Institute of Phonetic Sciences,
University of Amsterdam,
Proceedings 22 (1998), 115 - 124

PRE-PROCESSING INPUT TEXT: IMPROVING
PRONUNCIATION FOR THE FLUENT DUTCH
TEXT-TO-SPEECH SYNTHESISER

Rik Jansen ", Arjan J. van Hessen " and Louis C.W. Pols

Abstract

To improve pronunciation of the Fluent Dutch Text-To-Speech Synthesiser, two pre-
processors were built that try to detect problematic cases in input texts and solve these
automatically if possible. One pre-processor examines the pronounceability of sumames
and company names by checking whether their initial and final two-letter combinations
can be handled by the grapheme-to-phoneme rules of the Fluency TTS system, and
correcting those automatically when and if possible. Also, common disambiguous
abbreviations are properly expanded. The second pre-processor tries to realise
pronounceable forms for numbers that do not have a straightforward pronunciation.
Structural and contextual information is used in an attempt to determine to what category
a number belongs, and each number is expanded according to the pronunciation
conventions of its category. It can be said that these pre-processors are a useful aid in
offline pronounceability examination (for names) and improvement of performance at
run-time (for numbers), although ambiguity and redundancy in the input text illustrate
the need for semantic and syntactic parsing to approach human text interpretation skills.

1. Introduction

During the process of generating synthetic speech from text, one encounters various
kinds of problems. One of the most serious problems in converting text to synthetic
speech is that the standard written form of (any) language gives an imperfect and
often distant rendition of the corresponding spoken forms. In a written text, there will
often be occurrences of numerals, abbreviations, special symbols (such as %, @) et
cetera. These form a serious obstruction to the generation of natural sounding speech.
It is therefore necessary to pass the text through a pre-processing stage that converts
all such occurrences to the appropriate pronounceable words, unless in particular
cases it is better to remove them instead.

Any reasonable pre-processing module must of course perform some
disambiguation of the input text that it is expanding: for example, the string Fl. 2,50
(2.50 Dutch guilders) contains information that 2,50 is a money amount, and therefore
1s expanded differently from the way in which 2,50 (= 2.50) would be expanded.
Also, the full stop in Fl. 2,50 does not indicate a sentence ending, but an abbreviation

" Comsys International B.V., Zeist

[FA Proceedings 22, 1998 115



of gulden (guilder). A simple substitution does not suffice here: gulden must be
placed elsewhere in the string (between 2 and 50).

Another main problem in generating speech from text is, obviously, obtaining the
correct pronunciation of whole words. Finding the appropriate phoneme selection and
lexical stress assignment is essential for the intelligibility and acceptability of a text-
to-speech system. Orthography is not related very straightforward to pronunciation. In
Dutch (as in any language), loan words occur that do not apply for the letter-to-sound
rules that are used to obtain phonetic transcriptions, so the only way to pronounce
them correctly is to include them in an exception dictionary (Syrdal, 1995). Often, the
contents of these dictionaries is not limited to just loan words but may contain as
many words as possible of the subject language too to improve overall performance.

Proper names provide the same difficulties as loan words. Pronunciation of names
is a difficult task because they might stem from foreign origin or contain archaic
spelling and therefore rarely occur in the synthesiser’s dictionary. If they do, their
stress pattern might differ from the lexical item. For instance, the Dutch word
goedkoop (cheap) has primary stress on the second syllable, but the surname
Goedkoop is pronounced' with initial stress.

Maybe even more difficult than proper names are company names when stored in a
clientele database of a company (for instance, a bank). These often contain ad hoc
abbreviations that are not in the synthesiser’s dictionary. For example: Herv Gem
Wijkraad Kerkv Amsterd-W. requires a lot of inference and knowledge of the context
to be expanded successfully to Hervormde Gemeente Wijkraad Kerkvereniging
Amsterdam-West. This calls for a special dictionary containing those abbreviations,
since they are not very likely to occur outside this kind of databases. However, one
has to be alert not to include ambiguous abbreviations that would automatically
change abbreviations to an incorrect expansion. For instance, the abbreviation
maatsch can mean maatschappelijk (social) or maatschappij (society).

