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Emergence of features and phonemes in a neural network with a single input 

continuum 

 

The 'feature versus phoneme' debate has been the basis for research in the fields of phonetics and 

phonology for many years. The research described here used a neural network modelling approach to 

examine this issue. Several types of models were simulated to investigate whether phonemes or 

features emerge in a neural network with a single input continuum. It was found that under different 

conditions, either features or phonemes could emerge in a neural network. As the neural network 

modelling approach is still new to phonetics and phonology, future research using this approach may 

shed more light on how the brain handles phonetic and phonological processes. 

 

 

1. Introduction 

 

In the fields of phonetics and phonology, the 'features versus phoneme' debate has been the basis for 

research for many years. The central question in this debate is the following: Are vowels represented 

in the language user as phonemes or as feature bundles? Vowels can be seen as sharing some features, 

such as horizontal position of the tongue (the vowels /o/ and /u/ are both 'back' vowels, whereas /i/ and 

/e/ are 'front' vowels) and vertical position of the tongue (/i/ and /u/ are 'high' vowels, whereas /a/ is a 

'low' vowel), and previous research, indeed, seems to favour the vowels-as-features side of the debate 

(e.g. Boersma & Chládková 2011; Recasens & Espinosa 2009). 

Boersma and Chládková (2013) investigated the issue using a neural network model (NNM). 

Neural models have been around since the 1940's (McCulloch & Pitts 1943), and have been used to 

model various cognitive processes in the brain. However, researchers in linguistics have only recently 

begun to make use of these types of models. Guenther & Gjaja (1996), for example, showed how the 

perceptual magnet effect (a warping of the auditory space) arises in a two-layered neural net. More 

recently, Boersma, Benders and Seinhorst (2013) have shown that both phonological category creation 
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and auditory dispersion can be modelled successfully in an artificial neural network. These types of 

models are more biologically plausible than, for instance, Optimality Theoretic models, and are thus 

preferred. 

Boersma and Chládková (2013) designed a NNM to investigate whether, if learners are only 

presented with sound-meaning pairs, features or phonemes would emerge. Their model consisted of 

three layers: an auditory layer at the bottom, split into two separate formant value continua; a 

phonological layer in the middle, also split into two, and which is connected to the layers above and 

below it; and a word layer at the top. Boersma and Chládková (2013) fed the model combinations of 

inputs at the word level and at the auditory level, after which the activity was allowed to spread to the 

phonological level and the connection weights were updated using a particular learning algorithm. The 

researchers found that vowel features emerge at the phonological level. However, even though this 

model simulates the emergence of vowel features successfully, it needs two separate input continua for 

the first and second formant values, respectively. In reality, formant values are represented on a single 

input continuum: the basilar membrane. It is therefore desirable to design a neural network which 

employs just one input continuum on which both formant values are represented. 

In this paper, I will describe research that was set out to adapt the NNM designed by Boersma 

and Chládková (2013) in order to make it more biologically plausible. I designed a neural network 

model with a single input continuum on which multiple formant values can be represented, I trained 

this model on sound-meaning pairs, and I investigated whether, just as in Boersma and Chládková 

(2013), features would emerge. In the remainder of this paper, I will describe the basic architecture of 

this model, parameters of the model, and the learning phase, and I will report on and discuss the 

results of the simulations I ran with different types of the model. 

 

2. Methods 

2.1 The architecture of the model 

The basic architecture of the models described in this paper is shown in Fig.1. All models were 

simulated in Praat (Boersma & Weenink, 2005; scripts can be found in Appendices A through D). All 

models consist of three layers of nodes: a 'meaning' layer, a middle (phonological) layer, and a sound 
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layer. Both the meaning layer and the middle layer contain 20 nodes. In the meaning layer, these nodes 

are grouped into five groups of four nodes, which represent the five possible words in the simplified 

language used in these experiments (i.e. "I", "E", "A", "O", and "U"). The nodes in the middle layer 

are not grouped in any way. 

The sound layer contains 60 nodes. This layer represents a frequency continuum from 100 Hz 

to 3000 Hz. All words in our toy language correspond to a certain pattern of two values on the 

auditory layer: the F1 value and the F2 value (see e.g., Fig. 2). The F1 continuum ranges from 100 Hz 

to 1000 Hz, and the F2 continuum ranges from 500 Hz to 3000 Hz. Table 1 shows the mean values of 

the F1 and F2 of all possible words, in percentage of the respective continua, in frequency in Hz and in 

the absolute node number on the sound layer. 

 

All nodes in the meaning layer are connected to all nodes in the middle layer through 

excitatory connections. The same is true for the nodes in the sound layer and the middle layer. 

Initially, the weights of these connections are set to random values between 0 and 0.1. In the learning 

stage, these connections are allowed to learn and their weights will be updated as a result of the 

specific input the model receives. 

“I” “E” “A” “O” “U”

Figure 1. The architecture of the models. 
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In the models described in this paper, inhibitory connections exist between all nodes in the 

sound layer. These connections are non-learning, and their weights are set at -0.1. All nodes in the 

meaning layer are also connected to each other via inhibitory, non-learning connections with a weight 

set at -0.1. The inhibitory connections in the sound and meaning layers do not influence learning in 

any way, because the nodes in these layers are clamped during learning. The inhibition in these two 

layers makes sure that the output results of the model in production and perception are more clear-cut 

than they would be without inhibition. Inhibitory connections also exist in the middle layer, where 

they have a weight of -0.1. In this layer, inhibition does play a role in the learning phase. Varying the 

strength of the inhibition in the middle layer leads to different results, which I will discuss in some 

more detail in section 3.4 of this paper.  

 

 

Table 1. Means of F1 and F2 of each word, in % of continuum, frequency in Hz, and node number. 

 

 

2.2 Parameters of the model 

In this section, I will describe the many different parameters in the models, as well as their settings. 

Unless otherwise specified, parameter settings are the same as those used by Boersma and Chládková 

(2013), and they are kept constant across simulations.  

Activity minimum and maximum. The activity minimum and activity maximum parameters 

determine the value of minimum and maximum activity of nodes. In the models described here, the 

activity minimum parameter is set to 0, and the activity maximum is set to 3. Negative activity of 

nodes is thus not allowed in the models. 

Weight minimum and maximum. The weight minimum and weight maximum parameters 

determine the value of the minimum and maximum strength of connections. In the models described 

Word 
Continuum (in %) Frequency (in Hz) Node number 

F1 F2 F1 F2 F1 F2 

"I" 20 90 280 2750 5.6 55 

"E" 50 75 550 2375 11 47.5 

"A" 80 50 820 1750 16.4 35 

"O" 50 25 550 1125 11 22.5 

"U" 20 10 280 750 5.6 15 



EMERGENCE OF FEATURES AND PHONEMES IN A NEURAL NETWORK | 6  

 

here, the weight minimum parameter is set to -3, and the weight maximum is set to 3. This means that 

both inhibitory and excitatory connections are allowed in the model. 

Activity leak. The activity leak parameter, used in equation (4) in section 2.3, introduces leak 

into the model. It causes activity to leak away from nodes. Increasing the value of this parameter leads 

to more activity leaking away. This parameter is set to 1 in all models described here. 

