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Abstract 

Durational behaviour of the HivfM is 111vestigmed in terms of an analy tical probability 
density function oi the whole phone model for arbitrary transitional topologies, given by 
lhe 1ransition pro1,;.bilitie<= oi A-parameters. Linear l(lpol0gy i� used as an example. 
Based on such an analysis, the durational behaviour is manipulated by modifying Lhc A­
paramcters in a procedure embedded in the st:mdard Baum-Welch l'v!L-estimmion 
algorithm by introducing extra durational constraints on the whole-model durational 
s1.atis1ics. The effect of such manipulation is then tested with both automatic speech 
recognition and segmentation. resulting in n1oderate improvements in pcrforrnancc. 

l. Introduction 

In order to investigate the importance of durational modelling in HMM (hidden 
Markov model)-based automatic speech recognition and segmentation, we analysed, as 
the first step, the dura1ional behaviour of the whole IIMM (instead of the single states 
of the HMM), without modification. It is important then to have an analytical relation 
between the parameters of the HMM and an expression of the duralional measure, the 
latter can be given either in the form Qf a duracional probability density function (pdf) 
or by some lower-order statistics. The second seep is to modify lbe durational 
behaviour of the HMM by modifying its parameccr values. Both of these two steps 
belong co the category of durational modelling willzin the UM:vr, which is the main 
topic of the current study. Other possible ways of durational modelling will be treated 
in other work. All the HMMs used in this study, including the one after modification, 
arc fil1M without the explicit state durational pdf, or called siandard HMM in this 
sense. A totally different approach (the mostly used one in the literature) is to use 
HMM with explicit state durational pdf, or so-called hidden semi-ivlarkov models 
(HSMM) (Levinson, J 986; Hochberg et al., 1993) for durational modelling. This 
increases the complexity of the system, and will not be st udie d  here. 

ln previous work ('Wang, 1993a; Wang, 1993b) we have presented the analytical 
form of durational pdf of a whole HMM for a special case, where the HMM topology 
is linear and all its sclfloop probabilities are equal. General cases of left-to-right HMM 
with arbitrary selnoop values will be discussed in this study. LefHo-right transition 
topology includes all the topologies used for speech recognition; it includes any 
number of skipping transitions and paralJel paths but no feed-back loop that involves 
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more than one state. A few methods of calculating the pdf wiJI be given and some 
� useful examples of topologies, especially the linear ones, will be discussed. 

In the next step, the durational statistics collected from a set of speech data is used 
to modify the transition probabilities of the HMM. This is done in this study with a 
method embedded in the standard Baum-Welch Maximum-Likelihood (ML) training 
procedure, by ca�ting extra durational constraints. However, before this procedure, a 
necessary step of choosing the lengths of the linear models based on the durational 
statistics is discussed. Finally the models trained with and without the durational 
constraints are compared in both automatic speech recognition and segmentation. 

2. Forms of durational pdf of general HMM 

2.1. Obtaining the du rati onal pdf of the whole model 

Since the total duration din 2 states is a random variable being the sum of the duration 
d, and d2 in two cascaded sclfloops, each being an independent random variable. the 
pdf of a cascade of 2 different sclfloops is obtained by convoluting the two geometrical 
pdfs (e.g. Papoulis, 1990), each being 

P,(d)=a,"-'(l-a1), d?. I, 

with a, being the selfloop probability of state i.· 1t can be seen that the duration al pdf is 
not a basic measure of an HM\1, but a measure of the event spanning over a longer 
time than a single step. The principle of convolution can be easily extended to linear 
models composed of a cascade of"> 2 selfloops, and the whole pdf is 

" 

P.,(d) = ( *) P;(d), d?. n, 
•=I 

where * denotes convolution in d. A special case where all the sclfloop probabilities 
are mutually different produces a relatively simple analytical form, which is a weighted 
sum of the individual geometrical terms, then multiplied by a constant term: 

Pn (d) =IT (I - a, )[t[tr � ]af-' ]· 
'' •-=l 1=1 a, a; 

, .. 
d?. n. 

However, when some of the selfloops belong to some subsets with equal probability (e.g. a, = a1 * a3 =a. = a5), the analytical form grows more complicated. In practice, 
the convolution can be performed in different ways to ease the calculation. (A direct 
convolution would require a troublesome bookkeeping procedure since each partial 
result of convolution should be furcher convoluted with all the remaining terms.) In the 
following we use z·transform for help. Assume the general case with K subsets each 
having 11; equal selfloops and the total n = n, +n2+···+nK. For simplicity we now omit 
the constant terms (l - a,)'' from the total pdf P.,(d). The main part of the pdf is 

K •• =[*][*]at'. 
k I s•I 

(I) 

• 11 is sufficient to use a; in�1cad or a,1 for linear models in the discussion in this section. 
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lls ;:-iransfonn is simpl} 
A P.<zi=TI--,, cz n,)"' (2) 

lt is known from Wang (I 993b) that each subset of 111 sclnoops has a pdf of a 
negative-binomial fonn. Using z-transfonn properties (linearity and shift, see e.g. 
Rabiner et al., 1978) and some induction, we have the z-transform of the general 
negative-binomial tenns: 

(d-l)at'v(d-i)<=> 1 
, 

1 I (:-a,)' 
i = 1.2,··•.llt- (3) 

Ilere vis a step function. <=> denotes z-transformation and the binomial coefficient is 

(d-1) I 
. = . (d- l)(d 2) ·«d-i+ I). 
1-l (1-I)! 

where (i -I) is thr order of rl:e binomial. ·1 he ;:-transform of a general pdf (I) i� then 

• A •• (d- () K "' C' P. <di-I I c. . at.,1·«1-;i <=>I. I-.-J:__-:._ 
t=I "' i-1 >=l o=I ( , Clt } 

When we equal the ri�hl hand side of (2} to that of  (4), 

K I K � C' f1< i ·· =I L < k ,,. ,., z-a, , 1,, z-a.J 

(4) 

the problem is convened to finding the 11 coefficients c; m the sum1m:d form by 
equalling the terms with the same orders of: to those in the product fom1. When c; 
for each summmg tenn 1s found, each term can be separately mverscl} :-transfonned 
using (3) and the whole pdf is found. 

