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DISCRIMINANT ANALYSIS

David Weenink

Abstract

We discuss two algorithms for performing principal component analysis and discriminant
analysis. Both algorithms are based on singular value decomposition (svd). We calculate
principal components and discriminants directly from the data matrix without forming the
intermediate covariance matrices. In this way we do not loose accuracy. The methods
described here have been implemented in the speech analysis program Praat.

1 Introduction

Principal component analysis (PCA) and discriminant analysis belong to the basic
repertoire of multivariate data analysis. From a mathematical standpoint both meth-
ods try to construct an optimal orthogonal basis for the multidimensional data. They
only differ in the choice of the optimality criterion. For principal component analysis
the data are not labeled and we try to find orthogonal directions in which the variance
is a maximum. These directions are called the principal directions and are unique up
to a reflection. However, when the data are isotropically distributed in a subspace then
there are no preferred directions in that subspace. In popular language one says that
the first principal direction explains most of the variance. This means that when one
projects the multidimensional data onto this single dimension the variance along this
direction is a maximum, i.e. from all the possible directions in the multidimensional
space no other direction shows this much variance for projected data. Translated into
mathematical terms one tries to solve the following eigensystem

Tx-Ix=0 (D

for the eigenvectors x and eigenvalues A. The matrix X is the data covariance matrix
which is a symmetric matrix.

For discriminant analysis we have labeled data, i.e., each row belongs to a certain
group or category, and we try to find orthogonal directions among which discrimination
between the different groups is optimal. In other words, one looks for directions in
space where the ratio of the between-variance B and the within-variance W forms a
maximum. This translates to the following eigensystem:

Bx - \Wx =0 (2)

In this paper we will try to explain the origin of these equations and how we can
solve them in an efficient and numerically stable way, without getting into mathematical
detail.
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Fig. 1. Bivariate normally distributed random data centered at (0.5, 0.3) in the zy-plane
with principal direction at an angle of 60 degrees with respect to the horizontal z-axis.
The ellipses are the 1o and 20 ellipses that include approximately 39.3% and 86.5% of the
data, respectively.

2 Principal component analysis

In figure 1 we have drawn 200 points in the zy-plane following a binormal distribution.
These points were generated as follows.

e Both columns, x and y, of a data matrix A with 200 rows are filled with Gaussian
random deviates, centered at the origin, with o, =1 and o, = 0.2.

e The points are rotated counterclockwise with an angle a of 60 degrees.
e The points are translated along the vector (0.5, 0.3).

When we calculate the variances in the new z and y column from A they will approxi-
mately be 0.53 (= o2 cos® a + al sina) and 0.87 (= o?sin o + ol cos? a).

As can be seen from the figure, now the direction with maximum variance is not
along the x axis anymore, but along a vector that makes an angle of approximately 60
degrees with the horizontal z-axis. If we created a new variable by projecting the two-
dimensional points onto this direction then the new one-dimensional variable would
explain approximately 96% of the total variance (96% = 02/(0% + 02)100%). This
offers a possibility for data reduction. When we are satisfied with a description that
explains 96% of the variance then we only need one variable, the first principal com-
ponent, instead of the original two, the z and y. A PCA-algorithm finds the orthogonal
directions that have maximum variance.
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Equation (1) can be derived as follows: we start with a general m x n data matrix
A. Let the first principal component x be the direction that maximizes the variance.
The dimension of x equals n, the number of columns in A. We project our data onto
this direction and get a new vector y of projected data points y = Ax. The number of
elements in y now equals m, the number of rows in A. The variance (length) of this
vector y should be the maximum of all lengths possible, i.e.,

y'y = (Ax)'(Ax) = x'A'Ax = x'Ex 3)

should be a maximum, where A’ means the transpose of A. In order to obtain mean-
ingful solutions we have to constrain the length of the vector x we are looking for. If
no constraints were imposed on X, any x of infinite length would satisfy. One normally
adds the constraint that x be a unit vector, x'x = 1. With the help of the Lagrange mul-
tiplier A this constraint can be included and the equation to maximize can be written as

follows
x'Ex - AMx'x - 1).