Weight leak. The weight leak parameter introduces a different type of leak into the model: it 

causes connection weights to decrease. Increasing the value of this parameter leads to more weight 

leaking away. This parameter is set to 0.5 in all models described here. 

Spreading rate (ηa in (4)). The spreading rate parameter controls the speed of activity 

spreading through the model. Activity spreads through the model in small steps, causing the activities 

of the nodes to change gradually on each step. The lower the value of this parameter, the smaller the 

rate of activity spreading will be, and the longer it will take to complete each learning trial. This 

parameter is set to 0.01 in all models described here.   

Number of times of activity spreading. This parameter controls the number of times of activity 

spreading. In all models described here, this parameter is set to 500. This means that the activity is 

allowed to spread 500 times (at a spreading rate of 0.01) in each learning trial before the weights are 

updated. The higher this value is, the longer it will take to complete each learning trial. 

Learning rate (ηw in (5)). The learning rate parameter determines the change in connection 

weights after activity spreading is finished. This parameter dictates by how much a connection weight 

can change. The learning rate in all models described here is set to 0.001. This means that connection 

weights can only change a little in each learning trial, making a large number of learning trials 

necessary. If the value of this parameter is increased, learning would be faster, but also less precise. 

Smaller values, on the other hand, result in slower, but more precise learning. 

Standard deviation of ambient. This parameter determines the variation in sounds in the 

environment. It is an equation, shown in (1), which includes other parameters. 

 

(1)                          (
                                

 
   )                                      
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For all models described here, the number of nodes in the bottom layer is 60. The peak 

sharpness and number of categories parameters are kept constant as well, at values of 2 and 6, 

respectively. The value of the standard deviation of ambient parameter thus equals 2.416. This 

parameter is used when the model computes which nodes in the bottom layer should be activated, 

which takes place in the learning phase (see also section 2.3). The larger the values of the peak 

sharpness and number of categories parameters get, the smaller the value of the standard deviation of 

ambient parameter will be. If this parameter's value is small, the variation from the mean is smaller, 

and activation patterns for the same words across learning trials will be more similar. A larger 

parameter value will ensure that there is more variance in activation patterns for the same words across 

learning trials. 

Auditory spreading. The auditory spreading parameter determines the amount of activity on 

and around the F1 and F2 means of the chosen word: the higher the value of this parameter, the more 

concentrated the activity will be around a particular mean. If the value decreases, nodes more distant 

from the means will also receive activation. The auditory spreading parameter is also used in the 

learning phase (see section 2.3). This parameter is computed from other parameters, as shown in (2): 

 

 (2)                         
                                –  

                  
 

 

The number of nodes in the bottom layer in all models equals 60. The auditory sharpness is 

set to 60 in all models. The value of the auditory spreading parameter thus equals 0.983. The 

parameter is used in computing the value of the activities on the bottom layer, which is shown in (3) in 

section 2.3. Increasing the value of the auditory sharpness parameter leads to a decreasing value of the 

auditory spreading parameter. The value of the auditory sharpness parameter in my models is 

increased in comparison to the model of Boersma and Chládková (2013) to ensure that activity is more 

concentrated around the F1 and F2 means, which leads to more clear-cut activation patterns when 

testing production in the models. 
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Instar and outstar. The instar and outstar parameters determine which learning algorithm is 

used when the connection weights are updated in the learning phase (see (5)). To use the instar 

learning algorithm, the instar parameter should be set to 1, and the outstar parameter to 0. To use the 

outstar learning algorithm, instar should be set to 0, and outstar to 1. To use the inoutstar learning 

algorithm, the instar and outstar parameters should both be set to 0.5 (Boersma, Benders & Seinhorst, 

2013). The inoutstar learning algorithm is used in all models described in this paper, which means that 

here, the instar and outstar parameters are both always set to 0.5. 

Total number of inputs.  This parameter simply controls the number of learning trials in the 

learning phase. The value of this parameter in all models described here is set to 20000. The higher 

this value, the more combinations of activation patterns are presented to the model in the learning 

phase, and the longer this learning phase will take. If the value of this parameter is too low, then the 

model might not be presented with enough trials of the different words to be able to successfully learn 

the associations between activation patterns on the meaning and sound layers. 

 

2.3 The learning phase 

In the learning phase, the models are presented with specific combinations of patterns of activity in the 

meaning layer and in the sound layer. The weights of the connections between nodes in the different 

layers changes as a result of the specific inputs the model receives. 

Firstly, a word is randomly selected from the five possible words in the language. All nodes in 

the meaning layer and in the sound layer are then 'clamped': the activities of these nodes are kept fixed 

during learning. 

Secondly, activity is applied to all nodes in the meaning and sound layers that correspond to 

the randomly selected word. In the meaning layer, the activity of the four nodes corresponding to the 

selected word is set to one. In the sound layer, something slightly more complex happens. As Table 1 

shows, the means of both F1 and F2 of all words are set at specific points on the sound layer. To 

account for variability, the exact same nodes are not always activated for the same words. F1 and F2 

values are allowed to vary between presentations of the same word according to a Gaussian curve. The 

nodes in the sound layer on which the activation peak lies (the Gaussian random deviates) are 
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computed on each learning trial with the means for F1 and F2 as shown in Table 1 and the value of the 

standard deviant of ambient parameter as the standard deviation. To approximate what happens when a 

sound wave excites part of the basilar membrane in the ear (i.e. hair cells adjacent to the ones sensitive 

to a specific frequency are also excited to an extent when that frequency is applied), the nodes adjacent 

to the mean F1 and F2 calculated for a specific word are also activated according to a Gaussian curve. 

Equation (3) below shows how the activation patterns in the sound layer are calculated. 

 

(3)                                
                         )) 

                      
                         )) 

                    

 

In every learning trial, this equation is applied to every node in the sound layer (node number 

1 to node number 60). In the equation, nodeF1 and nodeF2 refer to the F1 and F2 means of the 

selected word, as computed just prior to this step. The auditory spreading parameter is described in 

more detail in section 2.2. Adding the two sections of the equation together ensures that we end up 

with activation in two distinct places on the sound continuum. To summarise: for every selected word, 

a group of four nodes in the meaning layer is activated, and activity on the auditory layer appears as 

two Gaussian curves centred on a varying mean. An example of a possible input to the model when 

the selected word is 'I' is shown in Fig. 2.  

Figure 2. Example of an input presentation when the word 'I' is selected as input. 

“I” “E” “A” “O” “U”
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Thirdly, the activities are allowed to spread throughout the model via the connections between 

nodes. This spreading of activities takes place in small steps, as shown in (4) below: 

 

(4)          (∑                                          ) 

 

Here, ej is the excitation of node j, ηa is the spreading rate (see section 2.2), wij is the weight of 

the connection between nodes i and j and ai is the activity of node i. The activity leak parameter is 

discussed in section 2.2. 

Lastly, after activity spreading has finished, the connection weights are updated according to 

the learning rule shown in (5). 

