
PRE-PROCESSING INPUT TEXT: IMPROVING PRONUNCIATION FOR
DUTCH TEXT-TO-SPEECH SYSTEMS

Dr. A.J. van Hessen *, Drs. R. Jansen **, Prof. Dr. Ir. L.C.W. Pols+

*University of Twente, The Netherlands, **Comsys International BV, Huis Ter Heideweg 6, 3700 AJ
Zeist, The Netherlands , +Institute of Phonetic Sciences, University of Amsterdam, The Netherlands

ABSTRACT

To improve pronunciation of Dutch Text-To-Speech
Synthesisers, a processor was built that tries to detect
problematic cases in input texts and solve these automatically if
possible. Its primary task is to realise pronounceable forms for
numbers that do not have a straightforward pronunciation:
structural and contextual information is used in an attempt to
determine to what category a number belongs. Once categorised,
each number is expanded according to the pronunciation
conventions of its category. Moreover, pre-processing of raw
ASCII text to a more readable text format is performed. It can be
said that this pre-processor is a useful aid in improving
performance at run-time, for example during the reading out
aloud of emails, although ambiguity and redundancy in the input
text illustrate the need for improved semantic and syntactic
parsing to approach human text interpretation skills.

1. INTRODUCTION
During the process of generating synthetic speech from text, one
encounters various kinds of problems. One of the most serious
problems in converting text to synthetic speech is that the
standard written form of (any) language gives an imperfect and
often distant rendition of the corresponding spoken forms. In a
written text, there will often be occurrences of numerals,
abbreviations, special symbols (such as %, @) et cetera. These
form a serious obstruction to the generation of correct phonetic
transcriptions. It is therefore necessary to pass the text through a
pre-processing stage that converts all such occurrences to the
appropriate pronounceable words, unless in particular cases it is
better to remove them instead.

One of these “text normalisation” examples is the TextScan
system [1], a pre-processing module for the Dutch Text-To-
Speech system Spraakmaker. The purpose of this pre-processing
mode is to perform a segmentation of the input text, and to
convert anomalous symbol strings such as numerals and
abbreviations into a lexical format. Since abbreviations ending in
a period do not necessarily indicate a sentence ending, period
disambiguation is performed, for the purpose of end-of-sentence
detection.

Any reasonable pre-processing module must of course
perform some disambiguation of the input text that it is
expanding: for example, the string Fl. 2,50 (2.50 Dutch guilders)
contains information that 2,50 is a money amount, and therefore
is expanded differently from the way in which 2,50 (=2.50)
would be expanded. Also, the full stop here does not indicate a
sentence ending, but an abbreviation of gulden (guilder). A
simple substitution does not suffice here: gulden must be placed
elsewhere in the string (between 2 and 50).

In an attempt to tackle the problems illustrated above, a pre-
processor was built that solves pronunciation difficulties [2]. It
was designed to be used for the Fluent Dutch Text-To-Speech
synthesiser developed by Arthur Dirksen [3], and tries to identify
the nature of complex numbers (numbers that should not be
pronounced as integers) by examining their structure and context
in the sentence. An attempt is made to categorise them as a date,
time, telephone number, bank account number, money amount,
ordinal number, fraction, or an area code. Once identified, they
are expanded to an appropriate pronounceable form. This is
accomplished by inserting orthographic clues and phonetic
phrasing cues.

Since this pre-processor is a useful aid in the reading out
aloud of emails, special attention is paid to the construction of
correct sentences. Full stops are inserted if necessary, and
constructions with special characters are rewritten to satisfy the
demands of the TTS system.

2. THE FLUENT DUTCH TEXT-TO-SPEECH
SYNTHESISER

The Fluent Dutch Text-To-Speech synthesiser converts text to
speech by using a Dutch diphone database and a MBROLA
diphone synthesiser [4]. An outline of its structure is shown in
Figure 1. First, the text is analysed with the use of three lexicons.
The main lexicon is the basic lexicon that contains many Dutch
words and some common English words, specified by their
phonemic transcription. The user lexicon and extra lexicon can
contain uncommon words to make the synthesiser suitable for
use in specific applications. Words that occur in one of the
dictionaries are given the indicated transcription, and numerals,
special characters and words that do not appear in any of the
dictionaries are converted to phonemic representations by using
letter-to-sound rules. Also, pitch and phrase characteristics are
determined. Text analysis transforms the text to a phonological
representation containing information about phonemes and
prosodic structure that can serve as input to the prosody rules.
These convert the phonemic transcription to a phonetic
transcription, consisting of allophones, specified by their duration
and pitch points.

