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Abstract

Burational behaviour of the HMM is investigated in terms of an analylical prebability
density functien ef the whole phone rmodel fer arbitrary transitienal topologies, given by
the wansition prebabilities o1 A-parameters. Linear opelogy is used as an example.
Based on such ap analysis, the duratienal behavieur is manipulated by modifying thc A-
paramcters in a precedure embedded in the stundard Baum-Welch ML-estimation
algorithm by introducing cxtra duratienal censtraints en the whole-modce] durational
slatistics. The effect of such manipulation s then tested with both autematic speech
recognition and se gmentation. resulting in mederate improvements in periorrnance.

1. Intreduction

In order to investigate the importance of durational modelling in HMM (hidden
Markov model)-based automatic speech recognition and segmentation, we analysed, as
the first step, the durational behaviour of the whole IIMM (instead of the single states
of the HMM), without modification. It 1s important then to have an analytical relation
between the parameters of the HMM and an expression of the durational measure. the
latter can be given either in the form Of a durational prebability density funcuion (pdf)
or by some lower-order statistics. The sccond step is to modify tbe durational
behaviour of the MM by modiying its paramcter values. Both of these two sieps
belong to the category of durational modelling withrn the MM, which is the main
topic of the current study. Other possible ways of durational modelling wilt be treated
in other work. All the HMMs used in this study, including the one after modification,
are HMM without the explicit state durational pdf, or called standerd MM in this
sensc. A totally different approach (the mostly used one in the literaturc) is to use
HMM with explicit state durational pdf, or so-called hidden semm-Markov models
(HSMM) (Levinson, 1986; Hechberg et al, 1993) for durational nodelling. This
increases the complexity of the system, and will not be studied bere.

In previous work (Wang, 1553a; Wang, 1993b) we have presented the analytical
form of durational pdf of a whole HMM for a special case, where the HMM topology
is hnear and all its selfioop probabilities are equal. General cases of left-to-right HMM
with arbitrary selfloop values will be discussed in this study. Left-to-right transition
topology includes all the topologies used for speech recognition; it inciudes any
number of skipping transitions and parallel paths but no feed-back loop that involves
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more than one state. A few methods of caiculating the pdf will be given and some
useful examples of topologies, especially the linear ones, will be discussed.

In the next step, the durational statistics collected from a set of speech data is used
to modify the transition probabilities of the 11MM. This is done in this study with a
method embedded in the standard Baum-Welch Maximum-Likelihood (ML) training
procedure, by casting extra durational constraints. However, before this procedure, a
necessary step of choosing the lengths of the linear models based on the durational
statistics 1s discussed. Finally the models trained with and without the durational
constraints are cempared in both automatic spcech recognition and segmentation.

2. Forms of durational pdf of general HMM
2.1. @btaining the durational pdf ef the whole model

Since the total duratien  in 2 states is a random variable being the sum of the duration
d, and d, in two cascaded scltloops. each being an independent random variable, the
pdf of a cascade of 2 diffcrent selfloops is obtained by convoluting the two geometrical
pdf's (e.g. Papoulis, 199@), each being

Rd)=a"(1—u,), dz1,

with g, being the selfloop probability of state i.” It can be seen that the durational pdf is
not a basic measure of an HMM, but a measurc of the event spanning over a longer
time than a single step. The principle of convolution can be easily extended to linear
models composed of a cascade of n > 2 selfloeps. and the whole pdf is

PAa) =[], azn,

where * denotes convolution in d. A special case where all the sclfloop probabilities
are mutually different produces a relatively simple analytical form, which is a weighted
sum of the individual geometrical terms, then multiplied by a constant term:

p@=la-a) 3| [l——l"| a2
e g

However, when some of the setfioops belong to some subsets with equal probability
(e.& a =as # ax = a: =as), the analytical form grows mere complicated. In practice,
the cenvelutien can be performed in diffcrent ways to ease the calculation. (A direct
convolution weuld require a troublesome bookkeeping procedure since each partal
result of convolution should be further convoluted with all the remaining terms.) n the
following we use z-transform fer belp. Assume the gencral case with X subsets each
having n, cqual selfloops and the total n =y +n,+---+ng. For simplicity we now omit
tbe constant terms (1—a, }* from the total pdf &.(d). The main part of the pdf is
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“Itis sufficient te use a4 insicad of @i for lincar medels in the discussion in this section.
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lts z-transfonn is simply

-

X

: (2)
!_l(z a )"
It is known from Wang (1993b} that each subset of n, seclfloops has a pdf of a
negative-binomial forin. Using z-transform properties (linearity and shift, see e.g.
Rabiner et al., 1978) and some induction, we have the z-transform of the general
negative-binotmal tenns:

(d,- ])af"v(d—f) < —-1-—-—~, i=12,-.m. 3)
= (z—a)
Here v is a step function, +# denotes z-transformation and the binomial coefficicntis
[({_ 1]=-——-(d—])(d 2)-(d—i+l).
i-1) (-1

where (i —1) 1s the grder of the binomial. The z-transform of a general pdf (1) 1s then

i’.(d)“"zzQ[ ]) "’\%d-r)@fz (4)

=1 =1 Al = LB ﬂa.]

