results of this can be found in Table I. We conclude that there are no great 
differences between the consonants, only /p/ seems to be a bit easier than the other vowels. This was 
expected, because /p/ is a stop sound, and therefore easily separable from its neighboring sounds. 
Also, we see that /m/ and /h/ are the most difficult to separate the vowels from, and that this was more 
difficult for /ɛ/ than for /æ/. In Figure 5, two automatic segmentations are shown: Figure 5a. shows a 
good automatic segmentation, whereas Figure 5b. shows a failed automatic segmentation. 
 
 
 

Table I. The correlations for the duration of 
the vowels for the automatic and the hand  
segmentation for the different combinations  
of start-consonant and vowels. 

 
 
 
 
 
 
 
 
 

                                                
3 The default “English” was used. 

 /ɛ/ /æ/ both 
/f/ 0.692 0.784 0.758 
/h/ 0.472 0.634 0.778 
/j/ 0.832 0.816 0.774 

/m/ 0.568 0.648 0.792 
/p/ 0.793 0.674 0.834 



 11 

a.  

b.  
Figure 5. Examples of a good segmentation (a) and a failed segmentation (b).  

The upper part of the pictures shows the sound wave and the spectrogram,  
the lower part shows the segmentation. 

 
However, it is possible that the duration of the vowels in the automatic and the hand segmentation are 
very similar but the segmentation was still incorrect. Therefore, it is more meaningful to look at the 
correlation for F1 and F2 for the automatic and hand segmentation. The formants were measured for 
the whole-duration measurement, with the same method as described in Section II.B. For F1, the 
correlation is 0.91; for F2, it is 0.94. The absolute differences in Hertz were also computed. For F1, the 
mean absolute difference between the hand and automatic segmentation was 17.15 Hz (sd = 57.87 
Hz), and for F2 this was 9.26 Hz (sd = 60.93 Hz). We thus conclude that the segmentation function in 
Praat does sufficiently well to be used for our purpose, at least in the case that the formants are 
averaged over the whole duration of the vowel. 

D. Features 
To determine which features are the most informative for deciding whether an utterance is an /ɛ/ or an 
/æ/, a Linear Discriminant Analysis (LDA) was carried out with different sets of features. 

1. Procedure 
Many different ways of analyzing formants have been proposed in the literature, which could all 
potentially be implemented. The measurements that were tested are the following. 
(1) Whole-duration: them mean formant values over the entire duration of the vowel. This is a common 
way of measuring vowel quality, and was used for example by Kartushina and colleagues (2015). It 
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takes into account information of both the middle of the vowel and its edges. It does not differentiate 
between these different moments, though: it simply takes the average. 
(2) Measurements at 20%, 50% and 80% of the vowel duration. Hillenbrand et al. (1995) showed that 
their pattern classifier4 was significantly more accurate when it used 20% and 80% measurements, as 
opposed to a single sample from the steadiest part of the vowel. However, it should be noted that they 
did not use cross-validation to test their results; these results could thus well be a consequence of 
over-fitting. Hillenbrand et al. (1995) conclude that the 20%-80% method takes into account spectral 
changes, and is therefore more informative. Nearey and Assman (1986) also find that the 
classification of their pattern recognizer improves for models that take into account spectral change as 
opposed to models that use only measurements from a fixed steady-state portion of the vowel; in this 
study, cross-validation is used. It is known that vowel identification by humans based solely on the 
vowel onset and the vowel offset (with a silent nucleus) is very good (e.g. Jenkins et al., 1983; Parker 
& Diehl, 1984). Moreover, the identification of ‘gated vowels’, i.e. vowels of which the onset and the 
offset is silenced, is poor (Assman et al., 1982). There thus seems to be a large amount of information 
in the vowel onset and offset; this argues for taking into account dynamic information of the vowel. 
Jenkins and Strange (1999) even argue that vowel identification cannot be seen as simply detecting a 
certain acoustic target, but is instead a process of “apprehending acoustic changes that specify the 
style of articulatory change that produced the specific vowel” (Jenkins & Strange, 1999). They argued 
already in the 80s (Jenkins et al., 1983) that speech perception research puts too much emphasis on 
vowels produced in isolation in a sustained manner; instead, vowels should be studied in their natural 
context. This is indeed how research in vowel perception has developed. However, in vowel 
production research, it is still common to use vowels in isolation (e.g. Kartushina, 2015). Even though 
it remains the question how much of the findings in speech perception can be generalized to speech 
production, it still seems likely that in vowel production research the emphasis should also be on 
vowels in their natural context.  
(3) Measurement at 50% of the vowel duration, plus the difference between the 50% and the 20% 
measuring point, minus the difference between the 80% and the 50% measuring point. This method 
was chosen according to the production undershoot model of Stevens and House (1963). They 
investigated the effect of different consonant surroundings on different vowels, and found that they 
effect of coarticulation was the greatest on F2: F2 moved towards more centralized vowels (Stevens & 
House, 1963; Hillenbrand & Nearey, 1999). The production undershoot model hypothesized that in 
vowel production, people try to reach an articulatory target, namely the vowel frequency of the vowel 
as it would be produced in isolation. However, because of the articulatory constraints that are posed 
by the surrounding consonants, these targets are mostly not reached. To model production 
undershoot, we measured the 50% point, corresponding to which degree the target was reached, the 
difference between 20% and 50%, because the 20% point still has the information of the preceding 
vowel, and the difference between 80% and 50%, because that point already contains coarticulatory 
information about the succeeding vowel. Therefore, adding the 50%-20% point to the target 50% 
point, and subtracting the 80-50%5 point from the target 50% point would give us the optimal 
information about the intended vowel with regard to its context. 
(4) Measurement at 50% of the vowel duration. This method was chosen because it is also often used 
in formant measuring. However, this method is error-prone, because it measures only one point, and 
this point might be accidentally measured wrongly. 
(5) The mean measurement of the 0.015 seconds around the 50% point of the vowel duration (0.0075 
seconds on each side). This was taken to account for the error-proneness of the measurement at 50% 
of the vowel duration: it still stays very close around the mid point of the vowel, but is slightly less 
prone to measurement errors. 
(6) 50% of the total vowel duration, centered around the 50% point. This method takes into account as 
little formant information of the neighboring consonants as possible, while taking as much as possible 
of the vowel. This method thus tries to rule out the context information, to get a ‘clean’ representation 
of the vowel. 
(7) Mel-Frequency Cepstral coefficients (MFCC), 1 to 12. An MFCC analysis gives a number of 
coefficients, which represent the spectrum of a sound without making use of formant analysis. This 
analysis first transforms the spectrogram in a Mel Spectrogram, representing an “acoustic time-
frequency (on a Mel frequency scale) representation of the sound” (Praat manual: Weenink, 2014). 
Then, this spectrogram is divided into (increasingly bigger) windows, and a Discrete Cosine Transform 
(Davis & Mermelstein, 1980) is computed for the spectral values in the windows. This method was 
chosen because it has been suggested that a more complete representation of the spectral slope 
                                                
4 They used a quadratic discriminant analysis (Johnson & Winchern, 1982). 
5 Which is the same as adding 50%-80%. 
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leads to better discrimination than a representation based solely on formants (Zahorian & Jagharghi, 
1993). In the 60s and 70s, Pols and colleagues showed that a Principal Component Analysis of the 
spectral shape of vowel could be plotted such that it resembles formant plots (Pols et al., 1967). They 
also showed that this spectral shape representation yielded similar results for automatic classification 
with a vowel-identification algorithm as a formant representation (Klein et al., 1970). Zahorian and 
Jagharghi (1993) used a further developed model: Discrete Cosine Transform Coefficients, which is 
very similar to MFCCs, and shows that this representation gives better results for automatic 
classification than formant representation. However, they did not use cross-validation. 

In addition, Nearey (1989) suggests that speaker-extrinsic information, i.e. relating the vowel 
utterance to the entire vowel system of the speaker, is important for vowel identification. Moreover, 
Ménard and colleagues (2002) suggest that F0 is used for perceptual normalization and for the 
disambiguation of vowels with similar F1 and F2, and that the F0–F1 distance predicts perceived 
vowel height (Ménard et al., 2002; Kartushina et al., 2015). In Kartushina et al. (2015), feedback 
therefore consisted of F1–F0 and F2–F0. In the LDA analysis as performed in this project, this is 
tested through adding F0 as a feature. The formants and pitch were measured in the same way as 
described in Section II.B. 

