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The clouds exaggerate and pile 
into heights of mile on mile. 

In the breathing o’ the universe 
they drift asunder and disperse. 

 
(Paul Goodman, set to music by Ned Rorem) 
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1 Introduction 

 

The title of my thesis will undoubtedly ring a bell with some readers. This is no 
coincidence: it has the same goals as an article by Paul Boersma and Silke Hamann, ‘The 
evolution of auditory dispersion in bidirectional constraint grammars’, which appeared in 
Phonology in 2008. These goals are: (i) formalizing auditory dispersion as an interaction 
of a prototype effect and an articulatory effect, and (ii) simulating the evolution of 
auditory dispersion over a number of generations for different types of initial 
distributions. Both this thesis and the article by Boersma and Hamann make use of the 
same theoretical model, namely Boersma’s BiPhon model: the difference lies in the 
computational framework used. Whereas Boersma & Hamann used bidirectional 
constraint grammars, this thesis relies on symmetric artificial neural networks or 
neural nets, aiming to further the coupling of this framework with the BiPhon model (for 
instance, semantic dispersion effects were simulated by Boersma 2009a). Also, this 
thesis is intended as an exercise for myself in writing scripts and running computer 
simulations of language evolution. 
 
This thesis is made up of two major sections, namely Part I: Theory and Part II: 
Application. Their internal structures are as follows: Part I contains an exposition of the 
phenomenon of auditory dispersion (§2), an overview of relevant literature (§3) and an 
introduction to neural nets (§4); Part II sets out the architecture of the network used for 
the computer simulations and describes the scripts (§5), presents the results of the 
simulations (§6) and discusses the issue of learnability, including a rudimentary strategy 
to quantify it (§7). After Part II follow a conclusion and discussion (§8), and an 
Appendix in which the scripts used for the simulations are compiled. 
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2 Auditory dispersion 

 

It has often been noted that languages structure their phoneme inventories in a way that 

maximizes contrast between categories (e.g. Passy 1890; Von der Gabelentz 1901; De 

Groot 1931; Martinet 1960). Such inventories are optimally dispersed. The notion of 

contrast has been explained as pertaining to distinctive phonological features and their 

(usually binary) values, e.g. [–back] or [+high], or to acoustic-phonetic cues, e.g. the 

Voice Onset Time (VOT) in plosives or the first formant (F1) in high vowels. Both 

perspectives are illustrated in Figure 1, depicting the minimal three-vowel inventory 

/i a u/: 
 

 

 

 

 

 

 

 

 

 Figure 1. Dispersion in the vowel space: phonological and phonetic explanations. 
 Binary features in [square brackets], auditory cues in SMALL CAPITALS. 
 

This inventory is optimally dispersed with respect to the relevant phonological features: 

/a/ is [–high]; /i/ and /u/ are both [+high], but /i/ is [+front] and /u/ is [–front]. 

Similarly, this inventory is optimally dispersed with respect to the frequency values of its 

first two formants: /a/ has a high F1; /i/ and /u/ have a low F1, but /i/ has a high F2 and /u/ 

has a low F2. 

 The preference for optimally dispersed phoneme inventories is generally explained by 

a basic functional principle: if categories are sufficiently distinct, confusion in the 

listener is minimized, which aids successful communication. 

 

I assume that auditory cues – the raw data by which the language learner is surrounded 

(and to which she is in fact already exposed prenatally) – play a crucial role in 

dispersion, and use the term auditory dispersion. Feature-based explanations often 
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assume one of the values of the feature to be marked (Jakobson 1941; Prince & 

Smolensky 1993/2004), which entails that a language has either both the unmarked and 

marked segment, or only the unmarked, but never only the marked. However, this 

assumption is false, as some languages do have only marked segments: Russian, for 

instance, has (marked) [nj] and [nɣ] but not (unmarked) [n]. This can only be due to the 

auditory contrast between [nj] and [nɣ] (Padgett 2001, 2003). 

 Another issue with features is the fact that they are covert: this means that feature-

based explanations have the burden of explaining their origins. It is generally, and often 

tacitly, assumed that they are universal and innate, but this assumption is troublesome. It 

has been suggested that a restricted set of innate features or properties, as proposed by 

adherents of innatism, cannot account for typological observations (e.g. Boersma 1998, 

who argues that if sonority scales were innate, they would be identical for different 

purposes, but they vary according to the functional demands of these purposes (§19.2.2); 

Mielke 2004, who found that allegedly universal features have little success in 

explaining the structure of phonological inventories of a sample of languages), and it is 

my impression that the appearance of innateness as an explanatory device is motivated 

more by the need for a deus ex machina than by empirical evidence. Since language 

systems are the products of a highly complex interplay between evolutionary processes 

(both biological and cultural), human biases (articulatory, sensory and cognitive), 

functional pressure, social factors and mere chance, which have been interacting for an 

immense stretch of time, they cannot be expected to be perspicuous. Laboratory 

experiments and computer simulations investigating language evolution without the 

assumption of domain-specific mechanisms or features are fairly recent, but have already 

yielded promising results: e.g. population structure bears an influence on the complexity 

of a phonological inventory (observation by a.o. Lupyan & Dale 2010; simulations by 

Lopopolo 2011); properties of natural languages emerge in a process of iterated learning 

in the laboratory (distinctive features: Verhoef & De Boer 2011a; compositionality: 

Kirby, Cornish & Smith 2008; systematicity: Theisen, Oberlander & Kirby 2010); age-

dependent differences in the rate of language acquisition influence language change and 

stability (simulations by Verhoef & De Boer 2011b). Computer simulations of the 

acquisition of the phonology-phonetics interface have also achieved realistic results (e.g. 

Guenther & Gjaja 1996; Boersma, Escudero & Hayes 2003; Wanrooij 2009; Boersma, 

Benders & Seinhorst fc.). 
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 Lastly, innate features would probably only obstruct the learning process: they force 
the child to take an additional step – learning which features connect to which properties 
of the input data, and which do not connect to anything; also, identical feature values 
relate to different auditory events cross-linguistically, and this language-specific mapping 
would have to be learned. 
 
The hypothesis that auditory contrast shapes phonological systems makes the prediction 
that if a language has two categories on a given perceptual continuum, they are at its 
edges, as in Figure 2: 
 

 

 
 

 Figure 2. Maximal perceptual contrast: not attested. 
 

This prediction, however, does not hold true. The distribution depicted in Figure 2 is (to 
my knowledge) not found in languages. This is because peripheral values of an auditory 
continuum are probably harder to articulate than central values (Boersma & Hamann 
2008 assume a parabolic articulatory effort curve). Humans, however, prefer the most 
efficient way to achieve their goals (Zipf 1935, 1949), i.e. the way that yields maximal 
results at minimal physical cost: this means that the production of peripheral auditory 
values is disfavoured if possible. Rather, the categories in an inventory are inclined 
towards the centre of the continuum, while maintaining a sufficient distance between 
them. An example of such a division is depicted in Figure 3: 
 

 

 

 

 Figure 3. Maximal perceptual contrast with minimal articulatory effort: attested. 
 

The degree to which categories can be inclined towards the centre of the continuum is 
dependent on the total number of categories: n+1 categories occupy a larger part of the 
auditory continuum than n categories. For instance, languages tend to divide the auditory 
continuum of the first formant (F1) in front vowels in one of the following ways (very 
few languages have more than four distinctive vowel heights): 

/A/ /B/ 

/A/ /B/ 
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 Figure 4. Distributions of vowel categories along the F1 continuum.1 

 

The observation that larger inventories occupy a larger part of the phonetic space is also 

valid in two-dimensional cases, e.g. the vowel space, slightly simplified here to a triangle 

with blunt corners:  
 

 

 

 

 

 

 

 

 
 

      (a)                 (b)   
 

 Figure 5. Typical distributions of vowel categories across the vowel space (Schwartz et 
 al. 1997): three-vowel languages (a) and five-vowel languages (b). 
 

                                                
1 Single quotes ‘’ indicate that no exact phonetic transcription is available: for instance, ‘e’ 
indicates an unrounded front vowel with a central height, i.e. intermediate between e and ɛ. 
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In languages with three vowels, such as Tagalog, the categories occupy less peripheral 

locations in the auditory space than they do in languages with five vowels, such as 

Spanish (Boersma 1998: 216): this is because the former have fewer categories between 

which perceptual contrast must be maintained, which gives room to a larger influence of 

the propensity towards less effortful articulations. 

 

Figures 4 and 5 show that phonological categories are usually evenly spaced and 

distributed around the central value of the auditory space, the realization that requires 

least articulatory effort. Hence, optimally dispersed systems strike an optimal balance 

between perceptual contrast and articulatory ease. In systems that are not optimally 

dispersed, sound change is predicted to take place, until optimal dispersion is achieved. 

This happened for instance in Polish, that used to have a set of voiceless sibilants [ʃ sj s] 

before the 15th century (Stieber 1952, 1973).2 The spectral centres of gravity of [sj] and 

[s] differ only by a small amount; this confusing opposition was resolved by a contrast-

enhancing shift of the spectral mean of [sj], lowering it to [ɕ]. However, another 

confusing opposition resulted from this shift, viz. [ʃ] vs. [ɕ]: this was resolved by a 

second sound shift in which [ʃ] retroflexed to [ʂ], approximately in the 16th century 

(Padgett & Żygis 2003). The resulting optimally dispersed system [ʂ ɕ s]̪ is still found in 

contemporary Polish. 

 

The structure of phoneme inventories may also be influenced by other than auditory 

factors. For instance, if a language has three high vowels, it is likely to favour the set 

[i ɨ u], which is optimally dispersed with respect to the second formant (F2). The set 

[i y u], however, is also relatively common cross-linguistically: the former set (without 

[y]) is found in 80 out of 628 languages (12.7%) in Mielke’s (2008) segment inventory 

P-base, the latter (without [ɨ]) in 37 (5.9%). [i y u] is not optimally dispersed with 

respect to F2, but it may have a higher rate of occurrence than expected on the basis of 

its auditory characteristics because of the clearly visible lip rounding in [y]. This salient 

and reliable perceptual property of [y] may work to its advantage in phoneme 

inventories. 
 

 

                                                
2 [ʃj sj s] according to Żygis & Padgett (2007). 
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3 Formalizations of auditory dispersion 

 

This chapter discusses a number of sources that have formalized and simulated 

dispersion in terms of auditory contrast. Most of these explanations include articulatory 

forces as well. Some accounts based on featural contrast are, for instance, Jakobson & 

Halle (1956); Clements (2003, 2005); Hall (2011). A theory that is concerned with the 

interaction of auditory and articulatory factors, but does not include auditory contrast, is 

Quantal Theory (Stevens 1972, 1989; Stevens & Keyser 2010). This theory argues that 

languages favour phonemes that are robust against articulatory imprecision, i.e. 

phonemes whose auditory correlates remain more or less the same even with fairly 

inaccurately executed articulatory gestures. 

  

Most formalizations and simulations of auditory dispersion have focused on vowel 

systems (e.g. Liljencrants & Lindblom 1972; Lindblom 1986; Ten Bosch 1991; De Boer 

1999, 2000, 2001; Boersma 2007; Van Leussen 2008). A smaller number treats 

consonant inventories or consonant classes (inventories: van Leussen 2009; classes: 

Boersma & Hamann 2008; Van Leussen & Vondenhoff 2008). Modelling entire 

consonant inventories has turned out to pose more problems than modelling vowel 

inventories, perhaps because the interaction of auditory cues is more complex in 

consonants than in vowels. Ohala (1980: 185) argues that maximum auditory contrast in 

consonant inventories would predict an improbable set of phonemes, for instance 

/ɗ k’ ts ɫ m r ʇ/, and asks whether consonant inventories may have been shaped by other 

factors than vowel inventories; Lindblom (1986) confidently answers ‘no’ to this 

question, but does not attempt a formalization, and neither do Lindblom & Maddieson 

(1988). While the categories in the set proposed by Ohala are indeed perceptually highly 

distinct, the cost of this contrast in terms of articulatory effort is disproportionate: hence 

I find it strange that Lindblom (1986: 41) calls Ohala’s argument “convincing”, 

considering his awareness of the relevance of articulatory factors (Liljencrants & 

Lindblom 1972: 856).  

 The endeavour of formalizing the interaction of auditory contrast and articulatory ease 

in consonant inventories was taken up by Van Leussen (2009), who found some 

promising results, but had rather limited resources at his disposal. A lot of further 

research is required in this area. 
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The sources discussed in this paragraph are divided into three categories: (i) research 

that does not make use of Optimality Theory (hereafter OT), treated in §3.1; (ii) research 

that does rely on OT, treated in §3.2; and (iii) a separate section (§3.3) is devoted to 

research carried out within the BiPhon model, most notably Boersma & Hamann (2008), 

the article on which this thesis builds. 
 
 3.1 Formalizations without OT 
 
To my knowledge, the earliest attempt to simulate auditory dispersion is Liljencrants & 

Lindblom (1972). These authors draw an analogy between vowel categories and particles 

or magnets with an equal electrical charge: a stable distribution of a number of particles 

or magnets in a preset space is one in which the energy in the space is minimal. In 

general, this will correspond to a distribution in which the mutual distances are maximal. 

In the initial distribution in Liljencrants & Lindblom’s simulations, the categories lie on 

the circumference of a circle that is located in the centre of the vowel space; for each 

category, an algorithm calculates in which direction the categories should move in order 

to minimize the energy in the space. This strategy is analogous to the force of 

maximization of perceptual contrast. For small numbers of vowels (ca. 3–6), the 

simulation results show considerable agreement with attested vowel inventories. 

 The used algorithm is not devoid of teleology, as the categories are explicitly repelled 

from one another. A second disadvantage is that Liljencrants & Lindblom do not take the 

force of articulatory ease into account, so that their algorithm predicts exaggerated vowel 

systems (e.g. [i a u] for three-vowel inventories, which tend to be the reduced inventory 

[ɪ ɐ ʊ], as in Figure 5a, p. 8). The authors acknowledge this shortcoming, but argue not 

having been able to avoid it, as they did not see a way to quantify articulatory effort.  

 Hall (2007) discovered another detriment of Liljencrants & Lindblom’s approach: the 

final distribution of the categories seems to be highly dependent on their initial 

distribution. If the categories are not yet aligned with their final positions, the algorithm 

yields uncommon or even unattested inventories, such as the (more or less) vertically 

distributed set [ɨ ə a], the (more or less) horizontally distributed set [ɛ ə ɔ] or the skewed 

triangular distribution [ʉ æ ɑ] (Hall 2007: 145, 146). As far as I’m aware, it has not been 

tried to find out what Liljencrants & Lindblom’s algorithm predicts if the vowel 

categories start at random locations in the vowel space, instead of on a circle in the 

centre. However, Hall’s findings are discouraging in this respect: if random locations on 
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the circumference of a circle in the centre of the space do not yield realistic results, 

random locations in the entire space are not likely to do so either. Also, if Liljencrants & 

Lindblom’s approach were extended to a unidimensional space, representing a single 

auditory continuum, it would only make accurate predictions about one-category systems 

if this category starts in the middle: after all, in other cases it will not be pushed to the 

centre by other categories or articulatory forces. 

