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ABSTRACT 

 

This study constitutes the first attempt at 

combining vowel normalization procedures with 

the linguistic perception framework of Stochastic 

Optimality Theory [1] and the Gradual Learning 

Algorithm [2]. Virtual learners possessing different 

normalization procedures, and a control learner 

with no normalization, were trained to perceive 

Brazilian Portuguese and American English 

vowels. Our results show that learners equipped 

with normalization algorithms outperformed the 

control learners, obtaining accuracy scores up to 

33% higher. Thus, this model in which 

normalization and sound perception are 

implemented as two sequential processes seems to 

be able to explain sound categorization adequately. 

That is, it improves the performance of a 

perception grammar when the training and testing 

sets have speakers with different ages and gender. 

 

1. INTRODUCTION 

 

Listeners seem to build their perceptual systems on 

the basis of the statistical distribution of the 

acoustic stimuli they hear [1, 3]. However, 

accurate vowel perception cannot emerge 

exclusively from these distributions because 

acoustic cues for vowel identity vary greatly 

among the productions of different speakers, due to 

both anatomical/physiological and sociolinguistic 

reasons [4]. To account for the fact that listeners 

manage to recognize words spoken by different 

speakers despite this variation, several vowel 

normalization procedures have been proposed [for 

reviews, see 5, 6]. 

Despite this variability in the speech signal, 

several studies have simulated the learning of 

vowel perception from production data without 

incorporating vowel normalization [7, 8, 9]. 

Instead, data from a single speaker or hypothesized 

distributions were used for both the training and 

testing of models. This, of course, raises questions 

as to the validity of the model in a natural 

environment characterized by multiple speakers. 

The present study thus aims at bridging this gap 

by proposing a sequential model of vowel 

perception in which normalization precedes 

linguistic processing. We also model linguistic 

perception within the framework of Stochastic 

Optimality Theory (Stochastic OT) [1] and the 

Gradual Learning Algorithm (GLA) [2], following 

[7, 8], while vowel normalization is instantiated by 

different procedures available in the literature.  

 

2. VOWEL PERCEPTION AND 

STOCHASTIC OPTIMALITY THEORY. 

 

The main assumption of a perception grammar 

modeled within Stochastic OT is that phonetic 

categories derive from auditory inputs after the 

resolution of conflicts among cue constraints [1, 

8]. These constraints are continuously ranked by 

their order of importance, and the optimal output 

of the grammar is the candidate that causes the 

least serious violations of constraints. When there 

is a mismatch between the intended input and the 

output of the grammar, lexicon-driven perceptual 

learning occurs in the form of constraint re-

rankings so as to avoid future errors [1, 8]. 

The acquisition of vowel perception has been 

modeled by [7] on the basis of two auditory cues, 

namely F1 and F2. In this study, vowel 

categorization consisted of mapping auditory 

inputs (e.g. F1 = 250, F2 = 1900) to vowel 

categories (e.g. /i/ or /e/), through the resolution of 

negatively formulated cue constraints such as "an 

F1 of 360 Hz is not /i/". A tableau with only two 

candidates and the learning process is illustrated in 

Tableau 1. 
 

Tableau 1. Lexicon-driven perceptual learning 

 

F1= 250Hz 

F2=1900Hz 

[i] 

F1=250 

not /i/ 

F1=250 

not /e/ 

F2=1900 

not /i/ 

F2=1900 

not /e/ 

√    /i/ *!⇒  *⇒  

☞  /e/  ⇐*  ⇐ * 

 

In the tableau above, the auditory input 

[F1=250Hz, F2=1900Hz], intended as the vowel 
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/i/, was incorrectly identified as the vowel /e/, 

because, at this time of the evaluation, a learner 

had the constraint “F1=250Hz not /i/” as the 

highest ranked. Here, the lexicon can act as a 

supervisor, which tells the learner she committed a 

mistake in vowel categorization because the 

speaker intended a word containing the vowel /i/. 

As a result, constrains can be re-ranked, as shown 

by the arrows, so that this sort of “error” is less 

likely to occur in the future. 

 

2.1. Integrating normalization into the model 

 

Here, we follow the learning procedure outlined 

above with the addition of a pre-linguistic 

normalization module. We do not discuss how the 

normalization algorithms are learned, but rather we 

implement different normalization procedures 

available in the literature [6], and assume they 

have been mastered before lexicon-driven learning 

occurs. The early development of vowel 

normalization procedures is supported by 

experimental studies which indicate that infants 

can recognize similarities among vowels produced 

by different speakers, i.e. normalize them, before 

language-specific vowel categories emerge [10]. 