The LDA model was run and tested with several different sets of features, to determine for 
which feature set it would make the best separation between the two vowels. In addition to the seven 
different ways of representing the spectrogram, some other features were taken into account: gender, 
start-consonant, and end-consonant; these will be called ‘non-formant measures’. The features were 
tested in different combinations: 

1) The formant measures were tested by combining the different measures for F1 and F2: 
a. With non-formant measures, with F0 and with F3 
b. Without non-formant measures, with F0 and with F3 
c. With non-formant measures, without F0 and with F3 
d. Without non-formant measures, without F0 and with F3 
e. With non-formant measures, with F0 and without F3 
f. Without non-formant measures, with F0 and without F3 
g. With non-formant measures, without F0 and without F3 
h. Without non-formant measures, without F0 and without F3 (i.e. only F1 and F2) 

2) The MFCC analysis was tested by combining: 
a. Coefficients 1-12 with non-formant measures 
b. Coefficients 1-12 without non-formant measures 
c. Coefficients 2-12 without non-formant measures 

Then, based on the results of the LDA performance for the above feature sets, some other sets were 
tested: 

3) Whole-duration method for F1 and F2, plus start-consonant 
4) Whole-duration method for F1 and F2, plus end-consonant 
5) Whole-duration method for F1 and F2, plus gender 
6) Whole-duration method for F1 and F2, plus start-consonant and end-consonant 
7) Whole-duration method for F1 and F2, plus start-consonant, and consonant, 50-20% and 80-

50% for F2  
8) Whole-duration method for F1 and F2, plus start-consonant, and consonant, 50-20% and 80-

50% for F2 and for F1. 

2. Results 
First, a correlation plot was made (Figure 6), to see what the correlations between the different 
formant measures are. It shows that for all speakers together, the different formant measures all 
correlate quite highly, as can be seen by the dark blue big dots. The correlations are high for all 
formants, but highest for F0. The correlations are especially high for whole-duration with 50%-
duration-around-the-middle, for whole-duration with 0.015-sec.-around-the-middle, and for 0.015-sec-
around-the-middle with 50%-duration-around-the-middle.  

In addition, there is a high correlation between the F1 and F2 measures for whole-duration 
and 50%-duration-around-the-middle (F1: 0.96; F2: 0.94). This high correlation was also found in the 
hand-segmented data (F1: 0.96; F2: 0.89). This argues for good automatic segmentation, because if 
the vowels are poorly segmented, the whole-duration methods will take the surrounding consonant 
information into account, and therefore the formant values will change. The 50%-duration-around-the-
middle, however, is less likely to take consonant information into account in case of bad segmentation, 
because it only uses 50% of the duration, and will therefore be less close to surrounding consonant 
information.  
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In Appendix A are the correlation plots for the ten individual speakers. It was found that for 
some of the individual speakers there were negative correlations for some formants, e.g. speakers 2, 
4 and 8 have a very strong negative correlation for F1 and F2. These negative correlations did not 
show up in the correlation plot that averages over all speakers. 
 

 
Figure 6. Correlation plot of the different measure methods6 

 
 
In Tables II–IV, the percentages correct for the LDA’s with the different sets of features are shown. 
These percentages are computed with tenfold cross-validation (after Boersma, 2016), in which the 
model was trained on nine out of the ten speakers, and tested on the tenth speaker. This was done for 
all ten speakers, which gave ten percentage correct scores. These scores were then averaged, which 
resulted in the scores that are listed in Tables II–IV. The best model from Table II (whole-duration, g.: 
81.82%) has only F1 and F2 measured with the whole-duration method. This model was therefore 
extended with each of the non-formant measures (Table IV). As can be expected with a correlation 
plot like the one in Figure 6, for many of the models R7 gave the warning that ‘some variables are 
collinear’. Collinear variables are explanatory variables with a linear relationship, meaning that their 
explanation of the variance on the data correlates. There was no collinearity for the models in table IV 
(except for model 6).  
 

                                                
6 meanFxsteady = 0.015-sec-around-the-middle; meanFxrel50 = 50%-duration-around-the-middle 
7 The LDA analysis was run in R. 
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Table II. Mean percentage correct of the LDA on the different test sets for the formant measures,  

for the different sets of features. 

Combination of features 

Formant measures 

a. 
With non-
formant 

measures, 
with F0 and 

with F3 

b. 
Without 

non-formant 
measures, 
with F0 and 

with F3 

c. 
With non-
formant 

measures, 
without F0 

and with F3 

d. 
Without 

non-formant 
measures, 
without F0 

and with F3 

e. 
With non-
formant 

measures, 
with F0 and 
without F3 

f. 
Without 

non-formant 
measures, 
with F0 and 
without F3 

g. 
With non-
formant 

measures, 
without F0, 
without F3 

h. 
Without 

non-formant 
measures, 
without F0, 
without F3 

Whole-duration 78.44% 78.72% 80.09% 77.96% 81.14% 78.72% 81.82% 79.88% 

20%, 50%, 80% 76.5% 75.44% 77.29% 76.22% 79.47% 77.23% 78.64% 78.34% 

50% + 50%-20% + 
80%-50% 76.5% 75.44% 77.29% 76.22% 77.87% 75.79% 77.28% 78.90% 

50% 71.24% 70.31% 70.55% 72.65% 74.58% 74.01% 74.20% 75.45% 

0.015 sec around 50% 76.12% 76.96% 76.14% 76.62% 79.39% 79.56% 76.14% 78.64% 

50% of duration, 
around 50% 75.38% 73.05% 75.25% 75.26% 78.57% 78.08% 75.25% 77.76% 

 
 
Table III. Mean percentage correct of the LDA on      Table IV. Mean percentage of the  
the different test sets for the MFCC measures.      LDA on the additional models. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
From Table IV, model 3 and model 7 score the highest (model 6 was eliminated due to collinearity); 
therefore these models were compared to see whether they differ significantly. Since R does not allow 
model comparison for LDA models, three Generalized Linear Mixed-Effects Models (GLMER) were 
fitted, with the same features as model 3, model 7 and model 8 from table IV. An LDA takes into 
account singular interactions, whereas a GLMER does not do this by default; this was therefore 
specified. Then, the models were compared with a Chi Squared test in R’s anova function. The results 
from this comparison were inconclusive. The comparison of model 3 and model 7 has a lower BIC 
value for model 3 (model 3: 581.40; model 7: 624.22), but a lower AIC value for model 7 (3: 497.23; 7: 
465.79). Models 3 and model 1.g (whole-duration) from Table II were also compared, to see whether 
the addition of the start-consonant was significant. This comparison did give conclusive results: for 
both AIC (model 3: 710.86; model 1.g (whole-duration): 497.23) and BIC (model 3: 735.62; model 1.g 
(whole-duration): 581.40), model 3 was preferred. 
 Upon further examination, the loadings of the LDA for model 7 showed an unexpected result: 
the loading for 50%-20% had a negative sign and the loading for 80%-50% had a positive sign, 
indicating that the 50%-20% would have to be subtracted, and the 80%-50% would have to be added 
to the 50% value. This is the opposite of the prediction that the production undershoot model (see 
Section II.D.1) makes. It is therefore not entirely clear what this model does.  

MFCC % Correct 
a. Coefficients 1-12 with non-formant 
measures 79.02% 

b. Coefficients 1-12 without non-
formant measures 79.86% 
c. Coefficients 2-12 without non-
formant measures 76.70% 

Additional models % Correct 
3. Whole-duration method for F1 and F2, 
plus start-consonant 82.77% 
4. Whole-duration method for F1 and F2, 
plus end-consonant 80.55% 
5. Whole-duration method for F1 and F2, 
plus gender 79.40% 
6. Whole-duration method for F1 and F2, 
plus start-consonant and end-consonant 82.77% 
7. Whole-duration method for F1 and F2, 
plus start-consonant, and 50-20% and 80-
50% for F2  83.25% 
8. Whole-duration method for F1 and F2, 
plus start-consonant, and 50-20% and 80-
50% for F2 and for F1. 82.10% 
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3. Interpretation 
Based on the results described above, model 3 (Table IV) was chosen to be the most reliable model, 
because there was no good indicator to choose between model 3 and model 7, thus the simplest 
model is preferred. This means that the tool will use the whole-duration measurement of F1 and F2 to 
compare the natives’ productions with the non-natives’ productions in order to give feedback. 