In an attempt to tackle the two problems illustrated above, the first author has built
two pre-processors that deal with pronunciation difficulties. They both are designed to
be used for the Fluent Dutch Text-To-Speech synthesiser developed by Arthur
Dirksen (FLUENCY). The first pre-processor is a number solver that tries to identify
the nature of complex numbers (numbers that should not be pronounced as integers)
by examining their structure and context in the sentence. An attempt is made to
categorise them as a date, time, telephone number, bank account number, money
amount, ordinal number, fraction, or an area code. Once identified, they are expanded
to an appropriate pronounceable form. This is done by inserting orthographic clues
and phonetic phrasing cues.

The second pre-processor is designed to improve pronunciation of names and
detect cases that would obstruct the pronunciation generation process. Checking the
beginnings and endings of words turned out to be an effective way to locate words
that could cause pronunciation problems. Words with letter combinations at word-
initial or word-final position that conflict with Dutch pronunciation rules are marked,
to indicate that they need to be examined closer. For example, African names like
Nkono or Mkumba have initial consonants that serve as an entire syllable and
therefore should be transcribed likewise.

The purpose of this pre-processor is to function as an aid in constructing a database
of names and their correct pronunciations, analogous to the ONOMASTICA project
(Gustafson, 1994). These names can be either surnames or company names, based on
the way in which banks generally register their clientele. Having the disposal of such
a database makes it possible for commercial institutions to automatise telephone
dialogues with their customers by using text-to-speech technology. Since company
names may contain abbreviations, these are expanded if possible to reduce the number

116 [FA Proceedings 22, 1998



input text

1

Text Analysis
user lexicon
extra lexicon
main lexicon
grapheme-to-phoneme conversion
interpretation of numerical input, digit-to-phoneme conversion
accentuation and phrasing

P T T e e By, Gt e
< BRETR o b A d it LSRR

B R
A ST S T R

v
phonological representation
(phonemic transcription)

l

Prosody Rules
phonemes-to-allophone rules
duration rules
intonation rules
assimilation rules

s QT gl Soaad i gl Bl TR U R R g 2 o2t B e e T Rl e ar R e ;‘y 3 e

‘ y
phonetic representation
(allophonic transcription)

l

MBROLA
diphone synthesis

—
TS S S RT Tt e b,
S Tl SR e e 5 i e

speech

Figure 1: The Fluent Dutch Text-To-Speech Synthesiser

[FA Proceedings 22, 1998 117




of pronunciations generated incorrectly. After the pre-processing stage, names that are
assumed correct according to the initial and final letter combinations of their words
are stored separately. They are still likely to contain small errors such as incorrect
stress patterns or unexpanded abbreviations, and can be scanned for this rather
quickly.

The names indicated as incorrect need a more thorough inspection. Most names
will have to be manually rewritten to a phonetic transcription that can be included in
the database to specify their pronunciation (for they are very likely to be foreign
names).

2. The Fluent Dutch Text-To-Speech synthesiser

The Fluent Dutch Text-To-Speech synthesiser converts text to speech by using a
Dutch diphone database and an MBROLA diphone synthesiser (MBROLA). An
outline of its structure is shown in Figure 1. First, the text is analysed with the use of
three lexicons. The main lexicon is the basic lexicon that contains many Dutch words
and some common English words, specified by their phonemic transcription. The user
lexicon and extra lexicon can contain uncommon words to make the synthesiser
suitable for use in specific applications. Words that occur in one of the dictionaries
are given the indicated transcription, and numerals, special characters and words that
are not in the dictionary are converted to phonemic representations by using letter-to-
sound rules. Also, pitch and phrase characteristics are determined. Text analysis
transforms the text to a phonological representation containing information about
phonemes and prosodic structure that can serve as input to the prosody rules. These
convert the phonemic transcription to a phonetic transcription, consisting of
allophones, specified by their duration and pitch points.

Based on this phonetic information, the MBROLA diphone synthesiser
concatenates the appropriate diphones with their appropriate duration and pitch. This
is done phrase by phrase, and produces the desired waveform.