Based on this phonetic information, the MBROLA diphone
synthesiser concatenates the appropriate diphones with their
appropriate duration and pitch. This is done phrase by phrase,
and produces the desired waveform.

3. IMPROVING THE PERFORMANCE OF GRAPHEME
TO PHONEME CONVERSION FOR NUMBERS

The pronunciation of numbers by Text-To-Speech Synthesisers is
a process that very often goes wrong. The synthesiser interprets
any number as if it were an integer, which leads to a very

page 2243 ICPhS99 San Francisco

unorthodox way of pronouncing common digit sequences like
telephone numbers, area codes, bank account numbers et cetera.
The TTS itself accounts for a few special cases, such as time and
date, but this only works when written in the exact format (e.g., a
time is read for 12:30, but not for 12.30 or 12:30:23). Minor
deviations in spelling will cause the TTS to resort to spelling
mode.

Prosody Rules
phonem es-to-a llophone rules

dura tion rules
in tonation ru les

assim ila tion rules

Text Analysis
user lex icon
extra lex icon
m ain lex icon

graphem e-to-phonem e convers ion
in terpreta tion of num erica l input, dig it-to-phonem e convers ion

accentuation and phrasing

input text

phono log ical representa tion
(phonem ic transcrip tion)

phonetic representation
(a llophon ic transcrip tion)

M BROLA
d iphone synthesis

speech

Figure 1: The Fluent Dutch Text-To-Speech Synthesiser

The pre-processor tries to solve this problem by examining
if the numbers found in the text can be placed into categories that
have equal pronunciation.
First, the text is scanned for numbers (in this case, a number is
considered any sequence of characters that contains at least one
digit). If a number is found, it undergoes a series of tests that try
to determine what category the number belongs to. The different
categories include:

1. Area code
2. Ordinal number
3. National telephone number
4. International telephone number
5. Amount of money
6. Time
7. Date
8. Fraction

9. Bank account number
10. Combination
11. Spelled number

A crucial element in successfully tagging the text is to allow
for variability in structure of the number. For instance, a number
may be placed between brackets, occur at the end of a phrase or
sentence, or contain white spaces. When a number contains white
spaces, it is difficult to determine where a number stops and the
next one begins. This can be seen in expressions like I have
dialled 06-54645433 3 times. Therefore, airtight number
identification requires syntactic parsing of some form. The pre-
processor discussed here does not use syntactic parsing, but
structure analysis includes contemplating the possibility that a
number exceeds word boundaries (for example, 020 6 454 828
will be recognised as a Dutch telephone number).

It should be noted that, since the pre-processor was designed
for a Dutch TTS system, the number identification is based on
Dutch number structures. Since each country has its own writing
conventions, it would be an impossible task to cover for all those
different styles. To illustrate this, 06/05/98 is interpreted as May
6th, 1998 in Dutch, whereas it means June 5th, 1998 in English.
In this system, Dutch conventions have priority over the English
conventions, except when this would lead to meaningless
structures, say, a date like 5/14/98.

If a number meets the criteria of one of the categories listed,
a tag with the category’s name is attached to it. Only one tag per
number can be given, and overruling is impossible at this level.
The examination process walks through the categories in the
order shown above, so for instance if a number is found to be a
date, it can not be tagged as a bank account number anymore.
The only exceptions to this are fractions and spelled numbers.
Fractions can be altered to dates if there is contextual evidence
for this (for example d.d. 6/10), and any category can be
changed to a spelled number if the context contains clues for this.
However, since the tagging criteria show virtually no overlap, it
is most likely for the tag to be correct when a number is tagged.
The second step in the process is the investigation of the
contextual environment of the number. Whereas in the first step
the only concern was the number itself, now it is being looked at
as part of a sentence. In the event of letters occurring at word-
initial or word-final position, they are peeled off, and the
remainder of the number is being checked for categories again
(which could even c over for typing mistakes!). If, after this
process, still no tag has been found, the immediate surroundings
of the number in the sentence are searched. If a word, occurring
within a distance of two words from the number, could indicate
that the number belongs to a certain category, and the number
satisfies the minimal conditions for that category (for example,
an area code number should be at least four digits long), the tag
is given.