When we equal the right-hand side of (2} 10 that of (4),

it -$55
k=) (Z_ak }m km) (=) (z_al\)f,

the preblem is converted to finding the »n coefficients C; in the sumined form by
equaliing the terms with the same orders of z 10 those m the product fom). When C;
for each summing tenn is found. each term can be separately inverscly z-transfonned
using (3) and the whole pdf is found.

To find the C; we can use a classical procedure partiuf fractien decomposition. In
the following, we give an example analytical form pdf whose coefficients are obtained
with a Mathematica’ function Apart. The z-transform of the main part ot this pdf is

I
(z-a)'(2~a) (z—a)’

ﬁs(z) =

narely theie are 6 selfloops. in 3 subsets with 3. 2, and ) selfloops with a, # a- # a,,
respectively. The pdf with the coefficients given in terms of the sclfloop probabiiities
ism

- d—1 -3a, +a; d-1
B(d)= I }( )a;,,3+ 3a; +a; +2a; [ | J“‘J‘z

(a,—a,) (a, - 2 (ay —as Y (a —a3)?
+ 5ff|1"4U|ﬂ2+ﬂ§ _Sa]ﬂj'i‘?.ﬂgﬂg +3ﬂ3 J""l ]_ (d_]]aﬁ_z
ty : 2
(ay—as ) (@ —as) (@:—a,) (@ —ay)\ |
"'4(!: +3a, ) ag_;_!_ 1 - :,;.'_|‘ d=6.
(a:—ay ) (a: —a;)* (a;—a))(as —ay )

" Mathematica is a software package of Wolfram Research, Inc. for both symbolic and numerical
calculation oo computers,

™ 1o Lhis fermula, the legal scopes (in which the individual terms are non-zere) all bejtio at do < 6. as
obtaincd fre inverse z-lroosforms for the tening, However 1he values frein all Lhe terms compensite
1o zere for all the points € < 6. Therefore the total Jegal range is 4 = 6.
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The whole pdf is then simply
(d)=(1-a)*(1-a:)*(1-a:)B(a).

It can be seen that, except for the highest order binommal term in each subset, the
coefficients feor even such a simple cascade i1s complicated (the coefficient for Lthe
lowest order binomial contains 6 terms in 15 numerator). For another example with a
cascade of a total of 1@ selfloops in 4 subsets with 4, 3, 2 and | equal selfloops,
respectively, the most complicated coefficient contains 54 terms in its numerator, as
found with Mathematica in one hour of time for symbolic manipulation on a Macintosh
machine. Reading such an analytical form pdf would not be very insightful nor
pleasant. Therefore, it would not be very useful to go on with the analytical form of
pdf. We end up here with a knowledge about the total number of, and the order of
these negative-binomial, terms. That is, for a linear cascade, each subset of n, egual
sel{loops (no matter where these selfloops are located in the cascade) with probability
a, will generally give rise to »n, negative-binonual terms with orders i =@,1,---,m —1,
respectively (order @ is actually a geometrical term). The whole pdf of the cascade is
obtained by multiplying to the weighted sum of these terms a product

s
[J1-a0™ (5)

of the probabilities of going out of each state in the cascade. The weighting coefficients
for the negative-binomial terms have a general foom
o N,
Ci =— ¢ ,
]:[ (ak o a{)nw(n:—.’]

:'st

where the numerator N} has an iiregular forn as seen in the previous example. ote
that for the very extreme case where all the n selfloop probabihiies in the cascade are
the same, the analytical form reduces to the simplest one, being just one binomial term
of ordern—1.

In the aforementioned discussion for single cascade and in the discussion fer general
left-te-right topologies in the next sub-section, the analytical ferm pdf is only meant to
give some insight. If one is interested merely in a numerical form of the durational pdf,
however, a simpler alterpative is to make use of a property of the Markov chain
(Lloyd, 1980): The probability of going from state 1 to state # of a Markov chain in
exactly d time steps is an entry in a product matrix of the transition matrix A, namely

P(d)= éy, [a}=A=Ad,

where A? denoles the multiplication of A to itsell for < times. This makes one point on
the pdf. The whole pdf can be calculated for all different & values under concern.

2.2, Analysis of whele-medel pdf

The full-pdf of any left-to-right HMM can be obtained by considering each linear path
(each distinct route going from the beginning to the end of the whole model) separately
as above, and summing them together with weights as in (5) for that path. Each path
has a legal scope within which the pdf 1s non-zero and is usually d 2 dy. In a more
general case where some states in a path have no selfloop, the pdf {or this path will not
contain binormual terms for those states. The contribution of these states is simply a
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Fgure 1. Left: an HMM with its transition probabilities shown. It has S states and 4
paths. These paths given in their state-indices ace (13293-455), (152—54-35), (]
—3345) and (14 -35) respectively. Right: its durationa) pdf with specific values
(see Table |) assigned to all the transition probabilities. as a functien of any constaal

tme sLeps.

constant that should be included w (S). In the following, we first give a pdf of «
particular HMM as an example. Its transition’ topology 1s shown in Figure 1, and the
scltloop probabilities are all different.