To find the Cj we can use a classical procedure partial fraction decomposition. In 
the following. we give an example analytical form pdf whose cocffic1cnts are obtained 
with a Mathematica' function Apart. The z-transrorm of the main part or this pdf is 

• I �(z) = , 2 • (z-a,) (z-a2) (z-a;) 

namely there arc 6 selfloops. in 3 subsets with 3. 2. and 1 selnoops with a1 I- a, 7" a., 
respectively. The pelf with the coefficients given m temlS of the sclfloop probabilities 
. � IS 

d?. 6. 

" Ma1hema11ca 1s a software package of Wolfram Research. Inc. for both symbolic and numerical 
calcu lalion on con1putcrs. 
••In Lhis fonnuln. lhc legal scopes (in which the individual terms arc non-zero) all bcl!in at do< 6, as 
ohtaincd fro1n inverse z .. 1rnnsfonns for the Lcnns. l lo,.vcver 1hc values fronl all the tenns con1pens&tc 
m Lero for all Lhe points d < 6. Therefore the total legal range is d '?:. 6. 

£FA Proceeding\ 18, 1994 113 



� 
The whole pdf is then simply 

P,, (d) =(I - a, ?O - a, )2 (I -a,)f>,,(d). 
lt can be seen that, except for the highest order binomial term in each subset, the 
coefficients for even such a simple cascade is complicated (the coefficient for the 
lowest order binomial contains 6 terms in itS numerator). For another example with a 
cascade of a total of 10 selfloops in 4 subsets with 4, 3, 2 and I equal seUloops, 
respectively, the most complicated coerricienc contains 54 terms in its numerator, as 
found with Mathematica in one hour of time for symbolic manipulation on a Macintosh 
machine. Reading such an analytical form pdf would not be very insightful nor 
pleasant. Therefore, it would not be very useful to go on with the analytical form of 
pdf. We end up here with a knowledge about the total number of, and the order of 
these negative-binomial, terms. That is, for a linear cascade, each subset of n, equal 
selfloops (no matter where these selfloops are located in the cascade) with probability 
a, will generally give rise to 11, negative-binomial terms with orders i = 0.1, · · · ,n1 - I, 
respectively (order O is actually a geometrical term). The whole pdf of the cascade is 
obtained by multiplying 10 the weighted sum of these terms a product 

K IT o-a,r, (5) 
k::-1 

of the probabilities of going out of each state in the cascade. The weighting coefficients 
for the negative-binomial terms have a general form 

N; Ci=�K��-'-��-
IT (a,, - a1 )r.1+(11 .. -j) 

where the numerator Nt has an i1Tcgular fonn as seen in the previous example. :-.lotc 
that for the very extreme case where all then selfloop probabilities in the cascade are 
the same, the analytical form reduces to the simplest one, being just one binomial term 
of order n -1 . 

In the aforementioned discussion for single cascade and in the discussion for general 
lefl-t0-right topologies in the next sub-section, the analytical form pdf is only meant to 
give some insight. 1f one is interested merely in a numerical form of the durational pelf, 
however, a simpler alternative is to make use of a property of the Markov chain 
(Lloyd, l 980): The probability of going from state 1 to state n of a Markov chain in 
exactly d time steps is an entry in a product matrix of the transition matrix A, namely 

{a}=A=A•, 

where A• denotes the multiplication of A to itself ford times. This makes one point on 
the pdf. The whole pdf can be calculated for all different d values under concern. 

2.2. Analysis or whole-model pelf 

The full-pdf of any left-to-right HMM can be obtained by considering each linear path 
(each distinct route going from the beginning to the end of the whole model) separately 
as above, and summing them together with weights as in (5) for that path. Each path 
has a legal scope within which the pdf is non-zero and is usually d?. d0• In a more 
general case where some states in a path have no selfloop, the pdf for this path will not 
contain binomial terms for those states. The contribution of these states is simply a 

114 IFA Proceedings 18, 1994 



0.15. 

� 
:0 0.1 
" .D 
� 0.05 Q. 

0 
0 10 20 30 40 50 

a" I duration (time steps) 

Figure I. Lefc: an HMM with its transition probabilities shown . It has 5 states and 4 
paths. These paths given in their state·indices arc ( 1->2->3->4->.5). ( 1->2->4->5), (l  
->3->4->5) and ( l-t4->5) respectively. Right: its durational pdf with specific values 
(see Table I) assigned to all the transition probabilities. as a function or any constant 
time steps. 

constant that should be included in (5). In the following, we first give a pdf of a 
particular HMM as an example. Its transition· topology is shown in Figur e 1, an d the 
scltloop probabilities arc all different. 