 Lindblom (1986) builds on his previous work with Liljencrants by improving the 

distance metric and incorporating listener-oriented and social factors into the model, but 

this improves the results only slightly. Ten Bosch (1991) incorporates the notion of 

articulatory effort into his model by means of a vocal tract model and an effort function 

to calculate the effort for any configuration of the model. He finds that repeatedly 

maximizing the distance between the two closest categories provides better results than 

Liljencrants & Lindblom’s strategy of finding the energy minimum over the entire space. 

 

The sources discussed above model dispersion within a single generation. In contrast, it 

is described and/or modelled as an emergent, evolutionary phenomenon by a.o. De Boer 

(1999, 2000, 2001), Blevins (2004) and Wedel (2006). 

 De Boer (1999, 2000, 2001) investigates the hypothesis that vowel inventories are 

shaped by self-organization, a phenomenon in which higher-level organized behaviour 

emerges as an unintended result of interactions of lower-level entities. He simulates the 

evolution of vowel systems in a population of interacting agents who negotiate on a 

vowel system that enables successful communication. In such systems, the vowels are 

required to be robust to noise-induced fluctuations in formant frequencies. The model 

does not use teleological devices to achieve dispersion: in fact, vowels that approach 

each other closely are merged (although this has the undesirable result that push chains 

cannot be explained). Some unrealistic issues remain, such as the random addition of 

new vowels to the inventory, but De Boer’s results show that self-organization is likely 

to be an important factor in the emergence of optimally dispersed vowel systems. 

 Blevins (2004) and Wedel (2006) work with exemplar models, which posit that a 

listener stores all perceived tokens of any category in her episodic memory. A 

phonological category can thus be imagined as a cloud of phonetically detailed tokens. 

Any exemplar can be re-used in production: the probability that a token is selected 

depends on how recently it was stored, with recent tokens being more likely to be 
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selected. In production, a small amount of noise is added to the auditory cues of the 

exemplar, and through a production-perception loop this produced token is stored in the 

speaker’s memory as well. In principle, this would entail that categories can come to 

overlap and eventually blend, but Wedel (2006) proposes that ambiguous tokens – i.e. 

tokens that could belong to multiple categories – contribute less, or not at all, to future 

pronunciations. This way, the lexicon keeps categories distinct. Wedel bases this 

argument on psycholinguistic evidence that listeners recognize words with many lexical 

neighbours less quickly than words with few or none lexical neighbours (Luce & Pisoni 

1998): however, Luce & Pisoni’s findings do not depend on specific auditory cues. 
 
 3.2 Formalizations with OT 
 
The advent of OT (Prince & Smolensky 1993/2004) brought a large number of accounts 

of auditory dispersion in this framework, e.g. Flemming (1995/2002); Kirchner (1998); 

Padgett (2003); Sanders (2003); Boersma & Hamann (2008); Hall (2011). Most of these 

accounts again model dispersion as a synchronic phenomenon by means of teleological 

constraints, whose sole purpose is to maintain a certain perceptual distance between 

categories, e.g. Kirchner’s DISP, Flemming’s MINDIST or Padgett’s SPACE. The former 

two require a certain minimal auditory distance to exist between categories, the latter 

requires only one category to occupy a certain part of the phonetic space. 

 A disadvantage inherent to the use of teleological devices – whether they are 

dispersion constraints, repelling algorithms, or a lexical bias against storing confusing 

tokens as exemplars (if we accept Wedel’s argument) – is that the formalizations using 

them cannot explain sound changes in which categories approach each other, such as 

mergers or push chains. These would require additional, counteracting constraints and 

different constraint rankings, whose relation to the dispersion grammar cannot be made 

clear. De Boer’s model can handle mergers (and is non-teleological), but it cannot 

explain push chains. 
 
 3.3 The BiPhon model 
 
A general disadvantage of most models discussed so far is that they are crafted for the 

specific purpose of simulating auditory dispersion, and would either require serious 

extension or adjustments to account for other basic phonological phenomena, or would 

fail to do so altogether. A model intended to describe all of a language user’s 
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phonological and phonetic knowledge is Boersma’s BiPhon model (for an overview, see 

Boersma 2011), already briefly mentioned in the introduction. In their article in 

Phonology, Boersma and Hamann (hereafter, both this article and its authors will be 

abbreviated to B&H) embed their formalization of auditory dispersion in this model, and 

show that optimal auditory dispersion emerges innocently, i.e. non-teleologically. 

 The BiPhon model assumes separate but closely intertwined phonological and 

phonetic representations. The layout of the model is shown in Figure 6: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. The BiPhon model. 
 

“meaning” is a semantic representation; the Underlying Form (UF) and Surface Form 

(SF) are discrete phonological representations, familiar from Prince & Smolensky 

(1993/2004) and McCarthy & Prince (1995); the Auditory Form (AudF) and Articulatory 

Form (ArtF) are continuous phonetic representations. The Underlying Form is a lexical 

morphemic form; the Surface Form is structured in terms of feet, syllables, features, 

segments etc.; the Auditory Form (AudF) is a representation of auditory events such as 

pitches, silences, noise etc., and their ordering in time; the Articulatory Form (ArtF) is a 

gestural plan to realize the auditory events specified in the AudF (and hence only applies 

to the speaker). In OT-based formalizations, the levels are linked or evaluated by 

|Underlying Form| 

/Surface Form/ 

[[Auditory Form]] 

FAITH 

STRUCT 

CUE 

listening 

[[Auditory Form]] 

/Surface Form/ 

|Underlying Form| 

speaking 

[Articulatory Form] ART 

SENS 

“meaning” “meaning” 

LEX 



 13 

families of OT constraints: lexical constraints (LEX in Figure 6: Boersma 2001; 

Apoussidou 2007) relate morphemes to meanings; faithfulness constraints (McCarthy & 

Prince 1995) evaluate the relation between UF and SF; structural constraints (STRUCT: 

Prince & Smolensky 1993/2004) evaluate the phonotactic well-formedness of the SF; cue 

constraints (CUE: Escudero & Boersma 2003; Boersma 2009b) relate phonological 

surface structures to auditory events and vice versa; sensorimotor constraints implement 

the muscle movements needed to produce auditory cues (SENS; Boersma 2006); 

articulatory constraints (ART: Kirchner 1998; Boersma 1998) militate against articulatory 

effort, with central articulations being least effortful (Boersma 1998; Boersma & 

Hamann 2008). 

 All constraints apply bidirectionally, i.e. both in production and comprehension, with 

the same rankings in both directions. From the relevant input (i.e. the meaning in 

production, and the AudF in comprehension), the output (i.e. the ArtF in production, and 

the meaning in comprehension) and intermediate representations are computed in 

parallel. 

  

In the BiPhon model, optimal auditory dispersion emerges as a side effect of the 

interaction of two functional forces in speech production: a prototype effect, which drives 

speakers and listeners to prefer the least confusable token of a category (useful in being 

clear), and an articulatory effect, which drives speakers to avoid articulatorily effortful 

tokens of a category (useful in being efficient). The least confusable token is likely to be 

a peripheral token in the category space, but such tokens also require more articulatory 

effort than more central realizations: thus, the two effects counteract.  

 All five levels in Figure 6 are relevant to B&H’s explanation of auditory dispersion, 

which can be summarized as follows. The language-learning infant builds phonological 

categories around peaks in the distributions of her auditory input; on the basis of her 

lexicon, she establishes relations between these distributions and categories (lexicon-

driven learning), i.e. she acquires an appropriate cue constraint ranking for her ambient 

language; subsequently, she reuses this ranking in production, now with an added 

articulatory effect. Put briefly, her strategy is: “optimise comprehension only, then just 

speak” (B&H: 256). In perception, some transmission noise is present (Ohala 1981), 

representing different kinds of variation and noise in communication: between-speaker 

variation, within-speaker variation, background noise and noise in the ear of the listener. 
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 The prototype effect is embodied by the ranking values of the cue constraints: 

constraints militating against perceiving non-confusable tokens of a category have low 

ranking values, and since the BiPhon model is bidirectional, these constraints also favour 

the production of a category with a non-confusable auditory value. The articulatory 

effect is embodied by the ranking values of the articulatory constraints: these are highest 

for constraints militating against the production of peripheral auditory values. With 

computer simulations, B&H show that the interaction of the two effects yields optimally 

dispersed phoneme inventories. The output of a generation (represented by a single 

learner)3 serves as the input to the next generation; already over a small number of 

generations, any input distribution will evolve into a stable inventory. Optimally 

dispersed initial distributions remain unchanged over the generations; in exaggerated 

initial distributions, where the category peaks lie more toward the edges of the auditory 

continuum, the articulatory effect forces the categories towards the centre of the phonetic 

space; in confusing initial distributions, where the category peaks lie close together, the 

prototype effect forces the categories to a sufficient mutual distance. B&H are also able 

to mimic the sound change in the history of Polish mentioned in §2 (p. 9). 

 In their formalization, B&H do not assume any faithfulness constraints to be violated, 

as they are concerned with single segments (although the ranking of faithfulness 

constraints does contribute to the prototype effect, for instance by preventing segments 

from the UF to undergo deletion or assimilation in phonological production (i.e. the 

mapping from UF to SF)), so that UF and SF are identical and the former can be 

disposed of. Also, as speakers are assumed to have perfect sensorimotor knowledge, 

AudF and ArtF are conflated into one Phonetic Form. This leaves the two-level 

production model of Figure 7: 
 

 

 

 

 

 Figure 7. Simplified production model (B&H: 227). 

                                                
3 The model was implemented into a more complex world of interacting agents by Van Leussen 
& Vondenhoff (2008). 
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B&H simulate the evolution of dispersion along a single auditory continuum, namely the 

spectral centre of gravity in sibilants; Boersma (2007, 2009a) did so for a two-

dimensional space, namely the vowel space. In these simulations optimally dispersed 

inventories emerged as well, whose final distribution of categories was not influenced by 

the initial distribution, as it turned out to be in Liljencrants & Lindblom (1972): in fact, 

the first generation acquired a system with vowels that were random located in the 

auditory space. Van Leussen (2008) extended Boersma’s (2007) formalization with 

populations of agents, thus combining Boersma’s work with that of De Boer (1999, 

2000, 2001), and found typologically realistic results for smaller vowel inventories. 
 

4 Artificial neural networks 

 
An artificial neural network or neural net is a network of interconnected single units or 

nodes, used to simulate different aspects of cognition, such as vision, category learning 

and stimulus classification. The application of neural nets is widespread: also outside the 

realm of science, they serve a wide variety of purposes, such as decision-making in 

stocks or sorting plastic in recycling plants. 
 
 4.1 Neurobiological underpinnings 
 
The name ‘artificial neural network’ implies that the units in such a network correspond 

to neural structure in animals. To elucidate the analogy, I briefly introduce the structure 

and working of a typical mammalian neuron here. The notion of a ‘typical’ neuron is 

perhaps somewhat misleading, as the structures and workings of neurons show a great 

deal of diversity. 

 

Neurons are the building blocks of the nervous system, and serve to process and transmit 

several types of information. Neurons can be classified into a number of categories: 

sensory or receptor neurons process and react to input from the sensory organs; motor 

neurons regulate muscle activity; and interneurons connect neurons to other neurons. 

Most neurons are located in the cerebral cortex. The number of cortical neurons varies 

greatly between animal species: mice have ca. 4⋅106 cortical neurons, cats have ca. 3⋅108, 

horses have 1.2⋅109 and humans have ca. 1.15⋅1010 (Roth & Dicke 2005: 251). Estimates 

of the total number of neurons in humans lie in the order of magnitude of ca. 1011 
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neurons (a.o. Azevedo et al. 2009; Williams & Herrup 1988). The number of synapses – 

the connections between neurons – in the human brain lies somewhere around 1014, so a 

neuron has ca. 103 synapses on average (or even 104, according to Mitchell 1997: 82): 

the neural system is thus densely interconnected. 

 

     
 

 Figure 8. A typical mammalian neuron. Image from Gazzaniga, Ivry & Mangun (2009): 21. 
 

A neuron consists of a cell body, or soma, from which two other parts emerge: tree-like 

structures called dendrites (or, somewhat redundantly, ‘dendritic trees’), and an 

elongated structure called the axon. The axon ends in the axon terminal, where it 

branches out. The joint between this arborization and the dendrites of an adjacent neuron 

is the synapse or synaptic junction. It is here that information is transferred from one 

neuron to the next; these neurons are called presynaptic and postsynaptic, respectively. 

Within the neuron, information is transferred through the axon via electrical current (in 

many neurons, including the one depicted in Figure 8, the axon is covered in a myelin 

sheath that increases the speed of the impulse); this is impossible between neurons, as 

there is a small gap called the synaptic cleft. Here, at the synapse, information 
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transmission occurs via chemical activity, viz. by neurotransmitter ions. These are 

enclosed in synaptic vesicles, which lie in the presynaptic axon terminal. The 

neurotransmitter ions are released into the synaptic cleft due to an action potential from 

the axon, and bind to receptors on the cell membrane of the postsynaptic neuron. The 

influx of ions generates a postsynaptic potential, which results in a change in membrane 

potential. The amplitude of this change defines the strength of the synaptic connection 

between the two neurons. The dendrites of the postsynaptic neuron conduct the 

electrochemical stimulation to the cell body, which integrates all incoming signals, and 

generates an action potential if a certain threshold is reached: then the neuron fires. 

 The synapse described here is excitatory, i.e. it increases the probability that the 

postsynaptic neuron generates an action potential. A synapse can be inhibitory as well, 

i.e. it decreases the probability of an action potential in the postsynaptic neuron by 

exerting a counteracting influence on its membrane potential. 
 
 4.2 Artificial neural nets 
 
As written earlier, a neural net is an artificial network of interconnected units called 

nodes, which are grouped in layers. Nodes in adjacent layers, and sometimes also within 

layers, are linked by connections that may be either excitatory – i.e. if a node is 

activated, the activity in the connected node(s) increases as well – or inhibitory – i.e. if a 

node is activated, the activity in the connected node(s) decreases. The degree to which 

activity can spread from one node to another is determined by the weight of the 

connection between them. Most neural networks are used for purposes that require 

learning: this process generally involves changes in the weights of the connections 

(see §4.3). 

 

In spite of their respectable age – the first neural net was created in the ‘40s of the 

previous century (McCulloch & Pitts 1943) – neural nets are not used very frequently in 

linguistics, where constraint grammars such as Optimality Theory and Harmonic 

Grammar (Smolensky & Legendre 2006) prevail. One of the principal advantages of 

neural nets over constraint grammars, however, is their biological validity. Both in 

animal cognition and in neural nets, different types of behaviour are basically different 

types of activation patterns: constraints only describe this behaviour, and hence are an 

abstract derivative at best. Another advantage of neural nets is the relative simplicity of 
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the decision mechanism, which adds to their biological feasibility. In constraint-based 

grammars, by contrast, the evaluation process must take into account large lists of 

candidate input forms, and each additional level of representation in the grammar adds to 

the complexity. In neural networks this process is much more straightforward.  