The camplete pdf of this HMM censists of 4 terms, each cencerns a hinear path.
Although the geomelrical terms with the same a, but from contributions of different
paths, can bc put together, they may have different legal scopes of d. These scopes arc
indicated on the right side of the lines for separate paths, in the following formula:

P =0 —a —aj —al){l —a; —a: X1 -a, (1 - ay)

[ a,d" ad
" 3
(ay —a; ) a —as)(al —-a,) (a:—a))a;—ay)(a;—a.)
o > @i (d24)
(ay—a))(a;—azx)(a; —a,) (a.~a1)(a,=a;)(a, =az)
ai!
+a!(1—a; )V —a, '
“(1-a;){d~a }[(al —a; ) ~ay)
4. d_L
] i X ] (d23)
(cta —ay Was —ay) (a, —a ag—as)
d-i
+(1-a —a] - a)ag(1- a)l— _a;(al =
a1 a-1
= s =t ] (d 2 3)
(az —ay )az —a.) (as—a;)a,—a,)
adal ag»l
+a(1—-a,)[———+ . (d=2)

a—dy a,—a,

Thns looks complicated. But if we give some specific values to each a. such as the ones
given in Table 1,

Table L. Specific values of transition probabilities fer the example.

dy ) af L] ag 3 aq
0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Figure 2. Left: an HMM wilh 2 parallcl paths each conlaining selfleeps. Right: the
durational pdf of the upper and lower paths and that ef the whele medc].
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Figure 3. Left: the Kai-Fu [ec modc] with transition probabilities shewn, The 3 lower
paths given in their state-indices are (f-+7), (1 55—7) and (I35—56—-7), respectively.
Right: i durational pdf. ‘[he values at duration |, 2 and 3 arc contributions from the 3
lower paths respectively. all without self oops.

then the total pdf . after being organiscd for different scopes of d. looks simple:

0 2=

0.09 =2

P _ ) )
&)=, 156, =3

0.21(0. D% - 0.4(0.4)** - 0.96(0.6)% * + 1.15(0.7)*"}, o >4,

and this is plot:ed in Figure 1.

Below we give two examples of models with parallel paths, both with actual values
of all the transition probabilites. The first model (Figure 2)* consists of two paths.
each contributing a single peak and the pdf of the whole model shows two peaks. The
second model (Figure 3) is the 'Kai-Fu Lee’ medel (Lee, 1989). with four paths. Each
of the 3 lower paths contributes only a single point on the pdf (the first 3 points) since
they do not contain any selfloops.

As observed in the above examples and as so far always has been true in our
practice with real data, the pdf's of lincar models and the model with skipping paths
have always a single peak. regardless of whether the selfloop probabilitics are equal or
not. (This has not yet been proven theoretically, though.) This can bc regarded as a
general behaviour of the durational pdf of the HMM. Some later discussion for a single
linear path will be based on equal-self.oops while the conclusion will be general for

* The duratienal pdfs in this study are plotted in differe nt stytes for the sake ot clarity. However it has
te be noted that even wilh 4 continuous line drawing, the pdf values arc only defined at diserete time
steps (they sheuld actually be called prif. prebability mass functiens).
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Figuce 4. Durational pdl’s for lincar models wath equai setficops. Differem pancls show
cases when either », g, Inean or varianee is fixed while other variables are varying.

models with different selfleops. Skipping transitions provide possihility for shorter
minimaul duration than the iength n of the path, which. without skipping, would be
exactly a. Pdf with more than one peak can bc obtained with independent puratiel
paths, namely those paths which do nol share slales excepl for the begin and the end
states.

As will be seen in later scctions, the reat data of speech segments always show
single-peak behaviour. Furthennore, using parallel paths would cause incorrectness, in
that during MMM training, parameters in different paths would be trained with the
same data while different paths should model different processes. Therefore in our
sludy we do not use any parallel paths. We also feund out that skipping transitions for
minimal duration arc unnecessary if one sclects the model length n carefully according
1o lhe data (next section). Therefere we only use linear models with one path and no
skips.

We wijl use some durational statistics in the data to constrain the model parameters.
As a first step we choose 10 use durational mean p and variance o? of the speach
segments. From probability theory (e.g. Papoulis, 1990) we know that, each state of
the geometsnical pdf has a duvational | and o2 as
u = : ’ G? L..-

(I-a:)

l=a;
and the p and 7 of the whole linear model are sums of these of individual states. For
the special case of equal @, = «, such relations between n. a. L and 62 become

H

5 a; na
ﬁz a— & - 1
z{l—a,-,- oAl=a?

Al
i = =1

(&)
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Thesc relations arc shown in the upper panels of Figure 4°. From (6), when either n or
@ is fixed, both W and G* increase monotonically with the other variable. ®n the other
band, if we eliminate a from (6} to make it implicit and cewrite as

ot=pt—". ;1—3+‘/<51n+"—2
k n 2 4’

it can be seen that G? decreases as 7 increases when [ is fixed, and |t increases with n
when G2 is fixed. These dependencies are shown in the lower panels of Figure 4.

3. Constrained training of HMM embedded in ML procedure
3.1. Paradigm of the constrained training

When we include the initial probability 7 in the transition probability A, the whole pa-
rameter set of the standard HMM to be estimated is A =(A.B) where B is the
observation prebabiiity. Then the auxiliary function can be decomposed into two tcrms
for A and B respectively, and these are maximuscd scparately. The solutons to the
constrained maxirmusation problems give the fermulae used fer re-estimation of the
parameters given their old values. The unity constraint used is given by the properties
of the probability measures (first row in Table 2}, which e.g. for 4 is

r
Se=h iml2en
4=

Table 2. Different paradigms ef parameter censiraining in tr ining of HMM.