To scan the context words of a number, each category has
its own dictionary containing characteristic words for that
category. For example, bellen (call) is one of the words of the
telephone dictionary. The dictionaries also contain information
about whether the context words should precede or follow the
number in order to be assigned to that number.

The dictionary that contains the most matches is assumed to
be of the correct category. Also, each category has its own,
predefined priority number. If two or more dictionaries find an

page 2244 ICPhS99 San Francisco

equal number of matches, the category that has the highest
priority number prevails. Priority is based on three
considerations:

- Given a lexical item of a specific category matching a
context word, what is the probability that the number
belongs to that category?

- What is the probability that a number of a particular
category will be recognised from context but not from
structure analysis?

- Suppose the wrong tag would be assigned, what would be
the consequence for the eventual pronunciation of the
number?

Spelled numbers get highest priority, since the presence of
dictionary items for this category offers a fair chance that indeed
a spelled number is present, and, more importantly, the number
could not have been recognised earlier during the process.
Furthermore, the rewriting procedure for pronunciation of a
spelled number allows for any character combination without
risk of losing information. Bank account numbers and telephone
numbers are next, mainly because giro numbers and local
telephone numbers contain no information and cannot be
categorised in the initial tagging routine (but, on the other hand,
would be understood if classified as a spelled number). Area
codes are positioned at the bottom of the list since their structure
is so well defined that they should be categorised straight away in
the initial tagging routine. Date and time also receive low priority
since their phonetic transcription routine is disastrous to numbers
unjustly categorised this way.

The final step is to expand the tagged numbers to produce
an input text for the TTS. Numbers that have not been tagged are
assumed to be normal integers, and since the TTS pronounces
them correctly, there is no need for further processing. The
program scans through the text looking for a tag, and if one is
found, the tagged number is cut out of the sentence, the tag is
disposed of and the number undergoes the expanding process
appropriate for the tag. This expanding process can take place at
two levels: phonemic or orthographic. In the first case, the
rewritten number is built up from small pieces of phonetically
transcribed text, added as the process goes along. This is done to
allow phonetic cues to be inserted in the text more easily, or to
give the syllables the correct stress. For example, expanding
ordinal numbers such as 12301ste can be done by first obtaining
the phonemic transcription of the integer and next change the
ending / ?*en / to /*er-st@ /.

In the second case, numbers are rewritten orthographically.
In this way, the program can make use of the ability of the TTS
to pronounce certain strict “formats”, for instance the time format
as shown above. By converting the number to the TTS format,
with optional supplementary information, it can be transcribed as
a whole.

In this way, a sentence at orthographic level is created that
contains the entire text, constructed of sentences combined with
expanded numbers and phonemic insertion tags.

The pre-processor creates alternative pronunciation
directives that result in smoother pronunciation of most of the
numbers. It is, however, not possible to capture all numbers into
their appropriate categories, and sometimes numbers end up with
a correct tag (through the context search) but still are pronounced

incorrectly (for example, when a number is tagged during the
context search while the structure can not be correctly rewritten
in the expanding routine). An example of this is the money
number 123.95 gulden (123.95 guilders), where the full stop is
not supported since commas are default in Dutch money
amounts.

This problem can be overcome in two ways. The expanding
routine can be refined to produce correct pronunciations for more
different structures, or the tags should be redefined more
accurately. This would involve defining more categories, and, for
instance, the implementation of expanding directives within tags.
Expanding directives are already successfully implemented in the
SABLE SAYAS markup language [5], (that uses a similar
tagging system to indicate pronunciation for numbers) and they
mainly include word order directives (for example, the date tag
can be refined with a Day-Month-Year mode type option, that
indicates the structure of the date as, say, MDY or MD or DMY).

