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Abstract

in this paper a method is proposed to derive the effective oumber ol different eitor
classes from an identification experinieat, combined with a method to determine the
(non-) overlap in error classes betwcen cxperiments. Both methods arc bascd on standard
toformatien theery, refermulated (o give more transparent results. Some examples trom
the literature ace added 4t the end ol the paper.

1 Intreductien

Error-rates arc generally used to sumunarize the results of identification and
classification cxperiments with spcech. Contrany to what its name suggests, the error-
rate 1s not so much about crrors but about correct responses. Although there is
generally only a single correct responsc to a stinulus, there can be many incorrect
responses. The way the errors are distributed cannot be read from the error rate. As an
example, I have included some hypothetical confusion matrices in this papcr (Figures
1-4) which all shate the sanie crrer rate, 33.3%, but have very different structures. For
many purposes, it makes a lot of diffcrence wiich of the potential errors are realized
In an experiment, and how often.

In this paper 1 will propose 2 mcthod to quantify the extent to which errors are
“dispersed” or “clustered” in an experiment, or morc precisely, in thc confusion
matrix that describes the results of the experiment. Furthcrrere, I will show that this
method can also be used to quantify Lhe differences between confitsion matrices with
respect to the error classes actually present in them. To derive measures of error
dispersion and diffcrecnce between confusion matrices, classical infoimation theory 1s
used to estimate the association bctwecn stimuli and responses. Most of the basic
thcory presented herc can be found in any textbook on formal information theory
(e.g.. Khinchin, 1957: Sveshnikov, 1968; Press et al., 1988). However, the theory is
partly reformulated to give it more rclevance to speech research. Furthermore, some
extensions are proposed that can help in intcrpreting the results of identification
experiments.

Standard (textbook) information theory has been applied to confusion matrices
before (a famous example is Miller and Nicely, 1955; but scc alse e.g., Blom, 1978).
Applying standard infoimation theory on identification cxpcriments with speech.
results in a quite opaque description of the outcome which can be difficult to interpret
and comuunicatc. Information theory was developed to solve problems of data
transmission and storage. The principal aim in this field is that of economy of coding:
maximizing correct throughput and storage while minimizing channel and storagc
capacity. Therefore, the theory is strong on points likc optimal coding schemes and
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Figure 1: A hypothetical confusion matrix for Butch monophthongs with errors distributed
evenly over all possible respense categories. Lrror-rate = 33.3% (i.e., £ = 1/3), incerrect
responses are indicated io italics. To obtain a noimalized cenfusien watrix, divide 1))
entries by 792. T indicates the row and column totals, for other sy mbols, see text.

methods for data compression and error correction. These areas are mostly outside the
scope of those involved in speech recognition research. In general, when working
with speech, one has fixed coding schemes (e.g., a language) and channel capacities
(e.g., maximal throughput). When perferming identification experiments, one is
interested in the distribution of errors and the differences between experimental
condiuons. On these points, the standard theory ef infermation is weak.

Another point is the fact that both the digital “size” of a symbol sequence (e.g.,
sequences of stimuli or responses) and its infermation content in bits, scale
logarithmically with the size of the symbol inventory that is used to code it. For
example. a binaty (i.e., iwe-value) representation of a random sequence of 16 vowels
has to bc only 4 (and not 8) times as long as the original in order to code the same
sequence. The standard logarithmic measure of information makes it difficult to get a
feeling of how the performance of subjects scales with the size of the expcrimental
inventory. A fermulation of information theory that is linear in the size of the symbol
inventory used would often be more convenient. This is especially urgent when onc
wants to measure the spread of errors in teems of the number of categories used.
Below, 1 will discuss this problem and propose a solution.

This paper will discuss identification experiments. In such expetiments, a number
of distinct stimuli are presentcd to subjects who are asked to label them as belonging
1o one of the categories of a closed set (e.g., one of the vowels). 1t is important to note
that only the sequences of stimulus and respensc labels will be used. Additional
information that can be extracted frem the stimulus souwnds is outside the scope of this
paper, i.c., only the features that are expressed as labels or symbols 1n the experiment
are used. @ther features, like the sex, age, or identity of the speaker (in a vowcl
identification experiment), are ignored. Furthermore. the theory has two levels. On
the level of informatien content, it ignores the way stimuli are mapped to responses,
as long as the map is consistent, i.c., there is no notion of correct or incorrect labels.
However, all basic measures of infertmation arc sensitive to the absolute value of the
error rate. Therefore, at the next level, thc infermation content is normaelized for the
error rate itself. This two-step process enables the scparation of the analysis of
classification ambiguities and the analysis of identification errers.

The relation between the response categories and the stimulus categorics enables
the experimentator to infer the relative importance of differcnt stimulus conditions.
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Figure 2: A hypotbetical confusion inatrix for Dutch monophthongs with a strong response
bias for the mid-epen vowels (ie.. /51 /). Emor-rate = 33.3% (ie. &€ = 1/3), incorrect
respenses are indicatcd in italics. Te ebtain a normalized cenfusien inatrix, divide all
enuies by 792. 7 indicates the row and column wotals, lor other symbols, see text.

This relation between stimulus and response is completely determined by the
confusion matrix which charts fer each cembination of stimulus (frequency = s;) and
response (frequency = r;), the frequency of cembined occuirence (pj). In the
remainder of the paper the nonmaiized {requency ef ecenrrence will be used as an
empuical definition of the probability ef occurrence and both terms will be freely
interchanged. Although a frequency of occurrence is not identical to a probability,
treating the diffcrence between them is outside the scope of this paper.

This papcr will first give an overview of standard infermation theoty (sections 2-3)
followed by a simple exainple which will introduce the notion of error dispersion
(sectien 4). Then follows a section on thc quantification ef the differences between
sequences (section 5) and a rere rigereus detinitien ot the errer-dispersion (section
6). Finally, the theory is tested on several examples from the literature (section 7).
Those who are not interested in the mathematical foundations of the error-dispersion
and errer-differences can skip the sections 2-6 and go straight to the surnmary at the
start of section 7.