3. Pre-processing words for letter combinations

To be able to inspect letter combinations at word-initial and word-final position, two
tables were composed, one table containing initial combinations and one containing
final combinations. The tables are 31 by 31 matrices in which the letters of the
alphabet and the five most common ASCII characters (¢, é, €, € and i) are set out. In
this way, the correctness of each possible letter combination at the beginning or
ending of a word can be plotted in the corresponding cell of the appropriate table.

The tables were filled with letter combinations that are phonologically correct in
Dutch. In addition, combinations that are pronounced correctly by the synthesiser
were included, to account for alternative spelling forms of Dutch names that do not
influence pronunciation. These might contain grammatical inaccuracies, for instance
-pd, -cd. -kd, and -hd. Although grammatically incorrect, the synthesiser will not spell
those sequences and regard the final d as a /t/. Since -td appears to be spelled out by
the speech synthesiser, this combination is not permitted. If possible, other special
cases will be rewritten to a form that produces the desired phoneme sequence. This is
done before the table comparison takes place, to minimise the number of ‘rejected’
combinations.

To reduce the number of unjustly rejected words even more, the pre-processor uses
extra lexicons that can be composed and customised by the user. This enables the

118 [FA Proceedings 22, 1998



processor to be used for various purposes. The function of these lexicons is to replace
known problematic structures by pronounceable orthographic alternatives, thus
improving pronunciation and reducing illegal letter combinations. There are three
lexicons:

- a lexicon containing priority words
- a lexicon containing character substitutions
- a lexicon containing word substitutions

The lexicon containing priority words should contain the words that have to be
marked ‘correct’ independent of the way they are spelled. These words may include
company names that are included in the user lexicon of the speech synthesiser, and
whose letter combinations would not pass the table check.

The character substitution lexicon contains punctuation marks and other special
characters that should be substituted in the text because they would otherwise cause a
correct word to be marked ‘incorrect’. For example, consider the database entry
Comité “Stop Racisme”. When the words Stop and Racisme would be checked for
their initial and final letter combinations, the combination of the two symbols“S as
well as e ” would be marked as incorrect, since they do not occur in the tables.
Whenever an entry of this lexicon is encountered in the text, it is replaced by the
suggested substitution.

The word substitutions lexicon operates in the same way as the character
substitution lexicon, the only difference being that this deals with words instead of
characters. These are mostly abbreviations that have to be replaced by their fully
written form or a standardised abbreviation that is present in the user lexicon of the
speech synthesiser.

After substituting occurrences of lexical items with their desired alternatives, all
words are ready to be checked for their initial and final letter combinations, except for
the special cases. These special cases include:

- Lexicon words. These have been marked ‘correct’ in an earlier stage of the process.

- Single letters. These are automatically spelled, but would found to be incorrect in a
table check.

- Numbers. These are not in the table, and therefore would not pass the table check.

- Abbreviations ending in a full stop. All full stops have been removed from the text
at an earlier stage, so the full stops found belong to abbreviations that have been
inserted during a user specific substitution routine. For example, expressions
such as ‘de heer’, ‘dhr’, ‘Hr’ et cetera all have been replaced by ‘dhr.’, an
abbreviation that is present (or that can be included) in the user lexicon of the
speech synthesiser. Since these titles are all pronounced unstressed in this
context, they are included in the lexicon without stress. This remarkably
improves pronunciation of proper names preceded by a title.

- Standard abbreviations. These include common abbreviations used in company
names such as ‘BV’, ‘NV’ et cetera.

- Words consisting entirely of capitals. These words are likely to be company names,
and probably need to spelled out if not pronounceable (like ‘KLM?’).

After the process of checking letter combinations, a rudimentary separation of
pronounceable and problematic words has been realised. To verify this, a small test
was carried out. A list containing 24,309 unique family names was processed in the
way discussed above. Table | shows the results.

After replacing problematic character sequences and checking the letter
combinations of those 24,309 names, 24,135 names were found to be correct, and

[FA Proceedings 22, 1998 119




only 174 names were considered to be incorrect. Although the words that have been
indicated as being correct do not necessarily have to be correct, a check on a
randomised subset containing 2,000 of the 24,135 ‘correct’ names has learned that for
98% of those names, a pronunciation was generated without resorting to spelling
mode. Although this pronunciation was not always perfect (mainly caused by an
incorrect intonation pattern), it was understandable for the listener.

Table 1. Results of a test on 24,309 unique family names.

