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INTRODUCTION

Abstract

This study investigates the acoustic and linguistic correlates of prominence. In this
chapter the notion of prominence is explained and its use in language and
communication is illustrated. Next, the research questions that will be dealt with in
this study, will be identified.
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1.1 Notion of prominence

This chapter is divided into five sections. In the first section, we will explain what
we consider ‘prominence’ to be from a general viewpoint, as well as from a phonetic
and a linguistic viewpoint. The things we want to know about prominence are dealt
with in the second section. In the third section we will motivate why we want to
investigate prominence and in the fourth section we will discuss how prominence
will be investigated. The final section will present an outline of the present study.

1.1.1 General viewpoint

When we listen to speech some parts seem more prominent than others. In other
words, we perceive specific parts of the speech signal as uttered with more
‘emphasis’ than other parts. This emphasis is called ‘prominence’.

Prominence is not a fixed property. It changes over time and is dependent on many
linguistic, textual and acoustic-phonetic factors. Word groups, single words,
syllables and even single phonemes can differ in prominence (Ladd, 1996; Sluijter,
1995; van Heuven, 1994). This difference in prominence is not a binary property but
rather a gradient property (Terken, 1996; Rietveld & Gussenhoven, 1985).

In many languages, such as Dutch, English, German and French prominence is used
primarily to structure a message i.e. to give emphasis to specific parts of the
message. Prominence is just one of the ways in which the information structure of a
message can be made more explicit; another way is phrasing. One could also change
the word order such as with clitic pronouns in French (je, tu, il) that can never
receive prominence and therefore give rise to structures such as c¢’est moi qui I’ai
fait ‘it was I who did it> (cf. *Je I’ai fait, I did it).

Structuring the message is not the only benefit of prominence; applying
appropriately varying levels of prominence also increases the naturalness and the
comprehensibility of speech.

A speaker uses prominence to mark those parts that are important in his message,
and the listener uses (perceived) prominence in order to know which parts are of
special interest for the perceived message. The listener combines bottom-up
information from the speech signal with his expectation of prominence on the basis
of his knowledge of the language (top-down information). In this study, we will
concentrate on the perceived prominence.

1.1.2 Phonetic viewpoint

From a phonetic viewpoint the notion of prominence is not clearly defined. Pitch
accent, sentence accent, stress, lexical (word) stress, word stress, reduction of
vowels or syllables are all terms for which the definition may vary between
linguistic models, but all are related to prominence. These terms often describe
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nearly the same phenomena and therefore may lead to confusion. In this study we
restrict ourselves to use two terms: pitch accent and lexical (word) stress.

Pitch is strongly related to F,, referring to the periodicity in 2 harmonic complex. An
increase in F, correlates with an auditory sensation of a higher pitch. Changes in F,
closely correspond with perceived pitch movements. The intonation contour can be
seen as consecutive pitch movements of which some can be associated with pitch
accents. These phenomena are described on a more abstract level by using so-called
intonation grammars of which two important ones are the IPO intonation grammar
and the auto-segmental approach (TOBI). The IPO grammar, deals with subsequent
rising and falling pitch movements ('t Hart et al., 1990); the auto-segmental grammar
(Silverman et al., 1992; Gussenhoven, 1984; Pierrehumbert, 1980) describes pitch
movements in a functional and abstract way. (See for more information section
2.1.1)

In many languages lexical (word) stress is a property of a syllable within the domain
of a word and is generally defined in the lexicon for languages such as Dutch,
German and English. Lexical (word) stress can be seen as a linguistic phenomenon
(this will be described in the next subsection). However, if it concerns the acoustic
realization of a word or its percept it is evidently more related to phonetic-acoustic
properties of the speech signal.

The usual distinction in lexical (word) stress is between ‘stressed’ and ‘unstressed’
syllables, but a distinction of four degrees (1) ‘primary’, (2) ‘secondary’ (3)
‘tertiary’ and (4) ‘weak’ is also used. In acoustic phonetics lexical (word) stress is in
many languages usually due to an increase in intensity of the stressed syllable, but
increase in duration and F, changes may be involved as well (Lehiste, 1970; Fry
1958).

In this study we do not concentrate so much on the actual relationship between
prominence on the one hand and lexical (word) stress and pitch accent on the other.
We merely want to say that these phenomena are closely related to prominence and
that prominence is a complex mix of several phenomena.

1.1.3 Linguistic viewpoint

From a linguistic viewpoint prominence is mainly concerned with focus and lexical
(word) stress as a property of the lexicon. From a linguistic viewpoint the function
of lexical word stress is probably a more indirect way to compartmentalize the
mental lexicon of the listener (Cutler, 1984). If the listener knows the position of the
lexically stressed syllable in words this may help to recognize the word more
quickly in the appropriate sublexicon. The actual realization of lexical (word) stress
in the acoustic signal is related to the prominence of the syllable. By placing
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prominence on different syllabies, the phoneme string can acquire widely differing
meanings.

This is shown in the following examples (prominent syllables are indicated by
capital letters):

L CAmeraatje (little camera)

ii. kameRAAdje (little companion)
iii. CAnon (canon)

iv. KaNON (cannon)

Only the perceived differences of prominence of the first versus the second or third
syllable disambiguate between the different meanings of the two words in the
examples above. The first syllable is perceived as more prominent in (i) and (iii) and
the third / second syllable is perceived as more prominent in (ii) and (iv). This is
related to lexical (word) stress.

We consider an utterances to have an ‘information structure’ that is related to the
relative prominence of all the speech elements. Analyzing this information structure
is complex and sometimes controversial, however, it is closely related to
prominence.

In as far as information structure is concerned it is common to distinguish between
‘given’ and ‘new’ information (e.g. Halliday, 1967). ‘Given’ refers to information
already supplied by the previous linguistic context whereas ‘new’ information has
not been previously supplied.

In this context, some authors speak of ‘focus’. The speaker can highlight the
information for the listener that is at the ‘focus’ of their communicative interest
(Baart, 1987; Nooteboom & Kruyt, 1987; Gussenhoven, 1984; Ladd, 1980).

We will describe the following examples in terms of focus. Distinctions such as
‘broad’ and ‘narrow focus’ or ‘contrastive focus’ can be made. We decided to
explain in our example sentences only ‘(narrow) focus’ (A) and ‘contrastive focus’
(B). The last example shows a mix of lexical and focal contracts (C), resulting in
completely different meanings of the sentences.

A)

i IK wil nog twee bloemen
ii. Ik wil NOG twee bloemen
iti. Ik wil nog TWEE bloemen
iv. Ik wil nog twee BLOEMen

Changes in prominence patterns can guide the attention of the listener to specific
words. Different words are prominent in sentences (i) to (iv). A neutral translation
is: I want two more flowers. If the word ik (I) is more prominent, the attention is
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guided to this word and for the listener it is clear that it is ‘me’ and not someone else
who wants the flowers. In (ii) and (iii) there is a difference of meaning in the
sentence; (ii) means / want two additional flowers and (iii) means I want exactly two
more flowers, rather than four more. In (iv) the sentence transmits the information
that the speaker wants flowers rather than something else.

When contrast is required, the speaker can highlight different parts of a sentence,
which makes the contrast more recognizable.

B)

V. Ik ga niet naar ZAANdam maar naar LEERdam (I do not go to Zaandam but
to Leerdam)

122 Het is niet DE boek maar HET boek (it is not the (non-neuter) book, but the
(neuter) book)

In (B-v) the first syllable of the names of two Dutch cities are put in contrast.
Normally the lexical stress of these two names is located on the last syllable, so this
is an example were two normally not lexically stressed syllables are more prominent
than the lexically stressed one. The last example (vi) shows that the Dutch articles
de and het can also be put into contrast and can be more prominent than the other
words in the phrase.

0
Just as word meaning can change with alterations to syllable prominence, so can the
meaning of a sentence alter as prominence is given to differing words.

i uitsluitend VOOR instappen (only get on at front)
ii. uitsluitend voor INstappen (only for getting on)

iil. naTUURIijk(;) VOORkomen van bosbrand is wenselijk (of course the
occurrence of forest fire is desirable)

iv. naTUURIijk(;) voorKOMen van bosbrand is wenselijk (of course the
prevention of forest fire is desirable)

v Natuurlijk VOORkomen van bosbrand is wenselijk (the natural occurrence
of forest fire is desirable)

Vi Natuurlijk voorKOMen van bosbrand is wenselijk (the natural prevention
of forest fire is desirable)

Examples (C-i) and (C-ii) are written on each door of the Amsterdam busses and
streetcars except on the first carriage. The meaning of the whole sentence depends
on differences in the allocation of prominence. If the word voor is more prominent
than the word instappen, as in (i), incoming passengers should enter the streetcar
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only at the front door. In the second reading (ii) instappen is more prominent; the
meaning then is that this door should only be used to enter and not to exit.

Four different meanings are possible in examples (C iii-vi), because of lexical
ambiguity as well as sentence ambiguity. In (iii) and (iv) there is a lexical conflict of
different lexical meanings of the word voorkomen. Prominence on the first syllable
means occurrence, but with prominence on the second syllable it means prevention.
In (iii) and (iv) versus (v) and (vi) the difference in prominence of the first and the
second word disambiguates the meaning of the sentence. Natuurlijk in (iii) and (iv)
means of course and in (v) and (vi) natural. Thus four different meanings are
possible, (iii) means of course the occurrence of forest fire is desirable and (iv)
means of course prevention of forest fire is desirable. A different phrasal meaning is
given, for (v) and (vi), (v) means natural occurrence of forest fire is desirable and a
prominence pattern as in (vi) changes the meaning to natural prevention of forest
fire is desirable.

The main topic in this study is not to describe the relationship between prominence
and either focus, or given and new information (see for that for instance van Donzel,
1995). It also does not study prominence in terms of pitch accent, using the IPO
intonation grammar (‘t Hart et al, 1990), or the auto-segmental theory
(Gussenhoven, 1984; Pierrchumbert, 1980). We concentrate on prominence as such.
These and other topics will be discussed and compared with the literature in the
introductions to the appropriate chapters. Prominence gives access to the
information structure and is closely related to concepts of pitch accent and lexical
(word) stress.

1.2 Topic of investigation

The main topic in this study will be prominence itself. Prominence refers to the
degree in which a phoneme, syllable, and / or a word is perceived to stand out from
its environment. Prominence is therefore primarily a perceptual concept. On the one
hand the listener uses variations in length, loudness and pitch as cues (bottom-up
information) in order to signal relative prominence of a unit (Terken, 1996; Hermes
& Rump, 1994; Rietveld, 1983; Lehiste, 1970). On the other hand the listener’s
perception is biased by expectations. These expectations are based on knowledge of
the language (top-down information). Examples of linguistic knowledge are the
syntax of a language, the differences between content word and function word, Part-
of-Speech information in general, position of a word in a sentence, and word
frequency (Altenberg, 1987; Baart, 1987, Chomsky & Halle, 1968). The
relationships are visualized in figure 1.1.

Our research questions fold into three parts:
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1) How to find an operational definition of prominence?

2) What are the linguistic determinants / correlates of prominence (top-
down)?

3) Which acoustic correlates contributes to the perception of prominence
(bottom-up)?

The first question concerns the perceptual notion of prominence and how it should
be defined. An operational definition is needed in order to label a database in terms
of prominence. General questions arise here. Is it necessary to have experts listeners
label prominence, or can naive native listeners do this labeling as well? On which
unit (segment, syllable, word) should the judgments be given and should one use
one or more subjects for this labeling task? Prominence is a relative and gradient
phenomenon; should labeling thus be multi-valued or binary? If multi-valued what
should be the range of the scale; a 10-point scale or a 4-point scale? Once labeled,
what are the consistency and the reliability of the labelers? All these questions are
discussed in chapter 2.

The second research question deals with the linguistic determinants / correlates of
prominence. Lexical and syntactic features such as Part-of-Speech, word length and

Linguistic correlates
top-down
content word / function word, POS, information

contextual situation
Prominence Recognition
Acoustic correlates bottom-up
mformation

Fo, duration, intensity, spectral
quality

Figure 1.1: Relation of prominence and linguistic and acoustic correlates.
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position of a word in the sentence are related to pitch accents (Hirschberg, 1993;
Baart, 1987) and therefore to perceived prominence. Do these features correlate with
perceived prominence and if so, how? To what extent do these features contribute to
the prediction of prominence purely on such linguistic information? Chapter 3
provides more information on this topic.

The third research topic concerns the acoustic correlates of perceived prominence.
What are the acoustic correlates of prominence? From literature it is known that F,
changes, and duration of vowels and / or syllables are related to lexical (word) stress
and pitch accent. What is the relationship of these acoustic correlates to prominence,
and to what extent are combinations of these features correlates of prominence? Can
the prominence labels from listeners be ‘predicted’ by a classifier that is only using
the acoustic signal as input? What is the contribution of a selected set of acoustic
features to prominence classification? And to what extent do certain normalizations,
for instance intrinsic vowel duration and speaking rate, contribute to a better
prominence prediction. Chapter 4 and chapter 5 discusses these questions.

1.3 Usefulness of acoustic and lexical / syntactic correlates of prominence

From a general viewpoint the perceptual phenomenon prominence seems to have an
important communicative function. Therefore it is interesting from a phonetic
viewpoint to investigate prominence itself as a perceptual phenomenon and
correlates of prominence. The following questions form an interesting topic. To
what extent is prominence marking by naive listeners useful for our research? What
is the consistency and reliability of listeners? Which acoustic correlates and
linguistic determinants contribute to the perception of prominence and what is their
effect if they are used to predict prominence solely from acoustic input features on
the one hand and from linguistic correlates on the other?

Apart from dealing with the communication process between speaker and listener
this study is also concerned with speech technology. This introduces specific
limitations to the investigation method. For example, the acoustic features on which
the automatic classification of prominence will be based must be derived from the
speech signal in an automatic way without additional human (knowledge-based)
correction or intervention.

Three applications for speech technology are briefly introduced here.

The first application concerns prominence prediction for a Text-to-Speech system to
increase the naturalness and intelligibility of synthetic speech. Most speech
synthesis systems today use the notion of pitch accent and lexical (word) stress
without using the degree of prominence. Predicting prominence for speech synthesis
purposes has to be solely based on textual input. The prediction of prominence is not
a unambiguous process and the location and degree of prominence is not explainable
from textual information only. Reminiscent to Bolinger’s remark about humans not
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being a ‘mind-reader’ (Bolinger, 1972), a computer is certainly not. This makes that
most of pragmatic and semantic information can not play a role and will not be used
in the experiments of the present study.

The second and third application are in the field of automatic speech recognition: a
prominence indicator and an algorithm for disambiguating the meaning of sentences.
Prominence can guide or aiter the meaning of the sentence, as, for instance,
illustrated in the example given before Ik wil nog twee bloemen. A prominence
indicator or classifier can provide useful information for the speech recognition
process, more specifically during the word search process. Knowing the degree of
prominence can help to decide whether a word is important for communication.
Prominence indication and sentence disambiguation can be based on acoustic input,
as well as on information coded in the lexicon.

1.4 Research method

The approach we choose to investigate the perceptual notion of prominence and the
related acoustic and linguistic correlates, imposes restriction on our research
methods as well as on the choice of speech material to be investigated.

First, the speech material should constitute a sufficiently large speech corpus that is
valid for speech technological applications.

Second, the prominence labeling should still be possible for such a large corpus,
while leaving us with as much detailed labeling as possible. With respect to this
constraint, the use of naive listeners is of special interest.

Third, feature extraction and prediction should be done automatically. However, we
still want to control the feature extraction and want to describe and to analyze the
features in an interpretable way. The prediction of prominence should also be
controllable. Once knowing the ‘optimal’ features, rules should be formulated and
used for prominence prediction, either on acoustic or linguistic input. The analysis
of the linguistic and acoustic features should not be based on a purely statistical and
/ or brute force approach, because we want to control the individual features and
their contribution to the prediction of prominence. This limits the prediction tools to
simple ones. The prominence prediction should be tested on an independent test set
in order to get an idea of the consistency of the prediction and the generalization
capability of the prominence classifier.

The appropriate literature will be discussed in detail in the separate chapters.

1.5 Outline of this study

This study deals with the question which features in the speech signal and in the text
(acoustic, linguistic) can be used to predict prominence automatically. To this end a
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test and a training corpus were designed for classification. A group of listeners
judged the speech material used and marked all the sentences for prominence
(chapter 2). In chapter 3 the lexical / syntactic correlates are analyzed and are used
to predict prominence by using textual features. This mainly concerns correlates /
determinants such as word class, and the position of words in the sentence. Chapter
4 focuses on the acoustic correlates that are used to predict prominence. In contrast
to chapter 3, the emphasis in chapter 4 is on the acoustic features that can be
automatically derived from the speech signal. In addition, this study will attempt to
discover which acoustic features can be used for the automatic classification and
prediction of prominence (chapter 5). A general discussion as well as conclusions
and ideas for further research will be presented in the last chapter.




PROMINENCE MARKING BY NAIVE
LISTENERS !

Abstract

After a short literature survey, an operational definition of prominence is developed
on the basis of two pilot experiments (81 sentences). The Dutch Polyphone speech
material used is described. Ten listeners marked word prominence for the training
material (1244 sentences) to be used later. A detailed discussion of the behavior of
the listeners and the consistency and reliability of listeners is presented. Finally, the
design of the independent test material (1000 sentences) is described.

! Parts of this chapter were published in Streefkerk et al. (1997) and Streefkerk &
Pols (1998).




12 CHAPTER 2

2.1 Introduction

This chapter deals with the marking of ‘prominent’ parts in speech utterances.
Prominence marking looks easy, but it is rather complex. The notion of prominence
is not clearly defined and various ways to mark prominence are used in the
literature. In the next subsection various approaches are discussed.

2.1.1 Literature survey

In the literature, the notion of prominence is made operational in various ways.
Mainly we deal with the following options: 1) mark every syllable, 2) mark the
prominent syllable, 3) mark every word, 4) mark the prominent word, 4) mark
binary, 6) or on a gradient scale. Portele & Heuft (1997) and Fant & Kruckenberg
(1989) used a 31-point scale: each syllable is judged for the amount of prominence
by, in principle, one listener. In this method the judgments are very finely tuned, and
the listener must listen to every syllable in detail. This method is only possible for
small samples of speech material.

Grover et al. (1997) used initially a ‘unlimited’ scale for word prominence, which
was immediately reduced to a 10-point scale. In Grover et al. (1998), in which a
prosodic database is described, this reduced scale is maintained. Listeners were
asked to rank all individual words in the utterance for prominence. Marking the
words is more efficient for large databases than marking every syllable for
prominence, but still every single word has to be marked. Strangert & Heldner
(1995) mark word prominence on a 4-point scale.

In the research of KieBling (1996) prominence was binary marked by ten listeners.
The listeners were asked to mark only the prominent words, so not for all words a
judgment was given. KieBling (1996) used the cumulative prominence marks of the
listeners as an indication of the prominence degree. This way of marking word
prominence is efficient for labeling large databases.

In a more indirect approach, the prominence differences related to various pitch
accents are studied with the help of speech resynthesis (Gussenhoven et al., 1997;
Rump & Hermes, 1996; Terken, 1996; Terken, 1991; Gussenhoven, 1985; Rietveld
& Gussenhoven, 1985). This indirect approach concentrates on the notion of pitch
accent and its perceptual variation of prominence. Terken (1996) vary the peak
heights of pitch accents and present the manipulated speech to listeners who had to
judge, mostly on a 10-point scale, the degree of prominence of the syllables or the
words. One of the findings is that words at the beginning of an utterance must have a
larger peak height than words at the end of an utterance, in order to be perceived
with the same prominence.

The notion of pitch accent is more or less reduced in these studies to changes in F.
One has tried to devise grammars to describe these phenomena. The TPO grammar
of intonation e.g. deals with subsequent rising and falling pitch movements ('t Hart
et al., 1990), whereas the auto-segmental intonation grammar (Silverman et al.,
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1992; Gussenhoven, 1984; Pierrchumbert, 1980) describes pitch movements in a
functional way.

In the IPO intonation grammar, pitch movements are defined as being accent lending
and the others mark boundaries. A typical pitch movement is defined by the shape of
the movement and by the onset in the syllable. Accent lending is interpreted in this
study as closely related to prominence.

A more abstract type of intonation grammar is the auto-segmental intonation
grammar. This type of grammar also concentrates on changes in F,, but proposes a
more abstract description such as high tones (indicated with H) or low tones
(indicated with L). If a tone (H, L) is accent lending (prominent) it is indicated with
an asterisk (*). The actually realized intonation contour is not described. Human
labeling according to this grammar shows rather low consistency rates. Maximally
56% correspondence for H* and L*+H was reported in Reyelt (1995). See also
Syrdal et al. (2001).

For speech technology purposes, human pitch accent labeling is not consistent
enough, and does not contain variation about the prominence of these accents.
Wightman & Ross (1999) and Wightman et al. (2000) suggested using a robust
variant of TOBL This variant is called TOBI lite. Attempts to derive an
automatically encoded TOBI intonation contour are presented in Véronis &
Campione (1998) and Tournemire (1998). Their results are unclear.

It is felt in the present study that the above described research concentrate too much
on F, changes. The perception of prominence is not exclusively related to smaller or
larger F, changes. Supportive evidence for this is derived from a small listening
experiment done with students at the Institute of Phonetic Sciences (reported in
Streefkerk et al., 1997). In this pilot experiment 30 natural sentences were presented
to listeners who were asked to mark the words spoken with emphasis. These
sentences were presented in a normal version and in a version where the F, was
monotonized via the PSOLA technique. The duration variations, as well as the
variations in intensity and spectral quality were still present. All eight participants
appeared to be able to mark prominence even in these monotonous sentences. Even
seven or eight of them uniformly marked not less than six words as being prominent
under both conditions. The correspondence matrix of the sentences, presented with
and without pitch movements, is given in Appendix table A.2.1. The task is of
course more difficult in the monotonized sentences, but listeners were still able to
mark prominence and even sometimes achieved a unanimous judgment. It can be
concluded that prominence is not only evoked by pitch movements, but that other
acoustic correlates, such as duration and loudness, are likely to be additional cues for
the listener to perceive prominence.

2.1.2 Our approach

We define ‘prominence’ operationally by asking listeners to mark the perceptually
‘outstanding’ parts in speech. The main question is how to design a listening
experiment to mark these more prominent parts of speech.
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This question can be subdivided into the following sub-questions:

- Should words / syllables be marked for prominence by experts or by naive
listeners?

- Is a majority judgment possible and necessary?

- Should all words / syllables be marked for prominence?

- Is a binary scale useful for marking prominence?

- What is the unit to be marked: word group, word or syllable?

All these questions must be answered in order to find a proper operational definition
of prominence.

In our study naive listeners instead of experts were chosen as labelers for marking
prominence. Users of a language do use the differences in prominence in their daily
conversation, but they are not aware of it most of the time.

To make sure that this research is not based on the possible coincidental prominence
marks of only one listener, a group of listeners participated in the labeling
experiment. Another advantage of taking more than one listener is that the
agreement of the listeners can be calculated, which gives more insight in the
consistency between listeners. The labeling task is much easier if listeners were
asked to mark only every individual word or syllable spoken with emphasis, instead
of asking them to mark all the words of an utterance for relative prominence, as
done by Portele & Heuft (1997) and Grover et al. (1997). It was decided to make the
judgments of the individual listeners binary (a word or syllable could either be
prominent or not), which makes the task easier. By taking the sum of all individual
marks a gradient prominence scale becomes available.

There are also other pragmatic issues that have to be taken into account. On the one
hand, in order to increase the validity, the task must be easily interpretable for naive
listeners and we aim at as little guidance to the listener as possible, because the more
instructions are given the more influential is the interpretation of the researcher, and
we want not to investigate our ideas of what prominence is, or should be, but those
of naive listeners. This is often translated in ideas of how many word / syllables
have to be prominent in a sentence. On the other hand with less guidance one has to
be careful, to make listeners understand the task properly.

The method must be useful for a large speech corpus and listeners must be able to
mark prominence on-line.

For Text-to-Speech (TTS) and automatic speech recognition (ASR) systems,
prominence labeling on word level is sufficient to be useful in applications. Text-to-
Speech systems do not need a labeling at the syllable level, because the lexicon
gives information on the position of lexical stress. Word prominence information is
acoustically realized by using the syllable information in the lexicon. So one does
not need to mark individual syllables, it goes via the information in the lexicon.

For detection with acoustical information one might argue that prominence can only
be acoustically detected by looking for the syllable that is the most outstanding one,
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which does not have to be the lexically stressed one. So, one might argue that
prominence detection must be trained and tested on syllables. In ASR a lexicon is
used as well, and in ASR words go into competition with each other; syllables
themselves do not play a role. Via this lexicon the lexically stressed syllable could
be estimated, if marked. If word stress is not marked, ASR could not distinguish
between words such as AchterRUIT (rear-window) and ACHTeruit (in reverse) even
if one knows the prominence of the individual syllables in the training. So, for ASR
prominence labeling on words is enough, unless one does not want to re-rank the
individual syllable scores with the prosodic information from the lexicon.

In the next section, we will describe the speech material used.

2.2 Speech material

In our research we have chosen to use the spoken sentences from the Dutch
Polyphone Corpus (Damhuis et al., 1994), because, firstly, this telephone speech in
the Dutch Polyphone Corpus is more realistic for various speech technology
applications than elicited speech recorded in an anechoic room. Secondly, using the
Dutch Polyphone Corpus gives us access to a large speech database, which is easy to
use and is readily available. The original recordings were made by KPN and SPEX,
who made this corpus available on CD-ROM for academic purposes. A brief
description of the Dutch Polyphone Corpus follows in the next subsection.

The choice of the speech material used has large consequences for the results
achieved and for the conclusions that can be drawn. The speech material used in this
study imposes several limitations. This material is especially designed for speech
recognition. ,

The specifications of any corpus concem the speakers, the environment, type of
speech, speaking rate, dialectical background, gender, age and socio-economic
status. The acoustical surroundings of the recordings can also differ a lot. For
instance in an anechoic room no background noise is recorded, but at home and
certainly in a car a lot of background noise might be added to the speech signal. To
improve all-purpose speech recognition one has to cope with all these and other
factors, so we consider it advantageous for speech recognition to have a number of
these variations in our Polyphone speech material.

However, for speech synthesis the most important goal generally is to make a
natural and pleasant voice. All the speaker and surrounding variation is not very
useful for speech synthesis, but variations in speaking styles and genres, such as free
conversation, monologue, dialogue, retold, and read-aloud, certainly are. All this
introduces variation in the speech material and has its consequences for the prosody,
which is more important for speech synthesis than speaker variation is. Speech
synthesis actually needs one good voice showing sufficient variation, especially in
longer text. Unfortunately, such variation in different speaking styles is not present
in the speech material used by us. Only read-aloud sentences are available.
Improving TTS intonation can thus only be a secondary aspect of the present
research. No contextual information can be derived from these sentences, since they
were all separately spoken and unrelated. Moreover this typical type of speaking
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style may cause a typical intonation. It should thus be clear that the design of the
present database is not ideally suited to improve Text-to-Speech systems.

2.2.1 Recordings

The Polyphone Corpus was recorded over the telephone; in this way the speaker is
in his familiar environment, but background noises are then unavoidable. The
recordings were sampled with a frequency of 8 kHz in 8 bit A-law coded samples
and were stored on CD-ROM. Each record (file) was provided with a NIST header.
An example is given in Appendix A 2.2. The header fields concern the record and
give specific speaker information. Extra information was added in a post-processing
cycle, providing a word-by-word transliteration, a transliteration of extra sounds
such as noisy breathing, demographic data, and the quality of each recorded item.
The assessment could be ‘OK’, ‘noise’, ‘garbage’ or ‘other’. About 97% of the
recordings are of good quality (‘OK”).

2.2.2 Material

For each speaker 32 different speech items were recorded, which vary from digits
and spelling out names to answering questions given on the instruction paper. For
the present project only the sentences that were read-aloud were used (five different

sentences per speaker). These sentences are constructed in such a way as to be
phonetically rich, which means that all sounds of the Dutch language system occur
at least once per set of five sentences. In order to meet this requirement an electronic
version of a newspaper was scanned, and the required sentences were selected. This
resulted in 12,500 different newspaper sentences, not shorter than four words and
not longer than 80 characters. The grammatical structure of these sentences is simple
(most of the time declarative sentences with only one main clause and no nested
sentences). Questions are particularly rare. Twice two different speakers speak every
sentence of the set of 12,500. Approximately 5000 speakers read five sentences
each.

2.2.3 Speakers

The speakers recorded in the Dutch Polyphone Corpus are of various ages, and come
from different regions of the Netherlands. This introduces accents from different
dialectal backgrounds. The speakers themselves specified from which province they
came (Groningen, Friesland, Drente, Overijssel, Flevoland, Gelderland, Utrecht,
Noord-Holland, Zuid-Holland, Zeeland, Noord-Brabant, Limburg). The distribution
of the speakers coincides more or less with the distribution of the population. Their
ages ranged from 16 to 80. The socio-economic status is specified by the education
level, which ranged from elementary school, to secondary school and college /
university level.
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2.2.4 Selected speech material

In our research a total of 2244 sentences from this Polyphone Corpus were used.
Only the two pilot experiments as described in section 2.3 use another randomly
selected set of 81 sentences from this corpus. These sentences are excluded from the
general description of the speech material used. A set of 1244 sentences served as a
so-called training set and another 1000 as an independent test set. The 1244
sentences of the training set were used for lexical / syntactic analysis (chapter 3),
and for acoustic analysis (chapter 4) and this same set was also applied to train
neural networks for prominence classification (chapter 5). The test set of 1000
sentences was applied in order to test the prediction of linguistic and acoustic
features. Using different test and training sets makes the results more reliable and
controllable, so that the rules predicting prominence from textual information and a
prediction with neural networks will not appear to be over-specified, because of the
use of only a limited set of sentences.

The sentences used were semi-randomly chosen. Based on the quality of the sound
recordings not always all five sentences spoken per speaker were useful: sometimes
only two sentences per speaker were chosen. In total the training set plus the test set
contain sentences from 497 different speakers.

The demographic data are specified in the Appendix in tables A 2.3 and A.2.4.

In order to investigate what the most appropriate unit (word or syllable) is to mark
prominence, two pilot experiments with the same set of 81 semtences were
conducted. The details of the two pilot experiments are reported in Streefkerk et al.
(1997), but a brief summary is presented in the next subsections.

2.3 Two pilot experiments to define prominence

For an operational definition of prominence one of the remaining questions is: What
is the appropriate unit for marking prominence (word or syllable). In the case of
word groups the listener can mark adjacent words or syllables, so actually the
question that remains is: should listeners mark words or syllables? In order to learn
about the differences on marking behavior, one experiment on syllable prominence
marking and one experiment on word prominence marking were conducted. The
criterion for choosing between the two approaches is based on the amount of
information obtained, i.e. on the validity and on the consistency of the responses.

2.3.1 Method

For both experiments the acoustical presentation of the sentences was identical, only
the instruction and the display of the text on the monitor differed. For the word-
marking experiment the listeners saw a normal orthographic text on the monitor, and
got the instruction to mark all words spoken with emphasis (in the Dutch instruction
nadruk, see Appendix A 2.5). For the syllable-marking experiment a white space
was displayed between syllables, plus a hyphen for syllables belonging to one word.
An example is given next. The literal translation is: The short-lived rise of the dollar
Is over,
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De kort- ston- di- ge op- mars van de dol- lar is voor- bij.
[0} [o] o (o) [e] o o] o o) (o] o [¢] o] 0

In the syllable experiment, the task was to mark all syllables spoken with emphasis.
For each type of experiment the 81 sentences were presented to 8 listeners.

2.3.2 Results

An example of the individual and added word marks for one specific sentence is
given in table 2.1. These cumulative marks can be interpreted as a gradient
prominence scale. If a word or a syllable is marked by all of the listeners (in these
pilot experiments there were eight listeners) a word or syllable is apparently highly
prominent. Similarly, if no or only one listener marks a word, this word is apparently
less prominent. The cumulative marks are also an indication of consistency. If there
are a lot of words / syllables which are only marked by one listener, the between
subject agreement is not high. Table 2.2 shows the cumulative prominence marks
(absolute and relative) for the syllable experiment and for the word experiment.

The total number of judgments in the two listening experiments differed. Per listener
the mean number of prominence judgments per sentence in the word-perception
experiment is 2.9 (0.7 Std. Dev). This is substantially lower than in the syllable-
marking experiment (5.1, 1.7 Std. Dev). A t-test for two samples clearly shows that
these two means differ significantly (t =-3.356, v = 14, p < 0.005).

Table 2.1: A part of the raw data matrix of the word perception experiment.
The individuals and the cumulative word prominence labeling over all eight
listeners are given. The literal translation of this example sentence is: There
goes a bus at half past two from Amsterdam to Utrecht.

Listener

Word 1 2 3 4 5 6 7 8 Total
Er 0 0 0 0 0 0 0 0 0
gaat 1 1 0 1 1 1 1 1 7
om 0 0 0 0 0 0 0 0 0
half 0 1 1 0 0 1 0 0 3
drie 0 0 1 0 0 0 0 0 1
een 0 0 0 0 0 0 0 0 0
bus 1 0 0 0 1 1 1 1 5
uit 0 0 0 0 0 0 0 0 0
Amsterdam 1 1 1 1 1 1 0 1 7
naar 0 0 0 0 0 0 0 0 0
Utrecht 1 1 1 1 1 1 1 1 8
Total per listener | 4 4 4 3 4 5 3 4 31

Mean per sentence 31/8=39
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Table 2.2: For both the syllable and the word listening experiment the
cumulated prominence marks, and the percentage values, are shown. For
example in column ‘Freq. (Syllable Experiment) the number 77 means that 77
syllables have been marked by all eight listeners as being prominent.