The complete pdf of this HMM consists of 4 terms. each concerns a linear path. 
Although the geometrical terms with the same a, but from contributions of different 
paths, can be put together, they may have different legal scopes of d. These scopes arc 
indicated on the right side of the lines for separate paths, in the following formula: 

P, (d) = (l - a, - a: - a:')(l - a2 - a1)(1 - a! )(l - a4 ) 

d-l d-l 
[ a, + _____ a_2'-------

(a1 -a1)(a1 -a3)(a1 -a,) (a2-a,)(a, -a))(a2 -a") 
d-) d-1 

+ a! + a, ] 
(a) -a,)(a3 -a2)(a3-a,) (a. -a1)(a, -a2)(a, -a,) 

d-1 
+a:(l -a3 )(1-a, )[---0'-' --­

(a1 -a3)(a, -a,) 
a(-' a1-' ] + . + -------

(a� -a,)(a3-a4) (a,-a1)(a,-a3) 
d-1 

+(I -a, -a{ - a;')ai ( l  -a, )[---0"-1 --­

(a, -a1 )(a, -a,) 

d-1 d-1 
+ a2 + a4 ) 

(a2 -a, )(a2 -a.) (a, -a1 )(a, -a1) 
<l-1 d-1 

+a:'(I-a,)[ a
, + a, ]. 

a1 - a, a, -a, 

(c/2:4) 

(d;:: 3) 

(d;?: 3) 

(d;?: 2) 

This looks complicated. But if we give some specific values to each a, such as the ones 
given in Table 1, 

Table t. Specific values of transition probabilities for the example. 

0 1 
0. 1 

ai 02 
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Figure 2. Left: an HNC--1 wi1h 2 parallel paths each containing selfloops. Right: the 
durational pdf of the upper and lower paths and that of the whole model. 
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duration {time steps) 

Figure 3. Left: the Kai-Fu Lee model with transition probabilities shown. The 3 lower 
paths given in their state-indices are (I--> 7), (I ->5-> 7) and (I ->5->6->7). respectively. 
Righi: iLS durational pdf. The values at duration I, 2 and 3 arc contributions from the 3 
lower paths respectively. all without selfloops. 

then the total pdf. after being organised for different scopes of d, looks simple: 

P, (d) = 

0, d < 2; 
0.09, d= 2; 
0.156, d = 3; 
0. 21(0. l)d-l - 0. 4(0. 4)d-l - 0. 96(0. 6)d-I + 1.15(0. 7)d-l, d °?. 4, 

and this is plotted in Figure 1. 

50 

Below we give two examples of models with parallel paths, both with actual values 
of all the transition probabilities. The first model (Figure 2)' consists of two paths, 
each contributing a single peak and the pdf of the whole model shows two peaks. The 
second model (Figure 3) is the 'Kai-Fu Lee' model (Lee, I 989), with four paths. Each 
of the 3 lower paths contributes only a single point on the pdf (the first 3 points) since 
they do not contain any seltloops. 

As observed in the above examples and as so far always has been true in our 
practice with real data, the pdfs of linear models and the model with skipping paths 
have always a single peak. regardless of whether the selnoop probabilities are equal or 
not. (This has not yet been proven theoretically, though.) This can be regarded as a 
general behaviour of the durational pdf of the HMM. Some later discussion for a single 
linear path will be based on equal-selfloops while the conclusion will be general for 

•The durational pdfs in this study are plotted in different styles for the sake of clarity. However it has 
t o  be noted that even with a co111imwus line drawing, the pdf values arc only defined at discrete time 
steps (they should actually be called pmf. probability mass functions). 
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Figure�. Durational pltrs for linear models with equal selfloops. Diffcrcn1 panels \how 
ca.\cs when either n. '-'· 1nean or "ariuncc i\ ti�e<l v.•hile other variables arc varying 

models with different selnoops. Skipping transitions provide pos\ihility for shorter 
mimmal durario11 1han the length /1 of !he path. which. wi1hout skipping. would be 
exactly 11. Pdf wi1h more than one peak can be ob1ained wi1h i11depe11dr111 purallel 
palh\, namely those paths v. hich do not share �!ates except for the begin and !he end 
\tates. 

A� ''ill be seen i n  lmer scc1ions, the real daia of speech segment� al way� show 
'inglc peak behaviour. Furthermore. using parallel paths would cause incorrccmess. in 
chac during H!vlM training, parameters in different paths would be crained with the sw11e daca while differen t paths should model different processes. Therefore in our 
study we do not use any parallel paths. We also found out that skipping transitions for 
minimal tlur acion arc unnecessary if one selects the model length /1 carefully according 
to the data (next section). Therefore we only use linear models with one palh and no 
skips. 

We will use some durational siatistics in 1he data to conscrain the model parameters. 
As a first s1ep we choose to use durational mean µ and variance cr' of the speech 
segments. From probability 1heory (e.g. Papoulis. 1990) we know 1ha1, each stale of 
the gcometncal pdf has a dura1ional µ and cr· as 

I 
µ,=--; 

l aj. 

a., 

and che µ and cr' of the whole linear model are sums of those of individual scates. For 
the spt:eial case of equal a,, = t1, such relations becween n, a,µ. and cr' become 

n I II 
µ= 'L- =-; ;.1 I -a;, I - n 
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These relations are shown in the upper panels of Figure 4'. From (6), when either 11 o r 
� a is fixed, both µ and cr2 increase monotonically with the other vari able. On the other 

hand, if we elimi nate a from (6) to make it implicit and rewrite as 

µ-n ()2 =µ-- ; 
11 

n R2 
µ=-+ cr2n+-, 

2 4 

it can be seen that cr2 decreases as n increases when µis fixed, and �t increases with 11 
when cr2 is fixed. These dependencies are shown in the lower panels of Figure 4. 

3. Constrained training of HMM embedded in ML procedure 

3.1. Paradigm of the constrained training 

When we include the initial probability 1l in the transition probability A, the whole pa­
rameter set of the standard HMM to be estimated is I.= (A, B) where B is the 
observation probability. Then the auxiliary function can be decomposed into two terms 
for A and B respectively, and these are maximised separately. The so lucions to the 
constrained max.imisation problems give the fonnulae used for re-estimation of the 
parameters given their old values. The unity constraint used is given by the properties 
of the probability measures (first row in Table 2), which e.g. for A is 

• L,a0 =l, i=l,2,···,n. 
J=I 

Table 2. Different paradigms of parameter constraining in training of HMM. 