 

(5)          (                  
              

                
) 

 

Here, wij is the weight of the connection between nodes i and j, ηw is the learning rate, and ai 

and aj are the activities of nodes i and j, respectively. The instar and outstar parameters, as well as the 

weight leak parameter, are discussed in section 2.2. This learning rule, the so-called 'inoutstar' learning 

rule (Boersma, Benders & Seinhorst, 2013), is a combination of the instar and outstar learning rules 

proposed by Grossberg (1969 and 1976). The updating of connection weights according to this rule 

will ensure that connections between nodes that are active together will become stronger, whereas 

connections between nodes that are not active together will become weaker. 

After this last step, the activity of all nodes in the model is set to zero, and clamping of nodes 

is undone. The cycle then starts again with the random selection of a word. These steps are repeated 

until a certain number of input presentations, determined by the total number of inputs parameter, has 

been reached. 
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3. Results 

3.1 Initial models 

The first type of model I simulated was designed in the way described above. After feeding it 20000 

input pairs, the model was tested to see whether phonemes or features had emerged. To test production 

of the model, a group of nodes belonging to a word in the meaning layer is activated, and the activity 

is allowed to spread to the layers below. The first thing to look for is whether the activity in the sound 

layer is distributed correctly. All words in the toy language are associated with a specific combination 

of F1 and F2 values that is represented on the sound layer, and after 20000 learning trials, the model 

should have learned to associate these patterns of activation with the correct words, and thus, 

assuming the bidirectionality of the connections, the model should be able to produce the correct 

sound output belonging to an activated word. Only after it is established that the model has correctly 

associated F1 and F2 values with words can we investigate whether features or phonemes have 

emerged in the middle layer of the model. 

To answer the question whether words are represented in the model as features or as 

phonemes, we have to look at the pattern of activity on the middle layer of each word in production. If 

certain words share some activation patterns in the middle layer (and the activation patterns on the 

sound layer are still correct for all words), we may conclude that words are represented as 

combinations of features (e.g., vowel height and vowel backness). If, on the other hand, the activity 

pattern in the middle layer corresponds to the activity in the meaning layer, that is, if all different 

words show a different activation pattern in the middle layer, then we may conclude that words are 

represented in the model as phonemes. 

The production success of the first types of models was very low. Only 7 out of 50 models 

correctly produced all words. Figure 3 shows an example of a model which correctly produces "E".  

Although the activation pattern on the sound layer is correct, something curious is going on in the 

middle layer. As we can see, activating the word "E" leads to activation on nodes 1, 8, 11 (only a tiny 

amount), and 13. However, there are no connections from the nodes belonging to "E" in the top layer 

to node 1 (or to node 11, for that matter) in the middle layer. How can these nodes be active then?  
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The answer lies in the activation spreading and bidirectionality of the connections between 

nodes. The activation from the "E" nodes in the top layer spreads via the excitatory connections to 

nodes 8 and 13 on the middle layer, and from here, the activity spreads to the sound layer. This is not 

the end of the activation spreading, however. Activation is allowed to spread to any nodes that are 

unclamped, and because the connections allow activation spreading in both directions, activation can 

also spread from the bottom layer back up to the sound layer. The active nodes in the sound layer have 

connections to node 1 and 11, and, as a result, activation spreads from the sound layer to these nodes 

in the middle layer. Even though there are no direct connections between "E" nodes in the top layer 

and nodes 1 and 11 in the middle layer, these two nodes become active as activation spreads down to 

the sound layer and up again to the middle layer. Note that the nodes in the meaning layer are all 

clamped, so activation from the middle layer cannot spread back up to the meaning layer. 

If we look at activation patterns in the middle layers of the models which correctly produced 

all words, we can conclude that we see features emerge there. Figure 4 shows an example.  

Figure 3. Example of a model producing "E". 
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The words "E" and "O" are produced correctly in this model, and, moreover, they share an 

activation pattern on the middle layer. Both words activate nodes 1, 3, 7, 10 (a tiny amount), and 17 in 

the middle layer. However, some activity in the middle layer is caused by the activation spreading 

back upwards from the sound layer. If we look at which nodes "E" and "O" actually have connections 

to, that is, which nodes in the middle layer would be activated if the activity would not spread back 

upwards from the sound layer, a slightly different picture emerges. "E" would then activate nodes 1, 3 

and 17 in the middle layer, and "O" would activate nodes 1 and 7. Node 10 would not be activated by 

either of these words. The activation patterns on the middle layer thus point to the emergence of 

features: "E" and "O" share activation on node 1 in the middle layer, and each word activates different 

nodes in the middle layer in addition.  

 

3.2 Layer-by-layer activity spreading 

To improve the models, activation spreading was restricted: the activity was now only allowed to 

spread downwards, layer by layer. To ensure this layer-by-layer spreading, the sound layer was 

clamped so that the activation could only spread from the meaning layer to the middle layer. 

Subsequently, the middle layer was clamped and the sound layer unclamped, so that the activation 

Figure 4. Emergence of features. 
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could spread from the middle layer downwards, but not up to the middle layer again as it could before. 

Throughout activation spreading, the nodes in the top layer were all clamped (as before).  

 As a result of this change, production success increased. Now, 28 out of 50 models correctly 

produced activation patterns on the bottom layer for all words. Figure 5 shows a comparison of the 

production of "E" in the same model, with activation spreading before (left) and after the activation 

spreading was restricted (right). The production of "E" has clearly improved after activation spreading 

is restricted.  

 

However, the models had still not always learned to correctly associate patterns of activity on 

the sound layer with patterns of activation on the meaning layer. The most common problem, which 

was apparent in several models, was that the activation patterns on the sound layer were the same for 

different words (most commonly, for "E" and "O", but also for "A" and "U" and for "O" and "U", in 

some cases). Figure 6 shows an example of incorrect production of "A" and "U" in a model. Varying 

the number of learning trials and the inhibition strength in the middle layer did not remedy the 

production problems. Since some models had not correctly learned the associations between activities 

in the sound layer and those in the meaning layer, investigating the patterns of activation on the middle 

layer in these models was not relevant anymore.  

 

 

Figure 5. A model producing E when activation is allowed to spread upwards (left) 

and when activation is allowed to spread only downwards (right). 
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In the models which had correct production patterns for all words, the middle layer was 

investigated. In these models, there was an overlap in activity patterns on the middle layer of different 

words. Figure 7 below illustrates this.  

In Figure 7, we can see that several words share activation patterns on the middle layer. The 

words "I" and "U", which have the same mean F1 (see Table 1), share activation on nodes 14 and 19 in 

the middle layer. "E" and "O" also have the same mean F1, and both activate node 6 of the middle 

layer in the model pictured above. Additionally, the mean F1 of "A" and the mean F2 of "U" are quite 

similar, and we can see that "A" and "U" both activate node 3 (although the activation of this node for 

"U" is not as strong as that for "A"). In other models not pictured here, there sometimes is an overlap 

between "O" and "U", and between "E" and "U". As shown in Table 1, the mean F1 of "O" and "E" is 

quite close to the mean F2 of "U", so this overlap can be expected. Overlap between other words 

Figure 6. Testing production. The top row shows examples of a model with correct production 

of "A" and "U". The bottom row shows examples of a model with incorrect production of these 
words.  



