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Abstract 
In this paper a me1hod is proposed to derive the effective number of different error 
classes from an identification experiment. combined with a method to de1ermine the 
(non-) overlap in error classes between cxperimentS. Both methods arc based on standard 
information theory. refonnulated to give more transparent results. Some examples from 
the li1erature arc added at the end of the paper. 

1 Introduction 

Error-rates arc generally used to sununarize the results of identification and 
classification experiments with speech. Contrary to what its name suggests, the error­
rate is not so much about errors but about correct responses. Although there is 
generally only a single correct response to a stimulus, there can be many incorrect 
responses. The way the errors are distributed cannot be read from the error rate. As an 
example, I have included some hypothetical confusion matrices in this paper (Figures 
1-4) which all share the same error rate, 33.3%, but have very different structures. For 
many purposes, it makes a lot of difference which of the potential errors a.re realized 
in an experiment, and how often. 

Tn this paper I will propose a method to quantify the extent to which errors are 
"dispersed" or "clustered" in an experiment, or more precisely, in the confusion 
matrix that describes the results of the experiment. Furthermore, J will show that this 
method can also be used to quantify the differences between confusion matrices with 
respect to the error classes actually present in them. To derive measures of error 
dispersion and difference between confusion matrices, classical information theory is 
used co estimate the association between stimuli and responses. Most of the basic 
theory presented here can be found in any textbook on formal information theory 
(e.g., Kliinchin, 1957; Svcshnikov, 1968; Press et al., 1988). However, the theory is 
partly reformulated co give ic more relevance to speech research. Furthermore, some 
extensions are proposed that can help in inccrprcting the results of identification 
experiments. 

Standard (textbook) information theory has been applied to confusion matrices 
before (a famous example is Miller and Nicely, 1955; but sec also e.g., Blom, 1970). 
Applying standard information theory on identification experiments with speech, 
results in a quite opaque description of the outcome which can be difficult to interpret 
and communicate. Information theory was developed to solve problems of data 
transmission and storage. The principal aim in this field is that of economy of coding: 
maximizing correct throughput and storage while minimizing channel and storage 
capacity. Therefore, the theory is strong on points like optimal coding schemes and 
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u 0 :) a a e e I I v � ce T 
LI 44 2 2 2 2 2 2 2 2 2 2 2 66 
0 2 44 2 2 2 2 2 2 2 2 2 2 66 
:) 2 2 44 2 2 2 2 2 2 2 2 2 66 
a 2 2 2 44 2 2 2 2 2 2 2 2 66 e = 1/3 
a 2 2 2 2 44 2 2 2 2 2 2 2 66 
e 2 2 2 2 2 44 2 2 2 2 2 2 66 L= 2.071 
e 2 2 2 2 2 2 44 2 2 2 2 2 66 
I 2 2 2 2 2 2 2 44 2 2 2 2 66 G = 2.071 
I 2 2 2 2 2 2 2 2 44 2 2 2 66 
y 2 2 2 2 2 2 2 2 2 44 2 2 66 dr = l I 
fl 2 2 2 2 2 2 2 2 2 2 44 2 66 
ce 2 2 2 2 2 2 2 2 2 2 2 44 66 ds = l l  
T 66 66 66 66 66 66 66 66 66 66 66 66 792 

Figure 1: A hypothetical confusion matrix for Dutch monophthongs with errors disu-ibuted 
evenly over all possible response categories. Error-rate= 33.3% (i.e., t: = 1/3), incorrect 
responses arc indicated in italics. To obtain a normalized confusion matrix. divide all 
entries by 792. T indicates the row and column to

t
als, for other symbols, see 1ext. 

methods for data compression and error correction. These areas arc mostly outside the 
scope of those involved in speech recognition research. In general, when working 
with speech, one has fixed coding schemes (e.g., a language) and channel capacities 
(e.g., maximal throughput). When performing identification experiments, one is 
interested in the djstribution of errors and the differences between experimental 
conditions. On these points. the standard theory of information is weak. 

Another point is t.he fact that both the digital "size" of a symbol sequence (e.g., 
sequences of stimuli or responses) and its information content in bits, scale 
logarithmically wit.h the size of the symbol inventory that is used to code it. For 
examp le, a binary (i.e., two-value) representation of a random sequence of 16 vowels 
has to be only 4 (and not 8) times as Jong as the original in order to code the same 
sequence. The standard logarichmjc measure of information makes it difficult to get a 
feeling of how the performance of subjects scales with the size of the experimental 
inventory. A formulation of information theory that is linear in the size of the symbol 
inventory used would often be more convenient. This is especially urgent when one 
wants to measure th e  spread of errors in terms of the number of categories used. 
Below , 1 will discuss this problem and propose a solution. 

This paper will discuss identification experiments. Jn such experiments, a number 
of distinct stimuli are presented to subjects who are asked to label them as belonging 
to one of the categories of a closed set (e.g., one of the vowels). lt is im portant to note 
that only the sequences of stimulus and response labels will be used. Additional 
information that can be extracted from the stimulus sounds is outside the scope of this 
paper, i.e., only the features that are expressed as labels or symbols in the experiment 
are used. Other features, like the sex, age, or identity of the speaker (in a vowel 
identification experiment), are ignored. Furthermore, the theory has two levels. On 
the level of information conte111, it ignores the way stimuli are mapped to responses, 
as long as the map is consistent, i.e., there is no notion of correct or incorrect labels. 
However, all basic measures of information arc sensitive to the absolute value of the 
error race. Therefore, at the next level, the information content is normalized for the 
error rate itself. This two-step process enables the separation of the analysis of 
classification ambiguities and t.he analysis of identification errors. 

The relation between the response categories and the stimu lus categories enables 
the experimentator to infer the relative importance of different stimulus conditions. 
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u 0 ::> a a c e I i _y l'l re T 
ll 4 2 8 8 8 66 
0 42 8 8 8 66 
::> so 8 8 66 
a 8 42 8 8 66 e = 113 
a 8 42 8 8 66 
c 8 42 8 8 66 L = 1.647 

e 8 42 8 8 66 
I 8 so 8 66 G = 1.402 

I 8 8 42 8 66 
y 8 8 so 8 66 dr=4.550 
l'l 8 8 42 8 66 
0: 8 8 42 66 ds = 2.733 
T 42 42 138 42 4 2 42 42 1 38 42 42 42 138 792 

Figure 2: A hypothetical confusion 1natrix for Dutch monophthongs \Vith a stiong response 
bias for the mid-open "owels (i.e., /� 1 eel). Error-rate = 33.3% (i.e., c = 1/3), incorrect 
responses are indicated in italics. 1·0 obtain a .nonnalized confusion 1natrix) divide all 
enuies by 792. T indicates the row and column totals, for 01her symbols, sec text. 