2 Quantifying infermatien: Entrepy

The mean information per token of an uncorrelated symbol sequence is generally
quantificd as the Shanon's entrepy of the sequence. The 1nean entropy (H), and
therefore the mean information centent, of a signal with / different symbols, each
with a probability p; of occuiring, is

1
H= Z—Pi'zlog(Pi) (la)

i=1

The mean entropy of a sequence (equation 1a) reaches its maximum when the p; have
a unitorm distribution (i.e., H = “log(I)). This entropy is also the average ameunt et
inferrnatien (in bits) necessary te distinguish thie tokens in the sequence. It descnbes
the mynimurn ameunt ef space per token, nccessary to store the sequence, or the
minimum channel-width necessary to transinit the sequence error-free.
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Tn speech research, these quantities have limited use. Equation la is formulated in
a way that is quite opaque to its meaning for the average identification experiment.
“The entropy, H, is connected te the number of symbols that are required to code the
sequence. In principle, every code that generates sequences with thc same (or a
higher) entrepy can be used to describe a given sequence. The minimum number of
symbols, averaged per token, needced to describe a given scquence is 2H:

I
"J‘H zigl_pr] IUE{pij 1 (Ib)
C b }
]E[l[pl

This quantity, 2H, which is complelely equivalent Lo the entropy, will be called the
effective number of symbols. or the effective number of categories. It describes the
number of symbols out of which the sequence is constructed, weighted by their
importance for determining the information content or entropy of the sequence. The
word effective can be justified by the fact that 2H can be used to predict what fraction
ot the tokens in the sequence arc includcd in the symbols or classes with the highest
(or lowest) frequency of occurrence. Detinc W, as the minimum number of classcs,
out of a total of 7 classes (i.c., symbols), that, combined, contain a fraction & of the
toral number of tokens (@<q<1). Then fer ®<0.5 and /<34, it generally holds that

We S 0-2H o7

(no counter-example was found, a fractional number of “classes” is interpreted as a
fraction of the frequency ef occurrence of the least frequent class). In other words, a
number of - 2H of the highest frequency symbols is responsible for at least a fraction
of & of all observed tekcns. For example, if /=12, 11=2.5, and &=0.5, then the
0.5.223=2.82<3 classcs with the highest frequency of occurrence are responsible for
more than balf of all tokens in the sequence (actually, thc sum of the two highest
frequencies of occurrence and 0.82 times the next lower frequency, togethcr, arc
larger than or equal to 0.5). If either 0e>0.5 or [>34, there are some lopsided
distributions for which the relation does not hold (these distributions have p;~0.25
and p,,,~0.75/{-1).). Smooth distributions of the form p;~i' and pi~q(i"), with r any
number and g>0, ali appear to follow the relation Wg < &-2H if &<0.5, irrespective of
the size of the inventory 7.

In general, the effective number of stimulus and response categories will be close
to the actual number of categories present. The usefulness of equation 1b will appear
when the relation between simulus and response sequences are discussed.

In an identification experiment there is a correspondence between stimulus and
rcsponse scquences, expressed by the confusion matrix. The confusion matrix
contains all information present in the results of an identification experiment. The
confusion matrix can be considered to list the frequencies of occurrence ot stimujus-
response cembinatiens or pairs. When preperly normalized (ie., Ls; = 2t = Zpj; = 1
over all i,j), the mean entropy of the individual stimulus-response pairs ofj the
experiment can be calculated from the confusion matrix. The mean information
content of the confusion matrix is, by definition, identical to the mean entropy of the
sequence of stimujus-response pairs that resulted from the experiment. The entropy of
the confusion matrix H¢y, is expressed in equation 2.
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With: [ the number of stimuius classes, ] the number of response categories, and P
the probabilily of respense j to stimulus i,

The maximum value for the entropy of the confusion matrix (H:p,) can be calculated
by assuming that stimulus and response are independent. ie., pij = sij-fj (using
equation 2):
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With: | the number of sttmulus cateseries, J the number of response categories, s,
the probability of stimulus i, rj that of responsc J, and pij the probability of responsc
J to stimulus 1. Uggjp, 2ad Hgeg), ate the entropies of stimulus and respenses.

When stimulus and responsc are independent, then the entropy of the confusion
matrix is the exact sum ol the cntropy of the stimulus and the responsc scquences.
When the distribution of both stimulus and response are uniform {(maximum cntropy),
then the maximum entropy of the conlusion tatrix is 2leg(1)+*log(J) (fer 7 diffecent
stirnulus and J different response categon’es).

The minimum entropy is obtained with perfect recognition, when pi-j = si and
Pizj = 0 (we assume that 0-210g(0)=0). Then equation 2 reduces to equation 1 for the
stimulus entropy. In the case of perfect recognition, both the cntropy of the response
sequence and the entropy of the confusion matnx are equal te the entropy of the
stimulus sequence, i.e., Hcy = Hggm = HResp

The entropies are retated because the stimulus and response sequences can both be
obtained from the confusion matrix. 1t always holds that: max(Hg;;n- Hresp) < Hoy €

HSlim + HRcsp~

3 Information transmitted to and lost from the responses

The mean entropy, technically the total amount of information present in stimulus and
response sequences, is generally not the desited quantity. 1t contains information that
is independent of the stimulus sequence, e.g. response biases and random "errors”.
What is important is the amount of information from the stimulus sequence used (or
not) by the listeners, as can be extracted from the response sequence. The mean
amount {or rate) of information transmitted from stimulus to response (T, in bits per
token) can be stated as the differcnce between the maxintum entropy possible and the
actual entropy present in Ihe confusion matrix, i.e., mean information transimitted is:
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Figuie 3a: A hypothetical confusion matrix for Dutch monophihongs with a response shifl
towards vowels with a higher F» target. With respect to Figure 3b, &, = 0.859 and 55 =
1.014, Eivor-rate = 33.3% (i.c.. € = 1/3), incormect responses are indicated in italics. To
obtain a nonnalizcd confusion matrix. divide all entries by 792. 7 indicates the row and
column totals, for other sy mhols, see text,

T = Hgyjm+Hgesp - Hom (T 15 Lhe rate of transmission) (4a)

This differcnce is the mean entropy ef thc response sequence that is alrcady
accounted for in entropy ef the stimulus scquence.