EMERGENCE OF FEATURES AND PHONEMES IN A NEURAL NETWORK | 16  

 

seems unlikely, since the means of F1 and/or F2 are too far apart. The overlap in activity patterns here 

is a partial overlap, that is, two words share activation of certain nodes in the middle layer (e.g. "E" 

and "O" both activate node 6), but either may also activate other nodes ("E" activates node 20, "O" 

activates nodes 8 and 14).  

 

Figure 7. Example of a model with correct production, illustrating the emergence of features. 
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The emergence of features seen here is consistent with previous research. However, only 56% 

of models could correctly produce all words, which is required before we look at the activation 

patterns on the middle layer. Ideally, we would like to see that all models correctly produce all words, 

and that in all these models features emerge.  

 

3.3 Weight normalization 

In order to improve production success, a normalization of weights was built into the models (cf. 

Rumelhart & Zipser, 1985). This would ensure that models would correctly associate patterns of 

activity on the sound layer with words, and thus correctly produce all words. The additional weight 

normalization step changed the learning phase somewhat. After each time the weights were updated in 

the learning phase, they were normalized, such that for each node in the middle layer, the sum of the 

weights of the connections from nodes in the sound layer to that specific node in the middle layer 

equalled 4. Very strong connections still remained strong, and weak connections still remained weak, 

but the absolute values were normalized after each weight updating step. Weight normalization greatly 

improved the quality of the production output of the models. All models (n = 50) were now able to 

successfully associate patterns of activity on the sound layer to patterns of activity on the meaning 

layer, and they produced correct patterns of activity on the sound layer when specific words were 

activated in the meaning layer.  

Figure 8 shows results of the production outputs typical of the majority of models with weight 

normalization. All models (n = 50) produced all words correctly. In 39 out of these 50 models, the 

activation patterns on the middle layer resembled those in Figure 8, that is, there was no overlap of 

active nodes in the middle layer between any of the words. From this, we can conclude that in these 

78% of models, phonemes emerge. 
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Figure 8. Production output typical of the majority of models with weight normalization; phonemes emerge.  
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In the remaining 11 models, there was some overlap between activity patterns in the middle 

layer for different words. An example is given in Figure 9. As we can see, "E" and "O" share 

activation on one node in the middle layer: node 3. However, the activation strength is small: smaller 

than 1. This is true of the majority of the models in which some words share activation in the middle 

layer. In most of these models, the words which share activation are "E" and "O" (54,4% of the  

aforementioned 11 models). In other models, the words which share activation patterns are "I" and "U" 

(18,2%), "O" and "U" (18,2%), or "E" and "U" (9,1%). 

Figure 9. Production output typical of 22% of models with weight normalization. 
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Interestingly, in all models in which we find activity overlap in the middle layer between 

words, only two words display this overlap. When looking for feature emergence, we would expect 

that features emerge in all words, not just in two. "I" and "U" and "E" and "O" share a mean F1 value, 

so we would at least expect that nodes are shared between "I" and "U" and "E" and "O", not just 

between one of these word pairs.  

Another similarity in the 22% of models that display overlap is that there are relatively many 

weak connections between nodes in the meaning layer and nodes in the middle layer. Connection 

strengths are translated as line thickness in the figures, where a thicker line represents a stronger 

connection. In the models in which we see phonemes emerge (e.g. in the model in Figure 8) the 

connections are very strong. Weak connections may be a sign of an 'unstable' model – a model in 

which the connection strengths would still change if we would take it through more learning trials. 

Such models have not completely finished learning the associations between patterns of activity in the 

different layers. It is not unthinkable that, had there been more learning trials, the connections between 

nodes of one word and a particular node in the middle layer would have disappeared, whereas the 

connections between another word and this node in the middle layer would have strengthened. In the 

model in Figure 9, for example, the connections from the "E" nodes to node 3 in the middle layer 

might have been in the process of weakening, and might have disappeared altogether if the model had 

been presented with additional learning trials. 

Although there is some overlap in activity patterns in the middle layer in 22% of the models 

with weight normalization, it cannot be concluded that features emerge in these models. As explained 

in the previous two paragraphs, there is evidence that these models are unstable, and have simply not 

finished learning. In the majority of models with weight normalization, phonemes emerge, and it 

cannot be ruled out that phonemes would also have emerged in the other models if these models had 

been presented with more learning trials.  

 

3.4 Inhibition in the middle layer 

In the models described above, the strength of the inhibitory connections between all nodes in the 

middle layer was -0.1. To explore the effect of different inhibition strengths in the middle layer, a 
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small number of models with inhibitory connections of varying strengths were simulated. Connection 

strengths were varied in increments of 0.05 (arbitrarily chosen), from 0 to -0.5. All other parameters 

were set to the same values as in the models described above, and their values were kept constant 

across models. As in the models in section 3.3, activation in these models was allowed to spread layer 

by layer, and weight normalization was applied. Five models were simulated for each connection 

strength, in the same way as described above. Although we cannot draw any definitive conclusions 

from such a small sample size, the simulations give an indication of the effect of the inhibition 

strength on the performance of the model. 

 The most apparent effect of varying the inhibition strength is that this influences the number of 

nodes that become active in the middle layer for each word. When a node is active and there are 

inhibitory connections to other nodes, the activity of that node causes connected nodes to become less 

active. The simulations showed that when there was no inhibition at all, the different words activated 

all nodes in the middle layer. As the inhibition got stronger, however, words activated fewer nodes in 

the middle layer. The weakest inhibition (-0.05) caused words to each activate between 4 and 10 nodes 

in the middle layer. An inhibition strength of -0.1 caused words to activate between 3 and 6 nodes, and 

with an inhibition strength of -0.15 only 2 to 4 nodes in the middle layer were activated per word. The 

number of activated nodes per word further decreased for stronger inhibitory connections: 1-3 active 

nodes for inhibition strengths of -0.2 and -0.25; 1-2 active nodes for strengths of -0.3 and -0.35; and 

only 1 active node for inhibition strengths of -0.4 and below. Figure 10 below illustrates this. 