Syllable Experiment Word Experiment
Cumulative  Freq. Cum. num % Freq. Cum. num %
marks of marks of marks
0 519 - 355 432 - 50.6
1 296 296 20.3 66 66 7.7
2 162 324 11.1 41 82 438
3 90 270 6.2 53 159 6.2
4 63 252 43 44 176 5.2
5 61 305 42 52 260 6.1
6 92 552 6.3 61 366 7.2
7 100 700 6.8 51 357 6.0
8 77 616 53 53 424 6.2
Total 1460 3315 100 853 1890 100
Mean per sentence 5.1 29
_ per listener

If the listeners had marked the prominent words / syllables in completely random
fashion, this frequency table would have looked different. The total number of
syllable marks of the eight listeners is 3315; this number divided by the total number
of syllables (1460) produces 2.3. Thus, if the eight listeners had marked the syllables
randomly, each syllable would on average have received a cumulative mark of 2.3.
Similarly, such a random order value of cumulative marks can be calculated for the
word experiment. The total of 1890 marks divided by 853 results in 2.2. The
example sentence in table 2.1 then would have shown a maximum cumulative mark
of approximately 2.

The distributions given in table 2.2 are most certainly not a random distribution of
prominence marks. However, there are differences between the two types of
experiments. The syllable experiment shows relatively high numbers of marks given
by only one listener compared to the word experiment (20.3% versus 7.7%), and the
scores for just two listeners also show a difference (11.1% versus 4.8%). The
relative numbers of values, concerning the majority of the listeners marking a given
syllable / word as prominent, do not show such differences.

The agreement between- and within-listeners can be measured from crosstables by
using Cohen's Kappa x (Cohen, 1960). This agreement measure calculates the
agreement corrected for chance agreement. The formula is as follows:
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where N is the total number of items and r the number of rows in the table. F; is the
number found in the cells of the diagonal, R; is the row sum and C; the column sum.
To get a feeling for this agreement measure «, the following theoretical examples
have been constructed, which will explain the behavior of this agreement measure.
Cohen’s Kappa (x) lies between -1 and 1, where ‘1’ means total agreement and ‘0’
means no agreement beyond chance level. If always-opposite judgments were given
a Cohen’s Kappa of -1 would result as in example e).

Some examples are given to show the effect of asymmetrically distributed data. Our
listener judgments show such asymmetry. Examples a), c) and e) show a
symmetrical distribution of the data; the column sums and the row sums are the
same. This is different in example b) and d). In these two examples the distribution
is not symmetrical; the first column adds up to 300 whereas the second column adds
up to 100. For the first two examples a) and b) k = 0: there is only agreement at
chance level. For the evenly distributed table a) this is clear, but it is also the case for
the not evenly distributed table b). In tables c) and d) the data are distributed in such
a way that the highest possible agreement is given, for table c) k = 1, which means
total agreement. However, for table d) x = 0.5, which is the highest possible
agreement for this distribution as on the one side only 100 times a one is given
whereas on the other side 200 times a one is given. This means that there is a
maximum overlap of 100 times a one. So in table d) the agreement measure is rather
low (k = 0.5), but a higher value is not possible for this kind of distribution. For the
last example €) Cohen’s Kappa is -1; this happens when only opposite judgments are
given.

a)
0 1 Total
0 100 100 200
1 100 100 200
Total 200 200 400 k=0
b)
0 1 Total
150 50 200
1 150 50 200
Total 300 100 400 k=0
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c)
0 1 Total
0 200 0 200
1 0 200 200
Total 200 200 400 x=1
d)
0 1 Total
200 0 200
1 100 100 200
Total 300 100 400 x=0.5
e)
0 1 Total
0 200 200
1 200 0 200
Total 200 200 400 x=-1

The actual data of the two listening experiments are also not very symmetrically
distributed: some listeners have marked substantially more words / syllables as being
prominent than others. A crosstable of two listeners (listener one as rows and
listener six as columns) is presented in table 2.3 below.

Table 2.3: Crosstable of listener one and six, who mark prominent words.

Listener 6
Listener 1 Non-prom Prom Total
Non-prom 459 115 574
Prom 41 238 279
Total 500 353 853 82% k=0.61

For this crosstable Cohen's Kappa is 0.61, which is rather high taking into account
the fact that this table is similarly distributed as in example d). Listener one marked
only 279 of the 853 words as prominent whereas listener six marked 353 words as
prominent, which shows that listeners use different thresholds to judge what is
prominent. These two listeners cannot agree completely, because they do not have
the same number of prominent marks. The agreement between listener one and
listener six is expressed in Cohen's Kappa (x = 0.61), which becomes one entry in
table 2.4.
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Table 2.4: Agreement (Cohen’s Kappa) between eight listeners in the word

experiment.
Listener 1 2 3 4 ] 6 7 8
1 - 0.59 0.58 0.41 0.54 0.61 0.55 0.50
2 - - 0.59 0.55 0.89 0.69 0.53 0.53
3 - - - 0.48 0.59 0.63 0.60 0.58
4 - - - - 0.53 0.47 0.46 0.54
5 - - - - - 0.59 0.54 0.53
6 - - - - - - 0.48 0.53
7 - - - - - - - 0.51
8 " - - - - - - =
Mean Cohen’s Kappa 0.56

Table 2.5: Agreement (Cohen's Kappa) between the eight listeners in the
syllable experiment.

Listener 1 2 3 4 5 6 7 8
1 - 070 060 034 066 045 067 022
2 - - 064 050 069 048 084 021
3 - - = 050 063 053 067 0.16
4 . . - - 039 045 039 0.3
5 s - - - - 045 071 020
6 - . - . - & 052 039
7 - . . - . . - 0.20
8 i - = . . & -
Mean Cohen’s Kappa 0.48

For each paired combination of listeners for the word experiment and for the syllable
experiment, the Cohen’s Kappa values are given in table 2.4 and 2.5, respectively.
For the word experiment Cohen’s Kappa is smaller than 0.45 only once; for the
syllable experiment Cohen’s Kappa is ten times smaller than 0.45. It is apparent
from table 2.5 that listener eight is not a very useful listener. Perhaps this listener did
not understand the task sufficiently. The listeners in the word experiment reach an
agreement of k > 0.55 13 times. For the syllable experiment this happens only ten
times. The results for the syllable experiment indicate less agreement between the
listeners than for the word experiment.
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2.3.3 Conclusion

The two different prominence-marking methods show differences in the number of
marked words versus marked syllables. These two different methods do not result in
the same prominence marking distribution. Prominence marking on syllables results
in a more detailed prominence distribution of the sentences than on words.

A priori it is difficult to decide which method is better. However, it appears that the
syllable method seems to show less agreement between listeners. The differences in
the agreement between the listeners are not so striking, but we have to choose
between these two methods of marking prominence. The word method is chosen
because, firstly, a more detailed marking in terms of prominent syllables is
apparently not needed and, secondly prominence marking on words is more valid.
Words are more meaningful units for naive native listeners than syllables. They can
mark words online for prominence using bottom-up and top-down information.
Finally, marking word prominence easier to perform than marking syllables and
could therefore be less time consuming.

2.4 Main experiment on assigning prominence

2.4.1 First set marked by ten listeners

A prominence labelling experiment was carried out in the following way. The first
set of 1244 sentences was divided into two subsets: one with 500 sentences spoken
by 100 speakers, and another set of 744 sentences spoken by 173 speakers. To test
the within-listener consistency, the first 50 sentences of the first set were presented
twice to each listener. The 550 sentences (500 + 50) of the first listening set, as well
as the 744 sentences of the second listening set were each presented over four
sessions, of approximately one hour each. The sentences from both listening sets
were presented to ten listeners. Each group of ten listeners was not necessarily
composed of the same participants for each set: only a few participated in both sets.
The sentences were presented individually in random order under computer control
to compensate for possible learning effects. The listeners were students from the
Humanities Faculty of the University of Amsterdam and they were paid for doing
this task. The listeners received no training. The experiment was controlled by a
UNIX workstation and was designed in such a way that the written words of each
sentence were displayed on the monitor with a button underneath each word. The
monitor screen looked like this:

Vaak meet men aan de inhoud van de kassa het welslagen van een project af

(o} (o} (o} [of (o] o Le] [¢] o (o] [o] [o] [o] [e] o]

A translation of this sentence is: Often one determines a project’s success by the
amount of money in the cashbox. The listeners could click on the buttons
corresponding to words perceived as being spoken with emphasis (nadruk, for the
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whole instruction in Dutch see Appendix A 2.5). While the sentence was displayed
on the monitor, the spoken version was presented to the subject through headphones.
Each sentence was presented a maximum of three times. To move on to the next
sentence participants could click on a button labelled klaar’ (finished), which means
that they did not need to listen to unnecessary repetitions of one sentence. All the
subjects did this task without any complications. The results were stored on disk for
further processing. The results of the listening experiment will be discussed in the
following sections. First, the general results are presented, after which differences
between and within listeners will be explained in detail.

2.4.1.1 Resulting prominence marks

In table 2.6 the results of both subsets (500 and 744 sentences) on the prominence-
marking task are presented together. The number of marks per word has been added.
This table 2.6 presents the number of words found with a given number of
cumulative prominence marks. The second column (Freq.) gives absolute numbers:
for example the number 802 means that this number of words have been marked as
being prominent by eight out of ten listeners. The third column gives the
percentages. The 50 sentences presented twice were included only once in these data
(only the marks of the sentences which were presented the second time to the
listener were included). It is worth pointing out that approximately half of the words
(45.5%) were not marked as being prominent by any of the listeners; one or more of
the listeners marked the remaining 54.5% of the words as prominent. 8.9% of the
words were only marked by one listener and everybody agreed about 4% of the
words as being prominent.

Table 2.6: The absolute and the relative numbers of the cumulative

prominence marks.
Cumulative marks Freq. %
0 5950 455
1 1162 8.9
2 679 5.2
3 595 4.5
4 586 4.5
5 603 4.6
6 645 49
7 813 6.2
8 802 6.1
9 739 5.6
10 518 4.0

Total 13092 100
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The prominence marks can be used in several ways. Prominent and non-prominent
words can be defined by, for instance, a majority judgment of the listeners. The
prominence judgments can also be interpreted as a prominence scale from 0 to 10.
Since there is variability between listeners, it cannot be expected that the scale from
0 to 10 will represent eleven separate classes. To get a more meaningful prominence
label a hierarchical cluster analysis will be used. Which prominence values will be
clustered and how consistent the listeners were, is the topic of the next two sections.

2.4.1.2 Differences within and between listeners

Between-listener agreement shows reliability, whereas within-listener agreement
shows consistency. The differences within and between listeners can be studied via
those 50 sentences that are presented twice to the ten listeners. Table 2.7 presents the
total number of prominence judgments over all 50 sentences per listener.

Table 2.7: Number of prominence judgments per listener after first and second

listening.
Listener 1 2 3 4 5 6 7 8 9 10 Total
First 71 50 160 165 135 132 50 109 156 172 1200
Second 71 51 165 202 130 211 50 149 209 158 1396

The total number varies from 50 to 211 for the 50 sentences that were judged twice
by each listener. There are listeners who marked many words as being spoken with
emphasis, as well as one listener who marked only one word per sentence as
prominent (listener seven). Furthermore, listeners can be differentiated by the
consistency of their marking of words both times they listened: those who marked
approximately the same number of words each time (listener one, two, three, five,
seven and ten), and those who marked more words the second time (listener four,
six, eight and nine).

Table 2.7 gives thus rise to the following questions. Although some listeners judged
many more words as prominent than others, does the larger set of words include the
words in the smaller set? If the set of prominently marked words is a completely
different set, then the reliability is poor. If, however, there is substantial overlap and
one listener just marks additional words, then there is only a difference in threshold.
To investigate this, a number of crosstables were constructed. Table 2.8 gives the
scores of listener one and listener three who marked nearly the same number of
words both times. So these tables show the individual listener consistency. Of the 71
prominence judgments of listener one, 48 are the same in both sessions. The
agreement is x = 0.63. The consistency of listener three is much better (x = 0.81)
142 prominence marks agree in both sessions.
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Table 2.8: Crosstables of the first and second listening session (of the 50
sentences presented twice) of listener one and three. These tables show

individual listener consistency.

Listener 1 second

Listener 1 first Non-prom Prom Total

Non-prom 425 23 448

Prom 23 48 71

Total 448 71 519 91% x=10.63
Listener 3 second

Listener 3 first Non-prom Prom Total

Non-prom 336 23 359

Prom 18 142 160

Total 354 165 519 92% x=0.81

Another question is, up to what level do the judgments of listener one, who is very
economical with his judgments, correspond with those of listener three, who gives
many more judgments.

Table 2.9 shows such a between-subject comparison between listener one and
listener three. The 71 words marked in the S0 sentences of listener one agree for the
greater part (62, 69, 65, 70) with the 165 or 160 of listener three for the first time /
first time and second time / second time comparison, as well as for the first time /
second time and second time / first time comparison. Listener three marked many
more words as prominent, which may be so because this listener has a lower
threshold for perceiving prominence than listener one. The overall agreement
between these two listeners can be expressed in Cohen’s Kappa, which we have
already introduced in section 2.3.2. The agreement values for these two listeners
(one and three) are also given in table 2.9. The agreement value of listener one and
three is only approximately k = 0.5, mainly because of the difference in total marks
of these two listeners.
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Table 2.9: Crosstable comparison of listener one and three, which shows
between-listener differences.

Listener 3 first
Listener 1 first Non-prom Prom Total
Non-prom 350 98 448
Prom 9 62 71
Total 359 160 519
Listener 3 second
Listener 1 second | Non-prom Prom Total
Non-prom 352 96 448
Prom 2 69 7
Total 354 165 519
Listener 3 first
Listener 1 second | Non-prom Prom Total
Non-prom 353 95 448
Prom 6 65 71
Total 359 160 519
Listener 3 second
Listener 1 first Non-prom Prom Total
Non-prom 353 95 448
Prom 1 70 71
Total 354 165 519

79%

81%

81%

82%

x=0.43

k=0.49

x=0.46

x=0.50



28

Second-second
O 00 N2 AN Wi B WON e

First-second
O 00 N N W b W N -

—_
(=]

Pk
(=

CHAPTER 2

Table 2.10: Cohen’s Kappa for all combinations of listeners for the first-first
combination (above the diagonal) and second-second combination (below the
diagonal).

First-first
1 2 3 4 5 6 7 8 9 10
T 034 043 043 047 044 039 039 041 0411
045 . - 035 034 037 037 049 036 032 026 |2
049 036 - 072 072 067 0.36 048 075 0.62 |3
040 028 075 - 065 057 032 052 067 060 (4 .
046 035 068 061 = 0.63 063 055 069 063 |5 <
031 022 066 072 055 - 034 055 063 058|6 £
032 042 036 027 039 024 - 027 031 0217 ™
040 032 065 0.65 057 066 030 - 8
0.35 026 073 0.80 0.54 0.80 025 063 <= |9
041 031 069 065 066 059 0.32 063 065 =~ |10
1 2 3 4 5 6 7 8 9
Second-second
Mean x= 0.50
Table 2.11: Cohen’s Kappa for all combinations of listeners for the second-
first combination (above the diagonal) and first-second combination (below
the diagonal). On the diagonal the within-listener agreement is given.
Second-first
3 4 5 6 7
046 045 042 043 0.34 1
037 037 0.55 2
071 0.67 0.35 3
0.65 0.59 0.27 4 7
76 0.60 0.37 5 =
0.58 * . 6 §
0.39 058 0 7 &
0.61 0.63 0.29 . 8
0.58 0.61 0.26
0.66 0.64 0.27

1 2 3 4 5 6 7
First-second

Mean x= 0.50
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In table 2.10 and table 2.11 Cohen’s Kappa is presented for each possible
combination of listeners, and for first and second presentation.

For instance, the first time listeners one and three marked the 50 sentences for
prominence the agreement measure k = 0.43, which appears in table 2.10 above the
diagonal.

The agreement within listeners is given in the shaded cells on the diagonal of table
2.11. Listeners three, five, nine and ten were very consistent (k > 0.7) whereas
listener two was less consistent (x < 0.5).

The agreement between listeners is high for listeners three, four, eight, nine, and ten
in all combinations. There are also listeners who agree less, such as listeners two and
seven. Not only are they inconsistent within their own judgments, they also do not
agree with other listeners. But it must be mentioned that these two listeners actually
have a very low number of total judgments: they only give a total of 50 marks (table
2.7). Agreement between the listeners is not as low as found for one listener in the
pilot experiment (see section 2.3.2 table 2.5).

Differences within and between listeners exist, but we consider the accumulated
prominence marks per word to be a useful alternative for a gradient prominence
labeling of the speech material.

These cumulative prominence marks can be clustered in various ways, for instance
four or two groups, to reduce the labeling variation. This is the topic of the next
section.

2.4.1.3 Clustering of the cumulative prominence marks

The cumulative prominence marks for each word form a prominence scale. If only
onc listener marks a given word (resulting in a score of 1) this word is considered
less prominent than if all ten listeners mark this word (resulting in a score of 10).
Since in this study ten listeners could mark a specific word, this results in an 11-
point prominence scale (from 0 to 10). An 11-point scale may be too fine-tuned
whereas it is also directly related to the (rather arbitrary) number of subjects we had:
if we had asked only eight listeners to mark the sentences the prominence scale
would have been a 9-point scale from 0 to 8. Putting similar groups together by
means of hierarchical cluster analyses reduces this scale to 2 more robust one. To
this end. we constructed a confusion matrix for the twice-judged 50 sentences only
(table 2.12). This matrix shows that some points of the prominence scale are more
confused than others and therefore it is justified to put them together. Based on this
confusion matrix a similarity matrix was calculated and a cluster analysis was
carried out.

Statistically the similarity of points on a scale can be expressed in different ways,
which results in different cluster methods with differing results. Here the
hierarchical cluster scheme of Johnson was chosen (Johnson, 1967). This cluster
method is based on matrix manipulations. This hierarchical cluster method uses a
similarity matrix and has the advantage that each point does not have to be initially
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Table 2.12: Confusion matrix on the basis of the 50 sentences that have been
marked twice by 10 listeners. The entry 20 in cell (0;1) means that it occurred
20 times that words were marked for prominence just once in the first
listening session, whereas in the second session these words were not marked
at all. The gray scaling is explained in the text.

Resulting prominence scale from the first listening session

2 3 4 5 6 71 8 9 10 Total

: 0 0 272
&§ 1 | 0
2% 2| 4 0
5§ )
22 310 0 2 1
g-é 410 0 o0 3
E% 500 o 1 7
Eg 60 o0 0 4
w3 7,0 0 0
g 80 o0 0
7S
8= 910 0o o

10/0 0 0

Total 258 30 22 24 29 25 28 35 29 26 13 519

represented as a point in a Euclidean space. Before this cluster analysis can be done,
the confusion matrix given in table 2.12 must be made symmetric and must be
scaled for the different row and column totals, which results in table 2.13. The
numbers on the diagonal are given as 0, so they no longer play a role for the
clustering. Each cell is divided by the mean of its row and column total in order to
correct for the different totals. To make the matrix symmetric around the main
diagonal, each cell is the average of its mirrored counterpart. For instance, the new
value in cell (2;5) and cell (5;2) is the average of the old values of these cells.
Higher values on the prominence scale represent more similarity. The cells that are
more alike are exactly the points on the prominence scale which are (relative to the
row and column totals) likely to be more confused. With the cluster analysis
according to Johnson (Maximum method), these points were clustered. Different
scaling techniques and methods (Maximum, Minimum, Mean) were tried, but the
scaling technique described above (with the maximum method) yields in the most
meaningful and interpretable result.
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Table 2.13: Similarity matrix made from the confusion matrix given in table
2.12. Each cell is divided by the mean of its row and colunm total. The matrix
is made symmetric by taking the mean of the mirrored cells around the main

diagonal.
Prominence scale
4 5 6 7 8 9 10
00 0 0 0 O 0 0
006 02 0 0 O 0 0
012 004 005 0 0 0 0
016 011 004 002 0 0 0
005 0 0 0
0.04 0.11 013 003 0 O

0 005 004 006 023
0 002 005 013
0 0 003
0 0 0 o
0 0 0 003 0 002 033

Prominence scale
O 0 I A W bW N e O
(=]
[=
(=]
N

)
(=]
S O O

The results of various clustering options from five to two clusters are given in table
2.14. If the 11-point scale is reduced to five categories, zero stands for one category,
one and two are put together in one cluster, three is a cluster on its own, whereas
four, five and six, as well as seven, eight, nine and ten, form two more clusters.
These five clusters could be further reduced to four, three or two clusters, as shown
in table 2.14. In figure 2.1, for the clustering as shown in table 2.14, a corresponding
dendrogram is painted. The dendrogram shows how the different clusters originated,
and on which distance the different prominence values are gathered. The different
values and its clustering are given on the vertical. Firstly, nine and ten are clustered,
then eight is added to this cluster, and thirdly five and six are clustered, and so on.
Which distances these clusters have, can be seen in the little boxes. Using the four-
cluster scale is a good alternative, as no groups stand alone except the zero, and the
original scale is agglomerated enough (the dotted line in the dendrogram), while
leaving us with enough variation. These four clusters are: 0 representing no
prominence, 1-2 and 3-6 representing the in-between categories and 7-10
representing the most prominent words. The points that are put together on the
prominence scale are indicated in grey cells in the original confusion matrix in table
2.12,
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Table 2.14: Resulting number of clusters (from five to two) of the hierarchical
cluster analyses (Maximum method). The roman numbers are used for the
new prominence classes.

0.211

Prominence scale | 5 Clusters 4 Clusters 3 Clusters 2 Clusters
0 1 1 0 1 1
1 2 2 q 2 2
2 2 2 2 2
3 3 3 2 2
4 4 3 I 2 2
5 4 3 2 2
6 4 3 2 2
7 5 4 3 2
8 5 4 I 3 2
9 5 4 3 2
10 5 4 3 2
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Figure 2.1: Dendrogram using Maximum method. ’




PROMINENCE MARKING BY NAIVE LISTENERS

Table 2.15: The absolute and relative numbers of words each of four
prominence classes, which is a result of the agglomerated prominence scale.

Prominence class Freq. %

0 5950 45.4
1 1841 14.1
I 2429 18.6
11 2872 21.9
Total 13092 100

The relative and the absolute numbers of words in a given prominence class are
presented in table 2.15. These clustered numbers are those used for further analysis
in chapter 3, chapter 4 and chapter 5.

2.4.2 Second set marked by one ‘optimal’ listener

As we will see in chapters 3, 4 and 5, the prominence prediction and classification
methods were developed with the help of the training set; in order to properly test
these methods an independent test set is required.

The labeling of the independent test set was performed in a slightly different way;
mainly for efficiency reasons. The criteria for selecting the test sentences are
completely the same as those for the training material. Simply put, the next
acceptable 1000 sentences of the Dutch Polyphone Corpus have been taken (more
details can be found in section 2.2.4 of this chapter).

The prominence marks of the ten listeners are not required for this testing purpose.
For the development of the classification methods a majority judgment is used. This
results in a prominent / non-prominent distinction. A useful alternative for asking ten
listeners to mark the whole set of 1000 sentences would be to ask only one
representative listener. This listener should preferably have the highest agreement
with the other listeners and should be consistent in his / her judgments. The results
in tables 2.10 and 2.11, the high within-agreement x = 0.8 (table 2.8) and the good
between-agreement show that listener three is the most representative listener.
Another advantage of reducing the listeners to one representative listener is that it is
far less time consuming to label a speech corpus.

2.4.2.1 Prominence assignment

The procedure for the prominence assignment was the same as for the training set.
The text was presented on the monitor, and the spoken sentence was presented via
headphones, with a maximum of three repetitions. The instruction was exactly the
same as for the training set, apart from details about the number of sentences and the
duration of the total experiment. The listener had to mark words in test sentences
spoken with emphasis. Again, the listener could click on each word to mark it for
prominence.
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The result is that each word receives a binary labeling (0 = non-prominent, 1 =
prominent). In total, listener three gives 3998 word prominence marks for these
1000 sentences, as specified in table 2.16 This results in, on average, four
prominence marks per sentence. This is somewhat higher than for the sentences in
her training set, which resulted in an average of 3.4 marks per sentence. This does
not necessarily indicate poor consistency, but may rather show a small shift in
threshold. Such shifts in threshold were also seen for the listeners who marked the
training set.

Table 2.16: Absolute and relative numbers of words in the prominence
judgments of the optimal listener three on the 1000 sentences of the

independent test set.
Prominence marks Freq. %
Non-prom 6332 61.3
Prom 3998 38.7
Total 10330 100

2.5 Concluding remarks

We have presented an operational definition of prominence. Pilot experiments were
carried out to find a useful operational definition for the remaining open questions. It
was discovered that the prominence marks on words achieved by naive listeners are
consistent enough and are useful for our further research. The ‘open’ instruction for
the prominence marking task to the listeners (for instance not giving restrictions
about how many words per sentence should be marked), show that this does not
results in less agreement, but the differences within and between listeners can be
dedicated to a threshold shift.

The cumulative marks per word can be used to express degrees of prominence, but
the (arbitrary) scale from 0 to 10 can be reduced to a more useful 4-point scale by
using the hierarchical clustering method. This leaves us with the following
prominence marks in the training set:

- prominence degrees 0 to 10;
- prominence classes 0, I, IT and IIT;
- for simplicity sake non-prominent (0 and I) and prominent (II and IT).

In the test set we will frequently use a binary prominence distinction. However, we
do not believe that prominence is binary or discrete, but is instead gradual. Only for
simplicity’s sake this gradual scale is reduced to a binary one. A similar approach is
also found in Grover et al. (1997), Grover et al. (1998) and Buhmann et al. (2000).

In search for a binary division one might come up with the two classes 0 and 1-10
given the dendrogram in figure 2.1. However, token-wise the prominence class 0 is
overrepresented, which partly explains its unique position in figure 2.1. We
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therefore decided to combine 0 and I, as well as I and III to the binary non-
prominent and prominent class, respectively (see table 2.14).

Only one representative and consistent listener marked the independent test set. Her
binary marks thus result in:

- non-prominent (0) and prominent (1);

As we have chosen to mark word prominence, detailed information about the
prominence distribution within a word is not available. Often the most prominent
syllable coincides with the lexically stressed one, although this can differ and can
shift to another syllable in the word. The choice for word prominence makes it easier
for the listener to understand the task, because marks are given to meaningful
elements (words). However detailed information about the differences in words as
mentioned in the introduction 1.1 (ACHTeruitgang (back / rear exit) and
achterUITgang (decline)) is not available. However, it was shown in Streefkerk et
al. (1997) that it occurred hardly ever that a highly prominent syllable in a
polysyllabic word does not correspond with the lexically stressed one.

In this chapter we described the operational definition of prominence. The listening
experiment was designed in such a way that naive listeners mark words for
prominence in sentences read-aloud. Generally, there are two sources of information
the listeners use for this prominence perception: firstly the information which is
transferred by the speech signal, and secondly their knowledge of the language.

In chapter 4 the acoustic correlates of prominence will be analyzed and discussed. In
chapter 3 the textual correlates, which are related to the knowledge of the language
(stored information) and prominence will be investigated and used for prominence
prediction.







LEXICAL AND SYNTACTIC
CORRELATES OF PROMINENCE'

Abstract

This chapter describes the relationship between perceived prominence and lexical /
syntactic features, such as word class (Part-of-Speech), number of syllables, and the
position of the word in the sentence. These relationships are formulated as heuristic
rules, which predict the location and the degree of prominence in a sentence. The
performance of the prominence / non-prominence predictor was found to be 81%
correct when used on an independent test set. The ability to predict prominence with
Sfeatures that are derived from textual input can be applied in the fields of speech
technology and particularly in speech synthesis.

! Parts of this chapter were published in Helsloot & Streefkerk (1998), in Streefkerk
et al. (1999 a) and in Streefkerk et al. (2001).
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3.1 Introduction

Speakers place prominence on particular words or syllables and this placement is
guided by syntactic and lexical information and / or by semantics and pragmatics.
The key issue here is to discover which of these syntactic and lexical features are the
most effective guides. For example, when only syntax and the lexicon guide the
placement of prominence, the result is a kind of neutrality in the style of the
sentences spoken. We call this a default pronunciation of the sentence. Most
commercial Text-to-Speech systems produce these more or less neutral sentences,
since the context in which the sentence appears, is not known. But even without
further context, sentences should preferably show some form of focusing.

“Fluency” (Fluent Dutch Text-to-Speech system Version 1.0, http://www.fluency.nl)
a commercial Dutch Text-to-Speech system provides a ‘default’ realization of, for
instance, the sentence De nieuwste rage in Deventer is het schieten vanuit rijdende
auto’s (The latest craze in Deventer is shooting from moving cars) as shown in
figure 3.1. To make words prominent, the system produces a pitch movement on all
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Figure 3.1: Pitch movements and segmentation of a sentence De nieuwste
rage in Deventer is het schieten vanuit rijdende auto’s (The latest craze in
Deventer is shooting from moving cars), spoken by the Text-to-Speech system
Fluency (top) and spoken by a woman (bottom).
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the content words, i.e. nieuwste (latest), rage (craze), Deventer (city in the
Netherlands), schieten (shooting), rijdende (moving) and auto’s (cars). The system
realized lexical stress by lengthening the duration of the vowel concerned, which
also causes differences in prominence. However, in the same naturally spoken
sentence from our Dutch Polyphone database (from a female speaker) only pitch
movements are visible on nieuwste (latest), schieten (shooting) and rijdende
(moving) (see Figure 3.1). This illustrates the possibly large difference between
naturally spoken sentences and those produced by a synthesizer. The naturally
spoken sentence is enunciated with only one pitch movement on one of the three
adjacent content words: nieuwste rage (in) Deventer (latest craze (in) Deventer),
whereas the synthesizer places a pitch movement on all three adjacent words. In
Figure 3.1 it can also be observed that the durations of the syllables differ, which
causes differences in prominence. These large differences are not only dedicated to
things like speaker variability and gender. We believe that a better prediction of
prosodic parameter on the basis of lexical and syntactic information is possible.

In principle, any word in a sentence can be prominent. Special meanings can be
given to sentences in specific situations. Even Articles can be prominent, as in the
following sentence: Hij zei niet HET boek, maar DE boek (He didn’t say the
(neuter) book, but the (non-neuter) book). The Articles de and het are the most
prominent words in this sentence. In normal conversation, however, those parts of
speech that are most important for conversation are prominent. Articles are hardly
ever prominent, but putting these words into contrastive / narrow focus as these two
clements de and het stand in contrast to each other can highlight even those parts of
speech.

In this study, however, the notion of focus is of secondary interest; primarily we
want to point out that, in general, words containing new information and / or being
important for the communication receive prominence and are less predictable from
the context, whereas words with given information are more predictable. There is no
need to highlight these words, as their message has already been announced.

From literature much is known about pitch accent and lexical stress. One stream of
linguistic research deals with the relationship between lexical and syntactic
information and the theoretic notions of stress and accent (for instance Chomsky &
Halle, 1968). Another stream within linguistic research relates stress and accent with
semantic and pragmatic information (for instance in Bolinger, 1972). Bolinger
points out that accent placement is not so much a matter of syntax and word
structure but a matter of information structure. He formulated the hypothesis that
accents can only be predicted if the hearer is a ‘mind-reader’. The exact placement
of accent, and even more the exact placements of different prominence degrees in a
sentence are determined by the speaker. It depends on how a speaker chooses to
present information, and in this sense prominence is unpredictable as long as one is
not a ‘mind-reader’.

Prominence is a cluster of pitch accent and lexical stress. The computer is not a
‘mind-reader’, so the prediction of prominence under all conditions will be
impossible, but most speakers still behave according to common linguistic
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knowledge. Consequently, the prediction is possible up to a certain level Prediction
of prominence could only be done for word types and not per word token. The aim
of this chapter is to investigate to what extent we can predict prominence solely
from textual information, coming as close as possible to a ‘default’ prominence
prediction. The notions of pitch accent and lexical stress are of secondary interest.

3.1.1 Relevant studies

Two data-driven studies by Lea (1980) and Altenberg (1987), are discussed in
section 3.1.1.1. These two studies deal with the relationship between stress and
accent and word class based on empirical data. The more application-oriented
studies are discussed in section 3.1.1.2,

3.1.1.1 Data driven studies

Lea (1980) describes the relationship between word categories and the amount of
perceived reduction. He defines a continuum from stressed to reduced syllables and
uses a perception experiment to define the amount of reduction. Five listeners were
asked to judge if a syllable is stressed, unstressed or reduced. Adding up the
judgments of all five listeners, a number on a scale from —5 (most reduced) to +5
(most stressed) is given to each syllable. The results show that various word
categories can be arranged along a scale from most reduced (such as Articles,
Conjunctions, Prepositions, Auxiliary Verbs, Pronouns), to most stressed (such as
main Verbs, Adjectives, sentence Adverbs, Nouns, Quantifiers and command
Verbs). It is worth pointing out that, generally speaking, most function words are
perceived as reduced and most content words are perceived as stressed. This finding
is used in early and in present-day Text-to-Speech synthesizers by simply giving all
content words an accent. This approach tends to place an accent on too many words.
Giving all content words a pitch accent results in a ‘neutrally’ spoken sentence.
Although the sentences are comprehensible, such an abundant accent placement
does not sound very natural.

In Altenberg’s (1987) research various speech corpora (containing dialogues, radio
speech, and face to face conversation) were labeled by hand for word classes and for
prosodic information, expressed in prosodic labels (‘zero’, ‘stress’, ‘booster’ and
‘nucleus’) that indicate an increase of prominence ranging from ‘zero’ to ‘nucleus’.
Altenberg (1987) found that function words are only labeled 1-4% of the time with
high prominence. Labels indicating high prominence were mainly found in the
categories of content words. The study also shows that the various categories of
content words can behave very differently when it comes to receiving prominence.
Adverbs, for instance, were labeled as zero 23% of the time whereas Nouns were
labeled zero only 8% of the time. Altenberg’s study shows that, generally, the word
class could be ranked for its ability to be accented. This means that there are words
from a word class, which are hardly ever accented and other words from another
specific class, which are almost always accented.

Such findings together with the ‘hierarchy of ability to be accented’ can easily be
used and can actually be implemented in a synthesizer to optimize the accent
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placement. The word class labeling must ideally be done automatically for this
purpose, because for speech synthesis hand-marked word classes are not available
either.

3.1.1.2 Application-oriented studies

We limit ourselves in this section to studies that deal with the prediction of stress
and accent placement for Text-to-Speech systems, particularly for Dutch. An
important requirement for such an application is that the textual information must be
derived automatically, and the prediction should be easily implementable in a speech
synthesizer.