Additionally, our modular view of normalization is 

practical for simulation purposes, as speaker-

dependent variation is eliminated before categories 

are acquired or vowels are categorized. 

 

2.1.1. The normalization module  

 

Table 1 shows the four virtual learners we 

simulated in this study, three equipped with 

normalization procedures (LOBANOV [11], 

NEAREY1 [12], and GERSTMAN [13]), and a control 

learner, with no normalization procedure.  
 

 Table 1. Virtual learners. 

 

Listener algorithm 

1. HZ  Control with no normalization algorithm 

2.LOBANOV Lobanov’s z-score transformation 

3.NEAREY1  Nearey’s single logmean procedure 

4.GERSTMAN  Gerstman range normalization: 

 

We have chosen not to include any vowel-intrinsic 

normalization procedure in our simulations 

because previous studies [6] have shown that these 

perform much worse than the extrinsic procedures 

here considered.  

 In the proposed normalization module, the 

virtual learners normalized the F1 and F2 values 

present in the training and testing sets according to 

the normalization algorithm with which they were 

equipped. 

Importantly, for vowel-extrinsic algorithms to 

work, they require information about the vowel 

space of the speaker whose data is to be 

normalized. That is, LOBANOV requires 

information about the mean and standard deviation 

(sd) of a given formant, NEAREY1 requires the 

mean across log-transformed formant values, and 

GERSTMAN requires information about the 

maximum and minimum values of the formants 

produced by a speaker. This information should be 

derived from a large set of formant values 

produced by the speaker to be normalized. For the 

LOBANOV algorithm, for instance, if F1 values of a 

given speaker are to be normalized, the mean F1 

and the sd of this mean across several vowel 

tokens of the same speaker need to be computed in 

advance. 

We chose to pre-compute these pieces of 

information from our datasets, and to give these 

pieces of information to our virtual learners from 

their very first contact to a new speaker. This 

choice is partially justified by the fact that, when 

confronted with a new speaker, listeners are likely 

to have heard speakers with similar voices and can 

probably use this information for vowel 

normalization. Given that we simulate lexicon-

driven learning of vowel perception, which follows 

the acquisition of vowel categories, we can safely 

assume that, at this point in their development, 

listeners have already been in contact with 

hundreds of different speakers. 

Once these pieces of information were 

computed, the algorithms work in the following 

way: LOBANOV [11] normalizes any incoming 

formant value by subtracting from it the mean 

formant value it computed and by then dividing 

this result by the standard deviation of the mean. 

NEAREY1 [12] normalizes an incoming formant 

value by subtracting from its logarithm the average 

of the logarithms of the same formant of the same 

speaker. GERSTMAN [13] normalizes an incoming 

formant value of a certain speaker by subtracting 

from it the minimum value of the same formant of 

the same speaker, and by then dividing the result 

by the difference between the maximum and 

minimum values of the same formant of the same 

speaker. 
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Thus, our normalization module simply 

normalizes any F1 and F2 value by transforming 

them with algorithms available in the literature. 

Crucially, all of these algorithms use only the F1 

and F2 values of each token produced by each 

speaker without having access to any linguistic 

information about them, e.g. their phonological 

labels. In our modelling, after this first 

normalization process occurred, the acoustically-

normalized values were fed into the linguistic 

perception module. 

 

2.1.2. The linguistic perception module 

 

This module follows the procedure of [7]. The 

input of the grammar, and its constraints and 

tableaus are established according to the 14 F1 and 

10 F2 values defined in the normalization module. 

Thus, our perceptual grammar consists of 168 

constraints in the Brazilian Portuguese (BP) 

simulations and 264 in the American English (AE) 

simulations, i.e. (10 F1 values + 10 F2 values) !  

(7 BP or 11 AE vowels), and 140 tableaux, 

containing all possible combinations of F1 and F2 

values in the environment (14 F1 !  10 F2 values). 

In order to train our virtual learners, we fed 

them with 400,000 F1 and F2 combinations drawn 

from the training set. If the learner was equipped 

with a normalization algorithm, these values had 

been previously normalized with its corresponding 

normalization algorithm within the normalization 

module. In addition to the formant values, the label 

of the vowel intended by the speaker was also fed 

to the grammar, so that constraints could be re-

ranked in the event of inaccurate categorization. At 

the onset of learning, all constraints had the same 

ranking value of 100. Plasticity, which is the speed 

by which constraint rankings can change, 

decreased from 1.0 to 0.001 throughout learning, 

and the evaluation noise of the grammar was kept 

constant at 2.0. At the end of the training phase, 

the virtual listeners’ perception grammar had a 

ranking of constraints that reproduced the relation 

between auditory inputs (i.e. F1 and F2 

combination), and vowel categories (e.g. /i/, /a/) 

found in the environment (training set). 