The fact that model 7 also performs very well, strengthens the idea that the onset and the 
offset do play an important role in vowel perception. In how far this should be taken into account for 
vowel production, remains an interesting question; this is discussed in Section V. 

 It was unexpected that adding F0 did not improve the performance of the model. It could be 
the case that the mean F0 for the women and the men did not differ so much in out dataset. Also, we 
saw a correlation between F0 and F1/F2: possibly, F0 did not add information to F1/F2 anymore. 

E. Type of feedback 
Additionally, the question arises as to which sort of visual feedback would be most effective. From the 
motor learning literature we know that precise, quantitative feedback is more helpful than more 
general feedback (Schmidt-Lee, 1999). However, previous studies have shown that skilled musicians 
benefited more from general feedback than from detailed feedback (Brandmeyer, 2011). Something 
comparable might also be the case for feedback on speech production. However, due to limited time, 
this was not tested in the current project. Therefore, the recommendations from Öster (1997: 145) on 
‘Auditory and visual feedback in spoken L2 learning’ were taken into account [sic]: 

• The visual pattern must be natural, logical and easily understandable.  
• The aid should provide a contrastive training, that is, the correct model of the teacher and the 

deviant production of the learner are shown simultaneously and compared with each other. 
• The aid should provide a flexible, individual, and structural speech and voice training and give 

an objective evaluation of training results.  
• The visual feedback of the voice and the articulation should be shown without delay.  
• The aid must be acceptable to the teacher as well as to the learner, which means that the aid 

must be attractive, interesting, easily comprehensible, easy to handle, and motivating.  
We thus hypothesize that a simple, graded feedback system works the best. It will probably be the 
most encouraging if you do not only see where you were wrong, but also how close you are to the 
actual utterance. Because of technical restrictions, the visual feedback is shown with a short delay 
(about 1 second). 

F. Working of the tool 
In this section, the working of the tool is described. The tool starts with an information form, in which 
the experimenter fills out (amongst other things) the gender of the participant. If a participant does not 
identify with either gender (or belongs to another category), the experimenter can make a choice for 
either the female or the male model based on the perceived quality of the participant’s voice. The 
participant is then presented with a short explanation of how the tool works. Then, one of the ten 
target words is randomly picked8 and presented orthographically, and the participant pronounces this 
word. The utterance is recorded, segmented with Praat’s inbuilt segmentation function, and the mean 
F1 and F2 over the whole duration of the vowel is calculated with Praat’s standard formant measuring 
algorithm. The F1 and F2 values are then converted into ERBs. This scale takes into account the 
working of the human cochlea. Because the distance between hair cells in the cochlea increases from 
higher to lower frequency ranges, frequencies that have the same distance in Hertz can be perceived 
as more similar in one frequency range than in another. In the ERB frequency scale equal distances 
correspond to perceptually equal distances.  

To compute the accuracy of the rater’s utterance, the Mahalanobis distance between the 
utterance and the relevant native distribution is measured in the F1/F2 space (in ERBs). For both 
genders, there are ten possible distributions: two vowels times five start-consonants. The Mahalanobis 
distance takes into account the shape of the distribution, because it measures how many standard 
deviations the production is away from the mean of the native distribution along each of its principal 
component axes (Kartushina et al, 2015). It thus differs from simply taking the Euclidean distance: this 
method would not be able to distinguish between two points that are equally distant from the mean of 
the distribution, but one of which would fall nicely into the distribution, and the other one would be 
quite far away (due to the shape of the distribution). 

                                                
8 A within-blocks randomization strategy was used, i.e. every one of the ten words has to be presented once before a word is 
repeated. 
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 The feedback consists of a screen, as in Figure 7, in which the target is shown in blue, 
together with a flower, and the target of the other vowel category is shown in silver for reference. The 
participant’s utterance is plotted in green if it was correct, and in red if it was incorrect. The score is 
kept. The utterance is considered correct if its Mahalanobis distance is not larger than 1 standard 
deviation (in the case of the females) or 0.5 standard deviations (for the males). This difference was 
made because of the different shapes of the distributions: the male distributions overlap considerably 
more, therefore if we set the same threshold for women and men, the men would have an easier task 
and therefore get less constructive feedback. The feedback thus consists of two parts: gradual 
feedback – the participant’s utterance is presented relative to the target vowel, and binary feedback – 
the dot is either green or red. This combination was chosen because both ways of feedback have their 
benefits. Graded feedback gives the participant more information than simply correct/incorrect, and is 
therefore more stimulating; however, it does not take into account the shape of the distribution. The 
binary feedback, however, does take into account the shape of the distribution. Moreover, it does not 
add too much information (the feedback stays simple and intuitively interpretable), and it adds a 
motivating element. The tool thus seems to meet the criteria posed by Öster (1997). 
 
 

 
 

Figure 7. An example of the feedback screen. 
 
 
The axes of the F1/F2 spaces are not shown in the feedback screen, because they differ according to 
the consonant. Because we take into account coarticulation, a different distribution is used for each 
consonant. This means that the F1 and F2 values of the target vowel change per consonant (Table V). 
To prevent the target vowels from showing up at a different point in the visual field for every 
consonant, the axes were adapted in such a way that /ɛ/ is always presented at the upper left 25% of 
the screen, and /æ/ is always presented at the lower right corner of the screen. The axes are thus 
dependent on the mean values for F1 and F2 of the target vowels; the formulae used for this can be 
found in table VI. As discussed in Section II.B, the vowel space for males is smaller than for females. 
Because axes of the feedback are relative to the distance between the target vowels, this would cause 
the feedback screen of the men to be smaller than that of the women. To prevent the productions of 
the participants from falling outside the plotting area – which means that no feedback can be given, 
the axes for the male model were made larger according to the ratios between female-male F1 and F2 
as given in Section II.B (1.05 for F1 and 1.04 for F2). These values can be changed according to the 
experimenter’s experience: if (s)he observes that the produced utterance often cannot be plotted, the 
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values can be set higher. Participants should be instructed that it could be the case that their utterance 
is not plotted, and that this means that their production was not analyzable.  
 

Table V. The means of the target vowels per consonant for both genders 
 Females Males 
 /ɛ/ /æ/ /ɛ/ /æ/ 

 F1 (ERBs) F2 (ERBs) F1 (ERBs) F2 (ERBs) F1 (ERBs) F2 (ERBs) F1 (ERBs) F2 (ERBs) 
/f/ 11.83 20.10 14.57 18.73 11.95 18.76 13.01 18.51 
/h/ 13.17 19.92 14.82 18.63 12.38 19.02 13.74 18.59 
/j/ 12.28 20.25 14.04 19.33 11.66 19.43 12.65 19.11 

/m/ 12.87 20.33 14.34 18.88 12.14 19.13 13.19 18.62 
/p/ 13.77 20.29 14.94 19.02 12.98 19.21 13.81 18.73 

 
Table VI. Formulae used to compute the values of the axes 

Axis Females Males 
Xmin Mean F1 of /ɛ/ - 2 * (mean F1 of /æ/ - mean F1 of /ɛ/) Mean F1 of /ɛ/ - 2.1 * (mean F1 of /æ/ - mean F1 of /ɛ/) 
Xmax  Mean F1 of /æ/ - 2 * (mean F1 of /æ/ - mean F1 of /ɛ/) Mean F1 of /æ/ - 2.1 * (mean F1 of /æ/ - mean F1 of /ɛ/) 
Ymin  Mean F2 of /æ/ - 2 * (mean F2 of /ɛ/ - mean F1 of /æ/) Mean F2 of /æ/ - 2.08 * (mean F2 of /ɛ/ - mean F1 of /æ/) 
Ymax  Mean F2 of /ɛ/ - 2 * (mean F2 of /ɛ/ - mean F1 of /æ/) Mean F2 of /ɛ/ - 2.08 * (mean F2 of /ɛ/ - mean F1 of /æ/) 
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III. TESTING THE TOOL 
 
To test the tool, an experiment was carried out in which ratings of the tool for pronunciations of the 
target words by Dutch natives and English natives were compared with ratings by English natives.  