Taking the derivative with respect to x and setting this derivative equal to zero we end
up with:
¥x-Ax=0

which is the desired equation (1). There are many ways to solve eigensystems of this
type where the matrix ¥ is symmetrical. We can use a method due to Jacobi or we
might first reduce X to tridiagonal form with a Householder reduction and then solve
the resulting system with QR transformations (Press et al., 1996; Golub & van Loan,
1996). However, when we have the original data matrix A at our disposal, explicitly
forming the product matrix, A’A = X is inadvisable because of a potential loss of
information in finite precision arithmetic. When we define the condition number ¢ of
a matrix A as the ratio of the largest eigenvalue to the smallest eigenvalue, then the
condition number of the matrix product A’A will be ¢>. When 1/c? is smaller than
the machine precision ¢ the corresponding eigenvalue will be lost. This is where the
singular value decomposition (SVD) enters. The SVD of an m x n matrix A has the

form

A=UDV/ “4)
where U and V are orthogonal matrices of order m and n, respectively, and D is an
m x n nonnegative diagonal matrix. (For convenience we consider m > n. We also
assume that our matrices are real. See Golub & van Loan (1996) for more details.) The
diagonal elements d; of D are called the singular values of A and by convention are
ordered so thatd;, > dy > --- > d, > 0. The columns of U and V are orthonormal
eigenvectors of AA' and A’A, respectively. We now use the SVD of A to calculate ¥

¥ = A’A = (UDV')(UDV’) = VDU'UDV' = VD?V". (5)

This is a familiar result, it shows that any real symmetric matrix 3 can brought into
diagonal form by a rotation. Now D? is a matrix whose diagonal values are d?, the
squares of the singular values of A. When we substitute the result from equation (5)

into equation 1 we obtain
VD*V'x — Ax = 0,

now multiplying with V' and using Vs orthogonality results in
D?*V'x - A\V'x =0. (6)

The solution for the equation (6) is now obvious. The vectors x that satisfy equation
(1) are the column vectors from V. The corresponding eigenvalues are the squares of
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the singular values in the diagonal matrix D. This result shows that by taking the SVD
of A we can easily obtain the eigenvalues and eigenvectors of the matrix £ = A’A.
Algorithms for determining the SVD of a rectangular matrix can be found in Press
et al. (1996) and Golub & van Loan (1996). We do not loose any numerical precision
by taking the SVD of A. Every rectangular matrix can be decomposed according to
equation (4). The advantage of the SVD-algorithm is its numerical stability. An addi-
tional advantage of the SVD algorithms is that they are robust against A not being of
maximum rank, or, which is the same, ¥ being singular. The singular values d; show
how well behaved the matrix is. When the matrix is not of full rank the quotient of the
largest and the smallest singular values will be very large.

The complete procedure for performing a PCA analysis, starting from the m x n
data matrix A is now the following:

e Centralize the data in A. For each element a;; in A subtract the column mean
a; = > T a;j/m. This gives a new centralized data matrix C with elements
CiJ = "ij = l._]‘.

e Calculate the singular value decomposition C = UDV". Sort the singular values
d, and corresponding columns of V. Now d; will be the largest singular value
and d, the smallest. Save only those singular values d; that satisfy d;/d; >
max(m, n)e, where € ~ 2.2 x 10718 is the machine precision for double precision
floating point .

e Store the eigenvalues, df-, with their corresponding eigenvector, e;. The most
important direction will be the first eigenvector e;. The projection of the data
matrix on €; equals y = Aey, and is called the first principal component.

