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Abstract

In this paper we present preliminary results of speaker normalization procedures that were
tested with all 35,385 stressed vowels of 438 male speakers in the TIMIT speech corpus.
First we investigate a procedure to reduce the variance in vowel space. This procedure
knows about the identity of the speaker. In the next part we introduce a model for speaker
adaptation that assumes no knowledge about speaker identity. The model is found to
reproduce the difference in human vowel recognition performance for stimuli presented in
blocked and mixed speaker context.

1 Introduction

The TIMIT acoustic phonetic speech corpus is a good data base for testing vowel nor-
malization procedures because it contains labeled and segmented speech from a great
number of speakers (Lamel et al., 1986). All sound and label files in the corpus were
made more accessible by us in thepraat program (Boersma & Weenink, 1996). In a
previous paper (Weenink, 1996) we reported about adaptive vowel normalization with
a feed forward neural net. In this paper we will use classical linear discriminant analy-
sis as a classifier.1 In the current investigation we were interested in exploring to what
extend vowel classification could be improved by incorporating knowledge about the
speaker in the classification process.

2 Vowel selection procedure

From the 22 different vowels and diphthongs that are present in the TIMIT phoneme
database we have selected the 13 monophthong vowels that were also selected by Meng
& Zue (1991). These vowels are iy, ih, eh, ey, ae, aa, ah, ao, ow, uh, uw, ux, er. We used
the stressed vowels. Stress was determined from lexical stress by time alignment of the
realized phonemes in the words that constitute a sentence and the phonemes in the
ideal pronunciation of this sentence according to the dictionary by means of a standard
dynamic programming algorithm (Weenink, 1996). All the vowels pronounced by the
438 male speakers in both thetrain and thetestpart of TIMIT were brought together in
one collection. This resulted in 35,385 vowels.

We performed the following steps:
1Linear discriminant analysis has been implemented in thepraat program, see (Weenink, 1999).
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• The sentences in which one or more selected vowels occurred, were marked in
the database.

• An automatic band filter analysis was performed on all the marked sentences
with the praat program. The band filtering was performed in software with a
filter bank of 18 filters equally spaced on a bark frequency scale, i.e., via band
filtering in the frequency domain.2 The first filter had its centre frequency at 1
Bark and filters were spaced 1 Bark apart. The output of each filter is a value in
dB’s. The exact specification of the bark filters can be found in Sekey & Hanson
(1984). For the analysis, a window length of 25 ms and a time step of 1 ms were
chosen.

• For each selected vowel, three analysis frames were chosen: one at the centre of
the vowel and the two others at 25 ms before and 25 ms after the centre position.
Vowel identity and speaker identity were both stored together with the analysis
results for later processing. In general there were multiple replications of the
same vowel by the same speaker.

• To neutralize intensity variations between vowels, the 18 band filter values in
each frame were rescaled to a fixed intensity (of 80 dB).

• The vowel band filter data were collected in aTableOfReal -object with 35,385
rows and 54 (= 3× 18) columns.

3 Variance reduction

To get an indication of the distribution of the vowels in the staticraw condition (see
below), we have plotted in fig. 1 the distributions with their 1σ-ellipses in the discrim-
inant plane. This is the plane where discrimination is optimal. One clearly notices the
enormous spread within each vowel class. Using the same discriminant as a classifier3,
resulted in 59.3% correct classifications for the 13 vowel classes.

In table 1 we present the confusion matrix for this classification. In the last column,
the table also gives information about the frequency of occurrence of the vowels.

In order to reduce the spread in the data we have treated the data in the following
ways:

raw The raw material, normalized only for intensity variations, consists of 18-dimensio-
nal band filter spectraBijk, where the indexi (1 ≤ i ≤ 13) represents the
vowel type, the indexj represents the speaker (1 ≤ j ≤ 438) and k repre-
sents one of the replications of this vowel by the same speaker (k varies between
1 and 25). As one would have guessed from table 1, the maximum number of
replications occurs for the vowel iy. The average number of replications is 6.2
(= 35, 385/(438× 13)).

2See praat manual: Sound to BarkFilter...
3The characteristics of the classification procedure are as follows. We perform recognition on the 18

dimensional band filter vectors with the covariance matrices of the 13 vowel classespooled. When we
classify with all the 13 distinct covariance matrices instead of the pooled matrix, we only get a 0.3%
better classification result. Given the much larger number of parameters in the latter classifier, we prefer
pooling. The pooled model uses 405 parameters:13 × 18 for the means plus18 × (18 + 1)/2 for
the pooled covariance matrix. The classifier without pooling uses another 2268 parameters extra that
originate from the 12 extra covariance matrices that are needed.