HM!\1 constraints for A constraints for B constraints for dur. 
standard unity ll nit)' 

explicit duration unity unit)' seg. dur. slalistics 
constr. sta ndard unity, sc:g. dur. stat. unill'_ 

When the system is not standard HMM so that the parameter set contains paramete rs 
in addition to A and B, they too contribute to the auxiliary function, and should also be 
maximised using their own constraints. An example of such training is in Hochberg et 
al., (1993) using HSMM with Gaussian pdf (second row of Table 2). In our approach, 
since the modelled segment duration is given by the A parameters of the standard 
HMM, an extra constraint is used on the same parameter (thir d row of Table 2). 

The main difference between the HMM with the explicit state duration and the 
HMi\4 constrained with the durational pdf is, that the former has extra parameters with 
their own constraints and the latter has no extra parameters beyond the standard 
HMM, but the same parameters are confined with extra durational constraints. 

3.2. Embedded trainin g with extra durational constraints 

Having seen the relations and dependencies between 11, a, µand cr2, we know that for 
a given pair (µ, cr•) from the data of a segment to be fitted. the choice of model length 
n is constrained within a range. This range is further shrunk when we use a particular 

•Note 1ha1 on all 1hc pdf plots.µ is roughly related to the horizontal position of the cur\'c, whereas o.2 
to the brc,id1h of the curve. 
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way of a necessary numerical search to be discussed later. These procedures are given 
u1 both Appendix 1 and Appendix 3, and the final range for n is 

µ(µ l)+cr2 - < n < �l + l -.J2cr2 + I. 
µ-l+cr2 

Once n is chosen, we can start with the Baum-Welch algorithms for Maximum 
Likelihood (ML) training with extra constraints. The unity constraint must still hold, 
only for our special case of linear models, it reduces to 

i= 1,2,.··1!-l, 
and can be used to eliminate a;,;,1• After this, the set of equations obtained using the 
Lagrange-multipliers concerning the A parameters are (8 parameters are irrelevant) 

I I -:-L L y��'/(i,i)----L L y;"'/( i,i +I)+ 
aii m ' l-au "' ,. 

0 l e I+ ii,; O . + , - + 1  - .= ' 1=1.2, . . ·n.: (I -a,; )2 ( I - a;, )" 
• I I..-- =µ.; 

1a) 1-a,; 
n -L a;; 0'2, 

,., o -a,, )2 

(7) 

where the "counts" y arc obtained with the A and B values at the previous iteration 
using the usual Baum-Welch procedure, and are summed over all time 1 and all 
observation sequences m (e.g. Kamp. 1992). ii are new values to be sought after the 
current iteration, and 0, and 62 are two multipliers. 

Tt turned out th at this set of (11+2) non-lineiu· equations cannot be solved 
analyticaJly to give fonnulae for calculating the new A values from old ones, as is the 
case in l'vlL procedure for standard HM!vl without extra constraints. \Ve have chosen 
to use a Newton-Raphson (Press et al., 1989) iteration procedure to find numerical 
solutions with some initial values (see the next section). The following set of 2n 
equations further constrain the iteration procedure to find only meaningful values of a: 

aii > 01 
a; .. < 1. i = l,2, . .  ·n. 

The actual method of using rbe Newton-Raphson procedure is given in Appendix 2. In 
general, it searches for improvement of solutions from the points of current iteration, 
based on local derivatives of the set of equations including (7) and further constraints. 
The details of numerical search together with the necessary initial points chosen on the 
basis of data constraints (�t, cr2) is given in Appendix 3. 

4. Results 

4.1. Results of durational pdf' fitting 

Before the recognition and segmentation runs, the effect of the durational constraint on 
the modelled du rational pdf of the HMM is checked. In this study, we used the whole 
sec of the TlMlT database (sec Zue et al., 1990, and the documents included in the 
TL'vtlT CDROM) in the experiments. Tl�11T contains American English continuous 
speech from a total of 630 speakers each reading I 0 sentences (of which 2 are the 
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same across all the speakers). A total of I 680 sentence utterances from J 68 speakers 
�were used for testing and the rest for training (thus a speaker-independent 

petformance). Our system is a phone-based continuous speech recogniser. 
Firstly the durational histograms for all the 61 original TIMIT phones are estimated 

from the whole training and testing sets. The statistics pair (µ. cr2) are calculated (and 
slightly modified for a few phones) and the suitable lengths 11 for all the phones are 
chosen. These 11 range from 3 co I 0 for the whole system. Table 3 shows examples of 
the situations of the modelled durational statistics calculated from Lhe HMMs trained 
with and without the durational constraints, for 8 phones. For easy comparison, cr 
instead of cr2 is used in the table. 

aw 
b 

ih 
pau 

q 
sh 

)' 
z 

Table 3. Durational statis1ics in 1hc TIMIT data and from the models. The first column 
from lhe left shows the symbols of 8 example phones. The second column lists the 
durational µ and o directly calculated from the hand-segmented label files. The third 
column shows those necessarily modified da1a Statistics. 111e fourth column shows the 
allowed range for choosing a sui1able 11 and the actual chosen n for each phone. The last 
two columns show che durational µ and o calculated from the models !rained wilhom 
and with the durational constrain IS (abbre viated as "cl"). respectively. 

oriQ_inal data modified data aft er data modification model no cl model wi th cl 

!I_ a I _Jl_ (J I n,.,i.c... 1l L ll 0 ll J!.. (J _JJ_ (J 
20.45 6.44 7.20 12.27 14.48 8 19.24 5.34 20.45 6.44 

2.19 0.89 350 0.83 2.96 2 .96 3.03 3 3.30 0.60 3.50 0.83 

9.84 3.53 4.67 5.75 6.78 5 8.51 2.65 9.84 3.53 . 