Baart (1987) developed two algorithms to predict sentence accent for a Dutch Text-
to-Speech system. The first, very simple, algorithm is based on the distinction
between function words and content words. A list of unaccentable words is made; all
words not occurring in this list are, accented. How this list was made is not
described, nor does it cover the whole set of function words. The algorithm does not
detect either the difference between homonymic words, such as the Noun ket weer
(the weather) and the Adverb weer (once again). This algorithm can be used fully
automatically and independently from a syntactic parser.

The second algorithm is based on syntax and focus and requires more information
than simply the word class. Instead, the full phonological surface representation of a
sentence and the domain of focus are used. This means that both the syntax and the
lexical information are available. This additional information, such as the focus
domain, had to be derived by hand and therefore this algorithm could not be used
fully automatically.

Both algorithms were tested in a Text-to-Speech system. The accent labels were
translated to specific acoustic parameters and listeners evaluated the resulting
sentences. Results of the tests showed that the second algorithm is better as it uses
more accurate and more specific linguistic information than the first. Research by
Dirksen & Quené (1993) and Quené & Kager (1993), described in the next two
paragraphs, is based on Baart’s (1987) work and describes the design of a full
system for synthesis applications.

Baart’s (1987) first approach was analyzed in more detail in Quené & Kager (1993).
The set of unaccentable function words was improved and extended with specific
unaccentable content words (see for more details Quené & Kager, 1993). In
principle all content words were accented, but some Verbs and other words which
were considered as having less semantic information (such as maand (month) and
Jjaar (vear)) were excluded. As the algorithm still produced too many accent labels,
the authors have devised two rules to remove some of them: the middle one of three
adjacent content words is de-accented, and words which reliably convey given
information are also de-accented, for instance epitheta before a proper name
(koningin Beatrix (queen Beatrix)). Additionally, the authors developed special rules
for the accentuation of Verbs. The algorithm gives a binary accent value: either plus
or minus accent. Differences in degrees of prominence are not taken into account.
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Dirksen & Quené (1993) designed a system, which is also basically founded on
Baart’s (1987) second algorithm. The accent assignment and phrasing is based on
syntactic information presented in the form of a metrical tree augmented with focus
markers. The information needed to predict the accent placement was not obtained
automatically. However, some metrical aspects were also implemented, for example
the system deaccented one of the two adjacent accented words. Results similar to the
evaluation of Baart’s second algorithm can be expected.

Hirschberg (1993) developed an algorithm for assigning pitch accent, which is used
in the Bell Laboratories Text-to-Speech System. Several corpora were labeled for
prosody according to TOBI (Pierrehumbert, 1980). Part-of-Speech, discourse
information such as focus, and given and new information contribute to improve
accent prediction. Hirschberg achieved a rate of 80-98% correct accent assignment
for different speech corpora. A perceptual experiment to test the systems for the
prediction of accent was not conducted, so no comment can be made concerning the
increase of acceptance and/or the naturalness of the sentences with accent placement
predicted by this sophisticated algorithm. Ultimately this algorithm provides only
the prediction of an accent label, which then still has to be realized as a pitch accent
in synthetic speech. This sometimes has consequences for the duration of the
syllable. Hirschberg (1993) did not pay attention to the fact that words are perceived
as having different degrees of prominence. Hirschberg & Rambow (2001) describe a
more sophisticated approach. Adding tree-based syntactic dependency, e.g. the
dependency between Auxiliary verbs and full Verbs or Determiners and Nouns,
brings further improvements for boundary prediction, however, not (yet) for accent
prediction.

Ross & Ostendorf (1996) used probabilistic approaches, which differ from the rule-
based approach of Quené & Kager (1993). These probabilistic approaches show an
increase in the correct prediction of prosodic labels. Moreover, they take into
account different degrees of prominence. Ross & Ostendorf (1996) used
computational models to predict accent location, symbolic tones such as H*L, and
the relative prominence of these tones. The prediction of the relative prominence is
limited to the F, peak height. As input Ross & Ostendorf used prosodic phrase
structure information as to whether a word conveys given or new information, and
Part-of-Speech labels plus information from the dictionary as input to accent
assignment. All required information except boundary information is extracted
automatically. In this study, Ross & Ostendorf argued that boundary location and
pitch accent placement should ideally be predicted at the same time. But to simplify
the problem they used hand-labeled boundaries to predict pitch accent. The exact
location of the boundaries makes the prediction of accents easier. The pitch accent
prediction was 82.5% correct using all available information. Results showed that
four factors are important in the prediction of pitch accent: lexical stress, the number
of syllables since the last pitch accent, the syllable position within the word, and the
content word versus function word distinction. The pitch accent type and the number
of pitch accents in the phrase are the most important cues for prominence.
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Perceptual evaluation experiments were also performed. Listeners compared three
different synthesized versions of one sentence. Version one contained their predicted
accents, version two the hand-labeled pitch accents, and version three was the
default realization of the synthesizer. In the experiment the listeners marked all three
versions with 2.70 to 2.74 on a naturalness scale of 1 to 5, with 1 indicating the most
natural. This result shows that synthetic speech is far from natural, and that even
hand-labeled accents do not make sentences sound natural.

Bulyko & Ostendorf (1999) dealt with the prediction of gradient F, variation and its
contribution to prominence. They used similar lexical / syntactic information as
Ross & Ostendorf (1996) next to whether a word was new to the paragraph and / or
whether a word was a part of a hand-marked named entity. A direct comparison of
their results with previous ones is not possible since they are directly translated into
acoustic features.

Three degrees of prominence (corresponding to accented or non-accented and to
lexically stressed or unstressed) have been implemented in most present-day
prosody generators. However, the implementation of different degrees of
prominence in Text-to-Speech systems could improve the synthesized speech
quality by making it sound more natural. This is the approach Portele & Heuft
(1997) used. In their synthesizer they implemented different degrees of prominence.
The algorithm was partly developed in perception experiments in which listeners
had to mark on a 31-point scale the degree of prominence placed on syllables and
the strength of the boundaries between words. By statistical analysis of a hand-
labeled database, prosodic rules and a machine-learning algorithm to predict word
prominence were developed (Widera et al., 1997). The information used to predict
word prominence makes use of 21 different word classes (hand-labeled), the word
class of the neighboring words, and their position in the utterance. The correct
prediction rates of prominence are low: 41% correct at best.

The translation of the predicted prominence values to acoustic parameters was only
performed for those syllables that have a mid / high prominence prediction (syllables
with the value 17, on a scale from 0 to 30). Parameters concerning pitch movements
were used to predict prominence for these syllables. Portele (1999) predicts height,
position of the pitch movements relative to the vowel onset, and the steepness of the
pitch movement. The differences in prominence were acoustically reflected in
differences in Fo-peak height, but differences in duration and loudness were
discarded. Some of the variability of 31 different prominence values was translated
to acoustic parameters such as pitch, duration and loudness and was incorporated in
a running synthesis system. The next step would be to translate not only the high
prominence values to parameters concerning pitch movements, but to translate all
the different prominence values including those concerning duration and loudness,
to acoustic parameters.

Data-driven intonation modeling of both prominence on a 10-point scale and
boundary strength on a 4-point scale is an approach (Buhmann et al., 2000; Fackrell
et al., 1999) similar to that of Portele & Heuft (1997). In the research of Buhmann et
al. (2000) and Fackrell et al. (1999) six European languages were involved. The
initial labeling was only partly annotated by hand for prominence and boundary
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strength; Vereecken et al. (1998) used automatic labeling for further annotation.
They used both linguistic and acoustic features for automatic labeling. This
combination brings further improvement for automatic prominence assignment.
More than 110 acoustic features were used and about 70 linguistic input features,
such as POS (Part-of-Speech), position of the word in the sentence, and position of
the syllable in the word. Depending on the language, between 77% and 93% correct
prominence classification is reached on a scale from 0 to 9 (with an accuracy of plus
or minus 1 in comparison with hand labeled prominence). For Dutch the
classification correct is 80%. However, no phonetic and linguistic knowledge about
the relationship between those acoustic features and prominence is obtained with
this large set of features.

For such large prosodically annotated databases, a probabilistic approach is possible.
In this way, acoustic parameters such as F, contour and durations of speech
segments can be predicted for Text-to-Speech systems. Automatic learning
techniques, such as regression trees and neural networks, are fed with input features
concerning orthography, phonetic transcription, segmentation, Part-of-Speech, word
length, position of the word in the sentence, etc. Comparing the results of such
approaches is difficult since it directly concerns the actually used acoustic
parameters. Buhmann et al. (2000) found a correlation coefficient of 0.66 between
the smoothed observed intonation contour and the predicted contour. Results for
other acoustical parameters, such as duration and intensity are not presented in the
above paper. A perceptual evaluation is reported in Fackrell et al. (1999). This
evaluation shows that listeners prefer the automatically derived prosody model to
the old hand-crafted prosody model of the Lernout & Hauspie Text-to-Speech-3000
synthesizer.

In summary, in the research discussed above, we see four different research lines:
(1) algorithms are either based on linguistic knowledge, as in Baart (1987), or (2) on
database research, as in Ross & Ostendorf (1996). Another possibility (3) is to
develop algorithms by using perceptual labeling (prominence) as done by Portele &
Heuft (1997) or (4) to predict the acoustical parameters of prominence and boundary
strength directly as done by Buhmann et al. (2000) and Fackrell et al. (1999). They
actually used both linguistic and acoustic features and do not have a perceptual
evaluation.

The goal of our study is not only to show relationships between textual information
and prominence judgments, but also to formulate these relationships in such a way
that they can be expressed in heuristic rules to predict prominence. This rule set
could then be used to enable more natural sounding speech synthesis. Therefore, all
the desired textual information for the prediction of prominence must be derived
automatically.

3.2 Pilot study to find lexical / syntactic correlates

In this section we describe a pilot experiment that was carried out to investigate the
relationship between prominence and textual information. The pilot was based on a
subset of 50 sentences. A main goal was to check if we could find a similar
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relationship between prominence and word classes (POS, Part-of-Speech) as found
in the research done by Lea (1980) and Altenberg (1987). In this pilot word class
tags were assigned by hand for the following content word classes: Adjectives,
Nouns, Verbs, Adverbs, additionally to the number of syllables and the position of
the word in the sentence. This lexical / syntactic information was investigated with
respect to prominence. A careful metrical and linguistic analysis of these sentences
provided new insights, especially on (slightly) different word class definitions. The
method used and the results obtained in this pilot experiment are described
elaborately in Helsloot & Streefkerk (1998).

The pilot study confirmed that, in general, function words are perceived as less
prominent than content words. Within these two categories we nevertheless found a
considerable amount of variability. There were indications that the four content
word classes are not enough to explain the variability, and that for instance
Negations should be treated as a separate class. Our selection of the later used
eleven word classes is based on the observations in the pilot study.

There also were indications that some of this within-category variability could be
explained by the polysyllabic versus monosyllabic distinction. The question whether
polysyllabic words are generally more prominent than monosyllabic words needs
testing on a much larger set of sentences. It is necessary to investigate whether this
effect is also valid within one word class, because this polysyllabic / monosyllabic
distinction could perhaps also be ascribed to the fact that function words contain, on
average, fewer syllables than content words.

In the pilot study the word class tags were assigned by hand. However, such tags
will have to assigned automatically when predicting prominence for large sets of
sentences. The discrepancy between hand-assigned word class labels and
automatically derived labels could make the task of automatically predicting
prominence more error prone.

3.3 Main experiment on lexical / syntactic correlates of prominence

So, in the main experiment presented below we will look more closely at the variety
of word classes and we will try to explain some other aspects of the variability
found. Therefore we will include combinations of word classes as well as the
position of the word in the sentence.

In this analysis a much larger set of 1244 training sentences was used to analyze the
relationship between perceived prominence and textual information (Part-of-Speech
tags, number of syllables, and position of the word in the sentence). The results were
used to derive a number of rules to predict prominence. These rules were evaluated
with an independent test set of 1000 sentences. Ten listeners judged the 1244 read-
aloud newspaper sentences of the training set, whereas only one representative
listener judged the sentences of the test set (see for more details chapter 2). The
cumulative marks of the ten listeners form degrees of prominence for the training set
(11-point scale from 0 to 10). This scale was reduced to a binary scale (prominent
versus non-prominent) since that was all we had available for the test set. The
relationship between lexical / syntactic information on the one hand and prominence
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on the other hand, had to be confirmed, further developed and elaborated into rules.
First, we will describe the automatically derived word classes, then we will go into
detail about the relationship between prominence and lexical / syntactic features, and
at the end of this chapter the derived rules for prominence prediction will be
described, tested and discussed.

3.3.1 Assigning lexical and syntactic features

The test set and the training set were automatically labeled for Part-of-Speech by a
parser (Daelemans et al., 1996). The memory-based Part-of-Speech tagger is based
on similarity reasoning. It compares a particular word in a particular context with the
most similar case stored. Generally, two factors determine a Part-of-Speech tag: its
lexical probability and its contextual probability. The lexical probability of a given
word belonging to a given category is stored in the lexicon, whereas the contextual
probability of a given word in a given context is stored in the case base. The lexicon
and the case base were generated from a large corpus. Those lexical probabilities are
only useful if a given word is known. Therefore unknown words are treated
differently; the Part-of-Speech tag is guess-based on the form and / or context of the
unknown word. It is reported that labeling fails in 5 to 10% of the cases (Daelemans
et al., 1996). We used this memory-based Part-of-Speech tagger, because, although
imperfect, to our knowledge it yields the best results for our goal. For our purposes
nine word classes were distinguished (Noun, Adjective, Quantifier / Numeral, Verb,
Article, Pronoun, Adverb, Preposition, Conjunction). Furthermore, based on the
findings of the pilot study, the word class of Auxiliary Verbs is separated from the
Verbs and forms a class on its own, just as Negations such as niet (not) do. In total
we distinguish eleven different word classes. In the next section we describe the
word classes used and give an indication of what kind of words belong to each word
class.

Articles
The word class of Articles is relatively simple to define. Words as de, het, der, des,
een (the, the, of the, of the, a) belong to this class.

Conjunctions

Conjunctions can be divided into coordinating Conjunctions such as em, noch,
alsmede, maar, of, want, dus (and, neither, as well as, but, if, because, therefore)
and subordinating Conjunctions such as dat, sinds, toen, terwijl, zodat (that, since,
then, while, so).

Prepositions

Normal Prepositions, such as bij, tussen, voor (with, between, for) belong to this
class together with the group of prepositional Adverbs, which form a part of
separable Verbs, such as aangeven (to hand, to indicate) and voorkomen (to occur,
to prevent).
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Pronouns

Pronouns are divided into subgroups of relative Pronouns such as die, dat (this,
that), personal Pronouns, such as ik, wij, mij, ons, (I, we, me, our), possessive
Pronouns mijn, ons, jullie, zijn, haar (mine, ours, yours, his, her) and the indefinite
forms iedereen, allen, allemaal, alles, iemand (everybody, all, all, everything,
somebody). Based on the findings of the pilot study the pronominal Adverbs er,
daar (there) were also included.

Auxiliary verbs

Only Auxiliary verbs of tense zijn, hebben, zullen (be, have, shall) and the passive
voice worden (be) are put in this word class. Based on the observation in the pilot
study the Auxiliary verbs of causality and modality are included in the full Verb
class.

Verbs
This group contains all full Verbs plus the Auxiliary verbs of causality doen, laten
(do, let) and modal Verbs kunnen, moeten, mogen, willen (can, must, may, want).

Adverbs

- Adverbs contain various subgroups. As already mentioned above, the prepositional
Adverbs and the pronominal Adverbs have been shifted to the Prepositions or
Pronouns, respectively. The Adverbs of place waarheen, ginds (where, over there),
time foen, morgen, hoelang (then, tomorrow, how long), degree nogal, grang
(rather, gladly), and modality misschien, wellicht (perhaps, possibly) still belong to
this word class.

Nouns
Proper names and nominally used Adjectives are put in the Noun category.

Numerals

The class of Numerals contains definite Numerals such as beide, vier, driehonderd
(both, four, three hundred) and indefinite ones such as veel, enkele, sommige,
voldoende, minder (much, a few, some, sufficient, less).

Adjectives
The category of Adjectives contains the predicatively used Adjectives.
Negations

Based on observation in the pilot study Negations are put in a class of their own. It
contains the words: geen, niet, niets, nooit (none, not, nothing, never).

The speech material used was labeled automatically according to the word
categories as described above.
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3.3.1.1 Description and evaluation of the automatically derived Part-of-Speech
(POS) tags

Since in this research the linguistic information used must become available
automatically, the speech material was tagged automatically.

To obtain a clear idea of the number of errors made by the automatic parser, the
training set (1244 sentences) was also tagged manually. The hand-corrected tags
were initially obtained from CELEX. CELEX (Center for Lexical information,
Celex@mpi.nl) provides all possible options for ‘ambiguous’ word tags. These
hand-corrected tags were compared with the tags of the parser, which resulted in a
number of 1057 out of a total of 13119 words that were incorrect classified. This is
8% of the total number (13119) of word tokens of the training set. Of these words
5970 (46%) are function words and 7149 (54%) are content words.

The total number of words distributed over the 11 word classes used is presented in
table 3.1. The parser, described above, assigned the word classes. The categories of
Articles, Prepositions, Verbs and Nouns are the largest, with for the training set
14.6%, 13.7%, 13.2% and 24.3%, respectively. The large number of Prepositions
(13.7%) may be normal for this type of material, which was obtained from a
newspaper. The smallest classes are the Negations (173, which is 1.3%), Numerals
(327, which is 2.5%) and Conjunctions (434, which is 3.3%).

Table 3.1: Distribution of the eleven different word classes for the training set
and for the test set, presented both in absolute numbers and in percentages.
The word class was automatically assigned. The dotted line separates between
function and content words (except for the Negations, which formally belong

to the function words).
Parser labeling Parser labeling
training set test set

Number % Number %
Article 1912 14.6 1537 Y 149
Conjunction 434 33 329 3.2
Preposition 1795 & ooqp 137 1376 © 4645 133
Pronoun 1121 85 759 7.3
Auxiliary verbs 708 54 644 ° 6.2
Verb 1734 ~ 13.2 1391  ~ 13.5
Numerals 327 25 268 26
Adverb 765 5.8 558 54
Adjective 977 ;7149 7.4 805 ;3685 7.8
Noun 3173 243 2521 24.4
Negation 173 7 1.3 142/ 1.4
Total 13119 100 10330 100
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Table 3.1 also gives the parser labeling for the different word classes for the test set.
The 1000 sentences used for test purposes contain 10330 words, which is on average
10 words per sentence (Std. Dev. 2.3). The number of content words is 5685 (55%)
and of function words is 4645 (45%). These percentages per word class are more or
less the same as for the training material.

Describing the relationship between these word classes and prominence is the next
step, which will be presented in the following sections. Clear relationships are
needed in order to be able to formulate heuristic rules to predict prominence.

3.3.2 Relationship between word class and prominence

Table 3.2 presents some general data on the training material in terms of means and
median values of prominence marks (on a scale from 0 to 10), and their standard
deviation. We also present the median values, because the distributions were askew
at the edges of the prominence scale. The word classes were ordered by increasing
prominence, indicated by the mean values, from Articles (mean prominence 0.1) to
Adjectives (mean prominence 6.3). The standard deviation increases from 0.8 for
Articles to 3.5 for Adverbs. In general, it is clear that the function words (Article,
Auxiliary verbs, Prepositions, Conjunctions, and Pronouns) are the least prominent.
Their mean prominence slightly increases from 0.1 to 1.5, but the standard deviation
also increases. The median is still 0, thus indicating that these are not normal
distributions, but we will discuss this later in this section.

The mean prominence values of the content words (Verbs, Adverbs, Nouns,
Adjectives, Numerals) reflect that these words are more prominent than the function

Table 3.2: The mean, median and standard deviation of prominence per word
class ordered by increasing prominence. The dotted line separates function
words from content words, except for the Negations, which formally belong

to the function words.
Prominence
Word class Number Mean Median Std. Dev.
Article 1912 0.1 0 0.8
Auxiliary verbs 708 0.3 0 1.2
Preposition 1795 0.4 0 1.4
Conjunction 434 0.4 0 1.2
Pronoun 1121 1.5 0 2.8
Verb 1734 2.6 1 3.1
Adverb 765 3.8 3 3.5
Noun 3173 5.6 6 2.8
Numeral 327 5.7 6 3.1
Negation 173 6.2 7 3.1
Adjective 977 6.3 7 2.8
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words, which was already found in the pilot study (see Helsloot & Streefkerk, 1998)
and by data in the literature (Altenberg, 1987 and Lea, 1980). However, we can be
more specific, as the Verbs and the Adverbs have smaller mean prominence values
(2.6 and 3.8) than the other content words. The words belonging to the Noun,
Adjective, Numeral and Negation categories are perceived as prominent with mean
values from 5.6 to 6.3 (see for more details table 3.2). A ‘hierarchy of ability to be
prominent’ is already becoming apparent. The line in table 3.2 separates the function
words from the content words. Negations do not strictly belong to the content words.
As far as prominence is concerned, they behave similarly to content words.

As indicated earlier by the high standard deviations of prominence within each class
(table 3.2), the variation within word classes is high and it is worth looking at the
separate prominence distribution within each category.

These prominence distributions (on a scale from 0 to 10) per word class for function
words are shown in figure 3.2 and for content words in figure 3.3. Function words
are mostly those words, which are almost never marked as prominent (93% and 69%
have zero prominence for Articles and Pronouns, respectively). The prominence
histograms for Articles, Auxiliary Verbs, Prepositions and Conjunctions show that
the higher the prominence marks the lower the percentages of the histograms (see
figure 3.2). This holds also for Pronouns, but there is a small additional group that is
marked with high prominence (seven, eight, nine and ten). Of the total number of
Pronouns (1121, see table 3.2), 71 are marked with eight, nine and ten, which is 7%
of the Pronouns. This can be explained by the fact that Subject-pronouns can be
more prominent. Subject-pronouns are very difficult to detect automatically, which
makes it difficult to use this information in a rule set for prominence prediction. The
fact that only 71 words are involved, which is less than 0.5% of all the words from
the training set, makes it less interesting too.

The prominence distributions with respect to content words look differently in
several ways, as shown in figure 3.3. All content word classes show that the number
of words never marked as prominent is less than 8%, except for the Verbs and the
Adverbs. For the Verbs this number is 40% and for the Adverbs it is 27%. Verbs and
Adverbs form a middle class, whereas the distributions of Nouns, Adjectives,
Numerals and Negations are situated in the upper part of the prominence scale.
Furthermore, Adverbs and, to a smaller extent, Numerals and Negations show
bimodal distributions. 27% of the Adverbs are never marked as prominent, but the
relative number of Adverbs marked by eight, nine or ten of the listeners is certainly
high as well (22%). This once more confirms that the Adverb group is a difficult
one, containing a variety of words that behave in different ways. Numerals and
Negations show distributions with the maximum at the upper part of the prominence
scale, but the number of Numerals and Negations judged by none or only one
listener is still 7.6%, 5.3% and 7.5%, 7.5%, respectively (see also figure 3.3).
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Figure 3.3: The distribution of degrees of prominence (on a scale from 0 to 10) for the
various types of content words and Negations.

The prominence distributions of Negations and Numerals are also bimodal; in
general these words are perceived as prominent but there are still a number of words
that are never marked as such. An explanation for the non-prominent Numerals
could be that Numerals referring to a current century are usually perceived as non-
prominent. This occurs 14 times in our training material. Nine times these words are
never or only once marked as prominent. As far as Negations are concerned, no
explanation on a textual level could be found for the non-prominent ones, so the
prediction of prominence for these special word groups is difficult.
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3.3.3 Relationship between word length and prominence

An interesting relationship may be observed between the word length (number of
syllables) and prominence, which cannot be exclusively attributed to the fact that
more function words than content words are monosyllabic. Table 3.3 shows mean
prominence value, median value and standard deviation of prominence, as a function
of the number of syllables in a word. In conclusion, the longer the words, the higher
the mean prominence values.

The difference between monosyllabic words (mean prominence value 1.4) and
polysyllabic words (mean prominence values from 4.4 in the case of two syllables
up to 6.4 in the case of six syllables) is considerable. ’

Table 3.4 presents prominence values of each word class split up for polysyllabic
and monosyllabic words. Generally, it is true that the polysyllabic words tend to be
more prominent than the monosyllabic words (see table 3.3). However, there is more
variability within word classes. The difference between polysyllabic words and
monosyllabic words is statistically significant (p < 0.005, tested with a student t-test
for two samples) for Conjunctions, Prepositions, Pronouns, Verbs, Adverbs, and
Nouns. Adjectives, Numerals and Auxiliary verbs are exceptions and there are no
polysyllabic words at all in the class of Articles or Negations. The differences
between polysyllabic and monosyllabic words are largest within Verbs, Adverbs,
Conjunctions (only 15 polysyllabic words) and Pronouns.

Table 3.3: Mean prominence value, standard deviation and median value of
prominence broken down by word length (number of syllables).

Prominence
Word length (num syll.) Number Mean Median Std. Dev.

1 7751 14 0 2.7
2 2769 44 4 3.4
3 1571 5.5 6 3.0
4 729 5.9 6 2.8
5 241 6.1 6 2.3
6 57 6.4 7 24
7 1 7.0 7 -
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Table 3.4: Mean, median and standard deviation of perceived prominence of
poly- versus mono-syllabic words per word class.

Number Mean Median Std Dev.

Article Mono 1912 0.15 0 0.79
Poly - - - -
Auxiliary verb Mono 601 0.32 0 1.16
Poly 107 0.46 0 1.25
Conjunction Mono 419 0.32 0 0.86
Poly 15 3.73 3 3.01
Preposition Mono 1628 0.31 0 1.10
Poly 167 1.64 0 2.60
Pronoun Mono 947 0.86 0 2.12
Poly 174 5.28 6 3.23
Verb Mono 573 1.43 0 2.60
Poly 1161 3.24 2 3.11
Adverb Mono 496 2.83 1 3.26
Poly 269 5.47 6 3.33
Noun Mono 685 4.92 5 3.04
Poly 2488 5.77 6 2.72
Numeral Mono 152 5.70 6 298
Poly 175 5.70 7 3.25
Adjective Mono 165 6.30 7 2.94
Poly 812 6.29 7 2.83
Negation Mono 173 6.17 7 3.09
Poly - - - -

The finding that polysyllabic words are generally perceived as more prominent may
be connected to the ‘metrical weight” of a word (Helsloot, 1995). The more syllables
a word contains, the more weight this word carries in the utterance. Thus, the larger
the metrical weight, the greater the possibility that the word will be prominent. This
is especially true for Pronouns, Verbs, and Adverbs, which is shown in table 3.4
above. Figure 3.4 illustrates this even more clearly. We left the word class
Conjunctions out of this figure because of the low number of occurrences of
polysyllabic Conjunctions. The three word classes Pronouns, Verbs and Adverbs
belong to the middle range in the ‘hierarchy of prominence’. They belong to the
group of words that are sometimes prominent and sometimes non-prominent. A
distinction between polysyllabic and monosyllabic words may explain some of this
behavior. Histograms for monosyllabic and polysyllabic words for these three
groups are given in figure 3.4. Within a word class the percentages of a subclass
(poly- or monosyllabic) add up to 100%. Most monosyllabic words lie in the lower
range of the prominence scale, whereas the polysyllabic words are more evenly
spread across the scale. The polysyllabic Pronouns and Adverbs move higher up the
scale.
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monosyllabic Pronouns, Verbs and Adverbs. The absolute numbers are given
in table 3.4.
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In conclusion, monosyllabic Pronouns, Verbs and Adverbs carry more often low
prominence in comparison with polysyllabic ones. Such differences between
monosyllabic and polysyllabic words will be used in a heuristic rule system to
predict prominence values from textual information.

3.3.4 Relationship between the position of a word in a sentence and prominence

Figure 3.5 shows a histogram in which the first content word in a sentence and other
content words occurring at other places are displayed separately for prominence
distribution.

Percentage

Figure 3.5: The prominence distributions of content words that occur at the
beginning of a sentence as opposed to those occurring at other places in the
sentence.

If words in the Noun, Adjective, Numeral, and Negation classes are placed at the
beginning of a sentence, they tend to carry greater prominence than when placed at
the middle and / or end of a sentence. The fact that these words are generally more
prominent at the beginning of the sentence than at the end may be connected with
the specific material we use. The first word carrying information is predetermined to
be more prominent in sentences that are read aloud out of context, whereas in
sentences with contextual information this may not be the case. This observation
shows that rules for prominence prediction can be made optimal for a specific type
of speech material, but on the other hand may also be unique for that material.

3.3.5 Adjective-Noun combinations and prominence

Of the total number of words in the training set of 1244 sentences, 24% are Nouns.
This large group is spread over the whole range of the prominence scale, as shown
in figure 3.3. There is a lot of variation within this word class. Some of this variation
can be explained by taking a closer look at the combinations in which Nouns occur.
The Adjective is much more prominent than the Noun in combinations where an
Adjective is immediately followed by a Noun. Table 3.5 gives the mean, median and
the standard deviation of prominence for the number of times Adjectives-Noun
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Table 3.5: The number of occurrence as well as the mean, standard deviation
and the median prominence value for Adjectives and Nouns found in
Adjective-Noun combinations, and Adjectives and Nouns found in all other

combinations.
Number Mean Median  Std. Dev
Adjectives followed by a Noun 242 6.66 7 2.75
Nouns preceded by an Adjective 242 3.66 3 2.24
Adjectives in all other combinations 735 6.18 7 2.87
Nouns in all other combinations 2931 5.74 6 2.79

combinations, and Adjectives and Nouns occurring in all other combinations. The
mean prominence values for Adjectives followed by a Noun (6.66) and in all other
combinations (6.18) are more or less the same, as displayed in table 3.5. Nouns
present a different story. The mean prominence values for Nouns when preceded by
an Adjective (3.66), are much lower than the mean prominence values for the
remaining Nouns (5.74), indicating that Nouns in such a combination are less
prominent. The distributions of these two groups of Nouns are shown in figure 3.6.
These two distributions do not correspond and confirm that the mean prominence
values differ. These data show that the subgroup of 242 Nouns preceded by an
Adjective could be predicted with greater accuracy.

It must be said that 242 Nouns is only about 8% of the total found in the training
material, and about 2% of the total number of words. Whether or not this
relationship can be formulated into a simple rule still needs to be tested and if so,
also whether this rule improves prominence prediction.

W Nouns in other combinations

& Nouns preceded by an Adj

20

Percentage

Figure 3.6: Distribution of Nouns, separated for Nouns which are immediately
preceded by an Adjective and Nouns occurring in other combinations.
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3.3.6 Algorithm with lexical / syntactic input for prominence prediction

In the preceding sections several relationships were presented between textual
information and perceived prominence for a considerable total of 1244 sentences.
There is a relationship between word classes and prominence. Function words are
generally perceived as less prominent, whereas content words are perceived as very
prominent. Words belonging to the word classes of Pronouns, Verbs and Adverbs
are generally found in the middle of the prominence scale. We also discovered that
the larger the number of syllables, the higher the mean prominence rating of that
word. Furthermore, we saw that the first content word in a sentence was often
perceived as very prominent. The Noun is generally less prominent in Adjective-
Noun combinations than when found in other combinations. All this information has
been used to devise an algorithm to predict prominence from text. This algorithm is
based on a number of simple heuristic rules.

The following section describes how the relationship between lexical and syntactic
information derived automatically from texts, and the prominence marks of the
naive listeners will be combined into a set of heuristic rules for automatic
prominence prediction.

To predict prominence by using the rules developed in this study, we devised a
system similar to a ‘metrical grid’. Units of words were put in a grid and then each
word could be marked for prominence on different levels. The words can receive
marks, which are indicated by an ‘x’, by applying various rules. After applying these
rules. the grid is filled with marks (x) and consequently a prominence grid pattern
emerges. Our rule system, described in more detail below, predicts up to four marks
per word. The rules work additively, as will be clear from the example below.

Two heuristic rules can be formulated that reflect the general relationship between
word class and prominence:

rulel : each content word receives one mark;
rule Il : each word from the classes {Noun, Adjective, Numeral, Negation}
receives an additional mark;

As an example of how these and subsequent rules are applied, we use one sentence
from Polyphone: Ik luisterde hoe de wind blies (I listened how the wind blew). We
used a notation system similar to the metrical grid representation. In this example
the words luisterde (Verb), hoe (Adverb), wind (Noun) and blies (Verb) receive a
mark according to rule I, indicated by an x. Rule I gives the Noun wind an
additional mark.

rule I1 X
rule I X X X X
luisterde




LEXICAL AND SYNTACTIC CORRELATES OF PROMINENCE 59

The difference between polysyllabic and monosyllabic words should also be
included in our set of rules. A simple suggestion would be that all polysyllabic
words receive an additional prominence mark. Rule ITla could then be formulated as
follows:

rule IIla: each polysyllabic word receives an additional mark;

Variations to this rule are possible. The difference between polysyllabic and
monosyllabic words is largest for Pronouns, Verbs and Adverbs (for more details
see table 3.4). A variant could thus be that only polysyllabic Pronouns, Verbs and
Adverbs receive an additional mark. In this way, applying the rule would put
polysyllabic Pronouns, Verbs and Adverbs at the same prominence level as
Negations, Numerals, Adjectives, and Nouns, and they would receive an extra mark
according to rule II. The prominence prediction of polysyllabic Adverbs and
Pronouns with 5.47 and 5.28 mean perceived prominence, respectively, would then
be the same as for Negations (6.17), Numerals (5.70), Adjectives (6.29), and Nouns
(5.77). However, the actual mean prominence value for the largest group of
polysyllabic Verbs is only 3.24. An additional mark is given to these Polysyllabic
Verbs to avoid including these polysyllabic Verbs into one group with the other
highly prominent words. Rule IIIb is thus reformulated in the following way:

rule IIb: each polysyllabic word from the classes {Pronoun, Verb, Adverb}
receives an additional mark, and each word from the classes
{Noun, Adjective, Numeral, Negation} receives an additional
mark;

A third variant is also possible. The difference between polysyllabic and
monosyllabic words is statistically significant only for Conjunctions, Prepositions,
Pronouns, Verbs, Adverbs, and Nouns. The difference is not statistically significant
for Auxiliary Verbs, Adjectives and Numerals (see section 3.3.3). There are no
polysyllabic words at all among our Negation class and Articles in our corpus. So
the third variant of rule IIl would be that all polysyllabic words except Articles,
Numerals, Negations and Adjectives receive an additional mark. All Adjectives and
Negations must also receive an additional mark or else they would belong to the
same predicted prominence level as the monosyllabic Nouns. This brings about the
formulation of the third variant of rule II as follows:

rule Ilic: each polysyllabic word from the classes {Conjunction,
Preposition, Pronoun, Verb, Adverb, Noun} receives an additional
mark, and each word from the classes {Numeral, Adjective,
Negation} receives an additional mark;

The next step is to determine which of the three variants most accurately predicts
prominence. In our example the three variants differ in their prominence prediction
for the monosyllabic Noun wind. The Noun ‘wind’ receives an extra mark only
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when the IIIb rule is applied. The polysyllabic Verb luisterde receives an additional
mark from all rules (IIla, IIIb or Ilic).

rule ITI X (x)

rule II X

rule I X X X X
Ik luisterde hoe de wind blies

Rule IVa is derived from our discovery that the first content word is more prominent
than the other content words.

rule IVa: the first content word in the sentence receives an additional mark;

Variants of rule IV are also possible. One possibility would be to upgrade the first
word predicted with two or three marks with one additional mark. Nouns, Numerals,
Negation and Adjectives, plus polysyllabic Verbs and Adverbs belong to the group
of two- or three-marks words.

rule IVb: the first word in a sentence with two or three marks receives one

additional mark;

rule IV X

rule Il X x)

rule I X

rule I X X X X
Ik luisterde hoe de wind blies
0 8 0 0 7 2

The result is that the Verb luisterde receives an additional mark from both rules IVa
and I'Vb and receives three marks in total.