4. FORMATTING THE INPUT TEXT
Besides expanding numbers to a pronounceable form, special
attention is paid to the construction of the sentence. Parsing at
word level can influence the structure of the sentence: if a word
is taken out of the sentence and placed back afterwards, an
incorrect pronunciation might be generated. Consider the next
sentence:

The number in this sentence is \insert=<phonrep>\ .

The part between the backslashes is a phonetic cue for the
speech synthesiser. This is used in certain cases to ensure that
correct pronunciation is generated. However, this causes the full
stop indicating the sentence ending to become a stand-alone
character. To solve this problem, which applies for all
punctuation marks, the punctuation mark is replaced by a
phrasing cue or, in the event of a full stop, a hard return.

In emails, many lines are terminated by a hard return instead
of a full stop, as a result of writing habits of people. Moreover, in
raw ASCII format, hard returns might be inserted at the end of a
terminal line (typically 70 characters long). To ensure that
correct sentences are formed when the mail is retrieved from the
mail server, an extra end of sentence detection is carried out.
Sentences are reconstructed, according to full stops
(abbreviations taken into account), capitals, and the length of the
line. A sentence ending is identified when a full stop is found,
followed by a white space or a tab character, and a capital. A
hard return also indicates a sentence ending, unless the length of
the line exceeds 65 characters (since that might indicate a line
ending) and the next line does not start with a capital.

A final pre-processing routine that improves pronunciation
removes or inserts white spaces before special characters. Most
special characters need to be isolated to ensure proper pronun-
ciation: 45% is spelled, hence a white space is inserted (45 %)

5. CONCLUSION
Pre-processing texts before feeding them to a Text-To-Speech
synthesiser considerably improves pronunciation and can create
the illusion of computer intelligence. Nevertheless, it does not
account for all the problem cases that one encounters in texts.
When most common structures of numbers are known to a pre-
processor, a fair deal of them can be identified correctly.

page 2245 ICPhS99 San Francisco

Performing a context scan can improve identification even more.
What causes most problems occurring in number identification is
the redundancy that is often used in text writing. Whereas
humans usually have no problems in inferring the meaning of
character strings, subconsciously using syntactic and semantic
context information, computers need more information to
determine the identity of a number. The pre-processor that is
discussed here mainly relies on the use of clear structures, and
can cover for some redundancy by doing a context search that
tries to suggest semantic parsing. When texts are written without
a lot of redundancy, most numbers are identified correctly.

Summarising, it can be stated that the pre-processor that is
discussed here performs as it was intended to do. However, it
seems safe to conclude that although the majority of cases that
form an obstruction to the pronunciation generation process can
be solved successfully, there seems to be a limit in pre-
processing performance that cannot be exceeded unless some
form of semantic and syntactic parsing is used to correctly
identify all words in the text, in order to provide an appropriate
pronunciation for them.

REFERENCES
[1] Y. v. Holsteijn, (1993): TextScan: a preprocessing module for
automatic text-to-speech conversion. In: V. v. Heuven, L.C.W. Pols
(eds.): Analysis and synthesis of speech: strategic research towards high-
quality text-to-speech generation. Speech Research, Mouton de Gruyter,
Berlin 1993.
[2] R. Jansen, (1998): Pre-Processing Input Text: Improving
Pronunciation for the Fluent Dutch Text-To-Speech Synthesiser. Institute
of Phonetic Sciences, University of Amsterdam, Comsys International
B.V., Zeist, The Netherlands.
 [3] http://www.fluency.nl
[4] http://tcts.fpms.ac.be/synthesis/mbrola.html
[5] R. Sproat, A. Hunt, M. Ostendorf, P. Taylor, A. Black, K. Lenzo, M.
Edgington. 1998. Sable: A standard for TTS Markup. International
Conference on Spoken Language Processing (ICSLP), Sydney, Australia,
December 1998.

page 2246 ICPhS99 San Francisco