The amount of mformation lost from the stimuli is the mean cntropy of Lhe
confusion matrix minus the mean entropy of the response sequence, i.e.:

L =Hewy - Hgesp (L is the rate of transmission {ess) (4b)

This is the mean entropy in the stimulus sequence, not accounted for in the response
sequence, i.e.. the entropy of the stimuli given the respenses er H(stimuluslresponse),
The actual meaning of L is much ciearer when equation 4b 1s written in terms of the
effective number of categories in the response sequence and confusion matrix

(equation 1b):

oL — M _ Effcclive_ number of Sumulus - Response pairs 4b")
2Hiee Effective number of Response categories
Equation 4b’ shows that the rate of information loss can be interpreted as the
logarithm of the mean (effective) number of stimulus categories that can induce each
response. It can also be catfed the logarithm of the perplexity of the stimult with
respect 1O the responses.
The mean, subject-related, “information” added Lo the responses (or gained) as a
result of the errors and biascs in the responses, is equal Lo the mean entropy of the
confusion matrix minus the mean entropy ef the stimujus sequence, i.e.:

G =Hepy - Heipn (G is the rate of transmission gain) (4c)

This is the mean entropy in the response scquence, net acceunted for by the stimulus
sequence, i.e., the entropy of the respenscs given the simuli or H(responselstimulus).
Equivalent to the informatien less, L (equation 4b’), the infotmation gain, G, can be
interpreted as the logarithm of the mean (effective) number of response categories for
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Figure 3b: A hypothetical confusion mauix with a response shif: towards vowcls with a
{ower Fp target. With respact to Figure 3a, & =0.859 and §; = 1.014. Eivor-rate = 33.3%
(i.e., £ = 1/3), incorrect respenses are indicaled in italics. Te eltain a normalized confusion
matrix. divide all cniries by 792. T indicatcs the rew and column tetals, for other symbels,

see lext.

each stimulus or the logarithm of the perplexity of the responses with respect to the
stimuli.

The cttfect the distributien of the errers has on the values of L and G are
demonstrated in the (bypothetical) examples of Figures 1-4 whuch all share an error
rate of 1/3. In gencral, the larger the number crror categories in the confusion matiix
is, the higher I. and G will be. The more uneven the distribution of responses and
stimuli, the bigher L respectively G will be (compare L and G in Figures 2-3).
However, L and G are also sensitive Lo the absolute error rates. In Tables 1 and 2 at
the end of this paper, pairs of confusion matrices with different error rates and
equivalent distributions of the eavers do show quit large differences in the sizes of the
transmission loss and gain.

Equations 4a-¢ can be combined to obtain:

HRCSP =T+ G (46)
L=G+ Hslim S HRCSP (40

In equation 49, L. measures the amount of stunelus-information that was lost {com the
responses, i.e., the degree 1o which the stimuius sequence canne: be reconstiucted
from the response sequence. In equation 4c, G measures the amount of stimulus-
independent entropy that was added Lo the responses by Lhe subjects, i.e.. the degree
to which the response sequence canne? be predicted from the stimuli. Note that T
decreases and both L and G increase when the error rate increases (cf. Table 1 and 2
at the end of this paper).

Obviously, the rate of transmission, T, depends on the amount of information in
the stimulus, i.e,, the number of input classes. 1t 1s casy to see that, for a typical
identification experiment:
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Hsunx"HRcsp"HcM"zlog(N umber of Input Classes).

“This means that all entropies scale with the logarithm of the number of input classes.
As a consequence (equation 4a) the transmission rate, T, also scales with the
logarithm of this number. However, because the entropies of both the confusion
matrix and the stimulus and response sequences scale with the same number
(equation 4b), the rate of transmission /ess. L. and gain, G, do not scale with the
number of input classes. They only depend on the error-rate and the pattern of the
errors. This is also obvious frem 1he fact that L and G can be described in terms of the
numbcr of response categories per stimulus category or vice versa (equation 4b'). In
general, any change in the stimulus entropy will be compensated by an equivalent
change in the cesponse entropy.

A small example will expiain this principle. Consider a vowel identification
experiment with 5 tokens, /y i [ e £/ and

Hgim = NResp = 2108(5).

In atypical experiment we will see Hep22log(5). Now we extend this experiment and
add the tokens /u 0 9 o a/ after which we see a comparable pattern of errors. We now
expect that, in a first approximation, the new entropies will be,

H g = H'gesp = 210g(10) and ' cp22l0g(19).
e
H’ = M + 2log(2)
if the new tokens *“behave™ like the old ones. Mow the new rate of transmission is

T= H'Stim"'H'RcSp‘H’CI\-l ,
= Hgtim + 2108(2) + chsp + “log(2) - Hepng - 2108(2)

and therefore,
T =T +2log(2).

That is, the rate of transmission scales as the entiopies themselves. However, the loss
of information is

L‘ = H.CM - H’mp = HCM + 2103(2) - HRcsp' 2108(2) = HC\J B HRes

and, therefore. in a first approximation, we expect that L™ = L, je., the loss of
information does rof scale as the entropies themselves. The same holds for the gam of
inforination G.

4 An example

The theory described in the preceding sections will be illustrated with a simple,
hypothetica! examgple. In this example two assumptions will be made: First, the
correct responses are evenly distributed over the stimuli, i.e., each stimulus has the
same error-rate. Second, the errors are evenly distributed over a limited and fixed
number of response Jabels (c.f., Figures 1, 3a-b), i.c., for each stimulus the errors are
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limited to some of the available response categories which all get the same number of
responses.

~ The general error-rate will be indicated by €, the rate of correct responses by (1 -£).
The number of erroneous labels used for each stimulus, also called the dispersion of
the errors, is dg {e.g., if dg = 2, an /5/ type stimulus could be confused with /o o/ with
equal probabilities). For cxample, d; = | | in Figure L. The value of d; wouid have
been equal to | in Figures 3a and 3b if the /4/, respectively the A/ stimnuli woukd have
been omitted.