The last rule we can formulate concerns the Adjective-Noun combination. As
described in section 3.3.5, Nouns preceded by an Adjective are perceived as less
prominent than Nouns found in other combinations. This then becomes rule number
V for prominence prediction:

rule V: every Noun immediately preceded by an Adjective loses one mark;
Such an Adjective-Noun combination does not occur in our example sentence.

The perceived prominence values are given in the last row in our example sentence
above. The two words luisterde and wind carry perceived prominence values of
eight and seven, respectively. So in our example the words predicted with high
prominence agree with highly perceived prominence. This is partly true for the less
prominent word blies. This monosyllabic Verb blies, and the monosyllabic Adverb
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hoe receive only one mark, but the prominence values are two and 0. As expected,
the words with no marks at all are not perceived as prominent. All formulated rules
are summarized below:

rulel: each content word receives one mark;

ruleIl: each word from the classes {Noun, Adjective, Numeral, Negation}
receives an additional mark;

rule ITla: each polysyllabic word receives an additional mark;

OR  rule ITIb: each polysyllabic word from the classes {Pronoun, Verb, Adverb}
receives an additional mark, and each word from the classes
{Noun, Adjective, Numeral, Negation} receives an additional
mark;

OR rule Illc: each polysyllabic word from the classes {Conjunction,
Preposition, Pronoun, Verb, Adverb, Noun} receives an additional
mark, and each word from the classes {Numeral, Adjective,
Negation} receives an additional mark;

rule IVa: the first word content in the sentence receives an additional mark;

OR rule IVDb: the first word in a sentence with a level two or three mark receives

an additional mark;
rule V:  each Noun preceded by an Adjective is decreased by one mark;

The variants of rules IIl and IV are indicated with a, b, and c.

The application of these rules was partly demonstrated in an example in the previous
sections and results in a prominence prediction system that predicts five levels of
prominence on a scale from 0 to 4. The rules divided the words of each sentence into
different groups. With the different variations of rules IIl and IV, six different
combinations of rules can be put together. In order to get an optimal combination of
rules, these different sets must be tested to find out which one is the most effective
in predicting prominence. The different sets of rules are defined as follows:

Set A: rulel rule I rule IMa rule IVa rule V
Set B: rule I rule I rule OIb rule IVa ruleV
Set C: rule I rule IT rule ¢ rule IVa ruleV
Set D: rule I rule I rule ITla rule IVb rule V
SetE: rule 1 rule T rule ITTb rule IVb ruleV
Set F: rule I rule II rule ITlc rule IVb ruleV

Firstly, the various subsets that receive different numbers of predicted prominence
marks must be made more clearly visible. It is difficult to see which set of words
receives which number of marks, by applying the rules used in the various subsets.
In Appendix table A 3.1, the subgroups of words receiving a given number of marks
are presented. For instance, when applying rule set B or E, the function words
receive no mark, but by applying set A or D only the monosyllabic function words
receive no marks.

All rules described above were put into a simple algorithm in which the following
textual input features are used:
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-Part-of-Speech

-number of syllables in a word
-Adjective-Noun combinations
-position of the word in the sentence

This algorithm, in which the various rules are implemented automatically, assigned
prominence marks to the training set. In order to effectively compare the results of
each set of rules with the perceived prominence, a means of comparison must be
found.

Basically, there are two problems. First, we want to compare different scales with
each other. Secondly, sentences contain a different number of words; the greater the
number of words in a sentence the higher the probability of error. Additionally, we
want to compare the prominence contour of a sentence and not a comparison of
individual words.

The predicted prominence values and the perceived prominence judgments were
divided by their maximum scale value, being here 10 or 4, respectively. The result
was that all values lic between 0 and 1. The total perceived prominence within a
sentence was used for length normalization. The predicted prominence values were
divided by this total. This allowed us to compare sentences of different word length
with each other. Using this total (and not, for instance, the number of words per
sentence) makes that falsely predicted prominence weighs more than falsely
predicted non-prominence. The sum of the absolute differences per word is a value
describing the goodness of fit. If predicted and perceived prominence fit perfectly,
this value equals 0.

An example:
step I: Maximum
Predicted number of marks (set B) 0 3 1 0 2 1 4
Ik luisterde hoe de wind blies
Perceived prominence 0 8 0 o0 7 2 10

Each prominence value, predicted and perceived, is divided by the maximum of its
scale. All values then lay between 0 and 1.

step II: Total
Predicted number of marks (setB) 0  0.75 025 0 0.50 0.25

Ik luisterde hoe de wind blies
Perceived prominence 0 0.8 0 0 07 0.2 1.70

Each value, predicted and perceived, is divided by 1.7, which is the sum of the
prominence judgments, in order to fit the scales for the number of words and the
number of prominence judgments and to allow comparison over sentences.

step I:
Predicted number of marks (set B) 0 0.44 015 0 029 0.15
Ik luisterde hoe de wind blies
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[Perceived prominence 0 047 0 0 041 012 |
The absolute difference between the scaled predicted and perceived prominence
gives an indication of the goodness of fit.

step IV: Total error
Ik luisterde hoe de wind blies
Difference 0 0.03 015 0 0.12 0.03 0.33

The total error of this example sentence is 0.33. Mean values of this goodness of fit
could be calculated for each rule set by adding all values of each sentence and by
dividing them by the total number of sentences.

The value of the worst fit depends on the total number of judgments given per
sentence. This kind of normalization weighs correct prediction of highly prominent
words and of non-prominent words in the same way.

The mean goodness of fit values of the prominence prediction over all training
sentences are given in table 3.6. This table shows the effect of each rule
incrementally: going from left to right an increasing number of rules were applied to
obtain the prominence prediction. Only rules ITI and IV exist in more than one form
and they vary depending on the set used. Consequently, rules I and II give the same
match of perceived prominence and predicted marks for all sets. The results show
that the more rules are applied, the better the fit is and this is true for all sets. Up to
Rule III set B (0.821) and set E (0.821) are the best. Rule III b was applied in these
sets. Rule Il b only gives an extra mark to polysyllabic Pronouns, Verbs, and
Adverbs. Up to Rule V set B is the best (0.616). Rule IVa (see rule distributions
above) fits the perceived prominence judgments better and accordingly, set A
(0.638), B (0.635) and C (0.639) are better than sets D (0.652), E (0.649), and F
(0.652). This means that upgrading the first content word in a sentence results in a
better fit than upgrading words that already have two or three marks. However, it
must be mentioned that the different variants of Rule III and Rule IV do not bring a
lot of improvement. Each additional rule improves the fit more than applying

Table 3.6: The mean normalized error of the different sets of rules applied to
the training set. The rules are incremental, which means, for example, that
values for + rule III are values for a prediction in which rule I, rule II and rule
IH were applied.

RuleI +Rulell +Rulelli(a,b,c) +RuleIV(a,b) +RuleV

SetA 1.130 0.873 0.829 0.638 0.619
SetB  1.130 0.873 0.821 0.635

SetC  1.130 0.873 0.827 0.639 0.619
SetD 1.130 0.873 0.829 0.652 0.628
SetE  1.130 0.873 0.821 0.649 0.625

SetF 1.130 0.873 0.827 0.652 0.629




Table 3.7: Absolute number of predicted prominence marks applied by the
rules of set B crosstabulated against the prominence judgments of the
listeners. The gray cells indicate the diagonal.

Perceived Predicted prominence marks
Prominence 0 1 2 3 4 Total
0 528 438 87 10 5977

1 195 311 135 13 1162
2 110 - 259 184 15 679
3 51 236
4 48 60 it
5 23 72
6 27 79
7 34 97
8 32 96
9 34 97
10 15 60
Total 5796 1480 2430 2673 740 13119

different variants of one Rule. Rule V improves the fit substantially, and the final
result is that set B is the optimal solution to predict prominence on the basis of
textual information only.

We will take a closer look at the results of the optimal set B. The resulting predicted
prominence has been compared with the prominence judgments of the listeners and
is presented in table 3.7, table 3.8 and in figure 3.7. Tables 3.7 and 3.8 present
absolute numbers and relative numbers, respectively. The cells should be clustered
around the main diagonal of the confusion matrix for an optimal prediction. The
cells at the extremes of the prominence scale are more clustered around the diagonal
than the middle prominence classes. The number 4914 given in the first cell in table
3.7 represents 82.2% of the total number of 5977 words never judged as prominent.
These percentages are presented in table 3.8. More interesting is the second cell of
the first row in table 3.7, which shows the number 528. The largest number of words
with the prominence prediction of only one mark fall in this cell, but it is only 8.8%
relative to the total number of words with a degree 0 prominence as presented in
table 3.8. For the words with some degree of perceived prominence the quantities
are more evenly distributed over the matrix. Only 118 of the 518 words that were
perceived as highly prominent (marked as prominent by all ten listeners), were
correctly predicted with four marks, which is 22.8%. The words with prominence
degrees of 8 and 9 were predicted correctly (prominence mark 4) 160 times out of
802 (20.0%) and 175 times out of 739 (23.7%) respectively. Words with three
predicted marks are distributed over the whole perceived prominence scale. The
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Table 3.8: Matrix of relative numbers (percentages) of predicted prominence
marks applied by set B with respect to the number of prominence judgments

of listeners.
Perceived Predicted prominence marks
Prominence 0 1 2 3 4 Total
0 . 8.83 7.33 1.46 0.17 100
1 - 16.78 26.76 11.62 1.12 100
) 38.14 27.10 2.21 100 1
g 39.66 34.79 2.69 100
4 8.19 :
5 3.81
6 4.19
7 4.18
8 3.99
9 4.60
10 2.90

predicted prominence class with three marks covers perceived prominence classes
from 11.6% for perceived prominence scale 1, up to 46.9% for perceived
prominence scale 7. Fortunately, only 1.5% of the non-prominent words were
marked with three marks. The cells for one and two predicted marks are more filled
at the lower part of the prominence scale, and there is less spreading.

Figure 3.7 presents the relative numbers of predicted prominence over the perceived
prominence degrees. Each column presents one perceived prominence degree and

EB0Marks E1Marks B2Marks [@3Marks W4 Marks

Percentage

Prominence

Figure 3.7: Predicted prominence values (set B) in comparison with the
prominence judgments of listeners.
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Table 3.9: Absolute number of occurrence, as well as mean, median and
standard deviation of the perceived prominence per predicted mark.

Predicted prominence Number Mean Median Std. Dev.
0 5796 0.40 0 1.36
1 1480 3.15 2 3.40
2 2430 3.84 3 3.09
3 2673 5.85 6 2.77
4 740 7.50 8 2.25

the total of each column is 100%. The total number of words with perceived
prominence degree can be looked up in table 3.7. For instance, 603 is the total
number of perceived prominence at degree five. Figure 3.7 presents in principle the
same data as presented in table 3.7. However, the data are presented as a diagram to
illustrate more clearly that the extreme categories (no mark at all and four marks) are
indeed found on the extremes of the perceived prominence scale, whereas words
predicted with three marks are spread over the whole perceived scale.

Generally, the mean perceived prominence values agree with the predicted ones, but
the standard deviation is still high. These values are given in table 3.9. The mean
prominence value of the words marked with four marks is 7.5. These data reflect
once more that the prediction of highly prominent words corresponds with the
perception of the listeners. For the sets of words with one or two marks the mean
prominence values are 3.15 and 3.84, respectively. For this set the standard
deviation is the highest. The high standard deviation shows that more analysis will
be needed to lower the large spreading. Maybe a more detailed look at the subgroups
of Pronouns, Verbs and Adverbs, e.g. possessive Pronouns or relative Pronouns, will
give indications of how to lower further the standard deviation. These values do not
indicate that these sets should necessarily be treated as separate prominence
categories.

Table 3.10: Absolute numbers of predicted prominence marks, relative to the
total number of predicted marks within one class put in the prominence
classes derived from the perceived prominence scale.

Perceived Predicted prominence marks

Prominence class 0 1 2 3 4 Total
0 4914 528 438 87 10 5977
I 618 306 570 319 28 1841
n 149 296 838 1014 132 2429
11 115 350 584 1253 570 2872

Total 5796 1480 2430 2673 740 13119
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Table 3.11: The results of prominence prediction based on textual information
for the training set. The predicted prominence marks and the perceived
prominence classed have been agglomerated. The percentages of correct
prediction are given in the last column.

Perceived Predicted prominence marks % correct
prominence class 0+1 2+3+4 Total 82.0
0+I1 6366 1452 7818 81.4
o+ 910 4391 5301 82.8
Total 7276 5843 13119

Using the clustered prominence categories rather than the original scores from 0 to
10 might be an advantage. This is discussed below.

The overall performance of predictive rules of set B for the training set of 1244
sentences is presented in table 3.10 and table 3.11 for two clustering methods. The
original perceived prominence rate is chunked into four classes by means of
hierarchical cluster analyses. (For details see, section 2.4.1.3.) Table 3.10 thus
presents a 4x5-table, in which the non-prominence classification shows quite good
performance: 4914 of the 5977 words are classified correctly. Prominent words
cause more problems. Only 570 of the 2872 prominent words are classified with
four marks, and the prediction in the middle prominence categories is even lower.
However, by putting these data into a simple 2x2-table a classification rate of 82.0%
correct can be achieved, see table 3.11. In this table it is also specified which
categories are put together in the dichotomy between non-prominent and prominent.
As a conclusion we can say that the prediction of prominence is accurate for the
extremes of the prominence scale, but that the middle section of the scale is much
more difficult to predict. The following section deals with testing the prominence
prediction rule on the independent test set.

3.4 Independent test of the prominence assignment rules

The algorithm for prominence prediction was tested on an independent test set of
1000 sentences. The same parser used for the training data automatically tagged
POS labels for these sentences as well (see section 3.3.1 for more detail). With the

Table 3.12: Perceived prominence and predicted prominence marks for the

independent test set.
Perceived Predicted prominence marks
prominence 0 1 2 3 4 Total
0 4001 841 930 516 44 6332
1 180 272 1284 1709 553 3998

Total 4181 1113 2214 2225 597 10330




Table 3.13: The predicted prominence marks and the perceived marks and an
overall result in percentage correct.

Perceived Predicted prominence Total % correct
prominence 0+1 243+4 - 81.2

0 4842 1490 6332 76.5

1 452 3546 3998 88.7
Total 5294 5036 10330 -
Measure of agreement (x) 0.62

help of the automatically derived word class labels, the number of syllables in each
word, and the position of the word in the sentence, the various prominence levels
were predicted according to optimal rule set B, as described in section 3.3.6. In order
to test the generalizability of our set of rules, it is necessary to predict prominence
on an independent test set. The procedure for matching predicted and perceived
prominence for the test set shows differences with that for the training set. Only
binary judgments of the ‘optimal’ listener are available for the test material. The
prominence prediction on a 5-point scale and the prominence judgments of the
optimal listener had to be matched, as presented in table 3.12 or as presented in 3.13.
The middle section of the predicted prominence scale was distributed over
prominence and non-prominence. Table 3.12 shows that prominence prediction with
mark four is rare, but if it occurs then the word is almost always perceived as
prominent as well. Similar to table 3.11, we also reduce for these independent test
data the number of predicted categories from 5 to 2. A direct comparison with the
binary perceptual scores then becomes possible. We observed to our satisfaction that
the overall performance, even on this independent test set, can reach 81.2% correct
classification. The exact data are given in table 3.13. As the data for the test set are
derived from a single listener, it is possible to calculate the agreement between this
optimal listener and the prediction achieved through the use of rules based on textual
input. The resulting Cohen’s Kappa of 0.62 is, in fact, better than the between-
listener agreement, with a mean Kappa of x = 0.50 (St. Dev. = 0.16).

3.5 Discussion and conclusion

In the previous sections, we have shown that it is possible to predict perceived
prominence with an accuracy of 81.2 % on the basis of textual information only. The
advantage of this kind of prediction is that most of the required information can be
derived automatically. The prominence prediction is used on the following text
features:

-Part-of-Speech
-number of syllables in a word
-Adjective-Noun combinations
-position of the word in the sentence
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The agreement between the automatic prominence prediction and the optimal
listener may not seem high (x = 0.62), but is higher than the agreement between
listeners (mean x = 0.50). The performance on the training set is 82.0% correct
classification (binary: in terms of prominent / non-prominent). With the present
analysis of the data, appropriate rules have been formulated. These rules are simple
and intuitively appropriate. A disadvantage is that some rules may be specific for the
particular types of sentences used in this experiment. It could be the case that for a
different type of speech material a different set of rules must be formulated.

In accordance with Fackrell et al. (2000), there is much prosodic variation between
different text types. It is, for instance, very well possible that rule IV (every content
word at the beginning of a sentence receives an additional prominence mark) is
specific for this type of speech material. In the material we used, all sentences were
read aloud without context, so it is possible that most speakers felt the need to
highlight the first word carrying some kind of information. Given a text type one
may be able to formulate text-specific rules and consequently to improve
prominence prediction.






ACOUSTIC CORRELATES OF
PROMINENCE!

Abstract

This chapter discusses the acoustic correlates of prominence, how to measure them,
and how to extract them automatically from the speech signal. The chapter is
structured in the following way: first a general description of acoustic correlates is
given, followed by a detailed description of the relevant literature concerning
automatic feature extraction. Then, an acoustical analysis of the speech material
used in this study is given. The analysis mainly concerns the 1244 sentences that
have already been marked for prominence (see chapter 2). Special attention is paid
to the automation process of feature extraction.

! Parts of this chapter were published in Streefkerk et al. (1998), Streefkerk et al.
(1999 a), Streefkerk et al. (1999 b) and Streefkerk et al. (2001).
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4.1 Introduction

Information available about (the degree of) prominence can be used in several ways.
For example, automatic prominence labeling may be useful for speech recognition
applications, as it may provide additional information to the recognition process.
The degree of prominence of a word may help to identify if a word is important for
the communication processes or not. Additionally, prominent words can be used as
islands of reliability. The tool, if fed with relevant acoustical information, assesses
the degree of prominence of each word in the sentence. In principle, each word in a
sentence can carry prominence, so for such an application the a priori probability as
found in the training material is the basis of the assessment.

For instance, in dialogues, a useful application of prominence is to distinguish
between sentences that contain the same words, of which the meaning changes with
a shift in the position of prominence from one word to another: “voor INstappen”
(for getting on) versus “VOOR instappen” (get on at front), or an English example
“in CAPable hands” versus “INcapable hands”. For disambiguation it is important to
know which of the two relevant words (or syllables) is the most prominent one. Out
of context those words (or syllables) have statistically the same chance of being the
most prominent one.

Having these two applications in mind, this chapter concentrates on acoustic features
that indicate the nature of prominence (as judged by naive listeners). In other words,
the main problem in this chapter is how to extract relevant acoustical cues from the
speech signal and to study their distribution over prominence classes. In chapter 5 a
selection of these acoustic features will be used as input to a neural network for
prominence classification.

4.1.1 General description of possible acoustic correlates

Prominence marking, as defined in chapter 2, is a perceptual labeling process
performed by humans. This process establishes correlates by using the speech signal
(acoustic correlates) and knowledge of the language (here operationalized as textual
correlates). The prominence correlates related to text were described in chapter 3,
whereas the main topic in this chapter concems the acoustical cues of prominence.
In finding acoustic correlates we are faced with three main problems.

Prominence may be manifest in terms of a speech segment being louder, longer,
more clearly pronounced, and containing pitch level changes. These are all
perceptual / articulatory terms and are therefore difficult to measure from the speech
signal. However, it is possible to measure physical characteristics in the speech
signal. Following this line the first problem is to associate these perceptual /
articulatory terms with acoustical measurements.

The second problem concerns the fact that prominence is always relative to its
environment, and that measurements must take into account this relativity.

A third problem for this type of research concerns the unit (word, syllable, phoneme)
of speech to be measured.
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Numerous studies give evidence for several acoustic correlates of prominence.
Generally, the following acoustic features can be associated with prominence:

- Fo(Hz)

- duration (s)

- intensity (dB)

-  spectral characteristics

Various remarks concerning these acoustical measurements can be made. In general,
change in Fo, which is perceived as rising or falling pitch movements, cause words
to be perceived as being more prominent than other words in which smaller or no
changes in F, are measured. In several studies it has been confirmed that, for
instance for English and Dutch, changes in F, are the most important tool in marking
words for prominence (Ladd, 1996; 't Hart et al., 1990; Lehiste, 1970; Bolinger,
1958). Changes in F, are not absolutely related to the phenomena of prominence;
they depend on the type of movement (rising and falling pitch movements in terms
of the IPO intonation grammar (Hermes & Rump, 1994)) and must be interpreted
relatively within one utterance (Terken, 1996; Hermes, 1995; Hermes, 1991).
Adjacent pitch movements can also influence the prominence perception (Ladd et
al., 1994). F, changes must be seen as relative to several factors: to the changes
found in neighboring words, to the beginning or the end of a sentence ('t Hart et al.,
1990), and to the speaker (Gussenhoven & Rietveld, 1998; Kraayeveld et al., 1991),
and his / her emotional status (e.g., angry speakers general produce larger changes in
F, than speakers who are bored (Mozziconacci, 1998)).

All these factors influence F,. In our study we do not only have to cope with the
factors mentioned above, but also with the restriction that the labeling / classification
process, including the feature extraction itself, must be done automatically. Firstly,
the F, measurement itself often introduces octave errors. Secondly, for our research
we can only correct for factors that are automatically available, for instance,
information about the vowel identity is available for our type of speech material, but
the emotional status of the speaker is not.

The research described above concentrates on the shape of the Fy-curve, and not on
the feature extraction in the individual syllable or word. Striking changes in the Fy-
curve have been assigned to words (or syllables) later. Such research highly depends
on a good F, measurement algorithm, whereas a proper alignment with the words
(syllables) is also a complicating task. In our research we want to concentrate on the
more local acoustic features, which can be found in the individual syllables or
words. Our approach will be to find in the appropriate syllable (or word) features
that will provide information of the prominence of that syllable (word) and,
furthermore, will be suitable for an automatic classification task.

According to the literature the duration of the various speech units (words, syllables,
phonemes) is also related to prominence. Generally, a long syllable or vowel
duration corresponds with increased prominence, but this duration also depends on
several other factors: the speaking rate, lexical stress, intrinsic segment properties,
the number of segments that constitute a syllable and / or 2 word, finality (Cambier-
Langeveld, 2000), and the following segments. In the acoustical analyses of this
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chapter it must be investigated for which of these factors normalizations are helpful
in order to have proper durational features of prominence.

The intensity of the vowels and / or syllables is reported in the literature as being
important also for prominence, but there are also several other factors, which
influence the intensity of vowels and syllables. First, there is lexical stress, which is
basically a property of the lexicon, and influences the intensity of the whole syllable
and especially the intensity of the vowel (van Kuijk & Boves, 1999; Sluijter & van
Heuven, 1996). Second, there is the intrinsic intensity of vowels: open vowels are
more intense than closed vowels (Lehiste & Peterson, 1959). A third point that has
to be taken into account concerns sentence finality: the intensity decreases towards
the end of a sentence.

The last notable acoustic correlate concerns the spectral characteristics of the vowel
and / or consonants. The phenomenon of spectral reduction of vowels (F1 / F2
values shift to the middle of the cardinal vowel diagram) related to prominence is
discussed in van Bergem (1993). Spectral reduction of consonants is related to the
spectral center of gravity (the ‘mean’ frequency in semi-tones, weighted by spectral
power), see van Son & Pols (1997).

The possible acoustic correlates of spectral characteristics will not be dealt with in
this study, partly because the quality of recording over the telephone is probably not
good enough to permit the measurement of reliable spectral characteristics, and
partly because the influence of other features is even bigger here.

4.1.2 Relevant studies on automatic feature extraction

Several studies discuss the prosodic notions of accentuation and phrasing and the
extraction of prosodic features. We here focus on the studies concemning automatic
prosodic feature extraction of accentuation and (lexical) stress in order to detect
prosodic properties related to the prominence of words and syllables. The selected
studies label accentuation differently: according to the IPO intonation grammar, or
according to the TOBI-label system (Taylor et al., 1998; Wright & Taylor, 1997;
KieBling, 1996; ten Bosch, 1993; Vaissiére, 1989). Other studies label their material
for focus (Petzhold, 1999; Heldner et al., 1999), or use the notion of prominence,
(e.g. Wightman & Ostendorf (1994) use prominence marks at the syllable level).
Related research concerns the automatic detection of (lexical) stress. In van Kuijk &
Boves (1999) an attempt was made to improve HMM speech recognition by lexical
stress recognition from acoustic features. Hand-labeled stress marks (unstressed,
stressed) are used in the research of Silipo & Greenberg (1999).

All these studies deal with automatic feature extraction for the detection of their
prosodic features. In the next paragraphs we will briefly discuss various approaches
to feature extraction. The results are not always comparable because of the
differences in the speech material used and differences in initial labeling.

Studies concerned with the automatic detection and classification of pitch accents
mostly concentrate on the shape of the Fo-curve (e.g., Taylor et al., 1998;
Maghbouleh, 1998; ten Bosch, 1993). The most striking rises and falls are the basis
for defining various features taken from the Fi-curve and their timing is generally
related to vowel onsets. No further lexical information is used. The correct
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recognition rate for a pitch / non-pitch accent decision for the two studies by ten
Bosch (1993) and Taylor et al. (1998) is 81% and 74%, respectively. Vaissiére
(1989), who also tried to classify the different types of pitch accent for different
speakers, already mentions that the surface realization of pitch accents differs widely
among speakers. Frid (2001) investigated and predicted intonation patterns in terms
H* L*. Via pitch contour stylization patterns of accented words were compared and
put into 30 classes, which makes clear that a lot of variation in the intonation
contour is possible. As indicated before, we thought that the concentration on the
shape of the Fo-curve is not a useful way to detect prominence automatically. From
the whimsical changes in the Fy-curve it is difficult to provide information about the
prominence degree of each individual word or even syllable. As said before we want
to concentrate on the features that are directly related to, and directly extractable
from, the word (or syllable) concerned.

KieBling (1996), who aims at the recognition of pitch accents, uses features
describing the Fo-curve as well as a large set of features concemning duration and
intensity, and all of these also with respect to the previous and following syllables.
He applied an effective method of making the absolute features relative to their
direct environment. Even lexical information, such as lexical stress or the identity of
the segments, or even the number of syllables in a word, was used. A total of 276
features per syllable were used for the classification task. The result for pitch / non-
pitch accent decision with this large feature set is rather good, namely 83% correct,
but, in our view, such a set of features is too large to analyze the specific
contribution of the separate features. In Batliner et al. (1999) this large number of
features is reduced to six, and they conclude that F, features are not more important
than intensity or duration features. These findings convince us that pitch accent is
not only achieved by accent lending pitch movements, but also by other acoustic
correlates such as duration and intensity. Batliner et al. (1999) used additional
information concerning the content-word / function-word distinction, lexical stress
features, as well as the number of syllables in a word.

The studies by Batliner et al. (1999) and KieBling (1996) show how difficult it is to
make clear what type of information (lexical / syntactic information or acoustical
information) is used for classifying pitch accent. It is certainly clear that the duration
of a word highly correlates with the number of syllables, and that the number of
syllables correlates with the content-word / function-word distinction. As function
words are less prominent than content words (see chapter 3) the type of information
is not clearly defined.

Wightman & Ostendorf (1994) discuss the recognition of initially hand-labeled
syllable prominence. They also use the syllable as a basic unit and extract different
features concerning Fy, such as the mean F, in a given syllable, the mean intensity of
a syllable, as well as features concerning the duration. Even pause duration is used.
These features are also used relative to the syllable before and after the current one.
Flags for lexical stress and finality of words were added to the feature set. They
obtain a recognition rate of 83% for the prominent / non-prominent distinction.
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The approach of Batliner et al. (1999), KieBling (1996) and Wightman & Ostendorf
(1994) is interesting for our type of analysis and classification because they give
several features describing the nature of pitch accent / prominence in the word (or
syllable) concerned. Corrections for other influential factors appear to be possible, as
well as a direct linkage to lexical information. In our research we will not take the
properties of the surrounding syllables into account, because an interpretation of this
relativity is difficult. These relative features prove to be very useful for a speech-
engineering approach of prominence classification. For our research high
recognition rates are not the only goal; we concentrate on the need to provide
phonetic insight about which features are important for prominence classification.
Which are the most useful features for our prominence detection and classification
of prominence will be analyzed in more detail in the following part of this chapter.

There are two other studies worth giving more detail: the study of Silipo &
Greenberg (1999) and that of van Kuijk & Boves (1999). The former authors
classified initially hand-labeled stress (primary, secondary, unstressed) with the help
of vowel measurements in a given syllable. They reached a recognition rate of 80%
for stressed syllables and 77% for unstressed syllables (the recognition rate of the
secondary stressed syllable is not reported), by using energy, mean F, value and
duration of the vowel. Van Kuijk & Boves (1999) described interesting acoustic
correlates for lexical stress (automatically annotated by means of a lexicon). They
tested different features, especially those concerning the duration and the energy,
such as the total energy of a vowel and the spectral tilt, and they used various
normalizations. A correct classification rate of 72% is reported. Interestingly, the
total energy seems to show high discriminability, but this is due to a combination of
two features as the total energy is directly related to the duration of a given sound.
An additional point is that most features show statistical differences for the stressed /
unstressed distinction and seem to be dependent of vowel type.-

In the speech material that we use in our own research there are several complicating
factors, which make the measurements more difficult than in some studies described
above:

- speaker variety
- different environments
- data recorded via the telephone

A further complicating factor is the fact that both the ‘basic’ acoustical measurement
(F,, duration and intensity) and the subsequent acoustic feature extraction must be
done automatically.

The goal of this automatic extraction of acoustic correlates of prominence is not only
to analyze which features are important for prominence and what are the relations of
the acoustic features is to each other (mainly the topic of this chapter), but ultimately
also to recognize prominent and non-prominent words automatically (as described in

chapter 5).
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4.2 Feature extraction

4.2.1 Segmentation and labeling of the speech material

The used speech material (Dutch Polyphone Corpus) has to be segmented into
words, syllables and phonemes, as otherwise duration is not measurable, whereas F,
and intensity otherwise could not be aligned to lexical umits containing lexical
information, such as vowel type or lexical stress. Of course it is known that
segmentation by hand is a very time-consuming procedure and that even hand
transcription shows certain systematic errors (Cucchiarini et al. 2001; Eisen &
Tillmann, 1992). However, we aim, as much as possible, to have automatic
procedures. Automatic segmentation facilitates the processing of large amounts of
speech material, but at the same time it introduces several types of errors. Some of
these errors are discussed later in this section, but first we will turn to the general
procedure for automatic segmentation of our speech material.

All the phonetically rich sentences from the Dutch Polyphone Corpus have been
orthographically transcribed, which means that it is known what the textual content
on word level of each given speech signal is. Background noise, non-speech sounds,
and noise from the speaker himself / herself (lip smacks) are labeled between
brackets. The example below shows one of the sentences recorded.

1) Hij heeft twee argumenten voor zijn stelling. (He has two argument for his
proposition) '

2) [mouth noise] hij heeft twee argumenten voor zijn stelling [bg_noise]

In the subsequent section this specific sentence serves as an example sentence. If a
speaker stutters then these hesitations are also described. Additional information
about hesitations, speaker and background-noises has been added by hand. The
enriched transcription will facilitate automatic segmentation. We realize, of course,
that in real speech technology applications, such a complete transcription is
generally not available. However, we used this kind of information in order not to
unduly complicate the segmentation problem.

The transcription of the sentence plus background noise and the noise from the
speaker is available for the speaker.

The phonetic transcription was added with the help of the standard pronunciation
lexicon of the Dutch language (CELEX). For each sentence the standard
pronunciation was looked up, resulting in a chain of phonemes, syllables and words
as presented in 3) below, which represents the normative phonetic transcription of
this sentence in SAMPA notation (see Appendix A 4.1).

3) [mouth_noise] HEi he:ft twe: AR-Gy-mEn-t@ vo:R zEin stE-IIN[bg_noise]
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We used an HMM speech recognizer to align the speech signal to the concatenated
sequence of phonemes. In this procedure there are, however, various sources of
error. First, the system supposes that the pronunciation will be the standard one,
which is improbable because of differences in speaking style, gender, and in the
regional background of the speakers. Second, although the alignment allows an
optional silence to be inserted between subsequent words; it is not possible to insert
or delete phonemes. In other recognizers alternative pronunciation possibilities are
sometimes implemented together with the possibility of making deletions and
insertions. However, such extensions may introduce complications, especially for
training the HMM-model, so we therefore opted for a simple variant.