A. Participants  
Three participants (from now on: raters) were tested. They were all British English native speakers, 
who are studying in Amsterdam. All 3 of them moved to the Netherlands eight months before the 
experiment. Rater 1 grew up partly in Southern England (Surrey, from 1–10 years) and partly in 
Scotland (Inverness, from 10–18 years; Edinburgh, from 18–22). Rater 2 grew up in Northern England 
(Preston), and lived in Manchester for the last years. Rater 3 grew up in Portsmouth (South England), 
and then lived in London for the last four years before moving to the Netherlands. 

B. Stimuli 
The sounds for the experiment were recorded during a perception experiment, in which Dutch native 
speakers were trained on the /ɛ/–/æ/contrast for 4 days. On the first day they did a production pre-test, 
in which they produced the ten target words of the tool three times. On the fourth day, an identical 
post-test was performed. The data of 28 participants of this experiment were used for the current 
experiment. From the pre-test, the second and the third utterance were used, and from the post-test, 
the first and the second utterance were used. 42 sounds were removed because they were silent: 
participants had to press the record button themselves, and they sometimes sneezed during the 
recording, or were simply too late. This resulted in 1076 utterances by Dutch speakers. The sounds 
were recorded at 48.000 Hz, except for the pre-tests of two speakers, which were recorded at 44.100 
Hz, and were therefore resampled. The intensity was scaled: the new maximum mean intensity was 
55.71 dB and the new minimum mean intensity was 34.09 dB.  
 To prevent habituation to the Dutch accent, which could result in a shifted identification 
boundary between the two vowels, 112 sounds of native English speakers were added. These sounds 
came from the database of ten speakers that was used to create the tool with. For each of the target 
words, one utterance of each of the ten speakers was chosen (100 words), then every target word 
was added once (each word by a different speaker), and finally two random words were added (jam by 
speaker 9, and man by speaker 2). This resulted in a total of 1188 sounds: 1076 by Dutch natives and 
112 by English natives; a bit more than 10 percent of the utterances were produced by English 
natives. The stimuli were not adapted for duration. 

The raters were randomly presented 1188 times with occurrences of the 1188 sounds. This 
means that each rater heard a subset of the total set of words: rater 1 heard different 749 words, rater 
2 heard 768 words, and rater 3 heard 742 words9. Some of these words they heard only once, some 
of them were repeated (max. 7 times). This allowed assessing the consistency of the ratings. 

After the rating task, the raters did a short task to test their identification boundary between 
/æ/–/ɛ/. They were presented with a continuum between /ɛ/–/æ/: a morphed spectrum of 11 instances 
between the recordings of vat to vet by speaker 6. The utterances were normalized for duration (632 
ms) and amplitude (RMS) for the 3 intervals (CVC) separately. Each of the 11 stimuli was presented 
ten times. 

C. Procedure 
The raters were instructed that they would hear utterances of English words produced by Dutch 
natives, and that they were supposed to rate the pronunciations. They were not told that some of the 
utterances were produced by English native speakers. The raters had to choose between 7 
categories: poor a, okay a, good a, good e, okay e, poor e and another vowel. The categories were 
presented according to the word that was pronounced, i.e. if they heard the word fan, the categories 
were poor fan, okay fan, good fan, good fen, okay fen, poor fen and another vowel. The raters were 
asked to rate critically, and to try to pay attention only to the vowel quality and not to duration. As 
mentioned above, they rated 1188 instances; there was a break after every 50 instances. For rater 1 
and 2, Sennheiser HD 419 headphones were used; and for rater 3, Sony Dynamic Stereo 
Headphones MDR-7506 were used. 

After the rating task, there was a short break, followed by the morphed continuum task. The 
raters were instructed to press a key associated to the word they heard. The raters completed the 

                                                
9 The expected number of words would be 1188*(1-1/exp(1)) = 750.96. 
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tasks in different paces: rater 1 needed 55 minutes, rater 2 65 minutes, and rater 3 80 minutes. Each 
rater received a voucher of €10,- for their participation.  
 Rater 1 noticed that some of the utterances were produced by native English speakers. Rater 
3 reported that sometimes the vowels were quite long, and then the vowel shifted from one category 
into the other. 

D. Results 
The rating data was recoded in the following way. If the intended vowel was /æ/, good a was coded as 
1, okay a as 2, poor a as 3, and the other four categories10 as 4, since these four categories all meant 
that another vowel was perceived. If the intended vowel was /ɛ/, good e was coded as 1, okay e as 2, 
poor e as 3, and the other four categories11 as 4. All correlations in this section were computed with a 
Pearson product-moment correlation coefficient, i.e. the 1–2–3–4 coding was regarded as linearly 
ordered. 

1. Inter Rater Reliability 
To assess the inter-rater reliability (IRR), the Intraclass correlation coefficient (ICC) was computed. 
This method is more reliable than computing the percentage agreement between raters (Hallgren, 
2012), because it takes into account the possibility that raters’ agreement was due to chance. The IRR 
was computed with a two-way agreement average ICC12. The ICC was computed to assess both the 
consistency among the three speakers and the agreement of the different ratings within one speaker, 
both for the dataset of the English natives and the dataset of the Dutch natives. ICC values range from 
-1 to +1: high positive ICC values indicate high agreement, whereas high negative values indicate 
systematic disagreement. 
 To compute the ICC, a subset of the data was used, namely the subset of the utterances that 
were rated by all three raters at least once. The ICC for the ratings on the English natives dataset was 
0.754. The ICC for the ratings on the Dutch natives dataset was 0.645. The raters thus seem to agree 
more on the utterances by the English natives. However, this difference could also be due to the 
different sizes of the datasets (39 utterances for the English natives vs. 259 for the Dutch natives). To 
assess the consistency within the speakers, the utterances that were rated more than once were 
taken, and the first two ratings were compared. For rater 1, this gave an ICC of +0.82 for the data of 
the Dutch natives, and an ICC of +0.387 for the data of the English natives. For rater 2, an ICC of 
+0.745 was found for the data of the Dutch natives, and an ICC of +0.913 for the English natives. For 
rater 3, the ICC was +0.834 for the Dutch natives, and +0.46 for the English natives. 
 From the above, we conclude that in general, the raters seem to agree quite nicely; they agree 
even more on the data of the English natives, which was expected. However, even with these high 
ICCs, the correlations between the raters are still only moderate: the correlation between rater 1 and 2 
is 0.36 for the Dutch natives and 0.36 for the English natives, the correlation between rater 1 and 3 is 
0.47 for the Dutch natives and 0.58 for the English natives, and the correlation between rater 2 and 3 
is 0.36 for the Dutch natives and 0.65 for the English natives. Moreover, the raters are quite consistent 
on their ratings of the Dutch natives, but that rater 1 and 3 are not so consistent on their ratings of the 
English natives, whereas rater 2 is very consistent on her ratings of the English natives. 

2. Correlation for the utterances by Dutch natives 
First, the correlation between the raters’ ratings and the Mahalanobis distance as measured by the 
tool was computed for all the stimuli that were rated at least once by one rater. This means that some 
utterances were rated only once, and some utterances were rated as may as 9 times (by different 
raters). In the case of multiple ratings by one rater, the mean was taken. The correlation was 0.31, 
which is quite low. If we only take into account the different genders for all three raters together, we 
see that for the females, the correlation is 0.37, and for the males it is 0.24. Split up per rater, the 
correlations were 0.13 (rater 1), 0.39 (rater 2), and 0.34 (rater 3). If we look at the difference of the 
correlations between the vowels, i.e. how well the tool’s Mahalanobis calculation correlates with raters’ 
ratings on the two different vowels, we see a large difference: the correlation is 0.49 for /æ/, but only 
0.005 for /ɛ/, which indicates that something surprising happens for /ɛ/. 
Because of the big difference between rater 1 and rater 2 and 3, we took a closer look at rater 1. He is 
a phonetician by training, so it could be the case that he hears the differences in acoustic quality better 

                                                
10 good e, okay e, poor e and another vowel 
11 good e, okay e, poor e and another vowel 
12 A two-way model was used, because there was only one pool of raters that rated the dataset. The type was ‘agreement’, 
because the rating should have the same absolute values in order to be consistent (i.e. consistency is not enough). The 
average-measure was taken, because the average of the ratings is used for hypothesis testing. (Hallgren, 2012). 
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than the other raters. To test whether rater 1 does something different, we computed the mean rating 
on the utterances by the Dutch natives for all three raters. Rater 1 indeed seems to rate quite a bit 
lower (mean rating pp.1: 2.03; mean rating pp.2: 2.51; mean rating pp.3: 2.27). A one-way ANOVA 
showed that the raters’ means differed significantly: F(2, 774) = 13.07, p < 0.001. A post-hoc Tukey 
test was performed, to see which means differed from each other. It was found that all raters differ 
significantly from one another (2-1: p < 0.001; 3-1: p = 0.031; 3-2: p = 0.027).  