Eae e B ||

HMM constraints for A consiraints for & constraints for dur.
standard unity unity . !
explicitduratien | unity unity ' seg. dur. statistics |
constr. standard | unity, seg. dur. siat. unity i ) __J

When the system is not standard HMM so that the parameter set contains parameters
in addition to A and B, they too contribute to the auxiliary function, and should also be
maximsed using their own constraints. An example of such training is in Hochberg et
al., (1993) using HSMM with Gaussian pdf (sccond row of Table 2). In our approach,
since the modelled segment duration ts given by the A parameters of the standard
HMM, an extra constraint is uscd on the same parameter (third row of Table 2).

The main difference between the HMM with the cxplicit state duration and the
HMM constrained with the durational pdf is, that the former bas cxtra parameters with
thcir own constiaints and the latter has no extra paramcters beyond the standard
HMM, but the same parameters are confined with extra durational constraints.

3.2. Embcdded (raining with extra durational constraints
Having seen the relations and depcndencies between », a, j and G*, we know that for

a given pair ({,06?%) trom the data of a segment to be fitted, the choice of model length
n is constrained within a range. This range is further shrunk when we use a particular

* NelLe that on all the pdf plets, U is roughly related te the horizonial positien of the curve, wherecas 62
1@ the breadth of the curve.
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way of a nccessary numerical search to be discussed later. These procedires are given
m both Appendix 1and Appendix 3, and the final rangc fer n 1s

_Jl.l(u—l)+03

e <n<U+l—f20%+1.
{1/

Once n 1s chosen, we can start with the Baum-Wclch aigonthms for Maximum
Likelihood (ML) training with extra constraints. The unity constraint must still hold,
only fer our special case of linear models. it reduccs to

H|'|'+|'.'1|§_r'+|_ :], 521,2,“'72-1,

and can be used to eliminate g; ;. Aftcr this, the set of equations obtained using the
Lagrange-multiplietrs concerming the A parameters are (B parameters are irrelevant)

_LE E'YET:)(fsi)-‘[—%ZZYE'."R(LE-?-l)+
iRt i oom
fac
Bl 1_ sy +_""}-;—0, I
—ay )* 1
Ji | (7)
— =W
T 1"'(1"'
- &if 2
—— =g,
‘_:(l_&n)z

where the “counts” v arc obtained with the A and B values al the previous iteration
using the usual Baum-Welch procedure. and are summed over all time ¢ and all
observatien sequences m (e.g. Kamp, 1992). a are new values Lo be sought after the
current iteration, and 6, and @, are two multiphiers.

[t turned out that this set of (#+2) non-linew equations cannot be solved
analytically to give forinulae for calculating the new A values from old oncs, as is the
case in ML procedure for standard HMM without extra constraints. Wc have chosen
to use a Newton-Raphson (Prcss et al., 1989) itcration procedure o find numerical
solutions with somc initial values (see the next section). The [ollowing set of 2n
equations further constrain the iteration procedure to find only meaningful values of «:

al'i > 07

ail‘ < ]:
The actual method of using the Newton-Raphson procedure is given in Appendix 2. In
general, it searches for improvement of solutions from the points of cuirent iteration,
based on local derivatives of the set of cquations including (7) and further constraints,

The details of numetical search togcther with the necessary nitial points chosen on the
®asis of data constraints (j1,62) is given 10 Appendix 3.

4. Results
4.1. Results of darational pdf fitting
Before the recognition and segmentation tuns, the effect of the durational constraint on
the modelled durational pdf of the HMM is checked. In this study, we uscd the whole
sct of thec TIMIT databasc (see Zue et al., 1990, and the documents included in the

TIMIT CDROM]} in the experiments. TIMIT contains American English continuous
speech from a total of 63@ speakers each rcading 10 sentences (of which 2 are the
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same across all the speakers). A tetal of 1680 scntence utterances from |68 speakers
~were used for testing and the rest for training (thus a speaker-independent
pecformance). Our system is a phene-based centinuous spcech recogniser.

Firstly the durational histograms for all the 61 eriginal TIMIT phones are estimated
from the wholc training and testing scts. Thc statistics pair (4,c?) are calculated (and
slightly modified for a few phones) and the suitable lengths » fer all the phones are
chosen. These n range from 3 to 1@ for thc wholc system. Table 3 shows examples of
the situations of the modelled durational statistics calculated frem the HMMs trained
with and without the durational constraints, for 8 phones. For easy comparisen, ¢
instead of G? is used in the table.