 Also, neural nets are capable of modelling phenomena that reveal gradient properties 

of phonological categories; in constraint grammars, categories are discrete, so such 

grammars must fail. An example of such a phenomenon is the warping of the auditory 

space in the perceptual magnet effect (Kuhl 1992), modelled with neural nets by 

Guenther & Gjaja (1996) and within the BiPhon model by Boersma, Benders & 

Seinhorst (fc.). In an implementation of the BiPhon model with neural nets, the same 

representations are assumed as in Figure 6 (p. 14), and the description below this figure 

still applies: the word ‘constraint(s)’ should merely be replaced with ‘connection(s)’. The 

bidirectionality of the model is warranted by making the connections symmetric, i.e. by 

making the weight of the connection from node A to node B identical to the weight of 

the connection from node B to node A (Hopfield 1982). The parallelism of the model is 

maintained because activation can flow through the network in both directions, 

simultaneously top-down and bottom-up. 
 
 4.3 Learning in neural nets 
 
As mentioned earlier, learning in neural nets usually involves connection weight 

adjustment. This section (a brief summary of §4 of Boersma, Benders & Seinhorst fc.) 

discusses a number of weight update rules. One of the best-known rules is Hebbian 

learning; algorithms that are relevant to this thesis are the in- and outstar learning rules 

by Grossberg (1969) and the inoutstar learning rule by Boersma. 

 

The general weight update rule (1) describes Δwij, the weight change of a connection 

from input node i with activity ai to output node j with activity aj: 
 
 (1)  Δwij = ηw(aiaj – instar·ajwij – outstar·aiwij – leak·wij) 
 
ηw is the learning rate, the amount by which a connection weight can change in every 

learning step: the neurobiological correlate of this parameter is synaptic plasticity. 
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 One of the earliest proposed learning algorithms to be applied in neural nets is 

Hebbian learning (Hebb 1949), popularly summarized as “cells that fire together, wire 

together”: if two neurons happen to fire simultaneously, the strength of the connecting 

synapse increases, and their activities (or lack thereof) synchronize. If we are to cast 

Hebbian learning into equation (1), the terms instar, outstar and leak are all zero, so 

Δwij = ηwaiaj. An undesirable consequence of this strategy is that the connection weights 

eventually become unlimited. This can be resolved in a number of ways. 

 One strategy is to introduce leak in the connection weights (in (1), the term leak ≠ 0, 

the other terms are zero); if leak = 1, a connection weight will come to be the probability 

that its input and output nodes are on simultaneously. This means, however, that 

connections to nodes that are rarely active will always be weak, even if the correlation 

between the activities of the nodes is strong, so that processing is determined by 

frequency rather than reliability. 

 In outstar learning (outstar = 1, the other terms are 0), the weights come to be the 

probability that the output node is on, given that the input node is on (which is analogous 

to the way OT handles inputs); this resolves the low-frequency problem, because it 

focuses on the predictability of the output from the input. Instar learning (instar = 1, the 

other terms are 0), as the name suggests, works in the opposite direction: with this 

algorithm, the weights come to be the probability that the input node is on, given that the 

output node is on.  

 Both out- and instar learning are directional, which is troublesome if we want to use 

connections bidirectionally. Inoutstar learning (instar = outstar = 0.5, leak = 0) combines 

the two: the expectation values of the connection weights in an inoutstar network are the 

harmonic means of these weights in an outstar- and in an instar network. The inoutstar 

learning rule is insensitive to the direction of processing, and thus best suited for 

bidirectional use: it optimizes both production and perception, but not perfectly. 

Nevertheless, it solves some of the problems associated with the in- and outstar 

algorithms. 
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5 Auditory dispersion in neural networks 

 

This paragraph provides descriptions of the neural network used in the computer 

simulations, and of the learning procedure. All simulations were run in PRAAT (Boersma 

& Weenink 2012, version 5.3.19). Separate scripts were used for simulations of the 

evolution of unimodal and bimodal distributions (Appendices A (p. 70) and B (p. 76) 

respectively; updated to be used with PRAAT 5.3.23, the latest version when this thesis 

was finished). 
 
 5.1 The network 
 
The script creates an artificial neural network consisting of three layers of nodes, each 

corresponding to a level of representation in Figure 6 (p. 12): /SF/, [[AudF]] and [ArtF]. 

Each node on the SF layer represents a discrete phonological category; each node on the 

AudF layer represents a frequency value (or, more precisely, a range of values) on an 

auditory continuum. Note that the AudF layer could represent any auditory continuum 

(F1, F2, VOT, centre of gravity, etc.), and that an SF node could represent any category 

that corresponds to a range of values on an auditory continuum, such as a feature or 

segment. For instance, [+velar] could relate to low F2 values, and [–velar] to high F2 

values; or /b/ to negative VOT values, /p/ to VOT values around zero and /ph/ to positive 

VOT values. In the remainder of this thesis, however, I will mostly be speaking in 

general terms, i.e. about categories. 

 The script ‘asks’ the user to enter the desired number of AudF nodes: the default 

value of this number is 100. This number was chosen because it was thought to strike a 

reasonable balance between accuracy (i.e. it made the range of frequency values that 

each AudF node represents fairly small, and allowed for a precise computation of the 

basic statistics) and computational feasibility. 

 A network contains only one ArtF node, with inhibitory connections to every AudF 

node, realizing the articulatory effect. These connections do not learn. Their weights are 

determined by the location of the connected node on the AudF layer: nodes at the 

extremities of this layer represent peripheral values of the auditory continuum, which 

require most articulatory effort and hence are inhibited most strongly by the ArtF node. 

The connections to the central nodes on the AudF layer, on the other hand, are weaker, 

as these nodes correspond to less effortful articulations. Note that these connections are 
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not sensorimotor connections: as in B&H, sensorimotor knowledge is assumed to be 

perfect. Rather, this strategy allows for a more transparent visualization of the interaction 

of perceptual and articulatory drives. Implementation of sensorimotor connections is of 

course perfectly possible: it would entail as many ArtF nodes as there are AudF nodes, 

each connected to its corresponding AudF node and the adjacent ArtF nodes to allow 

mutual inhibition. 

 The weight w of the connection between the ArtF node and the xth AudF node is 

determined by a parabola described by the function w = c – d(x – m)2, where c is the 

connection strength from the ArtF node to the central AudF node (i.e. the vertical 

displacement of the parabola), d is a measure of the degree of inhibition, and m is the 

number of the central AudF node. The central AudF node is the node that lies exactly 

halfway the AudF continuum; its number is only an integer if the layer contains an odd 

number of nodes. For instance, if the layer has 100 nodes, m = 50.5; if the layer has 101 

nodes, m = 51. The script asks the user to enter the vertical displacement of the parabola, 

say c, and a parameter indicating the degree of inhibition, say i: the value of w at the 

edges of the AudF layer equals c – i. To achieve this, d must be 4i/(n2 – 1), with n being 

the number of nodes on the AudF layer. Figure 9 shows a number of such parabolas for 

different values of i. In all cases, c = -0.2.  
 

 
 

 Figure 9. Articulatory inhibition parabolas for different values of i (solid line: i = 0.5; 
 dotted line: i = 1; dashed line: i = 1.5). In all cases, c = -0.2. 
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All SF nodes are connected to all AudF nodes with cue connections. In the initial state of 

the network, the SF and AudF nodes have a random activity (value between 0 and 1), 

and the cue connections have a small random weight (value between 0 and 0.25). The 

ArtF node has an activity of 1; as mentioned above, the weights of the articulatory 

connections are fixed and depend on the number of categories in the system. This is a 

simplification, because the inhibitory connections will become weaker in those areas 

where the learner gains sensorimotor knowledge by experience. This means that the 

articulatory weights are different in systems with more categories, which will be 

implemented in some of the simulations in §6. 

 In its initial state, the network looks as in Figure 10 (here with 2 category nodes and 

50 AudF nodes). Red nodes have a positive activity, whose size is indicated by the 

diameter of the circle; nodes with a negative activity are drawn in blue (although not 

(yet) in Figure 10). Excitatory connections are drawn in black, inhibitory connections in 

white. The weight of a connection is indicated by the width of the line, as can clearly be 

seen in the articulatory connections: along the auditory dimension, the widths of the lines 

drawing the articulatory connections reflect the parabolic shape of the effort curve. 
 

 
 

 

 Figure 10. The initial state of a network with two categories. 
 
 
 
 

[ArtF]

[[AudF]]

/SF/
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 5.2 Learning and transmission 
 
The script produces a chain of virtual learners who learn from the output of the previous 

learner, reminiscent of the process of iterated learning (Kirby 2001). Both B&H’s 

strategy and iterated learning expose human biases through repeated interactions. Iterated 

learning investigates higher-level inductive biases: learners are only exposed to a subset 

of the output of the previous generation, and have to form a hypothesis about the 

structure underlying this output. B&H are concerned with lower-level perceptual and 

articulatory biases, so learners can learn from the full output of the previous generation. 

In the simulations in §6, as in B&H, each generation is represented by a single speaker 

(unlike in Van Leussen 2008 and Van Leussen & Vondenhoff 2008).  

 

The locations of the category peaks in the initial distribution are entered by the user. For 

each combination of phonological category and auditory value, a probability is 

computed: these probabilities are normally distributed along the auditory dimension. The 

probabilities are stored in a table. Each category has the same standard deviation, which 

is equal to 1/16 of the continuum (in B&H: 1/14.2). 

 Before every learning step, all activities in the network are set to zero. The ArtF node 

is inactive. Then one of the categories is selected at random; for this category, a 

frequency value on the auditory continuum is chosen from the table (i.e. a node on the 

AudF layer). The probability with which a value or node is chosen reflects its probability 

in the output distribution of the previous generation: more frequent outputs appear in the 

input of the next generation more often. The intergenerational transmission is a little 

noisy: the frequency perceived by the listener is drawn from a normal distribution whose 

mean is the produced frequency, and whose standard deviation is 5% of the number of 

AudF nodes (as in B&H). This number is not rounded off to the nearest AudF node. 

 Subsequently, the SF node of the selected category is switched on, i.e. its activity is 

set to 1. A normal distribution of activities is set up around the perceived frequency node 

(see also §6.6). This Gaussian curve reflects the excitation spreading on the basilar 

membrane in the human ear, where an incoming sound wave does not only excite the 

hair cells sensitive to that frequency, but also – to a lesser extent – adjacent hair cells. 

The standard deviation of this normal distribution does not depend on the number of 

phonological categories. This spreading is illustrated in Figure 11, showing the activities 

along an AudF layer with 100 nodes with an incoming frequency of node 50; the 
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standard deviation is 5% of the number of AudF nodes. The activities of the nodes on 

the AudF layer are set according to this curve. 

 
 

 Figure 11. Activity spreading on the AudF layer around the perceived frequency. 
 

Then all SF and AudF nodes are clamped, i.e. held fixed, and the weights of the cue 

connections are updated by a small amount (the learning rate, §4.3). The learning of the 

appropriate weights corresponds to the learning of the appropriate cue constraint ranking 

in B&H. To model perceptual learning in the perception direction, we can use inoutstar 

learning, which can be used in both directions of processing, or outstar learning, which – 

just as OT – is output-oriented and thus expected to replicate the Optimality-Theoretic 

foundation of B&H.  

 

All connections are bidirectional, so the speaker uses the same connections in 

production. Additionally, in this direction, the ArtF node is switched on, so that the 

inhibitory articulatory connections come to constrain the activities at the AudF layer. In 

principle, the activity of an unclamped node i is the sum of the weights of every 

connection wij leading to it times the activity of node j from which this connection 

emerges: ai =  Σaj·wij. Additionally, it is possible to clip the activities of unclamped 

nodes. PRAAT offers three possibilities: linear clipping between two values amin and amax, 

e.g. 0 and 1, which means that any activity below amin or above amax is set to that value; 

top-sigmoid clipping, in which larger activities smoothly approach amax; and sigmoid-

clipping, in which smaller activities smoothly approach amin, and larger activities 

smoothly approach amax. 
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Figure 12 shows the activities in the network from Figure 10 after 50,000 learning steps 

of the outstar algorithm (learning rate 0.001), producing the left category. (Hereafter I 

will refer to the categories in a two-category network as /A/ (left-hand category) and /B/ 

(right-hand category).) The figure also indicates the prototype (the AudF node with the 

strongest connection to that category node; left arrow) and the node with the highest 

output activity (right arrow) – this is why I took 50 nodes instead of 100: this way the 

separate nodes are still visible. Because of the articulatory effect, the most active node is 

inclined more towards the centre of the AudF, where the inhibitory connections are 

weaker. 

 

 
 

 Figure 12. The network from Figure 10 after 50,000 learning steps (outstar update 
 rule), producing category /A/. 
 

A network with inoutstar learning will come to look quite different from Figure 12. 

Inoutstar learning is less sensitive to the predictability of the output from the input than 

outstar learning; the effect of this is seen most clearly at the edges of the auditory 

dimension, where the frequency values have the lowest probabilities. Because the cue 

connections at the edges are weaker, the AudF nodes there experience more inhibition 

from the ArtF node. This can be seen clearly by the fact that there are more nodes drawn 

in blue, and that these discs have larger diameters: 

[ArtF]

[[AudF]]

/SF/
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 Figure 13. An inoutstar network after 50,000 learning steps. The left arrow indicates 
 the prototype, the right arrow the most active node. 
 

In order to convert the activity a of an AudF node into its output probability p, we can 

use a number of formulas. The activity of a node can be interpreted directly as its 

probability (a linear activity-to-probability rule), in which case the activities cannot have 

negative values; another possibility is to use the formula p = ea/T (an exponential activity-

to-probability rule) where T is the temperature, a parameter indicating the evaluation 

noise (Ackley, Hinton & Sejnowski 1985). In both cases, the relative output probabilities 

are computed by dividing every p by the sum of the p values of all AudF nodes for a 

category. These probabilities are stored in a table, which serves as the input to the 

following generation. Then the whole process starts anew. 

 

Note that in Figure 12, there still exist (weak) connections from both category nodes to 

the opposite extremes of the AudF layers (their weakness is less clearly visible in the pdf 

version of this document): these values occur in the input only very infrequently and 

hence contribute very little to the learning process. The weights of these connections thus 

differ very little from their initial values. 
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/SF/



 28 

6 Simulations 

 

This chapter presents the results of the computer simulations. Comparisons will be 

drawn between simulations with outstar learning and simulations with inoutstar learning 

(§6.1–6.4). The outstar algorithm, because of its similarity to OT, is likely to replicate 

B&H’s results, while the bidirectionality of the inoutstar algorithm is expected to make it 

a good candidate for various types of phenomenon. This algorithm has proven capable of 

mimicking another (unrelated) phenomenon in the phonology-phonetics interface, the 

perceptual magnet effect (Boersma, Benders & Seinhorst fc.). 

 All simulations in the following sections make use of an exponential activity-to-

probability rule with top-sigmoid activation clipping: this provided the smoothest output 

probability curves. Other possibilities, already touched upon in the previous chapter, are 

discussed in §6.6. 

 I investigate the evolution of auditory dispersion in different types of categories: two-

category inventories with contiguous categories (§6.1a, 6.2a), three-category inventories 

(§6.1b, 6.2b; these sections include simulations of the sound change in the Polish sibilant 

system described in §2, p. 7), one-category inventories (§6.1c, 6.2c) and two-category 

inventories with non-contiguous categories (§6.1d, 6.2d). The evolution of systems 

without articulatory limitations is investigated in §6.3; a comparison between outstar and 

inoutstar learning is drawn in §6.4; the auditory dispersion of the Dutch sibilant system 

is treated in §6.5; the parameter settings of the network are discussed in §6.6. 
 