 The inhibition strength in the middle layer affects the activation patterns on the sound layer as 

well. In the simulated range of 0 to -0.5, there appears to be a smaller sub-range in which activation 

patterns on the bottom layer are always correct. Incorrect activation patterns on the bottom layer were 

found for inhibition strengths of 0 (i.e. no inhibition) and -0.05 (see e.g. Figure 10, a and b), and for 

inhibition strengths of -0.45 and stronger (e.g. Figure 10f). Activation patterns on the sound layer were 

always correct for inhibition strengths between -0.1 and -0.4. When inhibition is too weak, too many 

nodes become active in the middle layer, and there is thus too much overlap on the middle layer 

between different words for the model to produce the word-sound combinations correctly. When the 

inhibition is too strong, on the other hand, only a few nodes in the middle are allowed to become 
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a) b) 

c) d) 

e) f) 

Figure 10. Production outputs of models with different inhibition strengths in the middle layer. Not all simulated inhibition 

strengths are shown. a) no inhibition; b) inhibition strength -0.05; c) inhibition strength -0.15; d) inhibition strength -0.25; 
e) inhibition strength -0.35; f) inhibition strength -0.5. 

active. Words may then only activate a single node in the middle layer, and often this node is shared 

between different words, leading to an incorrect activation pattern on the sound layer.  
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All models with correct production were examined to investigate whether phonemes or 

features emerged. For models in the inhibition range of -0.15 to -0.4, in which production of all words 

was always successful, phonemes emerged.  Several models with stronger inhibition (i.e. inhibition of 

-0.45 and -0.5) did not produce all words correctly. When looking at the models with these inhibition 

strengths that did produce all words correctly (4 out of 5 models for each inhibition strength), it was 

found that phonemes emerged. This is not surprising, as with inhibition this strong, each word only 

activates one node in the middle layer, so there cannot be any overlap of activity patterns on the 

middle layer (unless different words share one node in the middle layer, in which case the activity 

pattern on the sound layer will be incorrect for these words). As described in section 3.3, in most 

models with inhibition of -0.1 in the middle layer, phonemes emerged. In the remaining models, it 

seemed like features emerged. However, for the same reasons as stated in section 3.3 above, these 

models may be considered unstable. The same can be said of the models with an inhibition strength of 

-0.05 which had correct production (3 out of 5 models) and in which features seem to emerge. Finally, 

in models without inhibition in the middle layer, all nodes in the middle layer were active for all 

different words, and none of the words were produced correctly. Therefore, looking at the emergence 

of features or phonemes in these models is not applicable. 

Although the small number of models simulated here might not warrant a definitive 

conclusion, based on the results described in this section we can tentatively conclude that it is possible 

that an inhibition of -0.1 was too weak for all models described in section 3.3 to reach a stable state 

after 20000 learning trials. A stronger inhibition (between -0.1 and -0.4) might lead to better results 

than those described above. 

 

3.5 Perception 

In the neural network models described in this paper, activation can spread top-down, but also bottom-

up. Top-down here refers to production, as words are selected and a sound (i.e. an activation pattern on 

the sound layer) is formed. In perception, on the other hand, models are presented with an activation 

pattern on the sound layer (i.e. a combination of an F1 and F2 value: a sound), and as activation 

spreads upwards, nodes in the top layer (i.e. words) become active. If the model has correctly learned 
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to associate words with sound, it should give a correct word output for familiar sounds. But how does 

the model react to strange (i.e. unfamiliar) sounds? 

 Testing perception in a model is done in much the same way as testing production: activity is 

applied to the sound layer, and it is then allowed to spread, layer by layer, to the meaning layer. In 

order to test the model's reaction to unfamiliar sounds, it is presented with all possible combinations of 

F1 and F2 values. As it would take too long to present the model with all possible values, the F1 

continuum, ranging from 100 Hz to 1000 Hz, was divided into steps of 20 Hz, and the F2 continuum 

into steps of 50 Hz. Simulations were run using the same parameter settings as for the models in 

section 3.3. The script used to test perception drew a diagram to make visualization of results easier. 

One of these diagrams is shown in Figure 11.  

 

Figure 11. Perception diagram of a model with weight normalization (as described in section 3.3).  The F2 

continuum is drawn on the x-axis, and the F1 continuum on the y-axis. "A" is drawn as a black 'a', "E" as a blue 
'e', "I" as a red 'i', "O" as a green 'o', and "U" as a purple 'u'. 
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Figure 11 shows a vowel diagram, in which the F2 continuum is drawn along the x-axis, and 

the F1 continuum is drawn along the y-axis. At every combination of F1 and F2 that is presented to the 

model, a symbol (a, e, i, o or u) is drawn to indicate which of the five words ("A", "E", "I", "O", or 

"U") 'wins'. A 'winning' word is a word of which the nodes in the meaning layer become most active 

for a specific sound input. Although multiple words may be activated for specific sounds, only one 

word is activated the most, and thus wins and is drawn in the diagram. It is important to realize that the 

model is being presented with an activation pattern that is not labelled as containing an F1 and an F2 

value; the model simply gets an input consisting of two areas of activation on the sound value. The 

model is also not told that either one of these areas of activation is more important than the other for 

perceiving words. 

As we can see in Figure 11, the main perception areas of the five words are where we expect 

them to be (see Table 1 for mean formant values used in learning): Sounds with a low F1 and high F2 

are perceived as "I"; sounds with a low F1 and low F2 are perceived as "U"; sounds with a medium F1 

and medium/high F2 as "E"; medium F1 in combination with a  medium/low F2 is perceived as "O"; 

and a high F1 in combination with a medium F2 is perceived as "A". Additionally, the model also 

classifies unfamiliar sounds as one of the five words. The horizontal and vertical areas adjacent to the 

expected categorization areas are due to the model taking into account only one of the formant values. 

For instance, "E" is not only perceived when the model is presented with a medium F1 and 

medium/high F2, but also, for example, when it is presented with a lower F1 but similar F2 value. 

Similarly, "A" is not only perceived when the model is presented with a high F1 and a medium F2 

value, but also when the model is presented with combinations in which one of the values is similar to 

either this high F1 or medium F2 value, which leads to the horizontal and vertical perception areas 

extending from the expected perception area for this word. The diagram in Figure 11, with its 

horizontal and vertical bands of perception of specific words, is quite similar to a figure in a chapter by 

Boersma & Escudero (2008; fig. 10). By comparing the way the model was simulated here to the 

Boersma & Escudero (2008) study, we might gain some insight into how to improve the current 

models, as I will discuss in section 4 below. 
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4. Discussion 

 

The aim of the research described here was to investigate whether phonemes or features emerge in a 

neural network model with a single input continuum. It was expected that features would emerge, as 

this had been shown to happen in earlier research. 

 The results of this research were mixed: in some circumstances, phonemes emerged, and in 

others, features emerged. The production success of the initial models was very low. In the models 

which did correctly produce all words, features emerged (Fig. 4). When the spreading of activity was 

restricted (so that activity was only allowed to spread layer by layer), production success went up, and 

we saw that features emerged in the models which correctly produced all words (Fig. 7). However, 

before we draw any definitive conclusions about the emergence of features or phonemes, we would 

like all models to produce all words correctly, and see features emerge in all these models. 

 After a weight normalization step was added to the learning phase of models, production 

success went up significantly. Now, all models produced all words correctly. Despite this, not features, 

but phonemes emerged in most models (Fig. 8). The models that did show some overlap in activity 

patterns in the middle layer (Fig. 9) were argued to be unstable. As said before, we would like to see 

that all models correctly produce all words, and that in all these models features emerge. By adding 

weight normalization to the models, we succeeded in the former. However, by normalizing the 

weights, we changed an important aspect of the neural network model: the bidirectionality of it. The 

connections are still bidirectional in the sense that activity can flow through them both ways, but the 

weight normalization step artificially changed the weight of the connections to nodes in the middle 

layer. Weight normalization only works in one direction.  If we are hoping to find a way to simulate 

models that correctly produce all words and show feature emergence, we may have to let go of weight 

normalization, and find another way to ensure production success in all models. 