Under the above assumptions. equation 2 reduees to (assume pj—; = (l-€)-s;; for

each i: dg responses have pjzj = €/dgs;; and the others have pj+; = 0):

Haw =D =4, s, oi’log(s, -di)-s‘-(l - &) log(s, - (1 - €))

1=| s

- flvfs' £ .[’log(si )+’log(£)J— s, - (1 =€) (*log(s, )+ log(l - £))

=) s, (e+(1-¢&))log(s ) +s - té?log[j—) -s,-(1- €}’ log(1-¢€)

I ! 2 ' (5a)

=2 =S Iog(s|)-— & Iog d + (- ¥ log(l - &) zs'
] . 5

= ll.‘inm i (l - 5}2 iOg(] - E)— 8‘2 IOE[ZT;)

Thus:
G =Hey = Hgm
= Hgjp = Hyy = (1- E}?I.g(l % e’ log(diJ
(5b)

=—(t- e)’ log{l - ¢)- g? log[f]

L~ HSNH'HW‘("€)z|0g(l“€)-€-zlog{d£]
$

With: 1 the number of siimuli, si the probability of stimulus i. £ Es 1he enor-cate ard
ds the number of erroneons response calegorics pee stimulus or the error-disgersion.
Equalion 4 was used (o denve 3b.

The amount of information lost and gained due to the errors (g) in the limit of dg = 1
is (i.e., only a single error category for each stimulus):

L =G =-(1-£)%log(1-€) - €2log(e) = H,
This quantity is called the "entropy of the error rate” (Hg).

The approximittion of the model used to derive equatien 5a-b is only a crude one
(below we will derive the rclevant formulas for the general case). We will
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Figure 4: A hypothetuca) cenfusien matrix with a complete loss of the fong-stiort distinction ~
for Duich monophthongs. Error-rate = 33.3% (i.e., € = 1/3). incorrect responses are
inditaled in itelics. To obtain a normalized conlusion marix. divide all entrics by 792. 7
indicates the row and column totals, for otber symbols, sec text.

demonstrate this “crudeness” by comparing an exact calculation with the
approximation of equation Su-b.

Assume that under certain conditions, long and short vowels cannot be
distinguished (see tigure 4). In Dutch there are 12 monophthongal vowcls, 8 of which
are part of long/short vowel pairs. In a balanced presentation with otherwise perfect
identi(ication the loss ol the longfshort distinction introduces theoretically 33.3%
erwors (4 out of 12 on average). According to equation Sb this amounts to a gain of
information of G =0.915 bits (dg = 1).

We can calculate the exact gain of information frem cquation 2 (see figure 4).
Both stimu)us and response sequences have a uniform diswibution and therefore. both

the stimulus and response entropy are
HSlim=l'chsp=2|Og( 12) bit.

Four unpaired short vowels contribule a 1otal of (66/792 = 1/12):
4-(-1/12-2log(1/12)) = 4-/12:2l0g(12)

from 4 cells in the confusion matrix. The cight confused vowels from long/shot pairs
contiibute (33/792 = 1/24):

16-(-1/24-210g(1/2-1/12)) = 16/24-(log(12)+210g(2))

from 16 cells in the confusion matiix (unbjased Jong/short confusion). This adds up
to:

Hem = Zlog(12)+2/3-2log(2) = 2log(12)+2/3 bit

for the confusion matrix. Therefore, the information gained or lost due to the
confusion is:

L = G = l‘icnl - l‘lslim = 2/3 = .6‘7 blt
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A gain or loss of information of this size would correspond to a “‘random™ error-rate
of 18% if we use equation Sb {with d.=1).

" In the above examples with long/short confusions we see that the approximation of
equation 5 over-estimates the loss of information when the errors are not distributed
uniformly. Now equation 5b can be used to express the gain and loss of information,
G and L, in terms of an effective number of error categories. In general, the results of
an identification experiment will show a variable cenfusion between response
categories. Neither the gain, G, nor the loss of infoimatron, L, is very transparent as to
the pattern of errors and both depend on the size of the eiror rate. The number of
response categories, “d;” in cquation 5, over which the errors are evenly distributed is
a measure of the spread of the errors in the confusion matrix and is independent of the
size of the error rate. This number, d., can be calculaied from the error-rate, €. and the
gain (or loss) of mformation, G. as given in equation 3c:

H
L Leliogii-e; —Rew
e N e e (5¢)
S =8 Ssem
, =
'?‘ lg Resp.
dsw—%.2_=_€__é_'2_‘_2HE .,
I-3 ¢ -5 ¢ |

[o which dg is the clfective nuinber of ciror categories, € the errer-rate, G the gain
and L e loss of information and e the hasc of the natural Jegarithm (e =
2.71828...). The upproximation of 5d is Quite accurate, te within 1% il £<8.4 and 10
within 10% if£s0.8.

Using Sc on the result of our example with a complete loss of the long short
distinctions (figure 4), i.e., € = 1/3 (33%) and

L =G =2/3 (bus).
results in
d_ =0.593.

The fact that dg<1 illustrates the extreme clustering of the errors in the confusion
ratrix in this imaginary experiment. in general, dg in equation 5 can be interpreted as
the effective number of eror classes per stimulus token.

5 The difference between confusion matrices

Generally, it will not be sufficient to compare the entropies between two experiments.
It is often also important to know whether there is a real difference between the
distributions of the responses. When listeners in two experiments use the same
information, und respond in identical ways, then combining the responses from these
two experiments should not change the entropy of the confusion matrix, at least after
differences in stimulus and response sequences between both experiments are
discounted.
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It can be shown that the entropy of a superposition of N sequences, Hpggjed- 1S
always targer than oc equal to the mean entropy of the sequences, H. More specific,

Hpo 1ed €quals:

N N )
k=] k=1
or
le,“mﬂ,,=ﬁ+ir1-H_tl (6b)
with
N N N 4
0sn=l, X o, =1, H= Yay -Hy , and erz X -a Cloger
k=1 k=1 k=1

If oy, = I/N then 34 = 2logN.

This means that the entropy of the combined seguences or confusion matrices equals
the (weightcd) mean of the individual entrepies plus a fraction, 1-Hg. Here 1 is the
fraction of the tokens of the pooled sequence that can still be attributed (plausibly) to
one of the original source sequences (e.g., confusiens that are found in one
experiment bul not in the others}.