Then, the correlation between the Mahalanobis distance as computed by the tool and the 
ratings that all three raters agreed upon for the first rating was computed. This correlation was 0.39. 
Again, a comparison between the two vowels was made: the correlation between the Mahalanobis 
distance and the ratings that all three raters agreed upon in their first rating for /æ/ was +0.59; for /ɛ/ it 
was -0.02. 

The above results are somewhat confusing. The overall correlation of +0.37 (for the ratings of 
the female Dutch native speakers) is in the same range as the agreement among the different raters. 
The correlation with rater 2 was even +0.39. However, there was a big difference in the ratings of the 
two different vowels: correlations for /æ/ were high (+0.49 for all stimuli, and even +0.59 for the stimuli 
that were agreed on by all three raters on their first rating), whereas correlations for /ɛ/ were very low 
to negative. 

3. Correlation for the utterances by English natives 
The correlation between the ratings of the raters and the tool’s Mahalanobis distance for the 
productions by the English natives, on all stimuli that were seen at least once by one rater, is -0.10. 
Split this up for gender, the correlation for male and female English native speakers are almost the 
same: for females the correlation is -0.10, for males it is -0.11. The correlations per rater on both 
female and male English speakers are -0.12 for rater 1, +0.03 for rater 2, and -0.13 for rater 3.  
A comparison between the two vowels gave the correlation was -0.04 for /æ/, and -0.14 for /ɛ/.  

Again, we had a look at whether rater 1 gave different ratings than raters 2 and 3. In this case, 
rater 1 seems to rate them a bit higher (mean rating pp.1: 1.68, pp.2: 1.46, pp3: 1.46). A one-way 
ANOVA, however, showed that these differences were not significant (F(2, 114) = 0.64, p = 0.529). 
The difference that was found for the Dutch natives, that led to the speculation that rater 1 might be 
rating more critically because of his phonetics background, therefore does not seem to hold. However, 
this rater was the only one to report that he heard that there were also some utterances by English 
natives: it could be that he therefore rated those higher. 

Then, the correlation between the Mahalanobis distance as computed by the tool and the 
ratings that all three raters agreed upon in the first rating was computed. This correlation was -0.04. 
Again, a comparison between the two vowels was made: the correlation between the Mahalanobis 
distance and the ratings that all three raters agreed upon in their first rating for /æ/ could not be 
computed, because all first ratings that were agreed on for /æ/ were 1, so the standard deviation could 
not be computed. For /ɛ/, the correlation was -0.11. 

These results are again unexpected. Since the raters were native speakers that are supposed 
to rate productions of other native speakers as ‘correct’, and the tool computes the Mahalanobis 
distance to a distribution of native speakers, the ratings and the Mahalanobis distance are expected to 
correlate. However, the correlations that are found are either very low or even negative. Therefore, we 
will have a closer look at the ratings of the productions of the English natives. 

4. The ratings of the productions of the English natives 
In this section, the ratings of the raters on the productions of the English native speakers will be 
examined more closely. A couple of unexpected results were found. Since the raters were native 
English speakers, it was expected that they would rate the utterances of the native English speakers 
as very good. As Figure 8 shows, this was indeed the case for /æ/, but not for /ɛ/. Apparently, the 
raters often do not perceive an /ɛ/ when this was the intended vowel. To our knowledge, this kind of 
asymmetry has not been reported in the literature.  
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Figure 8. Ratings of all 3 raters for natives utterances of /æ/ (left) and /ɛ/ (right). 
 

 
 

Rater 1  

Rater 2  

Rater 3  
 

Figure 9. Histogram of the number of ratings per category on the native speakers’  
productions of /ɛ/ by the three raters. 
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To find out what was going on, a histogram was made for the original 7 ratings13 on the native 
utterances that were intended to be an /ɛ/, per rater. The histograms can be found in Figure 9.a–c. 
Since the utterances were all produced by native speakers, we would expect only ratings of 1 (good e) 
and some ratings of 2 (okay e), but this was clearly not the case. According to Figure 9, the raters are 
mostly misidentifying /ɛ/ because they rate the utterance either as okay a (category 5) or as good a 
(category 6); they never heard another vowel (cat. 7). This means that the raters often heard /æ/ 
where /ɛ/ was intended. This might be because the raters still adapted their boundary to the Dutch 
speakers, even though we tried to prevent this by adding the native English speakers' utterances14 
(see Section III.C). In Figure 10a–b, the identification boundaries for the /ɛ/–/æ/ contrast of rater 1 and 
2 are vizualized15. Figure 10 shows that the identification boundary of rater 1 and rater 2 are both 
shifted to the left. This means that they perceive more tokens as /æ/ than as /ɛ/, which is what we 
would expect, given the observation in Figure 8. The shift to the left is greater for rater 1 than for rater 
2, which corresponds with the finding that rater 1 rated more /ɛ/-utterances as /æ/ than rater 2. 
 

Rater 1.  

Rater 2.  
 
 

Figure 10. Identification boundaries for rater 1 (a) and 2 (b). 
 
  
 
 
There are also some other possible explanations for the strange behavior of the raters: it could for 
example be that the vowels of the native Dutch speaker are in a completely different part of the vowel 

                                                
13 In the case that the intended vowel was /ɛ/, the categories were: 1 = good e, 2 = okay e, 3 = poor e, 4 = poor a, 5 = okay a, 6 
= good a, 7 = another vowel. 
14 However, we did tell them that all the recordings were from Dutch people. 
15 These data are missing for participant 3, because of a technical failure. 
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space than the vowels of the native English speakers. However, Figure 11 shows that this is not the 
case: the vowel categories of the Dutch and English natives (based on one standard error16) are close 
together. The difference in categories was expected: native English people show separable 
categories, whereas Dutch natives show overlapping categories. 
 

 
 

Figure 11. The distributions of the vowels used in the experiment, 
based on one standard error (sigma = 1), for the English natives (red) 

 and the Dutch natives (blue). 
 
 
The above results show, as already mentioned in Section I.B, that native raters may not provide the 
best feedback to non-natives to learn new contrasts. However, then the question arises as to what 
kind of measure should be authoritative. After all, the goal of speech production training is to attain a 
native-like accent, and this can only be judged by natives. In other words, there seems to be a rating 
problem: we cannot use native raters because their feedback is inconsistent, however, the ultimate 
aim is to get fluent in the ears of native listeners. 

                                                
16 The utterances were automatically segmented, as described in Section II.C. The formants were measured over the whole 
duration of the vowel, as described in Section II.B. 
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IV. DISCUSSION 
The tool that was developed in this project distinguishes itself from existing tools in a few respects. 
First, it takes into account coarticulation, which was found to be a predictive feature in the LDA model 
for the categorization of the ɛ/–/æ/ contrast. Second, the tool bases its feedback on a larger set of 
native data than most previous tools (e.g. in Kartushina et al., 2015, only one speaker of each gender 
was used). Third, and most importantly, the feedback used in the tool is based on an extensive 
analysis aimed to find out which features were most predictive for automatic categorization. 
 Of course, improvements of the tool can be made. First, vowel normalization could be added, 
for example the calibration procedure described in Lie-Lahuerta (2011) and Lobanov (1971). This 
procedure could be used to normalize the input stimuli as well as the participants’ utterances, by 
measuring the vowel space of the speakers and mapping them onto each other; feedback is then 
based on the mapped tokens. This would disentangle the vowel categories for the male voices to a 
certain degree, and make all the categories less scattered, whilst keeping the advantage basing the 
feedback on many input speakers. Because calibration can also normalize for gender, only one model 
would be needed; this would make sure that all raters receive feedback based on the same 
information. For this method, however, measurements of all natives’ and participants’ vowel space 
corners (i.e. /u/, /i/ and /a/) would have to be collected. Alternatively, to reduce the variability in the 
input data, the tool could also merely take input stimuli from the two most comparable native English 
speakers per gender (e.g. speaker 2 and 8 for the females, and speaker 4 and 7 for the males). 
 Second, the target words could be adapted. In this paper, multiple different words were used, 
to get as highly variable input as possible. This was done because it is known from research in 
perception that presenting listeners with a variable input improves learning (e.g. Bradlow et al., 1997); 
it was expected that in production listeners would also benefit from feedback based on variable input. 
However, for the current tool it might be more important to use a combination of vowels and 
consonants that are easily separable and distinguishable. This makes the segmentation more reliable, 
which improves the feedback. Moreover, the question remains whether vowels should be trained in 
isolation (or in contexts with very little coarticulation, like /t/, /d/ and /h/:) or in a context in which 
coarticulation takes place. The advantage of using vowels in isolation is that this might create a solid 
‘target’ vowel that is aimed at when the vowel is used in a consonant-context, as suggested in the 
production undershoot model. The advantage of using vowels with consonant-contexts is that this is 
the way in which vowels are used in daily life, and participants might benefit from training on this. 
Furthermore, in L1 acquisition, vowels are also presented in their context. This raises a theoretical 
question about the representation of phonological categories: whether they are more ‘prototypical’ or 
more ‘exemplar-based’. In the first case, the representation consists of target vowels in combination 
with rules about how tokens can differ from the target; in the second case representations would be 
made up many observed tokens of the vowel.   