 6.1 Outstar learning 
 
  6.1a Two-category inventories (with contiguous categories) 
 
In this section I treat three types of initial distributions: standard; exaggerated; and 

confusing and skewed. The standard distribution is defined as a distribution with peaks 

in the input at 35% and 65% of the continuum, where they lied approximately in B&H 

(§5.7). The initial probability curves (or production probabilities of “generation 0”) for 

this type of distribution are drawn in Figure 14. These probabilities have been calculated 

by the script, i.e. the distributions are bell-shaped because they were computed with a 

formula for a Gaussian distribution.  



 29 

 
 

 Figure 14. Standard initial distribution (output probabilities of “generation 0”). 
 

The production of generation 1 is shown in Figure 15. These probabilities are the output 

of the grammar itself, i.e. their distributions are bell-shaped (although not symmetric) 

due to the interaction of the parameters in the network. These are: articulatory inhibition 

= 1.5; weight of central articulatory connection = -0.25; temperature = 0.1; transmission 

noise = 0.05; 100,000 tokens; learning rate = 0.001. 

 
 

 Figure 15. Output probabilities of generation 1. 
 

Figure 16 shows the evolution of this inventory over ten generations. The black curve 

connects the average produced nodes, the grey curves connect the values of the average 

±1 standard deviation. 
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 Figure 16. The evolution of a two-category inventory (standard initial distribution, 
 outstar learning). 
 

This distribution turns out to be stable over the generations: within one generation, the 

average produced node of a category has reached its target position. For category /A/, 

this lies at ca. 36% (node 37) of the continuum, for /B/ at ca. 64% (node 64) (B&H: 33.8 

resp. 66.3%). As mentioned in §5.2, the initial standard deviation in a network with n 

AudF nodes is n/16 nodes, so in the present network it is 6.25 nodes. This is the standard 

deviation of the distribution that “generation 0” produces (Figure 14); due to the 

transmission noise, this distribution is slightly scattered, so that generation 1 perceives a 

larger standard deviation of 8.0 nodes. In its production, this generation reduces the 

standard deviation to 5.8 nodes, due to the articulatory effect (Figure 15): this is the 

entrenchment also found by B&H (p. 245). Generation 2, however, perceives this 

distribution with an increased standard deviation of 7.7 nodes because of the 

transmission noise. In subsequent generations, the standard deviations of the input and 

output distributions remain stable, because the entrenchment of the articulatory effect 

and the scattering of the transmission noise are in balance. 

 

A highly exaggerated contrast, with peaks at 20 and 80% of the auditory continuum, is 

diachronically unstable and evolves into the equilibrium seen above within three 

generations. The first generation contributes most to this change by immediately moving 

the categories to more central values: apparently their articulatory effect outweighs their 

prototype effect by far. This can be seen in Figure 17: 
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 Figure 17. The evolution of a two-category inventory (exaggerated initial 
 distribution, outstar learning). 
 

Surprisingly, and in contrast with B&H’s simulations (p. 248), the first generation 

produces more central values than following generations – their articulatory effect is a 

little too strong, it seems. Closer scrutiny of the network of the first generation reveals 

that some cue connections remain from SF node /A/ to the right edge of the AudF layer, 

and from node /B/ to the left edge of the AudF layer. This is unexpected, because these 

are exactly the auditory regions in which no perceptual confusion should exist, since the 

peaks in the input distributions lie here. These inexplicable cue connections account for 

the shift of the distributions going inward to a large degree, as they move to the region 

of minimal confusability. Indeed, decreasing the articulatory inhibition does not solve the 

issue, so the cause lies in the perceptual learning process. The problem can be solved by 

increasing the learning rate by a factor 10 and decreasing the number of learning steps 

by a factor 10: however, this yields more fluctuation throughout the evolution of the 

system (cf. §6.6). 

 

Figure 18 shows the evolution of a confusing and skewed distribution, with categories 

that lie close together and are not equidistant from the centre of the auditory continuum 

(their peaks lie at 50 and 65%, respectively).  
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 Figure 18. The evolution of a two-category inventory (confusing and skewed initial 
 distribution, outstar learning). 
 

The first generation directly enhances the contrast in the system: category /A/ is shifted 

into a lower auditory region, so that the between-category distance is the usual 27 nodes. 

The prototype effect thus acts very quickly. When the distance between the categories is 

sufficiently large, /B/ also lowers slightly, and both categories drift to the locations 

where they stabilized in the previous systems. The within-category variation increases in 

generation 1 because of the activity spreading along the AudF layer, which enlarges the 

auditory region associated with a category (cf. §6.6). The standard deviations already 

decrease in generation 2, because generation 1 has resolved the between-category 

overlap. Within ca. five generations we have the stable system familiar from Figures 16 

and 17 (p. 30–31). 

 The evolution of a confusing and skewed distribution in B&H’s simulations is slower, 

even though their distribution is less confusing than the one chosen here (peaks at 50 and 

75% of the auditory continuum): optimal dispersion is only reached in some 15 

generations, instead of 5 here. 
 
  6.1b Three-category inventories: Polish sibilants 
 
This section treats inventories with three categories by providing a simulation of the 

evolution of the Polish sibilant inventory (cf. §2, p. 7).  
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 In §5.1 (p. 23) I briefly mentioned that different numbers of categories in a system 

may require different articulatory settings: the more categories a language has, the larger 

the phonetic space these categories occupy, and the weaker the peripheral articulatory 

connections may have to be. Figure 19 shows what happened in the first ten generations 

of my simulations of the evolution of medieval Polish, where the same articulatory 

settings were used as in the two-category outstar simulations (peaks at identical locations 

as in B&H: from left to right: at 34.4% for /A/ [ʃ], at 64.4% for /B/ [sj] and at 66.88% 

for /C/ [s]): 

 
 

 Figure 19. The evolution of medieval Polish, using the articulatory settings from the 
 two-category simulations (outstar learning). 
 

It seems that the articulatory effect is too strong again, because the prototype effect is 

nullified in the first generation. We would expect the confusing opposition [sj] vs. [s] to 

be phonetically enhanced immediately, but it is not resolved at all: the average produced 

nodes of these categories are in fact closer together than they were in the initial 

distribution, and have just shifted to more central values due to the articulatory effect. 

This indicates that the effort curve may have to be less steep in the three-category 

simulations than it was in the two-category cases. In Figure 20, the degree of articulatory 

inhibition is set to 1.0 rather than 1.5; the weight of the central articulatory connection is 

kept at -0.25, because I assume that central articulations are equally lazy for all speakers, 

regardless of the number of categories in their system. 
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 Figure 20. The evolution of medieval Polish, with a less steep articulatory curve 
 (outstar learning). 
 

These settings yield better results, although the [sj]–[s] contrast is still less enhanced in 

the first generation than might be expected: the articulatory effect still forces both 

categories into a less effortful region. Category /A/ ([ʃ] → [ʂ]) is pushed into a lower 

auditory region immediately, /B/ ([sj] → [ɕ]) lowers towards the centre of the continuum 

and /C/ ([s] → [s]̪) soon moves away from /B/ into a higher region. In the final state, the 

average produced node of /A/ lies at 25.4% of the continuum, that of /B/ at 50.0% and 

that of /C/ at 74.6% (B&H: 27.8, 50.5 and 72.4%). The entire system thus occupies a 

larger part of the auditory dimension than a two-category system (cf. Figure 4, p. 6): the 

difference between the average produced nodes of /A/ and /C/ in Figure 20 is 48.8% of 

the continuum, that between /A/ and /B/ in Figure 16 (p. 30) is 27.5%. 

 The reader might object that the articulatory curve should be shallower still in order 

to replicate the enhancement of the confusing initial opposition that B&H found (Figure 

16, p. 250). However, it turns out that this strategy would not solve the problem: in fact, 

it would yield inaccurate auditory values in the final state, and predict output probability 

curves with relatively large probabilities for peripheral auditory values (i.e. asymmetric 

distributions with larger standard deviations). A simulation in §6.3 will show that even if 

the articulatory connections are disabled altogether, no major enhancement occurs in the 

first generation; a simulation in §6.6 will show that a smaller standard deviation of the 

activity spreading along the AudF layer reduces the problem (remember also the 

confusing distribution from §6.1a). 
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  6.1c One-category inventories 
 
According to B&H (p. 252), the first-generation learner of a one-category inventory will 

always produce a central auditory value, irrespective of the initial distribution. In their 

formalization, all cue constraints are ranked at the same height initially, and this ranking 

does not change during learning: after all, there is only one category, so every incoming 

sound will be perceived as this category. Because the learner does not make any 

mistakes, she does not have to rerank any cue constraints, and her output depends solely 

on the ranking of the articulatory constraints, which favours the auditory value at the 

valley of the articulatory curve. 

 In the present neural net, by contrast, the cue connections initially have random (i.e. 

usually unequal) weights, because not all synapses in the newborn’s brain start out with 

identical strengths. This means that perceptual learning must take place in order to 

achieve a realistic output distribution. In an outstar network, only those cue connections 

learn that receive input; if the initial distribution has a peak at, for instance, 10% of the 

continuum, the cue connections at the right-hand end of the network will only become 

stronger after an extremely large number of learning steps, when the tokens at the right-

hand periphery of the AudF layer (that have a low probability) have appeared in the 

input sufficiently often. Hence, the learner needs a large number of learning steps to 

achieve a symmetric network, or else the peak in the output distribution is most likely to 

lie at a non-central auditory value.4 

 Figure 21 shows the evolution of a one-category inventory with a skewed initial 

distribution. A steeper articulatory curve was chosen than in the two- and three-category 

simulations: the degree of inhibition is 2 (in the two-category simulations: 1.5, in the 

three-category simulations: 1). The figure shows that after 100,000 learning steps, 

generation 1 on average does not yet produce the central auditory value; this is only 

achieved by generation 2. 

                                                
4 With inoutstar learning and an extremely skewed input distribution, the peak in the output 
distribution of a single-category inventory will never move to a central auditory value within a 
single generation, because the cue connection weights will be more faithful to the input 
distribution than they are with outstar learning. See Figures 31 (p. 43), 43 (p. 53) and 44 (ibid.). 
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 Figure 21. The evolution of a skewed one-category inventory (outstar learning). 
 

The prediction that the first generation does not yet produce an central average frequency 

value even after 100,000 learning steps differs greatly from B&H’s prediction: in their 

simulations, a learner of a single-category inventory already has an optimally dispersed 

system after having been exposed to only one token (or in fact zero, because the lexicon 

is already in place). They acknowledge that this “predicted one-shot shift to the centre” 

(p. 252) may strike some readers as unfeasible, but remark that it is difficult to test. The 

same is true of my prediction, so it cannot be established which is more realistic. 
 
  6.1d Two-category inventories with one non-contiguous category 
 
The BiPhon model could, in principle, represent any language with non-contiguous 

categories, i.e. categories whose distributions have more than one peak. B&H argue that 

such languages, although representable, are diachronically unstable: they show that an 

inventory with one bimodal category (i.e. a category whose probability distribution has 

two peaks) and one unimodal category evolves into a system with two unimodal 

categories (§6.4, p. 252–254). 

 However, in this simulation one of the peaks of the bimodal category is smaller than 

the other: the probability of the peak located at 25.0 Erb is three times smaller than the 

probability of the peak at 31.0 Erb. Such a distribution is shown in Figure 22:  
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 Figure 22. An inventory with one bimodally distributed category. The probability of the 
 right-hand peak is three times higher than that of the left-hand peak. 
 

Because the distribution from Figure 22 is biased towards one side of the continuum, the 

smaller peak may be more prone to demise than the larger peak from the very start, since 

speakers have learned in perception to prefer the less confusable tokens of a category. 

This means that the emergence of optimal dispersion in B&H’s simulation of a bimodal 

distribution is perhaps due to the chosen probability curve, rather than being a virtue of 

the model itself. To answer this question, I also simulate the evolution of a distribution 

in which both peaks of the discontiguous category have the same probability, as in 

Figure 23: 

 
 

 Figure 23. An inventory with one bimodally distributed category. Both peaks have 
 equal probabilities. 
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The evolution of the distribution from Figure 22, with an asymmetric bimodal category, 

in an outstar neural net is shown in Figure 24 (as in the previous two-category 

simulations, the articulatory inhibition was set to 1.5): 

 
 

 Figure 24. The evolution of the inventory from Figure 22: bimodal category drawn 
 with a dashed line (outstar learning). 
 

This inventory turns into the well-known optimally dispersed inventory, and has already 

reached the stable state within ten generations instead of the nearly twenty that were 

needed in B&H. The gradual disappearance of the smaller peak of the bimodal category 

is signalled by the normalization of the standard deviation of this category; this is 

visualized in a more tangible manner in Figure 25, showing the output probability curves 

of “generation 0” and the first four generations of learners. Because of the perceptual 

bias towards the right peak, generation 1 already strongly prefers this peak; it has moved 

slightly towards the edge, because the unimodal category lies in the middle of the 

continuum and tries to push the peaks of the bimodal category away. The left peak of 

this category has already begun to diminish, as a result of the perceptual and articulatory 

bias against this peak; once this has happened, generation 2 can move the unimodal 

category into the vacating region on its left. The unimodal category now drags the (ever 

growing) right peak of the bimodal category along towards the centre of the continuum, 

until the system consists of two unimodal categories. 
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 Figure 25. The gradual disappearance of a discontiguous category. 
 

The inventory from Figure 23, in which both peaks of the bimodal category have the 

same probability, evolves as in Figure 26. By chance, now it is the right peak that 

disappears eventually: apparently, auditory values to the left of the centre appear slightly 

more often in the input of generation 1 due to random factors, namely because they are 

selected more often during perceptual learning and/or because of the transmission noise. 

Once a bias against one of the peaks has arisen, this bias is reinforced by the articulatory 

effect, so that this smaller peak vanishes eventually. 

 
 

 Figure 26. The evolution of the inventory from Figure 23 (outstar learning). 
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Figure 26 makes clear that a symmetric bimodal distribution evolves into an optimally 

dispersed, unimodal distribution as well, so the demise of the discontiguous category in 

B&H’s simulations was not due to the fact that one of the peaks was preferred from the 

very beginning. 
 
 6.2 Inoutstar learning 
 
  6.2a Two-category inventories (with contiguous categories) 
 
In general, the cue connections are weaker in an inoutstar network than they are in an 

outstar network (remember Figures 12 and 13, p. 26–27), so if we were to maintain the 

articulatory settings from the outstar simulations, the categories in the final state would 

come to lie unrealistically close together. I adjust them to values that result in an 

equilibrium similar to that from the outstar simulations: the degree of inhibition is taken 

to be 0.5 instead of 1.5, and the weight of the central connection becomes -0.1 instead of 

-0.25. All other parameter settings in these simulations are the same as in the previous 

section. 

 With inoutstar learning, a standard initial distribution remains stable over the 

generations. The output probability curves of generation 1 are bell-shaped and appear to 

be symmetric: 

 
 

 Figure 27. Output probabilies of generation 1 (standard distribution, inoutstar 
 learning).  
 