N = 24,309 amount percentage completely pronounced
i of subset of words
judged correct 24,135 98
judged incorrect 174 33

Of the names that were classified as ‘incorrect’, 33% caused a spelled pronunciation.
Moreover, the quality of the pronunciation of the names that were not spelled was
poor compared to the names that had passed the test, mainly because the rejected
tetter combinations were foreign combinations pronounced in the Dutch way. Below,
an example is given of several private and company names, and the judgement by the
pre-processor. The names in the first column all have undergone a letter
combinations check. The output results can be seen in the second column. Braces
indicate incorrect words (the braces are on the side of the incorrect letter
combination). Column 3 indicates if the item as a whole (i.e. the entire line), is correct

according to the computer (C?) and column 4 indicates if this is a justified decision
7.

Table 2. Examples of results of checking letter combinations. For more details, see text.

Checked Name Output results c? | J?
Hr Ayvas Dhr. {Ayvas N N
Mw Baiwir Mevr. Baiwir} N N
Jonas Bjorkman Jonas {Bjorkman N W
Hr Pieters Dhr. Pieters il Y
Dhr Pietersz Dhr. Pieters Y Y
Knbrd Knbrd 4 ) §
S Valckx S Valcks Y Y
KLM personeelsver KLM Personeelsvereniging Y ¥
Mr van Hooff Mr. van Hoof Y X
admin der herv gem Haarlem | Administratie der Hervormde Y b ¢

Gemeente Haarlem

afd Lemmer kon ned ver Afdeling Lemmer Koninklijke 4 4
Rode Kruis Nederlandse Vereniging Rode Kruis

A E Goedmann kunsts A E Goedman Kunsts Grafische en N b4
grafische Tekenmatr}

en tekenmatr

adm hfdrek bvo min van Administratie Hoofdrekening {Bvo N ' 4
alg zkn Ministerie van Algemeen Zaken

Summarising, the pre-processor for letter combinations seems a useful timesaving
device. The expanding of standard abbreviations can be a time-consuming activity,

120 IFA Proceedings 22, 1998



especially when large databases have to be processed. Moreover, a lot of common
letter combinations in names that are problematic for the speech synthesiser are
solved automatically too. Results of pronunciation performance tests indicated that
names that were judged to be correct were pronounced considerably better than names
judged to be incorrect. To produce pronunciation results that are desired in customer-
computer communication, every entry in the company’s clientele database should be
manually checked. However, if this is not possible due to lack of budget or time, the
program can be relied on to filter out the problematic names and the names that are
considered correct will be pronounced understandable most of the time.

4. Improving the performance of the Fluent Dutch Text-To-Speech
Synthesiser by pre-processing numbers

The pronunciation of numbers by the Fluency Dutch Text-To-Speech Synthesiser
(TTS) is a process that very often goes wrong. The synthesiser interprets any number
as if it were an integer, which leads to a very unorthodox way of pronouncing
common digit sequences like telephone numbers, area codes, bank account numbers
et cetera. The TTS itself accounts for a few special cases, such as time and date, but
this only works when written in the exact format (e.g., a time is read for /2:30, but
not for /2.30 or 12:30:23). Minor deviations in spelling will cause the TTS to resort
to spelling mode.

The number solver tries to solve this problem by examining if the numbers found
in the text can be placed into categories that have equal pronunciation.

First, the text is scanned for numbers (in this case, a number is considered any
sequence of characters that contains at least one digit). If a number is found, it
undergoes a series of tests that try to determine what category the number belongs to.
The different categories include:

area code

ordinal number

national telephone number
international telephone number
amount of money

time

date

fraction

bank account number
combination

spelled number

— =000 NN —

— O

A crucial element in successfully tagging the text is to allow for variability in
structure of the number. For instance, a number may be placed between brackets,
occur at the end of a phrase or sentence, or contain white spaces. When a number
contains white spaces, it is difficult to determine where a number stops and the next
one begins. This can be seen in expressions like I have dialled 06-54645433 3 times.
Therefore, airtight number identification requires syntactic parsing of some form. The
pre-processor discussed here does not use syntactic parsing, but structure analysis
includes contemplating the possibility that a number exceeds word boundaries (for
example, 020 6 454 828 will be recognised as a Dutch telephone number).