Thirdly, it might be worth the time investment to hand-segment all input utterances. The 
present paper used automatically segmented data. However, since the automatic segmentation 
method in Praat is not without errors, the feedback is based on target vowel distributions that are 
partly incorrect. These errors did not show up in the error checking: the formants could have been 
measured in neighboring consonants that still have similar formants due to coarticulation, or the errors 
were invisible because the average over the whole duration of the vowel was taken. 

The findings of the experiment confirm the suggestion by Kartushina et al. (2015) that 
objective spectral analysis is more useful than subjective feedback by native listeners: it was found 
that subjective evaluations are indeed not stable. Since the raters showed strange behavior in the 
rating of the English natives’ utterances with /ɛ/, and it is not entirely clear why, the low correlation 
between the tool and the ratings of the raters for /ɛ/ should not be too worrisome. In future research, 
the evaluation method for a tool like this should be very carefully designed. 

There are a few suggestions for further research. First, it was suggested that the raters’ 
identification boundary shifted under the influence of the productions of Dutch natives. Unfortunately, 
the data for the identification test of rater 3 was missing, which makes this interpretation even more 
speculative. However, the question whether identification boundaries for you native language might 
change under influence of non-native input would be a good topic for further research. Knowledge on 
how fast and in which direction categories can move might help teaching people new vowel contrasts, 
and it could tell something about the phonological representations. 

Second, Jenkins and Strange’s hypothesis that vowel identification is most importantly a 
process of attaining to acoustic changes (Jenkins & Strange, 1999; Section II.D.1) raises the question 
whether vowel production also uses acoustic changes. If this is the case, participant should be trained 
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on producing acoustic changes instead of on aiming at a certain target (as in the currently existing 
methods). However, the results from the LDA in Section II.D were not conclusive about whether the 
20% and 80% points of the vowel duration improve prediction of the vowel. Therefore, for the current 
tool uses the average of the whole duration of the vowel. This method does contain information on the 
20% and 80% points, but less explicitly; it still trains raters to reach a certain target, and not to produce 
certain spectral changes. Yet, it could well be that these spectral changes are only used in perception, 
and are automatically produced through coarticulation. Whether or not people use a representation of 
acoustic changes in vowel production, or whether this is merely a by-product of coarticulation, could 
be further researched. 
 Third, different ways of visualizing the feedback could be compared. Most speech production 
feedback systems with indirect feedback (based on acoustic measures) use some sort of visualization 
in the F1/F2 space. It could be tested, for example, whether using the entire vowel space helps 
training because it gives more reference points, or whether using only the relevant subset of the vowel 
space is better.  

Finally, a general problem with research on feedback on speech production is that training is 
mostly based on the same principle as the test. For example, a tool that gives feedback based on a 
steady-state middle part of the vowel will most likely also test the improvement of the production 
based on the steady-state middle part. This leaves the question whether training then also improves 
the productions of the raters according to other formant measures, or according to native judgments. 
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V. CONCLUSION 
In this paper, the process of developing a tool for feedback on the English /ɛ/–/æ/ contrast was 
described. Through this description, an overview of the theoretical as well as the practical factors that 
should be considered for a speech production feedback tool was given. The result of the project is a 
tool of which the different elements are made explicit and are thoroughly discussed. The choices for 
the method of analysis are based on an extensive analysis of the input data. 

First, the most important features of the English vowels /ɛ/ and /æ/ were identified, to find 
which features should be used in feedback on pronunciation by novices. It was found that the mean 
F1 and F2 over the whole duration of the vowel are the best indicators for the current dataset. 
Furthermore, it was found that coarticulation is a significant predictor of the vowels, i.e. coarticulation 
should be taken into account in production feedback devices for the /ɛ/–/æ/ contrast. It is likely that 
this would hold as well for other vowel contrasts. Another attempt of this project was to base the 
feedback on the native utterances of many native speakers (5 per gender). This is indeed a theoretical 
merit; however, it became clear that it is important normalize the differences in the vowel spaces of the 
natives.  

Second, the tool’s judgments were tested against native listeners’ ratings. It became clear that 
using native listeners to rate productions is not the most robust method, since they rated many 
productions of /ɛ/ by English native speakers as /æ/. Therefore, the correlations of the tool’s judgment 
with the natives’ ratings, some of which were quite high whereas others were low, were not 
straightforwardly interpretable.  

In sum, we cannot be entirely sure whether the tool gives feedback that is consistent with 
natives’ judgments. Moreover, there are still some possibilities for improvement of the tool, some of 
which are easier to implement than others. However, the tool in its current form is ready for use, and 
can already be experimented with. 
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APPENDICES 

A. Correlation plots for the separate speakers 
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B. Script of the tool 
 
############################## 
# Gisela Govaart 
# June 2016 
# Research project 1: EarOpener 
# Supervisors: Paul Boersma & Makiko Sadakata 
############################## 
 
######### Adjustable settings ########### 
# How long is the microphone open (sec) 
recordTime = 1.5 
# How often do you want to repeat each word? (min 2X) 
numRep = 2 
# After how many words do you want to give the participant a break? 
pauseAfter = 20 
# In which file are your stimuli 
stimfile$ = "stimfile.txt" 
 
########################################################################## 
 
tableMaleF_a = Read from file: "tableForTool_m_f_a.Table" 
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tableMaleH_a = Read from file: "tableForTool_m_h_a.Table" 
tableMaleJ_a = Read from file: "tableForTool_m_j_a.Table" 
tableMaleM_a = Read from file: "tableForTool_m_m_a.Table" 
tableMaleP_a = Read from file: "tableForTool_m_p_a.Table" 
tableMaleF_e = Read from file: "tableForTool_m_f_e.Table" 
tableMaleH_e = Read from file: "tableForTool_m_h_e.Table" 
tableMaleJ_e = Read from file: "tableForTool_m_j_e.Table" 
tableMaleM_e = Read from file: "tableForTool_m_m_e.Table" 
tableMaleP_e = Read from file: "tableForTool_m_p_e.Table" 
 
tableFemaleF_a = Read from file: "tableForTool_f_f_a.Table" 
tableFemaleH_a = Read from file: "tableForTool_f_h_a.Table" 
tableFemaleJ_a = Read from file: "tableForTool_f_j_a.Table" 
tableFemaleM_a = Read from file: "tableForTool_f_m_a.Table" 
tableFemaleP_a = Read from file: "tableForTool_f_p_a.Table" 
tableFemaleF_e = Read from file: "tableForTool_f_f_e.Table" 
tableFemaleH_e = Read from file: "tableForTool_f_h_e.Table" 
tableFemaleJ_e = Read from file: "tableForTool_f_j_e.Table" 
tableFemaleM_e = Read from file: "tableForTool_f_m_e.Table" 
tableFemaleP_e = Read from file: "tableForTool_f_p_e.Table" 
 