Other types of initial distributions evolve into optimally dispersed systems in inoutstar 

networks as well. However, they evolve quite differently than they do in an outstar 
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network: because the cue connection weights in an inoutstar network mirror the input 

distribution more closely than they do in an outstar network (§5.2), the in- and outputs of 

a generation differ less than in an outstar network, so that changes proceed slower and 

more gradually. An exaggerated contrast takes some 12 generations to stabilize, whereas 

three sufficed in an outstar network: 

 
 

 Figure 28. The evolution of an exaggerated initial distribution (inoutstar learning). 
 

A confusing opposition needs more than 20 generations to be resolved, instead of five in 

an outstar network: 

  
 

 Figure 29. The evolution of a confusing and skewed initial distribution (inoutstar 
 learning). 
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Nevertheless, irrespective of the initial distribution, two-category inventories evolve into 

stable systems in inoutstar networks too. 
 
  6.2b Three-category inventories: Polish sibilants 
 
In simulations with inoutstar networks, a larger number of categories required a 

shallower articulatory curve (cf. §6.1b, particularly Figure 19, p. 33). In an inoutstar 

network, by contrast, satisfactory results are achieved with the same parabola used in the 

two-category simulations from §6.2a: 

 
 

 Figure 30. The evolution of medieval Polish (inoutstar learning). 
 

This simulation of medieval Polish predicts a smoothly proceeding evolution with a final 

state in which the categories lie only slightly closer together than in Figure 20 (p. 34): 

category /A/ lies at 27.4% of the auditory continuum, /B/ at 49.7% and /C/ at 71.9%. 

The difference between the average produced nodes of /B/ and /C/ increases from the 

very first generation on, but we do not see the marked enhancement in the first 

generation of learners predicted in B&H’s simulations: the articulatory effect pushes the 

categories into a less effortful region. The inventory again occupies a larger part of the 

auditory continuum than a two-category inventory: the distance between the average 

produced nodes of the extreme categories spans 44.5 and 27.8% of the continuum, 

respectively. 
 

ge
ne

ra
tio

n

AudF node
1 100

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



 43 

  6.2c One-category inventories 
 
Considering the relative slowness with which asymmetric distributions approach an 

equilibrium in inoutstar networks, any skewness within a one-category inventory will 

probably not have been resolved within a single generation, as in B&H, nor within two 

generations, as in an outstar network (cf. §6.1c). In fact, even when the peak in the input 

distribution lies at 20% of the continuum (instead of 10% in §6.1c), the system takes ca. 

30 generations to become optimally dispersed: 

 
 

 Figure 31. The evolution of a skewed one-category inventory (inoutstar learning). 
 

Nevertheless, the inventory eventually reaches the stable state we expect, in which the 

average produced node lies halfway the auditory continuum. 
 
  6.2d Two-category inventories (with one non-contiguous category) 
 
A bimodally distributed category becomes unimodal in an inoutstar network as well. 

Figure 32 shows the evolution of the symmetric distribution from Figure 23 (p. 37), in 

which both peaks have the same probability.  
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 Figure 32. The evolution of an inventory with one bimodally distributed category 
 (inoutstar learning). 
 

One peak of the bimodal category disappears (by chance again the right one), and the 

standard deviation of this category normalizes within some ten generations. Since this 

‘unbiased’ distribution becomes unimodal, I assume that an asymmetric, ‘biased’ 

distribution (Figure 22, p. 37) will too; I do not provide simulations of this here. 
 
 6.3 The evolution of unbounded auditory contrast 
 
The script offers the possibility to run simulations without an Articulatory Form, in order 

to investigate the contribution of the articulatory effect to the results of the simulations. 

The results of such simulations are presented in this section. With the Articulatory Form 

switched off, the output activity of an AudF node given a category is equal to the cue 

connection weight between these two nodes: thus, we may expect considerable 

differences between outstar and inoutstar networks. 
 
  6.3a Outstar learning 
 
In a two-category inventory with a standard initial distribution, the average produced 

nodes immediately draw towards the periphery, and the standard deviations increase; 

after that, the system remains stable: 
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 Figure 33. The evolution of a two-category inventory without the articulatory effect 
 (outstar learning). 
 

Upon further investigation, we can see that this system has some unrealistic properties. 

Figure 33, like similar figures from previous sections, was drawn with a script that draws 

lines connecting the average produced nodes of every category, and this value ± 1 

standard deviation. In the networks from previous sections, this made sense because the 

output probability curves were bell-shaped; however, they are not in this network, so 

Figure 33 is highly deceptive. In fact, Figure 34 shows that with the articulatory effect 

left out, the output probabilities show minimal overlap and are not restricted towards the 

periphery anymore (remember that outstar learning is sensitive to the degree to which an 

output is predictable from the input, not to the frequency of this input): 

 
 

 Figure 34. The output probabilities of generation 1 from Figure 33. 
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The evolution of unbounded medieval Polish is shown in Figure 35: now we can answer 

the question whether an even shallower articulatory curve would have yielded better 

results. Even without an Articulatory Form, the upper two categories do not move in 

opposite directions in the first generation, while the lowest category immediately shifts 

down: there would be enough room for the middle category to drift away further from 

the highest category (but see also §6.6). Nevertheless, the phonetic enhancement of the 

contrast between the right two categories is larger than in the simulations from §6.1b, but 

this contrast only seriously increases after the first generation. 

 As in the previous simulation, the unbounded inventory eventually comes to occupy 

the entire available auditory space. 

 
 

 Figure 35. The evolution of medieval Polish without the articulatory effect (outstar 
 learning). 
 

In the simulations of the evolution of inventories with one asymetrically distributed 

bimodal category (§6.1d, 6.2d), the disappearance of one of the peaks of this category is 

caused by an interaction of perceptual and articulatory factors: the cue connections to the 

most frequent peak are stronger, so this peak is chosen more frequently in production; as 

a result, this peak becomes larger and pushes the unimodal category away, which in turn 

pushes the smaller peak of the bimodal category towards the periphery of the continuum. 

There, it is chosen less often because of the articulatory effect. 
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 In the first place, then, it is the prototype effect that favours the larger peak; we would 

thus expect bimodal categories to become unimodal in the absence of the articulatory 

effect as well. I will show that they do in inventories with a symmetrically distributed 

bimodal category, where the prototype effect in itself will not favour one of the peaks. In 

the previous simulations with an Articulatory Form, it was the transmission noise and/or 

a slightly unbalanced input that caused one of the peaks to overtake the other, i.e. this 

happened by coincidence; once it had happened, the prototype effect did start to play a 

role, and was reinforced by the articulatory effect. In an unbounded inventory, where the 

articulatory effect does not add to the process, the evolution proceeds rather slowly 

compared to Figure 26 (p. 39), but two unimodal categories emerge: 

 
 

 Figure 36. The evolution of an inventory with one symmetrically distributed bimodal 
 category, without the articulatory effect (outstar learning): this category becomes 
 unimodal. 
 

A one-category system, irrespective of the initial distribution, comes to occupy the entire 

continuum (Figure 37). Since no between-category contrast needs to be maintained and 

there are no articulatory restrictions on the system, all auditory values have the same 

probability in production (Figure 38): 
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 Figure 37. The evolution of a skewed one-category inventory without the articulatory 
 effect (outstar learning). 

 

 
 

 Figure 38. The output probabilities of generation 10 from Figure 37. 
 
 
  6.3b Inoutstar learning 
 
We have observed that inoutstar learning is more faithful to the input distribution than 

outstar learning, which is sensitive to predictability rather than frequency; this 

faithfulness is seen even in the absence of articulatory inhibition.  

 In a two-category inventory, the distributions do move away from each other, but only 

very slowly (Figure 39). They seem to stabilize after generation 19 (although this cannot 
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be concluded from the figure with absolute certainty), probably because the cue 

connections hardly show any overlap anymore. In sharp contrast with the unbounded 

outstar networks, the output probability curves in unbounded inoutstar networks remain 

bell-shaped, even after tens of generations (Figure 40); thus, in this subsection we do not 

observe the dislodgement of the output probability curves seen in §6.3a. 

 
 

 Figure 39. The evolution of a two-category inventory without the articulatory effect 
 (inoutstar learning). 
 

 
 

 Figure 40. The output probabilities of generation 20 from Figure 39. 
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The output distribution of a skewed one-category inventory does move away from the 

edge of the continuum towards the centre, but at a lower pace than the categories in a 

larger system do.  

 
 

 Figure 41. The evolution of a skewed one-category inventory without the articulatory 
 effect (inoutstar learning). 
 

The motion in this inventory seems to halt around generation 15. In a one-category 

inventory there is no need to avoid overlap in the cue connections, because there cannot 

be any overlap (after all, there are no competing categories); since the inoutstar learning 

rule yields cue connection weights that reflect the shape of the input distribution fairly 

faithfully, we might not even expect the category to move at all in the absence of the 

articulatory effect. However, it does in Figure 41, which is probably a consequence of 

the fact that in the initial distribution, the leftmost node has a relatively high probability 

of .346 before transmission noise; whereas this transmission noise can in principle 

scatter a perceived auditory value to either side of the intended value, the script forces 

the perceived value within the range of AudF nodes of the network, so it cannot be lower 

than 1 here. By exception, the average perceived node when node 1 is produced is thus 

higher than 1. This results in a slight rightward movement of the distribution, which 

slows down considerably when node 1 apparently occurs in the input so infrequently that 

it does not exert much influence anymore. Nevertheless, because of this ‘range effect’, 

the distribution is expected to shift to a central value very slowly. 
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In an unbounded inoutstar network, an inventory with a bimodally distributed category is 

also unstable without the articulatory effect: once one of the peaks has become more 

frequent than the other, this peak will overtake the less frequent one. In this respect, an 

inoutstar network is very fast, much more so than an outstar network: because it retains 

the shape of the output probability curves to a larger extent, it behaves more like the 

networks with an Articulatory Form from §6.2. 

 
 

 Figure 42. The evolution of an inventory with one bimodal category without the 
 articulatory effect (inoutstar learning). 
 

As in the previous simulation of Figure 41, this inventory seems to reach an asymmetric 

final state; any change proceeds much slower from the moment that the cue connections 

hardly overlap anymore. As in Figure 39 (p. 49), this apparently happens when the 

average produced nodes are spaced ca. 45 nodes apart. However, because of the ‘range 

effect’ mentioned before, category /B/ might eventually towards the centre of the 

continuum, pushing /A/ away. 

 

The simulations in this section show that the prototype effect causes any system – 

standard, skewed and confusing, with contiguous and non-contiguous categories – in any 

type of network – outstar and inoutstar – to evolve into a state with minimal 

confusability. Outstar networks evolve into stable states with symmetric output 

distributions that are not bell-shaped anymore, but unrestricted towards the periphery; 
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inoutstar networks also evolve into stable states, but require more time to do so, and 

remain more faithful to the initial output probability curves. The apparently stable states 

of unbounded inoutstar networks are not necessarily symmetric. This may seem like an 

undesirable property, but it should be kept in mind that the simulations presented here do 

not replicate real-world phenomena. They are intended to investigate the evolution of 

inventories without articulatory factors, and indeed do just that: they all yield stable 

inventories in which categories are minimally confusable. In addition, they also make 

clear that the articulatory effect is needed to make accurate predictions about the 

auditory correlates of phonological categories, and thus provide support for a 

formalization in which these effects interact. 
 
 6.4 Outstar vs. inoutstar networks 
 
The previous sections have shown that any phonological system is predicted to evolve 

into an optimally dispersed inventory, both in outstar and inoutstar networks, and that the 

prototype effect and the articulatory effect are both indispensable to achieve this. 

Optimal auditory dispersion emerges much slower in inoutstar networks than in outstar 

networks; however, there is only meager and indirect evidence about how quickly an 

exaggerated or confusing contrast would be resolved in natural languages (remember the 

Polish sibilant system, and cf. §6.5). Advantages of inoutstar learning are its 

bidirectionality, and the fact that it has also proven capable of explaining another 

phenomenon in the phonology-phonetics interface, viz. the perceptual magnet effect 

(Boersma, Benders & Seinhorst fc.). 

 

A major difference between outstar and inoutstar networks are the cue connection 

weights (cf. Figures 12 and 13, p. 26–27): because of this, both kinds of networks make 

different predictions about which token is the prototype of a category (remember from 

§5.2 that the prototype has the strongest cue connection to the category node). Figure 43 

shows the cue connection weights of the virtual learner from Figure 15 (p. 29; outstar 

learning): 
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 Figure 43. Cue connection weights of the virtual learner from Figure 15 (outstar 
 learning). 
 

In an outstar network, there is an array of tokens with very strong cue connections, 

which we could perhaps consider a prototypical region. This region is much more 

peripheral than the region of maximal activity in production: for category /A/, the peak 

in production lies at 37.4% of the continuum, the prototype at 12.1%. They are thus 

spaced 25.3% apart. 

 In an inoutstar network, by contrast, there is no such prototypical region: here we see 

normally distributed cue connection weight curves. Figure 44 shows the cue connection 

weights of the virtual learner from Figure 27 (p. 40; inoutstar learning): 

 
 

 Figure 44. Cue connection weights of the virtual learner from Figure 27 (inoutstar 
 learning). 
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In this network, the prototype lies close to the most active node in production: in 

production, the peak of category /A/ lies at 35.4% of the continuum, and the prototype at 

33.3%, i.e. they are 2.1% apart. 

 Although the two types of network make different predictions about the location of 

the prototype, they both replicate Johnson, Flemming & Wright’s (1993) findings that 

listeners prefer more extreme auditory values in perception than they actually produce on 

average themselves (modelled in OT by Boersma 2006). It cannot be determined which 

prediction is more realistic: the auditory space that Johnson, Flemming & Wright 

investigated was two-dimensional and contained eleven categories, so any comparison to 

the predictions made here concerning a two-category inventory in a unidimensional 

space would be to no avail.  
 
 6.5 The auditory dispersion of the Dutch sibilant inventory 
 
B&H (footnote 14, p. 254) speculate that a bimodal distribution may emerge (and 

eventually disappear again) in the Dutch sibilant system, where a “relatively new” 

alveolopalatal /ɕ/ [ɕ] has been introduced into an inventory containing the flat laminal 
/s/ [s]̠. Since both these sounds have central values of the spectral mean, B&H 

hypothesize that transitory allophony may occur, i.e. in some varieties of Dutch the 

spectral mean of [ɕ] may come to lie above that of [s]̠, and below it in other varieties. 
 Upon reading this speculation some three years ago, I have at the same time been 

fascinated and puzzled by it, because – in spite of their similar spectral means – the 

Dutch sibilants do not seem to be confusable. [ɕ] is not only the sound we find in 

loanwords like show and chic, but also the realization of an underlying sequence |s+j|, 

e.g. in tasje |tɑs+jə| [tɑɕə] “bag-DIMINUTIVE”. Here it contrasts unproblematically with 
[s]̠: Dutch also has the word tassen |tɑs+ə| [tɑsə̠] “bag-PLURAL”. Thus, an inventory 

with poorly dispersed spectral centres of gravity functions perfectly well in practice. 