 The simulations of models with varying inhibition strengths in the middle layer showed that 

there seems to be an optimal range of inhibition strength (Fig.10). Although the sample sizes of these 

simulations were small, they showed that an inhibition strength of -0.1, as used in most models in this 

study, might be on the border of this optimal range. Increasing the inhibition in the middle layer (i.e. 
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using an inhibition strength value in the optimal range of approximately -0.1 to -0.4) may improve 

stability in models.  

 When perception was tested, models were shown to correctly perceive familiar sound inputs 

(i.e. activation patterns on the sound layer), as well as to categorize unfamiliar sounds. The diagram in 

Figure 11, with its horizontal and vertical bands of perception of specific words, was said to be quite 

similar to a figure in a paper by Boersma & Escudero (2008; fig. 10). This paper looked at 

phonological perception from an Optimality-Theoretic viewpoint. In Optimality Theory, constraints 

determine how an incoming sound is perceived; constraints in Optimality Theory could thus be said to 

be analogous to connections between nodes in a neural network model. Boersma & Escudero (2008) 

tested several models using both negatively formulated constraints (typically used in OT modelling) 

and positively formulated constraints. A negatively formulated constraint could be something like: 

"An F1 of 280 Hz should not be perceived as /a/", whereas a positively formulated constraint could be: 

"An F1 of 280 Hz should be perceived as /i/". If connections in neural network models are like the 

constraints in OT, then excitatory connections would be analogous to positively formulated 

constraints, and inhibitory connections would be analogous to negatively formulated constraints. 

Boersma & Escudero (2008) showed that learning to perceive vowels using negatively formulated 

constraints results in categorization areas neatly organized around vowel centres, whereas learning to 

perceive vowels using positively formulated constraints results in categorization areas extending 

vertically or horizontally away from the vowel centres (Boersma & Escudero, 2008; fig. 10), which is 

similar to what we see in figure 11 above. From this, we may conclude that using inhibitory instead of 

excitatory connections in the neural network model may improve perception in the models. However, 

when the authors repeated the same simulations with Harmonic Grammar (a predecessor of OT), they 

found that perception success was similar for positively and negatively formulated constraints. It is 

therefore unclear whether the models described in this paper would benefit from having inhibitory 

connections instead of excitatory connections. Nevertheless, this approach may still be a productive 

one, which could be explored in further research. 
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Neural network modelling is a fairly novel approach to issues in phonetics and phonology. A 

lot of work still has to be done in order to better understand how the brain handles various phonetic 

and phonological processes, but the neural network modelling approach is certainly a promising one. 
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Appendix A: The initial model 

#The architecture of the model, the learning phase, and testing production 
#Laura Boekel, July 2013 
 
clearinfo 
 
for x from 1 to 1 
 
Erase all 
 
#parameters for network architecture 
spreadingRate = 0.01 
activityRangeMin = 0.0 
activityRangeMax = 3.0 
activityLeak = 1.0 
learningRate = 0.001 
weightRangeMin = -3.0 
weightRangeMax = 3.0 
weightLeak = 0.5 
 
#for drawing 
xMin = 0 
xMax = 30 
yMin = 0 
yMax = 30 
 
Create empty Network... test'x' spreadingRate linear activityRangeMin  
...activityRangeMax activityLeak learningRate weightRangeMin  
...weightRangeMax weightLeak xMin xMax yMin yMax 
 
#specify number of nodes in each layer 
inputNodes = 60 
middleNodes = 20 
outputNodes = 20 
 
#add nodes in three layers 
for i to inputNodes 
 Add node... (((xMax)-(xMin+1))/inputNodes)*i yMin+1 0.0 0 
endfor 
 
 
for i to middleNodes 
 Add node... (((xMax-1)-(xMin+1))/middleNodes)*i yMax/2 0.0 0 
endfor 
 
for i to outputNodes 
 if i < 5 
  Add node... (((xMax-1)-(xMin+1))/outputNodes)*i yMax-3 0.0 0 
 elsif i < 9 
  Add node... (((xMax-1)-(xMin+1))/outputNodes)*i yMax-4 0.0 0 
 elsif i < 13 
  Add node... (((xMax-1)-(xMin+1))/outputNodes)*i yMax-5 0.0 0 
 elsif i < 17 
  Add node... (((xMax-1)-(xMin+1))/outputNodes)*i yMax-4 0.0 0 
 elsif i < 21 
  Add node... (((xMax-1)-(xMin+1))/outputNodes)*i yMax-3 0.0 0 
 endif 
endfor 
 
Draw... 0 
 
#add connections between nodes in different layers 
for i to inputNodes 
 for j to middleNodes 
  Add connection... i inputNodes+j randomUniform(0,0.1) 1.0 
 endfor 
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endfor 
 
 
for i from inputNodes+1 to inputNodes+middleNodes 
 for j from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
  Add connection... i j randomUniform(0,0.1) 1.0 
 endfor 
endfor 
 
#add inhibitory, non-learning connections between nodes in the top layer 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes-1 
 for j from i+1 to inputNodes+middleNodes+outputNodes 
  Add connection... i j -0.1 0.0 
 endfor 
endfor 
 
#add inhibitory, non-learning connections between nodes in the middle layer 
for i from inputNodes+1 to inputNodes+middleNodes-1 
 for j from i+1 to inputNodes+middleNodes 
  Add connection... i j -0.1 0.0 
 endfor 
endfor 
 
#add inhibitory, non-learning connections between nodes in the bottom layer 
for i from 1 to inputNodes-1 
 for j from i+1 to inputNodes 
  Add connection... i j -0.1 0.0 
 endfor 
endfor 
 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/Architecture_NewModel.emf 
 
#mean of vowel frequencies 
scaleF1Min = 100 
scaleF1Max = 1000 
 
scaleF2Min = 500  
scaleF2Max = 3000 
 
 
meanIF1 = (20/100 * (scaleF1Max-scaleF1Min) + scaleF1Min)/(scaleF2Max/inputNodes)  
meanIF2 = (90/100 * (scaleF2Max-scaleF2Min) + scaleF2Min)/(scaleF2Max/inputNodes) 
  
meanEF1 = (50/100 * (scaleF1Max-scaleF1Min) + scaleF1Min)/(scaleF2Max/inputNodes)  
meanEF2 = (75/100 * (scaleF2Max-scaleF2Min) + scaleF2Min)/(scaleF2Max/inputNodes) 
  
meanAF1 = (80/100 * (scaleF1Max-scaleF1Min) + scaleF1Min)/(scaleF2Max/inputNodes)  
meanAF2 = (50/100 * (scaleF2Max-scaleF2Min) + scaleF2Min)/(scaleF2Max/inputNodes) 
  
meanOF1 = (50/100 * (scaleF1Max-scaleF1Min) + scaleF1Min)/(scaleF2Max/inputNodes)  
meanOF2 = (25/100 * (scaleF2Max-scaleF2Min) + scaleF2Min)/(scaleF2Max/inputNodes) 
 
meanUF1 = (20/100 * (scaleF1Max-scaleF1Min) + scaleF1Min)/(scaleF2Max/inputNodes) 
meanUF2 = (10/100 * (scaleF2Max-scaleF2Min) + scaleF2Min)/(scaleF2Max/inputNodes) 
 