23.34 15.78 2.84 2.00 8.05 3 18.64 1065 23.34 15.71 
8.16 3.94 3.37 3.77 4.23 5.25 4 6.25 1.92 8.16 3.37 

14.51 3.71 7.70 10.17 11.27 8 16.10 4.49 14.51 3.71 

8.34 4.40 3.49 3.76 4.30 5.31 4 14.94 6.48 8.34 3.49 

10.51 3.91 4.65 590 7.07 5 12.59 4.56 10.51 3.91 

Note that if we use relation (6) of chc previous section and force all the seltloop 
probabilities to be equal a u =  a, there is no freedom in choosing 11 that can fit the data 
statistics pair (.u,cr2): both n and a are only allowed co be a fixed value. We see this by 
solving 11 (and a) from (6) for the case of equal a: 

�t 2 
n= , µ+cr2 

cr2 a= µ+cr2 
The 11 here may well be a non-integer, which is t.hen a problem. !\ow when we allow 

a., to be different, we usually get a range (ii, .. .,n;,.,.) in which we can choose rr freely. 
We have chosen chc smallest integer 11 for each phone. The dete1mination of the values 
of a1, will be left for chc training procedure. 

The following can be seen from Table 3: 
I. For those phones (e.g. /bf) with µ < 3, the dataµ was modified and the data cr was 

modified accordingly, in order to be able to choose an 11 <:: 3 (see Appendix 3); 
2. For /q/ and /y/, since no suitable 11 < n�"' can be found based on the original data µ. 

and cr, the data cr were modified (decreased) (Appendix 3); 
3. For both the two phones lb/ and /pau/ (between-word pause) which require an 

11 = 3, the worse upper Jim.it n::._, were used (true for all phones with 11 = 3, see 
Appendix 3); 

4. For those phone with 11 > 3, some have a small range (1im;,, ,11,�..,) in choosing n, 
while others have a larger one. 
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Figure 5. Examples of phone durational pdrs from the TIM!T database: Data 
histograrns (data: blank vercical bars) are csLimatcd from the number of instances given 
hcLwccn the brackclS. Pdrs of s1andard (siand. : continuous cu rve) and dura1ionally 
constrained (dur.: dashed curve) INM are scaled to the histogram . His1ograms are 
ploued against the left scale, and pdts are ploucd against Lhe right scale, of each panel. 
The chosen model leng1h 11 are also shown. 
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5. The modelled µ. and cr of the models trained without durational constraints show 
various degree of deviations from the data µ and cr, the worst being /y/ (see also 
Figure 5); 

6. The modelled µ. and cr of all the models trained with durational constraints show 
good agreement with the data µ and cr. 
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Note that since the fitting of durational µ and cr2 only uses these two lower-order 
� statistics as the first approximation, the fitting of the entire pdf remain to be checked. 

This is shown in Figure 5. for the pdfs of these same set of 8 phones. 
The first impression is that both the pdfs of the models with and without du rational 

constraints show good fit in shape with the data histograms, indicating that the form 
(weighted sum of binomial/geomeuical tem1s) of the pdf of linear models is suitable. 
This is evidence that the HSMM is unnecessary, because at the level of the whole 
model, a simple linear HJv1M can model the duration well. furthennore, it is evident 
that the models trained with constraints always fit the data histograms (slightly) better 
as compared with the models trained without constraints. However, it can also be seen 
that, because of the careful choice of the model lengths, the durational pdfs without 
the durational constraints are already rather close to the data durational histograms 
(except for /y/, for which both µ and cr1 have a very bad match with the histogram for 
the case without durational constraining). 

The improvement in durational fitting is a clear indication or the improvement of the 
quality of our !IMM as compared with the HMM trained with the standard Baum­
Welch algorithm, at least with respect to the whole-model durational modelling 
accuracy. The standard Baum-Welch algorithli1 does not take the durational statistics 
as part of the training criteria, as the case in our constrained training. Therer ore even 
with the careful choice of the model lengths, the fitting of the standard Hl'vfM in 
durational statistics is not gunrameed. 

4.2. Results of recognition and automatic scgmenta!ion 

The ultimate goal of durational modelling with HMM is not only to sec the possibility 
of modelling the segmental duration accurately, but also to sec if such an accurate 
modelling improves the performance or speech recognition and segmentation. 
Technically, during the durationally constrained Baum-Welch training, the constrained 
values of the A parameters obtained from each iteration will be used in the next 
iteration, in which, both the A and the B parameters will be affected by the durational 
constraints. (In this way B parameters are indirectly affected). Although it is argued 
that A parameters alone do not govern the transition behaviour, the new values of A 
and B together may have a different general behaviour (not only the transition) from 
that of standard Hl\1M parameters without the durational constraints. Therefore, in 
recognition and segmentation, the perrormance may be different (hopefully improved). 
The effect is checked experimentally. 

In our experiments of both recognition and segmentation, the whole set of TIMIT 
database was used. TIMIT has been used for various related research topics, e.g. 
speaker identification (Lame! et al., l 993a) and phone recognition (Lame! et al., 
1993b). 

Our recogniser uses context-independent phone models with a line;u· transitional 
topology. LPC-based cepstrum coefficients plus their time derivative and energy are 
used in 3 streams ror the HMM. The observation probability of each state has a 
weighted mixture of 3 Gaussian densities, and uses a diagonal covariance matrix. The 
model lengths n chosen as in the previous sub-section are kept during the whole test. 
Then 2 setups of HMM training are performed, one with and another without the 
durational constraints. The same set of HMM after the initialisation train ing are used 
for both setu ps. 