It should be noted that, since the pre-processor was designed for a Dutch TTS
system, the number identification is based on Dutch number structures. Since each

IFA Proceedings 22, 1998 121




country has its own writing conventions, it would be an impossible task to cover for
all those different styles. To illustrate this, 06/05/98 is interpreted as May 6th, 1998 in
Dutch, whereas it means June 5th, 1998 in English. In this system, Dutch conventions
have priority over the English conventions, except when this would lead to
meaningless structures, say, a date like 5/14/98.

If a number meets the criteria of one of the categories listed, a tag with the
category’s name is attached to it. Only one tag per number can be given, and
overruling is impossible at this level. The examination process walks through the
categories in the order shown above, so for instance if a number is found to be a date,
it can not be tagged as a bank account number anymore. The only exceptions to this
are fractions and spelled numbers. Fractions can be altered to dates if there is
contextual evidence for this (for example d.d. 6/10), and any category can be changed
to a spelled number if the context contains clues for this. However, since the tagging
criteria show virtually no overlap, it is most likely for the tag to be correct when a
number is tagged.

The second step in the process is the investigation of the contextual environment of
the number. Whereas in the first step the only concern was the number itself, now it is
being looked at as part of a sentence. In the event of letters occurring at word-initial
or word-final position, they are peeled off, and the remainder of the number is being
checked for categories again (which could even cover for typing mistakes'). If, after
this process, still no tag has been found, the immediate surroundings of the number in
the sentence are searched. If a word, occurring within a distance of two words from
the number, could indicate that the number belongs to a certain category, and the
number satisfies the minimal conditions for that category (for example, an area code
number should be at least four digits long), the tag is given.

To scan the context words of a number, each category has its own dictionary
containing characteristic words for that category. For example, bellen (call) is one of
the words of the telephone dictionary. The dictionaries also contain information about
whether the context words should precede or follow the number in order to be
assigned to that number.

The dictionary that contains the most matches is assumed to be of the correct
category. Also, each category has its own, predefined priority number. If two or more
dictionaries find an equal number of matches, the category that has the highest
priority number prevails. Priority is based on three considerations:

- given a lexical item of a specific category matching a context word, what is the
probability that the number belongs to that category?

- what is the probability that a number of a particular category will be recognised
from context but not from structure analysis?

- suppose the wrong tag would be assigned, what would be the consequence for the
eventual pronunciation of the number?

Spelled numbers get highest priority, since the presence of dictionary items for this
category offers a fair chance that indeed a spelled number is present, and, more
importantly, the number could not have been recognised earlier during the process.
Furthermore, the rewriting procedure for pronunciation of a spelled number allows for
any character combination without risk of losing information. Bank account numbers
and telephone numbers are next, mainly because giro numbers and local telephone
numbers contain no information and cannot be categorised in the initial tagging
routine (but, on the other hand, would be understood if classified as a spelled
number). Area codes are positioned at the bottom of the list since their structure is so
well defined that they should be categorised straight away in the initial tagging

122 IFA Proceedings 22, 1998



routine. Date and time also receive low priority since their phonetic transcription
routine is disastrous to numbers unjustly categorised this way.

The final step is to expand the tagged numbers to produce an input text for the
TTS. Numbers that have not been tagged are assumed to be normal integers, and since
the TTS pronounces them correctly, there is no need for further processing. The
program scans through the text looking for a tag, and if one is found, the tagged
number is cut out of the sentence, the tag is disposed of and the number undergoes the
expanding process appropriate for the tag.

This expanding process can take place at two levels: phonemic or orthographic. In
the first case, the rewritten number is built up from small pieces of phonetically
transcribed text, added as the process goes along. This is done to allow phonetic cues
to be inserted in the text more easily, or to give the syllables the correct stress. For
example, expanding ordinal numbers such as /2301ste can be done by first obtaining
the phonemic transcription of the integer and next change the ending / ?*en-st@/to
[*er-st@ /.

In the second case, numbers are rewritten orthographically. In this way, the
program can make use of the ability of the TTS to pronounce certain strict ‘formats’,
for instance the time format as shown above. By converting the number to the TTS
format, with optional supplementary information, it can be transcribed as a whole.