Table 3. Durational statistics in thc TIMIT data and from the models. The ticst column
from the left shows the symbols of 8§ example phones. The second column lists the
durational 1 and © directly calculated from the hand-segmented label files. The third
columo shows those neccssarilY mexlilicd data statistics. The fourth column shews the
allowed range fer choosing a suitable »# and the actual chosen » tor cach phone. The last
two columnos show the durational B and ¢ calculaled from the medels trained without
and with the darational constraints (abbreviated as "cl"). respectively.

| original data | maodified data | afier data modification model no et | model with ct
] u o i g | Ay e nl w|l p o | p g
| aw | 2045 644 720 1227 1448 B8 | 1924 534 | 2045 644
[ b | 219 08 | 350 08 | 296 2986 303 3| 330 060 | 3.50 083
| th | 984 353 467 S75 678 5| 851 265 | 984 353
pau | 23.34 1578 2.84 200 805 3186+ 1065|2334 157
q 816 394 337 | 377 423 525 4| 625 192 | 816 13137
sh | 145) 371 770 1017 11.27 8| 16.1@ 449 | 1451 371
y | 834 440 349 | 376 430 5317 4 |1494 648 | 834 349
z: | 1851 341 465 590 TO7 5 [1259 456 [ 1051 3.9

Note that if we use relation (6) of the previous section and ferce all the selfieop
probabilities to be equal a; = a, there is no freedom in choesing 7 that can it the data
statistics pair (u,G*): both » and a are only allowed to be a fixcd valuc. We sec this by
solving n (and a) frem (6) for the case of equal a:

u? L
, a= :
H+ ol H+0?

n=

The n here may well be a nen-integer, which is then a problem. Now when we allow
a; to be different, we usually get a range (figi. .75, ) In which we can choose » freely.
We have chescn the smallest integer # for each phone. The determination of the values
of «; will be left for the training preccdure.

The fellewing can be seen from Table 3:

1. IFer those phones (e.g. /b/} with g <3, the data u was modified and the data o was
modified accordingly, in order to be ablc to cheesc an 7 >3 (see Appendix 3);

2. FFor /q/ and /y/, since no suitable n <r% , can be found based en the original data (L
and ¢, the data ¢ were modified (decreased) (Appendix 3);

3. For beth the two phones /b/ and /pau/ (between-word pausc) which require an
n =3, the worse upper limit nt, were used (true for all phones with n =3, sec
Appendix 3);

4. For those phone with n>3, some have a small range (7,.7%,) in choosing n,
while ethers have a farger one.
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Figure S. Examples of phone durationali pdf's frem the TIMIT dalabase: Pata
histegrains (dala: blank veruical bars) are estimated from the nutber of instances given
hctween the brackets. Pd(s of stapdard (stand.: continuous curve) and durdijonally
constrained (dur.: dashed curve) IDMM are scaied to the hislogram. Histograms are
plotted against the left scale, und pdfs arc ploticd agaiast the right scate, of each pancl.
The chosen modcl lengih 1 are aiso shown.

5. The modelled L aud ¢ of the models trained withewut duratonal constraints show
various degree of deviations from the data 1 and o, the worst being /y/ (see also
Figure 5);

6. The modelled (L and & of all the models trained with durational constraints show
good agreement with the data j1 and ©.
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Note that since the fitting of durational p and G? only uses these two lower-order
~ statistics as the first approximation, the fitling of the entire pdf remain to be checked.
This is shown in Figure 5. for the pdf's of these same set of 8 phones.

The first impression is that both the pdf's of the models with and without durational
constraints show good fit in shape with the data histograms, indicating that the ferm
(weighted sum of binomial/geometiical terms) of the pdf of linear models is suitable.
This is evidence that the FISMM is unnecessaty, because at the level of the whole
model, a simple linear MM can model the duration well. Futthermore, it is evident
that the models trained with constraints always fit the data histograms (slightly) better
as compared with the models trained without constraints. However, it can also be secn
that, because of the carcful choice of the model lengths, the durational pdf's without
the durational constraints are already rather close to the data durational histograms
(except for /y/, for which both p and 62 have a very bad match with the histogram for
the case without durational constraining).

The improvement in durational fitting is a clear indicat'on of the improvement of the
quality of our FIMM as compared with the HMM t(rained with the standard Baum-
Welch algorithm, at least with respect to the whole-model durational modelling
accuracy. The standard Baum-Welch algorithtiv does not take the durational statistics
as part of the training criteria, as the case in our constrained training. Therefore even
with the careful choice of the model lengths, the fitting of the standard HMM 10
durational statistics is not guarateed.

4.2. Results of recognition and automatic segmentation

The ultimate goal of durational modelling with HMM is not only to sec the pessibility
of modelling the segmental duration accurately, but also to sec if such an accurate
modelling improves the performance of speech recognition and segmentation.
Technically, during the durationally constrained Baum-Welch training, the constrained
values of the A parameters obtained frem each iteration will be used in the next
iteration, in which, both the A and the B parameters will be affected by the durational
constraints. (In this way B parameters are indirectly affected). Although it is argued
that A parameters alone do not govern the transition behaviour, the new values of A
and B together may have a different general behaviour (not only the transition) from
that of standard HMM parameters without the durational constraints. 'Therefore, in
recognition and segnientation, the performance may be difterent (hopefiilly improved).
The effect is checked experimentally.

In our expcriments of both recognition and segmentation, the whole set of TIMIT
database was used. TIMIT has bcen used for various related research topics, e.g.
speaker idenufication (Lamel et al., 1993a) and phone recognition (Lamel et al,
1993b).