We also use thea priori probabilities. Not using a priori probabilities results in a 1.8% decrease in
performance.
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Fig. 1. The distribution of the 35,385 vowels in the discriminant plane. The ellipses are
the 1σ ellipses that include approximately 39.5% of the data. The vowels are from the
438 male speakers that are present in both the train and the test part of the TIMIT corpus.
All eight dialect regions are represented and all vowels selected had word stress. The 1σ
distribution of the 438 average spectra of the speakers, theB·j·, is shown by the small
ellipse at the centre.

cograw The raw material, corrected for the between-speaker variance. From the raw
materialBijk, we calculate the normalized spectraB′ijk as:

B′ijk = Bijk − (B·j· −B···),

whereB·j· is the average spectrum for speakerj and the averaging is performed
over all the speaker’s different vowels and their replications, and whereB··· is the
spectrum averaged over all speakers, vowels and replications. The net effect is a
kind of centre of gravitycorrection.

ave Instead of multiple replications of a vowel by each speaker, we reduce the data to
one exemplar per vowel by averaging over all replications of that vowel for that
speaker. This operation reduces the number of spectra with almost a factor of 7
to 5374. This does not equal438 × 13 because not all speakers produced all 13
different vowels at least once. Keep in mind that per speaker only 10 sentences
were available).

The average spectraB′′ij are calculated as:

B′′ij = Bij·,

whereBij· is the spectrum for vowel typei from speakerj averaged over all
replications.
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Table 1. Confusion matrix with marginals for the 13 vowel classes obtained from theraw
data. The last column in the table shows the frequency of occurrence of each vowel class
and equals the sum of the elements in that row. The elements in the last row sum the
responses in the corresponding column. The bottom-right element shows the total number
of entries in the table and equals the sum of the elements in the last row as well as the
sum of the elements in the last column. Dividing the sum of the elements on the diagonal
by this number and scaling to percentages, gives 59.3% correct classification. For the
classification process, covariance matrices were pooled and the a priori probabilities were
used. These a priori probabilities can be derived from the last column in this table.

aa ae ah ao eh er ey ih iy ow uh uw ux Sum
aa 1861 113 308 399 40 66 · 3 · 71 1 · · 2862
ae 76 2781 61 · 634 1 141 50 9 · · · · 3753
ah 311 127 955 96 312 12 2 53 · 235 44 6 1 2154
ao 536 9 62 1969 5 51 2 1 1 300 3 5 · 2944
eh 52 640 335 5 1690 125 306 484 12 33 12 3 3 3700
er 10 9 27 5 110 1564 5 105 13 9 8 5 24 1894
ey · 92 12 · 336 8 853 583 264 1 1 · 3 2153
ih 1 84 111 · 447 80 523 2145 733 40 147 21 170 4502
iy · 11 2 · 60 21 378 855 5045 1 4 7 222 6606
ow 72 3 331 540 34 14 · 12 · 958 57 31 1 2053
uh 1 1 44 24 14 16 · 115 5 102 105 45 28 500
uw · 1 15 14 2 17 · 27 5 75 38 279 53 526
ux · · 8 · 13 25 9 271 492 5 33 121 761 1738

2920 3871 2271 3052 3697 2000 2219 4704 6579 1830 453 523 1266 35385

Table 2. Classification results with discriminant functions. The first column, labeledCon-
dition represents the treatment of the data as is explained in the text. The second column
contains the number of band filter spectra used in the classification. The columns labeled
StaticandDynamicshow percentages correct classification. In the former column only the
centre frame was used for the classification, in the latter column all three analysis frames
were used.

Condition # Items Static Dynamic
raw (Bijk) 35385 59.3 66.9
cograw (B′ijk) 35385 62.2 69.2
ave (B′′ij) 5374 78.9 90.1
cogave (B′′′ij ) 5374 87.9 94.5

cogave Theave data corrected for the between-speaker variance. The spectraB′′′ij are
calculated as:

B′′′ij = B′′ij − (B′′·j −B′′··).

Besides the normalizations as discussed above, we also introduced another source of
information: staticversusdynamicspectra. For the static spectrum we used the spec-
trum measured at the centre of the vowel (a vector with 18 numbers). For the dynamic
spectra we used all three band filter spectra (at 25 ms before the centre, at the centre and
at 25 ms after the centre: a vector with 54 numbers). We have calculated separate dis-
criminant functions for the data under these eight conditions and in table 2 we present
the classification results. Again the individual covariance matrices were pooled.

From this table we clearly see several trends:

• Including dynamics improves the classification process. The classification results
for the dynamic spectra are always better than those for the corresponding static
spectra.
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• Applying speaker normalization by reducing between-speaker variance always
results in better classification. This can be seen for the raw data by comparing
the row labeledraw versus the row labeledcograw and for the speaker-averaged
data by comparing the rows labeledave andcogave. The effect is greater for
the speaker-averaged data.

• Reducing the within-speaker variance has the greatest impact on classification.
We see a dramatic increase in percentage correct when we compare the condi-
tions raw andave. This is in line with ANOVA results for TIMIT from Sun &
Deng (1995), who find that the variance component due to within vowel varia-
tion because of different phonetic contexts is much larger than the variance due
to variation among speakers. In their study they conclude that of the total varia-
tion approximately 34% is explained by differences between the phoneme units,
28% by variations within the phoneme units and 12% by variations among the
speakers.