In our example sentence the following problems occur: the two /t/’s in the two
connected words heeft twee (has two) are most probably reduced to one /t/. Within
words the pronunciation lexicon may solve such de-geminations. For instance, in the
word aannemen (take, accept) the two /n/’s are pronounced as one /n/, and CELEX
correctly transcribes this word as /a:-ne:-m@/. However, such assimilation and co-
articulation phenomena are not supported beyond word boundaries. Another
complication is the deletion of the /n/ at words ending with /@n/. This is a debatable
point. For the word argumenten (propositions) in our example 3), the lexicon
(CELEX) gives an obligatory n-deletion at the end of this word. Under certain
conditions and in certain regions of the country this /n/ deletion at the end of a word
may be correct, but there are regions in the Netherlands where this kind of deletion
is not common.

Other problems concern reduction, speaking rate, style etc. An example of reduction
is found with the possessive pronoun zijn (his). In example 3) this is transcribed as
/zEin/, however, it is often reduced to /z@n/.

There are several other problems one could think of, such as for instance in er was
eens ... (once upon a time), which forms the beginning of fairytales, and which
could be reduced to /WAz@z@n/ or even /WAz@s/ or /wWAs@s/. The frequent
insertion of a schwa in the word film (film), which is then pronounced as /fIl@m/ is
an example of an inserted phone, which is not represented in the canonical
pronunciation either.

We will next discuss the training of the HMM recognizer and we will compare the
automatic segmentation of the example sentence with the hand segmentation.

4.2.1.1 Training of the HMM-recognizer

About 4500 sentences (a subset of 3 CD-ROMs with the sentences of a total of 900
speakers) were used to independently train HTK an HMM recognizer®. The standard
pronunciation for these 4500 sentences was taken from CELEX. This resulted in a
chain of phonemes per sentence, which were used for training. The phone models of
this recognizer were used to localize the segment boundaries or, in other words, to
align the given string of phonemes. 38 different symbols (16 vowels and 22
consonants) were used for speech, mostly according to the SAMPA notation (see
Appendix A 4.1). This list of Dutch phonemes has been enlarged to include 5
symbols for noises and silence.

2 with the much appreciated help of Xue Wang (Wang, 1997)
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Figure 4.1: Oscillogram of the sentence Hij heeft twee argumenten voor zijn
stelling (He has two arguments for his proposition) with accompanying
automatic phoneme segmentation and the related syllable and word
segmentation tiers. The perceptual prominence scores on the word level are
indicated in the lowest tier.

In total 58 separate phoneme models were trained: 5 for non-speech, 16 models for
vowels, 15 additional models for vowels in stressed position (the schwa cannot
occur in a stressed position), and 22 models for consonants. In order to distinguish
these models, lexical stress is defined using CELEX, with an added restriction that
the function words as defined by van Wijk van & Kempen (1979)° never bear lexical
stress. With the analyses in chapter 3 the definition of function words could be
transformed into a more suitable one, as in principle only the segment boundaries
are definite.

Each phone model contains 5 states of which states 2, 3, and 4 contain a self-loop
and can be skipped. Each HMM state corresponds with a mixture of 8 Gaussian
PDF's (probability density function). The HMM models use 12 FFT-based MFCC
(mel frequency cepstrum coefficients) and the log energy as input vectors, which
results in 13 parameters per frame. The delta and delta-delta parameters are also
used. For each frame a hamming window of 25 ms is used and a frame shift of 10
ms. The minimum duration of each segment is 30 ms, as the duration of each frame
was 10 ms, and a minimum of three states per segment had to be visited.

4.2.1.2 Resulting segmentation

The automatic phoneme segmentation was done for the 1244 sentences from the
training set and the 1000 sentences from the test set. In the next step the syllable
boundaries (derived via CELEX), the word boundaries, and the given prominence
marks were added in the segmentation files. The segmentation of our example
sentence Hij heeft twee argumenten voor zijn stelling (He has two arguments for his
proposition) is shown in figure 4.1. For clarity, only the speech part of the whole

> The results in section 3.3.1 do suggest that, for instance, Negations require an independent class.
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sound file is given above; some mouth noise in the beginning of the sentence as well
as background noise at the end of the sentences has been cut out. The two debatable
segmentation points that were mentioned above in section 4.2.1, (namely the
possible junction of the two /t/’s between the words heeft twee (has two) and the /n/
deletion at the end of the word argumenten (arguments) can be checked in the
speech signal. A /t/ de-gemination over word boundaries is not present in this
specific sentence; the automatic segmentation even shows some silence between
these two words. The /n/ deletion at the end of the word argumenten does not occur
in this spoken sentence either, since it is clear that the marked schwa at the end of
the word is exceptionally long, and the oscillogram indicates that there are two
different speech sounds. Listening to the recording confirms that the /n/ was actually
spoken here.

4.2.1.3 Accuracy of the automatic segmentation

The accuracy of the automatic segmentation is difficult to test; one option might be
to compare it with a hand-segmentation of the same speech material. In automatic
segmentation there are at least two types of error sources. Firstly, in our automatic
segmentation we rely on the canonical pronunciation, which many speakers do not
realize because of regional, gender type, and / or speaking style differences.
Secondly, the segment boundaries set by the HMM recognizer can be inaccurate.
The question now is, which deviations are acceptable, and how can we make an
inventory of them. In order to bring more clarity the example sentence was
segmented by hand. Figure 4.2 below shows a comparison between hand and
automatic segmentation. A colleague independently performed the hand
segmentation. The exact position of most boundaries differs somewhat and in one
case an insertion has to be made. The /n/ at the end of the word argumenten
(arguments) is definitely spoken and must be inserted for a correct segmentation.
This error has consequences for the duration of the schwa and pollutes the
measurements. There might be other structural errors in the automatic segmentation
such as for the segmentation of vowel-like consonants (1, R, j). In automatic speech
the alignment takes up a greater part of the adjacent vowel as compared to hand
transcription. The /R/ in the word argumenten in figure 4.2 is an example of this.
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Figure 4.2: Hand-made segmentation (lower tier), in comparison with
the automatic segmentation (upper tier) plus the oscillogram.
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Although the automatic segmentation is far from perfect and structural errors cannot
be excluded, we nevertheless decided to use the automatic segmentation for the
following reasons: First, the main problem in this chapter is not only to find relevant
acoustic features, but also to automatize the whole process of measuring acoustic
features at the appropriate place in the speech signal, and to detect words with
different degrees of prominence. Furthermore, hand segmentation is time
consuming, which makes it difficult to segment large databases by hand. Therefore
automatic segmentation is the only reasonable option. However, the more structural
errors, such as the /n/ deletion, form a real problem, and it must be investigated to
what degree these errors obscure reliable measurement of acoustic features. Lastly,
the segmentation must also be done automatically in speech technology applications.
To indicate the quality of automatic segmentation we can refer to Wang (1997), who
compared the hand-labeled TIMIT database with the automatic segmentation
(similar to the one used in the present study). He obtained a correct score of 86.9%
within a 20 ms interval.

4.2.2 Acoustic correlates

In the next sections we will describe and discuss acoustic features of prominence.
All the acoustical measurements and analyses were done with the PRAAT software
package (Boersma & Weenink, 1996).

4.2.2.1 Unit selection

The sentences judged for prominence by ten listeners have been included in the
acoustical measurements. Details of these 1244 sentences are described in section
2.2.4. This set is called the training set. The acquisition of the prominence marks is
described and discussed in section 2.4. The clustering of the prominence marks as
presented there, is used in the current chapter, so the prominence scale from 0 to 10
(originating from the 10 listeners) is reduced by hierarchical clustering techniques to
a 4-point scale (see section 2.4.1.3), where III (score seven, eight, nine and ten) is
the highest prominence class, followed by II (score three, four, five and six) and I
(score one and two), with 0 (score zero) indicating no prominence at all. It is our
goal, in this chapter, to find the acoustic features that are correlated with these
prominence scales. These features allow us to distinguish between the four
prominence categories (I, IL, 1, 0), or, to make the training classes more distinctive,
between the two extremes of this scale (0 and II). For this purpose the 1244
sentences were used as the training set. The other set of 1000 sentences serves as a
test set (see section 2.4.2). As testing the relevance of the acoustic correlates is
basically the main topic of chapter 5, the data presented in the present chapter
mainly concern the training set of 1244 sentences.

The listeners assigned prominence at the word level. Measurements at this word
level might be advisable for F,'. However, the word unit may be too large to

‘ma pilot experiment some good results were achieved by taking the difference between maximum and
minimum F, within one word. This measurement proved to be a useful feature for prominence; more
details are described in Streefkerk et al. (1997).
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measure duration and intensity. For this reason we decided to use the syllable as the
basic unit to work with. If a word consists of several syllables it must be decided to
which of the syllables the unique prominence label should automatically be
allocated. We decided to use the criterion of lexical stress. Therefore, in a
polysyllabic word the syllable that carries the lexical stress is the target one.

Figure 4.3 shows our example sentence, with the above-mentioned tiers of syllable
boundaries and the original prominence marks of the listeners. The third tier shows
the different prominence classes assigned to the syllables. As discussed above, for
polysyllabic words the prominence class is assigned only to the lexically stressed
syllable. The remaining syllables marked with ‘-¢ do not play a role whenever the
so-called absolute features are applied, but they are actually used for normalizations.

In this approach it is assumed that features of prominence as defined by listeners are
concentrated in the lexically stressed syllable of a word. The literature confirms that
features of sentence accent are mainly concentrated in the lexically stressed syllable
(Sluijter, 1995; ‘t Hart et al., 1990). Lexical stress as a property of the lexicon is at
best an approximation of realized lexical stress. However, phenomena such as
lexical stress shift, or unspoken lexical stress are not taken into account. If stress
shift occurs then this indicates that we are measuring in the wrong syllable.

Linguists often define lexical stress via the content-word / function-word distinction.
Content words do have lexical stress; function words do not. (More about this
distinction is said in chapter 3.) Our choice means that all words must be included in
the analyses; even Dutch articles such as de (the, masculine) and het (the, neuter). In
principle, such words can also be identified as prominent and since we are also
interested in the degree of prominence, ‘no prominence’ is as interesting as
*prominence’. With this aim in mind, we had to be consistent and take all words into
account, knowing that function words are generally not prominent (see chapter 3).
This might even have consequences for certain measurements. For instance, the
frequently occurring function word de contains a schwa. Features that apparently
distinguish between prominent and non-prominent may actually distinguish between
schwa and full vowels, for instance.

We have discussed several aspects of automatic segmentation, which is required to
anchor the acoustical measurements, and to assign prominence to syllables and to
select these syllables. The last point mainly dealt with the question as to which
syllables play a role in further analyses.

4.2.2.2 F, Features

As already described in the introduction to this chapter, F, changes are the most
important cue for prominence. But first we have to explain what we mean by F,.
Periodicity can directly be measured in the speech signal. What the periodicity
(fundamental) of the signal is can be expressed in cycles per second (frequency).
This is called the fundamental frequency, also named F,. F, is measured in Hertz,
which is the physical unit of cycles per second. As already mentioned, F is closely
related to the perception of pitch. The higher the F, values the higher the perception
of pitch, but there is not a linear relationship between perceived pitch and F,
measured in Hertz. To define the relation some people use a logarithmic, musical
scale and measure F, in semitones. Other more psychophysical units are also
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conceivable such as ERB (equivalent rectangular bandwidth) or bark (perceptual
spectral frequency; approximation of the place on the basilar membrane). In the
present study we chose semitones (st), because they come close to the perception
scale of pitch and they are related to an easily interpretable musical interval scale.
The relation of the acoustical frequency scale (Hz) and the logarithmic musical scale
(st) relative to 100 Hz can be expressed as follows:

_ 12In(F, /100)

s In2

’f’is expressed in st, Fy in Hz.

This means that a tone of 100 Hz is expressed as 0 st (this tone is 0 semitones above
100 Hz), and a tone of 200 Hz is expressed as 12 st. This tone is 12 semitones above
100 Hz, which is exactly 1 octave. A tone of 300 Hz is about 19 semitones above
100 Hz. An additional advantage of expressing F, in semitones is that the difference
between two tones is independent of the reference value of 100 Hz. This
independence allows F, ranges (difference between two F, values) to be directly
comparable.

All these explanations concern a steady F,, but in speech we have to deal with F,
changes, which are perceived as a melody. If voiceless parts appear, for instance, in
an /s/, no pitch can be measured. An F-curve thus contains gaps and discontinuities,
but these gaps are generally not perceived as such. Perception closely resembles a
continuous contour i.e. the speech melody. We have to approximate the perceived
melody from the measurable parts of the Fy-curve. Striking changes in the Fy-curve
may be used to mark prominence. These changes have to catch the ear, but other
factors influence the Fy-curve as well (such as male / female differences, declination,
and boundary tones) and may disturb a direct feature extraction. (An evaluation of a

syil hEi | heft twe: AR Gy | mEn : t@ voR zEin stE IIN
prom| 0 1 5 6 | 0 0 %
prom e _ .
poml o L P e o i l ‘ 0 0 "
0.57 3.25
Time (s)

Figure 4.3: Oscillogram of the example sentence Hij heeft twee argumenten
voor zijn stelling, with from top to bottom the segmentation at the syllable
level (‘syl’), then the prominence marks of the listeners at the word level
(‘prom’), and the selection of the syllables used with the prominence degree
levels (0, I, II, IIT) that go with these syllables (‘prom class’).




84 CHAPTER 4

parameterized Fo-curve is described in Heuft et al. 1996.) Simple interpolation and
smoothing techniques approximate the perception. Methods must be found to extract
features that catch the striking changes in the Fy-curve. These methods must also be
corrected for the disturbing factors, such as declination.

Having explained some terms concerning the acoustical phenomena of F, and its
perceptual correlates pitch, we must now turn to the analyses of the actual F,
measurements in our sentences. The main topic of the following sections is the
automatic extraction of the relevant features from the whimsical Fs-curve.

4.2.2.2.1 Measuring F,

For the Fy, measurements a periodicity detection based on an accurate autocorrelation
method is used (Boersma & Weenink, 1996), with time steps of 0.01 seconds. The
maximum frequency found is set at 600 Hz (it was unusual for a woman's voice to
go beyond this value). The minimum is set at 50 Hz (it was also unusual for a man's
voice to go below this level). The unprocessed Fy-curve (see figure 4.4, graph 1) is
first automatically corrected for octave jumps. This correction step is not without
problems. In Dutch, the range of the whole curve per utterance per speaker is
normally within one octave, so measurements outside this range are usually not
expected. Therefore, we implemented a correction step (see figure 4.4, graph 2), but
sometimes this correction step introduced new errors. This actually happened in our
example sentence. Through repeated listening it was confirmed that the sentence
onset hij heeft... (he has) is actually as high as presented in the original upper graph
of figure 4.4. The resulting Fo-curve, of course, shows gaps for the voiceless parts in
the speech signal. The curve per sentence is interpolated by a simple linear fit in
order to get a continuous curve (see figure 4.4, graph 3). As already mentioned, we
believe that human perception is closer to this continuous contour. This continuous
contour has the advantage that measurements at the syllable level are now possible,
and that a value can be extracted for each syllable.

This interpolated contour is again smoothed to eliminate small variations in the
curve (see figure 4.4, graph 4). Such small variations may influence the feature
extraction negatively as local fluctuations may not express the more global changes
in the curve. The last graph of figure 4.4 shows the actual Fo-curve from which
several features are extracted in order to distinguish between prominent and non-
prominent words.
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Figure 4.4: Fy-curves of our example sentence Hij heeft twee argumenten voor
zijn stelling. The first graph displays the unprocessed F,-curve; in the second
graph the octave jumps are corrected; in the third graph the Fy-curve is
linearly interpolated in order to make the curve continuous; and in the fourth
graph the curve is smoothed to get rid of small local changes which could
disturb the automatic extraction of F, features.
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Figure 4.5: The Fy-curve with the syllable segmentation and the prominent
classes. The two lowest tiers show the range and the median F, per syllable. A
dotted horizontal line through the curve indicates the overall median.

4.2.2.2.2 Extracting F, features

In the previous section we described how we processed the Fo-curve so that it
corresponded more closely to human perception, and how features can be extracted
automatically for each syllable. A continuous curve is useful because only then a
vector can be filled with values for each segment. These values can be used as cues
for prominence classification.

The median Fy-value per syllable as well as the F, range per syllable (difference
between maximum and minimum of the target syllable) is measured on the
continuous pitch curve (see section above). The values of F, range per syllable are
directly interpretable. Because these values express a difference, the reference value
of 100 Hz is no longer relevant. E.g. a range of 3 semitones means that the interval
of these tones is a minor third, which is independent of different pitch heights of a
voice.

However, the syllable-based median values cannot directly be compared to each
other. These values can only be compared within one sentence. So, in order to
compare a sentence spoken by a male with a sentence spoken by a female, gender
normalizations must be made. This was implemented by applying an utterance-based
normalization by subtracting the overall median Fo-value of each sentence. These
resulting corrected median values thus express the median deviation per syllable
from the median value of the whole sentence.

The range and the median F, values are shown per syllable for our example sentence
in figure 4.5. For instance, on the lexically stressed syllable of the word argumenten
/mEn/, a movement is realized with a range of 4.09 st, whereas on the word voor
/vo:R/ the curve has a range of 1.55 st. The median per syllable is measured to give
an indication of the overall height of a syllable. Since for this example we only




ACOUSTIC CORRELATES OF PROMINENCE 87

compare within one sentence, we show here the uncorrected values. The syllable
twee has the highest median F, value of all the syllables, followed by the last two
syllables of the word argumenten, which have median values of 6.16 and 6.40 st.

Is it possible to distinguish which words of our example sentence are prominent by
only using these two features (F, range, F, median per syllable)? The extracted
features then have to distingnish between the different prominence classes. As
decided in a previous section, for these direct analyses of polysyllabic words, only
the lexically stressed syllables are taken into account as measurement domain. The
discarded syllables are marked with a dash (-) in the second tier of figure 4.5. A high
F, range value is an indication of prominence. Looking at this sentence, the
candidates are heeft 9.29 st, twee 4.46 st, the syllable /mEn/ 4.09 st and perhaps zijn
with 3.37 st. A syllable with a high F, median can also be an indication of
prominence. Taking the median per syllable we have the following candidates: twee
6.45 st and the syllable /mEn/ 6.16 st. On the condition that both features must be
high, we may conclude that the word rwee and the word argumenten are the most
prominent ones in this sentence. But we have a problem: the word stelling is
completely discarded by these features, whereas the word heeft could wrongly be
classified as being prominent, as it has a high F, range value. The wrong
classification of the word heeft may be caused by the F, measurement; such mistakes
are plausible. But the fact that the present F, features do not support the prominent
classification of the final word stelling, could constitute a structural problem. Bulyko
& Ostendorf (1999) also observe that prominence occurring late in the phrase is
harder to predict. However, there is one striking pitch movement relative to the
environment of this word at the end of the sentence. The median values per syllable
do not help either to mark this syllable as prominent, which means that we have a
similar problem with this feature. At the end of the sentence the overall height of the
Fy-curve goes down. Therefore median values per syllable are generally lower at the
end of the sentence than in the beginning. So the next step could be to correct for
these errors by taking into account the declination line of a sentence and the direct
environment. Attempts to correct for the declination line failed however. In a pilot
study we subtracted the error-prone linear fit (an approximation of the declination
line) per sentence for a subset of 500 sentences. With this corrected Fo-curve the
same features, namely the F, range per syllable, and the corrected median per
syllable were calculated. Unfortunately, the features corrected for the declination
line did not increase the ability to discriminate (Streefkerk et al., 1999 a).

In order to get an overall impression of the pitch movement in a word we also
decided to measure the F,, range per word. For our example sentence this results in
the following F, range per word:/hEi/ 0.86, /he:ft/ 9.29, /twe:/ 4.46, /ARGymEnt@/
4.41, voR/ 1.55, /zEin/ 3.37 and /StELIN/ 4.85. Of course only the values for the
polysyllabic word argumenten and stelling differ. Looking at the last word of the
example sentence it is clear that taking the F, range per word more closely expresses
the spoken pitch movement than the same measurement per syllable.
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Figure 4.6: Distribution of the prominence class III (total number of 2872
words) and prominence class O (total number 5977) for the feature F, range
per syllable and F, range per word, both in semitones.

Next, let us look at some overall distributions for these three features (F, range and
median F, per syllable, and F, range per word). Figures 4.6 and 4.7 show histograms
with the distributions for the extremes of the prominence classes: the non-prominent
class (0) and the most prominent class (IIT). For words of more than one syllable the
value of the lexically stressed syllable is shown, as explained in a previous section
4.3. We chose to show only the extremes 0 and Il of the prominence scale for
simplicity’s sake. The total numbers for these two distributions differ (prominence
class I, 2872, and prominence class 0, 5977°) so, in order to make these
distributions comparable, we express them as percentages so that the surface under
the curves is the same, see figure 4.6. For the F, range per word we can see that the
distribution for prominence class III is more shifted to the right than for the
distribution of the F, range per syllable. Whereas the F, range per word distribution
and the F, range per syllable more or less overlap. The further apart the 0 and III
distributions, the more the given feature can distinguish between these two
prominence classes. Looking at these two distributions a distinction can definitely be
made, but how accurate this distinction actually is, will be discussed in chapter 5. To
give an overall impression of the ability to discriminate we give the amount of
overlap. The overlap (the area these two distributions have in common) is 49% for
the F, range per syllable. The amount of non-overlap between these features
indicates their ability to discriminate between prominence (IIT) and non-prominence
(0). For the F, range per word this area decreases and the amount of overlap is
reduced to 42%, see figure 4.6.

*In chapter 2 the total number of 0 marks is 5950 (see table 2.6). Here we have a total number of 5977,
because some stutters or repetitions are segmented as separate words. These 27 stutters and repetitions are
marked with a 0, so that they can join the further analyses.
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Figure 4.7: Distribution of the prominence class II (total number 2872) and
prominence class 0 (total number 5977) for the feature median F, per syllable,
corrected for the overall F, median per sentence in semitones.

In figure 4.7 the median F, per syllable (of which the overall median per sentence is
subtracted) is displayed. The two distributions for prominence class 0 and
prominence class III are not as clearly separated as in figure 4.6, the amount of
overlap being 59%. But in combination with other features this feature may also
contribute to differentiate between prominent and non-prominent words.

4.2.2.3 Duration features

Acoustic features concerning duration are directly available from the segment
markers; so no further acoustical analysis of the speech signal is necessary. The
duration of speech unmits e.g. vowels, consonants, syllables and words can be
extracted directly from the segmentation file and can be used for analysing the effect
of prominence on the duration. However, such durations must be expressed relative
to their environment. Generally, the duration of speech units is influenced by other
factors such as style, the speaker, the speaking rate, and the intrinsic duration of
speech segments. The position of a segment in a word or in a sentence (final
lengthening) also influences the duration, but in this research no further attention is
given to the co-influence of these effects and prominence.

However, normalization might be necessary for the previously mentioned factors. In
the following sections this normalization is investigated in detail. It is not sure,
whether or not the effect dedicated to prominence is clearer after normalization. The
vowel and syllable durations of the example sentence are shown in figure 4.8.
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Figure 4.8: The oscillogram of the example sentence Hij heeft twee
argumenten voor zijn stelling is given, followed by the prominence classes,
the phoneme and syllables segmentation plus their durations.

One might argue that the longer a speech unit the more prominently it is perceived.
However, in this example sentence several counter examples can be found. First of
all the longest vowels and syllables are not those occurring in prominent words. The
vowels from the lexically stressed syllables in prominent words belong to the short
vowels category. The duration of the vowel /E/ in the word argumenten is 0.08 s and
of /E/ in the word stelling is 0.07 s. However, the monosyllabic word twee also has a
long duration of 0.26 s, of which 0.16 s belongs to the vowel (see figure 4.8). The
example sentence indicates that normalization for intrinsic vowel duration might be
useful, but let us first see how far we get with raw data such as vowel and syllable
duration.

Since the phonemes of each sentence were automatically segmented, the duration of
each segment is determined by the HMM-recognizer. The minimum duration of
each vowel is thus 0.03 s, as the duration of each frame was fixed to 0.01 s and a
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Figure 4.9: Distribution of the prominence class III (total number 2872) and
prominence class 0 (total number 5977) for the duration per vowel concerned.
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Figure 4.10: Distribution of prominence class III (total number 2872) and
class O (total number 5977) for the duration per syllable.

minimum of three states per vowel must be visited (see section 4.2.1.1). This
explains why in figure 4.9 the duration distributions start at 0.03 s. Figure 4.9 shows
the distribution of vowel duration both for prominence classes 0 and III. The amount
of overlap is 61%, which is 20% higher than for the F, range per word, but a certain
distinction based on the feature of vowel duration can still be made.

Portele & Heuft (1997) found that syllable duration is a useful feature of
prominence. For our syllable duration data (see section 4.3) the duration for the two
extremes in the prominence classes are shown in figure 4.10. These two distributions
are more separate from each other than the distributions for the vowel durations. The
overlap of these two distributions is 50%, thus 11% less than for the distributions of
vowel duration. To distinguish between non-prominence (0) and prominence (III) it
seems therefore that the syllable duration is a more useful feature than vowel
duration. Possible segmentation errors lend more weight to the small vowel unit than
to the larger syllable unit. Often function words contain fewer clustered consonants,
which decreases their duration.

In distributions concerning the vowel durations, the short prominent vowels possibly
overlap with the long non-prominent vowels. It is thus possible that corrections for
intrinsic vowel duration will influence the discriminative power. Table 4.1 gives the
mean vowel duration and its standard deviations, and the frequency of occurrence of
each vowel. It is generally known that diphthongs are the longest (Au = 0.17 s, Ei =
0.134 s, and 9y = 0.157 s expressed in mean values) (e.g. Koopmans- van Beinum,
1980). Our long vowels (indicated with an ‘:’) have indeed a rather long duration
too, whereas the so-called mid-long vowels are shorter (see table 4.1) and seem to fit
into the short vowels category. The different frequency of occurrence of the various
vowel classes in this Polyphone corpus is an interesting phenomenon. The schwa
occurs most frequently whereas most diphthongs and some long vowels are rather
rare. The accompanying distribution is shown in figure 4.11. This histogram shows
the vowel duration distribution for the schwa as well as for all other vowels
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Table 4.1: The number of different vowels occurring in the training data (1244
sentences with all vowels included) with their mean duration and standard
deviation in seconds.

Vowel Num Mean Std. Dev.
Schwa @ 7384 0.060 0.041
Au 398 0.170 0.044
Diphthongs Ei 1012 0.134 0.051
9y 287 0.157 0.040
A 1998 0.082 0.033
E 1574 0.082 0.036
Short I 1605 0.082 0.037
o 1360 0.092 0.038
Y 393 0.068 0.031
Q: 267 0.140 0.042
a: 1588 0.134 0.052
Long
e: 1446 0.129 0.045
o: 1165 0.117 0.051
u 460 0.090 0.039
Mid-long i 1238 0.086 0.038
y 321 0.102 0.052
Total - 22496 - -

combined. It is striking that the schwas are short, but the tail of the distribution is
very long and the other vowels are generally longer. This might partly be caused by
lexical stress, as schwas do mot occur in a lexically stressed position. For our
classification only the lexically stressed syllables of polysyllabic words are taken
into account. This reduces the number of schwas, but they are still present in the
monosyllabic function words.

Corrections for ‘intrinsic’ vowel duration were carried out in the following way:

where d is the duration of the given vowel, and p and ¢ are the mean and the
standard deviation of the corresponding class, respectively. The result is that the
vowel durations are expressed in z-scores, which have the property that the mean is
0 and the standard deviation is 1.
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Figure 4.11: Two separate distributions of the vowel duration for schwa and
other vowels.

Because the duration measurements are discrete (the minimum duration of a vowel
is 0.03 s and the increase is in 0.01 s steps), display artefacts arise. This is visible in
figure 4.12. Because of the discrete durations the normalized data are also discrete.
This means that for instance a schwa of 0.03 s always corresponds to a normalized
value of -0.73 ((0.03 - 0.06) / 0.041), whereas a schwa duration of 0.04 s always
gives the normalized value of -0.49, and so on. But these steps are different for each
vowel class. This effect makes it difficult to put the data into a smoothed histogram.
In figure 4.12 we have chosen the bin steps in such a way that they correspond to the
discrete steps of the schwa. This implies that there are no values of that given vowel
between the two steps. Despite the high frequency of occurrence of the schwa the
irregularity effect is still present. The irregularities at one quarter and three quarters
of the histograms are due to the fact that the normalized durations of the short
vowels do not occur between +0.98 and +1.22 and between -0.98 and -1.22.

20% B Tt w
.

b jilg

|
SO EC—— |

g

3

Percentage
~

8

B
X

0% o= T r
=317 -2.68 -220 -1.71 -1.22 -0.73 -025 024 0.73 122 170 2.19 268

Vowel duration normalized

Figure 4.12: The distribution of vowel duration normalized for the intrinsic
vowel duration separate for the two extremes of the prominence classes (0 and

).
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Because of this effect it is rather difficult to judge whether or not the normalized
duration is a useful feature for the prominent / non-prominent distinction. The
amount of overlap between these two histograms increases to 72%, compared to
61% in the unnormalized case (see figure 4.9). Feeding a neural network with these
features as input will hopefully give more details concerning their ability to
discriminate (see chapter 5).

The vowel duration is not only influenced by the intrinsic vowel duration but also by
the speaking rate. Generally, a high speaking rate shortens the duration of all
segments. There are various methods of measuring speaking rate. A simple method
is to count the number of segments in 1 second of speech, leaving pauses out. Such a
method highly depends on which segments occur in the given stretch of speech. If
only intrinsically long segments occur, the speaking rate is falsely classified as slow.

The method we used (Wang, 1997) corrects for these effects, and leaves out pauses.
The formula given below defines the sentence speaking rate (r) as the average
normalized segment duration per sentence whereas T denotes the normalized
segment duration.

1 & d—-u
=—>»1 T=—
r N,Z:;‘ ,

If the sentence speaking rate (r) is 0, the speaking rate is average; negative values of
r indicate that the speaking rate is high (because the segment durations are on
average shorter than the mean durations of each segment). Positive values indicate a
slow speaking rate. Figure 4.13 shows the distribution of the sentence speaking rate
of the 1,244 sentences. The rates are equally distributed around 0.
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Figure 4.13: The distribution of the sentence speaking rate of the 1244
sentences.
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Figure 4.14: Average vowel duration, average normalized vowel duration, and
average syllable duration as a function of the sentence speaking rate. In each
graph the two curves represent the most (scale III) and the least (scale 0)
prominent vowels or syllables, respectively.
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Figure 4.14 shows a distribution of the mean vowel duration as a function of the
sentence speaking rate in the training set of 1244 sentences. Since the vowels
belonging to the most prominent words (scale III) are displayed separately from
those belonging to the least prominent words, it can easily be seen that the former
are substantially longer and that the duration increases at slower sentence speaking
rates. The lowest graph of figure 4.14 shows the relationship between sentence
speaking rate and syllable duration. As expected, the syllable duration also shortens
with a faster speaking rate. The average durations at the edge of the sentence
speaking rate scale show large deviations for all three graphs; this is because of the
small amount of data. Vowels or syllables from only two or three sentences are
involved at these edges.

4.2.2.4 Intensity features

For the features concerning intensity we have to consider also the relationship
between the physical unit ‘intensity’ and its psychophysical counterpart ‘loudness’.
Intensity (dB) is a physical unit relative to the auditory threshold. The auditory
system is most sensitive to frequencies around 1000 Hz. The loudness level
(measured in sones) is introduced to correct for this characteristic. However, the
loudness perception of complex tones is even more complicated. So we decided to
use as a first step intensity in dB.

Intensity normalizations for several factors might also be useful. Such factors are the
type of vowel and the position of the word in the sentence as well as lexical features.
The distance between the telephone and the mouth of the speaker is another factor
influencing the overall intensity of a sentence. But since no calibration signal was
applied in the Polyphone database we have little idea about the absolute intensity
level.

Generally, most of the differences in intensity for being prominent or not can be
found in the vowels. For the consonants, differences between the different
consonants are too large to allow for an overall comparison. For the vowels there are
intrinsic differences; this is mainly ascribed to the open / closed distinction of vowel,
and secondly to the front / back distinction.

4.2.2.4.1 Measuring intensity

The intensity per vowel was measured in the following way. In the signal each
vowel was segmented with a two-timed, so-called Kaiser 2 window (PRAAT,
Boersma & Weenink, 1996) at the boundaries of the vowel given by the automatic
segmentation. The overall intensity was measured over this windowed vowel signal.
The individual results for the vowels in the example sentence are given on the
bottom tier of figure 4.15. For the whole sentence the intensity curve is displayed in
this figure. The individual values do not correspond in an absolute sense with the
intensity scale of the intensity curve in figure 4.15, because the loudness per
segment is computed in a different way, mainly due to the cutting of the Kaiser 2
window. The syllables bearing no lexical stress are actually spoken with less
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Figure 4.15: The intensity curve (dB) of the example sentence Hij heeft twee

argumenten voor zijn stelling. In the upper tier the phonemes are presented, in

the middle tier the prominence classes and in the last tier the intensities (dB)

of the vowels.

intensity than their lexically stressed counterparts. As far as prominence is
concerned, we expect that if a word consists of more than one syllable, the lexically
stressed syllable will have the highest intensity. The vowels in the syllables of the
most prominent words (/twe:/, /mEnt/ and /stEl/) do indeed show high intensities (75
dB, 72 dB, and 71 dB, respectively). But other vowels do so as well, such as the first
two vowels of the sentence (/Ei/ and /e:/), with an intensity of 73 dB and 72 dB,
respectively. Moreover, the intensity of the vowel /0:/ in the non-prominent word
voor is still rather high. But the vowels in the less prominent words may have a
higher intrinsic intensity or contain a diphthong, which may cause other
complications.

To obtain an overall impression of the discriminative power of the loudness features
of the vowels, two distributions are plotted in figure 4.16. As an overall
normalization the overall intensity of the sentence is subtracted (to each value 80 dB
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Figure 4.16: The distributions of vowel intensity (dB) spliced for the
most (IIT) and the least (0) prominent vowels.
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is added in order to get realistic values). We observe that the vowels in words in
prominence class III are generally spoken with higher intensity than the vowels in
prominence class 0. This figure only shows that the effect of prominence is
noticeable and that the intensity of vowels is a useful cue in itself, even without any
normalization for vowel type. The overlap of these two curves is 57%.