Our recogniser uses context-independent phone niodels with a linear transitional
topology. LPC-based cepstrum coefficients plus their time derivative and energy are
used in 3 streams for the HMM. The observation probability of each state hus a
weighted mixture of 3 Gaussian densities, and uses a diagonal covariance matax. The
model lengths n chosen as in the previous sub-section are kept during the whole test.
Then 2 setups of HMM training are performed, one with and another without the
durational constraints. The same set of HMM after the initialisation training are used
for both setups.

The language models used for recognition are a regular type of word-pair grammai
and a bi-gram, both estimated frem the whole testing set. Phonological rules within
words are basically finear plus an optional pause at the end of each word, and
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Table 4. Sceres of recognitien and segmentation with and witheut duration constraint,
o for speaker-independent tests on the TIMIT datlabase. For recognition. the scores arc
word-correcl percentages. The first scere ceunts only substitution and deletien errors
whereas the second score (between brackets) ceunts alse insertion errors. Fer
scgmentation, the percentages are given on the correctly matched segment boarders
within the threshold of 20 s jn both chircclions, ascompared with Lthe hand labels.,

without duration constraint with duration constraint
recognjtion 80.61% (77.73%) 86.83% (84.41%:)
segmentalion 83.48% 84.458%

additienal closurcs for plosives when they do not follow immediately a silence. The
"language model" fer segmentation is simply an exact linear sequence of the phones in
each sentence. The segmentation process is £imply a "recognition” precess with the
identities of the phone sequence known a priori but the berder informatien missing.

The scores of a preliminary experiment in recognition and segmentation are shown
in Table 4. Moderatc improvements arc shown for both cases.

S. Cenclusions

In this study, the HMM witheut explicit state durational pdf. but traincd with
constraints on the durational statistics of the acoustic segment, shows improvement in
performance of both recognition and segmentatien, at very little cxtra computatien
costs. The first conclusion is that the performance of the standard HMM can still be
improved il extra information, such as the one about the segment duration, can be
integrated inte the modcls. Recall that the durational measures. e.g. the durational pdf
or the lower-order duratienal statistics, arc not the basic measures of the HMM.
Therefere the durational mformation is regarded as coming from an tndependent
information seurce. and has been brought into the models during the improved Baum-
Welch tiaining with durational constraints. Whether such integration can impirove the
performance of the recogmser is checked with the tests, giving us a positive answer.

The technical implementation of the integration of thc durational information is
achicved 1n three necessary steps, which are reperted in depth m this papcer, together
with necessary mathematical development. The first step is te find thc relations
between the durational measures and the HMM parameters. An ebservation inte the
usual durational modclling technique using HSMM reveals (Wang, 1993b) that it i3
msufficient to look at the duratienal bchavieur at the state level alone, and, il ene
Jooks at the whole-model behaviour, HSMM may be unnecessary, too. Then we
concentrated on the durational pdf e[ the whale model of phones. and obtained the
analyncal forms pdf for several topologies, of the standard HMM.

In this study only the transition probabilities A are regarded as rclevant. One is
convinced that the standard whole 1{MNM without the explicit state durational pdf is
powerful enough to model the durational distribution e[ the speech segments (phones).
The secend necessary step is to find the suitable lengths of thc HMM based on the data
duratienal statistics. The third step is to actually constrain the A-parameter values with
the data durational statistics during the Baum-Wclch training. All these steps fit into a
framework that the HMM both should model the process @[ acowstic observation, and
should fit the whole-phene duraiional statistics well. Both goals are achieved in an
integrated way using the current approach.

Some lims'tations of the curcent study arc as follows. The form of the duratienal pdf
of the HMM in this study implies that the durational behaviour to be modified is only
governed by the tcansitien probabilities A. Further research should seek fer durational
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pdf in which both A and the observation probabilities B play roles. The constraining
technique in the current study may then be useful to direct!y modify the A and B
parameters. It will be possible to get even better results than the current study in
modelling and performance in recognition and segmentation. Furthermore, only the
segmental duration, but no other long-term features, was used as extra information for
the model improvement. Other long-term features of speech, if available from signal
processing and if they can be stored in a statistical way, such as a statistical distribution
of some specifications of the pitch contour, may be directly integrated using the
current technique.

Appendix 1. Choice of the model length

In this Appendix we will discuss the problem of choosing the most suitable model
length n based on p and 6? from the actual data. The selfloop probabilities are allowed
to be different in general. For convenience we take a monotonic transformation

1

ui = : ’ (8)
1-ay

and then the general relation in (6) is given as

- - 1) , n
Suen $fu-tfcoret 0
It can be seen from this set of equations that for a given n, the set of values {;} that
satisfy both durational mean and variance lie on the n-dimensional circle defined by the
intersection between a hyper-plane and a hyper-sphere centred at {},},---}4}, in the
space R" for {w;}.

The radius of the sphere is controlled by n and 2 whereas the intercepts of the
plane are controlled by p. For a given pair (lt,6%), different values of n correspond to
3 different situations for the intersection circle.

The first situation, corresponding to the smallest n, 1s given when the sphere 1s
tangent with the plane at a single point, namely when all u (or a) are equal. By
eliminating all ¥ from (9), it is easy to verify that

n?
Tol4p

Niin (10)
(Note that this relation is just the same as in the last section for equal selfloop
probabilities.)