If ufl sequences are realizations of the same "process". i.e., Pxi=Ppooled.i then 1= 0.
When the tokcns of all scquences exclude each other (i.e., py;'py = [F?"ur afl i and k=l)
then = I In all cases, N will be at least as large as the combined contributions of
tokens that are unique te each experiment, i.e., M = Lppgoled.i SUMmed over all i for
which py;#0 for only a single k.

The parameters Mg m, NResp> a0d Ncm describe the results frem combining
respectively, the stimulus sequences. response sequences, and confusion matrices of
different “experiments™. For these, the same relations hold as for the corresponding
entropies:

maxX(Ngim. Nresp) <Nom S Nstim*HMResp:

For the confusion matrix, the paramecter 1c,, 15 related 10 the error-rates of the
experiments. As lhe correct entries in a confusion matrix de not normally differ
belween expcrimenis, Ncyy Measures the differences between the errors in the
experiments. If the cerrect responses of the experiments overlap. then Ty < Epgoled:
with the maximum reached when all errors in the individual experiments are different.

When the confusion matrix of the (virtual) "combined” experiment is calculated,
the mean information transmitled, lost and gained from stimulus to response
becomes:

prmd = T + (nsum + nlksp = Tlem ) Ha

(7a)
T + (nﬁam o A) : llu
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(7b)

Gpookd =G '*'(Uc» 3 HSum)' Hu

(7b)
= G+)’-Ha

ln Wll’Ch- l =T|CM - TIRCSP al‘ld Y= IICM - '\Slim- 0= }.., Y,<. | and ’}, Ev and a
we the weighicd gverages of Dve ransmission rate. informau’on loss. and gain.
corresponding to H in cquation 6.

This implies that the pooled infoimation loss 1s the (weighted) mean information loss
from the individual experiments plus a factor (A) that includes dffereaces in response
(ﬂgesp) biases and differences in the way the sub jects handled the stimuli in the two
experiments (1icp? The combined result of these fractions. . is related 1o the error-
rate of one experiment with respect te the othcis, in a sense it is a weighted sum of the
fraction of “"errors” that are unique to each experiment.

For normal experiments, in which the siumulus sequences are generally matched
when experiments are compared (i.e. Tggimulus=®): 7« can be understood as the
information about the differences between confusion matrices of the experiments thal
cannot be deduced [rom the corresponding response sequences alone. For any set of
experiments, i A<Ngym. the experiments arc to a large extent incomparable, [f
A>Tgiin, the experiments can be compared, but they arc not identical and information
is lost by pooling them (i.e., mixing all responses).

6 Krror dispersion

The gain and loss of information (G and L.) in an identification experiment can, in
general, be attributed to the identification errers. The effect of errors on the size of the
infoimation gain and loss can be split into two "independent” contributions: The size
of the error-rate iself, £ {e.g., Tables 1 and 2 below), and the distribution of the
errors (e.g., Figures 1-4), All other things being equal, if the ertor-rate increases or
the errors arc disiributed over mere confusions, then the gain and loss of information
will also increase. This dependence of G and L from the eitor-iate makes these
quantities not well suited o describe the effects of the dispersion of the ewvors. The
1elation between G, L, and the etror rale can be formalized by spliiting the confusion
matrix into a diagonal matrix with only the correct sesponses and an off-diagonal
maltrix with only the iacorrect responses. The coiresponding entropies are called
Heorer and Hggeor. The entropy of the original confusion matrix Hepy can be
expressed as a combination of the corrcct and incorrect responses and becomes (using
equation 6, with N =1, &) = I-€, 0y = € and H = Hg):

Henm =(1-8) Heopreer + € HEgror + He 8a
To which: Hopm is the entropy of the confusion matrix, E is the error rate, and
Hcorrect 30d BError 07e the entropies of, rcspectively, the diagonal and off-
Jiagonal (cotrect and incorect responses) sub-matrices of ihe confusien mair'ik. The

cntropy of the creor rate is Hg = «( 1-~£)zlog(l»€) ~ Ezlog(s]

In what follows we will concentrate on the infermation Joss, L. Equations with the
information gain, G, instead of the information loss can be derived using equation 4f.
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The information loss, L. can be expressed as a combination ef correct and
_ncorrect responses using equation 4b:

L =Hcwm = HResp

8b
=(1-¢€) (Hf,‘unem = HR{:SP) tE [HEm:-r o HRBSD) +Hg

As equation 8a. but with: L is the information Voss and HRegp is the envopy of the
responsc scquence

In equation 8b we can see that the infermation loss L is split into two contributions. a
contribution that depends only on the entropy of the error rate (Hg = -(1-€)-?log(1-€)-
€-2]oge) and a contribution that also depcnds on the distribution of responses over the
confusion matrix.

The “total" responses will be dominated by the correct responses. As a result Hye,
and Hgorrect Will be almost equal and (1-€)-(Hgrree-Hpesp)0- This means that the
part of equation 8b that depends on the error distribution mll be dominated by the
lactor &(Hgg orHresp)- The part between the brackets is independent of the ercor rate
|tself it only depends on the distribution of the eirors. It can looscly be interpreled as
a "mean error entropy per response categery”. Note that the factor (thor Hgesp) has
the form of equation 4b. i.e. of the informatien loss L. Hewever, it is nof the
information loss of the off-diagenal (error) matrix because it uses the respense
entropy of the cetnplele cen fusiorn matrix, instead of the response entrepy of the off-
diagonal (error) matrix.

Define:

B (l - 5) ) (l [Corrccl - l'lResp_] +é€- [HExror - HResp)

= Hrror = “Resp

In which: £ is the error rate. HResp is the entropy of thec respense sequence, and
Fleoecect and Hg cqr @re the entropies of, respectively, the diagonal and off-
diagonal (correct and incorrect respenses) sub-matices of the confusion matrix. fd
mcastures the cffect of respense errors on the loss of information. (the ceircsponding
gain cnlity 18 called g,)

The quantity £, is determined by the distribution of the incorrect responses. This ts
used to define the error-dispersion d, (using equation 8b):

L=g-¢4 +H,
fa=—%— )
[ j 5 L+ z_log{ 1-g) ) ?
d, = 2% : 2_— )
¢ = = ==
R
A

As equauon 9y but witly: L is the information loss rate. d_ is the eivor dlspersmn in
cITecitve error catcgories per response category, Hp=—¢- 2 log(e) — (1-€) log(L.c) is
the "entropy” of (he error-rate
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When equation 9b is compared 1o equation 5b (section 4). then it appears that £, is
thc excess information loss due to more than one error category per response (L-Hg).
averaged over the errors (i.e.. 1/€). The last line of equation b is identical to equation
5S¢ and can be approximaled by equation 5d (using L instead of G).