This relation between stimulus and response is completely determined by the 
confusion matrix which charts for each combination of stimulus (frequency= s;) and 
response (frequency = rj), the frequency of combined occurrence (P;j)· l n  the 
remainder of the paper the normalized frequency of occnrrencc will be used as an 
empirical definition of the probabili1y of occurrence and both terms will be freely 
interchanged. Although a frequency of occurrence is not identical to a probability, 
treating the difference between them is outside the scope of this paper. 

This paper will first give an overview of standard information theoiy (sections 2-3) 
followed by a simple example which will introduce the notion of error dispersion 
(section 4). Then follows a section on the quantification of the differences between 
sequences (section 5) and a more rigorous definition of the error-dispersion (section 
6). Finally, the theory is tested on several examples from the literatme (section 7). 
Those who are not interested in the mathematical foundations of the error-dispersion 
and error-differences can skip the sections 2-6 and go straight to the summary at the 
start of section 7. 

2 Quantifying inforn1ation: Entropy 

The mean information per token of an uncorrelated symbol sequence is generally 
quantified as the Shanon 's entropy of the sequence. The Jnean entropy (H), and 
therefore the mean information content, of a signal with I different symbols, each 
with a probability p; of occurring, is 

I 
II= 2:,-p;·

2 
log(p; ) (la) 

i=L 

The mean entropy of a sequence �equation la) reaches its maximum when the p; have 
a uniform distribution (i.e., H = log(I)). This entropy is also the average amount of 
information (in bits) necessary to distinguish the tokens in the sequence. It describes 
the minimum amount of space per token, necessary to store the sequence, or the 
minimum channel-width necessary to transmit the sequence error-free. 
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Jn speech research, these quantities have limiled use. Equa1ion l a  is formulated in 
a way that is quite opaque LO its meaning for the average identification experiment. 

�fhe entropy, H, is connected 10 the number of symbols thal are required to code the 
sequence. l n  principle, every code thal generates sequences with the same (or a 
higher) entropy can be used to describe a given sequence. The minimum number of 
symbols, averaged per token, needed to describe a given sequence is 2H: 

= 1 
[1 (P;P;} 
1=1 

(lb) 

This quantity, 2H, which is complelely equivalent LO the entropy, will be called lhe 
effective number of symbols, or the effective number of categories. II describes the 
number of symbols oul of which lhe sequence is constructed, weighted by their 
importance for determining the information content or entropy of the sequence. The 
word effective can be justified by the fact thal 2H can be used to predict what fraction 
of the tokens in the sequence arc included in the symbols or classes with the highest 
(or lowest) frequency of occurrence. Define W ci as the minimum number of classes, 
out of a total of I classes (i.e., symbols), that, combined, contain a fraction a of the 
torn I number of tokens (O:::::a:::::J ). Then for a.:::::o.s and /:::::34, it generally holds that 

W a:::; 0:·2H :::::0:·/ 

(no counter-example was found, a fractional number of "cla�scs" is interpreted as a 
fraction of the frequency o f  occurrence of the least frequent class). In other words, a 
number of 0.·211 of the highest frequency symbols is responsible for al least a fraction 
of o: of all observed rnkcns. For example, if /=12, Il=2.5, and o:=0.5, then the 
0.5·22.5=2.82<3 classes with the highest frequency of occurrence are responsible for 
more than balf or all tokens in the sequence (actually, the sum of the two highest 
frequencies of occurrence and 0.82 times the next lower frequency, toge1hcr, arc 
larger than or equal to 0.5). If either o:>0.5 or 1>34, there are some lopsided 
distributions for which the relation does not hold (these distributions have p 1-0.25 
and Pi>1-0.75/(/-I).). Smooth distributions of the form p;-i' and p;-q(i'), with r any 
number and q>O, all appear to follow the relation W ci:::; 0:·2H if o::::::0.5, irrespective of 
the size of the inventory !. 

Jn general, the effective number of stimulus and response categories will be close 
to the actual number of categories present. The usefulness of equation lb will appear 
when the relation between stimulus and response sequences are discussed. 

Jn an identification experimenl there is a correspondence between stimulus and 
response sequences, expressed by lhe confusion matrix. The confusion matrix 
contains all information present in the results of an identification experiment. The 
confusion matrix can be considered to list the frequencies of occurrence of stimulus­
response combinations or pairs. When properly normalized (i.e., Ls; = Lrj = LPij = 1 
over all i,j), the mean enlropy of the individual stimulus-response pairs ot the 
experiment can be calculated from the confusion matrix. The mean information 
content of the confusion matrix is, by definition, identical to the mean entropy of the 
sequence of stimulus-response pairs that resulled from the experiment. The entropy of 
the confusion matrix HcM is expressed in equation 2. 
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I J 
He"= L L P/ log(p,,) 

' I J I 

With: I the number of stimulus classes, J the number of response categories. and PIJ 
lhe probabih1y of resron,;c J to �umulus i 

(2) 

The maximum value for lhe eniropy of 1he confusion matrix (Hem) can be calculaled 
by assuming 1ha1 s11mulus and response are independent. i.e., Pij = Si·rj (using 
equation 2): 

I J 
HCM = L I,-s, r/ log(s, ·r,} 

1 I J I 

I t t I 

= I, r1 • I,-s,.2 log(s, )+ I,s, · I,-r/log(r,} 
J I I I 1 I J I 

I J 
=I, s/ log(s.)+ I,-r/ log(r;) 

1 I j I 
= Hs,,m + H R"P 

With: I the number of stimulus cacegories. J 1he number of response categories, Si 
the probability of 'timulus i, rj that of response j, and Jlij the probability of respon�c 
j 10 stimulus 1. J lstim nnd l IRcsp n1e the erlll'opies of stimulus and responses. 

(3) 

When stimulus and response arc independent, then the entropy of the confusion 
matrix is the exact sum or the entropy of the stimulus and the response sequences. 
When the diMribution of hoth stimulus and response are uniform (maximum entropy), 
then the maximum entropy of the confusion matrix is 2tog(I)+21og(J) (for I different 
Mimulus and J d ifferent response categories). 