We discuss the normalization for intrinsic vowel intensity in this section. Generally
it is suggested that open vowels are louder than closed vowels, and that front vowels
are louder than back vowels. Table 4.2 gives the average intensity and the standard
deviation per vowel class. Looking at the distinction between, open and closed
vowels and at front, mid and back vowels, it is not confirmed that the open vowels
or the front vowels are generally louder than their counter parts. The differences
between the vowel classes itself are also not so striking, however, a normalization
per vowel class, according to the formula given below, might help to increase the
power to discriminate.

Table 4.2: The number of different vowels occurring in the training data (1244
sentences with all vowels included) and their mean intensity and the standard

deviation.
Std. Dev.

Vowel N Mean (dB) (dB)
@ 7384 73.45 5.89
closed i 1238 74.28 4.71
closed I 1605 75.21 5.24

Front
closed e: 1446 78.75 345
closed Ei 1012 78.45 3.53
open E 1574 78.08 4.43
closed y: 321 75.09 4.84
closed Y 393 77.84 4.14
Mid closed Q: 269 79.46 3.55
closed 9y 284 79.02 3.24
open A 1998 78.09 4.02
open a: 1588 78.20 3.45
closed u 460 76.41 4.07
Back open Au 399 79.57 3.01
open 0] 1360 76.74 4.68
closed o: 1165 78.16 4.03

Total 22496 - -
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Figure 4.17: The distribution of vowel intensity normalized for the intrinsic
vowel intensity, displayed separately for the two extremes of the prominence
classes (0 and III).

where I is the intensity of the given vowel, with the average p and the standard
deviation . As described before, the vowel intensities are corrected for sentence
intensity, and 80 dB is added to these values in order to make them more realistic.
The results of this intensity normalization are shown in figure 4.17. The two
distributions of the two prominence class extremes show even greater overlap (68%)
than in the unnormalized version (57%). Based on these data it can be concluded
that this normalization harms the power to discriminate.

Another possibility is to use spectral slope, which however, is generally considered
to be a rather difficult feature to use. A study based on a large variety of speech
material shows little success with the spectral slope feature (van Kuijk & Boves,
1999). Contrary, the study of Fant & Kruckenberg (1999) concerned with well-
recorded prose reading in Swedish, shows a very high correlation r = 0.93 between
spectral tilt (SPLH-SPL) and prominence (marked for every syllable on a semi-
continuous 36-point scale).
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Table 4.3: Summary of the various acoustic features that have been discussed in
this chapter. The amount of overlap between prominence classes 0 and III is
indicated, as well as the ranking value based on that overlap. For both extreme
prominence classes (0 and IIT) the mean value and its standard deviation per
feature are presented in the rightmost columns.

Prom class 0 Prom class III

Feature Overlap(%) Ranking Mean Std. Dev_Mean Std. Dev
F, range per syllable 49 2 359 479 6.26 4.46
Median F, per syllable 59 5 -0.30 4.69 1.82  4.09
F, range per word 42 1 3.25 4.07 7.48 4.84
Vowel duration 61 6 0.08 0.04 0.13 0.05
Vowel duration normalized 72 8 -0.16  0.88 0.34 0.95
Syllable duration 50 3 017 008 027 0.09
Vowel intensity 57 4 75.87 496 80.07 3.02
Vowel intensity normalized 68 7 -0.09 1.06 0.60 0.71

4.3 Summary and conclusion

In the current chapter several acoustic features have been discussed and their
potential ability to discriminate between prominent and non-prominent words is
shown. In terms of overlap table 4.3 summarizes these features according to their
amount of overlap, as determined by the distributions for the two extremes of the
prominence scale (0, IIT). The mean values per class of the given feature and their
standard deviation are also presented. A ranking of the individual features is given,
based on the amount of overlap. A small overlap indicates a higher ability to
discriminate. The table shows that F, range per syllable and per word are the most
promising features, followed by syllable duration and vowel intensity.
Normalizations at utterance level do not show the expected decrease in overlap and
the standard deviation is very high.

A more detailed analysis of the individual and discriminatory power of the features
will be carried out in chapter 5. Combining acoustic features will hopefully increase
the classification results. The correlation between features may on the other hand not
increase the classification capability.




NEURAL NET CLASSIFICATION OF
PROMINENCE WITH ACOUSTIC
INPUT FEATURES'

Abstract

The main topic of this chapter is the classification of word prominence, exclusively
based on acoustic input. Prominence is classified by means of feed-forward
networks. This chapter includes a brief description of such neural networks. The
input is chosen from the acoustic correlates as described in chapter 4. In that
chapter two applications were suggested, namely a sentence disambiguator and a
word prominence indicator. The consequences of such applications in terms of
training factors are examined in this chapter. We obtained a prominent / non-
prominent classification accuracy of 82% for the development test set and 79% for
the independent test set.

! Parts of this chapter were published in Streefkerk et al. (1998), Streefkerk et al.
(1999 a), Streefkerk et al. (1999 b), and Streefkerk et al. (2001).
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5.1 Introduction

In this chapter we deal with the classification of prominence based exclusively on
acoustic input features. The subsections of this introduction give a general
description of a neural network and two examples of possible applications for
prominence classification. These applications bring us closer to the question: what
do we want the network to do. Simple feed-forward networks are used to recognize
prominence with selective data. These exemplary data are presented to the neural net
during the training phase and indicate which features are especially important for
achieving correct classification. The input pattern consists of characteristic acoustic
features, as described in chapter 4. Based on such characteristic input patterns, a
trained neural net predicts whether or not words are prominent. The advantage of
neural networks is that no specific knowledge has to be expressed in rules; instead,
the knowledge is based on the training data sample. Other classification techniques
are possible, for instance, a linear discriminant analysis (LDA). In such an analysis,
however, only linear relationships can be found. Representing complex relationships
may be needed for our classification problem. Examples for complex data
classification with neural networks are described in Weenink (1991) and in
Lippmann (1987). For our analyses we try to keep the topology of the net as simple
as possible.

5.1.1 How feed-forward networks work

Feed-forward networks consist of units (nodes) and activation functions. The basic
units of neural networks are the nodes; several nodes are grouped into layers (see
figure 5.1). A learning algorithm allows the neural network to learn a certain task by
adjusting the weights. The layer(s) between the input and the output layer are called
hidden layer(s), (see figure 5.1). The formula below expresses the relationship of the
output with the output of nodes in a previous layer (x;), weights associated with the
connections (w;) and a threshold (6) of the node. With these variables the output (y)
is calculated, via an activation function (f), for instance a sigmoid function. Each
node converts the pattern of incoming activities into one single activity. This single
activity (‘output’) is passed on to the other connected nodes in the next higher layer.
The activation function typically falls into one of three categories:
- a linear function (the output is proportional to the total weighed input),
- a threshold function (the output is set at one of two levels, depending on
whether the total input is greater than or less than some threshold value), or
- sigmoid functions (the outgoing activity varies non-linearly with the input
(weighted)).
Generally the activation function can be expressed as:

i=l

y=f[iw,-x,--9 J
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output
prominent / non-prominent

hidden layer (s)

input
acoustic features

Figure 5.1: A possible topology of a neural network.

The behavior of a neural net depends on the weights (w;) of the connections between
the nodes, on the threshold (8) of the node, and on the activation function (f). The
weights and the threshold values can be adjusted during training; the activation
function is usually fixed during training.

5.1.1.1 General training procedure

The main steps of the supervised learning process of the net can be described as
follows: The acoustic features are presented at the input layer. The values of the
features are sent via the weighed connections of this input layer and via weighed
connections of one or more hidden layers to the output layer. The computed output
is compared with the desired output values. Based on this comparison, the difference
is calculated and the weights and the threshold values are subsequently adjusted (e.g.
by the back-propagation algorithm, Rumelhart et al., 1986).

In the back-propagation algorithm the weights are adjusted per training pair (input
features plus desired output) by using a feedback step. This makes the adjustment
rather sensitive to the sequence in which the training pairs are presented to the net. A
more sophisticated algorithm is the conjugative gradient method (Press et al., 1992).
This training algorithm calculates the difference between the desired output and the
calculated output for the whole training set, and then starts to adjust the weights and
the threshold of each node. This whole procedure is called an iteration step. Such a
training procedure makes training less sensitive to local minima. In this study we use
the more sophisticated conjugative gradient method.
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If enough examples are presented to the net, the net is able to generalize over the
various characteristic input features. For new (unseen) data this trained net is able to
predict which label belongs to the presented input pattern. The net bases its
knowledge on the examples it has seen before in the training session.
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Figure 5.2: Two different distributions of the syllable duration for prominence
class 0 and III. Graph a) displays the distribution based on the actual number
of occurrences as found in the set of 1244 sentences. Graph b) displays two
distributions of which the sizes have been made equal by random selection.
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5.1.2 Distributions of prominence classes and the relationship to applications

Two applications of prominence classification have already been mentioned in
chapter 4. One application is a prominence-indicator that measures the amount of
prominence that each word carries. This classification is generally based on a biased
distribution of prominent and non-prominent words (unequal numbers of prominent
and non-prominent words). See figure 5.2a for an example of such a biased
distribution conceming syllable duration. A classifier for the prominence of all
words occurring in the sentences has to take into account this bias in the training
data.

The other application is the disambiguation of two possible interpretations of a
sentence, for instance in witsluitend VOOR instappen (only get on at front) versus
uitsluitend voor INstappen (only for getting on). In such a disambiguation task there
are two words (syllables) involved and it must be decided which of the two words is
the most prominent one. To answer this question, the classification has to be based
on an unbiased distribution (= equal number of prominent and non-prominent
words). Figure 5.2b is an example of this.

To cover both options in the analyses, our training and test data will be split up into
a biased and an unbiased set. We are aware of the fact that neural networks are able
to account for the prior probability of prominence in the data, but by using the
unbiased and biased distributions for training and testing the neural networks are
optimally trained for such a task, as mentioned above. So, it makes sense to use
biased and unbiased sets as different training conditions.

5.2 Prominence recognition with neural networks

Before going into detail about the contribution of each individual acoustic feature
and the performance of an ‘optimal’ neural network, a brief description of the
acoustic features and their pre-processing is given in the following subsections.

5.2.1 Acoustic input features

In chapter 4 the main acoustic features were described in detail and a number of
results of this analysis of useful acoustic features for prominence classification were
presented. These features are complemented with overall features such as the
median F, of the sentence. The total set of acoustic features is a set of twelve
features as displayed in figure 5.3 and given below.

vowel duration;

vowel duration normalized for intrinsic vowel duration;

sentence speaking rate;

vowel intensity normalized for the overall intensity of the given sentence;
vowel intensity (sentence normalized) normalized for the intrinsic vowel
intensity;

overall intensity per sentence;

syllable duration;

LA W -

~ o
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8. median F, per syllable;
9. range of F, per syllable;

10. median F, corrected for the median F, per sentence;

11. median F,, of the sentence;

12.range F, per word.

In figure 5.3 this set of twelve features is displayed as input for a neural network.

gradient
prominence

F, range per word

median F of the sentence

median F corrected
for the median F per sentence

range F per syllable
median F| per syllable
syllable duration

overall intensity per sentence

vowel intensity (sentence normalized)
normalized for the intrinsic intensity

vowel intensity normalized
for overall sentence intensity

sentence speaking rate

vowel normalized
for intrinsic duration

vowel duration

Figure 5.3: An example topology of a neural network, with input features and a

single output node, for gradient prominence prediction.
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5.2.2 Pre-processing of the input features

The network algorithm implemented in PRAAT prefers inputs between 0 and 1.
Therefore all input features are scaled between 0 and 1. This adaptation is a specific
requirement for this software and does not apply for neural nets in general. This
scaling is performed in the following way: Firstly, per acoustic feature the 99%
percentile (max) and the 1% percentile (min) are determined for all training and test
data together. (See for more details Appendix A 5.1.) All values occurring beyond
these borders are set to 1 and 0, respectively. (Wrong measurements only mildly
influence the scaling factor.) The values are scaled by the following formula:

0 X <min
X ated =91 . X > max
X —min
_ else
max —min

5.2.2.1 Correlation

The set of twelve features obviously contains features with correlated information.
For instance, the median F, features in corrected (10) and uncorrected (8) form may
contain such dependent information. The correlation matrix of all features used is
given in table 5.1.

Table 5.1. The correlation matrix of the twelve acoustic features. The
acoustic features are indicated with a feature number; the feature
description is given in figure 5.3.

Feature number
1 2 3 4 5 6 7 8 9 10 11 12

1 0.82 0.23 0.19 0.01 0.12 0.57 0.08 0.26 0.00 0.10 0.29

2 0.29 0.06 0.05 0.14 0.40 0.11 0.22 0.01 0.14 0.21
b S A 0.03 024 0.27 0.10 0.12 -0.01 0.15 0.12
€4 - - 0.90 -0.02 0.28 0.12
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The correlations calculated on the original data group into four parts; first high
correlations between features that are based on each other such as the vowel
duration (1) and the normalized vowel duration (2). Their correlation is 0.82. The
second group concerns lower correlations between features that contain similar
information such as vowel duration (1) and syllable duration (7). Their correlation is
0.57. The third group shows positive but rather low correlations such as vowel
duration (1) and F, range per word (12), which correlates 0.29. Fourth are those
features that hardly correlate at all, e.g. sentence speaking rate (3) and vowel
intensity sentence normalized (4). Their correlation is 0.03.

Some features are included in our analysis simply because we want to test what the
effect of various corrections is. It will be tested further on in this chapter whether
two highly correlating features should be left out as input features in order to obtain
a better performance. As a first step we will train with all twelve input features,
neglecting the fact that certain features correlate highly, because in brute force
research of, for instance KieBling (1996), the use of as many features as possible
leads to high correct classification rates.

5.2.3 Design of the training and testing data

There are several factors that influence the performance of the met. The first is
feature representation. Second, the number of hidden nodes in the hidden layer also
influences the performance of the net. This number is directly related to the degrees
of freedom the neural network has to adjust itself to the training material. Third, the
number of iterations will also influence the results. Finally, the distribution over the
different prominence categories, as mentioned in section 5.1.2, influences the
results. The output needs further specification. One could train and test with discrete
output; this is done with separate nodes for each prominence class. Alternatively,
one could train and test with continuous output; this requires only one output node.
Such a single node with linear output (or with sigmoid) is enough to predict a
gradient prominence scale.

The general structure of the test and training set was described in chapter 2, so a
summary here will suffice. As described there, the training set consists of 1244
sentences marked for prominence by ten listeners, which resulted in cumulative
prominence marks between 0 and 10. By means of a hierarchical cluster analysis the
scale was reduced to four classes, namely 0, I, II, IIl. For simplicity’s sake the
discrete output was set to two possibilities, namely ‘non-prominent’ (containing
prominence class 0 and I) and ‘prominent (containing prominence class II and III).
Figure 5.4 gives more details about the distribution of training and test data.

Only one selected ‘optimal’ listener judged the 1000 sentences of the Independent
Test set. With this test set it can be independently tested whether the neural network
behaves similarly to one of the listeners. This can only be tested for the binary
prominent / non-prominent distinction. We decided to train separate neural networks
for prominence degrees i.e. gradient prominence prediction as well as for binary
prominence prediction.
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Figure 5.4: Diagram of the Test and Training sets, their distribution over
biased and unbiased Training sets and Development test sets, and their
distribution over binary and gradient prominence classes. In the Independent
Test set only binary categories are used.
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In order to train and test the 0-10 gradient prominence scale, the original training set
of 1244 sentences with 13119 words, was randomly divided into two equal parts;
once for biased and once for unbiased training. See also figure 5.4 dataset 3) and 4).
The first part was used for training purposes (Training set) and the second part to
test during training (Development test set). The performance of the gradient
prediction could only be tested by the Development test set, because a gradient scale
was not available for the Independent Test set. (See figure 5.4 for the exact numbers
of data in these sets for the biased 5) training and the unbiased 6) version.)

In order to train and test the binary prominence prediction, a similar subdivision of
the training data was performed. Our data were randomly divided into two equal
parts; one for biased and one for unbiased training. See figure 5.4 dataset 1) and 2).

As for gradient prominence prediction there is also a Training and Development test
set. An Independent Test set, one for biased and one for unbiased condition, figure
5.4 dataset 5) and 6), was used to test binary prominence prediction.

The outline of the experimental part of this chapter is as follows. First we will deal
with the general results of a neural network fed with all twelve features. Section
5.2.4 describes the binary prominence classification. Gradient prominence
prediction is discussed in section 5.2.5. Analyses with a set of selected individual
features are given in section 5.2.6, whereas in section 5.2.7 and 5.2.8 combinations
of features are the topic. A conclusion will be given in section 5.3.

5.2.4 Binary prominence classification

This section is concerned with dataset 1) and 2) (figure 5.4): binary prominence
classification.

In order to get an idea about the classification performance first of all a linear
discriminant analysis was run on these data of which the results are given in the
upper part of table 5.2. With an LDA only linear relationships are used for
classification, so classification results obtained with neural networks with a hidden
layer should always be higher. Therefore, the classification results of the LDA are
used as a bottom indication. As presented in table 5.2 the correct classification using
unbiased data (dataset 2) in figure 5.4) is 77.01% for the training set and 76.05% for
the development test set. Training with the biased training data gives lower correct
prominence classification, 76.86% for the training set and 75.71% for the
development test set.

The neural nets are designed in such a way as to create are two output nodes; one is
active when the features of the input vector belong to a prominent word, and the
other one is active for a non-prominent word.

Several networks under biased and unbiased conditions were trained with the
number of hidden nodes varying from 2 to 18, whereas the number of iterations
differed also. Degrees of freedom vary from 32 with a 12-2-2 net up to 272 with a
12-18-2 net. The net decides by the so-called ‘winner-takes-all’ criterion. Figure 5.5
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Figure 5.5: Correct recognition percentages of the Training and Development
test sets classified with a neural network with the topology of 12-14-2 for the
distinction of prominence non-prominence (unbiased training).

presents classification results on the Training and the Development test set with an
increasing number of training iterations. This example is taken from table 5.2 and
deals with the net with 14 hidden nodes. Whereas the curve for the training data
steadily increases, the curve for the development test data starts to decrease
somewhere around 3600 training iterations. The number of training iterations
needed also depends on the training algorithm. At this turning point the net is
sufficiently trained but at the same time is not too closely adjusted to the training
data. The results, presented in table 5.2, are selected according to this criterion. Only
results of fully trained nets are presented. The recognition rates are presented as
overall results and results that have been separated for prominent and non-prominent
recognition. Table 5.2 gives the results of several neural nets for the Training set (1,
2 in figure 5.4) and for the Development test set (1, 2 in figure 5.4). The percentages
correct prominence classification with neural networks are always higher than
classification with an LDA. The correct classification on the training data also are
always higher than on the development test set data. Neural networks with more
than 6 hidden nodes in their hidden layer give better performances than with less
hidden nodes (see table 5.2).

Unbiased training (equal numbers) achieves better recognition results for
prominence classification (around 82%) than for non-prominence classification
(around 77%). The features describing the prominent words may be more clearly
defined than the features describing non-prominent words. The opposite is true for
the biased trained neural networks. There the non-prominence classification (around
82%) achieves higher recognition results than the prominence classification (around
76%). This is explained by the fact that a neural net trained with unequal numbers is
biased to recognize the more frequently occurring non-prominent words. This
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Table 5.2: Results (percent correct classification) of several neural networks
with a variable number of hidden nodes in the hidden layer, trained with

biased und unbiased data.
Unbiased Training Biased Training
Non-prom Prom % [Non-prom Prom %
All Training set  77.01f Training set 76.86
Non-prom 1996 654 75.32f 2986 956 75.75
Linear discriminant Prom 564 2086 78.71} 562 2056 78.53
analysis (LDA) All Dev.testset  76.05] Dev. testset 75.71
Non-prom 1960 691 73.93| 0.74355 99474.87
Prom 579 2072 78.16| 0.77674 2084 78.79
Num hidden nodes
All Training set  79.79| Training set 78.82
Non-prom 1993 657 75.21| 3135 741 80.88
2 Prom 414 2236 84.38] 648 2035 75.85
All Dev. testset  78.06] Dev. testset 78.09
Non-prom 1977 674 74.58] 3161 781 80.19
Prom 489 2162 81.55| 656 1962 74.94
All Training set  81.13| Training set 80.99
Non-prom 2056 594 77.58| 3208 668 82.77
4 Prom 406 2244 84.68] 579 2104 78.42
All Dev. testset  79.80| Dev. testset 79.77
Non-prom 2042 609 77.03 3238 704 82.14
Prom 462 2189 82.57] 623 1995 76.20
All Training set  82.49 Training set 81.06
Non-prom 2083 567 78.60| 3218 658 83.02
3 Prom 361 2289 86.38] 584 2099 78.23
All Dev. testset  80.33| Dev.testset 79.85
Non-prom 2050 601 77.33[ 3234 708 82.04
Prom 442 2209 83.33] 614 2004 76.55
All Training set ~ 84.26| Training set 83.34
Non-prom 2157 493 81.70| 3279 597 84.60
10 Prom 341 2309 87.49] 496 2187
All Dev. testset  81.25| Dev. test set §§d
Non-prom 2059 592 77.79| 3228 714 81.89
Prom 402 2249 85.08) 591 2027 77.43
All Training set  86.66] Training set 80.81
Non-prom 2232 418 84.67| 3227 649 83.26
14 Prom 289 2361 89.54 610 2073 77.26
All Dev. test set | | Dev. testset 79.91
Non-prom 2114 537 79.73| 3254 688 82.55
Prom 417 2234 84.28] 630 1988 75.94
All Training set  82.55 Training set 81.26
Non-prom 2106 544 7947 3247 629 83.77
18 Prom 381 2269 85.62] 600 2083 77.64
All Dev. testset  80.20; Dev. testset 79.54
Non-prom 2068 583 78.01| 3256 686 82.60
Prom 467 2184 82.38) 656 1962 74.94
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shows that the distributions of prominent and non-prominent words play a role in the
classification process.

In the unbiased case the best overall performance of prominence classification is
82.01% on the Development test set. This result was achieved in a neural network
with 14 nodes in the hidden layer. The best performance for a biased trained
network (10 hidden nodes) resulted in an overall recognition rate of 80.11%.

5.2.4.1 Testing with the Independent test set

The best nets based on the general results of table 5.2 were selected for independent
testing. For the biased condition this is net 12-10-2, and for the unbiased condition it
is net 12-14-2. These ‘optimal’ neural networks were used to mark the words in the
1000 sentences of the Independent Test set (figure 5.4 dataset 5 and 6). These
prominence-marking results can easily be compared to the marks of the one
‘optimal’ listener who marked these words for prominence. The results are presented
in table 5.3 and 5.4 in the form of a crosstable. Table 5.3 concems the condition of
the unequal numbers of prominent and non-prominent words (biased data) in the
1000 sentences of the Test set. The input data in table 5.4 deal with the unbiased
case. The number of non-prominent words is then randomly reduced to the same
number of available prominent words, which is 3998 (see condition 6 in figure 5.4).

Table 5.3: The correct recognition rates of prominence classification of the
Independent Test set (biased data, condition 5 in figure 5.4). The total
numbers as well as the percentages are given for the networks trained under
unbiased and biased condition; the networks with the topology of 12-14-2 and

12-10-2 were optimal.
Unbiased training Biased training
Non-prom  Prom % Non-prom  Prom %
Test set (biased) 77.1 Test set (biased) 78.9
Non-prom 4907 1425 77.5 5232 1100 82.6
Prom 942 3056 76.4 1079 2919 73.0
Measure of agreement (x) 0.53 0.57

First, we give a description of table 5.3. Percentages of prominence and non-
prominence recognition rates are 77.5% and 76.4%, respectively, for the unbiased
training condition (on average 77.1% correct). Non-prominent recognition is 82.6%
for the biased training condition. This is comparable to the results of the
development test set. Training with biased data gives better results on non-
prominent recognition; the prominent recognition drops to 73.0%. A biased trained
net performs best (78.9%) on the Independent Test set. The better performance of
the biased trained net is as expected, as the distribution of the prominence marks in
the 1000 sentences of the Independent Test set coincides with the distribution in the
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training material. The Test set contains 10330 words; 3988 of these are marked as
prominent, which is 39%. The remaining 61% is non-prominent. The 1244 sentences
used for the training and development test set contain 13119 words, of which 7818
are treated as prominent, which is 40% of the total number of words.

When the bias in the data of the Test set is removed, i.e., when equal numbers of
prominent and non-prominent words are presented, the performance of the net 12-
10-2 decreases to 77.78% correct classification (see table 5.4). The performance of
the unbiased trained net 12-14-2, tested with unbiased data of the Test set (condition
6 in figure 5.4) is 77.05% correct. Training and testing under the same biased or
unbiased conditions do not give consistently better classification results. In table 5.3
the results are better when trained and tested with biased data, but contrary to this in
table 5.4 the results for training and testing with unbiased data shows less
percentages correct than trained with biased data and tested with unbiased data.

The between-listener agreement (section 2.4.1.2) expressed in Cohen's Kappa k, was
calculated for the results of the neural network and the listener who marked all 1000
test sentences. Kappa values are 0.53 (unbiased training) and 0.57, (biased training),
see table 5.3. In an unbiased Test set (table 5.4) these Kappa values hardly differ.
Similar values (on average X = 0.50; Std. Dev. = 0.16) were measured for the
between-listener agreements see section 2.4.1.2. This means that the neural network
behaves similarly to any listener, and that the differences in prominence
classification are as accurate as the prominence classification of any naive listener.
The performance of the net is indistinguishable from any listener.

Table 5.4: This table presents the recognition rates of prominence
classification on the Independent Test set (unbiased data, in figure 5.4
condition 6). The total numbers as well as the percentages are given for the
‘optimal neural networks’ trained under unbiased and biased condition with
the topology of 12-14-2 and 12-10-2, respectively.

Unbiased training Biased training
Non-prom  Prom % Non-prom _ Prom %
Test set (unbiased) 77.08 Test set (unbiased) 77.78
Non-prom 3105 893 77.66 3300 698 82.54
Prom 942 3056 76.44 1079 2919 73.01
Measure of agreement (x) 0.54 0.56

5.2.4.2 Summary and conclusion

For the binary prominence classification the following results have been reached:
82% correct classification on a Development test and 79% correct on an
Independent Test set. The performance may be accurate enough to allow sentence
disambiguation to be done by such a classifier, especially if one keeps in mind that
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any listener is indistinguishable from our ‘optimal' neural network (79% correct, x =
0.57, table 5.3) fed with acoustical information only. Considering that the listener
has both acoustical and linguistic information, a combination of both acoustic and
linguistic input features may further improve the classification.

Comparing correct recognition rates of an LDA with neural networks shows that
apparently non-linear relationships exists between acoustic input features and
prominence.

With an LDA only linear relationships can be used for prominence prediction,
however, with neural networks with a hidden layer higher order relationships can be
exploited. The prominence classification with a neural network appears to be always
better than the classification with an LDA.

5.2.5 Gradient prominence prediction

In the previous section we discussed binary prominence classification only. Training
a neural network that provides gradient prominence, e.g. for our approach a linear
output of the neural net, has the advantage that it is not limited to two prominence
classes. This gradient output can always be reduced to two or more discrete
prominence classes. This facilitates comparison between binary and gradient
classification. Another advantage is that only one output node is needed. This
reduces the degrees of freedom substantially while the prediction of any amount of
prominence is still possible. Because of the relatively low number of degrees of
freedom, there is no problem in having insufficient training material, which lowers
the danger of overtraining. This section deals with data selection 3 and 4 in figure
5.4. This time, however, we use a prominence scale from 0-10.

Several neural networks were trained under different conditions. However, all
twelve features are always used as input. The number of hidden nodes varies from 2
to 18. Only nets with one hidden layer were used. The output of such nets is a single
value around 0. Therefore the original cumulative prominence marks of the listeners
(0-10) were scaled between -1 and +1 by using the formula 1/5 « prom -1. For
instance prominence mark 9 yields 0.8 and prominence mark 4 yields -0.2.

As described above, the neural networks were trained with various numbers of
training iterations. The number of iterations ranges from 100 up to 5500. The
Training and Development test sets are biased (3 in figure 5.4) or unbiased (4 in
figure 5.4). In order to present an overall performance of all the trained neural
networks with varying number of training iterations, the linear correlations between
the predicted prominence and the perceived prominence are calculated for the
Training and the Development test set. Such a relationship may not be linear, but a
higher order correlation was not tested. These linear correlation coefficients indicate
the performance of the trained neural network and are used to select the optimal
network. The results of neural networks giving a linear output are difficult to
present. Each input feature has an output of around 0, for instance 0.4563. For
rescaling the output we use the formula ((output + 1) * 5). This gives us the
predicted prominence value of 7.2815 (on the original scale from 0 to 10).
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5.2.5.1 Results

For the optimal unbiased trained network the highest correlation coefficient is 0.60
for the Development Test set (unbiased) and 0.64 for the Training set. This net has a
topology of 12-6-1. For the unbiased condition the highest correlation coefficients
are 0.70 (Development Test set) and 0.72 (Training set). The optimal net with the
topology of 12-10-1 achieved these highest correlation coefficients.

In order to graphically compare the predicted prominence with the perceived
prominence, figures 5.6 and 5.7 give medians (of the predicted prominence within
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Figure 5.6: Medians + 1 IQR (Inter Quartile Range) per median of the
predicted prominence (trained with unbiased data) of the Development
test set on the perceived prominence scale of 0-10. The linear
correlation is r = 0.60. The dashed line gives the perfect prediction.
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Figure 5.7: Median £ 1 IQR of the predicted prominence (trained with
biased data) of the Development test on the perceived prominence scale of
0-10. The linear correlation is r = 0.70.
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the prominence scale of 0-10) for the optimal neural networks for the Development
test set. As error bars the Inter Quartile Ranges per median (75% and the 25%
percentiles) are plotted.

The extremes of the perceived prominence scale are shifted towards the middle of
the predicted prominence scale. The calculated percentiles confirm this: perceived
prominence of 8, 9 and 10 is predicted with median values of 6.05, 6.39 and 6.72,
respectively (figure 5.6). These values are even further shifted to the mid range for
the biased training, namely median values of 5.45, 5.90 and 6.30, respectively
(figure 5.7). However, for the biased training the predicted median value of 0.70 is
closer to the perceived prominence 0. This is not the case for the unbiased training,
where the perceived prominence of 0 is predicted to be 2.14. The error bars,
expressed in IQR, show that there is a lot of overlap, indicating that the
classification of each individual prominence value of 0-10 is not an easy task. In
order to examine how well the predicted gradient prominence values fit into the
perceived prominence scale (0-10) confusion matrices are constructed.

Tables 5.5 and 5.6 present confusion matrices of the perceived prominence versus
the predicted prominence scales, achieved by the optimal neural networks (12-6-1
and 12-10-1) respectively, which have the highest correlation coefficients. In order

Table 5.5: Gradient prominence prediction versus perceived prominence. This
matrix is based on the Development Test set. The prediction was achieved
with unbiased data and the topology of the net was 12-8-1. Cells containing >
30 data points are boxed.

Perceived prominence

0 1 2 3 4 5 6 7 8 9 10 Total
2 - S T
S B I S e Y
37110 2 1 - - - o - |50

43 [ 28 12 5 7 2 - - - 1 - | 98
46 | 36 [ 22 23 18 11 6 5 5 1 1 1174
36 | 61 | 51 |46 |33 {27 26 11 12 7 1 |31
40 | 59 | 69 [ 61 | 65 | 51 [ 60 | 47 | 32 | 27 16 | 527
3315156 |50 )61 |54|46] 46 | 36 | 34 | 492
9 16 27 | 38 |54 |62|51 /56|61 65| 581497
2 9 20 20 23 |34 |41 |48 | 59|57 77 |39
1 3 5 8 7 7 1939|3442 | 42 207
- - - 1 1 4 2 7 6 20 23| 64

- - - 1 - - - 2 3 7 |13
Total 259 259 259 259 259 259 259 259 259 259 259 2849

Predicted prominence
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to put the predicted amount of prominence in such a confusion matrix, the linear
output is placed on a scale of 0-10, as explained above, by rounding these values to
integers. For instance the number 7.2815 is rounded off to 7. This number yields one
tally in row 7 of the predicted prominence.

Especially the cells in the middle of the matrices cause confusion. The perceptually
very prominent categories (8, 9, 10) are often predicted with less prominence.
Training with equal numbers provides a poor non-prominence prediction; perceived
prominence 0 and 1 is often predicted with 2 and 3 (see table 5.5). In addition, it is
also possible that predictions are less than 0 and greater than 1. This depends
exclusively on the input values. It can occur that if the neural net is fed with deviant
data (for instance, because of a measurement error) the output of the neural net is
also very deviant. In fact two words with a perceived prominence of 8 are predicted
with a value less than 0, namely -1 and even -2. This holds for the unbiased
condition. This is obviously wrong. We decided to keep these values, because it
concerns only a few incidental cases.

For the training with unequal numbers (biased) the prediction on the lower part of
the prominence scale is much better than for unbiased training; the cells around 0 are
more filled.

Table 5.6: Gradient prominence prediction versus perceived prominence. This
matrix is based on the Development Test set. The prediction was achieved with
biased data and the topology of the neural network was 12-10-1. Cells
containing > 10% of the total per perceived prominence scale are boxed in.