3 Discriminant analysis

As in the previous section, we will start with a m x n data matrix A. Now, however,
each row in the matrix is labeled as belonging to a certain group. There are g different
groups, each group has n; elements. Clearly 329 n;, = m. When we plot each row
from A as a point in a space of dimension n and label the point with its corresponding
label, we will see points spread around the origin. Normally points belonging to the
same group lie in each others neighborhood. The purpose of discriminant analysis is
to find orthogonal directions in space such that along these directions the separation
of the groups is optimal. In general, directions of maximum variance and directions
of maximal separation need not have anything in common. To illustrate this we have
drawn 200 points in figure 2 that were generated according to two different distribu-
tions. These points are labeled “1” or *2”, depending on the distribution they belong to.
Both distributions consist of 100 points that were generated as binormally distributed
around the origin with ¢, = 1 and o, = 0.2 and subsequently rotated 60 degrees coun-
terclockwise, in analogy with the data from figure 1. Next the points labeled “1” were
translated along the vector (—0.5, 0.5) and the points labeled *“2” were translated along
the vector (0.2, —0.5). The 1o ellipses for the points labeled *“1”” and “2”” have also been
drawn as well as the 1o ellipse for the combined data set. The direction of maximum
variance is the plain line that goes from the lower left to the upper right, along the long
axis of the ellipse of the combined data. It is obvious that in this figure the direction in
which best separation of the point labeled “I”” and *“2” is achieved, is along the dashed
line that crosses the previous line.

The quantification of best separation is the following. Suppose that the n dimen-
sional vector x is the direction that gives maximum separation. When we project the
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Fig. 2. Two bivariate normally distributed random data sets in the zy-plane. Both sets
have their principal direction at an angle of approximately 60 degrees with respect to the
horizontal z-axis. The data labeled “1” are centered at (—0.5, 0.5) while the data labeled
“2” are centered at (0.2, —0.5). Both sets have 0; = 1 along the first principal axis and
o2 = 0.2 along the second principal axis. The two small ellipses are the individual lo
ellipses of the two data sets that cover approximately 39.3% of the data. The larger ellipse
is the 1o ellipse computed from the two data sets combined. The plain line bottom-left-
to-top-right that approximately parallels the long axes of the ellipses corresponds to the
direction of maximum variance. The dashed line is the direction along which discrimina-
tion is a maximum.

data onto this vector x all point now lie on a line. The points that belong to the same
group hopefully cluster and lie close to each other. Good separation between the groups
has been achieved when the clusters lie as far apart from each other as possible and the
spread within each cluster is minimal. This amounts to saying that we want the vari-
ance of the group means along this direction to be as large as possible and at the same
time the variances within the groups be as small as possible. It is mathematically more
tractable if we express this as: find the maximum value for the F-ratio, i.e., the ratio of
the variance of the group means and the variance within the groups.

In the language of matrices: we first calculate from A the g group means and sub-
sequently centralize A. Call C the m x n matrix that results when we subtract from
each row vector in A it’s corresponding group mean. When we plot these points all
clusters will be centered at the origin and no separate cluster would be noticeable. (For
the data in figure 2 this would mean that all data now would lie in one elliptic region.)
Now project these data onto x and form the m dimensional vector y as y = Cx. The
variance of y is a measure for the spread:

y'y = (Cx)'Cx = x¥'C'Cx = X' Wx,

W is the matrix with the so called within-group sums of squares and cross products
(sscp). We now form the g x n matrix M with group means. The projection of the
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group means on x leads to a new vector z defined as z = Mx. The variance of z is a
measure for how far the groups lie from each other:

z'z = (Mx)'Mx = x'M'Mx = x'Bx.

B is the matrix with the between-group sums of squares and cross products. Now we
have to find the vector x that maximizes the ratio ¢(x) defined as'

x'Bx

Bx) = 2= Q

However, to obtain meaningful solutions, we first put in the constraint x'x = 1 to
obtain:

x'Bx
(25(){) = ;'—V—V; = /\(X'X = 1)
The x that maximizes the equation above can be found by differentiation of ¢(x) with
respect to x and putting the result equal to zero. We then find the following eigenvalue
equation:
Bx - AWx =0 (8)

To solve for the eigenvalues and eigenvectors of this equation in a numerically stable
way is not a trivial matter because either the B or the W matrix might be singular.
Golub & van Loan (1996) discuss methods for solving this type of equation. In general
the eigenvectors of this equation are not orthogonal and we have to perform a subse-
quent orthogonalization step.

When W is not singular we can multiply by its inverse and obtain

W-1Bx - Ax = 0.