 

B&H label the phoneme /ɕ/ as “relatively new” and “somewhat marginal”, undoubtedly 

because of its occurrence in loanwords. The sound [ɕ], on the other hand, is certainly not 

marginal, and may not be new either: in any case, sequences of underlying |s+j| have 

been present in Dutch for centuries. For instance, P. C. Hooft wrote in 1617 ’t Meysje 

was moy, ick haddet altijt wel moghen zien ‘The girl was pretty, I would have wanted to 

see it all the time’ (Warenar, line 968). Obviously, it is unknown how such a sequence 
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was pronounced then, but the options that probably strike an optimal balance between 

perceptual distinctiveness and articulatory ease are homorganic sounds, such as [ʃ] or [ɕ]; 
other (heterorganic) possibilities are [sj̠] or [sj̠].5 

 The phoneme /ɕ/ was introduced into Dutch through a process of borrowing in the 19th 

century (Van der Sijs 2002: 214), which should have caused a shift in the Dutch sibilant 

system. Perhaps this shift is only occurring right now, sped up by a new influx of 

loanwords with /ɕ/ from English in the late 20th century, but this would mean that the 

realizations of underlying |s+j| and /ɕ/ have coalesced very quickly. 

 In any case, there was no transitory allophony in the sample of speakers in 

Seinhorst & Ooijevaar (2011), all ten of whom had higher spectral means in [s]̠ than in 
[ɕ]. These categories behave as if they are the only one in the inventory, i.e. they have 

central values of the spectral mean ([ɕ]: 27.26 Erb; [s]̠: 29.39 Erb) and a large standard 
deviation ([ɕ]: 0.96 Erb; [s]̠: 1.10 Erb) compared to a control group of two French 
speakers (basic statistics: mean: [ʃ]: 26.20 Erb, [s]: 31.45 Erb; standard deviation: [ʃ]: 
0.39 Erb, [s]: 0.41 Erb): 

 
 

 Figure 45. The distributions of the spectral means of Dutch and French sibilants 
 (Dutch: black line, French: red line). 
 

                                                
5 The pronunciation [si̠] for |s+jə| is also conceivable, and is in fact quite common in colloquial 
contemporary Dutch: wasje ‘(small) load of laundry’ can be pronounced [ʋɑsi̠] instead of [ʋɑɕə] 
(and may be written accordingly). In this case, Dutch would indeed have had only one sibilant in 
Hooft’s days. 
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It remains to be seen whether the Dutch sibilant inventory is diachronically stable: if the 

spectral mean is decisive in the auditory dispersion of sibilant systems, the Dutch system 

is expected to come to resemble the French inventory eventually (outstar and inoutstar 

simulations make different predictions about the time stretch in which this happens). If 

the spectral means in the Dutch sibilant inventory indeed become optimally dispersed, a 

problematic issue remains, because it would imply that the introduction of /ɕ/ caused the 

change. This would entail that the pronunciations of |s+j| and /ɕ/ have merged quickly, 

while at the same time the spectral means of these categories have not become optimally 

dispersed. It is unclear to me why one sound change should have proceeded at a much 

higher pace than another. However, all this is somewhat speculative. 
 
 6.6 The parameters of the network, and the activity-to-probability rule 
 
The simulation script asks the user to enter a number of parameters (besides the locations 

of the peaks in the probability distributions). These are: the number of learning steps 

(§5.1); the transmission noise (§5.2); the number of AudF nodes (§5.1); the degree of 

articulatory inhibition (§5.1); the weight of the central articulatory connection (§5.1); the 

temperature (§5.2); the values of instar and outstar (§4.3, already explored in §6.1–6.4); 

the presence or absence of an Articulatory Form (§5.1, already explored in §6.3); the 

learning rate (§4.3); and the activation clipping rule (§5.2). Additionally, a number of 

preset parameters is used in the script. Apart from the network settings (e.g. 

minimal/maximal values of the activity of unclamped nodes, minimal/maximal values of 

a connection weight), these are the standard deviation of the category (§5.2) and the 

standard deviation of the excitation spreading along the basilar membrane (§5.2).  

 

The network needs a sufficient number of learning steps to exhibit realistic behaviour. If 

the number of learning steps is taken very low, say 1000, the inventory becomes highly 

unstable: the average produced nodes of a category vary greatly between generations, as 

do the standard deviations, and even merger may occur. 

 Increasing the transmission noise results in larger within-category variation and more 

fluctuation in the evolution of the category. Also, it predicts a larger between-category 

distance. 

 Not surprisingly, decreasing the degree of articulatory inhibition and/or the weight of 

the articulatory central connection results in a greater between-category distance. 
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Additionally, the standard deviations are restricted to a lesser degree, allowing them to 

become larger; and the output probabilities are higher at the periphery of the auditory 

continuum, which means that the probability curves are not symmetric. 

 The temperature indicates the degree of evaluation noise, so a lower temperature 

should result in lower within-category variation. Indeed, decreasing the temperature by a 

factor 10 increases the probability of the node with the highest activity by a factor e10 

and results in much smaller standard deviations. As a consequence, inventories are 

diachronically more stable (i.e. the average produced nodes fluctuate less) when the 

temperature is low. 

 The standard deviation of a category in the optimally dispersed state is independent of 

that in the initial distribution: rather, it is determined by the articulatory settings, the 

transmission noise and the temperature, and any initial standard deviation will stabilize at 

this value (this does not mean that all categories have the same standard deviation in the 

final state; cf. Figure 20, p. 34). 

 The reader may object that the standard deviation of the activity spreading along the 

AudF layer (Figure 11, p. 25), viz. 10% of the number of AudF nodes, is unrealistically 

large, and (s)he would be right (cf. Moore & Glasberg 1983). This value was chosen 

because it yielded symmetric output probability curves for the peripheral categories; 

smaller standard deviations predict curves that are shallower at the edge of the 

continuum. This may very well be realistic, because no auditory contrast needs to be 

maintained in these areas. Networks with a smaller standard deviation of this activity 

spreading learn somewhat slower, because fewer nodes are activated in each learning 

step, but optimal auditory dispersion does emerge; and because a category is associated 

with a smaller range of AudF nodes, overlapping (i.e. confusing) distributions are 

resolved more quickly. Remember that even in the simulation of the Polish sibilant 

inventory without an Articulatory Form (Figure 35, p. 46), the upper two categories drew 

in the same direction. If the standard deviation of the activity spreading is reduced from 

10% to 3.33% of the number of AudF nodes (and the number of learning steps is 

increased from 100,000 to 250,000 as a strategy to compensate for this), these categories 

do move apart: 
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 Figure 46. The evolution of medieval Polish without the articulatory effect (outstar 
 learning, standard deviation of the activity spreading = 3.33 nodes). 
 

Decreasing the learning rate requires a longer learning phase (i.e. more input tokens), but 

predicts more diachronic stability. Particularly inoutstar networks are sensitive to this 

parameter setting: because the cue connection weights tend to be fairly small, a too high 

learning rate causes the weights to fluctuate depending on what category appeared in the 

input last. 

 The activation clipping rule influences the shape of the output probability curves, the 

within-category variation and the locations of the categories in the final state: however, 

optimal auditory dispersion emerges independently of the clipping rule. 

  

So far, all networks in this thesis have used an exponential activity-to-probability rule 

(p = ea/T); remember from §5.2 that activities can also be interpreted directly as relative 

probabilities. This obviates the need for a temperature parameter. Figure 47 shows the 

evolution of auditory dispersion in an inoutstar network (with 50 AudF nodes) where the 

activity of a node is equal to its output probability, i.e. with a linear activity-to-

probability rule: this network is fed a standard distribution, i.e. the peaks in the input lie 

at 35 and 65% of the continuum. The parameter settings in this simulation are: 250,000 

learning steps; articulatory inhibition 0.05; weight of the central articulatory connection -

0.05; linear activation clipping between 0 and 1; transmission noise 0.025; standard 

deviation of the activation spreading around the perceived AudF node 0.025. 
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 Figure 47. The evolution of auditory dispersion in an inoutstar network with a linear 
 activity-to-probability rule. 
 

We see that the network reaches an equilibrium, but any change proceeds very slowly 

because this network requires very weak articulatory inhibition. This slow pace becomes 

even more apparent in the evolution of an inventory where the peaks in the initial 

distribution lie at 50 and 65% of the continuum, i.e. the skewed and confusing 

distribution from §6.1a and 6.2a), shown in Figure 48. After 50 generations, the 

categories lie at ca. 42 and 67% of the auditory continuum, the positions that they had 

already reached after five generations in an inoutstar network with an exponential 

activity-to-probability rule (which, in turn, predicts slower changes than an outstar 

network with an exponential activity-to-probability rule – cf. Figures 29 (p. 41) and 18 

(p. 32) respectively): 
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 Figure 48. The evolution of a confusing and skewed initial distribution in a network 
 with a linear activity-to-probability rule (inoutstar learning). 
 

Optimal auditory dispersion is predicted to emerge in networks with a linear activity-to-

probability rule, but considerably slower than in networks with an exponential activity-

to-probability rule. 

 
7 The learnability of phoneme inventories, and a possible quantification strategy 
 

This paragraph discusses the learnability of phoneme inventories. As such, I consider the 

degree to which such inventories (or, in fact, linguistic systems of whichever nature: 

morphosyntactic, semantic etc.) are transmitted faithfully from parent to child. 

Christiansen & Chater (2008) argue that the inductive biases in the human brain have 

shaped languages in a process of iterated learning: systems that do not comply with our 

learning preferences are difficult to learn and will be diachronically unstable. Similarly, a 

phoneme inventory will change if it does not properly balance our perceptual and 

articulatory biases, i.e. if the prototype effect and the articulatory effort are of unequal 

size. This hypothesis is corroborated by observations about real languages: poorly 

dispersed inventories are not stable (remember the Polish sibilant system), which is why 

we do not find them, or perhaps only rarely; and languages have a preference for 

optimally dispersed systems. 
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 Clear examples of poorly learnable phoneme inventories are the exaggerated and 

confusing and skewed inventories from §6, because they change into optimally dispersed 

systems. A direct measure of learnability could be the steepness of the black curve 

connecting the average produced frequency values over the generations: in a maximally 

learnable system, this is ∞, in a minimally learnable system it is much lower. In a 

phoneme inventory, as opposed to a morphosyntactic or semantic system, this steepness 

is severely constrained by the articulatory effect forcing categories towards the centre: 

categories cannot move from one extreme of the continuum to the other. 

 The steepness of a linear function y = ax + b is a, the coefficient: a = ∆y/∆x. If we 

are concerned with the learnability of the system of one generation, ∆y equals 1; ∆x is 

the shift on the auditory continuum, expressed here in the number of nodes. If we want 

to quantify the learnability of a system with a variable, say λ, and if we want optimally 

learnable systems to have a λ of 1 and maximally unlearnable systems a λ of 0, the 

simplest possible way to compute the λ of category c within a single generation is 

λc = 1 – sc, where sc is the relative shift s of category c on the auditory continuum, i.e. 

|∆x| divided by the total number of nodes on the AudF layer.  

 The degree of learnability can be seen in light of the entire system: for instance, if /ʃ/ 
constitutes a single-category inventory, it has a lower λ than when it is as part of a two-

category system /s ʃ/. (I adhere to the simplifying assumption that such systems are 

isolated and do not experience any influence from perceptually similar sounds from a 

different class, in the case of sibilants e.g. the (inter)dental fricative [θ] – see also B&H: 

252, 264). Since we may have to average over multiple categories, a straightforward 

general formula for the learnability index λ of an entire system with n categories would 

be equation (2), averaging over all categories c: 
 

 (2)  λ =
1
n

(1− sc )
c=1

n

∑  

 

As noted above, phonological systems have a preference for the centre, so the value of sc 

will always be lower than 1/2 in a one-category phonological inventory, usually lower 

than 1/3 in a two-category inventory, etc.; consequently, λ will be higher than 0.5 for 

any inventory. In fact, even in the exaggerated system of Figure 17 (p. 31), equation (2) 

yields a value of 0.7048 for generation 1, which is intuitively still quite high; and in 

Figure 16 (the “standard” distribution, p. 30), the learning curves in the first generation 
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of learners are far from vertical, but still correspond to λ values close to 1 (0.9552 for 

category /A/, 0.9445 for /B/).  

 These values would be lower if we incorporate the degree by which a category can 

move through the auditory continuum at most, say scmax. In an n-category inventory, 

scmax = 1/(n+1); dividing sc by scmax, in order to get the relative relative (sic) shift, is 

mathematically equivalent to multiplying it by n+1, so if we do this, we obtain (3): 
 

 (3)  λ =
1
n

(1− (n+1) ⋅ sc )
c=1

n

∑  

 

Although this formula may still be too crude – e.g. scmax depends on the parameter 

settings of the network; a category may move across (slightly) more than 1/(n+1) part 

of the auditory continuum, as long as its initial location is peripheral enough; the formula 

does not incorporate changes in standard deviations, so it would yield a low value of λ 

for an inventory with a bimodally distributed category –, it scales the λ values much 

better along the index range than equation (2) did. With (3), we obtain values of 0.1143 

for the first generation of learners of the exaggerated distribution from Figure 17, and 

0.9023 for the first generation of learners of the standard distribution from Figure 16. 

 Ceteris paribus, the average value of λ in any language with a non-standard initial 

distribution is expected to grow asymptotically towards 1 over a large number of 

generations. The probability of λ actually equalling 1 is minimal in any system, because 

the intergenerational transfer is noisy: for instance, there will always be transmission 

noise and random variation in production. 
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8 Conclusion, discussion and remaining issues 
 

This thesis investigated whether artificial neural networks are a viable framework for 

modelling the evolution of auditory dispersion with the BiPhon model. The answer to 

this question seems to be ‘yes’, as all of B&H’s findings with OT can be replicated in a 

neural network with the simplest layout possible. As in OT, a system with any type of 

initial distribution (standard, exaggerated, confusing, skewed, with or without a non-

contiguous category) evolves into a stable inventory, striking an optimal balance between 

perceptual distinctiveness and articulatory ease. No teleological devices need to be 

included: the learning procedure does not have any tools to keep the auditory correlates 

of phonological categories distinct. Also, it does not have to compute any auditory 

distances between categories. 

 I have used both the outstar weight update rule (intended to optimize perception) and 

the inoutstar weight update rule (intended to optimize both perception and production, 

but not perfectly) in my simulations. Outstar learning predicts non-standard contrasts to 

be resolved much faster than inoutstar learning does; this latter rule predicts more 

gradient transitions into an optimally dispersed state than outstar learning does. 

Nevertheless, optimal auditory dispersion emerges with both types of learning. The 

advantage of inoutstar learning over outstar learning is that it can be used to replicate 

two unrelated phenomena at the phonology-phonetics interface, viz. auditory dispersion 

and the perceptual magnet effect. 

 To quantify the learnability of an inventory, i.e. the degree to which the auditory 

correlates of its categories are diachronically stable, I have proposed a learnability index 

λ, averaging over the relative shifts of the average auditory correlate of each category. 