In this way, a sentence at orthographic level is created that contains the entire text,
constructed of sentences combined with expanded numbers and phonemic insertion
tags.

The Number Solver creates alternative pronunciation directives that result in
smoother pronunciation of most of the numbers. It is, however, not possible to capture
all numbers into their appropriate categories, and sometimes numbers end up with a
correct tag (through the context search) but still are pronounced incorrectly (for
example, when a number is tagged during the context search while the structure can
not be correctly rewritten in the expanding routine).

This problem can be overcome in two ways. The expanding routine can be refined
to produce correct pronunciations for more different structures, or the tags should be
redefined more accurately. This would involve defining more categories, and, for
instance, the implementation of expanding directives within tags. Expanding
directives are already successfully implemented in the SABLE SAYAS markup
language (Sproat, 1998) (that uses a similar tagging system to indicate pronunciation
for numbers) and they mainly include word order directives (for example, the date tag
can be refined with a Day-Month-Year mode type option, that indicates the structure
of the date as, say, MDY or MD or DMY).

S. Conclusion

Pre-processing texts before feeding them to a Text-To-Speech synthesiser
considerably improves pronunciation and can create the illusion of computer
intelligence. Nevertheless, it does not account for all the problem cases that one
encounters in texts. The pre-processor for names is useful as a timesaving device that
successfully solves some basic problems in name pronunciation and abbreviation
expanding. However, names are too unpredictable to assume that if this pre-processor
indicates a name as being correct, it will be pronounced correctly. The only way to be
sure that TTS systems generate correct name pronunciations is to design the pre-
processing stage with the use of the same syntactic knowledge that humans use when
generating a pronunciation. This implies including an ability to identify different
languages and their language-specific variation such as archaic or illogical linguistic

[FA Proceedings 22, 1998 123




usage. Depending on what language is most likely to have been used, letter-to-sound
rules for that specific language will determine eventual pronunciation.

When the most common structures of numbers are known to a pre-processor, a fair
deal of them can be identified correctly. Performing a context scan can improve
identification even more. What causes most of the problems that occur in number
identification is the redundancy that is often used in text writing. Whereas humans
usually have no problems in inferring the meaning of character strings,
subconsciously using syntactic and semantic context information, computers need
more information to determine the identity of a number. The pre-processor that is
discussed in this master thesis (Jansen, 1998) mainly relies on the use of clear
structures, and can cover for some redundancy by doing a context search that tries to
suggest semantic parsing. When texts are written without a lot of redundancy, most
numbers are identified correctly.

Summarising, it can be stated that the two pre-processors that were discussed here
perform as they were originally intended to do. However, considering the results
produced by both pre-processors, it seems safe to conclude that although the majority
of cases that form an‘obstruction to the pronunciation generation process can be
solved successfully, there seems to be a limit in pre-processing performance that
cannot be exceeded unless some form of semantic and syntactic parsing is used to
correctly identify all words in the text, in order to provide an appropriate
pronunciation for them.

REFERENCES

Gustafson, J. (1994). “ONOMASTICA - Creating a multi-lingual dictionary of European names”,
Fonetik’94, Papers from the 8th Swedish Phonetics Conference, Lund, Sweden, 66-69.

Jansen, R. (1998). “Pre-processing input text: Improving pronunciation for the Fluent Dutch Text-To-
Speech Synthesiser”, Master Thesis, Institute of Phonetic Sciences, Amsterdam and Comsys
International B.V., Zeist, 62 pp.

Sproat, R., Hunt, A., Ostendorf, M., Taylor, P., Black, A., Lenzo, K. & Edgington, M. (1998). “Sable:
A standard for TTS Markup”, Proceedings International Conference on Spoken Language
Processing (ICSLP'98), Sydney, Australia, Vol. 5, 1719-1722.

Syrdal, A.K. (1995). “Text-to-Speech Systems”, In: A.K. Syrdal, R. Bennett & S. Greenspan (Eds.),
Applied speech technology, CRC Press, London, 99-126.

FLUENCY: http://vww fluency.nl

MBROLA: http://tcts.fpms.ac.be/synthesis/mbrola.html

124 [FA Proceedings 22, 1998