Although this equation has the same form as equation (1) there is also an important dif-
ference. The product W~1B of two symmetric matrices, does not result in a symmetric
matrix and, therefore, the methods used before to solve equation (1) for the eigenvalues
and eigenvectors are not valid here (apart from the fact that it would be numerically
very unwise to explicitly form W~1B).

Now for the special case that in equation (8) both matrices B and W are symmetric

and 8 can be written as
M'Mx — A\C'Cx =0 ©)

there is an elegant solution possible without forming explicitly the matrix products
M'M and C'C that could ruin our numerical precision. This solution is the generaliza-
tion of the method we used with PCA-analysis and is called the generalized singular
value decomposition (GSVD).

4 The generalized singular value decomposition

The generalized singular value decomposition (GSVD) decomposes two matrices at the
same time into a common row basis. In the following we borrow the notation from Bai
& Demmel (1993). The GSVD of an m x n matrix A and a p x n matrix B is given by

A =UZ;RQ and B=VXI,RQ, (10)

- i-Many r.n(.)ré”problems in multivariate data analysis can be formulated in the way of equation (7): find
the optimum of the ratio ¢(x) = x'Ex/x’Fx, where the matrices E and F are specific summaries of the
data.
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where R is n x n upper triangular and nonsingular, and

[l kK n—-1l-k
S = I b,
k 0,
m—1—k
I kK n—-1l—-k
I
o= p-—n+l D, ,
k
n—I1—-k 02

The ! x | matrix I, and the (n — [ — k) x (n — — k) matrix I, are identity matrices.
The (m — [ —~ k) x (n — | — k) matrix O; and the (p — n + () x ! matrix Oy are
zero matrices. D; = diag(ay+y, - -+, a4k ) and Do = diag(Bi+1, - - -, Bi+k) are diagonal
matrices, where

1>mp > 2a>0, 0<fn<--<Bu<l, of+8=1 (1)

The GSVD is a generalization of the SVD in the sense that: if B is the identity matrix
then the GSVD reduces to the SVD of A. The pairs (e, §;) are called the singular value
pairs. The quotient A, = «;/j; is called a generalized singular value. If 3; = 0 then
the generalized singular value «,/5; is infinite. If B is square and nonsingular, then the
GSVD of A and B reduces to the SVD of AB~*:

AB™! = (US,RQ)(VERQ)™ = U(T, 3; 1) V',

Now we will show that the generalized eigenvalues and eigenvectors of A’A — AB'B
can be expressed in terms of the GSVD. We define X as

X =QR™ L
Then using equation (10) we find that
X‘AIAX = 2’121 and XIB/BX = 2’222

Therefore the columns of X are the eigenvectors of A’A — AB’B, and the nontrivial
eigenvalues are the squares of the generalized singular values. The matrix X is not an
orthogonal matrix anymore. When we want an orthogonal set of eigenvectors, we have
to use the columns of Q. The GSVD of two matrices A and B can be calculated with
the help of (modified versions of) the LAPACK routines dtgsja and dggsvp (An-
derson et al,, 1995). Routine dtgsja calculates the GSVD from two upper-triangle
matrices A and B into the form of equation (10). The program dggsvp preprocesses
two matrices A and B and brings them in upper-triangle form.

The complete procedure for performing alinear discriminant analysis, starting from
the m x n data matrix A with g different groups is now the following:

e Centralize the data in A per group. This results in a new centralized matrix C
with elements: ¢;; = a;; — ag-, where afcj is the average value of the elements in
column j that belong to group k.
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e Collect the averages af‘i in a k x n matrix M.
e Calculate the generalized singular value decomposition of matrices C and M.

— Use a modified version of dggsvp to bring C and M into upper-triangular
form.?

— Use the output of dggsvp as input for a modified version of dtgsja to
calculate C = UZ;RQ’ and M = VI, RQ'".

e Calculate the generalized eigenvalues /\f trom the «;’s and f3;’s of equation (11).