 

A logical next step in the strand of research presented here is the extension to the two-

dimensional case, such as the vowel space, in which case Boersma (2007) would serve as 

inspiration. This will require significant adjustments to the network and the learning 

procedure, since only one AudF layer is to be assumed – after all, this is the spectral 

image of the incoming sound. This also has consequences for the computation of λ: in 

the OT-based formalization, the shift of a vowel category could easily be computed as 

the Euclidean distance between its coordinates in generation n and generation n+1. 

Within a single layer, this will be more complicated.  
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One of the major advantages of neural nets, their neurobiological validity, is also one of 

the most controversial issues surrounding them. While some researchers are concerned 

with accurate biological modelling, others focus on neural nets merely as a 

computational tool (e.g. Smolensky 1996). As a.o. Rumelhart & Zipser (1985: 98) point 

out, neural nets are usually crafted to do what they are intended to, without their creators 

giving heed to the question whether such a neural net could have evolved naturally; 25 

years later, Gayler, Levy & Bod (2010) still see the need to urge researchers to create 

biologically plausible networks with functionally adequate layers. 

 One advantage of the present neural net over many others is the fact that it does not 

incorporate any hidden layers: the layers that it has, simplifying as they may be, all 

correspond to levels of representation that somehow have an analogue in humans. The 

ArtF layer embodies the entire articulatory system; the AudF layer relates to the auditory 

cortex, where the input from the basilar membrane is processed; the SF layer is 

analogous to a higher-level symbolic representation. Also, the present network aims to 

mirror the learning process as accurately as possible, by incorporating bioacoustical and 

environmental factors, such as activity spreading on the basilar membrane and the 

existence of transmission noise. 

 Still, some simplifications are made in this thesis, both in the architecture and 

workings of the network, and in the learning procedure. The sensorimotor connections 

are absent; phonological units are represented as a single node, while they are more 

likely to be distributed (i.e. activation patterns across multiple nodes); the learning rate 

does not decrease as the network matures; the activity summing in neurons may be more 

complex than it is in the present network; the language-acquiring infant does not face the 

task of perceptual learning with her lexicon fully in place; synapses are unidirectional, so 

bidirectional use of connections is not neurobiologically realistic; the neural net used 

here cannot yet represent more than one segment. Some of these simplifications are 

made deliberately, as I believe that they bear little influence on the results; others are 

more fundamental and deserve thorough further investigation. In general, more research 

is needed to successfully reproduce with neural nets all results achieved with OT, but 

neural nets prove to be a promising framework to cast phonetics and phonology in. 
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Appendix A: The evolution of auditory dispersion in an inventory with contiguous 
categories 
 
# Praat-script Evolution of auditory dispersion (unimodal) 
# klaas seinhorst, 10 August 2012. Parts of this script were adapted from a script by Paul Boersma. 
 
form Auditory dispersion 
 real Mean_of_category_1 0.35 
 real Mean_of_category_2 0.65 
 real Mean_of_category_3 0 
 real Mean_of_category_4 0 
 natural Number_of_generations 10 
 natural Number_of_steps 100000 
 real Transmission_noise 0.05 
 natural Number_of_Auditory_Forms 100 
 boolean Articulatory_Form 1 
 real Articulatory_inhibition 1.5 
 real Weight_of_central_connection -0.25 
 real Instar 0 
 real Outstar 1 
 real Temperature 0.1 
 real Learning_rate 0.001 
 choice Activation_clipping 3 
  option linear 
  option sigmoid 
  option top-sigmoid 
endform 
 
if mean_of_category_4 <> 0 
 sf.numberOfNodes = 4 
elsif mean_of_category_3 <> 0 
 sf.numberOfNodes = 3 
elsif mean_of_category_2 <> 0 
 sf.numberOfNodes = 2 
else 
 sf.numberOfNodes = 1 
endif 
for i to sf.numberOfNodes 
 meanOfCategory'i' = mean_of_category_'i' 
endfor 
audf.numberOfNodes = number_of_Auditory_Forms 
artConnStrength = articulatory_inhibition 
weightOfCentrArtConn = weight_of_central_connection 
transmissionNoise = transmission_noise * audf.numberOfNodes 
spreadingOfAmbient = audf.numberOfNodes / 10 
 
# 
# Levels, nodes and connections. 
# 
if articulatory_Form = 1 
 artf.numberOfNodes = 1 
 artf.offsetNode = 0 
 artf.offsetConnection = 0 
 audf.offsetNode = artf.offsetNode + artf.numberOfNodes 
 audf.offsetConnection = artf.offsetConnection + artf.numberOfNodes 
 artf.y = 1.0 
 audf.y = 5.0 
 sf.y = 9.0 
else 
 artf.numberOfNodes = 0 
 audf.offsetNode = 0 
 audf.offsetConnection = 0 
 audf.y = 2.0 
 sf.y = 8.0 
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endif 
sf.offsetNode = audf.offsetNode + audf.numberOfNodes 
net.numberOfNodes = sf.offsetNode + sf.numberOfNodes 
 
audf.numberOfConnections = 0 
cue.numberOfConnections = sf.numberOfNodes * audf.numberOfNodes 
cue.offsetConnection = audf.offsetConnection + audf.numberOfConnections 
sf.numberOfConnections = 0 
sf.offsetConnection = cue.offsetConnection + cue.numberOfConnections 
 
#  
# Default properties of the network.  
#  
net.amin = 0   ; minimum activation level for unclamped nodes  
net.amax = 1   ; maximum activation level for unclamped nodes  
net.activityLeak = 0  
net.spreadingRate = 1  
net.wmin = -10   ; minimum weight of a connection (negative to allow inhibition)  
net.wmax = 10   ; maximum weight of a connection (positive to allow excitation)  
net.weightLeak = 0  
net.xmin = 0   ; for drawing  
net.xmax = 10   ; for drawing  
net.ymin = 0   ; for drawing  
net.ymax = 10   ; for drawing  
net.initialWmin = 0  
net.initialWmax = 0.25  
 
#  
# Network creation.  
#  
procedure createNetwork 
  network = Create empty Network... dispersion net.spreadingRate 'activation_clipping$' 
   ... net.amin net.amax net.activityLeak learning_rate net.wmin net.wmax net.weightLeak 
   ... net.xmin net.xmax net.ymin net.ymax 
 Set instar... instar 
 Set outstar... outstar 
 if articulatory_Form = 1 
  for .i to artf.numberOfNodes 
   Add node... net.xmin+(net.xmax-net.xmin)/artf.numberOfNodes*(.i-0.5) artf.y 1 no 
  endfor 
  for .i to audf.numberOfNodes 
   a = 4 * artConnStrength / (audf.numberOfNodes ^ 2 - 1) 
   b = (1 + audf.numberOfNodes) / 2 
   Add connection... artf.offsetNode+1 audf.offsetNode+.i weightOfCentrArtConn-a*(.i-b)^2 0 
  endfor 
 endif 
 for .i to audf.numberOfNodes 
  Add node... net.xmin+(net.xmax-net.xmin)/audf.numberOfNodes*(.i-0.5) audf.y 0 
randomUniform(net.amin,net.amax) no 
 endfor 
 for .i to sf.numberOfNodes 
  Add node... net.xmin+(net.xmax-net.xmin)/sf.numberOfNodes*(.i-0.5) sf.y 
randomUniform(net.amin,net.amax) no 
 endfor 
 for .i to sf.numberOfNodes 
  for .j to audf.numberOfNodes  
   Add connection...  audf.offsetNode+.j sf.offsetNode+.i 
randomUniform(net.initialWmin,net.initialWmax) 1  
  endfor 
 endfor 
endproc 
 
# 
# The initial language. 
# 
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stdevOfCategory = audf.numberOfNodes / 16 
Create Table with column names... OutputProbabilitiesGen0 audf.numberOfNodes node 
Formula... node row 
for activeCategory to sf.numberOfNodes 
 Append column... a'activeCategory' 
 meanNodeOfCategory = meanOfCategory'activeCategory' * (audf.numberOfNodes + 1) 
 Formula... a'activeCategory' exp (-0.5 * (self ["node"] - meanNodeOfCategory) ^ 2 / stdevOfCategory ^ 2) 
 cumul'activeCategory' = 0 
 for i to audf.numberOfNodes 
  act = Get value... i a'activeCategory' 
  cumul'activeCategory' += act 
  endfor 
endfor 
 
 
for generation to number_of_generations + 1 
 call createNetwork 
 Create Table with column names... OutputActivitiesGen'generation' audf.numberOfNodes node 
 Formula... node row 
 for i to sf.numberOfNodes 
  Append column... a'i' 
 endfor 
 Copy... PerceptionGen'generation' 
 Create Table with column names... InputBeforeNoiseGen'generation' number_of_steps category node 
 Copy... InputAfterNoiseGen'generation' 
 select network 
 # 
 # Learn perception. 
 # 
 parent = generation - 1 
 for step to number_of_steps 
  Zero activities... 0 0 
  activeCategory = randomInteger (1, sf.numberOfNodes)   ; /A/ = 1, /B/ = 2 etc. 
  sf = sf.offsetNode + activeCategory 
  Set activity... sf 1 
  select Table OutputProbabilitiesGen'parent' 
  p = randomUniform (0, cumul'activeCategory') 
  producedNode = 0 
  sum = 0 
  repeat 
   producedNode += 1 
   act = Get value... producedNode a'activeCategory' 
   sum += act 
  until sum >= p 
  select Table InputBeforeNoiseGen'generation' 
  Set numeric value... step category activeCategory 
  Set numeric value... step node producedNode 
  select network 
  perceivedNode = randomGauss (producedNode, transmissionNoise) 
  if perceivedNode < 1 
   perceivedNode = 1 
  elsif perceivedNode > audf.numberOfNodes 
   perceivedNode = audf.numberOfNodes 
  endif 
  select Table InputAfterNoiseGen'generation' 
  Set numeric value... step category activeCategory 
  Set numeric value... step node perceivedNode 
  select network 
  for i to audf.numberOfNodes 
   activity = exp (-0.5 * (i - perceivedNode) ^ 2 / (spreadingOfAmbient ^ 2)) 
   Set activity... audf.offsetNode+i activity 
  endfor 
  for i from audf.offsetNode+1 to net.numberOfNodes 
   Set clamping... i yes 
  endfor 
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  Update weights 
 endfor 
 # 
 # Compute the in- and output statistics. 
 # 
 Create Table with column names... InputStatsBeforeNoiseGen'generation' sf.numberOfNodes category 
mean stdev 
 Formula... category row 
 Copy... InputStatsAfterNoiseGen'generation' 
 for activeCategory to sf.numberOfNodes 
  select Table InputBeforeNoiseGen'generation' 
  Extract rows where column (number)... category "equal to" activeCategory 
  select Table InputBeforeNoiseGen'generation'__category__'activeCategory' 
  mean = Get mean... node 
  stdev = Get standard deviation... node 
  Sort rows... node 
  select Table InputStatsBeforeNoiseGen'generation' 
  Set numeric value... activeCategory mean mean 
  Set numeric value... activeCategory stdev stdev 
  select Table InputAfterNoiseGen'generation' 
  Extract rows where column (number)... category "equal to" activeCategory 
  select Table InputAfterNoiseGen'generation'__category__'activeCategory' 
  mean = Get mean... node 
  stdev = Get standard deviation... node 
  Sort rows... node 
  select Table InputStatsAfterNoiseGen'generation' 
  Set numeric value... activeCategory mean mean 
  Set numeric value... activeCategory stdev stdev 
 endfor 
 # 
 # Determine the cue connection weights. 
 # 
 select network 
 for audf from audf.offsetNode+1 to sf.offsetNode 
  Zero activities... 0 0 
  for i from audf.offsetNode+1 to sf.offsetNode 
   Set clamping... i yes 
  endfor 
  for i to sf.numberOfNodes 
   Set clamping... sf.offsetNode+i no 
  endfor 
  Set activity... audf 1 
  Spread activities... 1 
  for i to sf.numberOfNodes 
   perceive'i' = Get activity... sf.offsetNode+i 
    select Table PerceptionGen'generation' 
   if articulatory_Form = 1 
    Set numeric value... audf-audf.offsetNode a'i' perceive'i' 
   else 
    Set numeric value... audf a'i' perceive'i' 
   endif 
   select network 
  endfor 
 endfor 
 # 
 # Speak. 
 # 
 for sf from sf.offsetNode+1 to net.numberOfNodes 
  Zero activities... 0 0 
  activeCategory = sf - sf.offsetNode 
  for i from sf.offsetNode+1 to net.numberOfNodes 
   Set clamping... i yes 
  endfor 
  for i from audf.offsetNode+1 to sf.offsetNode 
   Set clamping... i no 
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  endfor 
  Set activity... sf 1 
  if articulatory_Form = 1 
   Set clamping... 1 yes 
   Set activity... 1 1 
  endif 
  Spread activities... 1 
  for i to audf.numberOfNodes 
   activity = Get activity... audf.offsetNode+i 
   select Table OutputActivitiesGen'generation' 
   Set numeric value... i a'activeCategory' exp (activity / temperature) 
   select network 
  endfor 
 endfor 
 select Table OutputActivitiesGen'generation' 
 Copy... OutputProbabilitiesGen'generation' 
 for activeCategory to sf.numberOfNodes 
  max'activeCategory' = Get maximum... a'activeCategory' 
  Formula... a'activeCategory' (self) / max'activeCategory' 
  cumul'activeCategory' = 0 
  for i to audf.numberOfNodes 
   act = Get value... i a'activeCategory' 
   cumul'activeCategory' += act 
  endfor 
 endfor 
 # 
 # Go forth and multiply. 
 # 
 select network 
 Remove 
endfor 
 
# 
# Draw. 
# 
Erase all 
Select outer viewport... 0 6 0.25 3.5  
Times 
12 
Colour... Black 
Line width... 1 
Solid line 
Axes... 1 audf.numberOfNodes number_of_generations+1 1 
Draw inner box 
Text left... 1 generation 
Text bottom... 1 AudF node 
Marks bottom... 2 yes no no 
Marks bottom... 11 no yes yes 
Marks left... number_of_generations+1 no yes yes 
for generation to number_of_generations 
 Text... audf.numberOfNodes/-30 centre generation+0.5 half 'generation' 
endfor 
Create Table with column names... evolution number_of_generations+1 generation 
Formula... generation row 
for category to sf.numberOfNodes 
 Append column... mean'category' 
 Append column... stdev'category' 
endfor 
 
for generation to number_of_generations+1 
 for category to sf.numberOfNodes 
  select Table InputStatsBeforeNoiseGen'generation' 
  mean = Get value... category mean 
  stdev = Get value... category stdev 
  select Table evolution 



 75 

  Set numeric value... generation mean'category' mean 
  Set numeric value... generation stdev'category' stdev 
 endfor 
endfor 
 
for generation from 1 to number_of_generations 
 for category to sf.numberOfNodes 
  child = generation + 1 
  meanGeneration = Get value... generation mean'category' 
  meanChild = Get value... child mean'category' 
  stdevGeneration = Get value... generation stdev'category' 
  stdevChild = Get value... child stdev'category' 
  Line width... 3 
  Draw line... meanGeneration generation meanChild child 
  Colour... Grey 
  Line width... 2 
  Draw line... meanGeneration-stdevGeneration generation meanChild-stdevChild child 
  Draw line... meanGeneration+stdevGeneration generation meanChild+stdevChild child 
  Colour... Black 
 endfor 
endfor 
 