The minimum entropy is obtained with perfect recognition, when Pi=j = Si and 

Pixj = 0 (we assume that 0·21og(O)=O). Then equation 2 reduces to equation I for the 
stimulm, entropy. In 1he case of perfect recognition, both the entropy of the response 
�equence and the entropy of the confusion matrix are equal 10 the entropy of the 
stimulus sequence, 1.c .. l lc.\1 = llswn = HResp· 

The entropies are related because 1hc stimulus and response sequences can lx>th be 
obtained from lhe confusion macrix. ii always holds that: max(Hstun· 1-Iilesp> :> llc�1 S 
Hsum + HRcsp· 

3 Information transmitted to and lost from the responses 

The mean entropy, technically lhe total amount of information present in stimulus and 
response sequence�. is generally not the desired quantity. lt contains information that 
is independent of 1he sumulus sequence, e.g. response biases and random "errors". 
\Vhat is important is the amounl of information from the s1imulus sequence used (or 
not) by the listeners, as can be extracted from the response sequence. T he mean 
amount (or rate) of information transmitted from stimulus to response (T, in bits per 
token) can be Mated as the difference bccwccn the maximum enlropy possible and the 
actual entropy present in 1hc confusion matrix, i.e., mean information transmitted is: 
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E = 1/3 

L =0.928 

G =0.867 

dr=l.019 

d5 =0.899 

Figure Ja: A hypothclical confusion matrix for Dutch monophlhongs with a response shifl 
toward� vowel< with a higher F2 target. With respect to Figure Jb. 0, = 0.859 and I\ 
1.014. Error-rate= 33.3% (i.e.,£= 113). incorrect responses are indicated in italics. To 
obtaut a nonnali1,cd confusion matrix. divide ali entries by 792. T indicates the row and 
column totals, for 01hcr symbols. see text. 

(T is lhe rare of transmission) (4a) 

This dif'fcrcncc is !he mean entropy of the response sequence that is already 
aecounlcd for in entropy of the stimulus sequence. 

The amount of information lost from lhe stimuli is the mean entropy of the 
confusion matrix minus the mean entropy of the response sequence, i.e.: 

(L is the rale of transmission loss) (4b) 

This is the mean entropy in the stimulus sequence, not accounted for in the response 
sequence, i.e .. the entropy of the stimuli given the responses or H(stimuluslresponse). 
The actual meaning of L is much clearer when equation 4b is written in terms of the 
effective number of categories in the response sequence and confusion matrix 
(equation I b): 

2L _ 211 .. , _Effective number of Stimulus- Response pairs 
- 211- - Effective number of Response categories (4b") 

Equation 4b' shows that the rate of information loss can be interpreted as the 
logarithm of the mean (effective) number of stimulus categories lhal can induce each 
response. It can also be called the logarilhm of the perplexity of the stimuli with 
respect Lo the responses. 

The mean, subject-related, "information" added lo the responses (or gained) as a 
result of the errors and biases in the responses, is equal lo the mean entropy of the 
confu�ion marrix minus the mean entropy of the stimulus sequence, i.e.: 

G = HcM - Bsum (G is lhe rate of transmission gain) (4c) 

This i� the mean en1ropy in the response sequence, not accounted for by the stimulus 
sequence, i.e., the entropy of the responses given the stimuli or H(responselstimulus). 
Equivalent to the information loss. L (equation 4b'), the information gain, G, can be 
interpreted as the logarithm of the mean (effective) number of response categories for 
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Figure 3b: A hypothetical confusion matrix with a response shift towards vowels with a 
lower F2 target. With rcsreet 10 Figure 3a.1'-= 0.859 and o5 = J .014. Error-rate= 33.3% 
(i.e .. £- 113). ancorr.ic1 responses are indicated in 11alics. To obtain a normalized confusion 
matrix. divide all enuie' hy 792. T indicates the row and column totals. for other symbols. 
see text. 

each stimulus or the logarithm of the perplexity of the responses with respect to the 
stimuli. 

The effect the distrib111io11 of the errors has on the values of L and G arc 
demonstrated in the (hypothetical) examples of Figures 1-4 which all share an error 
rate of 1/3. Tn general, the larger the number error categories in the confusion matrix 
is, the highe r L and G will be. The more uneven th e  distribution of responses and 
stimuli, the higher L respectively G will be (compare L and G in figures 2 ·3). 
However. L and G arc also sensitive to the absolute error rates. In Tables 1 and 2 at 
th e end of this paper, pairs of confusion matrices with different error rates and 
equivalent diMributions of the errors do show quit large differences in che sizes or the 
transmission loss and gain. 

Equations 4a-c can be combined lo obtain: 

Hs111n = T + L (4d) 

HRe�p = T+G (4e) 

L - G + lls1im • HRcsp (40 
In equation 4b, L measures the amount of stimulus-information that was lost from the 
responses, i.e., the degree to which the stimulus sequence cannot be reconstructed 
from the response sequence. In equation 4c, G measures the amount of stimulus 
independent entropy that was added to the responses by the subjects, i.e., the degree 
to which the response sequence cannot be predicted from the stimuli. Note that T 
decreases and both L and G increase when the error rate increases (cf. Table I and 2 
at the end of this paper). 

Obviously, 1he rate of transm ission, T, depends on the amount of information in 
the stimulus, i.e., the number of input classes. It is easy to see that, for a typical 
identification ex pcri ment: 
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Hsu111-HResp-HcM-21og(Number of Input Classes). 

'"This means that all entropies scale with the logarithm of the number of input classes. 
As a consequence (equation 4a) the transmission rate, T, also scales with the 
logarithm of this number. However, because the entropies of both the confusion 
matrix and the stimulus and response sequences scale with the same number 
(equation 4b). the rate of transmission loss, L, and gain, G, do not scale with the 
number of input classes. They only depend on the error-rate and the pattern of the 
errors. This is aho obvious from the fact that Land G can be described in terms of the 
number of response eaicgorics per stimulus category or vice versa (equation 4b'). In 
general, any change in the stimulus entropy will be compensated by an equivalent 
change in the response cnLrOpy. 

A small example will explain this principle. Consider a vowel identification 
experiment with 5 tokcns, /y i I e rd and 

lls111n - llRc�p,. 21og(5). 

In a typical experiment we will see HcM;:;21og(5). Now we extend this experiment and 
add the tokens /u o o o al after which we see a comparable pattern of errors. We now 
expect that, in a first approximaiion, the new entropies will be. 

i.e., 

H' siim., H' Rcsp • 2tog( 10) and IfcM�21og(JO), 

H' .. JI t- 2Jog(2) 

if the new tokens "behave" like the old ones. :--low the new rate of transmission is 
. . . 

T = H Stim+ll Rcsp·II CM 
.. Hstim + 21og(2) + llResp + 2tog(2) - HcM - 2Jog(2) 

and therefore, 

"r' .. T + 21og(2). 

That is, the rate of transmission scales as the entropies themselves. However, the loss 
of information 1s 

L' = H'cM • H' RC5p � HcM + 21og(2) - HRcsp • 2tog(2) = Iic�1 - HRC5 

and, therefore, in a first approximation, we expect that L' � L. i.e., the los' of 
infonna11on does 11or scale as the entropies themselves. The same holds for the gam of 
infonnation G. 