The second situation applies when n (thus the sphere) is larger so that the
intersection becomes a circle, but this is bounded by the condition required for u; >1
(see (8)) when a lower bound of the maximum nt,, is defined® . In this situation, all the
points on the circle can be used as solutions of (9). When »n further increases beyond
nk,., some points on the circle will cause some ; <1, thus are no more solutions, and
the solutions left are n disjoint pieces of arcs on the circle.

The third and extreme situation when there still are solutions is when these n arcs
shrink into n isolated points. This corresponds to the largest n = nl,, that can provide
a solution.

We first get n,,. The n points on the largest possible circle form an n-dimensional
equilateral polygon. The co-ordinates of u for each endpoint of this polygon have a

* We use superscripts L and U for lower and upper bounds, respectively.
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pattern that (n—1) components are equal to 1 while one component is L —(n—1). This
gives e.g. {L—(n~-1),1,1,---,1} and {l,p—(n—1),1,---,1}. Putting any such point into
the second equation of (9) we then get

2 2
(n—l)(l—%) +[u—(n—1)—ﬂ = g2 +%.

With a given pair (l1,52), we solve for the largest possible n (for the largest sphere)

nZ, =u+l—‘fcz+~]-.
2 4

From now on we get nk,, for a complete solution circle. One point on such a circle
is tangent with the middle point on one of the edges of the polygon, defined by the two
end points of the edge:

“, :{u—(n—l)ﬂ “'(”'1)"'1,1,1,...,1}.

L]

2 2
Putting this point into (9):
2 2
Z(H—M—l) +(n—2)(1 —l) =o?+ 2.
2 2 2

Again, with a given pair (i,0?%) this gives us the 'safest' largest n with which all the
points on the intersection circle are solutions for (9):

nty =pn+1-20% +1.

From above we investigate that an ill-behaved circle given by nk,, <n<nl, * can
bring a numerical searching from a solution to a non-solution point along the circle.
Therefore in order to prevent numerical problems caused by this reason, we choose

Npin < N < Nta (11)

Furthermore, it is clear that n should be an integer, representing the number of
selfloops, and should be chosen as the smallest possible value within the region, for
simplicity.

Appendix 2. Solution of non-linear equations
Generally, Newton-Raphson method searches for numerical solutions for N variables
y; given in N non-linear equations
ﬂ()‘]»)’b"'JN)zO- i=1s23""N- (12)
This is achieved by using the values of the current iteration of f; and their partial

derivatives to form a set of linear equations for the local increments dy;:

zgisy,:—ﬁ_ i=1,2,---,N. (13)
j=1 9Y;

All the dy; can be solved out using any standard method for linear equation systems,
such as LU-decomposition. Then the y; values are updated as

* nka <nY.. because they both are monotonically decreasing functions of 2, both evaluate p at 0

and zero-cross at L(p/2+1)<p(p+1), respectively.
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yinew = ylcurrenl +6yi, = 1,2,_..’N’

The iteration starts at some chosen initial point and ends when some convergence
threshold 1s reached.

Our particular set of non-linear equations come from the Baum-Welch ML
(maximum-likelihood) parameter estimation procedure. Firstly, the auxiliary function
(e.g. Kamp, 1992) for our linear HMM with extra durational constraints in ML is

F =Y D(,i)logd; + Y, D(i,i +1)log(l — &) +

1 '-ii 2
+6,(21_5ﬁ —u)+62(2(1 _aa”)z -c )

t i

where a;; are the new values of selfloop probabilities after the current iteration, and
D(i,j)=2, 3 Vim0 j)
m t

are the "counts" y obtained from the previous parameter values, summed over time ¢
and observation sequences m. Further constraints for the numerical search to be
confined within the meaningful region may be written as 2n negative functions

_ —5,~,~<0, (k=1,---.n)‘,
8=z —1<0, (k=n+1,-,2n).

Introducing some positive relaxation functions
sy = xi +¢€, (k=1,---,2n),

where € >0 1s a small number to keep the computer from the edge, to bring the
constraints in equation form:

x}+e—ay, (k=1,--+,n);

=85 T 2 =
B =58 {x3+e+&"—], (k=n+1,---.2n).

Now the new auxiliary function including all the constraints becomes

2n
D =F+) M@y

k=1
To get the critical point for the ML of ® we take the partial derivatives w.r.t. the
N =5n+2 variables, namely n of a;, 2 of 6, 2n of A, and 2n of x,, respectively, and
let them be zero, resulting in a total of 5n+2 non-linear equations f =0. To solve
these equations we use the linear equations (13) about the increments dy. For clarity,
we write (13) in matrix form

C8Y =-f.

Here &Y = (8y,,0y,,:*,0ysn2)7 (T denotes transpose), f is the vector of 57+ 2 non-
linear functions in the 5n+2 variables, specifically,

1 1
i =—D(i,i)———D(i,i+1)+0;, ——+
/ Qi bkl R a ( ) l(l—ai:’)z
1+a;

"(1-a;)

n l )
fon =§_—aﬁ—u,

+0 _xi+)¥n+u i=1,2,"'n;
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n ~

a.:
fn+2 = z - - 02 s

i (1—a; )?
§ (O =2A Xy, k=1,2,---,2n;
Sans24k :xf +&=Gu; k=1,2,---,n;
Sanszer = Xk + €+ Qoppn — 1, k=n+l,---,2n.