S Discriminant analysis in the Praat program

5.1 Introduction

In this section we will demonstrate how we perform a discriminant analysis in the Praat
program by Boersma & Weenink (1996). This section is also available as a tutorial on
discriminant analysis within the Praat program itself (under “Help/Tutorials”).

We will use the multivariate data set from Pols et al. (1973) with the first three
formant frequency values and the levels in dB of the 12 Dutch monophthong vowels
as spoken in /h_t/ context by 50 male speakers. This data set has been incorporated
into the Praat program and can be called into play with the Create TableOfReal
from Pols data (50 males) ... command thatcan be found in the “New / Table-
OfReal” menu. In the list of objects a new TableOfReal object will appear, named
pols_50males. After pressing the “Info” button, the “Info window” will show you
that this table has 6 columns and 600 rows (50 speakers x 12 vowels). The first three
columns contain the formant frequencies in Hz, the last three columns contain the lev-
els of the first three formants given in decibels below the overall sound pressure level
of the measured vowel segment. Each row is labelled with a vowel label. Pols et al.
use logarithms of formant frequency values, we will do the same.* The following script
summarizes our achievements up till now:

Create TableOfReal from Pols data (50 males)... yes
Formula... 1if col < 4 then logl0 (self) else self endif

To get an indication how these data look, we make a scatter plot of the first log-formant-
frequency against the second log-formant-frequency. With the next script fragment you
can reproduce figure 3.

Viewport... 0 5 0 5
select TableOfReal pols_50males
Draw scatter plot... 1 2 0 0 2.3 3.0 2.8 3.5 no yes

This plot equals figure 3 in the Pols et al. study.

2We didn’t like the automatically (from the FORTRAN sources) translated C-version of LAPACK.
We have translated the routines that we needed from the FORTRAN-based LAPACK implementation
to the C-language ourselves. This involved several changes in the routines because FORTRAN uses
column-wise storage of matrices while C uses row-wise storage. FORTRAN always uses call-by-
reference while C uses call-by-value. We did, however, maintain the FORTRAN way of letting array
indices default start at 1.

3The measurement units in the first three columns and in the last three columns differ. For a discrim-
inant analysis it is not necessary to standardize the columns, for a PCA one would normally standardize
all columns first.
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Fig. 3. First formant frequency versus second formant frequency of the Pols et al. data set
on a logarithmic scale.

5.2 How to perform a discriminant analysis

To perform a discriminant analysis we select the TableOfReal from the list of objects
and choose from the dynamic menu the option To Discriminant. This command
is available in the “Multivariate statistics = action button in the dynamic menu. The
resulting Discriminant object will bear the same name as the TableOfReal object. The
following script summarizes:

select TableOfReal pols_50males
To Discriminant

5.3 How to measure the correlation between the variables

To measure the correlation between the variables, we select the TableOfReal object
and choose To sscP. ... Theresulting SSCP object contains the sums of squares and
cross-products of the column variables of the TableOfReal. Up to a simple scaling, we
now almost have the correlation matrix. Subsequently choosing To Correlation re-
sults in the desired Correlation object. When we now choose Draw as numbers. . .,
the numbers in the Picture window reproduce the numbers shown in the lower-left part
of table III in the Pols et al. study. To calculate the numbers in the upper-right part
of their table III, we first have to get the group centroids. We select the Discriminant
object and choose the action Extract group centroids. This results in a Table-
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Fig. 4. Projection of the 6-dimensional Pols et al. data set on the plane spanned by the first
two eigenvectors of the discriminant analysis.

OfReal object in which each row represents a group centroid. We then generate the
Correlation matrix based on these centroids in the same way as was depicted above.
The following scripts summarizes the procedure:

select TableOfReal pols_50males

To SSCP... 0 00O

To Correlation

# draw lower-left part of Correlation matrix of data
Draw as numbers if... 1 0 free 3 col <= row

select Discriminant pols_50males

EXtract group centroids

To SSCP... 0000

To Correlation

# draw upper-right part of Correlation matrix of the means
Draw as numbers if... 1 0 free 3 row < col

5.4 How to project data on the discriminant space

To project the data on the discriminant space we select from the list of objects the Table-
OtReal and the Discriminant object together and choose: To Configuration.. ..
The axes in the Configuration are the eigenvectors from the Discriminant. Figure 4
shows the data when projected onto the plane spanned by the first two dimensions of
the Configuration. The plot on the left looks very similar to the F} vs. F; plot of fig-
ure 3. The eigenvectors show that indeed the F and the F; variables have the largest
weight (eigenvector | is dominated by F3 and eigenvector 2 is dominated by F}). The
following script summarizes the procedure:
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Fig. S. Concentration ellipses of the Pols et al. data set in the plane spanned by the first
and second formant frequency on a logarithmic scale.

select TableOfReal pols_50males
plus Discriminant pols_50males

To Configuration... 0
Viewport... 0 5 0 5
Draw... 12 -1.1 -0.3 -3.6 -2.8 yes

When you are only interested in the projection, there also is a short cut under the “Mul-
tivariate statistics - button that deletes the intermediate Discriminant object:

select TableOfReal pols_50males
To Configuration (lda)... 2

5.5 How to draw concentration ellipses

To draw concentration ellipses for the different groups, we select from the list of objects
the Discriminant object and choose Draw sigma ellipses. ... In the form you can
fill out the coverage of the ellipse by way of the parameter numberOfSigmas. You
can also select the projection plane. Figure 5 shows the 1o concentration ellipses in the
standardized log(F;) versus log(F3) plane. When the data are multinormally distributed
and projected onto a plane, an ellipse whose axes have length 2 - numberOfSigmas
covers approximately (1 — e~ "umberOfSigmas®/2) . 1009, of the data. The following code
summarizes:

select Discriminant pols_50Omales
Draw sigma ellipses... 1.0 no 1 2 2.3 3.0 2.8 3.5 yes
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5.6 How to classify

The following script summarizes how to classify:

select Discriminant pols_50males
plus TableOfReal pols_5S0males

To ClassificationTable... no yes
To Confusion

Get percentage correct

First we select together the classifier object and the data to be classified as is shown by
the first two lines in the script.* In the example above, the test data set equals the train
data set. Next we make a ClassificationTable that will contain the posterior probabilities
of group membership p;. The p; are defined as:

exp(—d;(x)/2)
Th=rexp(-di(x)/2)’

where d?(x) is the generalized squared “distance” function

P =p(lx) =

d2(x) = (x — ;) B7 (x — ;) + In |Zi| — 2 1n apriori. (12)

The first term in this “distance” function is the Mahalanobis distance, based on the
individual covariance matrix ¥;. The following two terms are the logarithm of the de-
terminant of 3;, which might be negative, and the a priori probability apriori; of x
belonging to group ¢, respectively. For each input vector x (each row in A) we can cal-
culate the p;. As equation (12) indicates, we use the individual covariance matrices in
the distance calculation. This has the consequence that this “distance” is not symmetric
between different groups, it might even turn out to be negative.

Performing classification results in a percentage correct of 79.2%. This is 0.3% less
than the 79.5% that can be found in table IV of the Pols et al. study.

6 Conclusion

We have described recent algorithms for performing principal components analysis and
linear discriminant analysis. Both algorithms are based on singular value decomposi-
tion of the data matrix. There is no need for covariance matrices to be formed. It was
shown that leaving out the latter operation has numerical advantages. Both algorithms
were implemented in the computer program Praat and an example was shown how to
use the latter algorithm effectively. The algorithms are designed for data sets that fit
into the memory of the computer and are relatively fast on modern computers. Say, on
a modern computer with 64 MB of memory approximately 24 MB can be used for the
data matrix (we first make a copy of the data matrix and transform the copy). We can
then handle a data matrix with three million cells with double precision numbers. This
could for example be a matrix with 300 000 rows and 10 columns. By temporarily sav-
ing the original matrix we could even double the available storage space. Nevertheless
there will always be data sets too large to handle in this way and then we have to fall
back to other techniques.

4The data set to test the classifier may be any data set whose data format conforms to the data set that
was used to train the discriminant classifier, i.e., the same variables in the same columns.
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