4 An example 

The theory described in the preceding sections will be illustrated with a simple, 
hypothetical example. ln this example two assumptions will be made: First, the 
correct responses arc evenly distributed over the stimuli, i.e., each stimulus has the 
same error-rate. Second, the errors are evenly distributed over a limired and fixed 
number of response labels (c.f., Figures l .  3a-b), i.e., for each stimulus the errors arc 
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limited to some of the available response categories which all get the same number of 
responses. 

� The general error-rate will be indicated by E. the rate of correct responses by (I E). 

The number of erroneous labels used for each stimulus, also called the dispersion of 
the errors. is ds (e.g .. if ds = 2, an hi type stimulus could be confused with /o of with 
equal probabilities). For example, d, = 1 1  in Figure I .  The value of ds would have 
been equal to I in Figures 3a and 3b if the /i/, respectively the /u/ stimuli would have 
been omi tte<l. 

Under the above assumptions. equation 2 reduces to (assume Pi=j = ( 1 -e:)-s,: for 
each i: ds re5ponses have p1,.j = Ef<ls·s;; and the others have p;,.j = 0): 

Thus: 

Hoi =I d, ·s, ·: 2 10-f s, ·: )-s, ·(1-e}21og(s, ·(1-e)} 
I I ' °l ' 

= t,-s, e · ( 21og(s1)+21og( :J )- s, · (1 - e)-(21og(s,)+21og(I -c)) 

=I s, · (c+ (1- c))2 log(s,) +s, · �-2 log(.£)-s,. (I-e}2 log(I- e) 
I I ds. 

= I-s1•11og(s1)-(c·2 log(.£)+ (I- c)2 log(l- e)J · Is, 
1•1 d� 1=1 

= 1 1,1,,,, -(1-e}1 log(I -e)-e·2 log( :J 
G = IlcM - !Isom 

= IJ. -11 -(I - c}2 log(I -e)-e·2 log(.£) SCJm St1m ' d • 

=-(1 e}21og(l c)-e·2 log(:.) 
L - H, ... - II""• - (1- e}2 log(l -e)- e·2 log(:

.
) 

Wnh: I lhc numt>cr of \llmuli, s; the probabihl)' of stimulus i. t ls lhe error·rnlc and 
ds the number of erroneous respon<e categories per stimulus or the error-dispersion. 
equallon 4 wa\ used 10 denve Sb. 

(Sa) 

(5b) 

The amount of information lost and gained due to the errors (c) in the limi t of d5 = I 
i� (i.e., only a single error category for each stimulus): 

L .. G = -( 1-c)2Jog( I c) e2log(e) = He 
This quantity is called the "entropy of the error rate" (He). 

The appmximation of the model used to derive equation Sa-b is only a crude one 
(below we will derive the relevant formulas for the general case). We will 
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Figure 4: A hypo1he1.ical confusion malriA wilh a comple1e loss of !he Ieng-slum dis1inc11011 • 
for Du1ch monoph1hongs. Error-race = 33.3% (i.e., £ = 1/3). incorrec1 responses are 
indica1ed in 1iulics. To ohiain a normalized conf�sion maliix. divide all enlries by 792. T 
ind1ca1es the row nnd column toials. for other symbols, see 1exl. 

demonstrate this ''crudeness" by comparing an exact calculation with the 
approximation of equation 5a-h. 

Assume that under certain conditions, long and short vowels cannot be 
distinguished (sec figure 4). Jn Dutch there a re 12 rnonophthongal vowels, 8 of which 
arc part of long/short vowel pairs. In a balanced presentation with otherwise perfect 
identification the loss or the long/short distinction introduces theoretically 33.3% 
errors (4 out or 12 on average). According to equation Sb this amounts to a gain of 
information ofG = 0.9L5 bits (d5 = I). 

We can calculate the exact gain of information from equation 2 (sec figure 4). 
Both stimulus and response sequences have a uniform distribution and therefore, both 
lhe stimulus and response entropy are 

Hs1im=l1Re\p=2log( L 2) bit. 

Four unpaired short vowels contribute a total of (66r792 = l/12): 

4·(-1112·21og( 1/12)) = 4·/l 2·21og( 12) 

from 4 cell� in the confusion matrix. The eight confused vowels from long/short pair� 
contribute (33n92 = 1124): 

I 6-(-1/24·21og( l/2· 1112)) = 16/24·(21og( I 2)+21og(2)) 

from 16 cells in the confusion matrix (unbiased long/short confusion). This add� up 
to: 

llcm = 21og(l2)+2/3·2Jog(2) = 21og(l2)+2/3 bit 

for the confusion macrix. Therefore, the information gained or lost due to the 
confusion is: 

L = G = llcm - llsiim = 2/3 "'0.667 bit. 
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A gain or loss of information of this size would correspond to a "random·· error-rate 
of 18% if we use equation Sb (with d, = L ). 

� In the above examples with long/s
.
hort confusions w e  see that the app roximation of 

equation S over-estimates the loss of inform ation when the errors are no t dist ributed 
uni formly. Now equatio n Sb can be used to express the gain and loss of information, 
G and L. in terms of an effective number of error categories. In general, the results of 
an identificatio n experiment will show a variable confusion between response 
categories. Neither the gain, G, nor the loss of information, L, is very transparent as to 
the pattern of errors and both depend on the size of tbe erro r rate. The number of 
response categories, "d," in equaiion S, over which the errors are evenly distributed is 
a measure of the spread of the errors in the confusion matrix and is independent of the 
size of the error rate. This number, d,, can be calculated from the error-rate, E. and the 
gain (or loss) of mforrna11on, G. as given in equation 5c: 

G L HRcsp 
2c c 2c 2-.-ds .,.....£.__· --= -- · -· H--

1 - § e I - £. e Stim 2 2 2
-c-

H Resp 
2 e 

HS. � 
2 c 

Jn \Vhich d5 is lhc effective ntnnbcr of error calegories, £the error-rate, G 1he gain 
and L tho loss of informntion and c the hasc of the natural logarithm (e -
2.71828 ... ). Tho approximm1on o f 5d is quite accurate. to within 1% if c!>0.4 and to 
within 10% ifCS0.8. 

(Sc) 

(Sd) 

Usin g Sc on the result of our example with a complete loss of the lon g short 
distinctions (figure 4), i.e., £ = l/3 (33%) and 

L = G = 2/3 (bits), 

results in 

d.,= O.S93. 
The fact that d, <I illustrates the extreme clustering of the errors in the confusion 
matrix in this imaginary experiment. In general, d5 in equation S can be interpreted as 
the effective number of error classes per stimulus token. 