C is a (symmetrical) matrix formed from further partial derivatives of f, given as

(U VW . . XY
ve . . oo
w* . .
C=|. . .P.R.|
: .. Q. 8
X . .R. ..
Y .. .8S.

where all the dots denote zero sub-matrices. The non-zero sub-matrices are specified,
respectively, as

1 I _-ii
U xn = diag<— l D(i,z’)——_D(i,i+l)+-—L+282—-—2-;g-—— :
a; (l—aii)z (]‘(1,’,‘)3 (1_aii)4 =120
1 1 1 !
Viaxn) ={ . —— —f{} 3
(I-ay) (1-az) (1= aun)
1+a 1+a 1+am |
Wnxiy ={ -n . _22 g ———.——3} 3
(]—an) (1“(122) (l_ann)
X(nxn):—ln; Y(nxu) zln;

I)(nxn) = dlag{z)\'k }k=l,2.-~,n ’ Q[nxn) = dlag{zl‘ }k=n+l.-~‘2n ;
R’('lx") = dlag{2 Xk }kzl,2,~-~,n ) S(nxn) = diag{zxk }k=ﬂ+l.~".2n ’

where [ is an identity matrix, and the subscripts between brackets of the sub-matrices
denote their dimensions.

Appendix 3. Numerical search and initial points

For convenience of analysis we still use « as in (8). When n=2", the space is reduced
to a plane and the solution intersection for (9) given a pair (l,0?%) is reduced to the
intersection between a 2-dimensional circle and a straight line, resulting in at most 2
points. This is logical since 2 equations for 2 variables will leave no freedom for
relaxed solutions. It is easy to obtain the analytical solution:

U, = %(ui1/202 +2u-p? )

Although a fixed solution can satisfy (9), there is little chance that this is coincidentally
the solution for the whole ML equations (7). This implies that in practice, if for some
HMM the smallest integer n within the region of (11) is really 2, one should take some
value of n> 2 in order to let the searching procedure find solutions for the entire (7).

* We do not consider the case for n =1 because it gives only a geometrical durational pdf.

IFA Proceedings 18, 1994 127




In the following discussion, we will assume n>3. From &; >1 and (9) it follows that
we should have i > n. Then if in the data for some HMM p < 3, we have to modify it
to some value p > 3 before the whole procedure.

For the numerical search not being trapped into some bad point, we need to give
some number of initial points and start searching from all these points. From (9) it is
clear that permuting the components of # makes no difference for the durational
constraints, but it makes a difference for the first equation in (7) which includes also
the distribution of acoustic observations. When only one component in « is different
while all other components are the same, we get only » initial points by permuting the
components. We consider n points as insufficient and design some more points as
follows. We take all the n —2 components of u to be equal, and another one to have a
small difference:

Uy = Uy =+=U, = Uy +0, (14)

with 6 > 0. Then we find the last component on the intersection circle given these n —1
values. Putting this into the first equation of (9) we get

(n_ 2)un +(un —6.)+ul =H

From this we solve

= E:u_‘i_s_ (15)
n—1
Putting this and the u,., from (14) into the second equation of (9) we then get
2 2 2
(n—2) m__l +[u—u—'+6_6__1.) +[u] _]_j =02 +2
n-—1 2 n-1 2 2 4
Solving for u; and taking arbitrarily the higher value for convenience, we get:
w=~[n+ @+ - - D-8n(n-2)) (16)
n

The above is only one initial point. Since 2 components have different values while all
the others are the same, permuting these components will give us n(n—1) initial points
(Another n(n—1) points by taking a negative sign before the square root are not used).

The remaining problem is how to choose the value of §. The condition is to
guarantee all u; > 1. This affects the smallest component u, most. Using (14) and (15)
this gives

_p-u+6
n-1

To find &,,, of & we combine this with (16) to eliminate u; and it follows

) -6>1.

[8mexnt(n—2)+n(n=1)+(1—n)p]* = (c2n+pn—p?)(n—-1)—8iun(n—2).

Solving this and taking the smaller (safer) value, this gives
ci(n-1 —n) —1)
[(u e \/ (n=1)- (u (1

In practice we take some smaller value & < §,,, for getting the initial values {u;}.
This 8, is only meaningful if the argument of the square root is non-negative, and
this casts another lower limit on n for a given 62:

n—1
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. _hp-I+o?
S TR

Comparing this with (10) we have n;, > nm,,, Which means that in practice we have to
take an n > n,;, in choosing n. (Recall that n.;, refers to the case with equal u. This
means then that in order to be able to use the initial points chosen this way, it is no
more allowed to have equal selfloop probabilities).

On the higher border of n, the data statistics pair (1,0?) of some HMM may not
allow any n < nk,, noreven n<n? . Therefore a reasonable compromise is to relax on
one of the two statistics, and preferably on 62 Then we need to know the possible
range within which 6? is allowed to vary, based on the given i and a chosen n. The
procedure of obtaining the range is similar as above but more lengthy. We only give
here the resulting range. For the case n > 3:

(R=m)-1) _ ; _ (R=m)p-n+2)
n—1 2

For the case n =3, it requires that nY, instead of nt, should be used, namely the
solutions of u are located only on the » disjoint arcs. The range obtained is

(u=3)u-1
2

<ol<(u=-3)(u-2).
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