Y
L (9c, see 5d)

P

d e
¢ ]_%

In which d, “isthe cffcctive number of caror calcgories per @spansc calcgory, £ the
ermor-rale. L the 10ss of information and ¢ the base of the natural logerhm (e =
2.71828...). The appreximatien of Sd 1s quile accurale. 10 within 1% if €90 4 and (0
within 10% if €50.8.

In equation 9b we see that the error-dispeision per response category, d,, calculated
from equation 8a is identical to the number of error categoiies per stimulus category,
d;, in the model calculations of equation 5, but now using L instead of G. This
indicates that the eiror dispersion calculated according to equation 8 and 9 can indeed
be interpreted as an effeclive number of error categories per response calegory (d;,
using L) or stimulus category (dy, using G). This can be shown more explicitly by
rewriling d, using equation 9a and b, in:

{(1-¢€) {I Icomen —H Rcsp} +E- (l imor —HResp
£
(I-¢) L0

£d 0 ”CWI'C(‘I £ 21 IE]T()r

By =

ZHResp 2H Resp

Equation [0 implies that d, equals the effeclive number of correct stimulus
categories per response category times the number of incorrect stimulus categories
per response category, nonnalized for the error rate. Correspondingly, dg is the
(normalized) effeclive number of correct response categories per stimulus category
times the number of incorrect response calegories per stimulus calegory. Both
products measure the simultaneous dispersion of the eriors along the stimulus and
responsc “direction”, and both are maxamal if all stimuli and 1esponses have the same
error rate. Note that neither the stimuli, nor the Tesponses are requized to have one and
only one correct calegory.

It should be emphasized that the model used to derive the equations 5a-c in section
4 is only an approximation for any real identification experiment. In contrast,
equations 8-9 do ner depend on approximations. The value of the error dispession, d,
or dg, is an exact measure of the contribution of the error distribution to the
information Joss or gain relative to the contribution of the errors an sich.

In FFigures 1-4 and Tables I and 2, examples are given of d; and dg for some
hypotheticaj and 1eal data. In the Figures 1-4, there are 12 evenly distributed stimuii
and, respectively, 132, 33, 11, and 8 error categories in the confusion matrix. The
corresponding values of d5 would then be expected to be close to 11, 2.75, 0.917, and
0.667, respectively (i.e., number of confusions / number of stimuli}. The actual values
are 11, 2.73, 0.899, and 0.593. The increasing discrepancy between the expected and
the aclual values going from figures 1-4 is due to the increasingly uneven distribution
of the correct responses, An uneven distribution of correct responses reduces the error
dispe tsion. The elfcct ol the distribution of the responses on the error dispersion can
be seen when d, is compared to d, in Figure 2 and to a lesser extend in Figures 3a and
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b. In thcse figures, the stimuli are distributed evenly. but the respenses arc net. In
_thesc cxamples this means that the entrepy of the respense sequcnces 1s less than that
“of the stimulus sequences. This resuits in markedly higher values for d, (c.f., equatien
10). If the entropy of the response sequences is higher than that of the Sstimulus
sequences, then d; < d; {(e.g., there are more response possibilities than stimuli).

When confusion matrices are combined, i.e., experimental results are pooled, an
expression for the new error-dispersion of the pooled 1esuits can be derived using
equations 7b and 9b.

me,=i(ak ‘Ly)+1-H, (11a.cf.7b)
k=]
Epoolad * {pooled +HE —Z(GL ep-6 + oy -Hg )+A H, (11b. cf. 9b)
k=l
Define:
S A Hb‘pm-m ~H,
Epooled  Epooled He

S )i e ll"’pwkd B Hs

L]
Erx:n]ml spoblcd L. (x

Then (substituting @y = @y Ex/Epneled):

N
tvpoolcd=2((pk-fk)+(5,'ﬁa (1lc)
kel
2
sH N s [N K
drm.m =26 a. l-[(dr,)vk «NT- l_[dr‘ (11d)
k=1 k:l
Correspondingly:
1
sm_ N v 5 (N N
¢ =% I (dﬂ;) e s'[ it dsk] (Ile)
with:
Qg &y N
o =25 T, =Y (e He,).
e(‘Wied k=1

The proportionality of 11d is exact when &k=}/N and g =€pqp)ed: i-¢.» When all
malrice s are summed unweighted and all cirer-rates are equal.

Frem equatjon 11 it can be concluded that the error-dispersion of the combined
confusion matrices (dpgolcd) can be interpreted as the geomerrical average of the
individual crror-dispersions (dy). weighted by their contribution to the total error-rate
(tp), times thc number of matrices N (i.e., "experiments”) te the pewer of
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=14 =i |/lig |7 €
) Br [l [ispoolcd 8] 0‘} pooled

or

5, = [y-[uﬂwm —Hr].-' ua]fepm.ﬂd..

The only factor in equation i1d that is independent of the error-rate is & (which is
“normalized"” with respect to €). This d indicates the effective fraction of the pooled
ercors for which the error classes do not overiap between confusion mairices (cf. the
interpretation of A in section 5).

Figures 3a and 3b give an example of how the differences between confusion
matrices influence the value of &. The errors in both confusion matrices do not
overlap, there is not a single shared confusion. As a result, §; = 1. 1.e., a/l eirors are
different. The value of §; is even somewhat larger than 1 due to a small difference
between the correct responses in both confusion matrices. However, the value of
8, < | because the respenses in both confusion matrices do not everlap completely (as
do the stimuli). Any differences betwecn thc response sequences are always
discounted from the value of &,. The same holds with respect to diffcrences between
stitnulus sequences and the value of 3.