S The difference between confusion matrices 

Gen erally, it will 1101 be sufficient to compare the entropies between two experiments. 
It is often al�o important to know whether there is a real difference between the 
distributions of the responses. When listeners in two experiments use the same 
information, and respond in identical ways, then combining the responses from these 
two experime111s should not change the entropy of the confusion matrix, at lea�t after 
differences in stimulllS and response sequences between both exp eriments are 
discounted. 
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It can be shown lhat the entropy of a superposition o f  N sequ!.nces, Hpooled· is 
always larger than or equal to the mean entropy of tbe sequences, H. More specific, 
Hpo oled equals: 

(6a) 

or 

(6b) 

with 

If a1 = l/N lhen Hu= 2logX 

This means chat lhe entropy of the combined sequences or confusion matrices equals 
the (weighted) mean of the individual entropies plus a fraction, ll·Hcx. Here ll is the 
fraction of the tokens of the pooled sequence thac can still be attributed (plausibly) 10 
one of the original source sequences (e.g., confusions that are found in one 
experiment bul not in lhc Olhcrs). 

lf all sequences arc realizations of the same "process", i.e., Pki�P.JJ<!olcd, i then ll• 0. 
When the lokcns of all sequences exclude each other (i.e., p1;·p1; = O for all i and k;t:l) 
then ri= I In all cases. 11 will be at least as large as the combined contributions of 
tokens thal are unique 10 each experiment. i.e., 11 <': LPpoolcd,i summed over all i for 
which PJJ;t:O for only a single I... 

The parameters 11siim• 11 Rcsp• and TlcM d es cribe the results from combining 
respectively, the stimulus sequences, response sequences. and confusion matrices of 
different "experiments". For these, the same relations hold as for the corresponding 
entropies: 

max(T\stun• llRcsp) <;;TlcM $ TJs1im+llRc.�p· 

For the confusion matrix, the parameter TJcM is related 10 1he error-rates of the 

experiment�. As 1he correct en1ries in a confusion matrix do not normally differ 

between experimen1s, TJcM mea.sures the differences between 1he errors in the 

experiments. If the correc1 responses of the experiments overlap. then llcM <;; CoootcJ• 
with 1he maximum reached when all errors in the individual experiments are dil1'ercnl. 

When the confu�ion matrix of the (virtual) "combined" experiment is calculated, 
the mean information 1ransmit1ed, Jost and gained from stimulus lo respon�e 
becomes: 

T 1-.ol<d = 'f + ( 1Json1 � '1R«p - 1JcM) · H • 

= 'f + ( 115,.,,, -..:i} n. 
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Lpoolcd = L + ( IJc., 17R«r) · I la 

= [ + ), . H. 

Gpoolcd = G + (  IJc.i - 1Jsom)' H. 
G + y · ll0 

In wluchc A """ICM - TlRcsp and y= "ICM - TlStim• 0 S i  •• y S I, and T, L. and G 
arc the wc1gh1cd J!Vcragcs of the transm1ss1on rate. information loss. and gain. 
corresponding to H 1n cquauon 6. 

(7b) 

(7b) 

This implies that the pooled information loss is the (weighted) mean information loss 
from the individual experiments plus a fac1or (A.) that includes differences in response 
(T1Rc,p) biases and differences in the way the subjects handled the stimuli in the two 
experiments (T'lcMl· The combined result of these fractions, /... is relaled to the error­
rate of one experiment with rcspcc1 10 the others, in a sense it is a weighted sum of the 
fraction of "errors" thai are unique to each experiment. 

For normal experiments, in which the stimulus sequences are generally matched 
when experiments arc compared (i.e. T'lsiimulus=O), /. can be understood as the 
information about the differences between confusion matrices of 1he experiments that 
cannot be deduced from the corresponding response sequences alone. For any set of' 
experiments, i r A<l1siim • the cxpcrimencs arc to a large extent incomparable. If 

A.>risiim• the experiments can be compared. but they arc not identical and information 
is lost by pooling them (i .e., mixing oll responses). 

6 Error dispersion 

The gain and lm,s of information (G and L) in an identification experiment can, in 
general. be attributed to the identification errors. The effect of errors on the size of the 
information gain and loss can be split into two "independent" contributions: The size 
of the error-rate itself. e (e.g., Tables I and 2 below), and the distrib111io11 of the 
errors (e.g .. Figures 1-4). All other things being equal, if the error-rate increases or 
the errors arc distnbuted over more confusions, then the gain and loss of information 
will also 111crease. This dependence of G and L from the error-rate makes these 
quantilles not well suited 10 describe the effects of the dispersion of the error�. The 
relation between G. L, and the error rate can be formalized by splitting the confusion 
matrix into a diagonal matrix with only the correct responses and an off-diagonal 
matrix with only the incorrect responses. The corresponding entropies arc called 
Hcorreci and HF.rror· The entropy of the original confusion matrix HcM can be 
expressed a� a combination of the correct and incorrect responses and becomes (using 
equation 6, with T1 = I, et1 = 1-£, et2 = c and Ha= HJ: 

In which: HcM is 1hc entropy of 1hc confusion matrix. E is 1he error rate, and 
llcorrect and llerror nre 1he entropies of. rcspcc1ivcly, the diagonal and off­
<liagonal (corrccl and incorrec1 responses) sub-matrices of 1hc confusion matrix. The 
entropy of 1hc error rntc is HE - ( 1-e)2Jog( 1-E) - E2Jog(E) 

Sa 

Jn what follows we will concentrate on the information loss, L. Equations with the 
information gain. G, instead of the information loss can be derived using equation 4f. 
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The infom1ation loss, L, can be expressed as a combination of correct and 

�
incorrect responses using equation 4b: 

L "' HcM - II Rcsr 

As cquauon Sn. but with: L i5 the mfonnation loss and HRcsp is the cnuopy of the 
respon<c sequence 

Sb 

ln equation Sb we can sec that the information loss L is split into two contributions. a 
contnbuLion that depends only on the entropy of the error rate (Ht = -( 1-£)·2Jog( 1-e)­
c·2Joge) and a contrihuuon that also depends on the distribution of responses over the 
confusion matrix. 

Tbe "total" rcspon�es will be dominated by the correct responses. As a result HRc�p 
and llcorrect will be almost equal and (1-cHHcorrcct"HResp)"°O. This mean� that the 
part of equation Sb that depends on the error distribution will be dominated by the 
factor C·(llc.n·orHRcsr). The part between the brackets is independent of Lhe error rate 
itself, it only depends on the distribution of the errors. It can loosely be interpreted as 
a "mean error entropy per response category". Nole that the factor (HErrorHRcsp) has 
the form of equation 4b, i.e. of the information loss L. However, it i� 1101 the 
information loss of the off-diagonal (error) matrix because it uses the response 
l:ntropy of the complc1c co11fusio11 matrix, instead of the response entropy of the off­
diagonal (error) matrix. 
Define: 

(1- c) · ( l lcorrcc1 - llResp) + e · ( HError - H Resp) 
£ 

"' H F.rror - I I Resp 

In which: � 1s the error rate. llResp is the entropy of the response sequence, an<l 
II correct and Hi,,.rror arc 1hc entropies of, rc>pcctively. the diagonal and off· 
<l1agonal (correct and incorrect rcsronses) sub-matrices of the confusion matm .. f d 
rnca>urcs the cflcct of rc,ponse erro rs on the loss of inforrnation. (the corrcspondrng 
gain cnuty 1Hnllc<l g.) 