#parameters for Gaussian spreading 
peakSharpness = 2 
numberOfCategories = 6 
stdevOfAmbient = (inputNodes/2 - 1)/peakSharpness/numberOfCategories 
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auditorySharpness = 60 
auditorySpreading = (inputNodes - 1) / auditorySharpness 
 
#parameters for learning 
Set instar... 0.5 
Set outstar... 0.5 
Set weight leak... 0.5 
spreadActivities = 500 
 
 
#create empty vowel array 
for i from 1 to 5 
 vowelArray[i] = 0 
endfor 
 
#learning phase 
 
totalInputs = 20000 
 
for i from 1 to totalInputs 
 vowel = randomInteger(1,5) 
 if vowel = 1 
  vowelArray[1] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
  audNode1 = randomGauss(meanIF1, stdevOfAmbient) 
  audNode2 = randomGauss(meanIF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+1 to inputNodes+middleNodes+4 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Zero activities... 1 0 
  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 elsif vowel = 2 
  vowelArray[2] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
  audNode1 = randomGauss(meanEF1, stdevOfAmbient) 
  audNode2 = randomGauss(meanEF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+5 to inputNodes+middleNodes+8 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Zero activities... 1 0 
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  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 elsif vowel = 3 
  vowelArray[3] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
  audNode1 = randomGauss(meanAF1, stdevOfAmbient) 
  audNode2 = randomGauss(meanAF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+9 to inputNodes+middleNodes+12 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Zero activities... 1 0 
  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 elsif vowel = 4 
  vowelArray[4] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
  audNode1 = randomGauss(meanOF1, stdevOfAmbient) 
  audNode2 = randomGauss(meanOF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+13 to inputNodes+middleNodes+16 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Zero activities... 1 0 
  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 elsif vowel = 5 
  vowelArray[5] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
  audNode1 = randomGauss(meanUF1, stdevOfAmbient) 
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  audNode2 = randomGauss(meanUF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+17 to inputNodes+middleNodes+outputNodes 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Zero activities... 1 0 
  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 endif 
endfor 
 
#to check the number of times each vowel has been drawn 
printline The vowel I has been drawn 'vowelArray[1]' times in cycle 'x' 
printline The vowel E has been drawn 'vowelArray[2]' times in cycle 'x' 
printline The vowel A has been drawn 'vowelArray[3]' times in cycle 'x' 
printline The vowel O has been drawn 'vowelArray[4]' times in cycle 'x' 
printline The vowel U has been drawn 'vowelArray[5]' times in cycle 'x' 
printline   
 
 
#Testing the model (production – not in steps) and saving pictures 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 1 
endfor 
for j from inputNodes+middleNodes+1 to inputNodes+middleNodes+4 
 Set activity... j 1 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_I_NewModel.emf 
Zero activities... 1 0 
 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 1 
endfor 
for j from inputNodes+middleNodes+5 to inputNodes+middleNodes+8 
 Set activity... j 1 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_E_NewModel.emf 
Zero activities... 1 0 
 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
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 Set clamping... i 1 
endfor 
for j from inputNodes+middleNodes+9 to inputNodes+middleNodes+12 
 Set activity... j 1 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_A_NewModel.emf 
Zero activities... 1 0 
 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 1 
endfor 
for j from inputNodes+middleNodes+13 to inputNodes+middleNodes+16 
 Set activity... j 1 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_O_NewModel.emf 
Zero activities... 1 0 
 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 1 
endfor 
for j from inputNodes+middleNodes+17 to inputNodes+middleNodes+outputNodes 
 Set activity... j 1 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_U_NewModel.emf 
Zero activities... 1 0 
 
endfor 
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Appendix B: Restricting the activation spreading when testing production 

#Testing the model (production - in steps) and saving pictures 
#Laura Boekel, July 2013 
 
 
#To be used after the learning phase (See Appendix A for script). 
 
 
#Production: I 
 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 1 
endfor 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+4 
 Set activity... i 1 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_I_NewModel_step1.emf 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 0 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_I_NewModel_step2.emf 
Zero activities... 1 0 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 0 
endfor 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 0 
endfor 
 
 
#Production: E 
 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 1 
endfor 
for i from inputNodes+middleNodes+5 to inputNodes+middleNodes+8 
 Set activity... i 1 
endfor 
Spread activities... spreadActivities 
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Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_E_NewModel_step1.emf 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 0 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_E_NewModel_step2.emf 
Zero activities... 1 0 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 0 
endfor 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 0 
endfor 
 
 
#Prodcution: A 
 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 1 
endfor 
for i from inputNodes+middleNodes+9 to inputNodes+middleNodes+12 
 Set activity... i 1 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_A_NewModel_step1.emf 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 0 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
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Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_A_NewModel_step2.emf 
Zero activities... 1 0 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 0 
endfor 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 0 
endfor 
 
 
#Production: O 
 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 1 
endfor 
for i from inputNodes+middleNodes+13 to inputNodes+middleNodes+16 
 Set activity... i 1 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_O_NewModel_step1.emf 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 0 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_O_NewModel_step2.emf 
Zero activities... 1 0 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 0 
endfor 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 0 
endfor 
 
 
#Production: U 
 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 1 
endfor 
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for i from inputNodes+middleNodes+17 to inputNodes+middleNodes+20 
 Set activity... i 1 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_U_NewModel_step1.emf 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 1 
endfor 
for i from 1 to inputNodes 
 Set clamping... i 0 
endfor 
Spread activities... spreadActivities 
Erase all 
#insert labels above output nodes and below input nodes 
Text... 3.75 Right 28 Bottom "I" 
Text... 9.5 Right 28 Bottom "E" 
Text... 15 Right 28 Bottom "A" 
Text... 20.5 Right 28 Bottom "O" 
Text... 26.25 Right 28 Bottom "U" 
Draw... 0 
Save as Windows metafile... results/Nieuw_model/'x'_U_NewModel_step2.emf 
Zero activities... 1 0 
for i from inputNodes+1 to inputNodes+middleNodes 
 Set clamping... i 0 
endfor 
for i from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 Set clamping... i 0 
endfor 
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Appendix C: Weight normalization 

#Learning Phase with Weight normalization 
#Laura Boekel, July 2013 
 
 
#To be used instead of the #learning in Appendix A. 
 