7 Examples: Error dispersion in vowel identification experiments*

The crror rate does et describe the distribution of the crrors in the confusion matrix.
It is possible lo give a quantitative description of the distribution ot the crrors using
st-andard informition theory. The infermation content, i.e., the entropy, ot a confusion
matrix (CM) can be described with thrce numbers. respectively, the entropies of the
stimulus sequence (lig;m): the response sequence (H Resp)- and the confusion matrix
itself (Hey,):

Heyj = el — 2log(N) (122)

Hggim = 15— - “log(N) (12b)
] .
Y -R;%log(R;)

Hpesp =1 = — 2log(N} (12¢)

*Readers can test 1heir ewn examples on the World Wide Web
URL: kupi/ionsg3.letuva.nl 808 1/Seryice/EirorDisparsion. bumnl
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Figuee S: LError rale tor vowels from four speakers from Koopmans-van Beioum
(1980). Vowcels were uttered in isolation (1), in monosyllabic. isolaled words (W), and
in unsteessid syllables in free conversation {C). The filled bats indicate the resulls for
the individual speakers, the grey bars (or all speakers pooled. The er-or rate for vowcts
ullered in feee conversation differs statistically significant from those uttered in
isolation and muoesyllabic words (Wilcoxon test, p<0.03, two-tajled). The error rates
ol lhe Jatter two do not difter statisu'cally signilicant from cach olher.

[n equation 12a-e, S; is the number of stimuli in class i, R; the number of responses in
class j, P;; the number of stimuli in class i that elicited responses of class j, and N the
total number of stimulus-response pairs.

Several neasures using the mformation content of the confusion matrix and
stimulus and response sequences are in use (c.f., Miller and Nicely, 1955), e.g,,

T =Hg i + Hresp - Homs

TmStnm'

L = HCM . ]'IRcsp»

G =Hcm - Hsyme
All these measures are sensittve to the absolute error rate. €. However, it is possible to
“normalize” the L and G measures in such a way that they become insensitive to the
absolute error rate. When these normali1zed measires are transformed from the usual

Table |: Confusion maurix and perfemance measures for tdentification of vowel realizations
presented wilh and without their natinal centext Takco from Kuwabara (1985)

V# presentation (e =209%) VVV  presemalion (e=3.8%)

L =0.825, dp= 1329 L=0271, d.=1.300 5,.= 0.068
G =0.814, de = 1.281 G =0.273, dy=T,311 d. = 0.134
i [ A 0 u i e A 0 u total
i | 600 200 776 24 800
c 96 512 6 13 13 26 601 13 640
A 144 562 14 713 7 720
0 45 392 123 6 11 515 28 560
u 14 466 5 475 480
total | 696 850 613 433 602 808 625 724 533 310 3200
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Figure 6: Lrror dispersion for vowels {rom feur speakers frent Koopmans-van
Beinum (1980). Vewcls were uttered in tsnlatien (1), in monosyllubic, isolated words
(W). und in unstressied syllables in {ree conseersation (C). The filled bars indicate the
results for the individuul speukers, the grey bars for all speakers pooled. The
differences between the ercor dispersions arce statistically significunt (or all conditions
{Wilcoxon test. p<8.05. two-tailed).

logarithmic form to the lincar form, the resulting ineasures represcit the "effective
numbecr of error ¢lasses”, or errer-dispersion. In the previeus sections, 1 proposed two
measures of error dispersion, dg and d,. When € is the errer-rate, and He= —&2log(e)
(1-£)-2log(l1-€), then:
(ﬂm&n)
2 £

d, = —— (13a)
)

is the effective number of eiror categon es per stimulus and

Table 2: Conlitsion matrix and perlormance measures for identfication of vowel rcalizalions
prescated with and without their naturasl centext. Taken from Huang (1991)

#V#  presentation (£ =29.1%) CVC  presentatien (£ =20.7%)

L = 1.223, d,=2.312 L =0.965, d. =2.167 8. =0.019
G = ].243, d, =2.426 G =0990, = =2.350 §. = 0.023
[ 1 ¢ E A 1 1 e E A Lotal
i 706 106 33 3 18 764 65 23 1 7 860
t 10 693 14 S8 165 17 756 2 062 103 940
e S1 150 834 132 33 47 107 885 135 . 26 1200
£ 3 52 45 542 243 1 22 20 640 202 885
A 2 33 4 175 446 4 24 0 71 561 6608
tot) | 772 1028 930 910 905 233 974 930 909 &899 4545
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Figure 7. Error rates for vowets frrem three speakers from Van Bergrern (1993). Yowel
rculizalions were tiken from monesyllabic words uttered in isolation (I), io stressed
(CS) ind unstressed (CU) syllables of coolent werds. and in funcu'on words (F).
Syllables were uttered with and without sentence accent (+/- Accenl see text). The
filkd bars indicate the results for the individual spcakers, the grey bars fiyr abl speakers
pooled. Phe diffcrence in errer rates between vowels taken from siressod syllahles in
contenl words (CS) and tunction words (F) differ statistically significantly (ignering
+/<Accent, Wilcexen lest, ps0.05, two-lailed). The other differences are nol
stalistically sigoiticiant. ‘The presence or absence of sentence accent huil no eff ccl,

1( Hos o ]
i (13b)

; 2{ I:" )

is the effective number of erTor categories per response. In Figure | 4. examples are
presented of hypothetical confusion matrices. All confusion matrices have the same
error rate of /3, but different distriburions of the errors over the stimuli and
responses. As a result of the differences in the dismbution of the errors, the error
dispersions are different. Whenever the disteibution of stimudi and responses are
different, the values of dg and d, are different for a single confusion matrix {c.f.
Figures 2 and 3).