meanstableMaleF_a = Read from file: "tableForToolMeans_m_f_a.Table" 
meanstableMaleH_a = Read from file: "tableForToolMeans_m_h_a.Table" 
meanstableMaleJ_a = Read from file: "tableForToolMeans_m_j_a.Table" 
meanstableMaleM_a = Read from file: "tableForToolMeans_m_m_a.Table" 
meanstableMaleP_a = Read from file: "tableForToolMeans_m_p_a.Table" 
meanstableMaleF_e = Read from file: "tableForToolMeans_m_f_e.Table" 
meanstableMaleH_e = Read from file: "tableForToolMeans_m_h_e.Table" 
meanstableMaleJ_e = Read from file: "tableForToolMeans_m_j_e.Table" 
meanstableMaleM_e = Read from file: "tableForToolMeans_m_m_e.Table" 
meanstableMaleP_e = Read from file: "tableForToolMeans_m_p_e.Table" 
 
meanstableFemaleF_a = Read from file: "tableForToolMeans_f_f_a.Table" 
meanstableFemaleH_a = Read from file: "tableForToolMeans_f_h_a.Table" 
meanstableFemaleJ_a = Read from file: "tableForToolMeans_f_j_a.Table" 
meanstableFemaleM_a = Read from file: "tableForToolMeans_f_m_a.Table" 
meanstableFemaleP_a = Read from file: "tableForToolMeans_f_p_a.Table" 
meanstableFemaleF_e = Read from file: "tableForToolMeans_f_f_e.Table" 
meanstableFemaleH_e = Read from file: "tableForToolMeans_f_h_e.Table" 
meanstableFemaleJ_e = Read from file: "tableForToolMeans_f_j_e.Table" 
meanstableFemaleM_e = Read from file: "tableForToolMeans_f_m_e.Table" 
meanstableFemaleP_e = Read from file: "tableForToolMeans_f_p_e.Table" 
 
form Fill in the following information 
 word ParticipantID  
 word SessionNr 
 choice Gender: 1 
  button Female 
  button Male 
endform 
 
fileID$ = "'participantID$'_'sessionNr$'" 
createDirectory: "Results/'fileID$'" 
outdir$ = "Results/'fileID$'" 
createDirectory: "'outdir$'/pdfs" 
 
### Present the word orthografically, save which word it was 
 
strings = Read Strings from raw text file: "stimfile.txt" 
for i from 1 to numRep-1 
 stringsPart'i' = Extract part: 1, 10 
endfor 
selectObject: strings 
for  i from 1 to numRep-1 
 plusObject: stringsPart'i' 
endfor 
s = Append 
Create Permutation: "p", 10*numRep, "yes" 
p = Permute randomly (blocks): 0, 0, 10, "yes", "yes" 
selectObject: p, s 
wordList = Permute strings 
nrWords = Get number of strings 
 
demo Erase all 
demoWindowTitle: "Production feedback tool EarOpener" 
demo Navy 
demo 12 
@ clearDemoWindow 
demo Text: 50, "centre", 50, "half", "This is the production part. You will (instructions). Push the space 
bar to start the experiment" 
while demoWaitForInput() 
 goto SECOND_SCREEN demoInput(" ") 
endwhile 
label SECOND_SCREEN 
@clearDemoWindow 
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demo 18 
demo Text: 50, "centre", 50, "half", "Press the space bar to record the next word" 
 
counterCorrect = 0 
table = Create Table with column names: "tableInfo_'fileID'", 10*numRep, "participantID sessionNr date 
gender word wordNr intendedVowel correct? mahalanobis startC F1 F2" 
 
for i from 1 to nrWords 
  
 ## the pause ##  
 if i mod pauseAfter = 0  
   while demoWaitForInput() 
  goto PAUSE_SCREEN demoInput(" ") 
  endwhile 
  label PAUSE_SCREEN 
  @clearDemoWindow 
  demo 24 
  demo Text: 50, "centre", 60, "half", "This is a break. Press the space bar to continue" 
  demoShow() 
  while demoWaitForInput() 
   goto THIRD_SCREEN demoInput(" ") 
  endwhile 
 endif 
 
 selectObject: wordList 
 word$ = Get string: 'i' 
 s$ = left$ (word$, 1) 
 if s$ = "g" 
  s$ = "j" 
 endif 
 e$ = right$ (word$, 1) 
 vowel$ = mid$ (word$, 2,1) 
 while demoWaitForInput() 
  goto THIRD_SCREEN demoInput(" ") 
 endwhile 
 label THIRD_SCREEN 
 @clearDemoWindow 
 demo 24 
 demo Text: 50, "centre", 60, "half", word$ 
 demoShow() 
 
 ### Record the participant's utterance 
 
 sound = Record Sound (fixed time)... Microphone 0.99 0.5 44100 2 
 j = ceiling((i-1)/10 + 0.05) 
 Save as WAV file: "'outdir$'/'fileID$'_'word$''j'.wav" 
 
 ### Segment the participant's utterance 
 
 selectObject: sound 
 textgrid = noprogress To TextGrid: "CVC", "" 
 Set interval text: 1, 1, word$ 
 
 # I select m1 and f1, you can also choose one of the other male/female 'voices'. 
 selectObject: sound 
 if gender = 1 
  speechSynt = noprogress Create SpeechSynthesizer: "English", "f1" 
 elsif gender = 2  
  speechSynt = noprogress Create SpeechSynthesizer: "English", "m1" 
 endif 
 
 selectObject: sound, textgrid, speechSynt 
 textgridAligned = noprogress To TextGrid (align): 1, 1, 1, -30, 0.1, 0.1 
 ## -30 dB is the silence threshold. 
 
 selectObject: textgridAligned 
 noprogress Save as text file: "'outdir$'/'fileID$'_'word$''j'.TextGrid" 
 
 ### Analyze the participant's utterance 
 
 selectObject: textgridAligned 
 nrIntervals = noprogress Get number of intervals: 4 
 for k from 1 to nrIntervals 
  selectObject: textgridAligned 
  intervalLabel$ = Get label of interval: 4, k 
    if intervalLabel$ = "æ" or intervalLabel$ = "a" or intervalLabel$ = "ɛ" or 
intervalLabel$ = "e" 
   startVowel = noprogress Get starting point: 4, k 
   endVowel = noprogress Get end point: 4, k 
   durationVowel = (endVowel - startVowel) 
  endif  
 endfor 
 
 selectObject: sound 
  if gender = 1 
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    formant = noprogress To Formant (burg): 0.001, 5, 5500, 0.025, 50 
    # 0.001, want default is 0.01. dan meet ie dus de formant op iedere 0.01sec.  
  elsif gender = 2  
    formant = noprogress To Formant (burg): 0.001, 5, 5000, 0.025, 50 
  endif 
 f1hertz = noprogress Get mean: 1, startVowel, endVowel, "Hertz" 
 f2hertz = noprogress Get mean: 2, startVowel, endVowel, "Hertz" 
 f1 = hertzToErb(f1hertz) 
 f2 = hertzToErb(f2hertz) 
 
 ### Analyzis on whether the utterance was correct or incorrect: 
 ### MAHALANOBIS Distance 
 if gender = 1  
  if vowel$ = "a" 
   if s$ = "f" 
    @mahalanobis: tableFemaleF_a 
   elsif s$ = "h" 
    @mahalanobis: tableFemaleH_a 
   elsif s$ = "j" 
    @mahalanobis: tableFemaleJ_a 
   elsif s$ = "m" 
    @mahalanobis: tableFemaleM_a 
   elsif s$ = "p" 
    @mahalanobis: tableFemaleP_a 
   endif 
  elsif vowel$ = "e" 
   if s$ = "f" 
    @mahalanobis: tableFemaleF_e 
   elsif s$ = "h" 
    @mahalanobis: tableFemaleH_e 
   elsif s$ = "j" 
    @mahalanobis: tableFemaleJ_e 
   elsif s$ = "m" 
    @mahalanobis: tableFemaleM_e 
   elsif s$ = "p" 
    @mahalanobis: tableFemaleP_e 
   endif 
  endif 
 else 
  if vowel$ = "a" 
   if s$ = "f" 
    @mahalanobis: tableMaleF_a 
   elsif s$ = "h" 
    @mahalanobis: tableMaleH_a 
   elsif s$ = "j" 
    @mahalanobis: tableMaleJ_a 
   elsif s$ = "m" 
    @mahalanobis: tableMaleM_a 
   elsif s$ = "p" 
    @mahalanobis: tableMaleP_a 
   endif 
  elsif vowel$ = "e" 
   if s$ = "f" 
    @mahalanobis: tableMaleF_e 
   elsif s$ = "h" 
    @mahalanobis: tableMaleH_e 
   elsif s$ = "j" 
    @mahalanobis: tableMaleJ_e 
   elsif s$ = "m" 
    @mahalanobis: tableMaleM_e 
   elsif s$ = "p" 
    @mahalanobis: tableMaleP_e 
   endif 
  endif 
 endif 
 