The language models used for recognition are a regular type of word-pair grammaJ 
and a bi-gram, both estimated from the whole testing set. Phonological mles within 
words arc basically Iine;u· plus an optional pause at the end of each word, and 
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Table 4. Scores of recognition and segmentation with and without duration constraint, 
for speaker-independent tests on the TJMIT dawbase. For recognition, the scores are 
word-correct percen1ages. The first score counts only substitution and deletion errors 
whereas the second score (between brackets) counts also insertion errors. For 
segmentation, the percentages are given on the correctly matched segment boarders 
within the threshold of 20 ms in both clircction�. as compared with Lhc hand labels. 

v.iilhout duratjon constraint with duration constraint 
recognition 80.61% (77.73%) 86.83% (84.4 1 %) 

sc_gmentation 83.48% 84.48% 

additional closures for plosivcs when lhey do noc follow immediately a silence. The 
"language model" for segmenlalion is simply an exact linear sequence of the phones in 
each sentence. The segmentation process is simply a "recognition" process with the 
identities of the phone sequence known a priori but the border information missing. 

The scores of a preliminary experiment in recognition and segmentation are shown 
in Table 4. Moderate improvements arc shown for both cases. 

5. Conclusions 

In lhis study, the HMJvf without explicit state durational pdf, but trained with 
constraints on the durational statistics of the acoustic segment, �hows improvement in 
performance of both recognition and segmentation, ac very little extra computation 
costs. The first conclusion is that the performance of the standard HMM can still be 
improved if extra information, such as the one about the segment duration, can be 
integrated into the models. Recall that the durational measures, e.g. the durational pdf 
or the lower-order durational statistics, arc not the basic measures of t he HMJvL 
Therefore the durational information is regarded as coming from an independent 
infom1ation source, and has been brought into the models during the improved Baum­
Welch training with durational constraints. Whether such integration can improve the 
performance of the recogmser is checked with the tests, giving us a positive answer. 

The technical implementation of the integration of the durational information is 
achieved in three necessary steps, which are reported in depth in this paper, together 
with necessary mathematical development. The first step is to find the relations 
between the durational measures and the HMM parnmecers. An observation int0 the 
usual durational modelling technique using HSMM reveals (\Vang, 1993b) that it is 
insufficient to look at the durational behaviour at the state level alone, and, if one 
looks at the whole-model behaviour, HSMM may be unnecessary, too. Then we 
concentrated on the durational pdf of the whole lllOdel of phones, and obtained the 
analytical forms pdf for several topologies, of the standard HMM. 

In lhis study only the transition probabilicies A are regarded as relevant. One is 
convinced that the standard whole II.MM without the explicit state durational pdf is 
powerful enough to model the durational distribucion of the speech segments (phones). 
The second necessary step is to find the suitable lengths of the HMM based on the data 
<lurational statistics. The third step is 10 actuaJJy constrain the A-parameter values with 
the data durational statistics during the Baum-\Velch training. All these steps fit into a 
framework that the HMM both should model the process of acoustic observation, and 
should fit the whole-phone durational statistics well. Both goals are achieved in an 
integrated way using the current approach. 

Some limitations of the current study arc as follows. The form of the durational pdf' 
of the HlVlM in this study implies that the durational beh11viour to be modified is only 
governed by the tcansition probabilities A. Further research should seek for <lurational 
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pdf in which both A and the observation probabilities B play roles. The constraining 
technique in the current study may then be useful to directly modify the A and B 
parameters. It will be possible to get even better results than the current study in 
modelling and performance in recognition and segmentation. Furthermore, only the 
segmental duration, but no other long-term features, was used as extra information for 
the model improvement. Other long-term features of speech, if available from signal 
processing and if they can be stored in a statistical way, such as a statistical distribution 
of some specifications of the pitch contour, may be directly integrated using the 
current technique. 

Appendix 1. Choice of the model length 

In this Appendix we will discuss the problem of choosing the most suitable model 
length n based on µ and cr2 from the actual data. The selfloop probabilities are allowed 
to be different in general. For convenience we take a monotonic transformation 

1 . U· = --
1 1 - a;; ' 

and then the general relation in (6) is given as 

n 

L U; = µ, 
i=I 

L U; -- = (j2 + �  
n ( 1 )2 

�J 2 4 

(8) 

(9) 

It can be seen from this set of equations that for a given n, the set of values {u; } that 
satisfy both durational mean and variance lie on the n-dimensional circle defined by the 
intersection between a hyper-plane and a hyper-sphere centred at {Yi,  Yi , · · ·  Yi} ,  in the 
space �n for {u; } .  

The radius of the sphere is controlled by n and cr2 whereas the intercepts of the 
plane are controlled by µ. For a given pair (µ, cr2 ) ,  different values of n correspond to 
3 different situations for the intersection circle. 

The first situation, corresponding to the smallest n, is given when the sphere is 
tangent with the plane at a single point, namely when all u (or a) are equal. By 
eliminating all u from (9), it is easy to verify that 

µ2 
nmin = 

cr2 + µ 
( 1 0) 

(Note that this relation is just the same as in the last section for equal selfloop 
probabilities.) 

The second situation applies when n (thus the sphere) is larger so that the 
intersection becomes a circle, but this is bounded by the condition required for u; > 1 
(see (8)) when a lower bound of the maximum n� is defined* . In this situation, all the 
points on the circle can be used as solutions of (9). When n further increases beyond 
n� , some points on the circle will cause some u; < 1 ,  thus are no more solutions, and 
the solutions Jeft are n disjoint pieces of arcs on the circle. 

The third and extreme situation when there still are solutions is when these n arcs 
shrink into n isolated points. This corresponds to the largest n = n� that can provide 
a solution. 