Perceived prominence
0 1 2 3 4 5 6 7 8 9 10 Total
-5 1 - - - - - - - - - - 1
-3 3 - - - - - - - - - - 3
212 - - 1 1 - - - - - -1 22
-1 {218 23 2 - - - - 2 1 - - | 246
g 0 (1108/ 106 13 12 6 8 3 1 2 - 1 1260
g 1 |651]100] 5529 22 6 13 10 5 2 1 | 89%4
'g 2 14041021 79 (32|42 |29 31 33 20 9 5 | 786
_§- 3 (271194 | 64 | 73§62 |46 | 49 | 52 |36 1{25 9 |781
g 4 [175[ 75|61 |70 ([55(|66 |60 | 62|55]| 57|18 {754
T 5 (104 52 [ 47 )36 (53|84 |8 | 72|84 |63 ]| 40721
= 6 {34 14 28 23 [ 33|40 ] 36| 8 | 80 | 69 | 56 | 494
7 13 9 11 18 13 25 31 | 55| 8 | 79 | 51 |39
8 2 2 1 7 7 2 8 30 19| 42| 35| 155
9 - - - - - 4 3 9 4 18 13| 51
10 | - - - - - - - - 1 1 - 2

Total 3004 577 361 301 294 310 320 407 392 365 229 6560
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5.2.6 Analyses of individual features

In chapter 4 several individual features were analyzed in general terms as
prominence predictors and several histograms concerning these acoustic features
were given. These histograms indicate the ability to distinguish between the two
extremes of the prominence classes (namely prominence categories 0 and III). The
discriminative ability of these features will be analyzed in more detail in this
subsection by using neural net techniques and will be compared also with the
relevant histograms as displayed in chapter 4. All four prominence categories are
involved in the analyses presented in this chapter (0 and I as non-prominent, and II
and III as prominent). In chapter 4 we restricted ourselves to the two extremes of the
prominence categories (0 and III). Techniques such as linear discriminant analyses
or CART-trees may be more powerful, but in this study simple feed-forward
networks do help us to investigate acoustic correlates in detail. Our simple 1-2
neural networks give the similar resuits as an LDA. We chose to stay with neural
networks. Individual networks with one input node and two output nodes are trained
with eight of the twelve features. Features giving overall information of the sentence
are omitted. Eight of the twelve features, as described in figure 5.3, were used as
such single features; namely the vowel duration (1), vowel duration normalized for
intrinsic vowel duration (2), vowel intensity normalized for the overall intensity of
the given sentence (5), vowel intensity (sentence normalized) normalized for the
intrinsic vowel intensity (6), syllable duration (7), median F, corrected for the
median F, per sentence (9), range of F,, per syllable (10), range F, per word (12).
Later on in this chapter we will also study some combinations of features. Individual
features were analyzed by training a simple neural network with one input node and
two output nodes (prominent or non-prominent). Such simple networks can be used
to analyze the individual input features in two different ways. On the one hand the
performance of the classification with single acoustic input features can give
information about the discriminative power of these individual features, and on the
other hand the neural networks themselves can be analyzed. If one uses neural
networks without a hidden layer, only linear relations can be estimated, but for a
preliminary examination of the data this will suffice.

As said above the design of the Training and Development Test sets are available in
a biased and in an unbiased version. Consequently, a total of 16 neural networks is
required that will vary only in one input feature. However, the difference between
biased and unbiased training and testing remains. These neural networks were
mostly trained with only 18 training iterations, which is sufficient given the few
degrees of freedom. These simple nets have only 4 variables to adjust to the data.
Before presenting the performance of these 16 neural networks, the network itself
will be analysed.
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Figure 5.8: A neural network with the topology of one input node and two
output nodes (1:2). Such networks are used to analyze single features and to
estimate critical boundaries.

5.2.6.1 Analyzing the neural network

The neural nets used are designed in such a way that the first output node fires when
the input concerns a prominent word and the second output node fires when the
input concerns a non-prominent word. It can be calculated where the trained neural
network puts the decision threshold in the training session. Beyond this threshold the
net decides to classify this word as prominent and below this threshold value the net
marks this word as being non-prominent.

The resulting activation threshold for our minimal neural network can be expressed
as follows. where O, and O, are the output functions of the two output units (see
figure 5.8):
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Figure 5.9: The two activation functions for the output nodes. There is one
crossover point near 0.15.

The crossover point is calculated by equalizing these two functions. This crossover
point is displayed in figure 5.9. This is exactly the critical point; at this point a
prominent and a non-prominent word are equally probable.

The values of these crossover points are estimated for the eight individual features.
Table 5.7 gives the values for the biased and for the unbiased versions. By
comparing the two columns it can be seen that the thresholds estimated by using a
neural network trained with biased training input (1 in figure 5.4) are shifted to
longer vowels and syllables. These vowels have also a higher intensity and show
greater ranges in their Fy movements than in the unbiased version (2 in figure 5.4).

For ‘vowel duration’ the critical value is 0.10 s or 0.12 s, respectively. These values

Table 5.7: The estimated boundaries for 8 acoustic features. These boundaries
function as a crossover point; beyond these values the neural network classifies
the given data as belonging to a prominent word.

Feature Estimated boundaries
Unbiased Biased
Vowel duration (s) 0.10 0.12
Vowel duration normalized (z-score) 0.09 0.75
Vowel normalized for sentences intensity (dB) 77.89 79.69
Vowel intensity (dB) normalized (z-score) 0.17 0.74
Syllable duration (s) 0.21 0.24
Range F, per syllable (st) 3.36 4.19
Median F, per syllable (st above the sentence median F) 0.23 4.33

Range F, per word (st) 3.75 4.69
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Figure 5.10: The biased and unbiased distribution of the vowel duration
normalized for intrinsic vowel duration. The peaks at the edges of the
histograms are due to the bin distribution. (More details are explained in
section 4.2.2.3.)

indicate that vowels longer than 0.10 s or 0.12 s are classified as prominent. This
unbiased threshold of 0.10 s is similar to the crossover point in figure 4.9, which
actually represents unbiased data, because in these figures percentages are presented.
The threshold does not have to be identical because the data are not identical (in the
histogram only prominence class 0 and III are presented, whereas the nets are
trained with 0 and I as ‘non-prominent’ and II and III as ‘prominent’). The unbiased
threshold (0.09 s) of ‘vowel duration normalized for intrinsic vowel duration’ shows
that, if a vowel is classified as prominent (prominence class II and IIT) it must be
longer than the threshold value of the class it belongs to. If the normalized duration
had been exactly equal to the mean of its class, this value would have been 0. The
network trained with biased input data of the vowel duration corrected for the
intrinsic vowel duration (vowel duration normalized) places the threshold at 0.75 (z-
score). This is a large shift to the right. This can be explained by looking at the
distribution of this feature as shown in figure 5.10. Graph a) presents the biased data
of the two extremes of the prominent class (0 and III), and graph b) presents
percentages, which are corrected for the differences in numbers in the two extremes
of the two prominence classes. Prominence class III lies below the prominence class
0 histogram as shown in graph a). The neural network places the threshold far to the
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right so that chance distribution of the frequency of occurrence determines the
classification.

A similar situation occurs for ‘vowel intensity corrected for intrinsic vowel
intensity’ and for ‘median F, per syllable’. These three features (vowel duration
normalized for intrinsic vowel duration, vowel intensity (dB) normalized for
intrinsic vowel intensity, and the median F, per syllable) are probably not useful in a
biased classification situation. The classification results, presented later in this
section, will show whether these three features are useful for unbiased classification
situations, e.g. for disambiguating the meaning of sentences. The thresholds of the
other features related to the vowel intensity are as expected. The ‘biased’ thresholds
have further shifted towards greater intensity in order to cope with the greater
probability that data belong to non-prominent words (60% of the data belong to non-
prominent words, whereas only 40% belong to prominent words). The F, range
thresholds measured on syllables (3.36 st or 4.19 st) and on words (3.75 st or 4.69
st), respectively, show that the F, range must be larger for the word condition than
for the syllable condition. The thresholds belonging to the unbiased version
correspond to the crossover points of the histograms as in figure 4.6.

5.2.6.2 Analyzing the performance of the individual features

The performances of these simple neural networks are of interest because a
comparison can be made with the amount of overlap of the histograms as displayed
in chapter 4 and as expressed in table 4.3 in that chapter. In this comparison, not
only the absolute recognition rate is important but also whether a ranking can be
made in order to work out the most useful features for prominence classification. A
combination of the ‘best’ features brings us closer to the training of the ‘optimal’
neural network for ultimate prominence classification for a binary prominent / non-
prominent distinction as well as a gradient prominence classification.

Table 5.8 presents the recognition rates for the above-discussed simple neural
networks with single input features for the biased and unbiased versions of training
and testing. The recognition rates are only given for the Development Test set, and
are separately presented for prominent and non-prominent input. The chance level of
the frequency of occurrence is 50% for the unbiased recognition rates, whereas for
the biased version this level is about 60% according to the prominent / non-
prominent distribution as explained above. As expected from the estimation of the
thresholds, ‘vowel duration normalized for intrinsic duration’, and ‘vowel intensity
normalized for the intrinsic intensity’, and ‘median F, per syllable’, performed
slightly above chance leve! for the biased trained neural networks. Because of the
differences in the biased distribution, the non-prominent recognition in biased
condition is always better than the prominent recognition. In the case of the unbiased
condition, recognizing prominent words is better when using intensity features; the
other features do not show such a constant preference.




124 CHAPTER 5

Table 5.8: The performance of the individual acoustic features trained with a
simple neural network (1-2) without a hidden layer. The overall recognition
rate on the Development test set for the biased and the unbiased data is given
together with the separate results for the prominent and non-prominent
recognition. Also the ranking of the overall scores is given together with the
ranking based on the histogram overlap as presented in chapter 4, section 4.3,

table 4.3.
Unbiased Ranking Biased Ranking Ranking
overlap
Vowel duration All 65.97% 5 6601% 4 6
Non-prom  65.87% 81.05%
Prom 66.07% 43.88%
Vowel duration All 61.01% 8 6157% 7 8
normalized Non-prom  62.23% 83.33%
Prom 59.78% 29.57%
Vowel intensity All 66.86% 4 65.67% 5 4
corrected overall Non-prom  59.86% 74.16%
Prom 73.87% 53.18%
Vowel intensity All 62.11% 7 61.63% 6 7
normalized Non-prom  56.69% 77.95%
Prom 67.54% 37.63%
Syllable duration ~ All 71.34% 2 70.14% 1 3
Non-prom  71.18% 79.82%
Prom 71.50% 55.89%
Range F, syllable  All 69.02% 3 6173% 3 2
Non-prom  71.38% 77.18%
Prom 66.67% 53.82%
Median F, corrected All 64.45% 6 60.11% 7 5
Non-prom  65.95% 90.14%
Prom 62.95% 15.93%
Range F, word All 71.85% 1  6983% 2 2
Non-prom  72.80% 77.26%
Prom 70.90% 58.91%

Similar to the ranking based on the overlap of the histograms in table 4.3, a
discriminability ranking can also be derived from the recognition rates of the neural
networks. In table 5.8 such a ranking is displayed for the biased and the unbiased
condition. Rankings 2 and 1 are interchanged for the unbiased and biased condition,
indicating that syllable duration and F, range per word are the features with the
highest discriminatory power in both conditions. The F, range per syllable follows
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these two features. Places 4 and 5 are interchanged as well; this means that the
unnormalized version of vowel duration and intensity (sentence normalized) are
interchanged. The ranking for the histogram overlap (see section 4.3 table 4.3)
follows more or less the network ranking. Place 2 is interchanged with place 3. As
already indicated in chapter 4, duration and intensity normalization does not further
improve prominence classification. The percentages of correct recognition are
poorer for normalized features than for the unnormalized counterparts (see table
5.8).

5.2.6.3 Summary and conclusion

The ranking of the recognition results differs somewhat for the biased and unbiased
version, as well as in comparison to the ranking of the amount of overlap (see
chapter 4), but the trend is clear. F, ranges per word and syllable duration are useful
features. Vowel intensity and vowel duration are also useful, while their normalized
counterparts do not improve the classification of this speech material.

In the next section it will be estimated whether certain combinations of features will
further improve the classification task.

5.2.7 Analyzing combinations of features

Only a few paired feature combinations were selected to train a neural network and,
for simplicity reasons, only the results of the unbiased trained nets are presented
here. Preferably, only combinations should be involved which do not intercorrelate
highly (see table 5.1), ensuring that each feature with the combination contributes
independent information.

The recognition results of the various combinations are presented in table 5.9. The

Table 5.9: The correct recognition rates (% correct) of a number of acoustic
feature combinations, expressed in overall correct recognition rates on the
Development Test set for the unbiased data.

Feature combination Dev. Test (%)
Range F,, word - syllable duration 75.50
Range F; word - vowel intensity 74.48
Range F, word - vowel duration 74.04
Syllable duration - vowel intensity 72.69
Syllable duration - sentence speaking rate 71.45
Vowel duration - vowel intensity 69.33
Vowel intensity - overall intensity 65.98
Vowel duration - sentence speaking rate 66.01
Vowel intensity normalized - overall intensity 62.77

Vowel duration normalized - sentence speaking rate 61.15
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results are ordered according to recognition rates. It is striking that the range of F,
per word, in combination with the syllable duration, vowel intensity, or vowel
duration gives the best classification. The acoustic feature combination of syllable
duration and vowel intensity also gives acceptable results.

Although the sentence speaking rate yields some effect (chapter 4, figure 4.13), this
additional information did not provide an improved performance. The feature of
sentence speaking rate in combination with either vowel duration or syllable
information gives a performance of 66.01% or 71.45%, respectively. However, the
single features analyses gives 65.97% and 71.34% performance. In addition, the
combination of sentence speaking rate and vowel duration normalized for intrinsic
vowel duration does not improve performance (61.15% with sentence speaking rate
versus 61.01% for the single feature). The trained networks with two-wise feature
combinations indicate that the unnormalized features are the most promising ones.
For this kind of speech material, normalizations do not increase the prominence
classification substantially. Normalization cannot (yet) be implemented in such a
way that it increases the performance.

5.2.8 Prominence classification with an ‘optimal’ feature combination

Based on these results we combined F, range per word, syllable duration, vowel
duration and vowel intensity as a promising feature set.
A neural network trained with these four ‘basic’ features performs almost as well as

Table 5.10: Performance on the Development Test set of several neural
networks with 4 ‘basic’ acoustic input features.

Unbiased training Biased training
Num of hidden nodes [Non-prom Prom % [Non-prom Prom %

All Dev.test 78.11] Dev.test 78.02

Non-prom 1871 655 74.07| 3145 760 80.54

Prom 451 207582.15] 682 1973 74.31

All Dev.test 77.95 Dev.test 539
3‘
5

Non-prom | 1863 663 73.75 3163 742 81.00
Prom 451 2075 82.1 682 1973 74.31
All Dev. test  78.3 Dev.test  78.26
Non-prom | 1871 655 74.07] 3169 736 81.15
Prom 439 2087 82.6 690 1965 74.01
All Dev.test 78.11] Dev.test 77.94
Non-prom 1874 652 74.1 3128 777 80.10
Prom 454 2072 82.03] 670 1985 74.76
All Dev.test 78.48 Dev.test 78.08
Non-prom | 1869 657 73.99 3150 755 80.67
Prom 430 20968298 683 197274.27
All Dev.test | Dev.test 77.96
Non-prom | 1900 626 75.221 3153 752 80.74
Prom 433 209382.86 694 196173.86
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a neural network trained with all twelve features. The neural network trained with
the four features shows an overall performance of 79.04% correct prominence and
non-prominence classification on the Development test set under the unbiased
condition (see table 5.10). The best biased condition gives a performance of 78.29%
correct. The performance of a net trained with all twelve features still performs
somewhat better though (unbiased condition 82.01%, biased condition 80.11%, see
table 5.2) on the Development test set.

5.3 Discussion and conclusion

Twelve acoustic input features for binary prominence prediction yield 82%
(unbiased condition) and 80% correct (biased condition) classification on the
Development test set and 79% and 78% correct classification on the Independent
test set. Higher results are found in the literature. KieBling (1996) achieved 82.8%
(spontaneous speech material) and 95% (read aloud speech material, simple
sentences) correct classification (for accent / non-accent in their terminology), using
a net with 276 input features including textual information. Such a comparison is not
completely fair, because we aim at different goals. The statistical or brute force
method used in Kieling (1996) aimed at high recognition rates whereas our
approach aimed different perspectives of acoustics and classification. Our
prominence classification results in this chapter were achieved using solely twelve
acoustic input features.

The binary prominence predictions are as consistent as listeners are. On an
Independent Test set (unbiased data) these nets achieve 77% correct (x = 0.56) with
the most optimal listener (see also chapter 2). The agreement is even higher for the
biased data: namely k = 0.57. These agreements do not differ from the agreement
between listeners which is on average k = 0.50. Thus our neural networks are
indistinguishable from naive listeners for assigning prominence.

The attempt to predict gradient prominence is much more complicated than binary
prominence prediction. A correlation of r = 0.60 (unbiased condition) and r =0.70
(biased condition) is achieved. In principle high correlations could only be a
indication of high recognition results. Looking at the underlying confusion matrices
it appears that the middle range of the prominence scale (0-10) is an area of
confusion, and that the extreme of 10 (very prominent) is rarely predicted. It may be
that our design of perceptual prominence judgments is not constructed to allow for a
really accurate prediction of a gradient scale.

The analyses of the individual acoustic features confirm that the four ‘basic’
acoustic features, namely vowel duration and intensity, syllable duration and F,
range per word, yield performances of 79% (unbiased condition) and 78% (biased
condition) correct prominence classification on the Development test set. Despite
the fact that normalizations provide no further improvement when used as two-wise
features, using all twelve input features still shows somewhat better performance
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(table 5.2). Exactly what the effect is of the eight remaining features still needs
detailed investigation. Also, it can be concluded that the use of a hidden layer
provides more accurate prominence classification (table 5.2), also in comparison
with an LDA. This means that there is no simple linear relationship between
prominence and acoustic features. Therefore, the linear representation in the
histograms of chapter 4 is a first approximation only.




GENERAL CONCLUSION AND
DISCUSSION

Abstract

In this final chapter the various threads in the previous chapters are put together.
We demonstrated that naive listeners are able to assign in a consistent way word
prominence in individual Polyphone sentences, with little instruction to the listener.
This enables prominence annotation for large speech databases by non-experts.
Most differences between-listeners (reliability) and within-listeners (consistency)
can be ascribed to level shift or level differences. These findings allow us to use an
operational definition of prominence. Next, we have demonstrated that, on the basis
of text input only, the prominence level of words can be predicted with a
performance similar to that of naive listeners. The linguistic information used was
limited to word class (POS), word length, Adjective-Noun combinations and the Sfirst
content word in a sentence. We studied a selected set of acoustic correlates of
prominence, all based on F, duration and intensity extracted at units not larger
than a word. Finally, we used twelve acoustic features as input for a neural net
classifier. A binary prominence classifier appeared to be correct in 79% of the
cases, which is statistically indistinguishable from a consistent naive labeler. We
can thus conclude that automatic prominence assignment is sufficiently powerful to
simulate naive labelers for read-aloud declarative medium length sentences in
Durtch.
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6.1 Introduction

The perceptual concept of prominence, which is the amount of emphasis put on
syllables and words that make them ‘stand out’ in their environment, can function as
an interface between acoustics and linguistics. It is strongly related to information
structure in terms of ‘given’ and ‘new’ information or in terms of focus. In our
approach a perceptually defined concept of prominence is the basis for all further
analyses. This perceptual phenomenon of prominence appears to be intuitively clear
to non-experts. A proper modeling of prominence, either from the signal, or from
text, may be useful for several applications in speech technology (e.g. in dialogue
handling).

The purpose of this study was to explore various aspects of prominence. First, we
developed a useful operational definition of prominence via of judgments of naive
(native) listeners. We focused on analyzing various linguistic and acoustic correlates
of prominence referring to bottom-up and top-down information, respectively. The
final goal of this study was to find and extract those features that can best be used to
predict prominence automatically.

6.2 Operational definition of prominence by naive listeners

On the basis of two pilot studies and a larger experiment concerning prominence
assignment, an operational definition of prominence was formulated. Prominence is
defined as the amount of emphasis attributed by a group of naive native transcribers.
For the sake of validity we wanted to keep our listeners as ‘naive’ as possible as to
the task to be accomplished. The marking of prominence in the way we did (binary
marking on words by more than one listener) was a useful approach to mark large
databases, leaving us with enough detailed information to analyze acoustic and
linguistic correlates of prominence. However, the investigation of gradient
prominence on an 11-point scale proved too difficult to handle.

In this part of our study, there appeared to be three main discussion items: 1) should
we assign prominence at the word or at the syllable level, 2) should we use binary
marks or marks on a gradient scale to indicate the degree of prominence and 3) how
is the consistency and reliability of the listeners.

6.2.1 Word or syllable prominence marking

An advantage of word prominence assignment is, that it is much easier to perform
than syllable-prominence assignment. Additionally, words are more meaningful
elements for naive listeners than syllables are. A word is a unit of expression, which
has a universal intuitive recognition and meaning by native listeners and speakers.
This increases the validity and this makes the labeling intuitively more plausible.

A disadvantage of marking prominence on word level is, however, that one has no
detailed information about the identity of the prominent syllable in polysyllabic
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words. To circumvent this disadvantages, an alternative approach would be to mark
the prominent syllable(s). Using this approach about 250,000 words of the ten-
million-words Corpus Gesproken Nederlands (short CGN Spoken Dutch Corpus,
http://lands.let.kun.nl/cgrn/, Buhmann et al., 2002) are currently annotated for
syllable prominence. This implies that detailed information about the prominence
distribution within words, as realized in utterances, will become available. However,
the labelers had to be trained to mark syllable prominence according to a detailed
protocol. This increases the consistency, but decreases the simplicity and the
applicability of the approach.

In our study, it was decided to ask the listener to mark word prominence rather than
syllable prominence. This decision was partly based on the results of the pilot
experiment as described in section 2.3, which showed that word prominence tends to
be assigned more consistently than syllable prominence. For all analyses presented
in this study this word-based approach appeared to be detailed enough. Lexical
(word) stress was used as a next best approximation to identify the most prominent
syllable in those words that were labeled as prominent. For further research it is
interesting to investigate whether different strategies were used to mark prominence
on the syllable level in comparison to the word level.

6.2.2 Binary or gradient prominence marking

Fant & Kruckenberg (1989), Portele & Heuft (1997), and Grover et al. (1997) used
naive listener judgments to define prominence in a detailed way. In their studies,
prominence judgments were given for every syllable in the sentence on a very
detailed scale. Such a detailed prominence assignment was unpractical in the present
study, because it would not allow the annotation of large acoustic databases.
Moreover, such detailed information about prominence generally appeared to be
unnecessary, even according to the above authors: they all considerably reduced the
detailed prominence scales in their further analyses.

In the present study it was decided to ask from each listener a binary prominence
mark instead of an n-points gradient prominence scale. Binary marking makes the
annotation task easier to perform. This appeared to be a useful approach in our
study, whereas the cumulative marks over a group of listeners provided a useful
indication for the gradient degree of prominence.

As pointed out before problems remained with application of the cumulative 11-
point scale. We have reduced this scale to four prominence classes by means of a
hierarchical cluster analysis and even reduced these four classes to a binary
prominence distinction. While ten listeners marked the training set, one ‘normative’
listener was selected to mark the test set. Further research is needed to find out what
a useful and necessary detailed range of the prominence scale is. Related to this,
questions arose such as what is the relationship of prominence and the linguistic
phenomenon of lexical (word) stress in terms of ‘stressed’ and ‘unstressed’
syllables, and / or distinction of four degrees ‘primary’, ‘secondary’ ‘tertiary’ and
‘weak’. The phonetic notion of pitch accent and the relationship of prominence
needs further research to determine if words marked as highly prominent receive
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always an accent-lending pitch movement, and whether words being marked as less
prominent belong to e.g. ‘secondary’ stressed words.

6.2.3 Consistency and reliability

We found that listeners are rather consistent and reliable in their prominence
judgments. On average the listeners agreed with one another with a Cohen's Kappa
of k = 0.50. Considering that one had the freedom to mark just one or several words
for prominence per sentence, this is a reasonable degree of consistency. Most of the
differences between- and within-listeners can be explained by having a different
threshold for prominence marking or, in case of the within-listener differences a
threshold shift for prominence marking. Training of the labelers and close
instructions by the researchers may help to increase the agreement. However, we
point out that we aimed at the smallest influence from the researcher as possible,
because the interpretation of prominence (e.g. in terms of the number of prominence
marks per sentence) has to be defined by the listener. The listener has been asked to
‘mark those words that he / she perceived to be pronounced with emphasis’, and had
to confirm whether he / she understood the task prior to the annotation itself.
Although this has not been investigated, one must assume that the listeners all have
used their own strategy for judging prominence on words. It would be interesting for
further research to investigate whether the listeners use different strategies to mark
prominence.

6.2.4 Concluding remarks

The growing number of publications on prominence shows the great interest in this
topic. especially in combination with speech technology. At some point there were
even suggestions to change TOBI into a TOBI-lite version in which the number of
different pitch accent types would be reduced and a degree of prominence would be
added (Wightman & Rose 1999; Wightman et al., 2000). These publications
underline that there is a need to come to a good definition of prominence and how to
use prominence.

6.3 Lexical / syntactic correlates of prominence

In chapter 3 we described linguistic correlates / determinants of prominence, how
they were extracted and how they were used to predict prominence. These
predictions were exclusively based on information that is derived automatically from
the text. A detailed analysis of the linguistic determinants gives on the one hand
insight into the relationships that allow automatic prediction of prominence. On the
other hand the analysis gives insight into the linguistic information, namely the
expectation of prominence (top-down information) the listener uses.
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6.3.1 Individual correlates

After considering many options of the lexical and syntactic correlates of
prominence, we drew up the following list of promising candidates:

A) word class;

B) word length;

C) Adjective-Noun combinations;

D) the first content word of the sentence;

A) Our first finding is that word classes can be ordered according to their ability to
carry prominence. The following ranking of increasing prominence is found for the
sentence material we used: Article, Conjunction, Pronoun, Auxiliary verb, Verb,
Numeral, Adverb, Adjective, Noun and Negation. Note that Negations normally
belong to the category of function words, which are considered to be less prominent,
but which were marked as ‘highly prominent’ in our speech material. For the other
word classes the overall group distinction between function word / content word
remains.

B) Secondly, it was found that the word length, expressed in the number of
syllables, is a useful correlate of prominence. The metrical weight, referring to the
complexity and the length of a word, is related as well. However, we have not
investigated whether another component, the ‘complexity of a word’, is also related
to prominence.

C) The third interesting relationship is found between Adjective-Noun combinations
and prominence. The Noun in such a combination is generally less prominent than in
other combinations,

D) The last striking finding is that the first content word is often a very prominent
one in these read-aloud sentences. This may be specific for this type of speech
material, but even then such a type of relationship could still be profitable to predict
prominence. We did not investigate the possibility of testing the prominence
prediction algorithm on utterances with an entirely different grammatical structure
(main and sub clauses, questions). It would be interesting for further research to find
out how this relationship behaves for other speaking styles and text types. Eg. ina
dialogue situation there may be no need to mark the first content word of an
utterance, because the contextual situation is clearer than in separate read-aloud
sentences.

6.3.2 Prominence prediction on textual input

All these relationships were implemented into an algorithm to predict prominence.
Our algorithm initially predicted the degree of prominence on a 4-point scale, which
was later reduced to a 2-point scale. The final binary prominence prediction on an
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independent test set appeared to be 81.2% correct. The prediction on the test set
based on textual input agrees with a Cohen’s Kappa of x = 0.62 with the marks of
the listener who showed the highest consistency on the training set. This agreement
was better than the mean agreement between listeners (x = 0.50). So, our algorithm
for binary prominence prediction from text shows an agreement that is at least
similar to that of between-listeners.

6.3.3. Discussion about lexical / syntactic correlates

6.3.3.1 Comparison to the literature

Comparing our results to other research it appeared that we have achieved similar
results. A performance of 80-90% correct prediction of pitch accent placement is
reported by Hirschberg (1993). She included automatically derived discourse
information in her predictions. A result of 82.5% correct prediction of accent
placement is reported by Ross & Ostendorf (1996). They used hand-labeled
boundary information, but automatically derived Part-of-Speech tags and even topic
information to predict accent placement. Vereecken et al. (1998) predict degrees of
prominence on a 4-point scale for Dutch with a performance of about 80% correct.
The task to predict different degrees of prominence is difficult and complicated.
This is also reflected in the literature mentioned in the introduction and especially in
the research of Widera et al. (1997).

6.3.3.2 Method used

The method we used to analyze the linguistic correlates of prominence consisted of
the following steps. First, we had a closer look at the linguistic data and tried to find
dependencies. Second, we translated these dependencies into simple heuristic rules,
and third, these rules were validated on an independent test set. All these steps were
performed fully automatically. This makes our findings relevant in two ways a) they
show that certain annotation tasks by humans can be simulated by algorithms with
similar or better reliability and b) for speech technology applications. The
optimization method we used is a heuristic one, although there are more
sophisticated techniques available to analyze large databases. Some of these more
probabilistic techniques such as classification trees or artificial neural networks may
yield higher performance in predicting prominence. However, with such
probabilistic techniques it is more difficult to extract specific knowledge about the
relationship of perceived word prominence and lexical and syntactic correlates. Such
extraction is explicitly possible from the heuristic rules derived in this study.
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6.3.3.3 Useful for Text-to-Speech

When the amount of prominence for each word in a sentence could accurately be
predicted it would greatly improve the intelligibility, the naturalness and the
pleasantness of Text-to-Speech systems. Rules to predict different degrees of
prominence, which are solely based on automatically derived textual information,
would be very useful for more sophisticated Text-to-Speech systems. Because of the
inter-subject differences (see section 2.4.1.2), a perfect synthesis of a prominence
contour will be very difficult if ever possible. Furthermore, this is not even
necessary, as only one good prominence prediction for all the words in a sentence is
needed for speech synthesis purposes.

6.3.3.3.1 No context information available for ‘our’ read-aloud sentences

In our case, a disadvantage might be that the speech material is not uttered in
context. Therefore it was impossible to determine ‘focus’ and / or ‘given’ and ‘new’
information. An advantage could be that the reading of these sentences is a default
reading and that the material is also useful for certain technological applications.
However, the speech material is designed for speech recognition; for speech
synthesis only one professional example speaker is needed. From literature it is
known that there are speaker-dependencies (especially gender) of perceived
prominence of F, peaks (Gussenhoven & Rietveld, 1998). Since the speech material
that we used contains a lot of different speakers, these speaker dependencies are
averaged out in the analysis results.

6.3.3.3.1 Translation into acoustic properties

A complicating factor for Text-to-Speech systems is the need to translate the
different degrees of prominence into proper acoustic values. This is, however, not
our main concern in this study. As Hermes (1991) reports, a falling pitch movement
is generally perceived as less prominent than a rising pitch movement with the same
excursion size measured in ERB’s. A first-order normalization for this finding might
be possible, but we have to keep in mind that the exact relationship might be
complex. Another problem is the detection of when the pitch movement starts as
compared to the onset of the vowel. A pitch movement starting late in the vowel has
a different effect on the perceived prominence than a pitch movement starting very
early (Hermes, 1995).

6.3.3.3.2Testing the prosody

For speech synthesis purposes, actual testing of the prediction of degrees of
prominence with the rules developed and described in chapter 3 will be difficult. We
made some preliminary attempts in a pilot experiment, but were not very successful.
The different degrees of prominence must first be properly translated into acoustic
correlates that cannot be limited to certain pitch movements only. This must then be
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implemented into an existing synthesizer in order to compare it with a default
algorithm. Much research will have to be done concerning this problem.

6.4 Acoustic correlates of prominence

Acoustic features concerning F,, duration and intensity have been used by us to
discriminate between non-prominent and prominent words. A detailed analysis of
possible acoustic features, which are extracted from a unit not larger than a word, is
performed. The current analysis concentrates on the individual unit (vowel, syllable
and word) and did not investigate relative features e.g. looking at the previous or
following unit(s). We came to the conclusion that prominence (as assigned by naive
listeners) is reflected in the acoustic speech signal of an individual unit. The listener
perceived variations in duration, intensity and F, and could use it as bottom-up
information contributing to the prominence of a word.

6.4.1 Individual acoustic features

Several selected features based on F,, duration and intensity at syllable, word or
sentence level can automatically be extracted from the speech signal. From the
twelve acoustic features, the most distinctive single feature for binary prominence
prediction appeared to be the range of F, measured in semitones. The F, range per
word showed a better ability to discriminate prominent and non-prominent words
than the F, range per syllable. The scores for correct prominent / non-prominent
classification were 72% and 69% on word and syllable level, respectively. In this
study it is found that syllable duration is also a powerful feature for prominence
prediction; even a better one than vowel duration. Without any corrections for
intrinsic vowel duration and/or the number of phonemes, binary prominence
classification using only syllable duration gave about 71% correct. On the basis of
vowel duration as a single feature, a correct binary prominence prediction of 66%
was reached. Vowel intensity used as the only input feature to classify prominent
and non-prominent words gave results of about 67% correct. This result indicates
that vowel intensity is also an important cue for prominence.

6.4.2 Prominence prediction on acoustic input

As observed in the previous section, several individual features showed good results.
However, a neural-net classification with all twelve selected features performed
better. On the independent test set an appropriately trained neural net performs at
79% correct classification. Comparing the agreement of, on the one hand, the
predicted prominence marks between those of the listener in the test set (Cohen’s
Kappa x = 0.57, see table 5.3) with, on the other hand, the average agreement
between listeners on the training data (Cohen’s Kappa k = 0.50), it can be concluded
that the neural net prediction is at least as good as the naive listeners’ performance.
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6.4.2.1 Complexity

From the analyses presented in chapter 5 it also became clear that the relationship
between the acoustic features and prominence is not simply linear, but sometimes
rather complex. This conclusion justifies and probably partly explains the fact that
the use of a hidden layer substantially improves the recognition performance of the
neural networks, in comparison with an LDA. What, however, the structure is of this
complexity needs further investigations because of the multitude of confounding
factors. E.g. how long a given syllable had to be in combination with which changes
in pitch is an interesting research question.

6.4.3. Discussion about acoustic correlates

Various points of our approach that may require further discussion are: firstly a
comparison to the literature, secondly the method used, thirdly the HMM-alignment,
fourthly the applied normalization and lastly, the strictly separate use of linguistic
and acoustic features.

6.4.3.1 Comparison to the literature

Just as for the prediction of prominence with textual input, our prediction method
with acoustic input seems to produce results comparable to those reported in the
literature. The statistical and / or brute force method used by the authors mentioned
below aimed at high recognition rates whereas our approach aimed at different
perspectives of acoustics and classification providing insight in phonetic questions
as well. Our prominence classification results were achieved using solely twelve
selected acoustic input features. The comparison is not completely fair as it concerns
different methods for training and testing and differences in speech material used.
KieBling (1996) reported a recognition rate of 83% correct accent classification for
the VERBMOBIL-speech data while using also textual features such as identity of
the vowel. Kompe et al. (1995) report classification rates of 95.6% correct for the
ELRA corpus. This corpus contains read-aloud sentences with a simple grammatical
structure. Wightman & Ostendorf (1994) reached 83% correct using hand-labeled
boundary features and Silipo & Greenberg (1999) classified stressed and unstressed
syllables with 80% and 77% correct, respectively.