Our data show that, given the right amount of context information, classification can be
significantly approved.

4 An adaptive speaker normalization procedure

Several experiments have shown that subjects, when confronted with vowel-like stimuli
from different speakers, show better recognition performance when successive stimuli
come from the same speaker than when the speaker identity varies very often (e.g.
Strange et al. (1976), Macchi (1980), Assmann et al. (1982), Weenink (1986)). In the
literature the conditions above are often calledblocked andmixed, respectively. Most
of the time themixed/blocked effect is not large, only a few percent, but the effect is
consistent and statistically significant.

We have built a model that qualitatively reproduces this effect.4 The precondition
for the model is a system where (1) the centroid for each vowel is known and (2)
the overall covariance matrix of the vowel space is (approximately) known. For the
classification procedure these are the only two sources of information needed. They
can easily be determined in a training session, and, they are enough to reproduce the
mixed/blocked effect. No speaker dependent information will be used.

The basis of the model is that it tries to learn the joint vowel centroids from the
current input. This learning proceeds as follows. A given input vector is compared
with all 13 reference vectors (the vowel centroids) and the best match is chosen. When
the classifier signals that the probability of group membership5 in the match is larger

4The model has been implemented by making a very small change in the discriminant classifier from
thepraat program.

5The posterior probabilities of group membershippj for a vectorx are defined as

pj = p(j|x) =
exp(−d2

j (x)/2)∑numberOfGroups
k=1 exp(−d2

k(x)/2)
,

whered2
i (x) is the generalized squared distance function

d2
i (x) = (x− µi)′Σ−1

i (x− µi) + ln |Σ−1
i |/2− ln(aprioriProbabilityi)

that depends on the individual covariance matrixΣi and the meanµi for groupi. When the covariance
matrices arepooled, the squared distance function reduces to

d2
i (x) = (x− µi)′Σ−1(x− µi)− ln(aprioriProbabilityi),
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Table 3. Classification results with the adaptive procedure described in section 4 for the
35,385 vowels in theraw condition. Each cell in the column labeled mixed is the average
of 10 trials.

α blocked mixed Difference
0.0 59.3 59.3 0.0
0.1 60.3 56.7 3.7
0.2 60.1 55.2 4.9
0.5 58.6 48.1 10.5
1.0 54.4 30.6 23.8

than 0.5, the distanced between the input vectorx and the best match referenceck
is calculated. As a result the positions ofall 13 reference vectors are moved in the
direction of the vectord by a fractionα. The new referencesc′i in terms of the old
referencesci will then become:

c′i = ci + αd, where 1 ≤ i ≤ 13.

The next input will then be classified with respect to the modified reference system.
Whenα equal 0 no adaptation will happen, whenα equals 1 we adapt completely and
with α greater than 1 we overshoot. In table 3 we show the classification results for
various values ofα and a minimum probability 0.5 for theraw data. The scores in the
cells in themixed condition have been averaged over a number of trials. In each trial
we supplied a different randomized sequence of inputs to the classifier. The table shows
that forα = 0.1, the results for theblocked speaker condition is actually better than
for the comparableraw condition in table 2: 60.3 % versus 59.3 %, respectively. The
algorithm has actuallylearned to normalize for speaker differences without knowing
anything about speakers. The table further shows that classification in theblocked
condition was always superior to classification in themixed condition. The difference
between the two conditions increases whenα increases: making a large shift in the
references may be incorrect when the next input is not from the same speaker. Shifts
tend to be more correlated when inputs come from the same speaker.

5 Conclusion

We have shown that when we reduce intra-speaker variance very good recognition rates
for vowels can be obtained. Adding dynamic information about the vowel by just
adding two measurement points left and right of the central value, further enhances
recognition. We have shown also that a rather simple model that adapts to an incoming
stimulus has actually learned to normalize for speaker differences without having any
specific information about individual speakers or even about a change in speaker con-
text. The only precondition was that stimuli from speakers are presented in ablocked
condition. As a side effect, the model automatically shows a difference in recognition
performance between stimuli inblocked andmixed speaker context.

In future experiments we will test whether these conclusions will hold when we
introduce other test environments. We are thinking about the separation of train and
test sets. In a variant of these tests we will use a train set with vowels produced by

andΣ is now the pooled covariance matrix. The a priori probabilities will have values that normally
are related to the frequency of occurrence in the groups during the training process of the discriminant
classifier.
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male speakers and a test set with vowels produced by female speakers and vice versa.
Another possibility would be to have one extra adaptation in the algorithm: instead of
moving all references at the same time along the same difference vector by the same
amountα, we could try to adapt the reference for the vowel that matches best somewhat
faster than the other references. This would result in an adaptation at possibly two
different speeds.
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