The quantity t. 1s determined by the distribution of the incorrect responses. This is 
used to define the error-dispersion dr (using equation Sb): 

L = C · ld +Hc 

ld = L- llr_ £ 

As equation 9u but with: I. is the inforrnation Joss rate. d is lhe error dispersion in 
cl lccli ve rrror ca1cgories per rc'ponse ca1cgory, l!E= -{..21og(e) - ( 1-e)-2Jog( I ·C) is 
the "entropy" of the crror-rnte 

9b 
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When equation 9b is compared to equation 5b (section 4), then it appears that r. is 
t�e excess information loss due co more than one error category per response (L-Hc>. 
averaged over the errors (i.e., I/c). The last line of equation 9b is identical to equation 
Sc and can be approximated hy equation 5d (using L instead of G). 

� 
2' 

d .. -L._ ' 
I f - 2 e 

In which d, is the effccti\e number of error categories per response category, E the 
error-rate. L the loo:s of informaiion and � the base of the natural logarithm (� � 
2.71828 ... ). The approxima11on of 5d 1s qu11e accura1e. 10 within 1% if cS0.4 and to 
withm I� 1f tS0.8. 

(9c, sec 5d) 

ln equation 9b we �cc that the error-dispersion per response category, d,-. calculated 
from equation Sa 1s identical to the number of error categories per stimulus category, 
d5, in the model calculations of equation 5, but now using L instead of G. This 
indicates that the error dispersion calculated according to equation 8 and 9 can indeed 
be interpreted as an effective number of error categories per response category (d,, 
using L) or -.timulus category (ds, using G). This can be shown more explicitly by 
rewriting d, u!>ing equation 9a and b, in: 

R 
( l - f ) · { l lco1Tcc1 - ll Rcsp}+ e · (l lError - H Resp) 

<I Iii E 
(1-c) 

t (2llco1TCCI J f 2HError 
d1 . ..  2 d = · �--

2 H Rcsp 2 H Rcsp 

LO 

Equation I 0 implies that d, equals the effective number of correct stimulm, 
categoric• per response category times the number of incorrect stimulus categories 
per response category. normalized for the error rate. Correspondingly, ds is the 
(normalized) effective number or correct response categories per stimulus category 
times the number of incorrect response categories per stimulus category. Both 
products measure the simultaneous dispersion of the errors along the stimulus and 
rcspon1>e "dircctton", and both are maximal if all stimuli and responses have the same 
error mte. l\ote that neither the stimuli, nor the responses are required to have one and 
only one correct category. 

It should be emphasi1ed that the model used to derive the equations 5a-c in section 
4 is only an approximation for any real identification experiment. In contrast. 
equations 8 -9 do 1101 depend on approximations. The value of the error dispersion, d, 
or d5, is an exact measure of the contribution of the error distribution to the 
info1mation loss or gain relative to the contribution of the errors an sich. 

In Figures 1-4 and Tables I and 2, examples are given of d, and d, for some 
hypothetical and real data. In the hgures 1-4, there are 12 evenly distributed stimuli 
and, respectively, 132, 33, 1 1 ,  and 8 error categories in the confusion matrix. The 
corresponding values of ds would then be expected to be close to l l, 2.75, 0.917, and 
0.667, respectively (i.e., nurnher or confusions I number of stimuli). The actual values 
arc l I, 2.73, 0.899, and 0.593. The increasing discrepancy between the expected and 
the actual values going from figures 1-4 is due to the increasingly uneven distribution 
or the corrl'N responses. /\n uneven distribution of correct responses reduces the error 
dispersion. The effcc1 of the distribmion of the responses on the error dispersion can 
be seen when d, is compared 10 d, in Figmc 2 and to a lesser extend in Figures Ja and 
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b. In these figures. che stimuli arc distributed evenly, but the responses arc not. In 
these examples this means thnt the entropy of che response sequences is less than that 

of the :.timulus sequences. This results in markedly higher values for d, (c.f., equation 
10). If the ent ropy of the response sequences is higher than that of the Mimulus 
sequences. then d, < <ls  (e.g .. there are more response possibilities than stimuli). 

When confusion matrices are combined, i.e., experimental results are pooled, an 
expression for the new error-dispersion of tbe pooled results can be derived usmg 
equations 7b and 9b. 

\ 
Lpootcd = L,.(ak ·Ld+l·Ha k I 

N 
CpooJcd lpootcd + Hr,_ ,. I,(ak. ck. tl + ak . HE, )+ A .  Ha 

k I 

Define: 

i:: - r Us -
Cpoolecl 

l'roolod · Ha 
11  -H rpo(llcd e 

Cpoolcd · lla 

Then (substituting 'Pk= ak·ck/Cpooled): 

N 
.e,)(l()lcd L ('Pk · ( L) + o, · Ha 

k I 
I 

o H N o ( N JI\ c1, • .,.. = 2 r a . n(d,. )rp
k oc N r .  fl d,

, 
k= l k = I  

Correspondingly: 
I 

d = 2 ' a TI d k oc N S .  fl d • 
o 11 N ( )<p o ( N )� 

s,_,.. \ \ 

with: 

k = l  k = l  

N 
'Pk = ak . c.1'., TI; = I.( ak ·He.)· 

C)l<JOkd k•l 
The propor11onnl11y of I Id is c>ac1 when ak=llN and ek=tpooted• i.e., when all 
matrices arc summed unwcighccd and all error-races are equal. 

(I la. cf. 7b) 

(I lb. cf. 9b) 

( 1 1  c) 

( I  Id) 

(I le) 

From equation 1 l il can be concluded that the error-dispersion of the combined 
confusion matrices (dpoolcd) can be interpreted as the geometr.ical average of the 
individual error-dispersions (dk). weighted by their contribution to che total error-rate 
(<p), times the number of matrices N (i.e., "experiments") to the power of 
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Or- [.t-(u. -Tic)111a]1 £pooled 
p<x>lc<l 

or 

The only factor in equation 1 1  d that is independent of !he error-rate is O (which is 
"normalized" with respect to £). This Ii indicates !he effective fraction of !he pooled 
errors for which the error classes do not overlap between confusion matrices (cf. the 
interpretation of A. in section 5). 