 if gender = 1 
  if mahalanobis.mahaladist < 1 
   correct = 1 
   color$ = "green" 
   counterCorrect = counterCorrect + 1 
  else  
   correct = 0 
   color$ = "red" 
  endif 
 elsif gender = 2 
  if mahalanobis.mahaladist < 0.5 
   correct = 1 
   color$ = "green" 
   counterCorrect = counterCorrect + 1 
  else  
   correct = 0 
   color$ = "red" 
  endif 
 endif 
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 ### Give the feedback 
 
 demo Erase all 
 demo Select inner viewport: 0, 100, 0, 90 
 
 if gender = 1  
  if s$ = "f" 
   @drawAxes: meanstableFemaleF_a, meanstableFemaleF_e, vowel$ 
  elsif s$ = "h" 
   @drawAxes: meanstableFemaleH_a, meanstableFemaleH_e, vowel$ 
  elsif s$ = "j" 
   @drawAxes: meanstableFemaleJ_a, meanstableFemaleJ_e, vowel$ 
  elsif s$ = "m" 
   @drawAxes: meanstableFemaleM_a, meanstableFemaleM_e, vowel$ 
  elsif s$ = "p" 
   @drawAxes: meanstableFemaleP_a, meanstableFemaleP_e, vowel$ 
  endif 
 
 else 
  if s$ = "f" 
   @drawAxes: meanstableMaleF_a, meanstableMaleF_e, vowel$ 
  elsif s$ = "h" 
   @drawAxes: meanstableMaleH_a, meanstableMaleH_e, vowel$ 
  elsif s$ = "j" 
   @drawAxes: meanstableMaleJ_a, meanstableMaleJ_e, vowel$ 
  elsif s$ = "m" 
   @drawAxes: meanstableMaleM_a, meanstableMaleM_e, vowel$ 
  elsif s$ = "p" 
   @drawAxes: meanstableMaleP_a, meanstableMaleP_e, vowel$ 
  endif 
 endif 
 
 
 
#################### 
 # Make sure that the utterance is not plotted in the upper part of the window (where the text is) 
 if f2 < drawAxes.upperF2 
  demo Paint circle (mm): color$, f1, f2, 2.5 
 endif 
 
 demo Axes: 0, 100, 0, 100 
 demo Select inner viewport: 0, 100, 0, 100 
 demo 18 
 demo Maroon 
 demo Text special: 30, "centre", 93, "half", "Times", 18, "0", "Push the space bar to go to the next 
word" 
 demo Green 
 demo Text special: 80, "centre", 93, "half","Times", 24, "0", "Number Correct: 'counterCorrect'" 
 demo Navy 
 
 ### Save the info in a table 
 selectObject: table 
   Set string value: i, "participantID", participantID$ 
   Set string value: i, "sessionNr", sessionNr$ 
   Set string value: i, "date", date$() 
   Set numeric value: i, "gender", gender 
   Set string value: i, "word", word$ 
   Set numeric value: i, "wordNr", j 
   Set string value: i, "intendedVowel", vowel$ 
   Set numeric value: i, "correct?", correct 
   Set numeric value: i, "mahalanobis", mahalanobis.mahaladist 
   Set string value: i, "startC", s$ 
   Set numeric value: i, "F1", f1 
   Set numeric value: i, "F2", f2 
 selectObject: sound, textgrid, textgridAligned, speechSynt, formant 
 Remove 
 demoShow() 
endfor 
 
selectObject: table 
Save as tab-separated file: "'outdir$'/'fileID$'.Table" 
 
while demoWaitForInput() 
 goto END demoInput(" ") 
endwhile 
 
label END 
@ clearDemoWindow 
demo Text: 50, "centre", 50, "half", "This is the end of the experiment. Thanks for participating." 
 
### Drawing pictures to see how the segmentation went 
strings = Create Strings as file list: "fileList", "'outdir$'/*.wav" 
nrFiles = Get number of strings 
for i from 1 to nrFiles 
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 selectObject: strings  
 currentFile$ = Get string: 'i' 
 soundn = Read from file: "'outdir$'/'currentFile$'" 
 objectName$ = selected$ ("Sound") 
 textgridn = Read from file: "'outdir$'/'objectName$'.TextGrid" 
 selectObject: soundn, textgridn 
 Erase all 
 Select outer viewport: 0, 6, 0, 4 
 Draw: 0, 0, "yes", "yes", "yes" 
 Save as PDF file: "'outdir$'/pdfs/segmentation_'objectName$'.pdf" 
endfor 
demoShow() 
 
##################################################################### 
 
procedure clearDemoWindow 
 demo Erase all 
 demo Axes: 0, 100, 0, 100 
 demo Select inner viewport: 0, 100, 0, 100 
 demo Paint rectangle: "silver", 0, 100, 0, 100 
endproc 
 
procedure mahalanobis: .tableForTool 
 selectObject: .tableForTool 
 Down to TableOfReal: "" 
 cov_i = To Covariance 
 table_i = Create Table with column names: "table_i", 1, "F1 F2" 
 Set numeric value: 1, "F1", f1 
 Set numeric value: 1, "F2", f2 
 selectObject: table_i 
 tor_i = Down to TableOfReal: "" 
 selectObject: cov_i, tor_i 
 table_mal = To TableOfReal (mahalanobis): "no" 
 .mahaladist = Get value: 1,1 
 selectObject: cov_i, table_i, tor_i, table_mal 
 Remove 
endproc 
 
procedure drawAxes: .tableA, .tableE, .vowel$ 
 selectObject: .tableA 
 meanF1a = Get value: 1, "F1" 
 meanF2a = Get value: 1, "F2" 
 
 selectObject: .tableE 
 meanF1e = Get value: 1, "F1" 
 meanF2e = Get value: 1, "F2" 
 .f1difference = meanF1a - meanF1e 
 .f2difference = meanF2e - meanF2a 
   
 if gender = 1 
  if .vowel$ = "a" 
   demo Teal 
   demo Axes: meanF1e - 2*.f1difference, meanF1a + 2*.f1difference, meanF2a - 
2*.f2difference, meanF2e + 2*.f2difference 
   demo Text special: meanF1a, "centre", meanF2a, "half", "Times", 25, "0", "\f5a" 
   demo Silver 
   demo Text special: meanF1e, "centre", meanF2e, "half", "Times", 25, "0", "e" 
  else 
   demo Teal 
   demo Axes: meanF1e - 2*.f1difference, meanF1a + 2*.f1difference, meanF2a - 
2*.f2difference, meanF2e + 2*.f2difference 
   demo Text special: meanF1e, "centre", meanF2e, "half", "Times", 25, "0", "\f5e" 
   demo Silver 
   demo Text special: meanF1a, "centre", meanF2a, "half", "Times", 25, "0", "a" 
  endif 
 .upperF2 =  meanF2e + 2*.f2difference     
 endif 
 
 if gender = 2 
  if .vowel$ = "a" 
   demo Teal 
   demo Axes: meanF1e - 2.1*.f1difference, meanF1a + 2.1*.f1difference, meanF2a - 
2.08*.f2difference, meanF2e + 2.08*.f2difference 
   demo Text special: meanF1a, "centre", meanF2a, "half", "Times", 25, "0", "\f5a" 
   demo Silver 
   demo Text special: meanF1e, "centre", meanF2e, "half", "Times", 25, "0", "e" 
  else 
   demo Teal 
   demo Axes: meanF1e - 2.1*.f1difference, meanF1a + 2.1*.f1difference, meanF2a - 
2.08*.f2difference, meanF2e + 2.08*.f2difference 
   demo Text special: meanF1e, "centre", meanF2e, "half", "Times", 25, "0", "\f5e" 
   demo Silver 
   demo Text special: meanF1a, "centre", meanF2a, "half", "Times", 25, "0", "a" 
  endif 
 .upperF2 =  meanF2e + 2.08*.f2difference     
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 endif 
 
 demo Black 
 demo Line width: 1 
 demo Draw inner box 
endproc 