We first get � .  The n points on the largest possible circle form an n-dimensional 
equilateral polygon. The co-ordinates of u for each endpoint of this polygon have a 

• We use superscripts L and U for lower and upper bounds, respectively. 
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pattern that (n - 1) components are equal to 1 while one component is µ - (n - 1) . This 
gives e.g. {µ - (n - 1 ), 1, 1 , · · · , 1 }  and { 1, µ - (n - l), 1 , · · · , l } . Putting any such point into 
the second equation of (9) we then get 

cn - 1)(1 -�)2 
+ [µ - cn - 1) -�T = cr2 + �. 

With a given pair (µ,cr2 ) ,  we solve for the largest possible n (for the largest sphere) 

n� = µ +  � -�cr2 + �-
From now on we get n� for a complete solution circle. One point on such a circle 

is tangent with the middle point on one of the edges of the polygon, defined by the two 
end points of the edge: 

= {µ - (n - 1) + 1  µ - (n - 1) + 1  
1 1  . . .  1} Ux ' ' ' ' ' . 

2 2 

Putting this point into (9): 

( µ - n + 2 1 )2 ( J )2 
2 n 2 

2 
- 2  + (n - 2) 1 -

2 = cr + 4 

Again, with a given pair (µ, cr2 ) this gives us the 'safest' largest n with which all the 
points on the intersection circle are solutions for (9): 

n� = µ + 1 - .J2cr2 + 1 .  

From above we investigate that an ill-behaved circle given by n/nv. < n < n� • can 
bring a numerical searching from a solution to a non-solution point along the circle. 
Therefore in order to prevent numerical problems caused by this reason, we choose 

nmin < n < n� ( 1 1 )  

Furthermore, it is clear that n should be an integer, representing the number of 
selfloops, and should be chosen as the smallest possible value within the region, for 
simplicity. 

Appendix 2. Solution of non-linear equations 

Generally, Newton-Raphson method searches for numerical solutions for N variables 
y; given in N non-linear equations 

i = 1 ,2 , · · · , N. ( 1 2) 

This is achieved by using the values of the current iteration of f; and their partial 
derivatives to form a set of linear equations for the local increments by; : 

N df; :L-byj = -f;. 
j=I dyj 

i = 1 , 2, · · · , N. ( 1 3) 

All the by; can be solved out using any standard method for linear equation systems, 
such as LU-decomposition. Then the y; values are updated as 

• n{;,.x < n�ax because they both are monotonically decreasing functions of cr2, both evaluate µ at 0 

and zero-cross at µ ( µ I  2 + I ) < µ( µ +  I ) ,  respectively. 
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Ynew = ycurrent + Oy· 
I I I )  i = 1, 2, . · · , N. 

The iteration starts at some chosen initial point and ends when some convergence 
threshold is reached. 

Our particular set of non-linear equations come from the Baum-Welch ML 
(maximum-likelihood) parameter estimation procedure. Firstly, the auxiliary function 
(e.g. Kamp, 1 992) for our linear HMM with extra durational constraints in ML is 

F = 'I  D(i, i) log a;; + °L D(i, i + l ) log( l - a;; ) +  
; ; 

+01 ('I-1 - - µJ+ 02 ('I a: 2 - cr2 J . 
. 1 - a .. . (l - a  .. ) I II I II 

where a;; are the new values of selfloop probabilities after the current iteration, and 

D( . .  ) - " "  (m) ( .  ") l ,J - LI LI '¥1-1 l , J  
m I 

are the "counts" 'Y obtained from the previous parameter values, summed over time t 
and observation sequences m. Further constraints for the numerical search to be 
confined withih the meaningful region may be written as 2n negative functions 

gk = { -a;; < O, (k = l , · · · , n); 
a;; - l < O, (k = n + l , · · · ,2n). 

Introducing some positive relaxation functions 

(k = 1 , . · - , 2n), 

where £ > 0 is a small number to keep the computer from the edge, to bring .the 
constraints in equation form: 

(k = 1 · ·  · n)· ' ' ' 
(k = n +  l , · · · , 2n). 

Now the new auxiliary function including all the constraints becomes 

2n 
4> = F+ L A.kcpk . 

k=I 
To get the critical point for the ML of 4> we take the partial derivatives w.r.t. the 
N = Sn + 2 variables, namely n of a;; , 2 of 8, 2n of A.* and 2n of xk , respectively, and 
Jet them be zero, resulting in a total of Sn + 2 non-linear equations f = 0 .  To solve 
these equations we use the linear equations ( 1 3 )  about the increments 8y . For clarity, 
we write ( 1 3) in matrix form 

C8Y = -f. 
Here 8Y = (Oy1 , 8y2 , · · · , 8y5n+2 r ('t denotes transpose), f is the vector of Sn + 2  non­
linear functions in the Sn + 2 variables, specifically, 

f; = -1- D(i,i) - -1 _- D(i, i + l ) + 81 1_ 2 + 
a;; 1 - a;; ( 1 - a;; ) 

1 + £i .. 
+ 82 _ " 3 - A; + An+i • i = l ,2, · · · n ; 

( 1 - a;; ) n 1 
fn+I = L 

l _ _  .. - µ; i=I a,, 
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n -

f, L a;; 2 - cr . n+2 - . ( 1 - - ·· ) 2 -
' •=I a., 

f. - 2 - 1 4n+2+k - Xk + E + ak-n.k-n - , 

k = l , 2, - · - , 2n ;  

k = 1 , 2 , - · - , n; 

k = n + l , · · · , 2n. 