Figures 3a and 3b give an example of how the differences between confu�ion 
matrices influence the value of Ii. The errors in both confusion matrices do not 
overlap, there b not a �ingle shared confusion. As a result, lis � J. 1.e., all errors are 
different. The value of lis is even somewhat larger than 1 due to a small difference 
between the correCI responses in both confusion matrices. However. the value of 
Or < I because the responses in both confusion matrices do not overlap completely (as 
do the stimuli). Any differences between the response sequences are always 
discounted from the value of Or. The same holds with respect to differences between 
SL i in ul us sequences and the val uc of o,. 

7 Examples: Error dispersion in vowel identification expel'iments• 

The error rate docs not describe the distribution of the errors in the confusion matrix. 
It is possible lo give a quantitative description of the distribution of the errors using 
st:mdard infonntllion theory. The information content, i.e., the entropy. of a confusion 
matrix (CM) can be dcscribl!d with three numbers. respectively, the entropies of the 
stimulus sequence (I !51;ml· the response sequence (HRcsp). and the confusion matrix 
itself (HcM): 

I J 
I I,-P,/ log( P;j) 

Hc�1 = '  I > '----­N 
- 21og(N) 

N 
2log(N) 1=! 

- 2log(N) 

•Rcildc" ca11 tcM 1hcir own examples on che World Wide Web 
URL: hllp:l/fonsg3.lct.u vn.111 :800 I /Servicc/F,n-orDispcrsion.hLml 
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rigure 5: l:rror r:ilc for vowels from four speakers from Koopmans-van Beinum 
(1980). Vowels were uuered in isola1ion (I), in monosyllabic. isola1cd words (W), and 
in un;trcsscd syllables in free conversaiion (C). The filled bars indica1e the resulls for 
the individual speakers, the grey bar:o; for all speakers pooled. The error rate for vowel• 
uucrcd in free convcrsntion differs statistically significant fronl those uuercd in 
isolation and monosyllabic worps (Wilcoxon test, p:S0.05, two-tailed). The e1Tor rates 
M lhc lallcr two do not differ statisLically signilicant from each olhcr. 

Jn equation L2a-c, Si is the number of stimuli in class i, Rj the number of responses in 
class j, Pij the number of stimuli in class i that elicited responses of class j, and N the 
total number of stimulus response pairs. 

Several rnea;ures using the information content of the confusion matrix and 
stimulus and response sequences are in use (c.f., Miller and Nicely, 1955), e.g., 

T = llstim + llRc;p • 1 lcM, 
T/Ilsurn• 
L = Hc\I II Rcsp• 
G = llcM lls11m· 

All these measures arc sensitive to the absolute error rate. E. However, it is possible to 
"normalize" the L and G measures in such a way that they become insensitive to the 
absolute error rate. When these normalized measures arc transformed from the usual 

Table I: Conlu�ion matnx and performance measures for identification of \'Owel rcatiiauons 
presented with and wuhout their natural context. Taken from Kuwabara (1985) 

i 
c 
A 
0 
ll 

total 

l!V# presentation (C = 20.9%) 
L 0.825. dr - 1.329 
0 0814 d I 281 = '• = 

I e /\ 0 
600 200 

96 5 l2 6 13 
144 562 14 

45 392 
14 

696 856 6 1 3  433 

u 

1 3  

123 
466 
602 

VVV presentation (E = 3.8%) 
L = 0.271, dr = 1.300 Or= 0.068 
G 0 273 d I 1 1 1  I\ 0 114 = '<._ = '<_= 

I e A 0 u total 
776 24 800 

26 601 13 640 
7 13 7 720 

6 1 1  515 28 560 
5 475 480 

808 625 724 533 5 1 0  3200 
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Figure 6: Error disper�ion for V<)wels from four speakers from Koopmans-van 
13einum ( 1980). Vowels were unered in isolation (!), in monosyllabic, isolated words 
(W), and in unsircs.,ed 'yllablcs in free com•ersmion (C). The filled bars indicate the 
results for the individual speakers, the grey bars for all speakers pooled. The 
diffe rence' between the Nror dispc"ions arc srntistically significant for all conditions 
(Wilcoxon test. p�.05, two tailed). 

logarithmic form lo lhc linear form, lhe reslllting measures represent the "effeclivc 
number of error classes", or error-dispersion. In the previous sections, I proposed two 
measures of error dispersion, d5 and d,. When £ is the error-rate, and Ht= -c·2Iog(E) -
(1-£}2tog( l-E), then: 

2(�'") 
d, 

= 2(!f) 
( 13a) 

is the effecth·e number of error categories per stimulus and 

Table 2: Confll•ion matrix and performance measures for idcnlification of vowel rcali1.;l11ons 

pre.>;enlcd with and wuhout their na1ur:1l context. Taken from Huang (1991) 

#V# pre,cntation (E = 29.1%) 

) 
l 
e 
c 
" 

total 

I. .. 1.223. d, = 2.312 
G I 241 d 2 426 = .. �,. 

I l c e 
706 100 33 3 

10 693 1 4  58 
51 150 834 132 

3 52 45 542 
2 33 4 175 

772 1028 930 910 
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" 
1 8  

165 
33 

243 
446 
905 

eve presentalion (E = 20.7%) 
L = 0.965, d, = 2.167 or = 0.019 
G 0990 d 2 350 & - 0 023 • = �= . - . 

I I e c " total 

764 65 23 l 7 860 
17 756 2 62 103 940 
47 107 885 135 . 26 1200 

I 22 20 640 202 885 
4 24 0 71 561 660 

833 974 930 909 899 4545 
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Figure 7: l:rror rates for vowels from three speakers from Van Bergem (1993). Vowel 
rcaliwoions were t,1kcn from monosyllabic words unered in isolaiion (I), in stressed 
(CS) and unstressed (CU) syllables of content words. and in function words (f). 
Syllables were uuered with and without sentence accent (+/- Accent sec lcxt). The 
filled bars indicate the results for the individual speaker.;, the grey bars for all speakers 
roolc<l. The diffe rence in error rates between vowels caken from strcssc<l syllahlcs in 
con1en1 words (CS) and function words (F) differ statiscically significantly (ignoring 
+/-Accent, Wilcoxon 1est, p!>0.05, two-tailed). The other differences are not 
i-.tulistic�11ly signific:tnt. rJ'hc presence or absence of senlence accenl hacl no cffccL. 

( l 3b) 

is the cffec1ive number of error categories per response. ln Figure 1-4, eitamples are 
prcsemed of hypo1he1ical confusion matrices. All confusion matrices have lhe same 
error rale of 1/3, bul differem distribu1io11s of 1he errors over lhe slimuh and 
respono;cs. As a rcsuh of 1he differences in lhe dislribu1ion of the errors, the error 
dispersions arc diffcrcnl. Whenever lhe dis1ribu1ion of stimuli and responses are 
different, 1he values of d8 and d, are differem for a single confusion matrix (c.f. 
Figures 2 and 3). 