During the testing phase, our virtual listeners 

categorized 100.000 auditory inputs drawn from 

the testing set. As in the learning phrase, if 

listeners were equipped with normalization 

algorithms, these auditory inputs were processed 

by the normalization module before being fed to 

the perceptual grammar. After normalization, the 

auditory inputs were categorized trough the 

perception grammar constraint rankings. 

Importantly, the vowels from the new speakers in 

the testing set were categorized on the basis of the 

raking of constraints acquired during the training 

phrase. Virtual learners’ degree of accuracy in 

vowel perception was calculated by comparing 

their categorization of auditory inputs with the 

vowels originally intended by the speakers to give 

percent-correct identification. 

 

3. RESULTS OF THE SIMULATIONS 

 

3.1. Brazilian Portuguese Vowels. 

 

 Training and testing stimuli: Eight monolingual 

speakers (4 female, 4 male) recorded CVCV words 

containing the seven oral vowels of BP, resulting 

in a total of 20 productions of each vowel per 

speaker. Four speakers (2 female, 2 male) were 

included in the testing set, and four in the training 

set. The first two formants (F1 and F2) of the 

vowels were measured and used to train and test 

the model. 

 Results: The chance level of a given vowel 

being correctly identified is of 14% (100% / 7 

vowels), thus, any improvement on this number 

indicates that the simulations were somehow 

efficient. Table 2 presents a summary of the 

performance of the 4 virtual learners. 
 

 Table 2. Percentage of correct labeling of the virtual learners 

  

Listener % accuracy 

Chance level  14 

1.HZ (control)  75 

2.LOBANOV  90 

3.NEAREY1  81 

4.GERSTMAN  87 

  

In Table 2, we see that virtual learner 1 (control 

learner) managed to reach 75% accuracy when 

labeling vowels from new speakers, despite not 

relying on any normalization algorithm. This is 

surprising given that this learner had been exposed 

to the vowels produced by only four speakers.  

Learners 2, 3, and 4, who were equipped with 

normalization procedures, however, outperformed 

the control. Learner 5 (Lobanov algorithm) 

performed the best, reaching 90% correct. Thus, 

the inclusion of pre-linguistic normalization 

procedures improved the performance of the 

perceptual model. Specifically, it can result in up 
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to a 25% an increase in learners’ correct vowel 

identification.  

We hypothesize that this difference between the 

control learner and the learners with normalization 

algorithms would increase if the language to be 

learned contained a greater number of vowels, and 

more overlap in the vowel plane. Thus, we 

conducted a new simulation in which listeners had 

to learn the 11 AE vowels, rather than the 7 BP.  

 

3.2. American English Vowels. 

 

 Training and testing stimuli: Eight monolingual 

speakers (4 female, 4 male) recorded CVC words 

containing the eleven vowel monophthongs of AE, 

resulting in a total of 15 productions of each vowel 

by each speaker. The rest of the procedure follows 

the description in 3.1.  

 Results: Table 3 shows that, just like in the 

previous experiment, listeners with normalization 

algorithms performed the best. 
 

  Table 3. Percentage of correct labeling of the virtual learners 

 

Listener % accurate 

Chance level  09 

1.HZ (control)  49 

2.LOBANOV  72 

3.NEAREY1  65 

4.GERSTMAN  57 

 

We see that the learner equipped with the Lobanov 

algorithm again had the best accuracy scores, 72% 

of correct labeling. This is way above chance level 

of 9% correct, and it is 33% higher than the correct 

responses of our control. This supports the 

hypothesis that normalization algorithms become 

more important with an increase in the number of 

vowels to be learned. The 72% of accuracy of our 

best learner might appear to be a low value, but it 

is instead promising, as learners have only been 

exposed to 60 tokens of each vowel during their 

training phase. Also, only F1 and F2 values were 

given to the model during training and testing, 

despite the role that, for instance, vowel duration 

and spectral changes plays in the perception of AE 

vowels.  

 

4. DISCUSSION AND CONCLUSIONS 

 

As shown in this paper, a model in which 

normalization and sound perception are 

implemented as two sequential processes 

adequately accounts for sound categorization. That 

is, normalizing formant values before feeding them 

to a linguistic perception grammar greatly 

increases the performance of this grammar. In both 

our simulations, virtual listeners equipped with 

normalization algorithms outperformed the control 

learner not endowed with normalization 

algorithms. These findings are particularly 

encouraging, as only two acoustic cues were given 

to the learners, and our speakers on the training 

and testing phases had different ages and gender. 

As found in previous studies [6], the Lobanov 

algorithm appears as the best algorithm to reduce 

between-speakers differences in vowel production. 
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