There also is a measure, . that describes differences in the error categories
berween confusion matrices. In the fellewing the symboi H indicates the mean
entropy of the N experiments. Furthermore, H' indicates the entropy and €' the efror-
rate of the N pooled experiments (i.c., the combined confusion malrices).
Furthermore, it js assumed thalt all confusion matrices are weighted equal {if not, use
equation 11). The error-difference of the responses, &, and stimuli, &g, are defined as:

5 = (HIITM ~-H trm)"(HIH“F -H Rtsp) B (HIE -H E) (14a)
r ,[._" i 8"2 IOg(N)

A,

.
1]
[
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Figure 8: Error dispersions fur vowels from threc speakers from Van Bergemn (1993).
Vowel realizations were taken firom monosyllabic words uttered in isolation (I), in
stresswd (CS) and unstressed (CU) syllables of content words, and in function words
(F). Syllables were uttered with and withou( seatence accent (+/- Accenl sec text). The
(illed bars indicate the results for 1he individual speakers, the grey bars (e all speakers
poolcd. Except for (he results fur vowels uttcred in isolation (), are all differences
between syllable types are siatistically sigmf{icant (ignoning +/—Accent, Wilcoxon (est,
p<0.05, two-tailed). The presence or abscnce of sentence accent had no effect.

b‘\ - [H;TM _ﬁ ['!M]_(H.l-“ufim = I_i Htim)_ [HIE -H .E_‘)
. € M E“ZIGE{N]

(i4b)

The error-differences can be interpreted as the effective fraction of the errors that is
outside the shared error categories, corrected for overall differences in the distribution
of stimuli or responses. An example is given in Figures 3a and 3b. All confusions are
diffcrent between thesc two confusion matrices, so d; = | (note that the stimulus
distributions are identical). Due to the differences belween the distributions of the
responses, which are discounted, the value of o, < 1.

The measures, discussed above, have been calculated for data from papers
concerning vowel identification. Papers concerning two questions in the field of
vowel identification are discussed. The first question is about the effects of the
presence of context on vowel identification. The second question is aboul the effecis
of siress and (informal) speaking style on vowel intelligibility.

Presenting vowel segments in their “natural” contex! enhances there intelligibility.
Is thts the result of a change in the kind of confusions that appear, i.e., the listeners
“home in” on the correcl vowel and there are less possible responses for each
stimulus? Or is 1t the result of the listeners being better able to distinguish between
ambiguous pairs. i.e., the confusions arc the same, but the listeners can better select
the correct response?

These questions werc touched in the studies of Kuwabara {1985) and i{luang
(1991, 1992) which will be discussed herc. They used vowcl realizations excised
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from trisyllabic VVV sequences (Kuwabara, 1985) and CVC syllables (H{uang, 1991,
_1992) and presented them in isolation as well as in their original, syllabic, context.

Kuwabara (1985) used trisyllabic VVV sequences excised from short Japanese

sequences. The vowels could be any one of the five Japanese vowels /i ¢ a o W/ but
the mcdial (target) vowel was always different from the two flanking vowel. Four
subjects were asked to label the realizations (medial vowel only) as one of the five
Japanese vowels. Each tokcn was presented five times. Prescnted in isolation. the
error-rate was 20%. Prescnted in context. the crror-rate was only 4%. There were an
equal number of stimulus/response pairs in both experimeants.
From the confusion matrices in Table | it can be calculated that the error dispersions
for both conditions are almost equal, d = 1.3, and the diffcrences arc small, 8 < 0.13.
Thus, despite the cnormous differences in the ervor rate, the distribution of the errors
seems to be fairly similar, whether the incdial vowels were presented with or without
context. This mcans that thc diffcrence between the presentation of vowels with and
without context is not so much the type of confusions, but the cxtent to which they are
reported.

Huang (1991) presented consonant-vowel.consonant syllables to subjects as well
as the excised vowels [roin these svllables (i.e., without the consonants). The results
from feur speakers were pooled in the confusion matrices presented in Table 2. Using
the “raw’ error-rates from the individual speakers it is possiblc to show that there is a
statistically significant diffcrence between the error-rates from presentation in context
and presentation without context (Wilcoxon test, p<0.05, two tailed). No statistical
significant difference can be found [or the error dispersions.

Again, from the confusion matrices it can be calculated that the crror dispersions
for vowels presentcd with and without context are alimost equal, d = 2.3 and the
differences simall. 8 =~ 0.02. Theretere, it secins that the presence of context does help
in recognilion, but not by rcducing the number of different confusions, but by
reducing the number of times each confusion leads to an incorrect answer.

This inference, which scems obvious when inspecting the error-dispersion and
difference, is difficull to jusuty by other means. A visual inspection of the confusion
matrices could hint towards the role of context in these experiments, but this rele
would be hard to quantify.

With regard to thc second questi'on, about the influence of stress and spcaking
style on vowel Intclligibility, two studies are discussed, one by Koopmans-van
Beinum (1980) and one by Van Bergem (1993).

Koopimans-van Beinum (1980) prescnted vowel realizations {rom [our speakers to
listeners. She used vowels uttered in isolation, from monosyllabic words uttcred in
isolation and [rom unstressed syllables from free conversation. The resulting crror
rates and error dispersions are presented In figurcs 5 and 6.

Van Bergem (1993) presented vowels taken frem idcatical sylfables pronounced in
1solation, as the stressed and unstressed syllables of content words and as a function
word. All words, cxcept thosc pronounced in isolation, where part of carrier
sentences. The three speakcrs werc unaware of which word was the target word.
Sentences were structured to place a sentence accent on or next to the target syllable
(unstressed syllables and function words cannot carry sentence accent) and,
altcrnatively, the sentence accent was placcd away [rom the target sylfablc. For each
syllable there were 7 realizations for each of the three speakers. The resulting crrer
rates and error dispersions are presented in figures 7 and 8.

For both experiments, the crror dispersien can separate the conditi'ons better than
the error rate. Using the crror dispersion, there are statistically sigmificant differenccs
between all conditions (Wilcoxon test, p<0.05, two-tajled). The only exception are the
Isolated vowels of Van Bergem (1993), mostly because therc were only tiiree values
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availabie. Using only the error rate, it is not possible to decide, based on rhese data,
that there is a difference in the identification of vowels caused by speaking style or
word stress/syllable type. But by using the etror dispersion. it can be inferred that
changes in stress and speaking style change the number of ambiguities as well as the
overall inteliigibility.

8 Conclusions

From the examples given it can be seen that the eutor dispersion is an independent
measure of the spreading of the errors over individual stimulus and response
categories. It is possible to use the eiror dispersion to distinguish response patterns in
conditions where the error rate does not distinguish them, just as it is possible to spot
equivalencies when the error rate indicates only distinctions.
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