C is a (symmetrical) matrix formed from further partial derivatives of f ,  given as 

U V W . X Y  v't w't C = P . R  . 
. Q s 

X R . . .  
y . s . .  

where all the dots denote zero sub-matrices. The non-zero sub-matrices are specified, 
respectively, � 

· 

U d. { 1 D( . .  ) 1 D( . . 
l )  

281  28 
2 - a;; } 

(nxn) = tag - -=-;- 1 , 1  -
- - .. 2 

l , l  + + 
- - .. 3 + 2 

- -.. 4 a;; ( 1  a., ) ( 1  a., ) ( 1  a., ) i=l 2 . .. n { 1 1 1 

}'t l'cnxl) = 
( 1 - a1 1  ) 2  ( 1 - a22 ) 2 ( 1 - ann ) 2 

w, - {  1 + all 1 + i222 1 + ann }'t (nxl) -
( 1 - all )3 ( 1 - a22 ) 3 ( 1 - ann )3 

X(nxn) = -In ; 

Pcnxn) = diag{ 2A.k } k=l,2;··,n ; 

�nxn) = diag{ 2xk } J:=l,2,. ··,n ; 

Ycnxn) = In ; 

Q(nxn) = diag{ 2A.k } k=n+l,- · ·,1n ; 

S(nxn) = diag{ 2xk } k=n+l,.··,1n ' 

where I is an identity matrix, and the subscripts between brackets of the sub-matrices 
denote their dimensions. 

Appendix 3. Numerical search and initial points 

For convenience of analysis we still use u as in (8). When n = 2 • , the space is reduced 
to a plane and the solution intersection for (9) given a pair (µ, cr2 ) is reduced to the 
intersection between a 2-dimensional circle and a straight line, resulting in at most 2 
points. This is logical since 2 equations for 2 variables will leave no freedom for 
relaxed solutions. It is easy to obtain the analytical solution: 

U1,2 = � (µ ±.J2cr2 + 2µ - µ  2 ). 

Although a fixed solution can satisfy (9), there is little chance that this is coincidentally 
the solution for the whole ML equations (7). This implies that in practice, if for some 
HMM the smallest integer n within the region of ( 1 1 ) is really 2, one should take some 
value of n > 2 in order to let the searching procedure find solutions for the entire (7). 

• We do not consider the case for n = 1 because it gives only a geometrical durational pdf. 
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In the following discussion, we will assume n � 3 .  From u; > I and (9) it follows that 
we should have µ > n .  Then if in the data for some HMM µ < 3 ,  we have to modify it 
to some value µ > 3 before the whole procedure. 

For the numerical search not being trapped into some bad point, we need to give 
some number of initial points and start searching from all these points. From (9) it is 
clear that permuting the components of u makes no difference for the durational 
constraints, but it makes a difference for the first equation in (7) which includes also 
the distribution of acoustic observations. When only one component in u is different 
while all other components are the same, we get only n initial points by permuting the 
components. We consider n points as insufficient and design some more points as 
follows. We take all the n - 2 components of u to be equal, and another one to have a 
small difference: 

( 14) 
with 8 > 0 .  Then we find the last component on the intersection circle given these n - 1  
values. Putting this into the first equation of (9) we get 

From this we solve 

(n- 2)un + (un - �) + u1 = µ. 

µ - u1 + 8  u = ----n n - 1  
Putting this and the un-i from ( 14) into the second equation of (9) we then get 

(n - 2)(µ- u1 + 8  ..!..)2 + (µ- u1 + 8  - 8 -..!..)2 + (u1 _ ..!..)2 = cr2 + n . 
n - 1  2 n - 1  2 2 4 

Solving for u1 and taking arbitrarily the higher value for convenience, we get: 

( 1 5) 

u1 = ..!..[µ + .J(cr2n + µn - µ2 )(n - 1) - 82n(n - 2)). ( 1 6) 
n 

The above is only one initial point. Since 2 components have different values while all 
the others are the same, permuting these components will give us n(n - 1) initial points 
(Another n(n - 1) points by taking a negative sign before the square root are not used). 

The remaining problem is how to choose the value of 8. The condition is to 
guarantee all u; > 1 .  This affects the smallest component u2 most. Using ( 14) and ( 1 5) 
this gives 

µ - u1 + 8  U2 = Un - 8 = 8 > 1 .  
n - 1  

To find 8lll3Jl of 8 we combine this with ( 1 6) to eliminate u1 and it follows 

[8lll3Jln(n - 2) + n(n - 1 )  + (1 - n)µ]2 = (cr2n +µn - µ 2 )(n - 1 ) - 8�n(n - 2). 
Solving this and taking the smaller (safer) value, this gives 

8lll3Jl = _1_ [(µ - n) - /cr2 (n - 1) - (µ - n)(µ - 1) ]· 
n - l  V n - 2  

In practice we take some smaller value 8 < 8lll3Jl for getting the initial values {u; } .  
This 8lll3Jl is only meaningful if the argument of the square root is non-negative, and 

this casts another lower limit on n for a given cr2: 
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µ(µ - l ) + cr2 
nmin = 

cr2 + µ - 1  · 

Comparing this with ( 1 0) we have nmin > nmin, which means that in practice we have to 
take an n > nmin in choosing n. (Recall that nmin refers to the case with equal u. This 
means then that in order to be able to use the initial points chosen this way, it is no 
more allowed to have equal selfloop probabilities). 

On the higher border of n, the data statistics pair (µ, cr2 ) of some HMM may not 
allow any n < n{ra,. nor even n < n� . Therefore a reasonable compromise is to relax on 
one of the two statistics, and preferably on cr2• Then we need to know the possible 
range within which cr2 is allowed to vary, based on the given µ and a chosen n. The 
procedure of obtaining the range is similar as above but more lengthy. We only give 
here the resulting range. For the case n > 3 :  

(µ - n)(µ - 1 ) 
< cr2 < 

(µ - n)(µ - n + 2)
_ n - l  2 

For the case n = 3 ,  it requires that n:/m instead of n!ra,. should be used, namely the 
solutions of u are located only on the n disjoint arcs. The range obtained is 

(µ - 3)(µ - l) 
< cr2 < (µ - 3)(µ - 2). 
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