 
#learning 
totalInputs = 20000 
 
for i from 1 to totalInputs 
 vowel = randomInteger(1,5) 
 if vowel = 1 
  vowelArray[1] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
  audNode1 = randomGauss(meanIF1, stdevOfAmbient) 
  audNode2 = randomGauss(meanIF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+1 to inputNodes+middleNodes+4 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Normalize weights... inputNodes+1 inputNodes+middleNodes 1 inputNodes 
sumNormalizeWeights 
  Zero activities... 1 0 
  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 elsif vowel = 2 
  vowelArray[2] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
  audNode1 = randomGauss(meanEF1, stdevOfAmbient) 
  audNode2 = randomGauss(meanEF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+5 to inputNodes+middleNodes+8 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Normalize weights... inputNodes+1 inputNodes+middleNodes 1 inputNodes 
sumNormalizeWeights 
  Zero activities... 1 0 
  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
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  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 elsif vowel = 3 
  vowelArray[3] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
  audNode1 = randomGauss(meanAF1, stdevOfAmbient) 
  audNode2 = randomGauss(meanAF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+9 to inputNodes+middleNodes+12 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Normalize weights... inputNodes+1 inputNodes+middleNodes 1 inputNodes 
sumNormalizeWeights 
  Zero activities... 1 0 
  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 elsif vowel = 4 
  vowelArray[4] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
  audNode1 = randomGauss(meanOF1, stdevOfAmbient) 
  audNode2 = randomGauss(meanOF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+13 to inputNodes+middleNodes+16 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Normalize weights... inputNodes+1 inputNodes+middleNodes 1 inputNodes 
sumNormalizeWeights 
  Zero activities... 1 0 
  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 elsif vowel = 5 
  vowelArray[5] += 1 
  for j from 1 to inputNodes   
   Set clamping... j 1 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 1 
  endfor 
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  audNode1 = randomGauss(meanUF1, stdevOfAmbient) 
  audNode2 = randomGauss(meanUF2, stdevOfAmbient) 
  for a from 1 to inputNodes 
   Set activity... a exp (-0.5 * (a - audNode1) ^ 2 / auditorySpreading ^ 2) + exp (-0.5 * (a - 
audNode2) ^ 2 / auditorySpreading ^ 2) 
  endfor 
  for m from inputNodes+middleNodes+17 to inputNodes+middleNodes+outputNodes 
   Set activity... m 1 
  endfor 
  Spread activities... spreadActivities 
  Update weights 
  Normalize weights... inputNodes+1 inputNodes+middleNodes 1 inputNodes 
sumNormalizeWeights 
  Zero activities... 1 0 
  for j from 1 to inputNodes   
   Set clamping... j 0 
  endfor 
  for l from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... l 0 
  endfor 
 endif 
endfor 
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Appendix D: Testing perception 

#Testing perception, with layer-by-layer activity spreading. 
#Laura Boekel, July 2013 
 
 
#To be used after the learning phase (See appendix A for the script). 
 
scaleHzMin = 100 
scaleHzMax = 3000 
scaleNodesMin = 1 
scaleNodesMax = 60 
scaleF1Min = 100 
scaleF1Max = 1000 
scaleF2Min = 500  
scaleF2Max = 3000 
inputNodes = 60 
middleNodes = 20 
outputNodes = 20 
 
spreadActivities = 500 
 
Select outer viewport... 0 6 0 5 
Black 
10 
Axes... scaleF2Max scaleF2Min scaleF1Max scaleF1Min  
Draw inner box 
Marks right every... 1 100 yes yes no 
Text top... yes F2 (Hz) 
Marks top every... 1 500 yes yes no 
Text right... yes F1 (Hz) 
 
 
for y from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
 activityArray[y] = 0 
endfor 
 
for i from 1 to inputNodes 
 Set clamping... i 1 
endfor 
 
 
for i from 1 to 51 
 for j from 1 to 46 
  #clamp top layer 
  for t from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... t 1 
  endfor 
  #add activity to bottom layer 
  a = i*50+450 
  b = j*20+80 
  c = (a - scaleHzMin) / (scaleHzMax - scaleHzMin) * (scaleNodesMax - scaleNodesMin) + 
scaleNodesMin 
  d = (b - scaleHzMin) / (scaleHzMax - scaleHzMin) * (scaleNodesMax - scaleNodesMin) + 
scaleNodesMin 
  Set activity... c 1 
  Set activity... d 1 
  #spread activity (to middle layer only) 
  Spread activities... spreadActivities 
  #unclamp top layer 
  for t from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   Set clamping... t 0 
  endfor 
  #clamp middle layer 
  for m from inputNodes+1 to inputNodes+middleNodes 
   Set clamping... m 1 
  endfor 
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  #spread activities to top layer 
  Spread activities... spreadActivities 
  #draw perception graph 
  for y from inputNodes+middleNodes+1 to inputNodes+middleNodes+outputNodes 
   activityArray[y] = Get activity... y  
  endfor 
  #I   
  if activityArray[inputNodes+middleNodes+1] > activityArray[inputNodes+middleNodes+5] and 
activityArray[inputNodes+middleNodes+1] > activityArray[inputNodes+middleNodes+9] and 
activityArray[inputNodes+middleNodes+1] > activityArray[inputNodes+middleNodes+13] and 
activityArray[inputNodes+middleNodes+1] > activityArray[inputNodes+middleNodes+17] 
   Colour... red 
   Text... a centre b half i 
  endif 
  #E 
  if activityArray[inputNodes+middleNodes+5] > activityArray[inputNodes+middleNodes+1] and 
activityArray[inputNodes+middleNodes+5] > activityArray[inputNodes+middleNodes+9] and 
activityArray[inputNodes+middleNodes+5] > activityArray[inputNodes+middleNodes+13] and 
activityArray[inputNodes+middleNodes+5] > activityArray[inputNodes+middleNodes+17] 
   Colour... blue 
   Text... a centre b half e 
  endif 
  #A 
  if activityArray[inputNodes+middleNodes+9] > activityArray[inputNodes+middleNodes+1] and 
activityArray[inputNodes+middleNodes+9] > activityArray[inputNodes+middleNodes+5] and 
activityArray[inputNodes+middleNodes+9] > activityArray[inputNodes+middleNodes+13] and 
activityArray[inputNodes+middleNodes+9] > activityArray[inputNodes+middleNodes+17] 
   Colour... black 
   Text... a centre b half a 
  endif 
  #O 
  if activityArray[inputNodes+middleNodes+13] > activityArray[inputNodes+middleNodes+1] and 
activityArray[inputNodes+middleNodes+13] > activityArray[inputNodes+middleNodes+5] and 
activityArray[inputNodes+middleNodes+13] > activityArray[inputNodes+middleNodes+9] and 
activityArray[inputNodes+middleNodes+13] > activityArray[inputNodes+middleNodes+17] 
   Colour... green 
   Text... a centre b half o 
  endif 
  #U 
  if activityArray[inputNodes+middleNodes+17] > activityArray[inputNodes+middleNodes+1] and 
activityArray[inputNodes+middleNodes+17] > activityArray[inputNodes+middleNodes+5] and 
activityArray[inputNodes+middleNodes+17] > activityArray[inputNodes+middleNodes+9] and 
activityArray[inputNodes+middleNodes+17] > activityArray[inputNodes+middleNodes+13] 
   Colour... purple 
   Text... a centre b half u 
  endif 
  #unclamp middle layer 
  for m from inputNodes+1 to inputNodes+middleNodes 
   Set clamping... m 0 
  endfor 
  #zero activities 
  Zero activities... 1 0 
 endfor 
endfor 
 
Save as Windows metafile... results/Normalize_Weights/'x'_allVowels_PerceptionGraph_Inhib_inSteps.emf 