There also is a mca\urc, S, 1ha1 describes differences i.!!_ the error categories 
be111ee11 confusion matrices. Tn the following the symbol H indicates the mea11 
emropy of the � experiments. Furthermore, H' indicales the entropy and e' the error· 
rate of the N pooled experiments (i.e., the combined confusion matrices). 
Furthermore, it is assumed that all confusion matrices arc weighted equal (if not, use 
equation J I). The error-difference of the responses, 8,. and stimuli, lls, are de lined as: 

60 

(de-H e) 
c:' 2 Jog(N) 

(14a) 
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Figure 8: Error dispersion' for vowels from three >peakers from Van Bergem ( 1993). 
Vowel realizations were rnken from monosyllabic words uttered in isolmion (I), i n  
"trcssc<l (CS) and unstressed (CU) syllnblcs of contem words, and in function word' 
(F). Syllables were mtcred wi1h and without sentence accent (+/- Accenl sec 1cx1). The 
tilled bars indicate the rcsulls for the individual speakers. the grey bars for all speakers 
1wolcd. Except for the resulls for "owels ultcrcd in isolation (I), arc all differences 
between syllable types are sta1i,1ically $ig111fican1 (ignoring +/-Accent, Wilcoxon tc,t. 
pS0.05, two-tailed). The presence or absence of sentence accent had no effect. 

(14b) 

The error-differences can be in1erpre1ed as the effective fraclion of 1he errors thal is 
outside the shared error categories, corrected for overall differences in the distribution 
of stimuli or responses. An example is given in Figures 3a and 3b. All confusions are 
diffcrcnl between these two confu�ion matrices, so Os "' I (note lhtll the stimulus 
{fo,tributions are identical). Due 10 the differences between the distributions of the 
responses, which are discounted, the value of O,. < I. 

The measures, discussed above, have been calculated for darn from papers 
concerning vowel identification. Papers concerning two questions in the field of 
vowel identification arc discussed. The first ques1ion is about the effects of the 
presence of coniexl on vowel idcn1ifica1ion. The second question is about the effects 
of stress and (informal) speaking s1ylc on vowel in1elLigibili1y. 

Presenting vowel segments in their "natural .. context enhances !here intelligibility. 
Is this the resul1 of a change in 1hc kind of confusions that appear, i.e., 1he listeners 
"home in" on the correcl vowel and !here are Jess possible responses for each 
s1imulus? Or is it the result of the listeners being better able 10 distinguish between 
ambiguous pai rs. i.e., the confusions arc the same, but the listeners can bcuer select 
the correct response? 

These questions were touched in the studies of Kuwabarn ( l 985) and lluang 
( 199 l ,  1992) which will be discussed here. They used vowel reali1.ations excised 
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from trisyllabic VVV sequences (Kuwabara, 1985) and CVC syllables (Huang, I 99 I, 
� 1992) and presented them in isolation as well as in their original, syllabic, context. 

Kuwabara ( 1985) used trisyllabic YYY sequences excised from short Japanese 
sequences. The vowels could be any one of the five Japanese vowels Ii e o o u/ but 
the medial (target) vowel was always different from the two flanking vowel. Four 
subjects were asked to label the realizations (medial vowel only) as one of the five 
Japanese vowels. Each token was presented five times. Presented in isolation, the 
error-rate was 20%. Presented in context, the error-rate was only 4%. There were an 
equal number of stimulus/response pairs in both experiments. 
From the confusion matrices in Table 1 it can be calculated that the error dispersions 
for both conditions are almost equal, d "'  1.3, and the differences arc small, o s; 0.13. 
Thus. despite the enormous differences in the error rate, the distribution of the errors 
seems to be fairly similar, whether the medial vowels were presented with or without 
context. This means that the difference between the presentation of vowels with and 
without comext is not so much the type of confusions, but tl1e extent to which they are 
reported. 

Huang (J991) presented consonant-vowel-consonant syllables to subjects as well 
as the excised vowels from these syllables (i.e., without the consonants). The results 
from four speakers were pooled in the confusion matrices presented in Table 2. Using 
the "raw" error-rates from the individual speakers it is possible to show that there is a 
statistically significant difference between the error-rates from presenlation in context 
and presentation without context (Wilcoxon test, ps;0.05, two tailed). No statistical 
significant difference can be found for the error dispersions. 

Again, from the confusion matrices it can be calculated that the error dispersions 
for vowels presented with and without context are almost equal, d "' 2.3 and the 
differences small, o "'  0.02. Therefore, it seems that the presence of context does help 
in recognition, but not by reducing the number of different confusions, but by 
reducing the number of times each confusion leads to an incorrect answer. 

This inference, which seems obvious when inspecting the error-dispersion and 
difference, is difficult to justify by other means. A visual inspection of the confusion 
matrices could hint towards the role of context in these experiments, but this role 
would be hard to quantify. 

'With regard to the second question, about the influence of stress and speaking 
style on vowel intelligibility, two studies are discussed, one by Koopmans-van 
Beinum (1980) and one by Van Bergem (1993). 

Koopmans-van Beinum ( 1980) presented vowel realizations from four speakers to 
listeners. She used vowels uttered in isolation, from monosyllabic words uttered in 
isolation and from unstressed syllables from free conversation. The resulting error 
rates and error dispersions are presented in figures 5 and 6. 

Van Bergem (1993) presented vowels taken from identical syllables pronounced in 
isolation, as the stressed and unstressed syllables of content words and as a function 
word. All words, except those pronounced in isolation, where part of carrier 
sentences. The three speakers were unaware of which word was the target word. 
Sentences were structured to place a sentence accent on or next to the target syllable 
(unstressed syllables and function words cannot carry sentence accent) and, 
alternatively, the sentence accent was placed away from the target syllabic. For each 
syllable there were 7 realizations for each of the three speakers. The resulting error 
rates and error dispersions arc presented in figures 7 and 8. 

For both experiments, the error dispersion can separate the conditions better than 
the error rate. Using the error dispe rsion, there are statistically significant differences 
between all conditions (Wilcoxon test, ps;0.05, two-tailed). The only exception are the 
Jsolated vowels of Van Bergem (1993), mostly because there were only tlu·ee values 
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available. Using only the error rate, it is not possible co decide, based on these data, 
that there is a difference in the identification of vowels caused by speaking style or 
word stress/syllable type. Due by using the error dispersion. it can be inferred that 
changes in stress and speaking style change the number of ambiguities as well as the 
overall intelligibility. 

8 Conclusions 

From the examples given 11 can be seen that the error dispersion is an independent 
measure of the spreading of the errors over individual stimulus and response 
categories. It is possible to use the error dispersion to distinguish response patterns in 
conditions where the error rate does not distinguish ihem, just as it is possible to spot 
equivalencies when the error rate indicaies only distinctions. 
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