Line width... 1 
 
select Table evolution 
plus Table OutputProbabilitiesGen0 
Remove 
for generation to number_of_generations+1 
 select Table InputAfterNoiseGen'generation' 
 plus Table InputBeforeNoiseGen'generation' 
 plus Table InputStatsAfterNoiseGen'generation' 
 plus Table InputStatsBeforeNoiseGen'generation' 
 plus Table OutputActivitiesGen'generation' 
 plus Table OutputProbabilitiesGen'generation' 
 plus Table PerceptionGen'generation' 
 Remove 
endfor 
for generation to number_of_generations+1 
 for category to sf.numberOfNodes 
  select Table InputAfterNoiseGen'generation'__category__'category' 
  plus Table InputBeforeNoiseGen'generation'__category__'category' 
  Remove 
 endfor 
endfor 
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Appendix B: The evolution of auditory dispersion in an inventory with one non-
contiguous category 
 
# Praat-script Evolution of auditory dispersion (bimodal) 
# klaas seinhorst, 10 August 2012. Parts of this script were adapted from a script by Paul Boersma. 
 
form Auditory dispersion (bimodal) 
 real Peak_of_unimodal_category 0.5 
 real Peak_1_of_bimodal_category 0.3125 
 real Peak_2_of_bimodal_category 0.6875 
 real Ratio 3 
 # (how much larger is the probability of the right peak in the initial distribution?) 
 natural Number_of_generations 10 
 natural Number_of_steps 100000 
 real Transmission_noise 0.05 
 natural Number_of_Auditory_Forms 100 
 boolean Articulatory_Form 1 
 real Articulatory_inhibition 1.5 
 real Weight_of_central_connection -0.25 
 real Instar 0 
 real Outstar 1 
 real Temperature 0.1 
 real Learning_rate 0.001 
 choice Activation_clipping 3 
  option linear 
  option sigmoid 
  option top-sigmoid 
endform 
 
sf.numberOfNodes = 2 
audf.numberOfNodes = number_of_Auditory_Forms 
transmissionNoise = transmission_noise * audf.numberOfNodes 
spreadingOfAmbient = audf.numberOfNodes / 10 
peakOfUnimodal = peak_of_unimodal_category 
for i to 2 
 peak'i'OfBimodal = peak_'i'_of_bimodal_category 
endfor 
artConnStrength = articulatory_inhibition 
weightOfCentrArtConn = weight_of_central_connection 
 
# 
# Levels, nodes and connections. 
# 
if articulatory_Form = 1 
 artf.numberOfNodes = 1 
 artf.offsetNode = 0 
 artf.offsetConnection = 0 
 audf.offsetNode = artf.offsetNode + artf.numberOfNodes 
 audf.offsetConnection = artf.offsetConnection + artf.numberOfNodes 
 artf.y = 1.0 
 audf.y = 5.0 
 sf.y = 9.0 
else 
 artf.numberOfNodes = 0 
 audf.offsetNode = 0 
 audf.offsetConnection = 0 
 audf.y = 2.0 
 sf.y = 8.0 
endif 
sf.offsetNode = audf.offsetNode + audf.numberOfNodes 
net.numberOfNodes = sf.offsetNode + sf.numberOfNodes 
 
audf.numberOfConnections = 0 
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cue.numberOfConnections = sf.numberOfNodes * audf.numberOfNodes 
cue.offsetConnection = audf.offsetConnection + audf.numberOfConnections 
sf.numberOfConnections = 0 
sf.offsetConnection = cue.offsetConnection + cue.numberOfConnections 
 
#  
# Default properties of the network.  
#  
net.amin = 0   ; minimum activation level for unclamped nodes  
net.amax = 1   ; maximum activation level for unclamped nodes  
net.activityLeak = 0  
net.spreadingRate = 1  
net.wmin = -10   ; minimum weight of a connection (negative to allow inhibition)  
net.wmax = 10   ; maximum weight of a connection (positive to allow excitation)  
net.weightLeak = 0  
net.xmin = 0   ; for drawing  
net.xmax = 10   ; for drawing  
net.ymin = 0   ; for drawing  
net.ymax = 10   ; for drawing  
net.initialWmin = 0  
net.initialWmax = 0.25  
 
#  
# Network creation.  
#  
procedure createNetwork 
  network = Create empty Network... dispersion net.spreadingRate 'activation_clipping$' 
   ... net.amin net.amax net.activityLeak learning_rate net.wmin net.wmax net.weightLeak 
   ... net.xmin net.xmax net.ymin net.ymax 
 Set instar... instar 
 Set outstar... outstar 
 if articulatory_Form = 1 
  for .i to artf.numberOfNodes 
   Add node... net.xmin+(net.xmax-net.xmin)/artf.numberOfNodes*(.i-0.5) artf.y 1 no 
  endfor 
  for .i to audf.numberOfNodes 
   a = 4 * artConnStrength / (audf.numberOfNodes ^ 2 - 1) 
   b = (1 + audf.numberOfNodes) / 2 
   Add connection... artf.offsetNode+1 audf.offsetNode+.i weightOfCentrArtConn-a*(.i-b)^2 0 
  endfor 
 endif 
 for .i to audf.numberOfNodes 
  Add node... net.xmin+(net.xmax-net.xmin)/audf.numberOfNodes*(.i-0.5) audf.y 0 
randomUniform(net.amin,net.amax) no 
 endfor 
 for .i to sf.numberOfNodes 
  Add node... net.xmin+(net.xmax-net.xmin)/sf.numberOfNodes*(.i-0.5) sf.y 
randomUniform(net.amin,net.amax) no 
 endfor 
 for .i to sf.numberOfNodes 
  for .j to audf.numberOfNodes  
   Add connection...  audf.offsetNode+.j sf.offsetNode+.i 
randomUniform(net.initialWmin,net.initialWmax) 1  
  endfor 
 endfor 
endproc 
 
procedure saveTable fileName$ 
 select Table 'fileName$' 
 Save as tab-separated file... 'fileName$'.Table 
endproc 
 
# 
# The initial language. 
# 
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meanNode1OfBimodal = peak1OfBimodal * (audf.numberOfNodes + 1) 
meanNode2OfBimodal = peak2OfBimodal * (audf.numberOfNodes + 1) 
meanNodeOfUnimodal = peakOfUnimodal * (audf.numberOfNodes + 1) 
stdevOfCategory = audf.numberOfNodes / 16 
Create Table with column names... OutputProbabilitiesGen0 audf.numberOfNodes node a1 a2 
Formula... node row 
Formula... a1 exp (-0.5 * (self ["node"] - meanNodeOfUnimodal) ^ 2 / stdevOfCategory ^ 2) 
Formula... a2 (1 / (ratio + 1)) * exp (-0.5 * (self ["node"] - meanNode1OfBimodal) ^ 2 / stdevOfCategory ^ 2) +  
... (ratio / (ratio + 1)) * exp (-0.5 * (self ["node"] - meanNode2OfBimodal) ^ 2 / stdevOfCategory ^ 2) 
for activeCategory to sf.numberOfNodes 
 cumul'activeCategory' = 0 
 for i to audf.numberOfNodes 
  act = Get value... i a'activeCategory' 
  cumul'activeCategory' += act 
 endfor 
endfor 
 
for generation to number_of_generations + 1 
 call createNetwork 
 Create Table with column names... OutputActivitiesGen'generation' audf.numberOfNodes node 
 Formula... node row 
 for i to sf.numberOfNodes 
  Append column... a'i' 
 endfor 
 Copy... PerceptionGen'generation' 
 Create Table with column names... InputBeforeNoiseGen'generation' number_of_steps category node 
 Copy... InputAfterNoiseGen'generation' 
 select network 
 # 
 # Learn perception. 
 # 
 parent = generation - 1 
 for step to number_of_steps 
  Zero activities... 0 0 
  activeCategory = randomInteger (1, sf.numberOfNodes)   ; /A/ = 1, /B/ = 2 etc. 
  sf = sf.offsetNode + activeCategory 
  Set activity... sf 1 
  select Table OutputProbabilitiesGen'parent' 
  p = randomUniform (0, cumul'activeCategory') 
  producedNode = 0 
  sum = 0 
  repeat 
   producedNode += 1 
   act = Get value... producedNode a'activeCategory' 
   sum += act 
  until sum >= p 
  select Table InputBeforeNoiseGen'generation' 
  Set numeric value... step category activeCategory 
  Set numeric value... step node producedNode 
  select network 
  perceivedNode = randomGauss (producedNode, transmissionNoise) 
  if perceivedNode < 1 
   perceivedNode = 1 
  elsif perceivedNode > audf.numberOfNodes 
   perceivedNode = audf.numberOfNodes 
  endif 
  select Table InputAfterNoiseGen'generation' 
  Set numeric value... step category activeCategory 
  Set numeric value... step node perceivedNode 
  select network 
  for i to audf.numberOfNodes 
   activity = exp (-0.5 * (i - perceivedNode) ^ 2 / (spreadingOfAmbient ^ 2)) 
   Set activity... audf.offsetNode+i activity 
  endfor 
  for i from audf.offsetNode+1 to net.numberOfNodes 
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   Set clamping... i yes 
  endfor 
  Update weights 
 endfor 
 # 
 # Compute the in- and output statistics. 
 # 
 Create Table with column names... InputStatsBeforeNoiseGen'generation' sf.numberOfNodes category 
mean stdev 
 Formula... category row 
 Copy... InputStatsAfterNoiseGen'generation' 
 for activeCategory to sf.numberOfNodes 
  select Table InputBeforeNoiseGen'generation' 
  Extract rows where column (number)... category "equal to" activeCategory 
  select Table InputBeforeNoiseGen'generation'__category__'activeCategory' 
  mean = Get mean... node 
  stdev = Get standard deviation... node 
  Sort rows... node 
  select Table InputStatsBeforeNoiseGen'generation' 
  Set numeric value... activeCategory mean mean 
  Set numeric value... activeCategory stdev stdev 
  select Table InputAfterNoiseGen'generation' 
  Extract rows where column (number)... category "equal to" activeCategory 
  select Table InputAfterNoiseGen'generation'__category__'activeCategory' 
  mean = Get mean... node 
  stdev = Get standard deviation... node 
  Sort rows... node 
  select Table InputStatsAfterNoiseGen'generation' 
  Set numeric value... activeCategory mean mean 
  Set numeric value... activeCategory stdev stdev 
 endfor 
 select Table InputBeforeNoiseGen'generation' 
 plus Table InputAfterNoiseGen'generation' 
 Remove 
 # 
 # Determine the cue connection weights. 
 # 
 select network 
 for audf from audf.offsetNode+1 to sf.offsetNode 
  Zero activities... 0 0 
  for i from audf.offsetNode+1 to sf.offsetNode 
   Set clamping... i yes 
  endfor 
  for i to sf.numberOfNodes 
   Set clamping... sf.offsetNode+i no 
  endfor 
  Set activity... audf 1 
  Spread activities... 1 
  for i to sf.numberOfNodes 
   perceive'i' = Get activity... sf.offsetNode+i 
    select Table PerceptionGen'generation' 
   if articulatory_Form = 1 
    Set numeric value... audf-audf.offsetNode a'i' perceive'i' 
   else 
    Set numeric value... audf a'i' perceive'i' 
   endif 
   select network 
  endfor 
 endfor 
 # 
 # Speak. 
 # 
 for sf from sf.offsetNode+1 to net.numberOfNodes 
  Zero activities... 0 0 
  activeCategory = sf - sf.offsetNode 
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  for i from sf.offsetNode+1 to net.numberOfNodes 
   Set clamping... i yes 
  endfor 
  for i from audf.offsetNode+1 to sf.offsetNode 
   Set clamping... i no 
  endfor 
  Set activity... sf 1 
  if articulatory_Form = 1 
   Set clamping... 1 yes 
   Set activity... 1 1 
  endif 
  Spread activities... 1 
  for i to audf.numberOfNodes 
   activity = Get activity... audf.offsetNode+i 
   select Table OutputActivitiesGen'generation' 
   Set numeric value... i a'activeCategory' exp (activity / temperature) 
   select network 
  endfor 
 endfor 
 select Table OutputActivitiesGen'generation' 
 Copy... OutputProbabilitiesGen'generation' 
 for activeCategory to sf.numberOfNodes 
  max'activeCategory' = Get maximum... a'activeCategory' 
  Formula... a'activeCategory' (self) / max'activeCategory' 
  cumul'activeCategory' = 0 
  for i to audf.numberOfNodes 
   act = Get value... i a'activeCategory' 
   cumul'activeCategory' += act 
  endfor 
 endfor 
 # 
 # Go forth and multiply. 
 # 
 select network 
 Remove 
endfor 
 
# 
# Draw. 
# 
Erase all 
Select outer viewport... 0 6 0.25 3.5  
Times 
12 
Colour... Black 
Line width... 1 
Solid line 
Axes... 1 audf.numberOfNodes number_of_generations+1 1 
Draw inner box 
Text left... 1 generation 
Text bottom... 1 AudF node 
Marks bottom... 2 yes no no 
Marks bottom... 9 no yes yes 
Marks left... number_of_generations+1 no yes yes 
for generation to number_of_generations 
 Text... audf.numberOfNodes/-30 centre generation+0.5 half 'generation' 
endfor 
Create Table with column names... evolution number_of_generations+1 generation 
Formula... generation row 
for category to 2 
 Append column... mean'category' 
 Append column... stdev'category' 
endfor 
 
for generation to number_of_generations+1 
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 for category to 2 
  select Table InputStatsBeforeNoiseGen'generation' 
  mean = Get value... category mean 
  stdev = Get value... category stdev 
  select Table evolution 
  Set numeric value... generation mean'category' mean 
  Set numeric value... generation stdev'category' stdev 
 endfor 
endfor 
 
for generation from 1 to number_of_generations 
 for category to 2 
  if category = 1 
   Solid line 
  else 
   Dashed line 
  endif 
  child = generation + 1 
  meanGeneration = Get value... generation mean'category' 
  meanChild = Get value... child mean'category' 
  stdevGeneration = Get value... generation stdev'category' 
  stdevChild = Get value... child stdev'category' 
  Line width... 3 
  Draw line... meanGeneration generation meanChild child 
  Line width... 2 
  Draw line... meanGeneration-stdevGeneration generation meanChild-stdevChild child 
  Draw line... meanGeneration+stdevGeneration generation meanChild+stdevChild child 
 endfor 
endfor 
 
Solid line 
Line width... 1 
 
select Table evolution 
plus Table OutputProbabilitiesGen0 
Remove 
for generation to number_of_generations+1 
 select Table InputStatsAfterNoiseGen'generation' 
 plus Table InputStatsBeforeNoiseGen'generation' 
 plus Table OutputActivitiesGen'generation' 
 plus Table OutputProbabilitiesGen'generation' 
 plus Table PerceptionGen'generation' 
 Remove 
endfor 
for generation to number_of_generations+1 
 for category to sf.numberOfNodes 
  select Table InputAfterNoiseGen'generation'__category__'category' 
  plus Table InputBeforeNoiseGen'generation'__category__'category' 
  Remove 
 endfor 
endfor 