6.4.3.2 Method used

Just as in section 6.3, where we discussed the lexical / syntactic approach, we will
now discuss the acoustic approach. Following a detailed analysis of some of the
most promising acoustic correlates (correlates that were promising on an individual
basis), we selected those features that seemed to have the greatest potential to
predict prominence using a multidimensional classification. This pre-selection
reduced the number of features for the classification task. In this study it was
decided to use simple feed-forward neural networks for predicting prominence. As
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said before, sophisticated techniques such as CART, and more complex self-learning
neural networks are available, but we decided to put emphasis on a full
understanding of the classification process. Within the classification process both
the individual features as well as various combinations were tested for their
contribution to discriminate prominence.

6.4.3.3 HMM-alignment

In our approach a human-made orthographic transcription was available to do the
HMM-alignment. This alignment is used to automatically obtain the segmentation
(in terms of phoneme and word boundaries) of the utterances. In realistic speech
recognition situations such a precise and correct word-level transcription of what has
been said is generally not available. The only available transcription in such a case is
the result of automatic speech recognition, which introduces additional errors into
the automatic alignment. Furthermore, the automatic HMM-alignment we used
introduces, by its very nature, errors and problems to the resulting segmentation.
The automatic segmentation used in this study was based on Dutch standard
pronunciation, although the pronunciation of some speakers showed regional
variants. We did not investigate the precise consequences of this in any detail, as in
speech technology in general one has to cope with similar conditions.

6.4.3.4 Normalizations

Apart from possible segmentation errors ascribed to the assumption of a standard
pronunciation, other segmentation errors are unavoidable in this automatic
procedure. This may cause fewer problems for measurements in larger segments,
such as syllables and words, than for measurements in smaller segments, such as
vowels and consonants. Normalizations concerning intrinsic vowe! duration and
intrinsic vowel intensity were conducted at such small units, namely vowels. Maybe
this fact and the large speaker variability explain why these normalizations on the
level of small units did not substantially improve the ability to discriminate between
prominent and non-prominent words. Analyses on sentence speaking rate were also
conducted in this study. Speaking rate is reported to influence the duration of vowels
and syllables. Although an effect of sentence speaking rate on vowel and syllable
duration is indeed shown in chapter 4 (see section 4.2.2.3 and figure 4.14), the
normalization for speaking rate that we applied, did not improve prominence
classification (section 5.2.7). Further research is required to investigate the precies
effect of normalizations. We tried overall-normalizations (intrinsic vowels duration,
intrinsic vowel intensity, sentence speaking rate) with no effect on the prominence
classification when used separately. However, the approach and the speech material
may have triggered this negative result. Other research shows that putting the vowel
/ syllable / word in larger context (e.g. taking the previous and next syllable and /or
word into account) increases the classification results. Taking into account these
relative features in a detailed analysis may help to get more insight into the relative
character of prominence.
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6.4.3.5 Separate use of linguistic and acoustic features

The strictly separate use of linguistic and acoustic features may be disadvantageous
for syllable duration. Syllable duration might also be influenced by linguistic
information, such as word class. Content words often consist of more complex
syllables than function words; this means that syllables of content words contain
more phonemes. This higher complexity may result in longer syllable duration. So,
there might be a relationship between syllable duration and the content word /
function word distinction. Fant & Kruckenberg (1999) noticed that syllable duration
was the most robust correlate of prominence. Furthermore, we have of course to
keep in mind that pitch extraction is not always error free (octave errors). An
example of such an error was demonstrated in chapter 4, figure 4.4.

6.5 Future research

In this section, first some suggestions for the use of other promising features of
prominence are given. This concerns for instance the relationship between word
prominence and spectral quality. Next, a few speech-technological applications are
discussed and finally, a number of remarks are made about combining linguistic and
acoustic features.

6.5.1 Promising features of prominence

A possibly promising correlate, such as the distance between two prominent words
in a sentence (speech rhythm, stress clash), was not investigated. We do not exclude
the possibility, however, that another prominent word may be required to follow the
first prominent word after a period of time in a sentence. Information concerning the
text structure, for example, whether or not words convey given / new information or
boundary information, as used in Wightman & Ostendorf (1994), could not be
assigned and used in our analyses. Pragmatic and semantic information could not be
derived automatically and was thus not available, and is most probably less relevant
for isolated sentences. For future research on the improvement of speech synthesis
based on prominence, the use of such more elaborate information about text
structure could be helpful.

Spectral quality was also excluded from our analyses. We took this decision since
consistent spectral properties are difficult to measure automatically. Further research
will be required to measure spectral quality reliably and to learn more about its
relationship with prominence. One of the issues to be solved is a phoneme-based
normalization of the spectral quality measure.

6.5.2 Speech-technological applications

In this study several suggestions have been made about how prominence could be
used in speech-technological applications. The suggestions include: the
improvement of the intonation of speech synthesis, a word-by-word prominence
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indicator, and sentence disambiguation. However, such implementations require
further research.

Predicting prominence from textual input could help to improve speech synthesis. In
the presently popular and very promising approaches of (variable) umit-based
concatenative speech synthesis (Klabbers, 2000; Stéber et al., 1999; Wightman et al.
2000), the prediction of prominence (from text) is of crucial importance for the
pleasantness and naturalness of the synthesized speech signal. The text-derived
prominence labels will have to be matched with the prominence labels in the
annotated speech database that contains the segments to be concatenated. A search
algorithm is supposed to select the optimally matching segments and to concatenate
them. So, a translation from prosodic labels to acoustic parameters is not always
needed: the (larger) speech units in the database already contain most of that
information, although sometimes additional signal adaptations are required.
However, for diphone synthesis a translation from prominence labels to acoustical
parameters will almost always be necessary. How exactly prominence labels that are
predicted from text can be translated into acoustic features is beyond the scope of
this study and needs further research. The exact relationship between prominence
and information retrieval (focus, contrast, topic, etc.) has not been investigated
either.

As mentioned earlier in this study, prosody is so far hardly used in present day
speech recognition. We suggested two applications: a word-by-word prominence
indicator and an instrument to disambiguate the meaning of an ambiguous sentence.
Although, sentence disambiguation has already been a topic for research (Batliner et
al., 1998, for instance within the German Verbmobil project), a running prominence
indicator for speech recognition is a new idea that still awaits application. Ida &
Yamasaki (1998) show improvements for keyword spotting as used in speech
recognition based on prosodic information. Knowledge about or estimation of the
prominence of a word during the recognition process can provide islands of
reliability or can point out the importance of a word. Wang & Seneff (2001) and van
Kuijk & Boves (1999) used lexical stress determined through lexical look-up to
improve speech recognition, but the improvement they could achieve was negligible.
Another example of using prosody is given in Taylor et al. (1998). They described
how prosody helped to constrain speech recognition in a dialogue environment.
Positive results in this area have been reported in recent papers by Hirschberg and
Swerts (1998), and by Wang (2001).

6.5.3 Combination of linguistic and acoustic information

Combining acoustic and linguistic features may improve prominence prediction as
shown by Vereecken et al. (1998). In speech synthesis only textual information is
available, whereas in speech recognition only acoustical information is available.
However, for the annotation of a speech corpus, usually both acoustical and textual
information are available. For the large 10 million words CGN Corpus it is the
intention to annotate prominence of 250,000 words by hand. Automatic labeling
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procedures can substantially help to consistently annotate large databases. These
procedures can also be useful to improve the quality of concatenative speech
synthesis.

Linking the linguistic and the acoustic features can lead to more reliable recognition
/ prominence classification rates, and furthermore it will also be very useful for
automatic annotation. Further tests and further research will be required to
investigate whether automatic annotation will be possible, especially if it concerns a
lot of different speaking styles and different speakers. However, the detailed
analyses of prominence as presented in this study, as well as the acoustic and
linguistic correlates, hopefully do provide much information and various suggestions
for further improvements of speech technology.

Form a more scientific viewpoint it is interesting to know more about the
recognition process of prominence in general. That prominence is reflected in the
speech signal of individual units was shown in the present study. How far the
listener uses this bottom-up information to match his expectations of prominence on
the basis of linguistic knowledge of his languages (top-down) is an interesting
research topic.

That prominence is reflected in the lexical and syntactic knowledge was also shown
in the present study. However, to which end the listener uses ‘our’ correlates and
how the resulting expectation is matched with the bottom-up information related to

the speech signal is beyond the scope of this study, however, very interesting for
future research.

This study underlines that prominence is reflected in the acoustic and the linguistic
domain, and that a binary prominence prediction with a selected set of relatively
simple features can lead to a performance similar to that of naive listeners.
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Appendix 2.1: Correspondence matrix assigning prominence
without pitch movements.

Table A 2.1: Correspondence matrix for the prominence word scores
of the perception experiment without pitch movements, and the results
for the same 30 sentences from the regular word perception

experiment.

Word experiment without pitch movements

Listener 0 1 2 3 4 5 6 7 8 Total

0 25 10 0 0 0 0 0 0 | 153
.1 6 5 2 0 0 0 0 | 26
§ 2 2 4 2 1 0 0 0 o | 11
§ 3 2 7 2 2 2 0 0 0 | 20
g 4 2 3 4 4 0 1 0 0 { 16
T S 1 1 9 3 7 1 0 0 | 25
Z 6 0 1 4 3 4 4 0 0 | 16
7 0 2 2 3 6 3 4 0 | 20
8 0 0 1 1 3 7 7 4 25

Total 131 51 39 260 27 19 13 4 2 312
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Appendix 2.2: NIST header.

The header of a NIST file (the file format used for storing the speech material)
contains among other information, information about the speaker, about the
recording and about the assessment.

NIST_1A
1024
speaking_mode -s4 read
caller_id -s8 tf1002zh
age-s2 48
gender -s6 female
region -s12 Zuid-Holland
education_level -s1 2
cordless phone -s2 no
sheet_identifier -s4 7419
recording_date -s6 931228
recording_time -s6 150106
database_id -s12 POLYPHONE-NL
database_version -s3 1.0
microphone -s9 telephone
sample_rate -i 8000
sample_count -i 50816
channel_count -i 1
sample_n_bytes -i 1
sample_sig bits -i 8
response_category -s26 phonetically_rich_sentence
prompt_text -s16 14. Lees de zin:
sheet_text -s53 We zijn constant bezig de drugsrunners te bestrijden.
transliteration -s52 we zijn constant bezig de drugsrunners te bestrijden
assessment -s2 OK
sample_coding -s27 alaw,embedded-shorten-v1.09
sample_byte_format -s1 1
sample_checksum -i 10929
end_head
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Appendix 2.3: Demographic data of the training set.

Table A 2.3: The total numbers and percentages of the geographical
origin, sex, age and education level of the speaker from the training

set data.

Region Number Percentage
Zeeland 92 74
Noord-Holland 202 16.2
Znid-Holland 203 16.3
Noord-Brabant 177 14.2
Gelderland 154 124
Utrecht 102 8.2
Limburg 68 5.5
Overijssel 72 58
Friesland 30 24
Drenthe 87 7.0
Groningen 45 3.6
Flevoland 12 1.0
Total 1244 100

Number Percentage

Sex Male 631 50.7

Female 613 49.3

<20 35 2.8

20-30 287 23.1

30-40 375 30.1

Age

40-50 295 23.7

50 - 60 144 11.6

60-70 83 6.7

>70 25 2.0

1 52 4.2

Education level 2 652 524

3 540 43.4
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Appendix 2.4: Demographic data of the test set.

APPENDIX

Table A 2.4: Table A 2.3 but now for the test set.

Region Number Percentage
Zeeland 27 27
Noord-Holland 231 23.1
Zuid-Holland 203 20.3
Noord-Brabant 100 10.0
Gelderland 102 10.2
Utrecht 82 8.2
Limburg 29 29
Overijssel 35 3.5
Friesland 53 5.3
Drenthe 42 4.2
Groningen 71 7.1
Flevoland 25 2.5
Sum 1000 100
Number Percentage

Sex Male 419 41.9

Female 581 58.1

<20 21 2.1

20- 30 243 24.3

30-40 293 29.3

Age

40 - 50 218 21.8

50 - 60 125 12.5

60-70 56 5.6

>170 44 4.4

1 41 4.1

Education level 2 505 50.5

3 454 45.4
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Appendix 2.5: Instructions for the listening experiment.

Beste proefpersoon,

Je krijgt in het volgende luisterexperiment in totaal 550 verschillende zinnen te
horen. Deze 550 zinnen zijn verdeeld over 4 sessies. Sessie 1 en 2 bestaan uit 150
en sessie 3 en 4 uit 125 zinnen.

Je moet aangeven welk woord of woorden in de zin met NADRUK zijn
uitgesproken.

Dit kun je doen door met de linker muistoets op het knopje onder het woord te
drukken, je kunt corrigeren door nog een keer op het knopje te drukken. Heb je dit
gedaan druk dan met de muis op het knopje met de tekst 'Klaar', dan begint de
volgende zin. Je kunt iedere zin maximaal 3 keer beluisteren, als je al eerder klaar
bent kun je op Klaar' drukken. Een sessie duurt ca. 45 minuten.

Wilt je eerst hieronder zowel je naam invullen als aanklikken en aangeven om
welke sessie het gaat.
Als je dit gedaan hebt kun je op start drukken.

Alvast bedankt voor je medewerking.




148 APPENDIX

Appendix 3.1: Overview of predicted prominence marks and lexical
and syntactic correlates.

Table A 3.1: Overview of the groups of words receiving from 0 to 4
prominence marks for the six different sets of rules. For more details
see chapter 3, section 3.3.6.

0 marks 1 mark 2 marks 3 marks 4 marks
-mono FW -poly FW poly V, Adv poly N, Adj, -first poly N,
Set A -mono V,Adv.  -mono N, Adj, Num, Neg Adj, Num, Neg
-mono combi Num, Neg first V, Adv
N -poly combi N
-FW -poly Pron poly V, Adv -N, Adj, Num, -first N, Adj,
Set B -mono V,Adv  -combi N Neg Num, Neg
-first mono V, -first poly v,
Adv Adv
-Art, Aux -poly Conj, -Poly V, Adv -poly N -first poly N
-mono Conj, Prep,Pron -mono N -Adj, Num, first Adj,
Set C  Prep, Pron -mono V,Adv  -polycombiN  Neg Num,
-mono combi -first mono V, -first V, Adv
N Advs
-mono FW -poly FW -poly V, Adv poly N, Adj, -first poly N,
-poly V, Adv -mono N, Adj, Num Adj, Num
SetD -combi mono Num, Neg -first poly V,
N -combi mono Adv
N first mono N,
Adj, Num, Neg
-FW (not poly -poly Pron -poly V, Adv -Noun, Num, -first N, Num,
SetE Pron) -mono V, Adv  -combi N Adj, Neg Adj, Neg
first poly N,
Adv
-Art, Aux -poly Conj, -polyV, Adv poly N -first poly N
SetF -nono Conj, Prep, Pron -mono N -Adj, Num, first Adj,
Prep, Pron -mono V,Adv  -combipolyN Neg Num, Neg
-combi mono -first poly V,
N Adv

-first mono N
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Appendix 4.1: SAMPA symbols.

Symbols for the phonemes and for non-speech sounds (SAMPA-like):

Non speech Consonants
n= big noise L bal bal
m= mouth noise 1 land country
= pause N lang long
= breath m maand  month

sil silence n nee no
Vowels (all vowels, except schwa, may occur R reis Jjourney
in stressed position, indicated by *)
i long niet not r reis Jjourney
u long hoe what (how) j Jaar year
y long u you
e: long geen  not, no f [fiets bike
a long naam name v veel much, many
o: long wonen to live w werk work
Q: long kleur  color S snel Jast

z zoon son
E short werk  work h hebben to have
A short dag hello, day S sjaal scarf
0] short op at Z bagage, baggage
Y short nummer number X groen  green
I short in in
Diphthongs p punt point
Au oud old b boek book
Ei  hij he t taal language
9y uit from d dochter  daughter
Schwa k kinderen children
@ geven to give G goal goal
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APPENDIX

Appendix 5.1: Scaling values.

Table A 5.1: This table presents the extremes (99% percentile and the
1% percentile) on which the acoustic features used as input are scaled,
so that each value lies between one and zero. Outliers (values beyond
these two borders) are treated as being 0 or 1, respectively.

Feature 99% percentile 1% percentile
Vowel duration 0.23 0.03
Vowel duration normalized 3.30 -1.72
Speaking rate 0.86 -0.55
Vowel intensity corrected 84.70 60.60
Vowel intensity normalized 1.83 -2.97
Sentence intensity 73.60 65.50
Syllable duration 0.47 0.06
Median F, 27.70 -9.00
Range F, syllable 12.00 0.10
Median F, corrected 15.60 -15.00
Median F, sentence 20.02 -2.00
Range F, word 13.00 0.13
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SUMMARY

The purpose of this study was to explore the notion of prominence in spoken
language. It concentrated on finding an operational definition of prominence, on
giving a description of the linguistic and acoustical correlates of prominence, and on
analyzing these correlates in terms of their contribution to prominence distinctions.
Furthermore, this study was concerned with feature extraction, and with prominence
prediction, either on the basis of linguistic features or on the basis of acoustic
features.

In chapter 1 the notion of prominence is explained, the use of prominence in
(speech) communication is illustrated and research questions are described.

In speech some parts are more prominent than others. This is a gradient property. In
many languages prominence helps to structure the message e.g. the prominent parts
are the important ones. In addition, prominence helps to increase the
comprehensibility and the naturalness of speech.

The listener uses two information sources to perceive prominence levels: bottom-up
information and top-down information. The listener uses cues from the speech signal
such as speech segments being louder, being longer and being realized with a pitch
movement (bottom-up information) to detect prominence. The expectation of
prominence is built on the basis of his / her knowledge of the language (top-down
information).

From a phonetic viewpoint prominence is closely related to the notion of pitch
accent and lexical (word) stress. Prominence is a perceptual phenomenon and is
intuitively clear to non-experts. Prominence can function as an interface between
acoustics and aspects of structure e.g. in terms of ’given’ and ‘new’ information.
The prediction of prominence may also be useful in speech technology.

The research questions concentrate mainly on the following: 1) how to find an
operational definition of prominence, 2) which are the linguistic determinants /
correlates of prominence, and 3) which acoustic correlates can be found. The
implementation part of this research concentrates on the automatic extraction of
features, on the analysis, and on the prediction of prominence on the basis of the
preselected features.

In chapter 2 a perceptual definition of prominence is investigated. The read-aloud
sentences of the Dutch Polyphone Corpus (telephone speech) are used as research
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material, which unavoidably contains a great deal of speaker variability, and which
is typical for many speech-technology applications.

The prominence-marking task was made as easy as possible to the subjects, giving
them as much freedom for their own interpretation of prominence as possible, and
allowing listeners to label large amounts of data. It was decided to mark prominence
in a binary rather than multi-valued way, because otherwise the task was too time
consuming and multi-valued marks from each listener appeared not to be necessary
since it was shown that the cumulative marks also provide gradient prominence
information. However, the results of a pilot-experiment were not very convincing, it
was concluded that listeners mark prominence at the word level more consistently
than at the syllable level. Since the unit of a word is also more meaningful to naive
listeners than syllables, the word was chosen as the unit to mark.

In this research prominence was made operational in the following way: ten listeners
were asked to mark those word(s) that they considered were spoken with emphasis.
The cumulative marks of listeners provided detailed information about the degree of
prominence of each word. In such a way the 1244 sentences of the training set were
marked for prominence. One ‘optimal’ listener, just giving binary judgments only,
marked the independent test set of another 1000 sentences. This relatively simple
binary marking allowed for an annotation of word prominence for more than 4.5
hours of speech. The listeners were rather consistent (mean agreement expressed in
Cohen’s Kappa x = 0.50) and reliable. Many of the inconsistencies could be
attributed to shifts of the individual prominence detection thresholds. However,
threshold shifts and differences occur, which influence the agreement measure
negatively.

In chapter 3 linguistic correlates of prominence are described, analyzed and used as
predictors for prominence.

Relationships between, on the on hand, (1) Part-of-Speech (e.g. Noun, Adverb,
Article), (2) word length, (3) position of a word in the sentence, and (4)
interdependency of Part-of-Speech categories such as Adjective-Noun combinations
and, on the other hand, prominence are described and amalyzed in detail. Word
classes are ranked according to increasing prominence and word length appears to
be related to prominence. In generally, the longer the words the more prominent
they are. Nouns occurring in Adjective-Noun combinations tend to be less
prominent than in all other combinations and the first content word in a sentence is
more prominent than the content words occurring at other positions in the sentence.
Based on these relationships an algorithm was developed to predict prominence
degrees. This gradient prominence prediction, especially in the middle part of the
scale, is more problematic. However, the reduced binary prominence prediction is
correct in 81% of the cases for the independent test set.

Concluding, one is able to select a simple set of automatically derived linguistic
features, which predicts prominence with the same agreement as listeners do
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(Cohen’s Kappa x = 0.62), indicating that top-down information can provide enough
to predict prominence accurately. However, some used linguistic relationships may
be specific for this type of speech / text material.

Chapter 4 deals with the description and detailed analysis of the acoustic features of
prominence. It concentrates on the feature extraction on the level of the individual
word and does not take the neighboring words into account. This research suggests
that the following features are useful for predicting prominence: (1) F, range per
word, (2) F, range per syllable, (3) syllable duration, (4) vowel intensity, (5) median
Fo per syllable, (6) vowel duration, (7) normalized vowel intensity and (8)
normalized vowel duration. The above order gives also the ranking with respect to
the features’ ability to discriminate between prominent and non-prominent words:

It was striking that when the vowels were normalized for their intrinsic properties,
such as intrinsic vowel duration and intrinsic vowel intensity, the discrimination was
no better than using the unnormalized counterparts. It was hypothesized that the
variability in the speech material used was too large to properly correct for intrinsic
durational and other properties.

Chapter 5 deals with the question whether the selected set of analyzed acoustic
correlates could be used as input features in order to recognize prominence. It was
shown that apart from F,, syllable duration (more than vowel duration) and vowel
intensity were useful input features for a recognition device. Automatic extraction of
acoustic features was performed in such a way that a binary neural net classification
resulted in a best recognition rate of 79% correct on the independent test set. The
agreement of the predicted prominence (Cohen’s Kappa x = 0.50) was at least as
good as the mean agreement of the listeners. This result was achieved with only
twelve input features. Gradient prominence prediction on a 10-point scale is more
difficult and requires further research.

In the last chapter (chapter 6) all findings and conclusions are summarized. Naive
listeners were able to mark prominent words in spoken sentences with some
consistency and reliability. The results of this study showed that acoustic and
linguistic correlates of prominence can be determined automatically and they can be
used to predict prominence either on text or on the speech signal,

Prominence assignment of naive listeners is valuable because the determined
acoustic correlates, related to bottom-up information, and linguistic correlates,
related to top-down information, describe the perceptual notion of prominence. This
research shows that the prediction of prominence by acoustic or linguistic features is
undistinguishable from prominence assigned by naive listeners.







SAMENVATTING

In gesproken taal worden bepaalde woorden als nadrukkelijker (prominenter)
waargenomen dan andere. Prominentie (nadruk) is voor de communicatie van groot
belang omdat prominentieverschillen o.a. structuur geven aan de boodschap. De
belangrijkste vraag in dit onderzoek is: welke kenmerken in gesproken taal leiden
ertoe dat bepaalde woorden in een zin prominenter worden waargenomen dan
andere woorden. Oftewel, waardoor horen we of weten we dat een woord met
nadruk is gezegd?

Aan de orde komen de gebruikte operationele definitie van prominentie, het
beschrijven van linguistische en akoestische correlaten van prominentie, en het
analyseren in hoeverre deze correlaten een onderscheid kunnen maken tussen
bijvoorbeeld prominente en niet prominente woorden. Dit onderzoek besteedt ook
aandacht aan automatische kenmerkextractie en voorspelling van prominentie met
behulp van akoestische of linguistische kenmerken.

In hoofdstuk 1 wordt het begrip prominentie uitgelegd, komt het gebruik van
prominentic in gesproken taal aan de orde en worden de onderzoeksvragen
beschreven. :

Zoals al eerder gezegd worden sommige spraakfragmenten in gesproken taal als
prominenter waargenomen dan andere. Dit is een graduele eigenschap en geen
binaire. In veel talen structureert het verschil in prominentie de boodschap van de
spreker in belangrijke en minder belangrijke delen. Deze prominentieverschillen
maken de boodschap begrijpelijk en verhogen tevens de verstaanbaarheid en de
natuurlijkheid. In dit proefschrift wordt prominentie als perceptueel fenomeen
gehanteerd, hoewel het gerelateerd is aan concepten zoals toonhoogte-accent en
woordklemtoon.

Voor de interpretatic van het spraaksignaal gebruikt de luisteraar twee soorten
informatiebronnen; de informatie in het spraaksignaal (bottom-up) en zijn kennis
van de taal (top-down).

In het spraaksignaal kunnen spraakeenheden zoals klinkers en / of lettergrepen
langer van duur zijn, luider worden uitgesproken, en / of door middel van een
toonhoogtebeweging prominent gemaakt worden. Hoe deze akoestische kenmerken
uit het signaal te extraheren zijn en wat hun relatie is tot waargenomen prominentie,
wordt nader onderzocht in dit proefschrift.

Daarnaast heeft de luisteraar door middel van zijn kennis van de taal een
verwachting welke woorden prominent zullen zijn. Deze prominentieverwachting
hangt nauw samen met lexicaal, syntactische, pragmatische en semantische aspecten
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van de boodschap. De onderzoeksvraag in dit onderzoek heeft met deze linguistische
kenmerken van prominentie te maken: welke kenmerken kunnen automatisch
geéxtraheerd en gebruikt worden om prominentie te voorspellen? Automatisch
voorspellen van prominentie kan van nut zijn in de spraaktechnologie, aangezien
prominentie toegang kan geven tot de informatiestructuur in termen als ‘gegeven’ of
‘nieuwe’ informatie.

In hoofdstuk 2 wordt prominentie operationeel gedefinieerd en wordt ingegaan op
de consistentiec en de betrouwbaarheid van de luisteraars die de prominentie-
oordelen afgeven. Als onderzoeksmateriaal zijn los voorgelezen zinnen uit het
Nederlandse Polyphone Corpus (telefoonspraak) gebruikt. Dit materiaal heeft veel
sprekervariabiliteit. Bij het formuleren van de prominentie-markeer-taak is
geprobeerd de luisteraar zo veel mogelijk vrijheid te geven zijn eigen interpretatie
van het begrip prominentie toe te passen (de taak voor de luisteraar was om woorden
te markeren zodra die volgens de luisteraar met nadruk waren uitgesproken). Verder
is de taak zo simpel mogelijk gehouden, door de luisteraar een binair en geen
gradueel prominentie-oordeel te laten geven. De gesommeerde prominentie-
oordelen van meerdere luisteraars geven ook inzicht in de verschillende
prominentiegraden. Er is besloten om de luisteraars prominentie op woorden en niet
op lettergrepen te laten markeren, omdat een pilot erop wees dat deze taak
consistentere oordelen zou opleveren. Bovendien heeft de eenheid van een woord
voor de naieve luisteraar een duidelijkere betekenis dan de eenheid van een
lettergreep. Deze aanpak maakte de markeertaak valide.

Het resultaat was dat het trainingsmateriaal van 1244 zinnen door tien luisteraars
voor prominentie gemarkeerd is. De gesommeerde binaire markeringen geven per
woord een graduele markering op een schaal van 0 tot 10. De luisteraars vertoonden
verschil in ‘gevoeligheid’ omtrent het markeren van prominentie. Sommige
luisteraars markeerden duidelijk meer woorden in een zin dan andere. Ondanks dit
negatieve effect op de mate van overeenstemming ligt de gemiddelde
overeenstemming, uitgedrukt in Cohen’s Kappa, bij 0.50. Het markeren van de
onafhankelijke testset van 1000 zinnen is verder versimpeld door slechts één
luisteraar (de meest consistente en betrouwbare) deze set te laten markeren. Deze
relatief eenvoudige taken maakten het mogelijk dat in totaal 4,5 uur aan spraak op
woordniveau gemarkeerd is voor prominentie.

In hoofdstuk 3 worden linguistische kenmerken van prominentie beschreven en
geanalyseerd die daama tevens gebruikt worden om prominentie automatisch te
voorspellen.

Er is beschreven dat woordklassen (zelfstandig naamwoord, voornaamwoord,
lidwoord enz.) gerangschikt kunnen worden op toenemende prominentie. Ook
woordlengte, uitgedrukt in het aantal lettergrepen per woord, hangt nauw samen met
prominentic. Des te langer een woord des te prominenter. Een zelfstandig
naamwoord voorafgegaan door een bijvoeglilk naamwoord is vaak minder
prominent dan in een andere combinatie. Het eerste inhoudswoord in de zin is vaak
prominenter dan inhoudswoorden op andere posities.
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Deze relaties tussen prominentie enerzijds en lexicale en syntactische kenmerken
anderzijds worden gebruikt om met behulp van een eenvoudige ‘heuristische’
regelset prominentie in vijf gradaties te voorspellen. Voorspelling van prominentie
in de middengradaties levert problemen op; reductie van deze schaal tot een binaire
geeft echter 81% overeenstemming wanneer de voorspelde prominentie wordt
vergeleken met de binaire prominentiemarkering van de testset. De mate van
overeenstemming van de voorspelde prominentie met handgemarkeerde prominentie
ligt bij dezelfde Kappa-waarden als de overeenstemming tussen luisteraars.

Hieruit blijkt dat linguistische kenmerken in staat zijn prominentie op een adequate
manier te beschrijven en dat de automatische voorspelling ononderscheidbaar is van
die van naieve luisteraars.

Hoofdstuk 4 beschrijft gedetailleerde analyses van akoestische correlaten van
prominentie. De nadruk ligt op kenmerkextractie uit de individuele prominente
woorden en de bijbehorende lettergrepen en klinkers, en niet op kenmerkextractie
gerelateerd aan de woorden in de omgeving, noch op de intonatiecontour zelf. Een
gedetailleerde analyse leverde de hieronder genoemde bruikbare correlaten op. Door
middel van een analyse konden deze correlaten gerangschikt worden met betrekking
tot hun onderscheidingsvermogen tussen prominente en niet prominente woorden:
(1) Fyerange' per woord, (2) Fo-range per lettergreep, (3) duur van de lettergreep, (4)
klinkerintensiteit, (5) mediaan F, per lettergreep, (6) duur van de klinker, (7)
genormaliseerde klinkerintensiteit en (8) genormaliseerde duur van de klinker. Het
valt op dat de normalisaties voor de intrinsieke eigenschappen, zoals b.v. het feit dat
iedere Kklinker zijn eigen duur heeft, niet (systematisch) leiden tot een beter
onderscheidingsvermogen. Verder onderzoek is nodig om uit te zoeken of het de
grote sprekervariabiliteit of de automatische segmentatie is die de normalisaties
beinvloedt, of dat andere factoren een rol spelen.

Hoofdstuk 5 concentreert zich op de vraag, of de in hoofdstuk 4 geselecteerde
corrclaten gebruikt kunnen worden als inputkenmerken voor herkenning van
prominentic met behulp van een neuraal netwerk. Bij herkenning met neurale
nctwerken bleek dat naast Fy-range per woord ook de lettergreepduur en de
klinkerintensiteit bruikbare kenmerken zijn voor prominenticherkenning, beter zelfs
dan Kklinkerduur. Twaalf automatisch ge&xtraheerde kenmerken zijn gebruikt, zodat
een binaire classificatie (prominent of niet prominent) voor 79% overeenstemt met
de markeringen van de luisteraar op de testset. Uitgedrukt in de overeenstemmings-
maat Cohen’s Kappa was dat x = 0.50. Dit betekent dat prominentiemarkeringen
door het neurale netwerk wat betreft consistentie niet te onderscheiden zijn van die
van luisteraars. Graduele prominentieherkenning met name in de middencategorieén
blijkt iets moeilijker te zijn en vergt nog verder onderzoek.

In hoofdstuk 6 worden alle bevindingen en conclusies samengevat. Luisteraars zijn
in staat met enige consistentie en betrouwbaarheid prominente woorden in zinnen te

! ook vertaald met spreidingsbreedte
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markeren. Het perceptucle fenomeen van prominentie is daarmee operationeel
geformuleerd. De resultaten van dit onderzoek laten zien dat zowel de akoestische
alsook de linguistische correlaten bepaald zijn die prominentie op een adequate
manier beschrijven en kunnen voorspellen. Prominentie gemarkeerd door naieve
luisteraars is waardevol omdat zowel lexicaal / syntactische kenmerken, die nauw
samenhangen met top-down informatie, als ook akoestische kenmerken, die nauw
samenhangen met bottom-up informatie, het perceptuele begrip prominentie
voldoende beschrijven. De voorspelling van prominentie is zowel op grond van
lexicaal / syntactische inputkenmerken alsook op grond van akoestische kenmerken
niet te onderscheiden van die van naieve luisteraars.
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Acoustic and lexical/syntactic correlates

In spoken language some words are perceived as more prominent than others.
Without these differences in prominence spoken language is unclear and boring.

In this PhD thesis both acoustic and lexical / syntactic correlates of perceived
prominence are discussed. Prominence is defined at the word level and naive
listener judgements are used as the norm. It is related both to pitch accent and
lexical (word) stress. One of the findings in this thesis is that naive listeners are
able to mark word prominence rather consistently on isolated Dutch sentences.

A selected set of acoustic input features is used for classification of prominent
words using feed-forward neural networks. On the basis of an optimally selected
set, we obtained an accuracy of 79% in prominence classification on a test
set containing 1000 sentences.

Using lexical / syntactic input features (such as word class, word length and posi-
tion of the word in the sentence), which are derived from text only, an algorithm
to predict prominence is developed. The predicted prominence agrees with the
perceived prominence in 81% of the cases for the test set.

The results show that acoustic and linguistic correlates of prominence can be
determined automatically and can be used to accurately predict prominence.
Statistical agreement measures show that prominence prediction on the acoustic
as well as on the lexical / syntactic input level is undistinguishable from promi-
nence assignment by naive listeners. For phonetics this PhD thesis gives insight
into the human recognition process of prominence. For speech technology,
knowing the prominent and non-prominent words may be useful, for instance,
to disambiguate the meaning of two similar sentences.

This book is of interest for researchers in the fields of phonetics, prosody and
speech technology.
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